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Preface

This book combines the teaching of MATLAB� programming skills with the presentation
and development of carefully selected electrical and computer engineering (ECE) funda-
mentals. This is what distinguishes it from many others: it is directed specifically to ECE
concerns. Students will see, quite explicitly, how and why MATLAB is well suited to solve
practical ECE problems.

For ECE graduates of BS programs, MATLAB programming skills are an increasingly
important component in the tool set for competing successfully in the job market. This
requires that students start early in their academic studies to learn and apply MATLAB
programming skills in their EE and CE curricula.

Audience

This book is intended primarily for the freshman or sophomore ECE major who has no
programming experience, no background in EE or CE, and is required to take a MATLAB
programming course. It can also be used as the text of an introduction to electrical and
computer engineering course where learning MATLAB programming is strongly empha-
sized. A first course in calculus, usually taken concurrently, is essential. This book can be
used in various ways by other instructors and readers. For example, it can be used to
accompany any text in a higher level EE or CE course where use of MATLAB is desired. It
can be used by junior and senior level students in other fields of engineering who are
required to learn fundamentals of EE and CE. Certainly, the professional engineer or sci-
entist in EE, CE or any other field can easily learn (or be refreshed) and apply MATLAB to
practical problems and come to appreciate its convenience and powerful computing cap-
abilities. Lastly, it can be used by professional engineers for self-study to learn MATLAB,
and I suspect it will. The many in-depth examples and programs included in this book will
be welcomed by such readers. MATLAB is useful not only for those with academic or
professional needs but also for those who enjoy using a computer to work with, for example,
audio (speech, music, and biomedical) signals, images, games, animation, and application
development in virtually all fields. Many examples and programs in this book demonstrate
this.



Rationale of the Book

The distinguishing feature of this book is that about 15% of this MATLAB book develops
ECE fundamentals gradually, from very basic principles. Because these fundamentals are
interwoven throughout, MATLAB can be applied to solve relevant, practical problems. The
plentiful, in-depth example problems to which MATLAB is applied were carefully chosen
so that results obtained with MATLAB also provide insights about the fundamentals. With
this ‘‘feedback approach’’ to learning MATLAB, ECE students also gain a head start in
learning some core subjects in EE and CE curricula. For example, complex numbers and
time functions are very important in ECE but are barely touched upon in other MATLAB
books, even though MATLAB works conveniently with the complex data type. From basic
principles, complex numbers and time functions are introduced such that students learn how
to apply MATLAB to solve AC (alternating current) circuit analysis problems and analyze a
circuit to find its frequency response.

The effort required to learn how to actually use MATLAB quickly pays for itself.
Throughout the first eleven chapters of this book, nearly 200 examples and over 80 pro-
grams demonstrate this, showing students how solutions of practical problems can
be obtained with MATLAB. After using this book, the ECE student will be well prepared to
apply MATLAB in all coursework that is commonly included in EE and CE curricula.

Synopsis of Core Chapters 1–11

The core chapters for learning MATLAB are Chapters 1-11. In Chapter 1, the MATLAB
environment is presented, including navigation among many of its linked windows. The
chapter shows how to do immediate and interactive computing and how to access the
MATLAB help facilities. Chapter 2 introduces the Edit Window for program and function,
called m-files, development. Electric current and voltage are defined, based on fundamental
physical principles. Ohm’s Law and the operation of a p-n junction diode are given to apply
MATLAB. How to use the MATLAB code analyzer is explained, and students learn how to
build their own library of functions, called a toolbox.

Chapter 3 starts by solving two linear equations in two unknowns by repeated sub-
stitution, and the solution is written in a form to motivate the definition of a matrix and
matrix multiplication, addition, equality, and inversion. Then matrix algebra is presented
more thoroughly with the objective of showing how well MATLAB works with matrices.
Kirchhoff’s Laws are introduced in Chapter 3, and MATLAB is applied to do component,
nodal, and mesh analysis of resistive circuits. Several methods to find the solution of N
linear equations in N unknowns, written in matrix notation as AX ¼ Y, are examined,
including Gauss-Jordan elimination and eigenvector and singular value decomposition of
the matrix A. After a matrix norm is defined, the condition number of the matrix A is
examined to assess the accuracy of a solution.
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Chapter 4 addresses MATLAB constructs for program flow control: for loop, if-elseif-
else, while loop, and switch-case-otherwise. After describing the MATLAB relational and
logical operators, there follows a discussion about probability, random number generators,
histograms, median filtering, numerical integration, and optimization, including the method
of least squares and the method of steepest descent. Many extensive MATLAB program
examples are included to demonstrate program flow control while applying MATLAB to the
mentioned topics.

Chapter 5 discusses binary data. Elements of Boolean algebra are introduced, and
MATLAB is used to evaluate Boolean functions. Logic gates are defined, and it is shown
how to design a combinatorial logic circuit. Algorithms are given for base ten to binary
conversion of integers and fractions. Binary arithmetic is discussed. A MATLAB simulation
of a serial binary adder is given, which is performed with an animation in Chapter 9. The
floating point notation that MATLAB uses to store numeric data is described. A data
acquisition system is described, and quantization error that occurs in the process of analog to
digital conversion (A/D) is examined. The process of digital to analog (D/A) conversion is
illustrated.

Chapter 6 provides an extensive introduction to complex numbers. After Euler’s iden-
tity is proved, the concept of a phasor of a sinusoidal time function is introduced, and then
the Fourier series of a periodic signal is examined. MATLAB is used to obtain and plot the
magnitude spectrum of a periodic signal and to reconstruct a periodic signal from its Fourier
series. Through Euler’s identity, the concept of an impedance is presented, and MATLAB is
applied to AC circuit analysis. This leads to the transfer function and frequency response of
a linear RLC (resistor, inductor, and capacitor) circuit, and MATLAB is used to calculate
and plot the frequency response. The ideal operational amplifier (op-amp) is then defined,
and the gain of several op-amp based circuits is obtained, including an active RC (op-amp,
resistor, and capacitor) circuit.

Chapter 7 is concerned with the character data type and character string manipulation.
This very useful part of MATLAB makes it possible to develop user-friendly applications.
Structure and cell arrays that can hold any data type are presented. Structure and cell arrays
are utilized for keeping PCB (printed circuit board) inventories. Since MATLAB includes
many functions concerned with file management, an example shows how such functions can
be used to manage a directory of musical WAV files and retrieve a particular song to play.
Some MATLAB functions return a structure array for the symbolic solution of a set of
equations. This is applied to find in symbolic form the output of a differential amplifier in
terms of its two inputs.

Chapter 8 is about MATLAB support for data input and output (I/O) of binary and text
data. Formatted I/O of many data types is discussed. In addition to input of binary and text
data, it is also useful to input analog signals for further analysis. An example shows how to
record an audio signal.

Chapter 9 is concerned with the MATLAB functions for 2-D and 3-D data visualization.
Through colorizing, added annotation, viewpoint control, sizing, multiple plotting, plotting
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style, animation and much more, many fundamental principles of EE and CE can be better
understood. MATLAB functions to create many types of 2-D and 3-D plots are presented.
With MATLAB functions or the plot edit GUI, all plot details can be customized. It is also
convenient that MATLAB, by using default options, creates useful plots given only the plot
data. Plots can be saved or exported to other documents in many image formats. Examples
show (1) the output of a digital to analog converter given an input WAV file, (2) the real-
time (but slowed down) operation of a serial binary adder, (3) the sweep frequency input and
output of a filter, and (4) how to make movies, and more.

Debugging is an unavoidable part of programming, so it is covered in Chapter 10.
MATLAB includes a helper program that automatically runs in the background to inform
programmers of syntax programming errors and to suggest fixes. By code folding or setting
breakpoints, the programmer can single step through any line or segment of a program and
check intermediate results. Using an in-depth example throughout the chapter, many
MATLAB facilities for debugging MATLAB code are demonstrated.

Chapter 11 is about symbolic computing, where solutions of linear and nonlinear pro-
blems can be found in symbolic form instead of numeric form. The chapter starts by
describing how to define symbolic objects. Then, throughout the chapter, many built-in
functions with symbolic alternatives are discussed, including complex arithmetic, matrix
inversion, series summation, integration, and differentiation, to mention only a few. Sym-
bolic integration is applied to find the Fourier series coefficients of a periodic signal. By
using rational arithmetic instead of floating point arithmetic, it is shown that with the
MATLAB variable precision arithmetic (VPA), one can compute to any precision. With
the built-in function solve, one can find the solution of sets of linear and nonlinear algebraic
equations. The solve function is applied to symbolically find the output in terms of the two
inputs of an instrumentation amplifier. It is also applied to symbolically solve Kirchhoff’s
equations of an RLC circuit to find the circuit transfer function. The built-in function limit is
useful to find symbolically the limit of a function as its variable approaches a point, and the
unit step and unit impulse functions are described and studied with the limit function.

Supplemental Chapter Synopsis

The remaining two chapters cover topics that require the knowledge obtained from the
typical first three of four calculus sequence of courses. It would be quite rare to include
these chapters in an introductory course syllabus for freshman or sophomore students, but
advanced students and professionals would certainly benefit from studying them. After
completing Chapter 12, the ECE student will be well prepared to apply MATLAB in a first
signals and systems course and beyond.

Chapter 12 starts by presenting fundamentals of signal representation. The discrete
Fourier transform (DFT) is developed. Many of its properties are examined with numerous
MATLAB examples that employ the built-in function FFT (fast Fourier transform). The
time domain version of the sampling theorem is presented. MATLAB is applied to do
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spectral analysis of both stationary and non-stationary signals. Chapter 12 continues by
presenting, from basic principles, time domain solution methods of linear differential
equations and linear difference equations. Many MATLAB functions are introduced and
applied to continuous and discrete time linear system analysis, including finding the impulse
response, transfer function, eigenvalues (natural frequencies), frequency response, con-
volution, and conversion to state variable descriptions. MATLAB also includes several
ordinary differential equation (ODE) solvers, which are applied to analyze both linear and
nonlinear circuits. Over 25 examples and 20 programs are included to demonstrate the
significant role that MATLAB can play in the academic carriers of ECE students. Some
examples are concerned with FIR (finite impulse response) and IIR (infinite impulse
response) digital filters to demonstrate that a difference equation, which is implemented
with a computer, can exhibit frequency selective behavior like an analog circuit.

Chapter 13 is an introduction to Simulink�. Simulink uses a graphical user interface
(GUI) for building models of dynamic systems with building blocks from an extensive
library of building blocks included in Simulink. The chapter starts by examining the
Simulink environment, model editor, and how to navigate among the libraries of building
blocks. Then, model building is demonstrated by drag and drop of blocks and inter-
connecting them. It is shown how one can build their own library of custom blocks and use
them in the same way as built-in blocks. Simulink is used to simulate an RLC circuit, and it
is used to compare the performance of an open-loop system to a closed-loop control system.

Appendix A describes how to generate hardcopy of MATLAB work.

Chapter Exercises

Each chapter includes numerous end-of-chapter problems to exercise the reader’s under-
standing of the material. Most problems require writing MATLAB programs. Answers to
selected problems are given in Appendix C. By adopting instructor’s request, a solution
manual is available from the publisher.

How the Book Can be Adapted

The coverage of this book (Chapters 1–11) may be too extensive to be completed in a one
term course. Course lengths, student abilities, and instructor objectives vary from program
to program. An instructor can decide which sections of this book to require, while skipping,
if necessary, others or assigning them for self-study. I would offer the following suggestions
for trimming the coverage:

● All of Chapter 1 (MATLAB Environment) must be covered.
● In Chapter 2 (Programs and Functions), the section concerned with MATLAB functions

need only be used to introduce anonymous and primary functions and perhaps the built-
in function eval.
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● In Chapter 3 (Matrices, Vectors, and Scalars), once MATLAB has been applied to
resistive circuit analysis, the remainder of this chapter, which presents the most math-
ematically challenging material in this book, can be skipped without loss of continuity.

● All of Chapter 4 (Program Flow Control) must be covered.
● Depending on interest, the material about quantization error in Chapter 5 (Binary Data)

can be skipped. It would be very practical to return to Chapter 5 later, if time permits.
● All of Chapter 6 (Complex Numbers) should be covered.
● The material in Chapter 7 (Character Data) about structure and cell arrays can be

skipped.
● All of Chapter 8 (Input/Output) should be covered.
● All of Chapter 9 (Graphics) should be covered, at least because it is so much fun.
● All of Chapter 10 (Debugging), which is very short, must be covered, perhaps on a self-

study basis.
● Chapter 11 (Symbolic Computing) is very interesting, and should be covered if time

permits.

Once the assigned material is covered, it is likely that skipped material will be inves-
tigated by students on their own, because they will have come to appreciate the convenience
and utility of MATLAB for practical problem solving in the entire EE and CE curricula.

Final Notes

There is much literature available about MATLAB. A primary source of material about
MATLAB is MathWorks, Inc., the manufacturer of MATLAB. At their website one can find
many audio/video tutorials that will help to learn MATLAB. Anyone can also download a
30 day free trial of MATLAB, and a student version of MATLAB that includes many
toolboxes, and Simulink can be purchased for less than the average cost of a textbook.

I began to use MATLAB a long time ago, mainly because of its graphic capabilities,
ease with which it works with matrix and complex data types and the intuitive syntax of the
language. Over the years and now, MATLAB has evolved continuously. As new algorithms
are invented in virtually all fields of science and engineering, MATLAB grows to imple-
ment these algorithms with new built-in functions. Learning to use MATLAB is a worth-
while investment of time, whether you do it with this book or any other way. However, in all
cases, access to MATLAB and learning by trial and error are absolutely necessary.

Roland Priemer
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CHAPTER 1

MATLAB‡ Environment

MATLAB�, which means Matrix Laboratory, is a computing tool that is widely used by
professionals in Electrical Engineering (EE), Computer Engineering (CE) and many other
fields. MATLAB consists of two linked parts. The first part is the programming language,
which consists of only a few basic programming constructs. The second part is the library of
an enormous number of built-in programs, called functions, that perform operations com-
monly required in many fields of engineering and science. For this reason, MATLAB will
improve an engineering student’s academic and professional productivity.

MATLAB can work with a variety of data types, including integers, real numbers,
complex numbers, characters, and logic variables, which can all be organized into arrays
and other structures. MATLAB is an interactive system, where intermediate results can be
accessed as programs are developed. You can develop solutions of problems for application
in other MATLAB programs. One of its outstanding features is the capability to produce a
variety of two- and three-dimensional graphic outputs that can be exported into documents.
Also, MATLAB provides extensive built-in and online tutorials, demonstrations, and doc-
umentation to help you learn MATLAB programming.

After you have completed this chapter, you will know how to

● start MATLAB and bring the MATLAB desktop to its default state
● navigate through some of the windows in the MATLAB system
● use MATLAB in its immediate mode of computing for some of your work
● use the extensive MATLAB help facility

1.1 Default MATLAB� Desktop

It is assumed that you have access to a computer that has MATLAB installed in it. This book
is based on MATLAB version 7.14 (R2012a), which is a 64-bit MATLAB running on



Windows 7. To launch MATLAB, double-click on the MATLAB icon on your computer’s
desktop. You can also left-click on the computer’s start button, move to the programs menu,
and navigate to MATLAB from there.

After launching MATLAB, the MATLAB desktop will appear on the screen. The
desktop consists of one or more windows and one or more toolbars positioned above the
windows, depending on the appearance of the desktop when MATLAB was last shut down.
Through this Graphical User Interface (GUI), you can conveniently access all of the
resources and features of MATLAB.

To bring the desktop to its default state, left-click the MATLAB desktop button in the
menu bar located at the top of the desktop and follow the highlighted menus shown in
Fig. 1.1. Hereafter, a sequence of button (menu) selections like the sequence shown in
Fig. 1.1 will be given by

Desktop ! Desktop Layout ! Default

The default MATLAB desktop is shown in Fig. 1.2. The default desktop consists of four
windows, the Command Window, the Current Folder Window, the Work Space Window,
and the Command History Window. Only one window can be active at a time. To activate
or select a window, left-click anywhere within the window. In Fig. 1.2, the Command
Window is the active window, as indicated by the highlighted title bar. Below and asso-
ciated with the Current Folder Window is a window that shows the first comment line that

left-click

save layout for next
launch of MATLAB

open toolbar menu

other layout
options

Figure 1.1 How to set up the default MATLAB desktop.
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appears in the program that is highlighted in the Current Folder Window. This window gives
you a quick peek at the highlighted program to help you find the program that you want to
work on. Soon, these windows will be described in more detail.

MATLAB uses a part of computer memory, called the Workspace, where it stores the
names of variables that you define while using MATLAB and the results of various kinds of
computations that you cause MATLAB to perform. The size of this Workspace can be as
large as the available memory that is not used by other applications.

At any time you can quit MATLAB with

File ! Exit MATLAB

Or, you can quit MATLAB by typing the command quit in the Command Window. This
command shuts downMATLAB in an orderly manner, and it is one of many built-in MATLAB
functions that you can invoke by merely including its name in a MATLAB statement.

You can use MATLAB in two different modes. One mode is the immediate mode (also
called Command Line mode). In this mode, a MATLAB statement is entered in the
Command Window, and after you depress the keyboard Enter Key the action specified
by the MATLAB statement is immediately executed. For example, in Fig. 1.2, four

click to browse and
select a current folder

scroll to select a previously
selected current folder

close windowminimize window

first comment line in program
highlighted in Current Folder Window

place cursor at MATLAB prompt
to enter a MATLAB statement

record of MATLAB statements

Figure 1.2 The default MATLAB desktop.
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executable MATLAB statements were entered in the Command Window. The first statement
consists of the built-in function clear with all as its operand, which causes MATLAB to
delete from its Workspace all variable names and their associated values. This statement
continues with the percent symbol %, followed by text. The percent symbol causes
MATLAB to ignore the following text until the end of the line. With the percent symbol you
can append a comment to a MATLAB statement. The second line consists of a MATLAB
statement that assigns a complex number to a variable, followed by a comment. Complex
numbers will be discussed in Chapter 6. Notice that the result is displayed immediately after
you depress the Enter Key. This mode of operation is similar to the way we use a calculator.
However, as you will see, MATLAB is much more powerful.

The other mode of MATLAB operation is the program mode. In this mode you can
write, with an editor, a sequence of MATLAB statements that can become a MATLAB
program. A sequence of MATLAB statements is called a script. A script can be made into a
MATLAB program by saving it as a file with a name that ends in .m as a suffix, resulting in
a file that is called an m-file. MATLAB provides an Editor Window in which you can write
MATLAB scripts.

In the MATLAB desktop (see Fig. 1.2), there is an option for you to specify a folder as
the Current Folder, where files can be stored and retrieved without specifying a complete
path name. If you save an m-file in the Current Folder, then the program can be invoked by
typing the program’s file name, but without the .m suffix, in the Command Window. The
program mode of operation and the creation of m-files will be discussed in Chapter 2.

1.2 Quick Start

Before we continue our exploration of the MATLAB environment, let us see how easy it is
to obtain useful results with MATLAB.

Example 1.1

The following sequence of MATLAB statements is an example of a MATLAB script. The
purpose of this script is to create a plot of a function of time.

1 % MATLAB statements to plot the function v(t) = A cos(w t + B) for 0 � t � 1 sec

2 % specify parameters

3 t_start = 0.0 % plot start time

4 t_end = 1.0 % plot end time

5 A = 2 % amplitude of v(t)

6 B = pi/12 % phase of v(t) in radians

7 % MATLAB automatically replaces pi with the number: 3.1415926 ...

8 f = 2.0 % frequency in hertz (cycles/sec) of the sinusoidal time function

9 w = 2.0*pi*f % frequency conversion from cycles/sec to radians/sec

10 T = 0.01 % plot time increment in seconds
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11 % evaluate the function v(t) over the range t = t_start to t = t_end

12 t = t_start : T : t_end % specify a sequence of time points incremented by T

13 v = A * sin(w*t + B) % evaluate v(t) for all specified time points

14 vt_plot = plot(t, v, ’k’) % use black, ’k’, for plot color

15 grid on % include a grid in the plot

16 xlabel(’time - secs’) % put a label along the abscissa

17 ylabel(’voltage’) % put a label along the ordinate

18 title(’Example of plotting with MATLAB’) % put a title above the plot

19 saveas(vt_plot, ’plotting_example.emf’) % save the plot named vt_plot to a file

Some statements need little explanation, while others cause action that is more com-
plicated. All of these statements were copied from here, without the line numbers, and
pasted into the Command Window, and MATLAB immediately executed them. Let us study
these MATLAB statements, and see how they cause the result given in Fig. 1.3.

Line 1 is a comment to explain the purpose of this script. MATLAB ignores all char-
acters following the percent symbol % until the end of the line. Line 2 is another comment
line. Line 3, which is called an assignment statement, assigns the value given on the right
side of the equal sign (assignment operator) to the MATLAB variable name t_start, which
you choose, given on the left side of the equal sign. In MATLAB, a variable name cannot
contain spaces, and to make a variable name that is made out of several terms readable,
underscores can be used to connect terms. The variable name and its associated value are
placed in the MATLAB Workspace. This is analogous to you writing, t_start ¼ 0.0, on a
piece of paper. Then, if at a later time you need to know the value of the variable t_start, you
can look for the name t_start on the piece of paper to find its value. Lines 4–6 assign
parameter values to variable names that help us to remember the purpose of each parameter.
Line 7 is a comment line. Lines 8–10 also assign parameter values to variable names. In
lines 6 and 9, MATLAB automatically replaces the character string, ‘‘pi’’, with the number,
3.1415926 � � � . Since the variable f has been assigned a value in line 8, MATLAB can
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–2

–1

0

1

2

time - secs

vo
lta

ge

Example of plotting with MATLAB

Figure 1.3 Plot obtained with MATLAB.
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perform the multiplication (symbolized with an asterisk) on the right side of the equal sign
in line 9 by finding the value of f in the Workspace. Notice that comments are appended to
these assignment statements to explain the purpose of the parameters.

To plot the function v(t) versus t, a set of values of t must be specified, and for each
value of t in the set, v must be evaluated to obtain a set of corresponding values of v. For
example, if t1 is the first value of t, then v1 ¼ v(t1) is the first value of v. A plot over a
uniformly spaced set of time points, t1 � t � tN, can be made by connecting with straight
lines the set of N points ((t1,v1), (t2,v2), (t3,v3), . . . , (tN,vN)). As the number N of points is
increased, the plot will look smoother.

For convenience, a set of N numbers is written as a one-dimensional array of numbers
enclosed in brackets, called a vector, which can be assigned to a variable name. For example,
let x be a vector defined by x ¼ [–1.5, 0.5, 2.5, 4.5]. This vector has N ¼ 4 elements, where
x(1) ¼ �1.5 is the first element and x(4) ¼ 4.5 is the last element. We can refer to any
element of x with x(n), n ¼ 1, . . . , N, where the variable named n is the element index. In
MATLAB, any valid name, to be described soon, can be used for a vector name and a vector
index name. Vectors and other types of arrays will be discussed more thoroughly in Chapter 3.

Line 12 uses the colon operator to assign a range of numbers (time points) to the
variable name t, which becomes a vector of numbers. The first element in the vector t is
t(1) ¼ 0.0, and the colon operator increments each element in t by T ¼ 0.01 to find the next
element in t until the last number t_end ¼ 1.0 is reached. Generally, for some vector x the
syntax of this assignment statement is given by

x = first_value : increment : last_value

Other syntax options for defining a vector with the colon operator will be described in
Chapter 3. After MATLAB has executed line 12, the vector t is given by

t = [ t(1) t(2) t(3) t(4) ... ] = [ 0.0 0.01 0.02 0.03 ... 1.0 ]

where the delimiter between vector elements can be a comma or one or more blanks.
Since a vector is a part of the argument of the sine function in line 13, MATLAB

automatically evaluates the sine function for each entry (element) in t to obtain a corre-
sponding value (element) in the resulting vector named v, and we get

v(1) = A*sin(w*t(1) + B)

v(2) = A*sin(w*t(2) + B)
..
.

All of the variable names defined in this script are listed in the Workspace Window.
Line 14 uses the built-in MATLAB function, plot, to create a plot of v versus t. This

assignment statement associates the resulting plot with the name vt_plot, or whatever other
name you might choose. Line 15 uses the built-in MATLAB function, grid, with the
operand on to cause MATLAB to place grid lines in the plot, and notice that MATLAB
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automatically determines their spacing. The built-in functions xlabel, ylabel, and title make
it very easy to define and locate plot labels. When MATLAB executes the plot function, it
automatically opens a Figure Window into which MATLAB inserts the plot and the output
of functions concerned with plotting. This window is shown in Fig. 1.4, and within this
window you can do much editing of figure attributes. Notice that MATLAB has auto-
matically sized the plot, and inserted x-axis and y-axis tick marks. The last MATLAB
statement (line 19) uses the built-in MATLAB function, saveas, to save the plot as an
enhanced metafile (.emf) (one of many options), which can be inserted into a Microsoft
Word� document file or opened with the Microsoft Paint� application. Many of the
figures given in this book, such as Fig. 1.3, were made this way.

Another way to place a figure into a document file is to use the menu sequence

Edit ! Copy Figure

in the Figure Window shown in Fig. 1.4. Then, you can paste the figure into a document,
resulting in Fig. 1.3.

Figure 1.4 Opened Figure Window.
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It is understood that at this point in this book the purpose of some of the operations
introduced in this example script may not be totally clear. However, by the end of this
chapter many of the questions that you may have will be resolved, and you will find that it is
easy to obtain useful results with MATLAB. The built-in MATLAB functions introduced in
this example will be discussed in more detail in the following chapters.

To place more than one MATLAB statement on a line, separate the statements with a
semicolon. With a little experience, you will write the script more efficiently, as follows.

% MATLAB statements to plot a sinusoidal time function v(t) = A cos(w t + B) for 0� t� 1 sec

A = 2; B = pi/12; f = 2.0; w = 2.0*pi*f; % four MATLAB statements define parameters of v(t)

t_start = 0.0; t_end = 1.0; T = 0.01; t = t_start : T : t_end; % specify plot time points

v = A * sin(w*t + B); % evaluate v(t) for all specified time points

% plot v(t) versus t, and use the color black for the plot

vt_plot = plot(t, v, ’k’); grid on; xlabel(’time - secs’); ylabel(’voltage’);

title(’Example of plotting with MATLAB’); % put a title above the plot

% save the plot named vt_plot to a file named "plotting_example.emf"

saveas(vt_plot, ’plotting_example.emf’)

If you want to achieve the same plot result with the least typing effort, then the script
can be

t = 0.0 : 0.01 : 1.0; v = 2.0*sin(4*pi*t + pi/2); plot(t,v,’k’);

grid on; xlabel(’time - secs’); ylabel(’voltage’);
title(’Example of plotting with MATLAB’);

1.3 Default MATLAB� Desktop Continued

Let us now investigate some of the features of the MATLAB desktop.

Command Window
The Command Window is the space where you can enter MATLAB statements for
immediate execution (or action). Statements are entered at the command prompt, ‘‘>>’’.
Depending on the kind of MATLAB statement and how you terminate it, the result (or
output) is shown immediately following the statement (see Fig. 1.2).

Workspace Window
The Workspace Window (see Fig. 1.2) shows the names and types of all variables that you
have defined in the immediate or the program mode of MATLAB operation.

Current Folder Window
The Current Folder Window shows the names of all of the files in the Current Folder.
Generally, to save or load (store or retrieve) a file, a complete path name must be given
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starting with the root directory. For convenience, when using a file directory that is selected
as the Current Folder, only the file name must be given to store or retrieve a file. The
Current Folder is the directory in which MATLAB looks first to find and retrieve a file, and
it is the default directory where files are saved by MATLAB.

Within the Current Folder Window, you can change the Current Folder to another
folder, such as a folder in a flash drive, to save and load files or results. To do this, make the
Current Folder Window the active window. Below the highlighted title bar are icons to
move up or down one level at a time in the directory structure of your computer, add a new
folder, find files, and get directory reports. You can scroll to any folder, and make it the
Current Folder by double left-clicking on its name. This is shown in Fig. 1.5. The resulting
MATLAB desktop is shown in Fig. 1.2. Notice that the Current Folder name appears in the
title window in the MATLAB desktop toolbar. A Current Folder can also be selected with
the Current Folder button in the desktop toolbar (see Fig. 1.2).

Command History Window
The Command History Window (see Fig. 1.2) keeps a running log of MATLAB statements
that have been entered in the Command Window.

Within the default MATLAB desktop all of the windows are connected (or docked).
You can free (or undock) a window by left-clicking on the small arrow next to the ‘‘x’’
(close window button) located in the upper right-hand corner of a window (see Fig. 1.2).
Once undocked, a reverse pointing arrow appears that can be left-clicked to dock the win-
dow. To close a window, left-click its close window button ‘‘x’’. You can minimize a

move up/down the
directory structure

search for file create new folder or file, and get file reports

scroll

double-click to select current folder

Figure 1.5 Selecting the current folder.
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window by left-clicking the arrow in the window title bar (see Fig. 1.2). With these options,
you can configure your MATLAB desktop with MATLAB windows to suit your pre-
ferences. Your preferred layout can be saved by using

Desktop ! Save Layout

After MATLAB has been launched, the initial appearance of the desktop will be like the
appearance of the desktop just prior to previously shutting MATLAB down. You can clear
the default desktop windows with the following menu selections.

Edit ! Clear CommandWindow
Edit ! Clear Command History
Edit ! Clear Workspace

You can also clear the Command Window by right-clicking while the mouse cursor is within
the window. A menu will appear that has the clear window option. Yet another way to
clear the Command Window is by entering the built-in MATLAB function clc within the
Command Window.

Located below the desktop menu bar is the MATLAB toolbar. The MATLAB toolbar
is populated with a set of icons. The left most icon is the new script icon. You can find out
the name of an icon by placing the mouse cursor over the icon, in which case, its name will
appear. To execute the functionality of an icon, click on it. Many windows have toolbars.
You can select the icons that you want to appear on a toolbar with, for example:

File ! Preferences ! Toolbars

which opens the Toolbars Preferences Window. Then, click on the toolbar pull-down menu,
and select MATLAB. Check all of the check boxes to fully populate the desktop toolbar, and
click the Apply button. As you become familiar with the other windows, you can select the
icons that you want to appear in the toolbars of these windows. In the preferences list, notice all
of the other options you have to control the appearance and operation of the MATLAB envir-
onment. As you become familiar with MATLAB, you may want to customize its environment.

If you have access to MATLAB, then it will be very useful to gain some experience
about the topics that have been introduced so far by completing Practice 1.1.

Practice 1.1

(a) Launch MATLAB, and bring the MATLAB desktop to its default state. Minimize the
Current Folder Window.

(b) Select (make activate) the Workspace Window. Activate the Command Window.
(c) Click the Edit button and use the Edit menu to clear the Command Window, Command

History Window, and the Workspace Window. Notice that within the Command History
Window the present date and time are kept.

(d) To demonstrate the immediate mode of operation, at the prompt in the Command
Window, type the MATLAB statement, ‘‘arg ¼ pi/2’’, and then depress the Enter Key.
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Do not include the double quotes. The resulting MATLAB desktop is shown in Fig. 1.6.
The character string, ‘‘pi’’, is a MATLAB reserved word that stands for the number p.
This MATLAB statement is an assignment statement that assigns to the character
string, ‘‘arg’’, which is a valid MATLAB variable name, the value resulting from
evaluating the expression on the right side of the equal sign.

(e) Activate the Workspace Window. Undock the Workspace Window, and drag it
elsewhere on your computer’s desktop. Now dock it. The result should look like Fig. 1.6.

(f) You can activate any window by left-clicking on it. Or, click on the Window button in
the desktop toolbar. This lists the open windows. To activate the Command Window
you can also use

Window ! CommandWindow

Then, close the Workspace Window and Command History Window. Now, left-click on
the Window button to see that only the Command Window is listed.

(g) Reinstate the Workspace, Current Folder, and Command History Windows with

Desktop ! Workspace Window
Desktop ! Current Folder Window
Desktop ! Command History Window

(h) Activate the Command History Window. You can transfer any previously entered
MATLAB statement logged in the Command History Window to the Command Window
by double-clicking the MATLAB statement. Do this with a MATLAB statement logged
in the Command History Window.

click to browse built-in
MATLAB functions

check these

Figure 1.6 Using MATLAB in the immediate mode of operation.
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(i) Activate the Command Window. Use the built-in function clc to clear the Command
Window. Notice that previously entered MATLAB statements are still listed in the
Command History Window.

Several additional windows will be introduced in the following chapters.

1.4 Built-in MATLAB� Functions

A built-in MATLAB function is a program that performs a particular task. You initiate
execution of a function (program) by naming (invoking) it in a MATLAB statement. Some
built-in functions require that you provide some input information, on which the function
operates to obtain a result that is returned to you. For example, consider the following
MATLAB statements:

>> input_argument = 9.0 % assign to a variable a value

>> sqrt_output = sqrt(input_argument) % invoke the built-in function sqrt

The first MATLAB statement assigns to the variable named input_argument the value 9.0.
The second MATLAB statement invokes a built-in function, sqrt in this case, which is a
program that calculates the square root of the value assigned to input_argument. The pro-
gram’s name is sqrt, and its acronym was arbitrarily chosen by the developers of MATLAB
to make it convenient to remember what the function does. To execute the function sqrt,
include its name in a MATLAB statement, where you must supply input information. The
function is executed, and the result is assigned to the variable name sqrt_output. The names
input_argument and sqrt_output were arbitrarily chosen.

Some built-in MATLAB functions require no input information. When invoked (named
in a MATLAB statement), such functions perform a particular task. For example, the
built-in function quit requires no input and does not return an output. When named in a
MATLAB statement, this function shuts down MATLAB in an orderly manner.

Some built-in functions perform very complex tasks, and may require much input
information and provide much output information. The large number of built-in MATLAB
functions makes MATLAB a powerful computational tool.

1.5 MATLAB� Variables

Unlike most other programming languages, MATLAB does not require any variable type
declarations or dimension statements to accommodate variables. When MATLAB
encounters a new variable name, such as the variable ‘‘arg’’, in Fig. 1.6, it automatically
creates the variable name, which in computer memory is a sequence of binary codes for the
characters in the name, and associates with it an appropriate amount of storage space where
its value is stored. If the variable name already exists and its value is redefined in another
MATLAB statement, then MATLAB changes the content of the associated storage space.
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The memory space where variable names and their values are stored is the Workspace, and
the content of the Workspace is shown in the Workspace Window.

MATLAB variable names can be any character string that consists of a letter, followed
by any number of letters, digits, or underscores. Variable names cannot have any blanks in
them. MATLAB is case sensitive. For example, the character strings ‘‘Arg’’ and ‘‘arg’’ are
not the same variable names. Although the length of a variable name is not limited,
MATLAB uses only the first N characters of the name, where N is found by using the built-in
function namelengthmax, as in the MATLAB statement

N = namelengthmax

This, with the version of MATLAB used here, produces N ¼ 63.
You can check if a character string is a valid MATLAB variable name with the built-in

function isvarname. For example, the MATLAB statement

chk = isvarname ( ’voltage_1’ )

produces the result chk ¼ 1 (interpreted as true) to indicate that the character string,
‘‘voltage_1’’, is a valid MATLAB variable name. However, the MATLAB statement

chk = isvarname ( ’2_current’ )

produces the result chk ¼ 0 (interpreted as false) to indicate that, ‘‘2_current’’, is not a valid
MATLAB variable name.

MATLAB uses a large number of words, characters, or character strings, called
reserved words, and they are used for operations, built-in MATLAB functions, and pre-
defined constants. Some reserved words constitute the behavior of the MATLAB pro-
gramming language, and therefore these reserved words are called key words, which cannot
be used for any purpose other than their default MATLAB programming modality. You can
check if a character string is a key word with the built-in function iskeyword. For example,
the MATLAB statement

chk = iskeyword( ’end’ )

produces the result chk ¼ 1 (interpreted as true) to indicate that ‘‘end’’ is a key word.
You can use a reserved word as a variable name if it is not a key word. However, then

the reserved word no longer means the intended built-in MATLAB function or predefined
MATLAB constant. The use of a reserved word as a variable name is reversed with the
built-in MATLAB function clear, as in the MATLAB statement

clear variable_name

This removes variable_name from the Workspace, and reinstates it as a reserved word.
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All variable names and associated values are placed in the MATLABWorkspace, which
is shown in the Workspace Window. Recall that all variable names and their values can be
removed from the Workspace with the built-in function clear all.

All numbers are stored in computer memory using floating point notation with
approximately 16 significant digits (called double precision) as specified by the IEEE
floating-point standard. This finite precision gives a finite range of values from about 10�308
to about 10þ308. All computing is done in MATLAB using double precision. However, you
can control the precision and style in which MATLAB displays numbers with the format
built-in MATLAB function. For example, to display 16 digits in floating point notation, use
the statement

format long e

The operand options are given in Table 1.1.

Example 1.2

The following MATLAB statements were executed in the immediate mode of MATLAB
operation and copied from the Command Window:

>> clear all % delete all variable names and values from the Workspace

>> format compact

>> N = namelengthmax % this function has no input, but returns an output

N =

63

>> chk = isvarname PowerSource

chk =

1

>> % the character string, "PowerSource", is a valid MATLAB variable name

Table 1.1 Format function

Function operand Example of a displayed number

bank 3.14
compact Suppresses blank lines in output
hex 400921fb54442d18
long 3.141592653589793
long e 3.141592653589793eþ000
long g Will use long or long e
loose Insert blank lines in output
rat 355/113
short 3.1415
short e 3.1415e þ 000
short g Will use short or short e
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>> % the character string, "1_power", is not a valid variable name

>> chk = isvarname (’1_power’)

chk =

0

>> % the above MATLAB statement could have been: chk = isvarname 1_power

>> arg = pi/4 % MATLAB replaces the character string, “pi”, a reserved word, by 3.14159 ...

arg =

0.7854

>> format short e

>> % just naming a defined variable causes MATLAB to print its value

>> arg

7.8540e-001

>> format long e

>> x = cos(arg)

x =

7.071067811865476e-001

>> cos = pi % using the reserved word, "cos", as a variable name

cos =

3.141592653589793e+000

>> x = cos(pi/2) % this is an error

??? Subscript indices must either be real positive integers or logicals

>> % MATLAB gave the above error message

>> % the character string, "cos", has been used as a variable name

>> % MATLAB has interpreted, “cos(pi/2)”, as reference to an element of a

>> % vector named, “cos”, where the vector index must be a positive integer

>> % avoid using reserved words as variable names

>> clear cos % reinstate the character string, "cos", as a reserved word

>> x = cos(pi/2) % ideally, the result should be zero

x =

6.123233995736766e-017

The symbols for elementary arithmetic operations are given in order of precedence in
Table 1.2.

Table 1.2 Elementary arithmetic operations

Operation symbol Operation, example

( ) Control evaluation order, z ¼ (xþy)^w
^ Exponentiation, z ¼ x^y
0 Complex conjugate, z ¼ x0
* Multiplication, z ¼ x�y
/ Division, z ¼ x/y, right slash
þ Addition, z ¼ xþy
� Subtraction, z ¼ x�y
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Several special reserved words have predefined meanings or values. Some of these
reserved words are given in Table 1.3.

1.6 MATLAB� Statements

The previous examples included a few different kinds of MATLAB statements, one of
which is the assignment statement. There are only a few additional kinds of MATLAB
statements. Some of these kinds of statements will be discussed now. Other kinds of
MATLAB statements will be presented in several of the following chapters.

TheMATLABassignment statementhas an intuitivemathematical structure, as given by

MATLAB_variable_name = MATLAB expression

On the left side of the equal sign (assignment operator) is any valid MATLAB variable
name. On the right side of the equal sign is a MATLAB expression that can involve any
previously defined MATLAB variables, MATLAB functions, or predefined MATLAB
constants along with MATLAB operations. There can be any number of blanks within a
statement to make it more readable. After the Enter Key has been depressed, MATLAB
evaluates the expression and associates the result with the variable name. The result is also
displayed in the Command Window (see Figs. 1.2 and 1.6). The result of the expression
evaluation will determine the data type of the variable name. This information is given in
theWorkspace Window. Table 1.4 gives several basic data types. These and other data types
will be discussed in later chapters.

The display of output in the Command Window can be suppressed by terminating an
assignment statement with a semicolon, as in

MATLAB_variable_name = MATLAB expression ;

Now, you can reduce the clutter in the Command Window, and see only the statement
outputs of interest. To aid debugging, you can cause the display of intermediate calculation

Table 1.3 Special reserved words

Variable Returned by function

eps Floating-point relative precision, e ¼ 2�52
i Imaginary number,

ffiffiffiffiffiffiffi�1p
inf Infinity
j Same as i
NaN Not a number
pi 3.14159265...
realmax Largest floating-point number, ð2� eÞ21023
realmin Smallest floating-point number, 2�1022
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results in a lengthy algorithm by omitting the semicolon at the end of only some assignment
statements.

To conserve the number of lines in a script, multiple statements can be placed on
the same line. To suppress the display of output, each statement must be terminated with
a semicolon. To display output, use a comma instead of a semicolon to separate
statements.

Sometimes a MATLAB statement is too long to fit on one line. Use an ellipsis (three
periods), . . . , followed by the Enter Key to indicate that the statement continues on the next
line. Use continuation (an ellipsis) to make a long MATLAB statement more readable.

Often it is useful to include explanations of the purpose of a MATLAB statement or set
of statements. For this, a comment statement should be used. Recall that such a statement
begins with the percent symbol, ‘‘%’’, and that MATLAB ignores everything between the
percent symbol and the next Enter Key depression.

The value of a variable that has been assigned a value by a previously executed
MATLAB statement can be displayed by typing the variable name in the Command
Window, as in

MATLAB_variable_name

Let us call this kind of a statement a query statement. Similarly, the result of evaluating an
expression need not be assigned to a MATLAB variable. In this case, by default, MATLAB
assigns the result of evaluating an expression to a generic variable named ans. For example:

>> my_pi = 4*atan(1) % expression result is assigned to a variable name

my_pi =

3.1416

>> 4*atan(1) % by default, expression result is assigned to the variable name ans

ans =

3.1416

Table 1.4 MATLAB data types

Data type Example

integer x ¼ int64(5), use 64 binary digits; could be: int8(5), int16(5) or int32(5)
real x ¼ 3.1415eþ001
complex x ¼ 5 – j*2.6, j ¼ ffiffiffiffiffiffiffi�1p

(MATLAB also uses i ¼ ffiffiffiffiffiffiffi�1p
); could be: x ¼ complex(5,�2.6)

logical x ¼ logical(0), or x ¼ logical(1)
character x ¼ 0any character string0; must be enclosed in single quotes
arrays Matrices, cell arrays, structures
cell arrays Multidimensional arrays whose elements are arrays
structures Multidimensional arrays with elements accessed by textual field designators
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Practice 1.2

The usage of the symbols in Table 1.2 and the special reserved words given in Table 1.3 is
demonstrated with the following MATLAB assignment statements. If you have access to a
computer running MATLAB, then it will be very useful for you to activate the Command
Window and enter the following MATLAB statements at the ‘‘>>’’ prompt:

>> a = cos(pi/4) % the character string, "pi", is used as a reserved word

a = 7.0711e-001

>> b = sin(pi/4)

b = 7.0711e-001

>> c = a + j*b % the character, "j", is reserved to mean the square root of -1

c = 7.0711e-001 +7.0711e-001i

>> x = 2^-52 % x is assigned the smallest difference between two floating point numbers

x = 2.2204e-016

>> x - eps % the character string, "eps", is a reserved word

ans = 0

>> undefined_big = inf % the character string, "inf", is a reserved word

undefined_big = Inf

>> 1/undefined_big % MATLAB gives a useful result

ans = 0

>> y = 1/0 % MATLAB gives a useful result

y = Inf

>> z = 0/0 % the specified computation is indeterminate

z = NaN

>> cos = pi % using a reserved word as a variable name

cos = 3.1416e+000

>> format hex % require output to be given in hexadecimal notation

>> small = 2^-1022 % assign the smallest positive number to a variable name

small = 0010000000000000

>> % each hexadecimal digit is a 4-bit binary number

>> big = (2 - eps)*2^1023 % assign the biggest positive number to a variable name

big = 7fefffffffffffff

>> format short e

>> small % display small using short floating point notation

small = 2.2251e-308

>> big % display big using short floating point notation

big = 1.7977e+308

>> clear cos % reinstate the character string, "cos", as a reserved word

>> cos(pi)

ans = -1
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A directive statement usually uses a built-in MATLAB function to cause MATLAB to
perform a housekeeping kind of task. Three examples are clear all, clc, and quit.

You can write MATLAB statements using either a function format or a command
format, as described below. This will also be discussed in the next chapter.

A MATLAB statement in the function format consists of the function name followed
by open parenthesis, one or more arguments separated by commas and closed parenthesis.
This format is

functionname(arg1, arg2, ..., argn)

You can assign the output of a function to one or more, depending on the function, output
variable names separated by commas and all enclosed in square brackets, as in

[out1, out2, ..., outm] = functionname(arg1, arg2, ..., argn)

With the function format, arguments are passed to the function by value. See the examples below.
A MATLAB statement in the command format consists of the function name followed

by one or more arguments separated by spaces. This format is

functionname arg1 arg2 ... argn

Unlike the function format, you cannot assign the output of the function to a variable.
Attempting to do so generates an error and a message. Arguments are treated as character
strings. See the examples below.

In the function format, arguments are passed by value. In the command format,
arguments are treated as character strings. Consider the following examples. The formats are

disp(A); % passes the value of variable A to the built-in disp function

disp A; % passes the variable name, "A"

For example, let A ¼ pi, and we get

>> A = pi;

>> disp(A); % function format, value of argument is passed

3.1416

>> disp A; % command format, character string is passed

A

>> % instead, you could also have entered disp(’A’)

In the next example, let: str1 = ‘one’ and str2 = ‘one’. We will use the built-in MATLAB
function strcmp, which compares character strings. With the variables str1 and str2
we get
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>> strcmp(str1, str2); % function format, compares, "one" and "one"’, their values

ans =

1

>> % true, equal or the same

>> strcmp str1 str2; % command format, compares "str1" and "str2"

ans =

0

>> % false, unequal or not the same

When using the function format to pass a character string to a function, you must
enclose the string in single quotes. For example, to display the character string, ‘‘Press
Enter’’, use

>> disp(’Press Enter’)

Press Enter

On the other hand, a variable to which a character string has been assigned does not need to
be enclosed in quotes. In the function format we get

>> directive = ’Press Enter’;

>> disp(directive) % value of argument is passed

Press Enter

However, with the command format we get

>> disp directive

directive

It may occur that you have entered and executed several MATLAB statements, and you
would like to execute one of them again, perhaps after some editing. While in the Command
Window, you can scroll up or down (use the up and down arrow keys on the keyboard)
through previously entered lines to recall, edit (use left and right arrow keys on the keyboard
for position), and execute again previously entered MATLAB statements.

Practice 1.3

The following examples were copied from the Command Window and pasted here. It would be
useful for you to activate the Command Window and enter each of the following statements:

>> clear all % clear the workspace of all variables and values

>> time_now = clock; % get the date and time with the built-in MATLAB function clock

>> % the built-in function clock returns a vector with 6 elements defined as follows

>> % [Year Month Day Hour Minute Second]

>> disp time_now % command format
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time_now

>> disp(time_now) % function format

1.0e+003 *

Columns 1 through 6

2.0120 0.0050 0.0070 0.0080 0.0030 0.0144

>> time_now(1) % the first entry in the vector time_now is the year

ans = 2012

>> time_now(2) % display month

ans = 2

>> time_now(3) % display day

ans = 21

>> time_now(4) % display hour

ans = 11

>> time_now(5) % display minute

ans = 18

>> time_now(6) % display second

ans = 5.7593e+001

1.7 MATLAB� Elementary Math Functions

Some elementary mathematical built-in functions are given in Table 1.5. It is not possible to
include in this book an explanation of the usage of even a small fraction of the large number
of built-in MATLAB functions. You must become accustomed to using the extensive
MATLAB help facility.

Table 1.5 Elementary math functions

Trigonometric

sin Sine
sinh Hyperbolic sine
asin Inverse sine
asinh Inverse hyperbolic sine
cos Cosine
cosh Hyperbolic cosine
acos Inverse cosine
acosh Inverse hyperbolic cosine
tan Tangent
tanh Hyperbolic tangent
atan Inverse tangent
atan2 Four quadrant inverse tangent

(Continues)
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Table 1.5 (Continued)

Trigonometric

atanh Inverse hyperbolic tangent
sec Secant
sech Hyperbolic secant
asec Inverse secant
asech Inverse hyperbolic secant
csc Cosecant
csch Hyperbolic cosecant
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
cot Cotangent
coth Hyperbolic cotangent
acot Inverse cotangent
acoth Inverse hyperbolic cotangent
hypot Square root of sum of squares

Exponential

exp Exponential
log Natural logarithm
log10 Common (base 10) logarithm
log2 Base 2 logarithm and dissect floating point number
pow2 Base 2 power and scale floating point number
realpow Power that will error out on complex result
reallog Natural logarithm of real number
realsqrt Square root of number greater than or equal to zero
sqrt Square root
nthroot Real n-th root of real numbers
nextpow2 Next higher power of 2

Complex

abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
imag Complex imaginary part
real Complex real part
unwrap Unwrap phase angle
isreal True for real array
cplxpair Sort numbers into complex conjugate pairs

Rounding and remainder

fix Round toward zero
floor Round toward minus infinity
ceil Round toward plus infinity
round Round toward nearest integer
mod Modulus (signed remainder after division)
rem Remainder after division
sign Signum
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Example 1.3

>> arg = pi/3 % MATLAB replaces pi with the number 3.1415926 ...

arg = 1.0472

>> y = cos(arg)

y = 0.5000

>> acos(y)

ans = 1.0472

>> x = 1000; power_of_ten = log10(x) % the display of the first assignment is suppressed

power_of_ten = 3

>> x = 6.5;

>> two_power = nextpow2(x) % get the smallest power of 2 number greater than x

two_power = 8

>> z = complex(-4,5) % assign a complex number to z

z = -4.0000 + 5.0000i

>> conj(z) % conjugate the complex number assigned to z

ans = -4.0000 - 5.0000i

>> x = -2.37;

>> fix(x) % round toward zero

ans = -2

>> floor(x) % round to integer less than or equal to x

ans = -3

>> ceil(x) % round to integer greater than or equal to x

ans = -2

>> mod([0:5],3) % remainder after division by 3 of each element of vector [0 1 2 3 4 5]

ans = 0 1 2 0 1 2

Many more built-in MATLAB functions will be introduced in the following chapters.

1.8 Help Facility

MATLAB provides much documentation, audio/video tutorials, and demos to help you learn
how to use it. In the Command Window, type in the built-in function demo, and then select
and watch the audio/video tutorial concerned with the MATLAB environment. This is an
excellent way to help you get started. If you do not have MATLAB, then you can access this
information online at the Mathworks, Inc. website. Mathworks, Inc. is the manufacturer of
MATLAB. You can also download from this website a free 30-day trial version of MATLAB.

If you do have MATLAB, then you can access help from the default MATLAB desktop
with the F1 key. Or, you can follow

Help ! Product Help ! Contents

resulting in the Help Window (help browser) shown in Fig. 1.7. From this window there are
many options.
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The MATLAB documentation set is extensive. Scroll down to see the many possibi-
lities. I strongly urge you to go online to access audio/video tutorials about MATLAB. Also,
you can see the MATLAB folder content by clicking on its plus button, and then click on
items of interest. If you have a particular item in mind, but do not know its exact name, then
click the ‘‘Index’’ tab for an alphabetical list that you can search. Or, click on the ‘‘Alpha-
betical List’’ option. To have MATLAB search for a topic, enter a topic name in the ‘‘Search
for’’ window, and then click the ‘‘Go’’ button. You can then see all results of the search by
clicking the ‘‘Search Results’’ tab. MATLAB includes an extensive set of demos with m-
files that you can access by clicking the ‘‘Demos’’ tab. By example, these demos will answer
many detailed questions that you may have about MATLAB programming.

MathWorks, Inc. also markets collections of specialized programs and m-files, called
toolboxes. Toolboxes were developed by experts in their fields for solving problems in these
fields. For electrical and computer engineers there are toolboxes concerned with, for
example, communication, control, filter design, image processing, database management,
signal processing, and neural networks to mention only a few. Several toolboxes are
included in the student version of MATLAB.

click to see content
of this folder

each toolbox is a
collection of specialized

m-file programs

click to find indexed topics
enter a topic name

run demos

scroll backward through windows
scroll forward through windows

scroll to see more
available documentation

show list of search results

Figure 1.7 Window to start searching for help.
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Example 1.4

To illustrate finding information, let us find information about the atan2 built-in function by
letting MATLAB search for it. First, activate theHelpWindow, as shown in Fig. 1.7, and then
type into the ‘‘Search for’’ window the name of the function (or topic). After clicking the
‘‘Go’’ button, MATLAB returns the atan2 help window, a part of which is shown in Fig. 1.8.
Here we see a description of what the atan2 function does and examples of how to use it.

scroll for more information

related search results

search for topic

Figure 1.8 Result of searching for help about the atan2 built-in function.
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A search result usually includes syntax information, topic description, examples, com-
puting method, and related built-in MATLAB functions. Furthermore, instead of going
through the Help Window, you can access help directly from the Command Window by
using the built-in MATLAB function help with the command format. If you know the name
of the topic for which you want help, then, for example, you can enter

>> help atan2 % using command format

The help command has many options. To see the possibilities, type help help in the
Command Window. A particularly useful help option is the command help //, which lists all
of the operators and special characters used by MATLAB.

Another way to access information is with the MATLAB function doc. In the Command
Window, type the command doc without an argument to open the help browser, shown in
Fig. 1.7. To access the reference page of a function from the Command Window, type the
command doc function_name, where function_name is the name of the function about
which you want more information. Like the command help, the command doc has many
options. To see the possibilities, type help doc in the Command Window.

If you are not sure of the name of a built-in function, then use the lookfor command
with whatever word or term you think is relevant, for example, enter lookfor tan, and then
MATLAB will look through its entire set of function descriptions to find and show you
every occurrence of tan. In MATLAB, the instant access to help information is particularly
convenient.

As you continue to work with this book, regularly browse through the alphabetical list
of the built-in MATLAB functions to increase your knowledge about the many tools that are
available to help you solve problems.

1.9 Conclusion

In this chapter we explored the MATLAB environment. There is much more to find out. We
found it easy to launch MATLAB, get to the default desktop, and navigate in the default
MATLAB desktop. You should now know

● how to set up the default MATLAB desktop
● how to dock and undock a window
● the purpose of several MATLAB windows
● how to use MATLAB pull-down menus
● what is meant by a built-in MATLAB function
● how to form valid MATLAB variable names
● the structure of a MATLAB statement
● how to suppress display in the Command Window
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● how to use some of the built-in functions in the immediate MATLAB operation
mode

● what is meant by a script
● how to scroll through previously entered MATLAB statements and how to retrieve

statements from the Command History Log
● how to utilize the MATLAB help facility
● how to do some useful work in the MATLAB immediate operation mode

Table 1.6 lists the built-in MATLAB functions that were introduced in this chapter.
Also see Tables 1.1 through 1.5. You can obtain detailed explanations about all of these
built-in functions with the MATLAB help function.

In the next chapter, you will learn how to create MATLAB programs and functions.

Further reading

Besides using the MATLAB built-in Help facility as well as the documentation that comes
with MATLAB, the following texts are general references that provide information about
the capabilities of MATLAB.

Table 1.6 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

clc Clear Command Window
clear all Clear Workspace
clear variable_name Remove a variable from Workspace
clock Get date and time
demo Access the many audio/video tutorials
disp Display text or variables
format Specify how numbers are displayed
grid on Insert a grid into a plot
help Use the MATLAB help facility
iskeyword Check if a character string is a key word
isvarname Check if a character string is a variable name
lookfor Let MATLAB search for a word or phrase
namelengthmax Get maximum number of characters
plot Create a plot
quit Terminate MATLAB session
saveas Save figure to a file
strcmp Compare character strings
title Place a title above plot
xlabel Place a label along x-axis
ylabel Place a label along y-axis
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Problems

Section 1.1
1) List and give a one to two sentence description of the purpose of each window in the

default MATLAB desktop.
2) In the desktop menu bar, click on the File button. List and click each item in the file

menu, and give the title of the window or menu that opens. You need not take any
action within these windows.

3) List the name and give a one to two sentence description of the activity of each icon in a
fully populated desktop toolbar.

Section 1.2
4) Start with the default MATLAB desktop.

(a) Enter the following statements in the Command Window:

>> clear all; clc; % clear the Workspace and the Command Window

>> f = 2; w = 2*pi*f; % specify a frequency in Hz and convert to rad/sec

>> T = 0.01; % specify a time increment

>> time = 0 : T : 0.5; % specify a vector of time points

>> % evaluate the sine function for each element of the vector time

>> x = sin(w*time);

>> plot(time,x) % plot x versus time

A Figure Window will open showing a plot. Activate the Command Window, and
enter

>> grid on

Enter MATLAB statements to add the x-axis label, ‘‘seconds’’, y-axis label ‘‘sin
(wt)’’, and title ‘‘Plot of a Sinusoidal Function’’. Activate the Figure Window. In
the Figure Window obtain a print of the plot by clicking on the Print Figure icon in
the toolbar.

28 MATLAB‡ Environment



(b) Give the content of the Workspace and Command History Windows. How many
elements does the vector x have?

5) Repeat Prob. 4(a), but replace the statement plot(time,x) with the statements

>> y = cos(w*time);

>> plot(x,y)

>> axis equal

You will also have to change axes labels and the title. Use help axis, and explain the
purpose of the statement, axis equal. Before printing, enter an axis command to make
the x and y axes limits �1.1 to þ1.1.

Section 1.3
6) (a) In the desktop toolbar, click on the Current Folder pull-down menu, and give all,

but no more than three of the complete path names.
(b) Click on Browse for Folder button in the desktop toolbar. Highlight a folder in the

Browse for Folder Window, where you want to save and retrieve your files. You
should create a new folder; name it My_Files to use for this purpose. Then, click
OK. Repeat part (a).

7) Enter the following statements in the Command Window:

>> clear all; clc;

>> arg = -pi:pi/100:pi; x = sin(arg);

>> plot(arg,x);

(a) Give the content of the Command, Workspace, and Command History Windows.
(b) Dock the Figure Window. Activate the Command Window, and enter commands to

place a grid, axes labels, and title on the plot. In the Figure Window, use the print
icon to print the figure.

Section 1.4
8) Give an example of a MATLAB function that (a) requires no input and does not return

an output, (b) requires an input, but does not return an output, (c) requires no input, but
returns an output, or (d) requires an input and returns an output. Explain the activity of
each function.

Section 1.5
9) Explain the difference between a reserved word and a key word, and give an example of

each. In the Command Window, use appropriate MATLAB functions to find out if the
following names are valid MATLAB variable names and key words. (a) For, (b) for,
(c) 2volts, (d) current-3, (e) cos, (f) case, (g) pi. Print your statements.
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10) For the number x, x ¼ �23.034786, use the format function to display x using each of
the formats given in Table 1.1. Print your results.

11) In the Command Window, evaluate each of the following expressions. Use format long
e. (a) ðxþ 3Þ=ðx2 � 3xþ 2Þ; x ¼ �1 and x ¼ 1, (b) 3e�2tcosð5pt � tan�1ð ffiffiffi

3
p

=2ÞÞ;
t ¼ 0:1, (c) ð�1Þ1=3, (d) ð�2Þ1=2, (e) logð0Þ (natural log), (f) logð�1Þ, (g) realmin,
(h) ðx� 1Þ=logðxÞ; x ¼ 1. Print your results.

12) In the Command Window, evaluate each of the following expressions. Use format
long e. (a) pi ¼ ffiffiffi

3
p

; give a statement to reinstate pi, (b) ð�1Þ1=2, (c) 21024, (d) 2�52,
(e) eps, (f) ðpiÞ1=2, (g) ð2� epsÞ1023, (h) cos2ðp=3Þ þ sin2ðp=3Þ. Print your results.

Section 1.6
13) Give example MATLAB statements of the following kind: (a) assignment, (b)

continuation, (c) query, (d) comment, (e) directive (other than clear all, clc or quit).
Explain the difference between assignment statements that are terminated with a
comma (or blank) or a semicolon.

14) In the Command Window, set EE ¼ ‘Electrical Engineering’ and CE ¼ ‘Computer
Engineering’.
(a) Enter the statements strcmp(CE,EE) and strcmp EE CE. Do they produce the same

result? What is compared in these two statements?
(b) Give a statement that uses the disp function in the command format to display

Electrical and Computer Engineering.
15) Write a one line MATLAB statement that assigns f ¼ 440, w ¼ 2pf , T0 ¼ 1=f ,

t ¼ T0=4, and x ¼ sinðw tÞ, where all output, except the output for t, is suppressed.
16) Using the function clock, give an assignment statement that assigns to D_T the date

and time. Display all of the elements of D_T.

Section 1.7
17) Enter and explain the difference between atanð2=�2Þ and atan2ð2;�2Þ. Use the

MATLAB help facility.
18) Enter and explain the result of each of the following statements:

(a) x ¼ �3� j � 4, (b) y ¼ complexð�3;�4Þ, (c) x r ¼ realðxÞ, (d) x i ¼ imagðxÞ,
(e) z ¼ conjðxÞ.

19) Start with the default MATLAB desktop. Enter the following statements in the
Command Window:

>> clear all; clc;

>> T = 0.05; t = 0 : T : 5;

>> x = exp(-t);

>> plot(t,x); hold on; plot(t,-x);plot(t,1-x);plot(t,x-1); hold off

>> grid on

Obtain a print of the plot. Explain the purpose of the statements hold on and hold off.
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20) For x ¼ 6:5, enter and explain the results of (a) fixðxÞ and fixð�xÞ, (b) floorðxÞ and
floorð�xÞ, (c) ceilðxÞ and ceilð�xÞ, (d) roundðxÞ and roundð�xÞ.

21) Obtain and explain modðx; yÞ for (a) x ¼ 3 and y ¼ 7, (b) x ¼ 7 and y ¼ 3, (c) x ¼ �5
and y ¼ 2.

22) Obtain and explain whether or not modðx; yÞ and remðx; yÞ produce the same results for (a)
x ¼ 7 and y ¼ 3, (b) x ¼ �7 and y ¼ 3, (c) x ¼ 7 and y ¼ �3, (d) x ¼ �7 and y ¼ �3.

23) Given two numbers x and y, then in MATLAB, z ¼ x � y is the product of the two
numbers. Suppose x and y are two vectors, each having N elements, then in MATLAB,
z ¼ x: � y is also a vector with N elements, where the kth element of z is zðkÞ ¼ xðkÞ � yðkÞ
for k ¼ 1; 2; . . . ; N . Here, z is the element by element product of x and y.
(a) Start with the default MATLAB desktop. Enter the following statements in the

Command Window.

>> clear all; clc;

>> T = 0.05; t = 0 : T : 10;

>> f = 2; w = 2*pi;

>> x = 1 - exp(-t).*sin(w*t+pi/2);

>> % each element by element product is subtracted from 1

>> plot(t,x);

>> grid on

Obtain a print of the plot.
(b) Add a statement to obtain a vector of values of yðtÞ ¼ e�t=2 � e�2t. Then, using y

and values of sinðwtÞ, redefine x to obtain a plot of x that looks like

Section 1.8
24) In the Command Window, enter the line

>> tic, pause(5), toc

0 1 2 3 4 5 6 7 8 9 10
–0.5

0

0.5

time - sec

vo
lts

Sinusoidal Pulse
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Then, get help for each of the three functions in this line with

Help ! Product Help

Start by entering tic into the search box to get documentation about the tic function. Use
the MATLAB help facility, and explain the operation of each function. You can also get
help with Command Window statements such as help tic or doc tic.

25) In the Command Window, enter the command demo. A demo window will open.
Then, watch the video tutorial, Getting Started with MATLAB. From what you have
learned by watching this tutorial, give a MATLAB statement using brackets that assigns
to a vector x the elements 5, �2, 3.4, and pi/4. To display the vector, type x in the
Command Window.
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CHAPTER 2

Programs and Functions

MATLAB� assumes that an m-file, a file ending with the suffix, ‘‘.m’’, contains MATLAB
statements. There are two kinds of m-files: a program and a function. A program is created
by writing a script of MATLAB statements, which is then saved as an m-file. All variables
used in a program are stored in the Workspace, and a program can operate on all of the data
in the Workspace. A program is executed by entering its file name in the Command Window
or by including its file name in another program.

A function is created by writing a function script of MATLAB statements, which is also
saved as an m-file. A function script must start with a function declaration statement. A
function can accept inputs from a program or other function that invokes it and return outputs
to the program or other function. All variables used within a function can be accessed only
from within the function, and they are called local variables. A function uses its own work
space, which is separate from the Workspace used by a program, to store and retrieve data. A
function can be invoked by entering its name in the Command Window, in a program, or in
another function. Several kinds of functions will be introduced in this chapter.

After you have completed this chapter, you will know how to

● create a program
● create and use functions
● use MATLAB in its program mode of operation
● create your own toolbox of function m-files that you can add to the MATLAB search

path

2.1 Current Folder

When you include a program or a function file name in a MATLAB statement, you have the
option to not provide a complete path name. To execute the statement, MATLAB must
search for the file name. By default, the first place that MATLAB looks for this file name is



in the Current Folder. The Current Folder is the folder with a complete path name given in
the Current Folder title window located in the toolbar at the top of the MATLAB desktop
(see Fig. 1.2). Referring to Fig. 1.2, MATLAB keeps a list of previously used Current
Folders, and you can scroll through this list to select a path name to be used for the Current
Folder. Or, you can browse through all of your folders to select a path name to be used for
the Current Folder.

Another way to select a Current Folder is to activate the Current Folder Window (see
Fig. 1.5). Click on the left/right arrows in the toolbar of the Current Folder Window to scroll
through the folders to select one as the Current Folder. Or, by selecting the new folder option
in this window you can create a new folder within the folder of your choice to be used as the
Current Folder. This allows you to organize the programs and functions that you develop.

If you invoke a program or a function, and MATLAB cannot find the file name in the
Current Folder, then MATLAB searches a list of Directories, called the search path, which
was created at the time MATLAB was installed in your computer. These Directories contain
all of the built-in MATLAB functions. You can add directories to this list. If MATLAB does
not find the file name in this list of Directories, an error message is generated. This will be
discussed later in this chapter.

2.2 Program Development

Before you start to develop a new program, specify a Current Folder. To write a new script,
start with the default MATLAB desktop and follow the menus given by

File ! New ! M-file

This will open the Editor Window as shown in Fig. 2.1, where a few MATLAB statements
have been entered. This script is still untitled, because it has not yet been saved as an m-file.
In this window you can enter, highlight, copy, cut and paste text, as with any text editor.
You can write a script with any conventional word processor and copy and paste it into the

save and run script

cursor cursor location
start comment

used for debugging

Figure 2.1 Editor Window for writing scripts.
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Editor Window for program development, or you can paste the script into the Command
Window for immediate execution. Notice that MATLAB automatically assigns a number to
each line. For convenience, in the event of a programming error, MATLAB uses these
line numbers to indicate the error location. As you develop a script, if you are in doubt about
the syntax or meaning of any MATLAB operation, you can activate the Command Window
at any time and use the built-in MATLAB function help. Or, you can click on the Help tool
in the toolbar of the Editor Window (see Fig. 2.1).

2.3 Electric Current and Voltage

Before we continue MATLAB program development, let us examine some fundamentals of
electrical and computer engineering. With this background, we will see how MATLAB can
be applied to solve a wide variety of problems in these fields.

2.3.1 Current
Fig. 2.2 shows a section of a long straight conductor (copper wire, for example), where
through a cross-section of the conductor electrons can move from point (b) to point (a) or in
the reverse direction. The charge of an electron is qe ¼ �1:60217646�10�19 coulombs,
and the charge of a proton is qp ¼ �qe.

With respect to points (a) and (b), the movement of negative charge from point (b) to
point (a) is equivalent to the movement of positive charge from point (a) to point (b). In the
conductor shown in Fig. 2.2, electric current iðtÞ is the rate at which positive charge moves
through the conductor cross-section. It is conventional to have current represent the move-
ment of positive charge. The current iðtÞ is positive (negative) if in a time interval Dt an
amount of positive charge Dq has moved through the conductor cross-section in the
direction that is the same as (opposite of) the current reference direction, shown by the
arrow. The current is defined by

i ¼ Dq
Dt

i(t)

B
r

point a

point b

Figure 2.2 Charge moving through a cross-section of a long straight ideal conductor.
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From a time interval to the next time interval, the amount and direction of positive charge
moving through the cross-section may change, and we use the instantaneous current given
by

iðtÞ ¼ lim
Dt!0

Dq
Dt

¼ dqðtÞ
dt

coloumbs=second ð2:1Þ

One coulomb/second is called an ampere (A).

Example 2.1

Fig. 2.3 describes the movement of the net amount of positive charge that has moved
through a cross-section of a conductor, as depicted in Fig. 2.2. Prog. 2.1 shows the
MATLAB script that generated this piecewise linear plot. Soon, you will see how to produce
MATLAB programs.

% Plot amount of charge that has passed through a cross-section of a conductor

clear all; clc; % clear Workspace and Command Windows

t = [-4 -2 2 6 10 14]; % specify time points

q = [0 0 3 3 -2 -2]; % specify the amount of charge

plot(t,q) % get plot

grid on % turn grid on

axis([-4.5, 14.5, -3, 4]) % specify x-axis and y-axis limits

xlabel(’time - sec’) % place a label along the x-axis

ylabel(’charge - coulombs’) % place a label along the y-axis

Program 2.1 Script for a piecewise linear plot.

Referring to Fig. 2.3, until t ¼ �2 secs, no charge has moved through the cross-section.
Then, with respect to the current reference direction, charge begins to move steadily from
point (a) through the cross-section to point (b), and by t ¼ 2 secs, 3 coulombs of charge has
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Figure 2.3 Positive charge movement through a conductor cross-section.

36 Programs and Functions



moved through the cross-section. From t ¼ 2 secs until t ¼ 6 secs, the movement of charge
stopped. Starting at t ¼ 6 secs, the movement of positive charge is reversed, and this
decreases the net amount of charge that has moved through the cross-section down to
–2 coulombs at t ¼ 10 secs, when the movement of positive charge stops.

Fig. 2.4 shows the result of applying (2.1) to the movement of positive charge described
in Fig. 2.3. When the amount of positive charge that has moved through the wire cross-
section increases (decreases), the current is positive (negative).

Looking at Fig. 2.4 and given the current reference direction shown in Fig. 2.2, we see that
from t ¼ –2 secs until t ¼ þ2 secs positive charge is moving from point (a) to point (b) at the
rate of þ0.75 coulombs/sec (A), and, at an instant of time, say at t ¼ 0.0 secs, the current is
also þ0.75 coulombs/sec. Since the current is negative from t ¼ 6 secs until t ¼ 10 secs,
positive charge is moving from point (a) to point (b) at the rate of –1.25 coulombs/sec, or from
point (b) to point (a) the rate isþ1.25 coulombs/sec. If the reference direction is reversed, then
from t ¼ –2 secs until t ¼ þ2 secs the current will be negative, still indicating that during this
time interval positive charge is moving from point (a) to point (b).

A current (moving charge) is a source of a magnetic field B, as shown in Fig. 2.2.
According to Ampere’s Law, the magnitude B of the magnetic field at a distance r along a
circular path around a straight conductor with steady current I is given by

B ¼ m I
2pr

tesla ð2:2Þ

where m, called magnetic permeability, is a measure of the ability of a material to support a
magnetic field within itself. In a vacuum, m ¼ m0 ¼ 4p�10�7 newtons/ampere2. In terms of
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Figure 2.4 Current.
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basic units, 1 tesla ¼ 1 newton/((coulomb)(meter/sec)). The tangential direction of the
magnetic field is perpendicular to r and the current direction.

Suppose there are two infinitely long parallel conductors that are r meters apart with
each conductor (wire) carrying a current I in the same (opposite) direction, then, according
to Ampere’s Force Law, these wires will exert an attractive (repulsive) magnetostatic
force on each other given by

F ¼ mI2

2pr
newtons=meter ð2:3Þ

An important application of this physical property is the design of electric motors,
which convert electrical power to mechanical power.

2.3.2 Voltage
An electric charge q0 is the source of an electric field E, as depicted in Fig. 2.5. For a
positive (negative) charge q0 the electric field is directed radially outwards (inwards) in all
directions from (to) the charge.

According to the Lorentz Force Law the magnitude of the electric field at a distance r
from the charge is given by

E ¼ 1
4pe

q0j j
r2

newtons=coulomb ð2:4Þ

where e, called electric permittivity, is a measure of how much a material resists forming
an electric field within itself. In a vacuum, e ¼ e0 ¼ 8:854187 . . . �10�12 (coulombs/
meter)2/newton. It is interesting to note that the speed of light c0 in a vacuum, m0 and e0 are
related by c20 ¼ 1=ðm0 e0Þ.

Fig. 2.6 shows a charge q in the vicinity of a fixed charge q0. Coulomb’s Law gives the
electrostatic force exerted on a point charge q when it is in the vicinity of another point

q0

r
E

Figure 2.5 Electric field created by a point charge.
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Figure 2.6 Electrostatic force between two charges.

38 Programs and Functions



charge q0. This is depicted in Fig. 2.6, where the charges are r meters apart. According to
Coulomb’s Law, the force on the charge q is given by

F ¼ 1
4pe0

q q0
r 2

newtons ð2:5Þ

where F0 ¼ F. If the charges q0 and q have the same (opposite) sign, then F is a positive
(negative) repulsive (attractive) force. We have limr!1 F ¼ 0.

Let the charge q0, which is fixed, and the charge q have the same sign, which
makes F positive. The energy required to move the charge q from r ¼ 1 to r ¼ r2 is
given by

J2 ¼
ðr2

1
�F dr ¼

ðr2

1

�1
4pe0

q q0
r2

dr ¼ q q0
4pe0

1
r

�

�

�

r2

1
¼ q q0
4pe0 r2

joules ð2:6Þ

The energy required to move the charge q from r ¼ 1 to r ¼ r1 is given by

J1 ¼ q q0
4pe0 r1

joules

If r1 < r2, then J1 > J2. To move the charge q from r ¼ r2 to r ¼ r1, we must expend energy
given by J1 � J2 joules, and then, if we move the charge back from r ¼ r1 to r ¼ r2, we get
this expended energy back.

An important application of this physical property is the design of electric circuits,
which are designed to control the motion of charge.

Voltage is defined as the energy expended (or gained) per unit charge, and it is given by

v ¼ J
q
¼ q0
4pe0 r

joules=coulomb ð2:7Þ

One joule/coulomb is called a volt (V). Therefore, at r ¼ r1 the voltage is v1 ¼ q0=ð4pe0 r1Þ
volts, which can be positive or negative depending on the sign of the charge q0, and at r ¼ r2
the voltage is v2 ¼ q0=ð4pe0 r2Þ volts. If q0 is a positive charge, then as the distance from q0
changes from r ¼ r1 to r ¼ r2, there is a voltage drop given by v1 � v 2 volts, which is
positive, and as the distance from q0 changes from r ¼ r2 to r ¼ r1 there is a voltage drop
given by v2 � v1, which is negative, that is also said to be a voltage rise given by
�ðv2 � v1Þ ¼ v1 � v2, which is positive.

In view of (2.4), voltage is a measure of an electric field over a distance, where the units
for the electric field E can also be expressed as volts/meter.
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2.3.3 Resistor
Electronic circuits are designed to control the motion of charge through them to achieve
some desired activity. There are many kinds of electronic devices (components) with dif-
ferent properties that are utilized in a circuit to achieve a desired activity.

For example, an audio amplifier is an electronic circuit where the input voltage is the
output voltage of, for example, a microphone, a musical instrument pick-up, or other
transducer. However, the microphone produces a low-power signal, which is usually a
voltage that varies with time and is proportional to the audio signal applied to the micro-
phone. The output of the amplifier is also a signal, a voltage that is proportional to the
amplifier input signal. The amplifier output signal, which has a higher power than the input
signal, has enough power to make a speaker, which is connected to the amplifier output,
produce a high-power audio signal (sound).

As another example, an adder logic circuit is an electronic circuit with two inputs. Each
input is a set of signals. Each signal within a set is either a high voltage, say 5 volts, or a low
voltage, say 0 volts, where a high (low) voltage is interpreted to mean the binary digit 1 (0).
Each set of input voltages is interpreted to be a binary number. The electronic logic circuit is
designed to produce a set of output voltages that is interpreted to be a binary number that is
the arithmetic sum of the two input binary numbers. This will be discussed in greater detail
in Chapter 5.

One of the many kinds of electronic components is the resistor. It is made of carbon
material, and, unlike copper, which is used to make wire that does not (almost not) impede
the motion of charge through it, a resistor is intended to impede the motion of charge
through it. The carbon material of a resistor has a cylindrical shape, and conductors (wires)
are attached to the opposite flat faces of the cylinder. Among many other shapes, six-sided
shapes are also used, where conductive plates are attached to opposite flat faces.

Fig. 2.7 shows two circuits. The zigzag line is the circuit symbol of a resistor. Each
circuit consists of one closed path (or loop), along which charge can move. In circuit (a)

(a) (b)

VRR ohms I ampsV volts

I

Voltage source Current source

Figure 2.7 (a) Circuit with a battery voltage source. (b) Circuit with a current source.
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there is a battery (voltage source) connected to a resistor that expends V joules/coulomb
(volts) to move charge around the loop (through the resistor). An ideal conductor does not
require an expenditure of energy to move charge through it. According to Ohm’s Law, the
rate at which charge moves through the resistor is proportional to the voltage, I / V , or

I ¼ GV ð2:8Þ
where G is the proportionality constant. Given V , the current is determined by G, which is
called conductance. In circuit (b) there is a current source that causes charge to move
around the loop (through the resistor) at the rate of I coulombs/sec (amps). According to
Ohm’s Law, the energy/coulomb (joules/coulomb) that is expended to move charge through
the resistor is proportional to the current, V / I , or

V ¼ RI ð2:9Þ
where R is the proportionality constant. Given I , the voltage is determined by R, which is
called resistance. We have R ¼ 1=G, and the unit for R is ohms (symbol is W). The unit for
G is siemens (symbol is S). The degree to which a resistor impedes the motion of charge
through it is determined by its resistance value R, which depends on the geometry and
chemistry of its carbon material.

The behavior of a resistor is described by (2.9) or I ¼ V=R. Notice the relationship
between the voltage and current references. If the current reference is reversed or the voltage
reference is reversed, then Ohm’s Law becomes V ¼ R ð�IÞ ¼ �R I or �V ¼ RI .

The energy delivered by each source in Fig. 2.7 equals the energy absorbed by the
resistor, which is lost in the form of heat. The rate (joules/sec) at which energy is delivered
to the resistor is called the power P delivered to the resistor, which is given by

P ¼ V I watts ð2:10Þ

where the unit becomes (joules/coulomb)(coulombs/sec) ! joules/sec ! watt, and
1 watt ¼ 1 joule/sec.

2.4 Program Development Continued

With MATLAB, we can obtain results to both broaden and deepen our understanding of the
fundamental material presented in the previous section. In the remainder of this book,
additional fundamental principles will be presented and applied in examples.

Example 2.2

This example shows how to write a script of a program that plots the magnetic field due to a
steady current in a straight conductor as the magnetic field varies with radius r. To do this,
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the current must be specified, which can be done with an assignment statement within the
script. There will be occasions when a program must be designed to allow a program user to
provide information each time the program is executed. This makes the program interactive
and flexible. We can achieve this flexibility with the built-in MATLAB function input,
which has the syntax given by

MATLAB_variable_name = input(‘character string’)

When this statement is executed by MATLAB, the character string, which may give some
instruction to the program user, is displayed in the Command Window, and then program
execution is halted, while MATLAB waits for the program user to enter an input followed
by pressing the Enter Key. After the user has pressed the Enter Key, MATLAB assigns the
entered input from the program user to the given MATLAB variable name and continues
program execution.

Fig. 2.8 shows the script of an interactive program that plots the magnetic field. Notice
the use of the built-in MATLAB function input in lines 5, 7, 8, and 9. Each input line gives
instructions according the meaning of the input information. Line 12 shows a division of a
scalar by a vector. The operation, ./(a forward slash preceded by a period) causes MATLAB
to divide the numerator by each element of the denominator vector to produce the vector
result B, where Bð1Þ ¼ m0 I = ð2p rð1ÞÞ, . . . , BðNÞ ¼ m0 I = ð2prðNÞÞ. Line 17 uses the
built-in MATLAB function axis to override the automatic scaling done by MATLAB, and

run script

Figure 2.8 Script of an interactive program to plot the magnetic field.
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the built-in MATLAB function max finds the largest element in the vector B. Notice that
lines 14 and 15 each have two MATLAB statements separated by a semi-colon.

This script can be made into an m-file from within the Editor Window with the menu
sequence given by

File ! Save as : : :

Save the m-file in the Current Folder. You should use a program name that is unique and a
reminder of the purpose of the program. Caution, a file name must never be the same as
any variable name in the script, otherwise, MATLAB will give an error message. Here,
the program file name is: magnetic_field.m, which will then appear in the list of files in the
Current Folder Window. You can get the complete path name of a file with the MATLAB
built-in function which, as shown below.

>> which magnetic_field

C:\My_MATLAB_Programs\magnetic_field.m

After the script has been saved as an m-file in the Current Folder, you can run (execute)
the program by clicking on the Run button in the toolbar of the Editor Window. You can
edit and re-run the program until it performs as desired. After the m-file has been saved the
first time, it is automatically saved by MATLAB every time you run it from the Edit
Window. You can also run the program from the Command Window by entering its name at
the prompt. This is shown in Fig. 2.9, where you can see the activity of the input function.

The execution of the built-in MATLAB function plot in line 14 of the script causes
MATLAB to open a Figure Window (e.g., see Fig. 1.4) into which MATLAB inserts the plot

Figure 2.9 Running a program from within the Command Window.
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and other features specified by lines 15 through 17. Within the Figure Window you can edit
many plot features, such as the plot line style, width and color; label font type and size; and
many others. The plot can be saved as, for example, an enhanced metafile (emf) for insertion
into a document (this document, for example), as shown in Fig. 2.10. You can also use

Edit ! Copy Figure

and then paste the figure into another document.

Fig. 2.10 shows that the magnetic field decreases much more rapidly as r increases
when r is small than it does when r becomes large.

To view an m-file you can use the built-in MATLAB function type in the Command
Window, for example,

type magnetic_field

Example 2.3

Let us develop a program to plot the current–voltage characteristic of a p-n junction diode.
The circuit symbol for a diode is shown in Fig. 2.11.

Ideally, a p-n junction diode behaves as follows:

vðtÞ > 0; short circuit between terminals ðaÞ and ðbÞ
vðtÞ � 0; open circuit between terminals ðaÞ and ðbÞ ð2:11Þ

An ideal diode conducts only if the voltage vðtÞ, with the positive reference at the anode and
the negative reference at the cathode, is positive. Then, it is said that the diode is forward
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Figure 2.10 Plot obtained with the script given in Fig. 2.8.
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biased. If the voltage vðtÞ is positive, then there is a positive voltage drop from terminal (a)
to terminal (b). If the voltage is not positive, then iðtÞ ¼ 0, and the diode is said to be
reverse biased. A diode permits a current through it only in one direction from the anode
(terminal (a)) to the cathode (terminal (b)).

More realistically, the relationship between the current through a p-n junction diode and
the voltage across it is given by

iðtÞ ¼ ISðevðtÞ=VT � 1Þ ð2:12Þ

The current IS is called the saturation current (typically 10�12 A), and VT is the
thermal voltage given by VT ¼ kT=q, where k is the Boltzmann constant,
k ¼ 1:3806503 � 10�23 m2 kg s�2 K�1 (or joules/K), T is the temperature in degrees
kelvin (K), and q is the magnitude of the charge of an electron, q ¼ 1.60217646 � 10�19
coulombs. At T ¼ 300 K, VT ¼ 25:85 mV.

We now have information describing the behavior of a p-n junction diode. Prog. 2.2 is a
complete script. The m-file diode_characteristic.m was saved in the Current Folder.
Therefore, the program diode_characteristic can be executed by entering its name in the
Command Window.

% Program to plot the current-voltage characteristic of a diode

%

% Program name: diode_characteristic.m

%

% Purpose:

% This program plots the i-v characteristic of a p-n junction diode.

%

% Program information:

% Date Programmer Description

% 3/22/2011 Priemer Original code, Version 1.1

%

% Define variables

i(t)

CathodeAnode

v(t)

Terminal (a) Terminal (b)

Figure 2.11 A diode with a given current reference and a voltage reference.
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% I_S -- saturation current

% V_T -- thermal voltage at 300 degrees Kelvin

% V_min -- minimum plot voltage

% V_max -- maximum plot voltage

% N -- number of plot points

% delta_v -- voltage plotting increment

% v -- vector of voltage values

% i -- vector of current values

%

clc % clear the Command Window

clear all % clear the Workspace

% specify diode parameters

I_S = 1e-12; % saturation current in amps

V_T = 25.85e-3; % thermal voltage at 300 degrees Kelvin

% plot the current over a voltage range from -0.25 to +0.75 volts

V_min = -0.25; V_max = 0.75;

N = 101; % plot N points

delta_v = (V_max - V_min)/(N-1); % plotting increment

v = V_min:delta_v:V_max; % voltage vector, v(1)=V_min ... v(N)=V_max

i = I_S*(exp(v/V_T) - 1); % calculate the current vector

plot(v,i) % open a Figure Window and insert a plot of i versus v

grid on % insert a grid in the plot

xlabel(’voltage - V’) % place a label along the x-axis

ylabel(’current - A’) % place a label along the y-axis

title(’i-v characteristic of a p-n junction diode’) % place a title

Program 2.2 Script of diode_characteristic.m.

The first statement of a program should be a comment statement that identifies the program
among the other programs in the Current Folder. This will help you to find it in the Current
Folder, because MATLAB displays this comment in the window associated with the
Current Folder Window when you highlight the m-file in the Current Folder Window
(see Fig. 1.2).

As you learn more about MATLAB data types, built-in functions and programming,
you will write scripts to solve challenging practical problems. It is likely that such scripts
will be developed over an extended time period, and even worked on by others. Over time,
you may not remember some of the rationale for some portions of the script. To help long-
term script development, it is important to include script comment statements that explain
the intent of various parts of the script. Also, the beginning of a script should include
comment statements that describe its purpose and give definitions of important variables,
if not all of them. It is also useful to include a sample of program inputs and expected program
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results in comment statements. See Prog. 2.2 for an example of the kinds of information that
should be provided.

When writing a script, it is convenient to assign parameter values to variable names, and
place all of these assignment statements somewhere toward the beginning of the script.
Then, if you want to change a parameter value it will be easy to find the assignment state-
ment, and the parameter value will be changed at all locations in the script where the
variable name is used.

In the statement that calculates the current, the built-in MATLAB function exp has an
argument that is a vector v of voltage values, and MATLAB produces a current vector i given by

ið1Þ ¼ ISðevð1Þ=VT � 1Þ
ið2Þ ¼ ISð evð2Þ=VT � 1Þ

..

.

iðNÞ ¼ ISðevðNÞ=VT � 1Þ
This feature of MATLAB is particularly convenient.

Equation (2.12) produces the plot shown in Fig. 2.12. Notice that the current through the
diode does not become substantial until the forward-bias voltage across the diode exceeds a
threshold voltage of about 0.7 volts.

For a list of the variables used in this script, use the MATLAB built-in function who to get

>> who

Your variables are:

I_S V_T V_min i

N V_max delta_v v
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i–v characteristic of a p-n junction diode

Figure 2.12 Diode characteristic of a p-n junction diode.
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The built-in function whos gives more detailed information, for example,

>> whos

Name Size Bytes Class Attributes

I_S 1x1 8 double

N 1x1 8 double

V_T 1x1 8 double

V_max 1x1 8 double

V_min 1x1 8 double

delta_v 1x1 8 double

i 1x101 808 double

v 1x101 808 double

2.5 Functions

Consider the following script development situations:

(1) Within a script there is a set of MATLAB statements that implement some particular
algorithm (An algorithm is a sequence of computations that accomplish some particular
task.), and you want to implement this algorithm at least once again elsewhere in the
script.

(2) You want to utilize an algorithm several times within a script, and each time the
algorithm is needed, a different value for some parameter in the algorithm must be
used.

(3) You have developed a script of some algorithm, and you want to involve this algo-
rithm in some other script.

For each situation, you have the option of repeating the sequence of MATLAB statements
that implement some particular algorithm. However, this can be inefficient.

For example, suppose you need to find y ¼ ex at many places within a script for dif-
ferent values of x, or in any number of other scripts. The exponential function is the power
series (Maclaurin series expansion) given by

y ¼ ex ¼
X

1

k¼0

xk

k!
¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ : : : ; 0! ¼ 1 ð2:13Þ

We can write a script to compute the power series, and then include this script wherever the
exponential function must be evaluated, or we can develop a function script that uses x as
the input and returns y as the output. For our convenience, MathWorks, Inc. has written such
a function script and included it in one of the Directories (toolboxes) that MATLAB
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automatically searches whenever it encounters the name exp in a MATLAB statement. Any
valid variable names can be used for x and y.

In MATLAB, you can define two distinctly different kinds of functions. One kind of
function is defined by just one MATLAB statement. There are two types of these functions:
anonymous function and inline function. These functions are defined within a program or
in the Command Window.

The other kind of function, which generally requires more than one MATLAB statement
to define it, is an m-file that must start with a MATLAB function statement that names the
function. Following the function statement, you can include in the script of a function any
valid MATLAB statements. It can also contain anonymous and inline functions and other
types of functions that will be described soon. When you save a function script as an m-file,
the name of the m-file and the function name must be the same, and the function is called a
primary function. It is invoked from outside (even inside, a recursive function) its m-file.
Like a MATLAB built-in function, the function can accept inputs and return outputs.

A program works with variables and data in the Workspace. A function works with
variables and data in its own work space separate from Workspace. However, computation
results obtained within a function, like a program, are displayed in the Command Window,
unless you suppress their display.

2.5.1 Anonymous Function
An anonymous function is defined with just one MATLAB statement that you can place
anywhere in a program, in a function, or in a command line in the Command Window before
it is used. The syntax is given by

function_name = @(list of input arguments) function_expression

where ‘‘function_name’’ identifies the anonymous function. It is called the function handle.
The symbol @ declares that ‘‘function_name’’ is assigned a handle. The list of input
arguments, which can be any of the MATLAB data types, consists of one or more variables
delimited by commas. The function expression specifies how the function is to be eval-
uated. The expression can include variables that are not in the list of input arguments, and
these variables must be assigned values before the function is defined. MATLAB
incorporates the values of these variables when it builds the function.

Example 2.4

Below are MATLAB statements that were entered in the Command Window.

>> % define an anonymous function to calculate the voltage at a distance r

>> % from a point charge q0

>> permittivity = 8.854e-12; % assign a value to a parameter used in the function

>> voltage = @(q0,r) q0/(4*pi*permittivity*r) % define the anonymous function
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voltage =

@(q0,r)q0/(4*pi*permittivity*r)

>> r = 100; % distance in meters

>> q0 = -1e-7; % charge in Coulombs

>> v = voltage(q0,r) % use the anonymous function to calculate the voltage

v = -8.9877

>> % define an anonymous function for a diode i-v characteristic

>> i_diode = @(x,y,z) y*(exp(x/z)-1) % define the anonymous function

i_diode =

@(x,y,z) y*(exp(x/z)-1)

>> v = 0.7; I_S = 1e-12; V_T = 25.85e-3;

>> diode_current = i_diode(v,I_S,V_T)

diode_current = 0.5760

>> % this can also be obtained with: diode_current = i_diode(0.7,1e-12,25.85e-3)

>> v_vector = 0.0:0.2:0.8 % obtain diode current for a set of voltages

v_vector =

0 0.2000 0.4000 0.6000 0.8000

>> diode_current_vector = i_diode(v_vector,I_S,V_T)

diode_current_vector =

0 0.0000 0.0000 0.0120 27.5707

After an anonymous function has been defined, it can be used within a program or other
user-defined function in the same way as built-in MATLAB functions are used. This is
convenient for program and function development. If an anonymous function is defined in
the Command Window, then its definition will be lost when the MATLAB session is ter-
minated. However, since the function definition is also stored in the Workspace, its defini-
tion is retained even if the Command Window is cleared.

2.5.2 Inline Function
An inline function is similar to an anonymous function. It is defined with the built-in
MATLAB function inline, and the syntax is given by

function_name = inline(’function_expression’,’var_1’,’var_2’, …)

where function_name identifies the inline function. The function expression, which must be
enclosed in single quotes, specifies how the function is to be evaluated. The expression can
include built-in or user-defined functions and involve one or more variables, var_1, var_2,
etc., none of which can be assigned values before the function is defined.
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Example 2.5

clear all; clc

% define an inline function to calculate the voltage at a distance r

% from a point charge q0

voltage = inline(’q0/(4*pi*permittivity*r)’,’r’,’q0’,’permittivity’)

p = 8.854e-12; q = -1e-7; r = 100;

v = voltage(r,q,p) % calculate the voltage v

Executing this script gives

voltage =

Inline function:

voltage(r,q0,permittivity) = q0/(4*pi*permittivity*r)

v = -8.9877

Notice that as MATLAB parses through the character strings that are the arguments of
the built-in function inline, it identifies the given independent variables. The result is a
function that is used within a MATLAB program or other user-defined function in the same
way as built-in MATLAB functions are used.

2.5.3 eval Function
Another way to repeatedly evaluate a MATLAB expression is with the built-in MATLAB
function eval with syntax given by

eval(’MATLAB expression’)

where the MATLAB expression is a character string within single quotes. Notice that the
built-in MATLAB function eval does not create a function with a name, while anonymous
and inline functions do create a function with a name. For example,

>> I_S = 1e-12; V_T = 25.85e-3;

>> v =0.7;

>> eval(’I_S*(exp(v/V_T) - 1)’)

ans = 0.5760

>> i = eval(’I_S*(exp(v/V_T) - 1)’)

i = 0.5760
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Notice that variables used in the MATLAB expression must be assigned values before the
eval function is invoked.

In MATLAB you can assign a character string to a valid MATLAB variable name. For
example,

>> % assign a character string to a variable

>> diode_characteristic = ’I_S*(exp(v/V_T) - 1)’

diode_characteristic =

I_S*(exp(v/V_T) - 1)

This is useful, because now we do not have to repeat the expression every time we want to
evaluate it. For example,

>> I_S = 1e-12; V_T = 25.85e-3; v = 0.7;

>> i = eval(diode_characteristic)

i = 0.5760

>> v = 0.8;

>> i = eval(diode_characteristic)

i = 27.5707

Character strings will be discussed more thoroughly in Chapter 7. By assigning char-
acter strings of expressions to variables, preferably near the beginning of a program or
function, you can conveniently evaluate them as often as needed for different values of the
independent variables.

2.5.4 Primary Function
Before you start to develop a new function m-file, specify a Current Folder. To develop a
user-defined function, open the Editor Window with

File ! New ! Function

A user-defined function script must start with the primary function definition line that
has a syntax given by

function [output arguments] = function_name (input arguments)

where

(1) the character string, ‘‘function’’ (lower case is required), is a reserved key word
(2) the output arguments are a list of valid MATLAB variable names, separated by

commas and enclosed in brackets
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(3) the character string function_name, which must follow the rules for a valid MATLAB
variable name, is a name that you can choose, which must be the same as the file name
that you will use to save the function script as an m-file

(4) the input arguments are a list of valid MATLAB variable names, separated by
commas and enclosed in parentheses

The number of output arguments can be

none, where brackets and the assignment operator (equal sign) are not required, for
example,

function [ ] = sinusoid_plot(amplitude,frequency,phase,time)
% time is a vector

or

function sinusoid_plot(amplitude,frequency,phase,time)

one, where brackets are optional, for example,

function [i] = diode_characteristic(v,temp_F,I_sat)
% if v is a vector, then i is a vector

or

function i = diode_characteristic(v,temp_F,I_sat)

more than one, where brackets are required, for example,

function [E v] = electric_field(q0,r) % E, v and r are vectors

The input and output argument lists can include any of the MATLAB data types. A
user-defined function is invoked in the same way that a MATLAB built-in function is
invoked.

Example 2.6

Suppose that in many places within a script and perhaps other scripts, we want to find the
current in a diode given a voltage across the diode and parameter values. It would be
efficient to use a function that is an m-file in the Current Folder or in some other folder that
is included in the search path. A possible MATLAB function definition could be

function DiodeCurrent = DiodeCharacteristic_v1(v, temp_F, I_sat)
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Here, DiodeCharacteristic_v1.m will be the m-file name of this function. Within the
function script, the first few lines should be comment lines that explain what this function
does and how to use it. Prog. 2.3 gives a possible script.

function DiodeCurrent = DiodeCharacteristic_v1(v, temp_F, I_sat)

% This function calculates for the current through a p-n junction diode.

% It returns the diode current given the diode voltage v, the temperature

% in degrees Fahrenheit temp_F and the diode saturation current I_sat.

% The syntax to use this function is:

% w = DiodeCharacteristic_v1(x, y, z), where

% x is the diode voltage in volts

% y is the temperature in degrees Fahrenheit

% z is the saturation current in Amperes

% w is the returned current in Amperes

%

k = 1.3806503*10e-23; % Boltzmann constant

q = 1.602176646*10e-19; % magnitude of the charge of an electron

% converting input temperature (degrees Fahrenheit) to degrees Kelvin

t_C = (temp_F - 32)*5/9; % temperature in degrees Centigrade

causes all comment lines prior to the first
assignment statement to be displayed

local variables
are not shown

can use any variable names

display of first comment line in highlighted m-file

identifies an m-file as a function

Figure 2.13 Demonstration of using a function m-file.
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t_K = t_C + 273.15; % temperature in degrees Kelvin

% compute the diode current

V_T = k*t_K/q; % thermal voltage

DiodeCurrent = I_sat*(exp(v/V_T) -1);

end % this end statement is optional

Program 2.3 Function script for DiodeCharacteristic_v1.m.

This function can be used within a program, another function, or in the Command Window.
Fig. 2.13 shows how this function can be used in the Command Window.

Notice the structure of the function m-file shown in Prog. 2.3. The first line is the
MATLAB function definition statement, which gives the name of the primary function. The
next line, called H1 (first help line), is a comment statement that appears in the window
below the Current Folder Window when the function (or program) is highlighted. This is
useful to quickly see what the program is about (see Fig. 2.13). The following comment
statements explain how to use the program. To view these comment statements, use the
MATLAB built-in function help, for example,

help DiodeCharacteristic_v1

When the help function is executed, MATLAB displays all of the comment statements until
it reaches the first assignment statement (see Fig. 2.13). All of these comment statements are
optional. In the function body that follows the comment statements, you can use any
MATLAB programming statements, including other functions that you have defined. Fur-
thermore, within the function body, you must assign values to all variable names
included in the function output arguments list.

All variable names within a function and their values are stored in a work space that is
separate from the work space used by the program (or function) from which the function is
called (invoked). All variables within a function are called local variables. Therefore, you
can re-use variable names in a function that were used in the calling program (or other
function). The variables in the input arguments list are local variables that receive their
values by transferring the values of the variables used as input arguments of the function
named in the calling program (or other function). The variables in the output arguments list
are also local variables, and their values are transferred to the variables used as output
arguments of the function named in the calling program (or other function). You can
override this method of passing variable values by declaring that some variables are global
variables with the built-in function global, which has the format

global list of variable names delimited by spaces
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The global statement must be placed before the variables are used. Any variables can be
made global variables.

Example 2.7

Let us write a program that calls the function DiodeCharacteristic_v2, where the Boltzmann
constant, the magnitude of the charge of an electron and I_sat are made global variables. A
portion of a program script follows.

..

.

global k_Boltzmann q_electron I_sat % list of global variables

% assign values to global variables

k_Boltzmann = 1.3806503*10e-23; % Boltzmann constant

q_electron = 1.602176646*10e-19; % magnitude of the charge of an electron

I_sat = 1e-12; % saturation current

% assign values to function input variables

v_diode = 0.7;

t_F = 80.0; % degrees Fahrenheit

i_diode = DiodeCharacteristic_v2(v_diode, t_F); % get diode current
..
.

To access the global variables, the function must also declare them as global
variables before they are used in the function. A portion of the revised function script
follows.

function DiodeCurrent = DiodeCharacteristic_v2(v, temp_F)
..
.

global k_Boltzmann q_electron I_sat

% converting input temperature (degrees Fahrenheit) to degrees Kelvin

t_C = (temp_F - 32)*5/9; % temperature in degrees Centigrade

t_K = t_C + 273.15; % temperature in degrees Kelvin

% compute the diode current

V_T = k_Boltzmann*t_K/q_electron; % thermal voltage

DiodeCurrent = I_sat*(exp(v/V_T) -1);
..
.
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2.5.5 Sub-Function
Within the body of a primary function there can be the need to execute an algorithm several
times. As in a program, we can repeat the MATLAB statements that implement the algo-
rithm. This can be made more efficient by appending to the primary function body a func-
tion that starts with a function definition line, which has a format like the format of the
primary function definition. The appended function is called a sub-function. You can
append as many sub-functions as needed. Sub-functions can have the same structure as the
primary function, including an H1 line and comments that explain what the sub-function
does. The resulting m-file, which still must have the name of the primary function, contains
the primary function and all of the sub-functions.

Any of the sub-functions can be invoked from the primary function body and from any
other sub-function. However, a sub-function cannot be invoked from outside of the primary
function m-file. Furthermore, the primary function and the sub-functions each use their own
separate work space, and therefore, within each function all variables are local variables, unless
some variables are declared to be global variables. The structure of an m-file is shown below.

function [output arguments] = primary_function_name (input arguments)
..
.

function [output arguments] = sub_function_1_name (input arguments)
..
.

function [output arguments] = sub_function_2_name (input arguments)
..
.

The definition line of sub_function_1 terminates the body of the primary function, and the
definition line of sub_function_2 terminates the body of sub_function_1. You can access the
help text of a sub-function with

help primary_function_name > subfunction.sub_function_name

2.5.6 Private Function
Suppose you want to limit access to a function or you do not want to reveal using it. This can
be accomplished by making the function a private function. A function is made a private
function by saving its m-file in a particular folder. The particular folder must be a
sub-folder, which has the special name private, of a parent folder. The parent folder can
contain m-files and other sub-folders. A private function can only be invoked from function
m-files in the parent folder. Private functions cannot be invoked from program m-files in the
parent folder, and private functions cannot be invoked from m-files outside of the parent
folder. Any function can be made a private function.
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Consider the following portion of a directory structure of m-files and folders.

folder_1
..
.

program_1.m

function_1.m

folder_2

program_2.m

function_2.m

function_3.m

private

function_p.m

exp.m

function_1.m

folder_3
..
.

Here, folder_2, which is a sub-folder of folder_1, is the parent folder of sub-folder private,
which contains three private functions. The function function_1 or the program program_1
in folder_1 can invoke function_2, if folder_2 is in the MATLAB search path. However, this
function_1 cannot invoke function_p. The functions function_2 and function_3 can invoke a
private function. Since private functions are invisible from outside of the parent folder,
private functions can use the same names as functions outside of folder_2, such as func-
tion_1 in the private sub-folder. The private function exp has the same name as a MATLAB
built-in function. MATLAB automatically searches the private folder before looking outside
of folder_2 for non-private functions. If function_2 invokes function exp, then MATLAB
will use the exp function in the sub-folder private, which is useful if you want to create your
own version of some other function, such as exp in this case. Similarly, if function_3
invokes function_1, then MATLAB will use the function_1 in the private sub-folder.

2.5.7 Nested Function
You can define a function within the body of another function. For example, consider the
structure of an m-file as shown below.

function [out_arg1] = name_1(in_arg1, in_arg2)
..
.

var_1 = . . . % assign some value to var_1

var_2 = name_2(var_1, in_arg2);
..
.

function [out_arg2] = name_2(in_arg4, in_arg5)
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..

.

out_arg2 = . . . % assign some value to out_arg2

[var_3 var_4] = name_3(out_arg2)
..
.

end
..
.

function [out_arg3 out_arg4] = name_3(in_arg6)
..
.

var_5 = . . . % assign some value to var_5

out_arg3 = . . . % assign some value to out_arg3

out_arg4 = . . . % assign some value to out_arg4
..
.

end
..
.

out_arg1 = . . . % assign some value to out_arg1

end

Here, the functions name_2 and name_3 are nested in the primary function name_1. An end
statement is required to terminate each nested function and the primary function. You can
place nested functions within a nested function.

Like other functions, a nested function uses its own work space, which is separate from
the work spaces used by other functions. However, unlike other functions, a nested function
and the function in which it is nested can access each other’s work space. This provides an
alternative to the judicious placement of global statements. For this example, variable var_3
in function name_2 can be accessed from within function name_1. Furthermore, since
functions name_2 and name_3 are not nested within each other, var_5 within name_3
cannot be accessed from within name_2.

2.5.8 Function Function
A function function is a function where the input arguments include one or more variables
with values that are function handles of other functions and possibly values or the names of
one or more variables. Let us consider the case where the input includes values and variable
names and only one variable to which will be passed a function handle, call the variable
f_in. The syntax for a function function is

function [output arguments] = function_name(f_in, additional inputs)

where the output argument list can have none or one or more variables, function_name is
the name of the function function, which must be the same as the name of its m-file. When
function_name is invoked, a function handle, call it @f_passed, of some function, called
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f_passed, must be passed to function_name. When in the body of function_name, f_in is
invoked, f_passed will actually be used. The functions f_passed and f_in must have the same
number of input and output arguments.

Example 2.8

Develop a general purpose function function, call it f_plot, that plots N points of a given
function y ¼ f ðxÞ from x ¼ x1 to x ¼ x2. Prog. 2.4 is a function function for f_plot.

function f_plot(f_in,N,x1,x2,x_label,y_label)

% General purpose function for plotting a given function

delta_x = (x2-x1)/(N-1); % plotting increment

x = x1:delta_x:x2; % vector of points

y = f_in(x); % evaluate given function and f_in must return a vector

plot(x,y) % get plot

grid on % turn on grid

xlabel(x_label) % label x-axis

ylabel(y_label) % label y-axis

end

Program 2.4 General purpose plotting function.

This function function is saved as f_plot.m. With f_plot, plotting details do not have to be
repeated each time you want to plot some function.

Let us plot

xðtÞ ¼ Aðe� a1t � e�a2tÞsinðw tÞ

where a1 and a2 control the attack and decay of the sinusoid. The parameters will be passed
to the function for xðtÞ with a global statement. Prog. 2.5 defines the function xðtÞ to be
plotted.

function [x] = sinusoidal_pulse(t)

% Function for a sinusoidal pulse

% t is an input vector of time points

global parm_1 parm_2 parm_3 parm_4

% parm_1 and parm_2 receive attack and decay control parameters

a = parm_1; d = parm_2;

% parm_3 receives the amplitude

amp = parm_3;

% parm_4 receives the frequency of the sinusoid in Hz
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freq = parm_4;

w = 2*pi*freq;

x = amp*(exp(-a*t)- exp(-d*t)).*sin(w*t);

end

Program 2.5 Function that defines the function to be plotted.

The operation * preceded by a period causes an element by element multiplication of two
vectors. For example, let a and b be two vectors, each of length K. Then, c ¼ a: � b pro-
duces the vector c, where cð1Þ ¼ að1Þ � bð1Þ, . . ., cðKÞ ¼ aðKÞ � bðKÞ.

This function is saved as sinusoidal_pulse.m. A program to test f_plot is shown in Prog. 2.6.
Fig. 2.14 shows the Figure Window opened by the built-in function plot.

% Test general purpose plotting program

clear all; % clear Workspace

global parm_1 parm_2 parm_3 parm_4 % used to pass parameters

% specify parameters of function to be plotted

attack = 1; parm_1 = attack; % specify attack and decay control

decay = 2; parm_2 = decay;

amplitude = 2.0; parm_3 = amplitude;

Figure 2.14 A sinusoidal pulse.
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frequency = 5; parm_4 = frequency;

t1 = 0; t2 = 5; N = 500; x_name = ’secs’; y_name = ’volts’;

f_plot(@sinusoidal_pulse,N,t1,t2,x_name,y_name)

Program 2.6 Script to test the function function f_plot.

We could have specified which function to use for plotting with a variable that has the
function handle as its value, such as

x_of_t = @sinusoidal_pulse;

and then invoke the function f_plot with

f_plot(x_of_t,N,t1,t2,x_name,y_name)

Sometimes it is more convenient to pass the handle of an anonymous function to a
function function, because the anonymous function is defined within the program that
invokes the function function.

Example 2.9

Use f_plot to plot the i–v characteristic of a diode. Prog. 2.7 shows how an anonymous
function can be used to define the function to be plotted. The resulting plot is shown in
Fig. 2.15.
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Figure 2.15 Output of the function function f_plot.
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clear all; clc;

% define an anonymous function for a diode i-v characteristic

I_S = 1e-12; V_T = 25.85e-3;

i_diode = @(v) I_S*(exp(v/V_T)-1); % define the anonymous function

N = 100;

v1 = 0; v2 = 0.75; % specify the voltage range

x_name = ’Volts’; y_name = ’Amperes’;

f_plot(i_diode,N,v1,v2,x_name,y_name)

Program 2.7 Program to pass an anonymous function handle to a function function.

MATLAB has several built-in function functions such as fzero, for finding where a
function is zero, quadl, for finding the area under a curve, fminsearch, for finding where a
function has a minimum value, and others. Use MATLAB help facility to find out more
about these function functions.

2.6 Code Analyzer

As you write scripts and functions, syntax errors may occur. Other errors may prevent m-file
execution, or may not prevent m-file execution, but cause undesirable results. MATLAB
includes a utility, called M-Lint, that runs automatically in the background as you write a
new script or function or edit a previously created m-file. Fig. 2.16 shows Prog. 2.2 with
several intentional errors and warnings.

M-Lint automatically checks for various kinds of syntax and omission errors. It tells you
about these errors by underlining their location either in red to indicate an error or in yellow
to indicate a warning. Also, in the upper right corner of the Editor Window there is a square
button, called the execution status button, that is either green for no error, yellow for
warning, or red for error. Clicking on this execution status button moves the cursor from one
error or warning location to the next one. In the column below the status execution button,
there can be yellow or red dashes. When you position the mouse pointer on one of these
dashes, M-Lint pops up a message that suggests a fix.

Notice the kinds of errors that M-Lint can find. In line 25 the left side of the equal sign
uses a minus sign instead of an underscore. In line 26 there is an s instead of an e, and you
see the message given by M-Lint. The warning in line 29 occurred because the line is not
terminated with a semi-colon. After all errors and warnings have been fixed, the execution
status button turns green. While there may still be other kinds of errors that cause undesir-
able results, M-Lint is a very useful utility.
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You can also apply M-Lint from the Current Folder Window to all m-files in the
Current Folder. Use the help facility to learn more about customizing M-Lint to suit
your needs.

2.7 p-Code

There may be occasions when you want to allow someone else to use an m-file that was
developed by you, but, for example, for proprietary reasons you do not want someone else to
have access to the m-file (the source code). This is possible with most other programming
languages, for example, the C programming language, because source code written in C is
converted (compiled) by a C compiler into machine code, which is the binary code that is
actually executed by a processor, and it is virtually unreadable.

For execution, MATLAB source code is not directly compiled into machine code. Instead,
when MATLAB executes source code, it interprets (called parsing) each line of the source
code and generates protected code, called p-code, which is at an intermediate level between

click to move cursor to next error location

error
error

error

error error

warning

warning

warning

Red = error
Yellow = warning
Green = no error

error message and location

mouse is here

Figure 2.16 Code analyzer showing syntax errors.
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source code and machine code. The p-code version of an m-file is also virtually unreadable, and
it can be executed. To obtain the p-code version of an m-file use the MATLAB command

pcode source_name.m

in the Command Window, which produces the file source_name.p. Then, when you invoke
the file source_name in another m-file or in the Command Window, MATLAB will use the
p-code.

2.8 Tool Box

When you have used MATLAB to develop many m-files that solve problems in many related
and unrelated areas, the folders in which you save these m-files can become difficult to
manage to enable convenient access to these m-files at a later time. You could keep all of your
m-files in a folder that you always select to be the Current Folder, which places this folder first
in the MATLAB search path. However, this is not the best way to organize your work product.

MATLAB includes hundreds of built-in functions, many of which are m-files. These
functions are stored in many folders, called toolboxes, where each toolbox contains functions
that solve related problems. For example, there is a MATLAB toolbox that only contains
functions concerned with plotting. As another example, there is a MATLAB toolbox that
contains functions concerned with signal processing. All of the complete path names of
MATLAB toolboxes were placed in the MATLAB search path (the default search path) at the
time MATLAB was installed, and all of the complete path names of all toolboxes are stored in
a file named pathdef, which is stored in the folder named MATLAB.

While the signal processing toolbox is included with MATLAB when you purchase it,
MathWorks, Inc. has developed toolboxes concerned with problems in many diverse areas,
including economics, fuzzy logic, chemical engineering, neural networks, statistics, and
many others, too numerous to list here. These toolboxes can be purchased from Math-
Works, Inc.

To add a folder and its sub-folders, if there are any, to the MATLAB search path, open
the Set Path Window with

File ! Set Path

which is shown in Fig. 2.17. This window shows the MATLAB search path.
To add a folder and its sub-folders click on the Add with Subfolders button, which

opens the Browse for Folder Window, where you can select the folders to be added to the
search path. Notice that you can edit the sequence in which MATLAB searches toolboxes to
find functions that you have invoked. Additions to the MATLAB default search path are
removed when you terminate a MATLAB session unless you save the search path in the
pathdef file, which MATLAB checks at the start of the next MATLAB session.

You can also manage the search path with built-in functions, some of which are listed in
Table 2.1.
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2.9 Conclusion

In this chapter you learned how to create programs and functions from MATLAB
scripts. There are several different kinds of functions, and we saw how to take advantage
of their different properties. Now that you know how to create programs and functions,

Table 2.1 Built-in MATLAB functions to manage the search path

Function Brief explanation

addpath Add folders to search path
path View or change search path
path2rc Save current search path to pathdef.m file
pathtool Open set path dialog box to view and change search path
restoredefaultpath Restore default search path
rmpath Remove folders from search path
savepath Save current search path
userpath View or change user portion of search path

click to add folder with sub-folders highlight folder

click to save search pathMATLAB toolboxes click to add with sub-folders

Figure 2.17 Window used to add toolboxes to the MATLAB search path.

66 Programs and Functions



you will want to learn more about MATLAB programming to solve challenging and
practical problems. Probably, the hardest parts about solving a problem are (1) under-
standing the problem and (2) developing a method of solution. Then come: (3) developing
an algorithm to implement the method of solution and (4) modularizing the algorithm
to develop an efficient program with supportive functions. These steps may or may not
lead to correct solutions. This will require checking and properly interpreting program
output.

Program development requires more knowledge about MATLAB data types, built-in
functions and constructs for program flow control to see the possibilities for implementing
an algorithm. It may happen that errors, commonly called bugs, will be made in steps (1)
through (4). MATLAB provides a user-friendly facility for debugging, including M-Lint
and much more. Debugging will be discussed in Chapter 10 after you have learned more
about MATLAB.

Now, you should know how to

● set up the current folder
● work with electric current and voltage
● create a program
● create several different kinds of functions, including anonymous, inline, primary, pri-

vate, sub, nested, and function functions
● share variables among programs and functions
● use M-Lint
● produce the p-code of an m-file
● create a toolbox

Table 2.2 gives the built-in MATLAB functions that were introduced in this chapter.

Table 2.2 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

@ Declares a function handle
axis Specifies x- and y-axis ranges
eval Evaluates a function described by a character string
fminsearch Finds where a function has a minimum
fzero Finds where a function is zero
global Enables common access to variables by scripts and functions
input Gets entry from keyboard
max Finds largest element in a vector
mlint Analyzes a script for syntax and omission errors
pcode Creates a protected version of an m-file
quad1 Finds the area under a curve
type Display an m-file
who Lists variables in Workspace
whos Gives detailed description of variables in Workspace
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Use the help facility to find out more about these and related MATLAB built-in func-
tions. You should also see the excellent video tutorials about getting started with MATLAB
and program development. To do this, type demo in the Command Window, and select the
audio/video tutorial you want to see.

Problems

In the following programming problems, each program must start with one or more com-
ment statements that explain the purpose of the program. Also, include comments within
programs that explain program activity.

Section 2.1
1) (a) When MATLAB is started, what is the default Current Folder path?

(b) Open the Current Folder pull-down menu in the desktop toolbar, and list all path
names, but not more than three, starting at the top of the menu.

(c) Give the name of the window that opens when you click on the browse for folder
icon in the desktop toolbar.

2) Activate the Current Folder Window.
(a) Give the names of all of the icons in the Current Folder Window toolbar.
(b) Open the Actions icon pull-down menu, and give the names of all of the menu

items.
(c) In the Actions pull-down menu, click on help, and give the name of the window that

opens.

Section 2.2
3) Open the Editor Window with: File ! New ! Script, and list the names of all of the

icons in the toolbar.
4) Activate the MATLAB desktop, and specify a current folder where you want to save

m-files.
(a) Open the Editor Window to write a new script, and enter the script given in Prog.

2.1. Click on the run icon in the toolbar. Describe what happened. Save the script as
an m-file in the Current Folder. Call the m-file charge.m.

(b) Activate the Command Window, and enter help lookfor. Briefly describe the pur-
pose of this function. Then, enter a command to find the character string, ‘‘charge’’.
Describe what happened.

5) (a) Use the script given in Prob. 1.19 to create an m-file called multiple_exponentials.m.
Provide a program listing and program output.

(b) Create an m-file, call it sinusoidal_pulse.m, using the script given in Prob. 1.23.
Your program should produce the plot given in Prob. 1.23. Provide a program
listing and output.
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Section 2.3
6) The amount of charge that has moved through a cross-section of a conductor is given by

qðtÞ ¼

0; t < 0
2t; 0 < t < 1
0; 1< t < 2

� 2t þ 6; 2 < t < 3
0; t > 3

8

>

>

>

<

>

>

>

:

(a) Manually, give a sketch of qðtÞ versus t.
(b) Modify the script given in Prog. 2.1 to obtain a plot of qðtÞ versus t.
(c) Manually, determine and sketch the current iðtÞ versus t. Label the axes.

7) (a) In terms of basic units (Q – charge, M – mass, L – length and T – seconds) express
1 tesla.

(b) Two infinitely long parallel conductors are 0.001 meters apart. They each carry
a current of 10 amperes, but in opposite directions. What is the force/meter that
these conductors exert on each other? Is it attractive or repulsive? A force of
4.44822162825 newtons equals a force of 1 pound. Convert your answer to
pounds/foot.

8) A negative charge of 0.0001 coulombs is 0.002 meters from another negative charge of
0.005 coulombs. In a vacuum, what force do these charges exert on each other? Give
your answer in both newtons and pounds.

9) In a vacuum, a positive point charge q ¼ 1�10�9 coulombs is 0:5 meters from
a fixed positive point charge q0 ¼ 5�10�9 coulombs. How much energy is
required to move the charge q to within 0:2 meters of q0? What is the change in
voltage?

10) A 12 volt battery is connected to a 100 W resistor.
(a) What is the current through the resistor?
(b) How much power is delivered to the resistor?
(c) Over an hour, how much energy is expended by the battery?

11) A power source expends 10,000 joules of energy to move 2,000 coulombs of charge
through the circuitry of a computer. The charge moves through the computer at a rate of
4 coulombs/sec. How much power does the source deliver to the computer? How much
energy does the power source expend in an hour?

12) (a) How much energy is 1 killowatt-hr? Can you find out from an electric bill how
much your electric company charges per killowatt-hr?

(b) Assume that when you start your car it starts within 3 seconds of cranking. Assume
that the starter motor requires 100 amps to crank the engine. Using a
12 volt battery, how much energy does the battery provide to start the car? How
many killowatt-hrs is this energy?
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Section 2.4

13) (a) Write a script similar to the script given in Fig. 2.8 that plots the electric field
caused by a charge q0. Your script must input parameter values like the script
given in Fig. 2.8. Then, after you have specified a Current Folder, save the script
as an m-file, called Electric_Field.m, and run it. Provide a copy of the m-file and
input and output. Use the function type to obtain a listing of your m-file.

(b) In the Command Window, enter the function name (command) whos. Provide a
copy of the response, and explain it. Use help whos.

(c) In the Command Window, enter the function (command) what. Provide a copy of
the response, and explain it.

14) Write the program Electric_Field.m of Prob. 2.13 in the style illustrated by Prog. 2.2.
Provide a copy of the resulting m-file.

15) Use colon notation to define the following vectors.
(a) Vector x with first element (first) equal to –5, element to element increment (delta)

equal to 0.7 and last element (last) equal to 2. What is the last element in x? Use
help length to find out what the function length does, and use the function length
to find out the number of elements in x. What do you get with the statement:
x(length(x))?

(b) Vector y has first ¼ 2.1, delta ¼ 0.5 and last ¼ 9.0. What is the last element in y?
How many elements does y have? What do you get with z ¼ y.*y þ y þ 1?

(c) Vector z has first ¼ 5.25, delta ¼ �0.3 and last ¼ �2.3. What is the last element of
z? How many elements does z have? What do you get with w ¼ 1./z?

16) (a) Write a script that (1) uses colon notation to define a vector t with elements that
range from –1 to 10 in increments of 0.1, (2) evaluates yðtÞ ¼ e�0:5t, and (3) plots
yðtÞ versus t. Include a grid, axes labels and a title. Save your script as exponential.
m, and provide a listing of it.

(b) In the Command Window, enter the statement: which exponential.m. What is the
response?

(c) In the Command Window, enter: exponential. What happened?
17) The voltage source vSðtÞ ¼ 10 sinð8ptÞ volts is connected as shown in Fig. P2.17.

(a) Write a script to plot vSðtÞ for 0 � t � 1. Use enough plot points to get a smooth
looking plot of the sinusoidal function. Include a grid, axes labels and a title. Save
the script as sinusoid.m. Provide a program listing and output.

vs(t) v(t)

Figure P2.17 Voltage source in series with a diode and a resistor.
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(b) Assume that the diode is an ideal diode as described by (2.11). By hand, sketch vðtÞ.
Label the axes.

18) Write a script to evaluate xðtÞ ¼ e�tsinð4ptÞ and yðtÞ ¼ e�tcosð4ptÞ for 0 � t � 5. Use
colon notation to define a vector of values of t with enough time points to obtain
smooth looking plots. Use vector multiplication (.*) to multiply the exponential and the
sinusoidal functions. Plot y versus x, and include a grid. Save the script as an m-file
called spiral.m.
(a) Run the program and provide a copy of the figure.
(b) Add the statement: axis equal, and repeat part (a). How is the result different from

part (a)?
(c) Add the statement: axis([�1 1 �1 1]), and repeat part (b). Provide a copy of the

final program.

Section 2.5
19) Suppose the power delivered to a resistor with resistance R must be calculated at sev-

eral places within a program given a current I through a resistor. Write a script that
defines an anonymous function named power that has two input arguments R and I
and returns the power delivered to the resistor. Save the script as an m-file called
power_to_R.m. Your program should use the anonymous function at least two times,
and display the inputs and result. Provide a listing of your program and a copy of the
function inputs and outputs.

20) Write a script that includes the definition of an anonymous function, which evaluates
xðtÞ ¼ Ae�atcos ðwt þ qÞ volts, where the input arguments are A, a, w (w), p (q),
and t. The input argument t is a vector of time points. Use colon notation to define a
vector of values of t. Your program must produce a figure with a family of plots,
where A ¼ 2, a ¼ 0.2, 1.0, and 3.0, w ¼ 4p, p ¼ p=2, and t varies over the range 0 � t
� 5. Use the statement: hold on, and your anonymous function several times. Use
enough time points to produce smooth looking plots. Provide a program listing and
results.

21) Repeat Prob. 2.19, but use an inline function.
22) Repeat Prob. 2.19, but use the function eval.
23) Repeat Prob. 2.20, but use the function eval. For convenience, assign to a variable, for

example, x_of_t, a character string of the given function. After assigning values to all
input arguments, use, for example, x ¼ eval(x_of_t).

24) Open the Editor Window for a new function. Write a script of a function that plots N
cycles of xðtÞ ¼ A cos ðwt þ qÞ volts, plotting 100 points per cycle. Call the function
sinusoid_plot. The inputs are A, w (w), p (q) and N. There is no output argument. Be
sure to include an H1 line. The function must place axes labels and a grid. Write a script
that invokes your function. Use A ¼ 2, w ¼ 8p, p ¼ �p /2, and N ¼ 3. Provide pro-
gram and function listings and results.
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25) Open the Editor Window for a new function. Write a script of a function, where the only
input argument is a vector t of time points, and the only output is a vector x. The function,
call it exp_cosine, must evaluate the xðtÞ given in Prob. 2.20. All other parameters must
be received by the function with a global statement. Write a script that utilizes a global
statement, invokes the function exp_cosine, and produces a family of plots of xðtÞ versus t.
Use the same parameter values as given in Prob. 2.20.

26) Open the Editor Window for a new function. Write a script of a function that returns
the voltage drop in a vacuum as the distance from a charge q0 coulombs is increased
from r1 to r2 meters. The inputs to the function are q0, r1, and r2, and the output is
v12. Be sure to include an H1 comment line. Save the function as v_drop.m. Provide
a program that invokes your function to find the voltage drop for (a) q0 ¼ 2e-3
coulombs, r1 ¼ 0.1 meter and r2 ¼ 1.0 meter and (b) repeat part (a) with q0 ¼ �2e-3
coulombs. Provide program and function listings and results.

27) Within your Current Folder, create a sub-folder called private. Open the Editor Window
for a new function. Write a script of a function that returns the power
P delivered to a resistor R, where the input arguments are R and I. Call the function
R_power, and save it as an m-file in the subfolder private.
(a) Write a script, called find_R_power, that assigns values to R and I, invokes the

function R_power to obtain the power delivered to the resistor, and save it as an m-
file in the Current Folder. Provide program and function listings. Run the program.
Describe what happened.

(b) Open the Editor Window for a new function. Write a script of a function, call it
power_to_R, with inputs R and I and returns the power delivered to a resistor. The
function power_to_R must invoke R_power. Save power_to_R as an m-file in the
Current Folder. Modify find_R_power.m to invoke power_to_R instead
of R_power. Provide program and function listings. Run find_R_power. Describe
what happened. Discuss the difference between using R_power in parts (a) and (b).

28) Describe the difference between the structure of a function that includes a sub-function
and a function that includes a nested function.

29) Open the Editor Window for a new function. Write a script of a function, call it eval-
uate, that receives the handle of a function m-file and a value of x, and returns the value
y of some function y ¼ f (x) defined in some function m-file. For example, start the
function evaluate with

function y = evaluate(f_in,x)
..
.

We want to use the function evaluate to find values of functions f (x) defined in other
function m-files. For example, let f1(x) ¼ x2 þ xþ 1 and f2(x) ¼ e�x. A function to
evaluate f1 could be
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function y = f1(x)

y = x^2 + x +1;

A program can use the function evaluate with statements such as

z = evaluate(@f1,3)

(a) Complete writing the script of the function evaluate, create m-files for f1 and f2,
and write a script that demonstrates using evaluate for f1(x) and f2(x). Provide
copies of your program, all functions and results.

(b) How would you modify the m-file for f1 if x is a vector? Provide a demonstration.
30) The debugging tool M-Lint runs automatically in the background as you write scripts.

Explain the difference between a warning and an error.
31) (a) Obtain the p-code version of any program m-file that you have written. In the

Current Folder Window, rename the resulting p-code version of the m-file to
p_code_test.p. This will ensure that there is no m-file with this name. Activate the
Command Window, and type p_code_test. Describe what happened.

(b) An m-file can be opened by double clicking its name in the Current Folder Win-
dow. Double click the file name p_code_test.p. Describe what happened.

(c) Rename the file p_code_test.p to p_code_test.m. Double click on p_code_test.m.
Describe what happened. Change the name back to p_code_test.p.

32) (a) Use the MATLAB help facility, and explain the purpose of the built-in function
addpath. Give an example of a MATLAB statement that uses this function, and
enter it in the Command Window. Verify that this statement worked as intended by
clicking the Current Folder pull-down menu icon in the MATLAB desktop toolbar.
Explain what happened.

(b) In the Command Window, enter the function name pathtool. Describe what
happened.
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CHAPTER 3

Matrices, Vectors, and Scalars

One of themost important distinguishing features ofMATLAB� is how easy it is to workwith
the matrix data type. We start this chapter with the definition of a matrix. Then, much of the
mechanics of working with matrices in MATLAB will be presented. Given these funda-
mentals, matrix algebra will be applied to several applications, including circuit analysis.

After you have completed this chapter, you will know

● about the origin of the concept of a matrix
● the fundamentals of matrix algebra
● how MATLAB is particularly well suited for matrix algebra
● about many built-in MATLAB functions to find properties of a matrix
● how to use MATLAB for resistive circuit analysis
● how to solve systems of linear and nonlinear algebraic equations

3.1 Matrix Definition

A two-dimensional (2-D) matrix is an organization of numbers into a given number of rows
and a given number of columns that is enclosed within brackets. Let A denote some matrix,
let N denote the number of rows in the matrix A, and letM denote the number of columns in
the matrix A. Then, N and M give the dimension of A, and we say that A is an N by M
matrix, which is denoted by ðN �MÞ. In MATLAB, any valid variable name can be used to
denote a matrix. The structure of the matrix A is shown below.

A ¼
Að1; 1Þ Að1; 2Þ . . . Að1;MÞ
Að2; 1Þ Að2; 2Þ . . . Að2;MÞ

..

. ..
. . .

. ..
.

AðN ; 1Þ AðN ; 2Þ . . . AðN ;MÞ

2

6

6

6

4

3

7

7

7

5



An individual entry in some row n and some column m of the matrix A is called an
element of the matrix, which is denoted by Aðn; mÞ, for n ¼ 1; 2; . . . ;N and
m ¼ 1; 2; . . . ;M . Here, n is used for the row index, and m is used for the column index to
describe the location of an element in the matrix. It is conventional to give the row index
first. In MATLAB, any valid variable name can be used to denote an index.

The term array is also used for an organization of elements like a matrix. However, the
elements in an array are not necessarily numbers. Array elements can be text, logical vari-
ables, or other kinds of information. MATLAB programming that is concerned with array
structures will be examined in Chapter 7.

Example 3.1

Let N ¼ 2, M ¼ 3, and b denote some matrix. Then, b could be, for example, the matrix
given by

b ¼ �2:5 3:1415926 0:1112
1=3 0:0 �5

� �

Here, b is a ð2� 3Þ matrix. In MATLAB, the matrix is assigned to the variable b with the
following assignment statement.

>> % assign a matrix to the variable b

>> % in MATLAB, the delimiter between the elements in a row must be either

>> % a comma or at least one blank space, and

>> % the delimiter between the rows of a matrix must be a semi-colon

>>% assign a matrix to b

>> b=[-2.5 3.1415926 0.1112; 1/3 0.0 -5]

b =

-2.5000 3.1416 0.1112

0.3333 0 -5.0000

>> % MATLAB responds by displaying the defined variable and its elemental values

>> % once the assignment statement has executed, MATLAB knows

>> % the dimension of the matrix and all of the elements in the matrix

>> b(1,2) % the element in row 1 and column 2

ans = 3.1416

>> b(2,3) % the element in row 2 and column 3

ans = -5

>> b(3,2) % this will cause the following error message

??? Index exceeds matrix dimensions.

>> % in MATLAB a matrix index value CANNOT be zero or negative

>> b(2,-1)

??? Index exceeds matrix dimensions.

>> % the dimension of a matrix can be found with the built-in function size
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>> % get the dimension of the matrix b

>> size(b)

ans = 2 3

>> % this is the number of rows and columns, respectively

>> % the dimension can be made the elements of a two element row vector with

>> c=size(b) % place the result in a vector

c = 2 3

>> % the first element of c is the number of rows in b

>> c(1)

ans = 2

If N > 1, M > 1, and N 6¼ M , then A is called a rectangular matrix. The matrix b in
Example 3.1 is a rectangular matrix. If N ¼ M , then A is called a square matrix, which has
as many rows as it has columns. For an ðN � NÞ square matrix A, the collection of elements
Aðn; nÞ; n ¼ 1; . . . ; N is called the major diagonal of A. If all elements other than the
major diagonal are zero, then the matrix is called a diagonal matrix.

If N ¼ 1, while M > 1, then A has only one row, and it is also called a row vector. If
N > 1, while M ¼ 1, then A has only one column, and it is also called a column vector. If
N ¼ 1 and M ¼ 1, then A is no longer a matrix, and it is called instead a scalar. The
elements of a vector B (row or column) having N elements are denoted by
BðnÞ; n ¼ 1; . . . ; N , where n is the vector index.

For an ðN �MÞ matrix A, the elements Aðn; nÞ; n ¼ 1; . . . ; N can be collected into a
vector with the built-in MATLAB function diag, as in the MATLAB statement

d = diag(A)

If N ¼ M , then d is the major diagonal of a square matrix. The function diag can also be
used to create a diagonal matrix from a vector. If d is an N element vector, then the
MATLAB statement

B = diag(d)

gives an N � N diagonal matrix B with d as its diagonal.

Example 3.2

The following statement assigns a vector to a variable name.

>> % a row vector is defined the same way as one row of a matrix

>> a=[-2.5 1 2^3 5.21+6.3 sin(pi/4)]

a = -2.5000 1.0000 8.0000 11.5100 0.7071

>> % when MATLAB executes an assignment statement, it finds the values of all

>> % elements
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>> % the built-in function size also gives the dimension of a vector

>> b=size(a)

b = 1 5

>> % here, only the number of columns is of interest

>> % another built-in function, length, gives the number of elements in a vector

>> c=length(a)

c = 5

Sometimes, especially for plotting, we want to set up a vector with elements that are
incrementally related. The format for a MATLAB assignment statement to define this kind
of a vector is given by

v = [first value : increment : last value]

where the brackets are optional. If we want N points from the first value to and including the
last value, then the increment must be

increment ¼ last value � first value
N � 1

Example 3.3

The following MATLAB statements illustrate using increments to assign a vector.

>> N=6; % desired number of points

>> first=0; % the first value

>> last=2.5; % the last value

>> increment=(last - first)/(N-1)

increment = 0.5000

>> % use the colon operator to define the elements of a vector

>> x=[first : increment : last]

x = 0 0.5000 1.0000 1.5000 2.0000 2.5000

>> % if the increment is not included in the assignment statement,

>> % then it becomes the default value of 1

>> n=[-2:4]

n = -2 -1 0 1 2 3 4

>> % the increment can be negative

>> r=[5.0: -0.5 : 0]

r =

Columns 1 through 11

5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000

0.5000 0
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With the built-in function linspace, we need only to specify the first and the last value
and the desired number of points to specify the elements of a vector, because the function
finds the increment. The format for the linspace function is

linspace(first_value, last_value, number_of_points)

This built-in function is very useful for setting up a vector to hold values of an independent
variable to be used for function evaluation or plotting.

Example 3.4

Here are a few examples of using linspace.

>> first=-10; last=10; N=6; % increment is (10-(-10)/(6-1)=4

>> w=linspace(first,last,N)

w = -10 -6 -2 2 6 10

>> v=linspace(5,-5,6) % the increment can be positive or negative

v = 5 3 1 -1 -3 -5

>> % sometimes a small time range must be segmented into many sub-intervals

>> % segment the time range [0.0, 0.5] into 10^6 - 1 subintervals

>> t=linspace(0,0.5,1+10^6);

>> t(1) % the first value

ans = 0

>> t(length(t)) % the last value

ans = 0.5000

>> t(2)-t(1) % time increment between first and second element of t

ans = 5.0000e-007 % the increment is 0.5 microseconds

>> N=length(t)

N = 1000001

>> t(N)-t(N-1) % time increment between last and previous element of t

ans = 5.0000e-007

>> % the increment is constant from one time point in t to the next time point

It is useful to be able to initialize a matrix (or vector) to have all of its elements equal to the
same predetermined value. MATLAB has several built-in functions that are useful for this. With
the zeros built-in function and the ones built-in function the size of a matrix can be specified.

Example 3.5

Here, the zeros and ones functions are used to initialize some matrices. The zeros function is
often utilized to allocate storage space for subsequent assignment.
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>> x=zeros(2,14) % preallocating space

x =

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

>> y=ones(1,4) % create a 4 element row vector

y = 1 1 1 1

>> z=4*y % multiply each element of a vector by a scalar

z = 4 4 4 4

Table 3.1 gives several built-in MATLAB functions concerned with initializing a
matrix and finding basic matrix properties. Use MATLAB help for details and other related
functions.

3.2 Matrix Arithmetic

In MATLAB we can assign a matrix to any valid MATLAB variable name. Let A and B be
the variable names of an ðN �MÞ and an ðL� KÞ matrix, respectively. Let c and d be the
variable names of two column vectors, each having N elements.

The inner product (or dot product) of two vectors c and d, which have the same
number of elements, is denoted by ðc; dÞ, and it results in a scalar. Let s denote the scalar,
which is given by

s ¼ ðc; dÞ ¼ cð1Þ dð1Þ þ cð2Þ dð2Þ þ � � � þ cðNÞ dðNÞ ¼
X

N

n¼1
cðnÞ dðnÞ ð3:1Þ

Table 3.1 Some MATLAB functions concerned with initializing a matrix

MATLAB function Description (See MATLAB help for different forms.)

d ¼ size(X) Returns the sizes of each dimension of array X in a vector d
N ¼ length(X) Returns the number of elements N in a vector X
any(X) Returns 1 if any element of a vector X is a nonzero number
all(X) Returns 1 if all elements of a vector are nonzero numbers
zeros(N,M) Initializes an N�M matrix to all zeros
ones(N,M) Initializes an N�M matrix to all ones
diag(X) Returns the diagonal elements of a matrix
max(X) Returns the largest element in a vector; see help max, if X is a matrix
min(X) Returns the smallest element in a vector; see help min, if X is a matrix
rand(N,M) Initializes an N�Mmatrix to uniformly distributed pseudorandom numbers

over the range (0,1)
eye(N) Initializes an N�N matrix to an identity matrix
find(X,K,mode) Finds at most K indices of the mode ¼‘‘first’’ or mode ¼‘‘last’’ nonzero

elements in a matrix
[] Null matrix, assigns a matrix with no elements

80 Matrices, Vectors, and Scalars



This is the sum of the products of corresponding elements in the two vectors. The built-
in MATLAB function dot obtains the dot product of two vectors. This is shown in the
following example.

A common matrix manipulation is the transpose of a matrix. The transpose of an
ðN �MÞ matrix A is another matrix F with dimension ðM � NÞ, where the rows of F are
the columns of A. In MATLAB, the transpose of A is obtained with F ¼ A0, where A0

invokes the transpose operation of A. If c and d are two column vectors having the same
length, then the inner product is given by ðc; dÞ ¼ c0 � d ¼ d0 � c.

Example 3.6

Let us find the dot product. First, two vectors are defined.

>> clear all; % remove all variables and values from the Workspace

a=[1; 0; -2; 3;]; b=[1; 2; 1; 2;]; % assign values to two column vectors

c=dot(a,b) % get the inner product

c = 5

>> d=ones(1,4) % preallocate space and assign 1 to all values of a row vector

d = 1 1 1 1

>> e=a’ * d’ % this dot product (could be d*a) sums the elements of the vector a

e = 2

>> % this can also be done with the built-in MATLAB function sum

>> f=sum(a) % find the sum of the elements of the vector a

f = 2

Two matrices A and B can only be equal to each other if they have the same dimension,
which means N ¼ L andM ¼ K, and the corresponding elements are equal, that is, Aðn;mÞ ¼
Bðn;mÞ, n ¼ 1; . . . ;N and m ¼ 1; . . . ;M . Similarly, two vectors can only be equal to each
other if they have the same length and the corresponding elements are equal to each other.

The addition (subtraction) of any two matrices is only possible if the two matrices have
the same dimension, which will also be the dimension of the result. Let the matrix C be
given by

C ¼ Aþ B ð3:2Þ

The sum is only possible if N ¼ L and M ¼ K. The elements of C are found by summing
the corresponding elements of A and B, resulting in

Cðn;mÞ ¼ Aðn;mÞ þ Bðn;mÞ; n ¼ 1; . . . ; N ; m ¼ 1; . . . ;M ð3:3Þ

In this case we say that A and B are conformable to addition.
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The mechanics of multiplying two matrices comes from the method of solution of a set
of linear equations. We will investigate this in Section 3.5. Now, consider the product of two
matrices, written as

D ¼ A B ð3:4Þ
which is written as, D ¼ A � B, in MATLAB. Here, the matrix A is said to premultiply the
matrix B, and the matrix B is said to postmultiply the matrix A. The product of two matrices
is only possible if the premultiplying matrix has as many columns as the postmultiplying
matrix has rows. Therefore, the matrices A and B in (3.4) are conformable to multi-
plication only if M ¼ L. The dimension of the resulting product matrix D will be
ðN �MÞðM � KÞ ! ðN � KÞ. Each element Dðn; kÞ in D is given by

Dðn; kÞ ¼
X

M

m¼1
Aðn; mÞ Bðm; kÞ; n ¼ 1; . . . ; N ; k ¼ 1; . . . ; K ð3:5Þ

which is the dot product of the vector with elements from row n of matrix A and the vector
with elements from column k of matrix B. To obtain the product B A requires that N ¼ K.

An ðN �MÞ matrix A can be multiplied by a scalar a resulting in a matrix E, written as
E ¼ a A, and each element of the matrix E is given by

Eðn;mÞ ¼ a Aðn;mÞ; n ¼ 1; . . . ; N ; m ¼ 1; . . . ; M ð3:6Þ
An important matrix, which is called the identity matrix and is denoted by I , is a square
ðN � NÞ matrix defined by

I ðn;mÞ ¼ 1; n ¼ m
0; n 6¼ m

�

ð3:7Þ

In an identity matrix, themajor diagonal consists of ones, while the remaining elements are
zeros. A useful property of the identity matrix is that for any vector or any ðN �MÞ matrix
(square or rectangular) R, we have R I ¼ R, with an ðM �MÞ identity matrix, or I R ¼ R,
with an ðN � NÞ identity matrix. In MATLAB, the built-in function eye is used to specify
an identity matrix according to (3.7).

Example 3.7

Let us use the following matrices in some examples to show how easy it is to use MATLAB for
matrix arithmetic. We will use the built-in function eye to size and define an identity matrix.

A ¼ 1
�3

2
�2

3
�1

� �

; B ¼ 4 �2
�2 2

� �

; C ¼ 3
1

� �

; d ¼ 2

>> A=[1 2 3; -3 -2 -1]

A =

1 2 3

-3 -2 -1
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>> A’ % taking the transpose of A

ans =

1 -3

2 -2

3 -1

>> A’*A % a matrix multiplied by its transpose always results in a square matrix

ans =

10 8 6

8 8 8

6 8 10

>> % a matrix multiplied by its transpose results in a square matrix

>> % that is symmetric about the major diagonal

>> A*A’

ans =

14 -10

-10 14

>> B=[4 -2; -2 2]; C=[3;1]; % used in the following examples

>> I=eye(2) % the built-in function eye is used to specify a (2x2) identity matrix

I =

1 0

0 1

>> % A has three columns, and I has two rows

>> % A cannot premultiply I

>> D=A*I % generates the following error message

??? Error using ==> mtimes

Inner matrix dimensions must agree.

>> D=I*A % (2x2)(2x3) gives a (2x3) matrix, where D is the same as A

D =

1 2 3

-3 -2 -1

>> E=B*I % E is the same as B

E =

4 -2

-2 2

>> F=I*E % F is the same as E

F =

4 -2

-2 2

>> G=I*C % multiplication by I reproduces the vector C

G =

3

1

>> H=A*B % not conformable to multiplication

??? Error using ==> mtimes
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Inner matrix dimensions must agree.

>> H=B*A % conformable to multiplication

H =

10 12 14

-8 -8 -8

>> P=B*C % conformable to multiplication

P =

10

-4

In the previous example we see how an identity matrix works as its name implies, and
that it is very important to keep track of the order in which matrices are multiplied. While
matrix addition is commutative, matrix multiplication is not commutative.

When we use vectors or matrices in arithmetic operations or arguments of functions, we
must be careful about what is to be accomplished. Many built-in functions check the size of
their input and process it accordingly. MATLAB includes useful modifications of the basic
arithmetic operations. These are given in Table 3.2. Some of these operations are demon-
strated in the following example.

In Table 3.3, let a and b designate scalars and let A and B designate vectors or matrices.
Then, for example, sinðaÞ returns a scalar, while sinðAÞ returns a vector or a matrix. This
feature of MATLAB is very convenient. Table 3.3 shows some examples of converting

Table 3.2 MATLAB arithmetic operations

Operation Computation, comment Function

þ AþB, addition of scalars, vectors, and matrices plus(A,B)
þ þA, unary plus uplus(A)
� A�B, subtraction of scalars, vectors and matrices minus(A,B)
� �A, unary minus uminus(A)
* A*B, multiplication of scalars, vectors, and matrices mtimes(A,B)
^ A^B, matrix power, A or B must be a scalar mpower(A,B)
\ A\B ¼ inv(A)*B, backslash, left divide

A*X ¼ B, X and B column vectors, solution is
X ¼ A\B

mldivide(A,B)

/ A/B ¼ A*inv(B), slash, right divide
X*B ¼ A, X and A row vectors, solution is
X ¼ Y/B

mrdivide

.* A.*B, element-by-element multiply times(A,B)

.^ A.^B, element-by-element exponentiation power(A,B)

.\ A.\B ¼ (1./A).*B, element-by-element left divide ldivide(A,B)

./ A./B ¼ A.*(1./B), element-by-element right divide rdivide(A,B)
’ A’, transpose of A transpose(A)
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(vectorizing) a computation when a scalar is replaced by a vector or a matrix. This can only
work if the vectors and matrices have conformable dimensions.

If you are not sure about how to vectorize an expression, then you could try the built-in
MATLAB function vectorize, for example

>> vectorize (´1/(a^2 + b^2)´) % a and b are scalars

ans =

1./(a.^2 + b.^2) % a and b are vectors or matrices

Example 3.8

The following MATLAB statements demonstrate some matrix arithmetic.

>> A=[-1 0 2 5 3]; B=[5 4 3 2 1]; % assign two row vectors

>> c=A*B´ % inner product of the vectors A and B, same as a dot product

c = 14

>> C=A´*B % outer product of the vectors A and B, (5x1)(1x5) ? (5x5)

C =

-5 -4 -3 -2 -1

0 0 0 0 0

10 8 6 4 2

25 20 15 10 5

15 12 9 6 3

>> A=[1:5; 6:10] % use the colon operator to assign a 2x5 matrix

A =

1 2 3 4 5

6 7 8 9 10

Table 3.3 Vectorization for element-by-element results

Scalar version Possible vector versions

�a �A
a þ b A þ b; A þ B
a * b A * b; A .* B
a/b a ./B; A/b; A./B
a\b ¼ b/a a.\B ¼ B/a; A.\B
exp(a); sin(b) exp(A); sin(B)
exp(a)*sin(b) exp(A) .* sin(B)
sqrt(a^2 þ b^2) sqrt(A .^ 2 þ B .^ 2)
a ^ b a .^B; A .^ B
1/(a^2 þ b^2) 1./(A .^2 þ B .^2)
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>> B=1 ./ A % elemental divide using a scalar and a matrix

B =

1.0000 0.5000 0.3333 0.2500 0.2000

0.1667 0.1429 0.1250 0.1111 0.1000

>> D=1 ./ B(1,:) % elemental divide using a scalar and a vector

D = 1 2 3 4 5

>> E=A .* B % element by element multiply of two matrices

E =

1 1 1 1 1

1 1 1 1 1

>> F=E./B % element by element divide of two matrices

F =

1 2 3 4 5

6 7 8 9 10

>> A=[-1 0 2 5 3];

>> C=2 .^ A % elemental exponentiation

C = 0.5000 1.0000 4.0000 32.0000 8.0000

>> B=[5 4 3 2 1];

>> D=A .^ B % element by element exponentiation

D = -1 0 8 25 3

In MATLAB, matrices can be involved in basic arithmetic operations, as demonstrated
by the previous examples, and also in arguments of numerous MATLAB functions,
both built-in and user defined. These kinds of possibilities allow for very convenient and
efficient programming, that is, useful results can be achieved with minimal overhead
programming.

3.3 Method of Least Squares

Sometimes a process is described by experimentally obtained data instead of a function
relating a dependent variable to an independent variable. We have the data
ðxðiÞ; yðiÞÞ; i ¼ 1; . . . ; N , instead of a function y ¼ f ðxÞ relationship. With a function
relationship we can find a y for any given x. However, since N is finite, a particular value
of x, for which we would like to know y, may not be included in the given set of
data points.

Example 3.9

For example, suppose N students are interviewed and the data obtained from each student is
the GPA and hours spent per week studying. A scatter diagram, like the diagram shown in
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Figure 3.1, gives a perspective about this data. This diagram gives the impression that a
useful model for the data is a straight line.

Let us model the data ðxðiÞ; yðiÞÞ; i ¼ 1; . . . ;N (e.g., the data shown in Fig. 3.1) with
a straight line (a first order polynomial) given by

y ¼ mxþ b ð3:8Þ
where m is the slope and b is the intercept. With the model of (3.8) we expect to closely
duplicate the given data points and find good estimates of y for values of x not included in
the set of data points. Let ŷ denote an estimate of y found with the model. For a given xðiÞ in
the data point set, an estimate of yðiÞ is given by

ŷðiÞ ¼ m xðiÞ þ b ð3:9Þ
where the estimation error is eðiÞ ¼ yðiÞ � ŷðiÞ. The best estimate results by using that
slope m ¼ m0 and intercept b ¼ b0 that makes e2ðiÞ as small as possible, and possibly
e2ðiÞ ¼ 0 if the number of data points is N ¼ 2. However, when N > 2, we cannot expect
to find an m0 and b0 that makes e2ðiÞ ¼ 0 for all data points. Therefore, find m0 and b0 that
makes the average error squared e2ðm; bÞ a minimum, where the average error squared is
given by

e2ðm; bÞ ¼ 1
N
X

N

i¼1
e2ðiÞ ¼ 1

N
X

N

i¼1
ðyðiÞ � ŷðiÞÞ2 ¼ 1

N
X

N

i¼1
ðyðiÞ � ðm xðiÞ þ bÞÞ2 ð3:10Þ

The average error squared is a quadratic function of m and b, which has a single unique
minimum where the derivatives of e2ðm; bÞ with respect to m and b are zero. Using the chain
rule of differentiation, these derivatives (partial derivatives) are given by

1

2

3

4

5

2 4 6 8 10 12 14 16 18
Hrs/Wk

G
P

A

Figure 3.1 Scatter diagram of student data.
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@e2ðm; bÞ
@m

¼ 1
N
X

N

i¼1
2eðiÞ @eðiÞ

@m

¼ 1
N
X

N

i¼1
2ðyðiÞ � ŷðiÞÞ � @ŷðiÞ

@m

� �

¼ 1
N
X

N

i¼1
2ðyðiÞ � ðm xðiÞ þ bÞÞð�xðiÞÞ ð3:11Þ

and

@e2ðm; bÞ
@b

¼ 1
N
X

N

i¼1
2eðiÞ @eðiÞ

@b
¼ 1
N
X

N

i¼1
2ðyðiÞ � ðm xðiÞ þ bÞÞð�1Þ ð3:12Þ

Setting (3.11) and (3.12) to zero, where m ¼ m0 and b ¼ b0, gives

1
N
X

N

i¼1
2ðyðiÞ � ðm0 xðiÞ þ b0ÞÞð�xðiÞÞ ¼ 0 !

1
N
X

N

i¼1
yðiÞ xðiÞ � m0

1
N
X

N

i¼1
x2ðiÞ � b0

1
N
X

N

i¼1
xðiÞ ¼ 0

and

1
N
X

N

i¼1
2ðyðiÞ � ðm0 xðiÞ þ b0ÞÞð�1Þ ¼ 0 ! 1

N
X

N

i¼1
yðiÞ � m0

1
N
X

N

i¼1
xðiÞ � b0 ¼ 0

Let

x ¼ 1
N
X

N

i¼1
xðiÞ; y ¼ 1

N
X

N

i¼1
yðiÞ; xy ¼ 1

N
X

N

i¼1
xðiÞyðiÞ; x2 ¼ 1

N
X

N

i¼1
x2ðiÞ

and we get

y ¼ m0x þ b0 ð3:13Þ

xy ¼ m0 x2 þ b0 x ð3:14Þ

Solving (3.13) for b0 gives

b0 ¼ y � m0x ð3:15Þ

and after substituting (3.15) into (3.14), we can find m0, which is given by
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m0 ¼ xy � x y
x2 � x2

ð3:16Þ

These results were obtained by optimizing the average error squared given in (3.10).
This is a quadratic function of the two variables m and b, which has a unique minimum. We
found the best values for m and b by setting the derivatives of the average error squared with
respect to m and b to zero. This resulted in two linear equations in m0 and b0 that were easy
to solve. Generally, optimizing a function is not always so easy. For example, a given
function may not be a quadratic, there may not be a unique minimum, derivatives of the
function to be optimized may be difficult or practically impossible to obtain, and even if the
derivatives can be found, the resulting equations from setting the derivatives to zero might
be difficult to solve. There are numerical methods to optimize a function, and MATLAB
includes built-in functions for optimizing a given function, such as the function described by
(3.10). For example, the built-in function fminsearch is a function function, which finds the
minimum of a multivariable function using a derivative-free method, and it could have been
applied to the function defined by (3.10). Or, the built-in function polyfit can be applied
directly to the given data to fit a first-order polynomial to the data. See the MATLAB help
facility to learn more about built-in optimization functions. Use the built-in function doc, as
in doc polyfit, to find out more about polyfit.

Example 3.9 (continued)

Given N data points ðxðiÞ; yðiÞÞ; i ¼ 1; . . . ; N , we can use (3.16) and then (3.15) to find the
best (in the least mean error squared sense) model. To illustrate this, suppose N ¼ 12 data
points are given by

A MATLAB script to find and test the model follows.

clear all; clc;

% given data

Hrs_per_Wk=[2.6 3.3 4.6 5.7 5.9 6.3 8.2 11.7 13.1 13.5 14.9 17.8];

xdat=Hrs_per_Wk; % will make code easier to follow

GPA=[1.8 2.1 2.4 2.9 3.1 3.3 3.9 4.1 3.8 4.2 4.7 4.9];

ydat=GPA; % will make code easier to follow

stem(xdat,ydat); % open Figure Window and plot given data

xlabel(0Hrs/Wk0);
ylabel(0GPA0)
grid on

hold on % causes next plot to appear in the same Figure Window

GPA 1.8 2.1 2.4 2.9 3.1 3.3 3.9 4.1 3.8 4.2 4.7 4.9
Hrs/Wk 2.6 3.3 4.6 5.7 5.9 6.3 8.2 11.7 13.1 13.5 14.9 17.8
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N=length(xdat); % number of data points

%

Av_xdat=sum(xdat)/N; % sum elements of xdat, then divide by N

% the built-in MATLAB function mean finds the average value of the elements

% in a vector, e.g., Av_xdat = mean(xdat)

%

Av_ydat=mean(ydat); % average GPA

%

Av_xydat=mean(xdat.*ydat); % first do element by element multiply

Av_xxdat=mean(xdat.*xdat); % first square the elements

% find the slope

m=(Av_xydat - Av_xdat * Av_ydat)/(Av_xxdat - Av_xdat^2);

% find the intercept

b= Av_ydat - m * Av_xdat;

% plot linear regression (linear model) over a range

x=linspace(0,20,101);

y=m*x+b; % least squared error model of data

plot(x,y)

y_est=m*xdat+b; % estimate of GPA for given Hrs_per_Wk

est_er=ydat-y_est; % estimation error for each data point

est_er_sqr= est_er .* est_er; % estimation error squared

[max_er_sqr,i]=max(est_er_sqr) % data point that gives max estimation error

Program 3.1 Program to find the linear regression of a data set.

Figure 3.2 shows the given data and the least mean error squared model, called a linear
regression, of the given data. From the regression analysis, we may conclude that, on
average, the expected GPA of a student that spends 10 hours/week studying is approxi-
mately GPA¼3.7/5.

The slope is m ¼ 0.1890, and the intercept is b ¼ 1.7385. With the built-in function
polyfit, we get

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Hrs/Wk

G
P

A

Figure 3.2 Linear regression of a given data set.

90 Matrices, Vectors, and Scalars



n = 1; % fit a first order polynomial to the data

coeffs = polyfit(xdat,ydat,n)

coeffs =

0.1890 1.7385

The slope gives us an indication of the dependence of the GPA on the hours per week
spent studying. For example, if the slope had been near zero, then the GPA does not depend
very much on the hours per week spent studying.

A better indicator of the degree to which two variables are linearly related is the
correlation coefficient r, which is a normalized slope, given by

r ¼ xy � x y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � y2
q ð3:17Þ

For the data used in Example 3.9, (3.17) gives r ¼ 0:9471. The built-in function corrcoef
computes the correlation coefficient, which was found with

R = corrcoef(xdat,ydat) % compute the correlation matrix

R =

1.0000 0.9471

0.9471 1.0000

The correlation coefficient range is restricted to�1 � r � þ1. If r ¼ 0, then there is no
linear relationship between the variables x and y. If r ¼ 1, then there is a strong linear
relationship between the variables, while if r ¼ �1, then there is a strong but opposite
relationship between the variables.

There are many MATLAB built-in functions concerned with data modeling and ana-
lysis. Some of these are listed in Table 3.4.

Table 3.4 Functions concerned with data modeling and data analysis

Function Brief description

polyfit Polynomial curve fitting
corrcoef Correlation coefficient
spline Cubic spline interpolation
mean Average or mean value of a vector or matrix
var Variance
interp2 2-D data interpolation
mode Most frequent value in a vector or matrix
std Standard deviation
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3.4 Function of a Matrix

A noteworthy feature of MATLAB is that many of its built-in functions return a matrix when
the argument of a function is a matrix, where each element of the returned matrix is the
function evaluated for the corresponding element of the function argument matrix.

Example 3.10

The following MATLAB statements illustrate only a few of the many ways a matrix can be
used to provide the argument of a function.

>> t=linspace(0,1,5); % a vector with 5 elements evenly distributed from 0 to 1

>> x=2*cos(pi*t) % evaluate the cos function for each element in t

x = 2.0000 1.4142 0.0000 -1.4142 -2.0000

>> A=[0 1; -0.5 -0.9]; T=0.1; % define a 2x2 matrix

>> v=2*exp(A*T) % exponential function of a matrix

v =

2.0000 2.2103

1.9025 1.8279

>> w=linspace(0,4*pi,5); % 5 points over the frequency range 0 to 4 pi

>> s=j*w % s is an imaginary number

s =

Columns 1 through 5

0 0 + 3.1416i 0 + 6.2832i 0 + 9.4248i 0 +12.5664i

>> H=1./(1+s) % the denomiator adds 1 to each element of s

H =

Columns 1 through 5

1.0000 0.0920 - 0.2890i 0.0247 - 0.1552i 0.0111 - 0.1049i 0.0063 - 0.0791i

>> % convert H magnitude to decibels (dB), logarithmic scale

>> H_mag_dB=20*log10(abs(H))

H_mag_dB = 0 -10.3621 -16.0722 -19.5340 -22.0116

In addition to the built-in functions like dot and sum, MATLAB has numerous other built-in
functions that manipulate the elements of vectors and matrices. Some of these kinds of functions
are given in Table 3.5. Use MATLAB help to find out more about these built-in functions.

Table 3.5 Some MATLAB functions that manipulate the elements of a matrix

Operation Comment

tril(A) Returns lower triangular part of a matrix A
triu(A) Returns upper triangular part of a matrix A
fliplr(A) Flip matrix A left to right
flipud(A) Flip matrix A up to down
circshift(A,[N M]) Shift circularly rows by N and columns by M
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3.5 Solution of a Set of Linear Equations

In this section we will investigate how to solve a set of N linear equations in N unknowns,
given by

a1;1 x1 þ a1;2 x2 þ � � � þ a1;N xN ¼ y1
a2;1 x1 þ a2;2 x2 þ � � � þ a2;N xN ¼ y2

..

.

aN ;1 x1 þ aN ;2 x2 þ � � � þ aN ;N xN ¼ yN

ð3:18Þ

With matrix notation, these equations can be written succinctly as

A X ¼ Y ð3:19Þ

where A is an N � N (square) matrix with Aðn;mÞ ¼ an;m and Y is an N � 1 column vector
with Y ðnÞ ¼ yn, each with known elements, and X is an N � 1 vector of unknown elements.
We can expand (3.19) to write it as

X ð1Þ
Að1; 1Þ
Að2; 1Þ

..

.

AðN ; 1Þ

2

6

6

6

4

3

7

7

7

5

þ X ð2Þ
Að1; 2Þ
Að2; 2Þ

..

.

AðN ; 2Þ

2

6

6

6

4

3

7

7

7

5

þ � � � þ X ðNÞ
Að1;NÞ
Að2;NÞ

..

.

AðN ;NÞ

2

6

6

6

4

3

7

7

7

5

¼ Y

This shows that the vector Y must be some linear combination of the column vectors
of A.

The linear equations in (3.19) are independent if none of the equations can be derived
algebraically from the others. When the equations are independent, each equation contains
new information about the unknown variables. The equations are dependent if at least one
of them can be derived algebraically from the other equations. The N linear equations are
consistent if they possess a common solution, and inconsistent otherwise. If the equations
are inconsistent, then they have no solution. For example, consider the following three sets
of equations:

x1 þ 2x2 � x3 ¼ �2
ðaÞ 2x1 � x2 þ 5x3 ¼ �4

� x1 þ 3x2 � 6x3 ¼ 2
ðbÞ �x1 þ 3x2 ¼ 2

2x1 � 6x2 ¼ �5 ðcÞ �2x1 þ 3x2 ¼ 4
� x1 þ x2 ¼ �3

Can you determine which set of equations is a dependent, inconsistent, or independent set of
equations?

Consider the equation a x ¼ y, where a, x, and y are scalars, and a and y are given
numbers. To solve for x, we divide both sides of this equation by a to get x ¼ y=a. Or, let us
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multiply both sides of the given equation by some number b to get ba x ¼ b y, and then find
b such that b a ¼ 1, resulting in x ¼ b y. From b a ¼ 1 we can find b, if a 6¼ 0, and there-
fore, with b ¼ a�1, the inverse of a, we have

x ¼ a�1y ð3:20Þ

In conventional matrix algebra there is no operation analogous to scalar division. Instead,
there is an operation analogous to finding b given a in b a ¼ 1.

To develop the inverse concept further, let us solve the two equations in two unknowns
given by

a1;1 x1 þ a1;2 x2 ¼ y1 ð3:21Þ
a2;1 x1 þ a2;2 x2 ¼ y2 ð3:22Þ

where x1 and x2 are the unknowns.
If we consider the left sides of (3.21) and (3.22) to be the dot product of a row vector

and a column vector, we can employ the definition of matrix multiplication given in (3.5).
Let us define the matrices A, X , and Y as

A ¼ a1;1 a1;2
a2;1 a2;2

� �

; X ¼ x1
x2

� �

; Y ¼ y1
y2

� �

Then, through matrix multiplication and matrix equality as defined in Section 3.2, we can
write (3.21) and (3.22) more succinctly as

AX ¼ Y ð3:23Þ

Analogously to (3.20), we want to find a matrix B, such that B A ¼ I , and then X ¼ B Y .
To find B we will solve for x1 and x2 by repeated substitution. From (3.22) we get

x2 ¼ y2 � a2;1 x1
a2;2

and substitution into (3.21) gives

a1;1 x1 þ a1;2 y2 � a1;2 a2;1 x1
a2;2

¼ y1

Solving for x1 results in

x1 ¼ 1
a1;1 a2;2 � a1;2 a2;1

ða2;2 y1 � a1;2 y2Þ ð3:24Þ
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To solve for x2, use (3.21) to find x1 and substitute this x1 into (3.22), and then find x2 given
by

x2 ¼ 1
a1;1 a2;2 � a1;2 a2;1

ð�a2;1 y1 þ a1;1 y2Þ ð3:25Þ

By inspection of (3.24) and (3.25) we can write the vector X as

X ¼ x1
x2

� �

¼ 1
a1;1 a2;2 � a1;2 a2;1

a2;2 �a1;2
�a2;1 a1;1

� �

y1
y2

� �

ð3:26Þ

and therefore B must be given by

B ¼ 1
a1;1 a2;2 � a1;2 a2;1

a2;2 �a1;2
�a2;1 a1;1

� �

which is called the inverse matrix of A, and it is denoted by A�1, so that X ¼ A�1 Y ,
analogously to (3.20). The scalar, a1;1 a2;2 � a1;2 a2;1, is called the determinant of A, which
is denoted by jAj, and therefore

A�1 ¼ 1
jAj

a2;2 �a1;2
�a2;1 a1;1

� �

ð3:27Þ

Here, the determinant is given by

jAj ¼ a1;1 a2;2 � a1;2 a2;1 ð3:28Þ
The inverse of a square ðN � NÞ matrix can be found with the built-in MATLAB function
inv, and the determinant can be found with the built-in MATLAB function det.

Example 3.11

Let us solve the following two equations in the two unknowns i1 and i2.

6i1 � 4i2 ¼ 10
4i1 � i2 ¼ 5

Let

R ¼ 6 �4
4 �1
� �

; V ¼ 10
5

� �

; I ¼ i1
i2

� �

and the problem is to solve: R I ¼ V , for I . This is accomplished with the following
MATLAB statements.
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>> R=[6 -4; 4 -1]; % specify the coefficient matrix

>> V=[10 5]’ % using transpose to set up a column vector

V =

10

5

>> S=inv(R) % the inverse of R could also be found with R^(-1)

S =

-0.1000 0.4000

-0.4000 0.6000

>> S*R % check that S is the inverse of R

ans =

1 0

0 1

>> I=S*V % The solution I could be found directly with I=R^(-1)*V

I =

1.0000

-1.0000

>> d=det(R) % check the determinant

d = 10

>> % the left divide gives another way to solve N equations in N unknowns

>> I = R\V

I =

1.0000

-1.0000

Another way to write a set of N equations in N unknowns X is

X A ¼ Y

where X and Y are row vectors. Postmultiplying both sides of this equation by A�1 gives

X AA�1 ¼ Y A�1 ! X ¼ Y A�1

In MATLAB, the right divide operation solves for X with X ¼ Y=A.
Given a set of N linear equations in N unknowns, we can write them succinctly like

(3.19), regardless of how large N may be. If the ðN � NÞ inverse matrix A�1 exists such that

A�1A ¼ AA�1 ¼ I

where I is the ðN � NÞ identity matrix, then the matrix A is said to be nonsingular, and the
only solution of (3.19) is given by

X ¼ A�1Y ð3:29Þ
If the matrix A does not have an inverse, that is, A�1 does not exist, then the matrix A is said
to be a singular matrix, and (3.19) has no solution.
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If Y ¼ 0, then (3.19) becomes a homogeneous equation given by

AX ¼ 0 ð3:30Þ
If A is nonsingular, then the solution of (3.30) is the trivial solution X ¼ 0. A necessary and
sufficient condition that (3.30) has a solution other than the trivial solution is jAj ¼ 0, which
means that A must be a singular matrix.

There are many methods to find the determinant and inverse of a square matrix. One of
these methods is based on finding the cofactor matrix of A, cofactorðAÞ, which is an
ðN � NÞ matrix of cofactors given by

cofactorðAÞ ¼
a1;1
..
.

aN ;1

. . .
. .
.

. . .

a1;N
..
.

aN ;N

2

6

4

3

7

5

The cofactor an;m in row n and column m of cofactorðAÞ is a sign adjusted determinant
found with

an;m ¼ ð�1ÞðnþmÞ Aj row n and
column m
removed

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; n ¼ 1; . . . ;N ; m ¼ 1; . . . ;N

To find cofactorðAÞ requires finding N 2 determinants of ððN � 1Þ � ðN � 1ÞÞ sub-matrices
of A. The inverse matrix of A is given by

A�1 ¼ 1
jAj ðcofactorðAÞÞ

0 ð3:31Þ

A square matrix is nonsingular if and only if its determinant is not zero. The determinant,
jAj, is found with

jAj ¼

X

N

k¼1
an;k an;k ; using any row; n ¼ 1; . . . ; N

X

N

k¼1
ak;n ak;n; using any column; n ¼ 1; . . . ; N

8

>

>

>

>

<

>

>

>

>

:

ð3:32Þ

Notice that if A has a row or column of all zeros, then jAj ¼ 0. Let Aðn; :Þ denote the nth row
of A, where the colon means all columns in the nth row. Using (3.32), it can also be proved
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that if any row, say the nth row, of A can be written as a linear combination of the other rows
of A, which means that we can write

Aðn; :Þ ¼
X

N

k ¼ 1
k 6¼ n

ck Aðk; :Þ

for some constants ck ; k ¼ 1; . . . ;N ; k 6¼ n, then jAj ¼ 0. Similarly, jAj ¼ 0, if any col-
umn of A can be written as a linear combination of the other columns of A.

Example 3.12

A set of three equations in three unknowns is given by

Z I ¼ V ð3:33Þ
where the ð3� 3Þ matrix Z and the ð3� 1Þ vector V are given by

Z ¼
0 4 �1

�2 1 0
5 0 3

2

4

3

5; V ¼
1
0

�1

2

4

3

5

Let us find the inverse of the matrix Z. The 9 cofactors are given by

a1;1¼ð�1Þ1þ1 1 0
0 3

�

�

�

�

�

�

�

�

¼ 3; a1;2¼ð�1Þ1þ2 �2 0
5 3

�

�

�

�

�

�

�

�

¼ 6; a1;3¼ð�1Þ1þ3 �2 1
5 0

�

�

�

�

�

�

�

�

¼�5

a2;1¼ð�1Þ2þ1 4 �1
0 3

�

�

�

�

�

�

�

�

¼�12; a2;2¼ð�1Þ2þ2 0 �1
5 3

�

�

�

�

�

�

�

�

¼ 5; a2;3¼ð�1Þ2þ3 0 4
5 0

�

�

�

�

�

�

�

�

¼ 20

a3;1¼ð�1Þ3þ1 4 �1
1 0

�

�

�

�

�

�

�

�

¼ 1; a3;2¼ð�1Þ3þ2 0 �1
�2 0

�

�

�

�

�

�

�

�

¼ 2; a3;3¼ð�1Þ3þ3 0 4
�2 1

�

�

�

�

�

�

�

�

¼ 8

and the cofactor matrix becomes

cofactorðZÞ ¼
3 6 �5

�12 5 20
1 2 8

2

4

3

5

Using the first row of Z and cofactorðZÞ, we get
jZj ¼ ð0Þð3Þ þ ð4Þð6Þ þ ð�1Þð�5Þ ¼ 29
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and the inverse matrix is given by

Z�1 ¼ 1
29

3 6 �5
�12 5 20
1 2 8

2

4

3

5

0

¼ 1
29

3 �12 1
6 5 2
�5 20 8

2

4

3

5

With the built-in MATLAB function inv we get

>> Z=[0 4 -1; ... % continuation makes it easier to see the matrix

-2 1 0; ...

5 0 3]

Z =

0 4 -1

-2 1 0

5 0 3

>> det(Z) % checking determinant

ans = 29

>> Y = Z^-1 % using built-in MATLAB inverse computation

Y =

0.1034 -0.4138 0.0345

0.2069 0.1724 0.0690

-0.1724 0.6897 0.2759

>> Y*Z % checking inverse

ans =

1.0000 0 -0.0000

0.0000 1.0000 0

0.0000 0 1.0000

% due to finite word length arithmetic a number that is expected to be zero

% may instead be an extremely small number

>> V = [1 0 -1]’

V =

1

0

-1

>> I = Y*V

I =

0.0690

0.1379

-0.4483
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3.5.1 Gauss–Jordan Elimination
There are many other methods to solve (3.19) for X , including Gauss elimination. This
method starts by augmenting the given matrix A with the column vector Y to obtain the
N � ðN þ 1Þ augmented matrix g given by

g ¼ ½AjY � ¼

Að1; 1Þ Að1; 2Þ . . . Að1;NÞ Y ð1Þ
Að2; 1Þ Að2; 2Þ . . . ..

.
Y ð2Þ

..

. ..
. . .

. ..
. ..

.

AðN ; 1Þ AðN ; 2Þ . . . AðN ;NÞ Y ðNÞ

2

6

6

6

6

4

3

7

7

7

7

5

which represents both sides of (3.19). Gauss elimination is based on the properties that the
solution of (3.19) cannot change if

1) any row of g is multiplied by a nonzero constant
2) any two rows of g are exchanged
3) any row of g is replaced by the same row minus any other row of g

These operations are called elementary row operations, and they can be combined to
perform more complicated operations without changing the solution of (3.19).

Gauss elimination applies elementary row operations to bring g to the form given by

G ¼ ½ajy� ¼

að1; 1Þ að1; 2Þ . . . að1;NÞ yð1Þ
0 að2; 2Þ . . . ..

.
yð2Þ

..

. . .
. . .

. ..
. ..

.

0 . . . 0 aðN ;NÞ yðNÞ

2

6

6

6

6

4

3

7

7

7

7

5

The matrix g has been transformed to include an upper triangular N � N matrix a,
where the elements of a below the major diagonal are zero, and (3.19) becomes

a X ¼ y
The solution of (3.19) is then found by repeated backward substitution, which starts with

X ðNÞ ¼ yðNÞ
aðN ;NÞ

and continues with

X ðN � iÞ ¼ 1
aðN � i; N � iÞ yðN � iÞ�

X

i�1

k¼0
aðN � i;N � kÞ �X ðN � kÞ

" #

; i¼ 1; . . . ; N � 1

ð3:34Þ
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The mechanics of (3.34) can be avoided by continuing to apply elementary row
operations to transform G to the form

J ¼ ½bjz� ¼

bð1; 1Þ 0 . . . 0 zð1Þ
0 bð2; 2Þ . . . ..

.
zð2Þ

..

. ..
. . .

.
0 ..

.

0 0 . . . bðN ;NÞ zðNÞ

2

6

6

6

6

4

3

7

7

7

7

5

where the N � N matrix b is a diagonal matrix. The process from g to J is called Gauss-
Jordan elimination. With the matrix J , (3.19) becomes

bX ¼ z
and the solution X is given by

X ðiÞ ¼ zðiÞ=bði; iÞ; i ¼ 1; . . . ; N

If the ith row of J is divided by bði; iÞ; i ¼ 1; . . . ;N , then we get

K ¼

1 0 . . . 0 X ð1Þ
0 1 . . . ..

.
X ð2Þ

..

. ..
. . .

.
0 ..

.

0 0 . . . 1 X ðNÞ

2

6

6

6

6

4

3

7

7

7

7

5

and the last column of K is the solution of (3.19). The structure of K is called a row reduced
echelon form, and MATLAB has a built-in function, rref, that receives the matrix g, and
returns the matrix K.

Example 3.12 (continued)

Let us continue Example 3.12 to solve for I given the matrices Z and V . The augmented
matrix is

g ¼
0 4 �1 1

�2 1 0 0
5 0 3 �1

2

4

3

5

Starting with g, perform the following steps: to get
(a) exchange the first and second rows
(b) add 5 times the first row to 2 times the third row
(c) add �5 times the second row to 4 times the third row

g!ðaÞ
�2 1 0 0
0 4 �1 1
5 0 3 �1

2

4

3

5!ðbÞ
�2 1 0 0
0 4 �1 1
0 5 6 �2

2

4

3

5!ðcÞ
�2 1 0 0
0 4 �1 1
0 0 29 �13

2

4

3

5 ¼ G
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With the matrix G, the original matrix equation (3.33) becomes

aI ¼ y!
�2 1 0
0 4 �1
0 0 29

2

4

3

5 I ¼
0
1

�13

2

4

3

5

which has the same solution as (3.33). Starting with the last element of I , we get
Ið3Þ ¼ �13=29, and then, with repeated substitution described by (3.34), we can find Ið2Þ
and Ið1Þ.

Earlier we found I using the built-in MATLAB function inv to obtain the inverse matrix
of Z. However, our main interest is to solve the set of equations, Z I ¼ V , for I , which can be
accomplished with Gauss elimination, instead of matrix inversion. MATLAB has a built-in
function, called mldivide (matrix left divide), that applies Gauss elimination to solve a set
of linear equations. This alternative to using matrix inversion requires much less computing
time. With mldivide we get

>> Z = [0 4 -1; -2 1 0; 5 0 3];

>> V = [1; 0; -1];

>> I = Z\V % same as I = mldivide(Z,V)

I =

0.0690

0.1379

-0.4483

>> I = mldivide(Z,V)

I =

0.0690

0.1379

-0.4483

Let us continue to do Gauss–Jordan elimination. Starting with G, perform the following
steps:

(d) add the third row to 29 times the second row
(e) add the second row to �116 times the first row
to get

G!ðdÞ
�2 1 0 0
0 116 0 16
0 0 29 �13

2

4

3

5!ðeÞ
232 0 0 16
0 116 0 16
0 0 29 �13

2

4

3

5 ¼ J
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With the matrix J , the original matrix equation (3.33) becomes

bI ¼ z!
232 0 0
0 116 0
0 0 29

2

4

3

5 I ¼
16
16
�13

2

4

3

5

which has the same solution as (3.33). Now, I can be easily found. Or, we can use the built-
in function rref to get

>> g = [0 4 -1 1; -2 1 0 0; 5 0 3 -1];

>> K = rref(g)

K =

1.0000 0 0 0.0690

0 1.0000 0 0.1379

0 0 1.0000 -0.4483

3.6 Special Matrix Manipulations

With MATLAB we can manipulate the elements of a matrix in ways that are not a part of
conventional matrix algebra. However, these kinds of manipulations are particularly useful
and convenient for involving matrices in problem solving.

A useful concept about a matrix is an empty matrix. An empty matrix is a matrix with
no elements in it. To assign an empty matrix to a variable, for example, X, we write: X ¼ [ ].
This assignment statement makes X a matrix with nothing in it. This is not the same as
setting the elements of a matrix to zero or blank. The following examples illustrate some
possibilities.

3.6.1 Extracting a Sub-Matrix
Given a matrix, it is possible to extract any part (sub-matrix) of the matrix. The colon
operator is used to delimit the part of a matrix to be extracted.

Example 3.13

Let us use the colon operator to extract various sub-matrices from a matrix. We start by
defining a matrix to use in examples.

>> A=[0 1 2 3 4 5 6 7 8 9; ...

-9 -8 -7 -6 -5 -4 -3 -2 -1 0; ...
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0 1 0 2 0 3 0 4 0 5; ...

5 0 4 0 3 0 2 0 1 0]

A =

0 1 2 3 4 5 6 7 8 9

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

0 1 0 2 0 3 0 4 0 5

5 0 4 0 3 0 2 0 1 0

>> x=A(2,:) % extracting row 2, where the colon means to use all columns

x = -9 -8 -7 -6 -5 -4 -3 -2 -1 0

>> y=A(:,3) % extracting column 3, where the colon means to use all rows

y =

2

-7

0

4

>> B=A(1:3,6:10) % get sub-matrix, where colon specifies index ranges

B =

5 6 7 8 9

-4 -3 -2 -1 0

3 0 4 0 5

>> A(2,:)=A(1,:).*A(3,:)

% replacing row 2 with the element by element product of rows 1 and 3

A =

0 1 2 3 4 5 6 7 8 9

0 1 0 6 0 15 0 28 0 45

0 1 0 2 0 3 0 4 0 5

5 0 4 0 3 0 2 0 1 0

>> s=size(A)

s = 4 10

>> C=A(2:end,7:end) % end is used to indicate the last element index

C =

0 28 0 45

0 4 0 5

2 0 1 0

>>

A vector can be used to specify the rows or columns to be extracted from a matrix.

>> f=[3,4,1]; % define sequence to select rows or columns

>> D=A(:,f) % use all rows to extract in sequence columns 3, 4 and 1 from A
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D =

2 3 0

0 6 0

0 2 0

4 0 5

>> % use columns 2 through 5 to extract rows in sequence 3, 4 and 1 from A

>> E=A(f,2:5)

E =

1 0 2 0

0 4 0 3

1 2 3 4

>>

>> g=[s(2),1:s(2)-1] % g will be used to specify the columns of A to be shifted

g = 10 1 2 3 4 5 6 7 8 9

>> A=A(:,g) % use all rows for the shift and rotation

A =

9 0 1 2 3 4 5 6 7 8

45 0 1 0 6 0 15 0 28 0

5 0 1 0 2 0 3 0 4 0

0 5 0 4 0 3 0 2 0 1

A row, column or sub-matrix can be removed from a matrix by replacement with an empty
(null) matrix.

>> A(1,:)=[] % removing row 1 from A

A =

45 0 1 0 6 0 15 0 28 0

5 0 1 0 2 0 3 0 4 0

0 5 0 4 0 3 0 2 0 1

>> A(:,2)=[] % removing column 2 from A

A =

45 1 0 6 0 15 0 28 0

5 1 0 2 0 3 0 4 0

0 0 4 0 3 0 2 0 1

3.6.2 Building a Matrix
It is also possible to build a vector or matrix from other vectors and matrices in a way that is
similar to the way a vector or matrix is defined. Table 3.6 gives several built-in functions for
building a matrix.
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Example 3.14

>> X = [] % set X to an empty matrix

X =

[]

>> % define two row vectors

>> A = [1 2 3 4]; B = [5 6 7 8];

>> X = [X; A] % append a row to X, which can also be found with X=vertcat(X,A)

X = 1 2 3 4 % since X was empty, X now contains only one row

>> X = [X; B] % append another row to X

X =

1 2 3 4

5 6 7 8

>> R = repmat(X,2,3)

>> R = repmat(X,2,3) % replicate X into 2x3 tiles

R =

1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8

>> Y = X’; % Y is transpose of X

>> C = A’; D = B’; % form two column vectors

>> % place D in the first column of Y, can also be found with Y=cat(D,Y)

>> Y = [D, Y]

Y =

5 1 5

6 2 6

7 3 7

8 4 8

>> % reshape the 12 elements of Y, column wise, into a 2x6 matrix

>> S = reshape(Y,2,6)

Table 3.6 Built-In MATLAB functions concerned with matrix construction

Function Brief explanation

cat(dim,A1,A2, . . . ) Concatenate matrices, cat(1,A1,A2)¼[A1;A2], cat(2,A1,A2)¼[A1,A2]
horzcat(A1,A2, . . . ) Concatenate matrices horizontally, horzcat(A1,A2)¼[A1,A2]
repmat(A,N,M) Creates an N�M tiling replication of A
reshape(A,N,M) Creates an N�M matrix whose elements are taken columnwise from A
rot90(A,K) Rotates A by K times (90 degrees) in the counterclockwise direction
sort(A,dim,mode) Mode is ‘‘ascend’’ or ‘‘descend’’; dim¼1,sort each column of A; dim¼2,

sort each row of A
sortrows(A) Sort rows of A in ascending order
vertcat(A1,A2, . . . ) Concatenate matrices vertically, vertcat(A1,A2)¼[A1;A2]
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S =

5 7 1 3 5 7

6 8 2 4 6 8

>> Y = [Y, C] % append a column to Y, which can also be found with Y=cat(Y,C)

Y =

5 1 5 1

6 2 6 2

7 3 7 3

8 4 8 4

>> Y = [Y(1,:); A; Y(3:4,:)] % replace the second row of Y with A

Y =

5 1 5 1

1 2 3 4

7 3 7 3

8 4 8 4

>> % combine Y and X column wise, which can also be found with Z=cat(Y,X’)

>> Z = [Y, X’]

Z =

5 1 5 1 1 5

1 2 3 4 2 6

7 3 7 3 3 7

8 4 8 4 4 8

The functions given in Table 3.6 are useful to construct objects that are not necessarily
the result of some algebraic operations.

Example 3.15

Let us build a continuous and piecewise linear function xðtÞ of time. We want xðtÞ to behave
as follows:

xðtÞ ¼

0; t < 0
m1t; 0 � t < t1
m2t þ b2; t1 � t < t2
m3t þ b3; t2 � t < t3
m4t þ b4; t3 � t < t4
m5t þ b5; t4 � t < t5
0; t � t5

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Let xðt ¼ t1 ¼ 0:2Þ ¼ 0:8, xðt ¼ t2 ¼ 0:4Þ ¼ 1:0, xðt ¼ t3 ¼ 1:5Þ ¼ 1:0,
xðt ¼ t4 ¼ 2:5Þ ¼ 0:3, and xðt ¼ t5 ¼ 5:0Þ ¼ 0:0. To use xðtÞ for plotting, for example, we
must sample xðtÞ at a set of discrete time points to obtain N points given by

xðnTÞ ¼ xðtÞjt¼nT ; n ¼ 0; 1; . . . ; ðN � 1Þ ð3:35Þ
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where T is the time increment. For example, if T ¼ 0:1 secs, then xðtÞ will be sampled at the
rate fs ¼ 1=T ¼ 10 samples/sec. The parameter fs is called the sampling frequency. While
xðtÞ is a continuous time signal, xðnTÞ is a discrete time signal, which is known only at the
discrete time points t ¼ nT ; n ¼ 0; 1; . . . . Audio CDs contain number sequences that are
samples of music obtained at the rate fs ¼ 44; 100 samples/sec. Prog. 3.2 gives a MATLAB
program to find and plot xðnTÞ. Fig. 3.3 shows the resulting time function.
% Program to find and plot a continuous piecewise linear function

% This function consists of 5 straight line segments

clc; clear all

% assign parameters

t1=0.2; t2=0.4; t3=1.5; t4=2.5; t5=5.0; % interval end times

xt1=0.8; xt2=1.0; xt3=1.0; xt4=0.3; xt5=0.0; % interval end values

fs = 44100; % the sampling rate (frequency)

T = 1/fs; % sampling time increment

N1=fix(t1/T);N2=fix((t2-t1)/T);N3=fix((t3-t2)/T);N4=fix((t4-t3)/T);

N5=fix((t5-t4)/T); % number of points in each interval

m1=xt1/t1; % slope of line in interval 1

m2 = (xt2 - xt1)/(t2 - t1); b2 = xt1 - m2*t1; % slope and intercept

m3 = (xt3 - xt2)/(t3 - t2); b3 = xt2 - m3*t2;

m4 = (xt4 - xt3)/(t4 - t3); b4 = xt3 - m4*t3;

m5 = (xt5 - xt4)/(t5 - t4); b5 = xt4 - m5*t4;

t = 0:T:(N1-1)*T; % interval 1 time points

x1 = m1*t; time = t; N=N1; % line segment 1 and initialize build of time

t = N*T:T:(N+N2-1)*T; % interval 2 time points

x2 = m2*t + b2; time = [time t]; N=N+N2; % line segment 2, build time

t = N*T:T:(N+N3-1)*T;

x3 = m3*t + b3; time = [time t]; N=N+N3;

t = N*T:T:(N+N4-1)*T;

x4 = m4*t + b4; time = [time t]; N=N+N4;

t = N*T:T:(N+N5-1)*T;

x5 = m5*t + b5; time = [time t]; % line 5, complete build of time

x = [x1 x2 x3 x4 x5]; % build entire function

plot(time,x); axis([0 5 0 1.1]); grid on

xlabel(’time - secs’)

ylabel(’volts’)

title(’Continuous Piecewise Linear Function’)

save(’pulse.mat’,’x’,’time’) % save the vector x in the file pulse.mat

Program 3.2 Script to build a continuous piecewise linear function of time.

The last statement in this program uses the built-in MATLAB function save to save the
vectors x and time in a file, which has the suffix .mat. With the function save it is possible to
save the entire workspace in a file for retrieval with the built-in function load. This is useful
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to make some or all variables in a program available to another MATLAB program. There
are numerous options for doing this, which will be discussed in Chapter 8.

While MATLAB has many built-in functions that can be used to describe the behavior of
a signal, there will be occasions when it is necessary to build a signal that has a specific shape.

MATLAB has many built-in functions and operations to find properties about a matrix
and to manipulate the content of a matrix (see Tables 3.1–3.3). As you employ MATLAB to
solve engineering problems, use the MATLAB help facility to increase your knowledge
about the many built-in MATLAB functions.

3.7 Resistive Circuit Analysis

The structure provided by matrix algebra enables a very systematic approach to circuit
analysis. Circuit analysis is based on two fundamental principles.

Kirchhoff’s Current Law (KCL): The algebraic sum of the currents leaving a
circuit node is zero. For each of the N nodes in a circuit we can write a KCL equation. For a
planar circuit with N nodes, there can be only as many as ðN � 1Þ independent node equations.

Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltages drops along any
closed path in a circuit is zero. For each closed path (loop) in a circuit we can write a KVL
equation. For a planar circuit with M meshes, there can only be as many as M independent
loop equations. A mesh of a planar circuit is a closed path (loop) that does not enclose any
component of the circuit. The M meshes are the closed paths to which KVL will be applied
to find M independent loop equations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

time - secs

vo
lts

Continuous Piecewise Linear Function

Figure 3.3 Plot of a continuous piecewise linear function using its samples.
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3.7.1 Component Circuit Analysis
In component circuit analysis, the unknowns are the voltage across and current through
each resistor, the current through each voltage source, and the voltage across each current
source.

Example 3.16

Let us see how we can apply matrix notation and the solution method of (3.29) to analyze a
circuit. Consider the resistive circuit shown in Figure 3.4, and let V1 ¼ 5 volts,
I2 ¼ �10 mA, R3 ¼ 100 W, R4 ¼ 1K W, R5 ¼ 3K W, R6 ¼ 1K W and R7 ¼ 1K W. The cir-
cuit has N ¼ 5 nodes and M ¼ 3 meshes.

For a component analysis, we label a current and voltage for every component in
the circuit. Applying Kirchhoff’s current law (KCL) to N � 1 nodes (a), (b), (c), and (d)
gives

nodeðaÞ : I1 � I3 ¼ 0
nodeðbÞ : I5 � I4 þ I2 ¼ 0
nodeðcÞ : �I2 � I6 þ I7 ¼ 0
nodeðdÞ : I3 þ I4 þ I6 ¼ 0

ð3:36Þ

Applying Kirchhoff’s voltage law (KVL) to M meshes gives

R3 R6

R7

V3 V4
V2

V5 V7

V6

V1

I6I3 I4

R4

R5

I5I1 I7

I2

(a) (b) (c)

(d)

m1

m3

m2

Figure 3.4 A resistive circuit with two sources.
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mesh 1 : �V1 � V3 þ V4 þ V5 ¼ 0
mesh 2 : �V4 þ V6 þ V2 ¼ 0
mesh 3 : �V5 � V2 þ V7 ¼ 0

ð3:37Þ

There are a total of 12 unknown component voltages and currents, and (3.36) and (3.37) are
7 constraints among these unknowns. We can get five more constraints with Ohm’s law
resulting in

V3 ¼ R3I3
V4 ¼ R4I4
V5 ¼ R5I5
V6 ¼ R6I6
V7 ¼ R7I7

ð3:38Þ

We have completed applying the physical principles and properties that will enable us to find
all voltages and currents in the circuit. Let us define a vector of the unknowns organized as

X ¼ ½V2 V3 V4 V5 V6 V7 I1 I3 I4 I5 I6 I7�0 ð3:39Þ

Now we can define the matrices A and Y in (3.19), and they are given by

A ¼

0 0 0 0 0 0 1 �1 0 0 0 0
0 0 0 0 0 0 0 0 �1 1 0 0
0 0 0 0 0 0 0 0 0 0 �1 1
0 0 0 0 0 0 0 1 1 0 1 0
0 �1 1 1 0 0 0 0 0 0 0 0
1 0 �1 0 1 0 0 0 0 0 0 0
�1 0 0 �1 0 1 0 0 0 0 0 0
0 �1 0 0 0 0 0 R3 0 0 0 0
0 0 �1 0 0 0 0 0 R4 0 0 0
0 0 0 �1 0 0 0 0 0 R5 0 0
0 0 0 0 �1 0 0 0 0 0 R6 0
0 0 0 0 0 �1 0 0 0 0 0 R7

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; Y ¼

0
�I2
I2
0
V1
0
0
0
0
0
0
0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð3:40Þ
Once the vector X of unknowns has been defined, the matrices A and Y are written to combine
(3.36), (3.37), and (3.38) into one matrix equation. The inner product of the nth row of A,
Aðn; :Þ, and X gives the nth element of Y . For example, ðAð1; :Þ;X Þ ¼ Y ð1Þ is the KCL
equation written at node (a), ðAð5; :Þ;X Þ ¼ Y ð5Þ is the KVL equation written for mesh 1 and
ðAð8; :Þ;X Þ ¼ Y ð8Þ gives �V3 þ R3I3 ¼ 0, which is the first Ohm’s law equation.
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Since there are so few nonzero elements in the ð12� 12Þ matrix A, it is called a sparse
matrix. It is common in engineering problems to work with very large sparse matrices, and
MATLAB has built-in functions that are particularly well suited for solving sparse systems
described by (3.19). A MATLAB script that finds X follows.

clear all; clc;

V1=5; I2=-0.01; % specify current and voltage sources

R3=100; R4=1000; R5=3000; R6=1000; R7=1000; % specify resistors

% the vector of unknowns is: X=[V2 V3 V4 V5 V6 V7 I1 I3 I4 I5 I6 I7]’

A=zeros(12,12);Y=zeros(12,1); % preallocating space

% specify nonzero elements of A

A(1,7)=1;A(1,8)=-1;

A(2,9)=-1;A(2,10)=1;

A(3,11)=-1;A(3,12)=1;

A(4,8)=1;A(4,9)=1;A(4,11)=1;

A(5,2)=-1;A(5,3)=1;A(5,4)=1;

A(6,1)=1;A(6,3)=-1;A(6,5)=1;

A(7,1)=-1;A(7,4)=-1;A(7,6)=1;

A(8,2)=-1;A(8,8)=R3;

A(9,3)=-1;A(9,9)=R4;

A(10,4)=-1;A(10,10)=R5;

A(11,5)=-1;A(11,11)=R6;

A(12,6)=-1;A(12,12)=R7;

% specify nonzero elements of Y

Y(2)=-I2;Y(3)=I2;Y(5)=V1;

% use Gauss elimination to solve AX=Y for X

X=A\Y; % the backslash stipulates that Gauss elimination will be used

X(7:12)=1000*X(7:12); % converting currents to mA

X % display X in command window

Program 3.3 Program for a component analysis of the circuit in Figure 3.4.

The results of a component analysis are given by

X’ = -13.7209 -0.1163 -6.2791 11.1628 7.4419 -2.5581 -1.1628
-1.1628 -6.2791 3.7209 7.4419 -2.5581

>>

An important fundamental physical principle can be demonstrated if we calculate the
power delivered to each component in the circuit. Let V be the vector of all component
voltages, and let I be the vector of all component currents. The power P1 delivered to the
voltage source is P1 ¼ V1I1, and the power P2 delivered to the current source is
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P2 ¼ V2ð�I2Þ. For each resistor, the power delivered to the resistor is
Pk ¼ VkIk ; k ¼ 3; . . . ; 7. The following MATLAB statements were appended to Prog. 3.3
to find the power delivered to all circuit components.

V=[V1 X(1:6)’]; % form the 7 element voltage row vector

I=[X(7) -1000*I2 X(8:12)’]; % form the 7 element current row vector in mA

% -I2 is used to calculate power delivered to the current source

P=V.*I; % calculate the power vector in mW

disp(’Component Voltage Current Power Delivered’)

disp(’ Number (volts) (mA) (mW)’)

K=[1:7];

Table=[K; V; I; P]; % make a table of analysis results

fprintf(’ %i %-9.4f %-9.4f %-9.4f \n’,Table)

Total_Power = sum(P); % total power delivered to all circuit components

fprintf(’Total power delivered to all components = %9.4f mW \n’,Total_Power)

The disp function could have been used to display the table. However, with disp you have
no control of display position. Instead, the built-in function fprintf, which will be discussed
in Chapter 8, was used. With fprintf, display format can be controlled. This program seg-
ment produced the following results:

Notice that the power P1 ¼ �5:814 mW delivered to the voltage source is negative.
This means that it is actually a power source of 5.814 mW. Similarly, the current source is a
power source of 137.2093 mW. The fundamental physical principle is that the sum of the
power sourced equals the sum of the power absorbed, which is why the total power
delivered to all circuit components is zero.

Another fundamental principle in linear circuit analysis is the superposition principle.
With the matrices given in (3.39) and (3.40) we can find any current or voltage with
X ¼ A�1Y , where the elements of Y are given by the current and voltage sources in the
circuit. Let us split Y into K column vectors, Yk ; k ¼ 1; . . . ;K, where K is the total number
of sources in the circuit, each Yk contains elements due to only one of the sources, possibly

Component Number Voltage (volts) Current (mA) Power Delivered (mW)

1 5.0000 �1.1628 �5.8140
2 �13.7209 10.0000 �137.2093
3 �0.1163 �1.1628 0.1352
4 �6.2791 �6.2791 39.4267
5 11.1628 3.7209 41.5360
6 7.4419 7.4419 55.3813
7 �2.5581 �2.5581 6.5441

Total power delivered to all components ¼ �0.0000 mW
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multiplied by constants, and Y equals the sum of the Yk ; k ¼ 1; . . . ;K. In the circuit given
in Fig. 3.4, K ¼ 2, and we get

Y1 ¼ ½0 � I2 I2 0 0 0 0 0 0 0 0 0�0
Y2 ¼ ½0 0 0 0 V1 0 0 0 0 0 0 0�0

Therefore

X ¼ A�1Y ¼ A�1ðY1 þ Y2Þ ¼ A�1Y1 þ A�1Y2 ¼ X1 þ X2 ð3:41Þ
where X1ðX2Þ gives all the component currents and voltages due to the source I2ðV1Þ acting
alone. For X1 the voltage source V1 is set to zero, which means that it is replaced by a short
circuit, and the entire resulting circuit is analyzed to find X1. Then, for X2 the current
source is set to zero, which means that it is replaced by an open circuit, and the entire
resulting circuit is analyzed to find X2. Finally, X is found by summing the
Xk ; k ¼ 1; . . .;K.

A circuit with more than one source satisfies the superposition principle if a current or
voltage of interest can be found by finding the currents or voltages due to each source acting
alone and then summing these currents or voltages to obtain the current or voltage of
interest.

The linearity property of a circuit is another important property, and it is related to the
superposition principle. Let us refer to each source in a circuit as an input, and refer to any
component voltage or current due to an input as an output. The circuit in Fig. 3.4 has 2
inputs that cause 12 outputs, the elements of X . If the input I2 is changed to become a1I2,
where a1 is an arbitrary constant, then Y1 becomes Z1 ¼ a1Y1, and like (3.41), X1 becomes
W1 ¼ a1X1. In others words, if you multiply an input by a constant, then the output due to
that input is multiplied by that same constant. This part of the linearity property is called the
homogeneity property. Similarly, if another input, say V1, is multiplied by an arbitrary
constant a2, then Y2 becomes Z2 ¼ a2Y2, and like (3.41), X2 becomes W2 ¼ a2X2. For
example, in (3.41) we have the overall input Y ¼ Y1 þ Y2, and the overall output is
X ¼ X1 þ X2, where X1 is due to Y1 acting alone and X2 is due to Y2 acting alone. This part
of the linearity property is called the additivity property. Furthermore, if a1Y1 þ a2Y2 is
the overall input, then a1X1 þ a2X2 is the overall output.

The linearity property of a circuit states that if Y1 ! X1, then the input Y1 causes the
output X1, and if Y2 ! X2, then the circuit satisfies the linearity property if and only if
a1Y1 þ a2Y2 ! a1X1 þ a2X2. If a1 ¼ 0 or a2 ¼ 0, we have the homogeneity property,
and if a1 ¼ a2 ¼ 1, we have the additivity property. The circuit in Fig. 3.4 is said to be a
linear circuit, because it satisfies the linearity property. Generally, a set of equations
written as AX ¼ Y , where Y is a linear combination of inputs, is a linear system of equa-
tions, which satisfies the linearity property.
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3.7.2 Nodal Analysis
A component analysis is straightforward to apply. However, this method results in many
equations. To reduce the number of equations, we can make substitutions that are relatively
convenient to do. A modification of component analysis is to utilize KVL and Ohm’s law as
we apply KCL. We can then immediately generate equations in terms of unknown voltages.

Example 3.16

In the given circuit there are N � 1 ¼ 4 nodes where we can define voltages, called node
voltages, with respect to a common node, designated by the ground symbol. These are the
node voltages va, vb, vc, and vd . In terms of these node voltages we can express all component
voltages. For example, by KVL we get V4 ¼ vd � vb. Therefore, if we know the N � 1 node
voltages we know all component voltages, and then by Ohm’s law all component currents can
be found. In the given circuit, the node voltage va is constrained, and it is given by

nodeðaÞ : va ¼ V1 ð3:42Þ

Now we must find three additional equations constraining the remaining node voltages.
Applying KCL to nodes ðbÞ, ðcÞ, and ðdÞ, while applying Ohm’s law, gives

nodeðbÞ : vb � vd
R4

þ I2 þ vb
R5

¼ 0

nodeðcÞ : �I2 þ vc � vd
R6

þ vc
R7

¼ 0

nodeðdÞ : vd � V1
R3

þ vd � vb
R4

þ vd � vc
R6

¼ 0

ð3:43Þ

Collect the unknown node voltages into a vector v ¼ ½vb vc vd �0, and (3.42) and (3.43)
become

Gv ¼ I ð3:44Þ

where G and I are given by

G ¼

1
R4

þ 1
R5

0
�1
R4

0
1
R6

þ 1
R7

�1
R6�1

R4
�1
R6

1
R3

þ 1
R4

þ 1
R6

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; I ¼
�I2
I2

V1=R3

2

4

3

5

Equation (3.44) is a linear system of node voltages. A MATLAB script that finds v follows.

3.7 Resistive Circuit Analysis 115



clear all; clc;

% Program does a nodal analysis

V1=5; I2=-0.01; % specify current and voltage sources

R3=100; R4=1000; R5=3000; R6=1000; R7=1000; % specify resistors

% the vector of node voltages is: v=[vb vc vd]’

G=zeros(3,3);I=zeros(3,1); % preallocating space

% specify nonzero elements of G, the conductance matrix

G(1,1)=1/R4 + 1/R5;G(1,3)=-1/R4;

G(2,2)=1/R6 + 1/R7;G(2,3)=-1/R6;

G(3,1)=-1/R4;G(3,2)=-1/R6;G(3,3)=1/R3 + 1/R4 + 1/R6;

% specify nonzero elements of I

I(1)=-I2;I(2)=I2;I(3)=V1/R3;

% use Gauss elimination to solve Gv=I for v

v=G\I; % the backslash stipulates that Gauss elimination will be used

v’ % show the unknown node voltages v in the command window

va=V1;vb=v(1);vc=v(2);vd=v(3);

V2=vc-vb

V3=vd-va

V4=vd-vb

V5=vb

V6=vd-vc

V7=vc

Program 3.4 Program for a nodal analysis of the circuit in Figure 3.4.

The results of the nodal analysis are given by

v’ = [ 11.1628 -2.5581 4.8837]

With the node voltages, the component voltages are given by

V2 = -13.7209, V3 = -0.1163, V4 = -6.2791, V5 = 11.1628, V6 = 7.4419, V7 = -2.5581

3.7.3 Loop Analysis
An alternative to a nodal analysis is to utilize KCL and Ohm’s law as we apply KVL. We
can then immediately generate equations in terms of unknown currents.

Example 3.16 (continued)

In the given circuit there are M ¼ 3 meshes where we can define currents, called mesh (or
loop) currents. These are the currents i1, i2, and i3. In terms of these mesh currents we can
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express all component currents. For example, by KCL at nodeðdÞ we get �i1 þ I4 þ i2 ¼ 0,
or I4 ¼ i1 � i2. Therefore, if we know the M mesh currents, we know all component cur-
rents, and then by Ohm’s law all component voltages can be found. In the given circuit, the
mesh currents i2 and i3 are constrained, since a given current source is common to the
corresponding meshes, resulting in

meshes 2; 3 : i3 � i2 ¼ I2 ! i3 ¼ I2 þ i2 ð3:45Þ
For this circuit we must find two additional equations constraining the three mesh currents.
Applying KVL tomesh 1 and the combinedmeshes 2 and 3, while including Ohm’s law, gives

mesh 1 : �V1 þ R3i1 þ R4ði1 � i2Þ þ R5ði1 � ðI2 þ i2ÞÞ ¼ 0
meshes 2; 3 : R4ði2 � i1Þ þ R6i2 þ R7ðI2 þ i2Þ þ R5ððI2 þ i2Þ � i1Þ ¼ 0

ð3:46Þ

Collect the unknown mesh currents into a vector i ¼ ½i1i2�0, and (3.45) and (3.46) become

Ri ¼ V ð3:47Þ
where R and V are given by

R ¼ R3 þ R4 þ R5 �R4 � R5
�R4 � R5 R4 þ R6 þ R7 þ R5

� �

; V ¼ V1 þ R5I2
�R7I2 � R5I2

� �

Equation (3.47) is a linear system of mesh currents. A MATLAB script that finds i follows.

clear all; clc;

% Program does a mesh analysis

V1=5; I2=-0.01; % specify current and voltage sources

R3=100; R4=1000; R5=3000; R6=1000; R7=1000; % specify resistors

% the vector of mesh currents is: [i1 i2 i3]’

R=zeros(2,2); V=zeros(2,1); % preallocating space

% specify nonzero entries in R, the resistance matrix

R(1,1)=R3+R4+R5;R(1,2)=-R4-R5;

R(2,1)=-R4-R5;R(2,2)=R4+R6+R5+R7;

% you can verify that G equals the inverse of R

% specify nonzero entries in V

V(1)=V1+R5*I2;V(2)=-R7*I2-R5*I2;

% use Gauss elimination to solve Ri=V for i

i=R\V; % the backslash stipulates that Gauss elimination will be used

i=1000*i; I2=1000*I2; % convert currents to mA

i’ % show the unknown mesh currents i in the command window

i1=i(1);i2=i(2);i3=I2+i(2);

I1=-i1

I3=-i1
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I4=i1-i2

I5=i1-i3

I6=i2

I7=i3

Program 3.5 Program for a mesh analysis of the circuit in Figure 3.4.

The results of the mesh analysis are given by

i’ = [1.1628 7.4419]

With these mesh currents we get the component currents given by

I1 = -1.1628, I3 = -1.1628, I4 = -6.2791, I5 = 3.7209, I6 = 7.4419, I7 = -2.5581

Much of the early development of MATLAB was motivated by the need to efficiently
and accurately solve (3.19), not only for circuit analysis, but also for linear system analysis
in many other fields. Many circumstances (e.g., a very large N , a sparse matrix, or a par-
ticular set of matrix elements) can make this a challenging task.

3.8 Linear Transformations

The concept of a matrix and matrix algebra can be very well applied to work with objects in
a linear vector space.

3.8.1 Vector Space
An N-dimensional linear vector space Y is a collection of vectors with an additive
operation and scalar multiplication. Associated with the vector space Y is a set R of scalars,
where R can be, for example, the set of all real or complex numbers. A linear vector space
satisfies the following properties:
(a) For any two vectors x and y 2 Y, xþ y 2 Y, closure property.
(b) Y contains an identity vector 0 (zero vector), such that for any vector x,

xþ 0 ¼ 0þ x ¼ x.
(c) For any vector x, there is another vector y such that xþ y ¼ 0 (the zero vector).
(d) For any three vectors x, y, and z 2 Y, ðxþ yÞ þ z ¼ xþ ðyþ zÞ, associative property.
(e) For any vectors x and y and any scalars a and b 2 R: ax 2 Y, aðbxÞ ¼ ðabÞx,

ðaþ bÞx ¼ axþ bx, aðxþ yÞ ¼ axþ ay, there is a multiplication identity 1 2 R
such that 1x ¼ x and a scalar 0 2 R such that 0x ¼ 0 (the zero vector).

Let xk 2 Y; k ¼ 1; . . . ;K and ak 2 R; k ¼ 1; . . . ;K. A linear combination of the
vectors xk ; k ¼ 1; . . . ;K is given by
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y ¼ a1x1 þ a2x2 þ � � � þ aKxK ¼
X

K

k¼1
akxk ð3:48Þ

where y 2 Y. The vectors xk ; k ¼ 1; . . . ;K are said to be linearly independent if the only
set of scalars ck ; k ¼ 1; . . . ;K that satisfy

c1x1 þ c2x2 þ � � � þ cKxK ¼ 0 ð3:49Þ
is the set ck ¼ 0; k ¼ 1; . . . ;K. If there are nonzero ck that satisfy (3.49), then the vectors
are said to be linearly dependent, and some vector in the set xk ; k ¼ 1; . . . ;K can be
written as a linear combination of the other vectors in the set. To be more explicit, it will be
assumed hereafter that elements of vectors are either real or complex numbers, and that
K ¼ N . For the case K 6¼ N , the reader is referred to the literature on linear algebra.

Let us collect the vectors xn; n ¼ 1; . . . ;N into the columns of an N � N matrix A to get

A ¼ x1 x2 � � � xNj �jj½
Then, (3.49) can be written as

AC ¼ 0 ð3:50Þ
where C is the column vector given by C ¼ c1 c2 . . . cN �0	

.
Equation (3.50) is ahomogeneousequation.There canbeanonzero solutionC if andonly if

det(A) ¼ 0. If det(A) 6¼ 0, then C ¼ 0, and the columns of A are linearly independent. The
MATLABfunction rank finds the number of linearly independent columnsor rows in amatrix,
where rank(A)�N. For example, let N ¼ 3, and then for some given Awe have

>> A=[1 1 3;2 2 2;3 3 1] % the second column of A duplicates the first column

A =

1 1 3

2 2 2

3 3 1

>> rank(A)

ans = 2

>> det(A)

ans = 0

A square matrix is singular if and only if the columns (rows) are linearly dependent.
It is insightful to use a geometric interpretation of vectors by defining a measure of

vector length and direction. The length of a vector x is associated with its norm, which is a
real scalar denoted by jjxjj. There are many useful definitions of a norm, which must satisfy
the following properties:
(a) For any x 2 Y, jjxjj � 0
(b) jjxjj ¼ 0, if and only if x ¼ 0
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(c) For any a 2 R, jjaxjj ¼ jajjjxjj
(d) For any vectors x and y 2 Y, jjxþ yjj � jjxjj þ jjyjj, triangle inequality

A commonly used norm is the lp-norm (or p-norm), which is defined by

lp � norm : jjxjjp ¼
X

N

n¼1
xðnÞj jp

 !1=p

ð3:51Þ

where p ¼ 1; 2; . . . ;1. If the elements xðnÞ; n ¼ 1; . . . ;N are complex, then jxðnÞj ¼
ðxðnÞx�ðnÞÞ1=2, the magnitude of a complex number. Some commonly used p-norms are
given by

l1 � norm ¼ jjxjj1 ¼
X

N

n¼1
xðnÞj j

l2 � norm ¼ jjxjj2 ¼
X

N

n¼1
xðnÞj j2

 !1=2

; Euclidean norm

l1 � norm ¼ jjxjj1 ¼ max
n¼1;...;N

xðnÞj j

When a norm is associated with a vector space, the vector space is called a normed vector
space. It is common practice to define the distance dðx; yÞ between two vectors x and y 2 Y
with dðx; yÞ ¼ jjx� yjj.

The MATLAB function norm returns the norm of a vector. There are many norm
options, for example:

>> x = [3 4]’;

>> p = 2; % get the 2-norm

>> r = norm(x,p) % p can be: 1, 2, ..., inf

r = 5

An N-dimensional Cartesian space is a normed vector space. A 2-D Cartesian space is
shown in Fig. 3.5. While it is conventional to refer to the two axes as the x and y axes, let us
use u1 and u2, respectively. In a 2-D Cartesian space, the axes (Cartesian coordinates) are
perpendicular (orthogonal) to each other. The point where the axes intersect is called the
origin. Movement along an axis and away from the origin in the direction of the arrow is
movement in the positive direction, and in the opposite direction it is movement in the
negative direction.

Any point in a 2-D Cartesian space can be located by two numbers, called a 2-tuple,
that specifies movements along the u1 and u2 axes. For example, the point labeled v in
Fig. 3.5 is the 2-tuple (�2, 3). Another way to denote the location of a point in a 2-D
Cartesian space is with a 2-element vector, where the elements vð1Þ and vð2Þ are the
movements in the u1 and u2 directions, respectively, and we write
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v ¼ �2
3

� �

In Fig. 3.5, the vector v is also considered to be the line pointing from the origin to the
point v. Another way to locate the point v is to rotate a line of length r in the counter-
clockwise direction from the positive u1 axis by an angle f. The line length is given by
r ¼ jjvjj2, called the magnitude (or Euclidian norm) of v. In this case

jjvjj2 ¼ ðv2ð1Þ þ v2ð2ÞÞ1=2 ¼
ffiffiffiffiffi

13
p

; f ¼ p
2
þ tan�1

2
3

� �

¼ 2:1588 radians

Let us write (3.19) as

y ¼ Ax ð3:52Þ
and consider x and y to be vectors in a Cartesian space. Then, given the matrix A, (3.52) is a
linear transformation, where A operates on the vector x to obtain the vector y. The matrix A
can be designed to achieve different kinds of relationships between the vectors x and y.

Let an; n ¼ 1; 2; . . . ; N , denote the N columns of A. Then (3.52) can be interpreted to
be

y ¼ xð1Þa1 þ xð2Þa2 þ � � � þ xðNÞaN ¼
X

N

n¼1
xðnÞan

which is a linear combination of the columns of A.

3.8.2 Rotation
Suppose that a particular geometric goal of (3.52) is a matrix A that rotates a given vector x
by an angle q into the vector y. This is depicted in Fig. 3.6. Let us design such a matrix.

By projection, the vectors y and x can be written in terms of the angles q
and f as

y ¼ jjyjjcosðqþ fÞ
jjyjjsinðqþ fÞ
� �

¼ jjyjj cosðqÞcosðfÞ � sinðqÞsinðfÞ
sinðqÞcosðfÞ þ cosðqÞsinðfÞ
� �

; x ¼ jjxjj cosðfÞ
sinðfÞ
� �

v
u2

u1

φ

r

Figure 3.5 A two-dimensional Cartesian space.
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Since we do not want to change the magnitude of x, jjyjj ¼ jjxjj, resulting in

y ¼ cosðqÞ �sinðqÞ
sinðqÞ cosðqÞ
� �

x ¼ Ax ð3:53Þ

which defines a matrix A that operates on a vector to rotate it about the origin by an angle q.
Let us denote this special matrix by RðqÞ, a 2� 2 rotation matrix. In Chapter 9, rotation in a
3-D Cartesian space will be discussed.

Example 3.17

Prog. 3.6 implements (3.53). This script produces the results given in Fig. 3.7.

% Script to rotate a vector

clear all;

% get a vector from the program user

x = input(’Enter a 2-element (enclosed in brackets) row vector: ’);

x = x’; % convert x to a column vector

plot([0 x(1)],[0 x(2)]) % open a Figure Window and plot the given vector

grid on % include a grid in the figure

x_max = 1.1*(x(1)^2 + x(2)^2)^0.5; % used to override automatic scaling

axis([-x_max x_max -x_max x_max]) % specify range of axes

hold on % causes MATLAB to place the next plot in the same Figure Window

theta = input(’Enter an angle (in radians) of rotation: ’); % get angle

R_theta = [cos(theta) -sin(theta); sin(theta) cos(theta)];% rotation matrix

y = R_theta*x; % rotate the input vector

plot([0 y(1)],[0 y(2)]) % plot the rotated vector

Program 3.6 A script saved as rotate.m to rotate a vector.

θ

φ

x

y

Figure 3.6 Rotation of vector x by q radians into vector y.
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3.8.3 Eigenvalues and Eigenvectors
In (3.52), assume that a square matrix A is given. Does a vector x exist such that the vector y
has the same direction as x? This is an important question in system analysis, especially in
finding the solution of linear and time invariant differential equations, which occur when
Kirchhoff’s laws are applied to linear circuits.

The most that is allowed about y is that it can have a different length from x. This
requirement gives

lx ¼ Ax ð3:54Þ
where l, a scalar, accounts for the difference between the lengths of x and y. Rearranging
(3.54) results in

lx� Ax ¼ lIx� Ax ¼ ðlI � AÞx ¼ 0 ð3:55Þ
where, since A is an N � N square matrix, I is the N � N identity matrix and the right side
is a column vector of zero elements. Equation (3.55) is a homogeneous equation, which has
a nonzero solution if and only if

QðlÞ ¼ jðlI � AÞj ¼ 0 ð3:56Þ
The determinant in (3.56) is an Nth order polynomial in l, called the characteristic poly-
nomial QðlÞ of A, and

QðlÞ ¼ 0 ð3:57Þ
which is called the characteristic equation of A.

input vector

rotated vector

Figure 3.7 Example of a linear transformation designed to rotate a vector.
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Example 3.18

Let N ¼ 2, and with A given by

A ¼ 1 �1
2 4

� �

(3.57) becomes

QðlÞ ¼ jlI � Aj ¼ l 0
0 l

� �

� 1 �1
2 4

� �
�

�

�

�

�

�

�

�

¼ l� 1 1
�2 l� 4

� �
�

�

�

�

�

�

�

�

¼ ðl� 1Þðl� 4Þ � ð�2Þð1Þ ¼ l2 � 5lþ 6 ¼ ðl� 2Þðl� 3Þ ¼ 0

There are N ¼ 2 values of l that can satisfy (3.57), which are l ¼ l1 ¼ 2 and l ¼ l2 ¼ 3.
For each l there is a vector x that satisfies (3.54). Denote these vectors for l1 and l2 by x1
and x2, respectively, and we have

1 �1
2 4

� �

x1ð1Þ
x1ð2Þ
� �

¼ 2 x1ð1Þ
x1ð2Þ
� �

;
1 �1
2 4

� �

x2ð1Þ
x2ð2Þ
� �

¼ 3 x2ð1Þ
x2ð2Þ
� �

The vector x1 must satisfy

x1ð1Þ � x1ð2Þ ¼ 2x1ð1Þ ! x1ð1Þ ¼ �x1ð2Þ
2x1ð1Þ þ 4x1ð2Þ ¼ 2x1ð2Þ ! x1ð1Þ ¼ �x1ð2Þ

which means that only the direction of x1 can be found, but not its length, and we write

x1 ¼ �x1ð2Þ
x1ð2Þ

� �

¼ x1ð2Þ �1
1

� �

¼ K1
�1
1

� �

¼ K1e1

where K1 is an arbitrary number. We can pick K1 ¼ 1=jje1jj ¼ 1=ðe21ð1Þþ
e22ð1ÞÞ1=2 ¼ 1=

ffiffiffi

2
p ¼ 0:7071 to normalize (make jjx1jj ¼ 1) x1 and get the eigenvector

n1 ¼ ½�0:7071 0:7071�0, where jjn1jj ¼ 1. Similarly, x2 can be found to be

x2 ¼ K2
� 1
2
1

" #

¼ K2 e2;! n2 ¼ 0:4472
�0:8944
� �

If we use x ¼ n1 in the linear transformation of (3.52), then the resulting y vector will have
the same direction as the vector x, and similarly for x ¼ n2.
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The N roots of QðlÞ, ln; n ¼ 1; . . . ; N in (3.57) are called eigenvalues of A, where in
German eigen means belonging to, and the vectors nn; n ¼ 1; . . . ; N are called eigenvec-
tors of A, because they are intrinsic properties of A. We can combine the relationships
between the eigenvalues and eigenvectors into one equation by writing

A n1jn2j . . . jnN½ � ¼ n1jn2j . . . jnN½ �

l1 0 . . . 0

0 l2 . .
. ..

.

..

. . .
. . .

.
0

0 . . . 0 lN

2

6

6

6

4

3

7

7

7

5

! AV ¼ VL ð3:58Þ

where the columns of V , called themodal matrix of A, are the eigenvectors, and the diagonal
elements of L are the eigenvalues of A. Therefore, the matrix A can be decomposed into

A ¼ VLV�1 ! A�1 ¼ VL�1V�1 ð3:59Þ
which requires V to be nonsingular and that all eigenvalues are nonzero. Equation (3.59)
gives another method to find A�1.

The high level MATLAB built-in function eig finds the eigenvalues and eigenvectors of
a square matrix.

Example 3.18 (continued)

The following MATLAB statements demonstrate the application of the function eig.

>> A = [1 -1; 2 4];

>> % get two matrices, the eigenvectors and eigenvalues of A

>> [V, Lambda]=eig(A)

V =

-0.7071 0.4472

0.7071 -0.8944

Lambda =

2 0

0 3

>> V_inv = inv(V) % get V inverse using the function inv

V_inv =

-2.8284 -1.4142

-2.2361 -2.2361

>> Lambda_inv = [1/Lambda(1,1) 0; 0 1/Lambda(2,2)];

>> A_inv = V*Lambda_inv*V_inv % get A inverse using the modal matrix in (3.59)

A_inv =

0.6667 0.1667

-0.3333 0.1667

>> A*A_inv % check
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ans =

1.0000 0.0000

0 1.0000

Some or all roots of the characteristic equation can be complex. For example:

>> A=[-1 -1;1 -1];

>> % find the eigenvectors and eigenvalues of A with the function eig

>> [V, Lambda]=eig(A)

V =

0.7071 0.7071

0 - 0.7071i 0 + 0.7071i

Lambda =

-1.0000 + 1.0000i 0

0 -1.0000 - 1.0000i

% the complex eigenvalues occur in complex conjugate pairs

% the corresponding eigenvectors are complex conjugates of each other

>> x=V(:,1) % set x to the first eigenvector

x =

0.7071

0 - 0.7071i

>> A*x % apply the linear transformation to an eigenvector

ans =

-0.7071 + 0.7071i

0.7071 + 0.7071i

>> Lambda(1)*x % check to see if (3.54) is satisfied

ans =

-0.7071 + 0.7071i

0.7071 + 0.7071i

3.9 Singular Value Decomposition

A potential problem with using Gauss–Jordan elimination to solve a set of N equations in N
unknowns as described by (3.19) is due to the accumulation of round-off error when N is
large. Furthermore, A can have certain properties that can cause a significant error in the
solution X , even when N is small.

Another method to find the inverse of A is based on concepts developed in abstract
linear algebra. An objective of singular value decomposition is to find three N � N
matrices U , S, and V such that A can be written as

A ¼ USV 0 ð3:60Þ
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The matrix U satisfies U 0U ¼ UU 0 ¼ I , which means that the column (row) vectors of U
are orthogonal to each other ððUð:; kÞ;Uð:;mÞÞ ¼ 0; ðUðk; :Þ;Uðm; :ÞÞ ¼ 0; k 6¼ mÞ, each
with unit length. A matrix with this property is called a unitary matrix, and U�1 ¼ U 0. The
matrix S, a diagonal matrix, has the form

S ¼

s1 0 . . . 0

0 s2 . .
. ..

.

..

. . .
. . .

.
0

0 . . . 0 sN

2

6

6

6

4

3

7

7

7

5

where the sn; n ¼ 1; . . . ;N , called singular values, are nonnegative real numbers arranged
such that s1 � s2 � . . . � sN and V is also a unitary matrix. The elements of U and V are
real (complex) numbers if the elements ofA are real (complex) numbers. With (3.60), (3.19)
becomes

USV 0X ¼ Y ð3:61Þ

Premultiplying both sides of (3.61) by U 0, then by S�1, and then by V gives

X ¼ VS�1U 0Y ;! A�1 ¼ VS�1U 0 ð3:62Þ

The matrix S�1 is also a diagonal matrix with diagonal elements 1=sn; n ¼ 1; . . . ;N . In
fact, the matrix A is nonsingular if and only if all singular values are positive real numbers.
Furthermore, s2n; n ¼ 1; . . . ;N are the eigenvalues of A0A, a symmetric matrix. This
method to find X requires more computation than Gauss–Jordan elimination, but the results
are less prone to accumulated round-off error.

Let us consider the case when N ¼ 2. The matrices U , S, and V have the form

U ¼ �cosðqÞ sinðqÞ
sinðqÞ cosðqÞ

" #

¼ �1 0

0 1

" #

cosðqÞ �sinðqÞ
sinðqÞ cosðqÞ

" #

¼ �1 0

0 1

" #

RðqÞ

S¼ s1 0

0 s2

" #

; V ¼ �1 0

0 1

" #

RðfÞ
ð3:63Þ

Notice that U and V are rotations followed by a reflection (sign reversal) of the first
dimension, while S causes scaling. Thus, (3.63) shows that the solution of (3.19) involves a
rotation, scaling, followed by another rotation to obtain the vector X , a very interesting
interpretation of finding the solution of a linear system of equations.
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MATLAB includes a large number of built-in functions that perform high-level com-
putations. Another one of them is the built-in function svd (singular value decomposition),
which performs a singular value decomposition.

Example 3.19

The following MATLAB statements demonstrate the application of the function svd.

>> A = [1 -1;2 4];

>> [U,S,V] = svd(A) % svd returns three matrices

U =

-0.1091 0.9940

0.9940 0.1091

S =

4.4966 0

0 1.3343

V =

0.4179 0.9085

0.9085 -0.4179

>> S_inv = [1/S(1,1) 0; 0 1/S(2,2)]; % inverse of S

>> A_inv = V*S_inv*U’ % get A inverse with (3.62)

A_inv =

0.6667 0.1667

-0.3333 0.1667

>> A*A_inv % check

ans =

1.0000 -0.0000

0 1.0000

>> A = [-1 -1;1 -1]; % this matrix has complex eigenvalues

>> [U,S,V] = svd(A)

U =

-0.7071 0.7071

0.7071 0.7071

S =

1.4142 0

0 1.4142

V =

1 0

0 -1
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3.10 Accuracy of the Solution of AX ¼ Y

The accuracy of the solution of AX ¼ Y depends not only on computing accuracy to find
A�1, but also on A itself.

As may often be the case, A and Y result from applying physical principles to a practical
problem, where the elements of A and Y are estimates of the corresponding parameter values
in the problem.

For example, in Example 3.16, a nodal analysis requires that we solve (3.44), which is
Gv ¼ I for the node voltages v. An element of I depends on the resistor R3. Suppose a circuit
design calls for R3 ¼ 103 W. However, such a resistor value is not commercially available,
and a commercially available resistor R3 ¼ 100 W is used instead. Furthermore, due to
imprecision in the manufacturing process, the actual resistance may be somewhere in the
range 100	 5% W. The question is, will a small change in the vector I cause a substantial
change in the solution, the node voltages v?

Let us model an estimation error of the elements of Y with Ŷ ¼ Y þ dY , where Y is the
true value, dY is the estimation error, and Ŷ is available to us. Since we only know Ŷ , we
can only find an estimate X̂ of X given by

X̂ ¼ A�1Ŷ ¼ A�1ðY þ dY Þ ¼ A�1Y þ A�1dY ¼ X þ dX ;! dX ¼ A�1dY ð3:64Þ

Therefore, if the elements of A�1 are large, then a small dY can cause a large estimation
error dX of X . This does not depend on how accurately A�1 is found, but is an intrinsic
property of A. We prefer that if there is a small error in estimating Y , then the resulting
error dX in the solution X̂ is small. Even if we know Y exactly, its value in computer
memory can be in error by an amount dY ¼ eps, the error due to truncation of Y to a
finite number of binary digits. Can a small truncation error in Ŷ cause a substantial error
in X̂ ?

Example 3.20

The given A and Y result in

A ¼ 3 3
2:001 2

� �

; Y ¼ 1
0:666

� �

;! X ¼ �0:6667
1:0000

� �

ð3:65Þ

Now, consider a small change in Y , resulting in

A ¼ 3 3
2:001 2

� �

; Ŷ ¼ 0:997
0:669

� �

;! X̂ ¼ 4:3333
�4:0010
� �
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Suppose instead that there is a small change dA in A. For example:

A
^ ¼ 3:001 3:001

2:002 1:999

� �

; Y ¼ 1
0:666

� �

;! X̂ ¼ �0:0371
0:3703

� �

We see that small changes in A or Y of the equations described by (3.65) can result in a large
change in the solution.

The following A and Y result in

A ¼ 4 3
2 1

� �

; Y ¼ 1
0:666

� �

;! X ¼ 0:4990
�0:3320
� �

ð3:66Þ

and small changes in A or Y give

A ¼ 4 3
2 1

� �

; Ŷ ¼ 0:997
0:669

� �

;! X̂ ¼ 0:5050
�0:3410
� �

Â ¼ 4:001 3:001
2:001 0:999

� �

; Y ¼ 1
0:666

� �

;! X̂ ¼ 0:4978
�0:3305
� �

Here we see that small changes in A or Y of the equations described by (3.66) result in small
changes in the solution.

It is said that if a small dY or a small dA causes a small dX , then the matrix A in AX ¼ Y
is well-conditioned, and if a small dY or a small dA causes a large dX , then the matrix A is
ill-conditioned.

The condition number KðAÞ of a square matrix A is used to assess the degree to which
A is ill-conditioned. To understand its meaning we must understand what is meant by the
supremum of a set R of real numbers. The supremum of R, denoted by supðRÞ, is the least
upper bound of the set R, which means that supðRÞ is the smallest real number such that for
all x 2 R, x � supðRÞ. Similarly, the infimum of R, denoted by inf(R), is the greatest lower
bound of R. The supremum (or infimum) of R may or may not be a number contained in R.
For example, consider

R ¼ fx : 0 � x � 1g
Here, supðRÞ ¼ 1, maxx2RðRÞ ¼ 1, and supðRÞ 2 R. And, infðRÞ ¼ 0, minx2RðRÞ ¼ 0, and
infðRÞ 2 R. However, consider

R ¼ fx : 0 < x < 1g
Here, supðRÞ ¼ 1, supðRÞ =2R, and maxx2RðRÞ do not exist. And, infðRÞ ¼ 0, infðRÞ =2R, and
minx2RðRÞ do not exist. Every nonempty and bounded subset of the set of real numbers has a
supremum and an infimum, but not necessarily a maximum or a minimum value.
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Also, to understand the meaning of KðAÞ we must extend the concept of the norm of a
vector to the norm of a matrix. In the equation AX ¼ Y , the matrix A operates on the vector
X with norm jjX jj to produce the vector Y with norm jjY jj. Consider the relative change in
the norm of X and the norm of Y with jjY jj /jjX jj, X 6¼ 0. The least upper bound of this ratio
is given by

jjAjj ¼ sup
X 6¼0

jjY jj
jjX jj
� �

¼ sup
X 6¼0

jjAX jj
jjX jj

� �

¼ sup
jjX jj¼1

jjAX jj ð3:67Þ

which defines the norm of A. Therefore, jjAjj measures the maximum extent that A can
change the norm of X , and for all X we have

jjAX jj
jjX jj � jjAjj ! jjAX jj � jjAjj jjX jj ð3:68Þ

The norm of a matrix A has the following properties:
(a) For any a 2 R, jjaAjj ¼ jajjjAjj
(b) jjAjj � 0; jjAjj ¼ 0, if and only if A ¼ 0
(c) jjAþ Bjj � jjAjj þ jjBjj
(d) jjAxjj � jjAjj jjxjj, if the product Ax of A and a vector x exists
(e) jjABjj � jjAjj jjBjj, if the product AB of A and another matrix B exists
(f) If A is nonsingular, jjAjj jjA�1jj � 1
(g) If A is nonsingular, 1

jjA�1jj ¼ inf x 6¼0 jjAxjj
jjxjj


 �

An optimization of (3.67) gives the following p-norms kAkp of A for p ¼ 1, p ¼ 2, and
p ¼ 1.

jjAjj1 ¼ max
1�m�N

X

N

n¼1
jAðn;mÞj; largest column sum

jjAjj2 ¼ smax=smin; ratio of largest to smallest singular value

jjAjj1 ¼ max
1�n�N

X

N

m¼1
jAðn;mÞj; largest row sum

ð3:69Þ

Another commonly used norm of a matrix A is the Frobenius norm given by

jjAjjF ¼
X

N

n¼1

X

N

m¼1
Aðn:mÞj j2

 !1=2

; also called Euclidean norm ð3:70Þ

which is easier to compute than the p-norms given in (3.69). The MATLAB function norm
also returns the norm of a matrix A. The syntax is given by

norm_1=norm(A,1) % get the p-norm for p ¼ 1
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norm_2=norm(A,2) % get the p-norm for p=2
norm_inf ¼ norm(A,inf) % get the p-norm for p=infinity
norm_F ¼ norm(A,‘fro’) % get the Frobenius norm

Recall that (3.64) gives the change in the solution X due to a change in Y with
dX ¼ A�1dY , and like (3.68), where

jjY jjp � jjAjjpjjX jjp ð3:71Þ

we have

jjdX jjp � jjA�1jjpjjdY jjp ð3:72Þ

Dividing both sides of (3.72) by jjX jjp gives

jjdX jjp
jjX jjp

� jjA�1jjp
jjdY jjp
jjX jjp

ð3:73Þ

According to (3.71), jjX jjp � jjY jjp=jjAjjp, and substituting jjX jjp into the right side of (3.73)
gives

jjdX jjp
jjX jjp

� jjAjjpjjA�1jjp
jjdY jjp
jjY jjp

ð3:74Þ

which bounds a relative change in X given a relative change in Y . The condition number
KðAÞ of a matrix A is defined by

KðAÞ ¼ jjAjj jjA�1jj ð3:75Þ
The condition number may vary with the norm that is used. If a change in Y is due to
truncation caused by storing Y in computer memory, then

jjdX jjp
jjX jjp

� KðAÞ eps ð3:76Þ

where eps, which is the difference between 1 and the next larger number greater than 1, is
returned by the MATLAB function eps.

Now consider a change in A, where Â ¼ Aþ dA. We have AX ¼ Y and ÂX̂ ¼ Y .
Therefore, AX ¼ ÂX̂ , and

AX ¼ ðAþ dAÞðX þ dX Þ ¼ AX þ A dX þ dA X þ dA dX
0 ¼ A dX þ dAðX þ dX Þ ! dX ¼ �A�1dAðX þ dX Þ ð3:77Þ
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By property (e) we get

jjdX jj � jjA�1jj jjdAjj jjX þ dX jj ! jjAjj jjdX jj � jjAjj jjA�1jjj jdAjj jjX þ dX jj
Therefore

jjdX jj
jjX̂ jj � KðAÞ jjdAjjjjAjj ð3:78Þ

which bounds a relative change in the solution X̂ given a relative change in the matrix A.
The MATLAB function cond returns the condition number of a matrix using the norms

given in (3.69) and (3.70). When KðAÞ is close to its lower bound (infðKðAÞÞ ¼ 1), the
matrix A is well-conditioned. A relative change in X is nearly the same as a relative change
in Y . As KðAÞ becomes large, the matrix A becomes ill-conditioned. If A is singular,
KðAÞ ¼ 1.

Example 3.20 (continued)

For (3.65) we have

>> A = [3 3;2.001 2]; Y = [1;0.666]; X = [-0.6667;1.0000];

>> Y_est = [0.997;0.669]; X_est = [4.3333;-4.0010];

>> K = cond(A) % get the default 2-norm of A

K = 8.6680e+003

% this is a large condition number

>> dX = X_est - X;

>> dX_relative = norm(dX)/norm(X) % get the relative change in X

dX_relative = 5.8840

>> dY = Y_est - Y;

>> dY_relative = norm(dY)/norm(Y) % get the relative change in Y

dY_relative = 0.0035

>> K*dY_relative % get the least upper bound of the relative change in X

ans = 30.6082

Here we see that the relative change in X is much larger than the relative change in Y .
For (3.66) we have

>> A = [4 3;2 1]; Y = [1;0.666]; X = [0.4990;-0.3320];

>> Y_est = [0.997;0.669]; X_est = [0.5050;-0.3410];

>> K = cond(A)

K = 14.9330

>> dX = X_est - X;

>> dX_relative = norm(dX)/norm(X)
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dX_relative = 0.0180

>> dY = Y_est - Y;

>> dY_relative = norm(dY)/norm(Y)

dY_relative = 0.0035

>> K*dY_relative % get the least upper bound of the relative change in X

ans = 0.0527

Here we see that the least upper bound of the relative change in X is small.

Example 3.21

Let us apply the concept of a condition number to the circuit analysis given in Example 3.16.
The following MATLAB statements were inserted into Prog. 3.3, which does a component
circuit analysis, just after the matrix A is defined.

[U,S,V] = svd(A); sigma = diag(S); % get singular values of A

sigma_max = max(sigma), sigma_min = min(sigma) % min and max singular values

K = cond(A) % get 2-norm condition number

K_sigma = sigma_max/sigma_min % check 2-norm condition number

The results from these statements are

sigma_max = 3.0000e+003

sigma_min = 7.2807e-004

K = 4.1205e+006

K_sigma = 4.1205e+006

The condition number is very large. Let us investigate this by appending the following
statement to Prog. 3.3.

dX_relative_least_upper_bound = K*eps

The function eps returns the difference between 1 and the next larger number in double
precision. It is used as the relative change in Y . The result from this statement is

dX_relative_least_upper_bound = 1.8299e-010

Since double precision computation gives 15-digit accuracy, we expect that the last five to
six digits in the elements of X will be inaccurate due to the large condition number
amplifying the truncation error incurred by storing Y in computer memory. If single pre-
cision computation is used, which gives seven-digit accuracy, then the large condition
number (
 4e6) will cause the solution to be almost useless.

134 Matrices, Vectors, and Scalars



Prog. 3.4 solves the equation G v ¼ I to find the node voltages, and
KðGÞ ¼ 9:9, which is small, and Prog. 3.5 solves the equation R i ¼ V to find the mesh
currents, and KðRÞ ¼ 9:8, which is also small. In Example 3.16 the results of all three
analysis methods are displayed using only four fractional digits, and they appear to be
the same.

3.11 System of Nonlinear Equations

The problem is to find a root x of a system of nonlinear equations written as

FðxÞ ¼ 0 ð3:79Þ

where x is a vector and FðxÞ is a function that returns a vector value. Unlike a linear system,
where FðxÞ ¼ Ax� y, for a system of nonlinear equations there are no methods that can
guarantee to find a solution, if it exists. This depends on the kinds of nonlinearities in the
given equations.

The MATLAB built-in function fsolve is a methodology that searches for a real root
of (3.79), and the search may or may not be successful. A syntax option of fsolve is
given by

[x,F_val,exit_flag,output] = fsolve(F,x_init,options)

which starts at an initial guess x ¼ x_init and tries to find and return an x ¼ x_opt such that
the Euclidean norm of F(x_opt) ¼ 0. The minimal syntax is

x = fsolve(F,x_init)

We will use this syntax and the syntax

[x,F_val,exit_flag] = fsolve(F,x_init)

where if exit_flag ¼ 1, then fsolve converged to a solution x ¼ x_opt within a default tol-
erance and F_val ¼ F(x_opt)ffi 0. If exit_flag 6¼ 1, then fsolve could not find an x_opt using
default options, and it could be that merely trying a different x_init may yield a solution.
The function F can be specified with a handle of a function m-file, for example, x ¼ fsolve
(@my_F, x_init), where my_F is a MATLAB function that can receive a vector input and
return a vector. For further details about fsolve, get help with doc fsolve.
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Example 3.22

Find a root of a quadratic function of a 2� 2 matrix x given by y ¼ Ax2 þ B x þ C.
Prog. 3.7 sets up the problem, and Prog. 3.8, a function, evaluates the quadratic. Notice
that an input argument of fsolve is the handle of the function quad_x. Since fsolve works
with vectors, the function reshape is used to convert a matrix to a vector and a vector to
a matrix.

clear all; clc

% Solve for a root of a quadratic function of a 2x2 matrix x

% y = Ax^2 + Bx + C

global A B C

A = [-1 -1;-1 -1]; B = [2 1;1 1]; C = [-1 1;1 -1]; % matrix coefficients

x_init = [1 0;0 1]; % initial 2x2 matrix guess
z_init = reshape(x_init,4,1); % convert x_init to a column vector

z = fsolve(@quad_x,z_init); % find root as a vector

x = reshape(z,2,2) % convert z into a 2x2 matrix

y = A*x*x + B*x + C % check solution

Program 3.7 Set up problem.

function F = quad_x(z)

% evaluate a quadratic function of a matrix

global A B C

x = reshape(z,2,2); % convert vector into a 2x2 matrix

q = A*x*x + B*x + C; % evaluate quadratic function of a matrix

F = reshape(q,4,1); % convert 2x2 matrix into a vector

end

Program 3.8 Evaluate quadratic function of a 2� 2 matrix.

Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
x ¼ y ¼
2.0000 �2.0000 1.0e�011 *
�0.5000 3.0000 0.7266 �0.4718

0.7266 �0.4718
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Example 3.23

Given is the circuit shown in Fig. 3.8. Let the input be vsðtÞ ¼ sinðwtÞ, where f ¼ 1 Hz and
w ¼ 2pf rad/sec. Find the output voltage vðtÞ.

Applying Kirchhoff’s voltage law gives

�vsðtÞ þ vdðtÞ þ RidðtÞ ¼ 0 ð3:80Þ
Recall from Chapter 2 that the diode characteristic is idðtÞ ¼ IsðevdðtÞ=VT � 1Þ, and (3.80)
becomes

�vsðtÞ þ vdðtÞ þ RIsðevdðtÞ=VT � 1Þ ¼ 0 ð3:81Þ
For each value of t, (3.81) is a nonlinear equation in vdðtÞ.

Let us find vdðtÞ over one period of vsðtÞ at the time points t ¼ nT ; n ¼ 0; 1; . . . ;N � 1,
where T0 ¼ 1=f sec is the period of vsðtÞ and T ¼ T0=N is the time increment. To put (3.81)
into the context of (3.79), let

FðxÞ ¼ �vsðtÞ þ xþ RIsðex=VT � 1Þ ð3:82Þ
and for each value of t, we must find x ¼ vd to make FðvdÞ ¼ 0.

Program 3.9 sets up the problem, and uses the function KVL given in Prog. 3.10, which
evaluates the KVL function given in (3.82). When finished, the program gives
F_mag ¼ 1.2400e–010, which means that the requirement of (3.81) has been achieved for
all time points.

clear all; clc

% Program to solve for the diode voltage in a nonlinear circuit.

global vs R % make available in the circuit KVL function

f = 1; w = 2*pi*f; T0 = 1/f; % get results for one cycle

N = 256; T = T0/N; % solve for vd at N time points

n = 0:N-1; t = n*T; % N time points

v(t)vs(t)

id(t)
vd(t)

R

Figure 3.8 A nonlinear diode circuit.
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vs = sin(w*t); % vector of N values of the sinusoidal input voltage

R = 330; % resistance

vd_init = zeros(1,N); % initial guess of N diode voltages

% apply nonlinear solver to find the diode voltage at N time points

[vd,F_val,exit_flag] = fsolve(@KVL,vd_init);

if exit_flag == 1

F_mag = norm(F_val) % Euclidean norm

v = vs-vd; % output voltage across resistor

plot(t,v,’r’); hold on; plot(t,vs,’k’); plot(t,vd,’b’);

grid on; xlabel(’time - sec’); ylabel(’volts’)

title(’Analysis of a Nonlinear Diode Circuit’)

else

disp(’Could not solve for the diode voltages.’)

end

Program 3.9 Program to find the diode voltage.

function F = KVL(x)

% evaluate the KVL equation

global vs R

I_S = 1e-12; % saturation current in amps

V_T = 25.85e-3; % thermal voltage at 300 degrees Kelvin

id = I_S*(exp(x/V_T)-1); % diode current

F = -vs + x + R*id; % KVL equation at N time points

end

Program 3.10 Nonlinear KVL function.
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Analysis of a Nonlinear Diode Circuit

output voltage
input voltage
diode voltage

Figure 3.9 Input, output, and diode voltages.
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Fig. 3.9 shows how a diode works. While the input is positive over 0 < t < 0:5 secs, the
output is positive over approximately 0:08 < t < 0:42 secs. The diode does not start to con-
duct until the input voltage exceeds the forward bias threshold (about 0.5 volts) of the diode at
t ffi 0:08 secs. Then, the diode voltage drop remains relatively constant, while it is conducting.
When the input voltage again goes below the diode threshold voltage at t ffi 0:42 secs, the
diode stops conducting as indicated by the output voltage becoming substantially zero.

As you apply MATLAB to solve problems in various areas of electrical and computer
engineering, you will want to use more of the many high-level MATLAB built-in functions.
Browse through a list of functions by category to see the possibilities.

3.12 Conclusion

Matrix algebra has made a tremendous impact on engineering, and with MATLAB we can
easily do much of the algebraic and arithmetic work to apply matrix algebra. In this chapter
a basic problem (two equations in two unknowns) was used to understand the mechanics of
matrix organization and arithmetic. Many special kinds of matrices and matrix properties
were introduced. You should now know how

● the mechanics of matrix arithmetic works;
● conveniently MATLAB can be used to work with the matrix data type;
● MATLAB can be used for data analysis;
● Gauss–Jordan elimination can be applied to solve a linear system of equations;
● MATLAB can be used for circuit analysis;
● a linear transformation can be designed to rotate a vector, which is only one of many

other kinds of geometric operations;
● a matrix inverse can be found with singular value decomposition or eigenvalue

decomposition;
● to assess the accuracy of the solution of a system of linear equations; and
● to solve a system of nonlinear equations.

There is much more to learn about matrix theory that is useful to gain insight into the
properties and behavior of data, signals, and systems, and MATLAB has many more built-in
functions that are helpful to gain this insight. Table 3.7 gives the MATLAB functions that
were introduced in this chapter.

Use the MATLAB help facility, where you will also find many other related built-in
functions, to learn more about these built-in functions. You should also use the built-in
function demo from the Command Window, and view an excellent audio/video tutorial
about working with matrices and MATLAB.
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In the next chapter MATLAB program flow control structures will be introduced, that
will make it possible to efficiently execute program segments repeatedly and to make
decisions about further program execution based on data and computational results that were
obtained within the same program.

Further reading

Anton, H., Elementary linear algebra (applications version) (9th edn.), Wiley International,
Somerset, NJ, USA, 2005

Lay, D.C., Linear algebra and its applications (3rd edn.), Addison Wesley, Reading, MA,
USA, 2005

Leon, S.J., Linear algebra with applications (7th edn.), Pearson Prentice Hall, Upper Saddle
River, NJ, USA, 2006

Table 3.7 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

: operator Delimit a range
axis Specify the minimum and maximum x and y axis range
cond Returns the condition number of a matrix
doc Get documentation
size Get dimensions of a matrix
length Get number of elements in a vector
diag Get diagonal elements of a matrix
linspace Create a vector of equally incremented values
zeros Create a matrix of all zeros
fix Round to nearest integer toward zero
ones Create a matrix of all ones
dot Compute dot product of two vectors
sum Sum the elements of a vector, can also be applied to matrices
0 Transpose of a matrix
eye Create a matrix with ones along the major diagonal and zeros elsewhere
stem Plot points of data with vertical lines to dependent data points
mean Get average value of elements in a vector
det Get determinant of a square matrix
inv Get inverse of a square matrix
mldivide Matrix left divide
mrdivide Matrix right divide
log10 Get log base 10
norm Returns a measure of the length of a vector or a measure of the amplification factor of

a matrix
rank Finds the number of linearly independent columns(rows) in a matrix
rref Convert an N� Nþ 1 matrix to row reduced echelon form
abs Get magnitude of a vector, can also be applied to complex numbers
svd Compute a singular value decomposition
eig Get eigenvalues and eigenvectors of a matrix
fsolve Solve a system of nonlinear algebraic equations
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Problems

Section 3.1
For Probs. 3.1 through 3.4, use the following matrices:

A ¼
2 �1 2

�2 1 0
�1 1 �2

2

4

3

5; B ¼
�2
1
0

1
�1
3

2

4

3

5; C ¼ 3
�1

2
2

�1
4

� �

; x ¼
2

�1
4

2

4

3

5

1) Give the dimensions of the matrices A; B; C; x.
2) Give MATLAB statements that define the matrices A; B; C; x.
3) What does MATLAB return with the statements: a ¼ diagðAÞ, b ¼ diagðBÞ, c ¼ diagðCÞ?
4) What does MATLAB return with the statements: d ¼ sizeðBÞ, e ¼ anyðBÞ, f ¼ allðBÞ,

N ¼ lengthðxÞ, g ¼ minðBÞ?
5) Give MATLAB statements that define I , a 4� 4 identity matrix; Z, a 3� 2 matrix of

zeros; T , a 100� 1 matrix of twos; R, a 4� 3 matrix of random numbers uniformly
distributed over the range (0,1); a matrix E to be an empty matrix.

6) Give a MATLAB statement using colon notation that defines a vector z, where the first
element is zð1Þ ¼ �1:5, the increment from element to element is 0.1, and the
last element is 4.3. Then, use the linspace function to define a vector w that is equal to z.

Section 3.2
For Probs. 3.7 through 3.11, use the same matrices as in Prob. 3.1.

7) Manually, obtain the following: inner product ðx; xÞ; AB; AA0; B0B; Ax; Bþ C0; BI ;
where I is an identity matrix; IB, where I is an identity matrix; xI , where I is an identity
matrix.

8) Manually, obtain B C; C B. Is matrix multiplication commutative? Is multiplication of
square matrices commutative?

9) Give F ¼ x x0, and find the dimensions of C A B; F þ A.
10) Manually, obtain the result of the MATLAB expressions: (a) 1:=A, (b) B:�C0, (c) x:^2,

(d) 2:^x, (e) B:=C0, (f) C0:nB. Then, in the Command Window confirm your results.
11) Assume that scalars q; r, and s satisfy the distributive property qðr þ sÞ ¼ qr þ qs.

Given are three matrices Q; R, and S. Prove that QðRþ SÞ ¼ QRþ QS. For Rþ S, R
and S must have the same dimension, say N �M , and for multiplication to obtain Q R
or Q S, the dimension of Q can be K � N . Hint: letW ¼ QR, and write an element ofW
as in (3.5). Then, let Q ¼ A, R ¼ B, and S ¼ C0, and in the Command Window check
the distributive property.

12) If Ax� yx ¼ 0, where y is a scalar and 0 is a 3� 1 vector of zeros, then give the matrix
G so that ðA� yGÞx ¼ 0.

13) Vectorize each of the following MATLAB expressions: (a) sqrtð1þ q^2Þ, (b) 1=q,
(c) cos 2 � q� pi=2ð Þ; (d) exp �qð Þ.
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Section 3.3
14) Use the MATLAB help facility and describe what the built-in function scatter does.

Then, write a MATLAB program that uses the function scatter to obtain a plot of the
data used in Example 3.9.

15) Given is the following data:

y ¼ ð5; 4:3; 3:1; 2:2; 2:5; 1:7; 0:4;�0:3;�2:2;�3:9;�6:1Þ, dependent variable
x ¼ ð�2:9;�2:3;�1:5;�1:2;�0:9;�0:7;�0:3; 0:1; 0:5; 0:9; 2:1Þ, independent variable

Write a MATLAB program that uses the built-in function polyfit to fit a straight line to
the data. The program must also plot in the same figure the straight line and the given
data using the function stem.

16) Using the function rand, write a MATLAB program that defines a vector x with
N ¼ 100000 elements. Then, use the built-in functions mean and var to find the mean
and variance of the elements in x. Let y ¼ mxþ b, and give m and b such that y ranges
over (�5, 5). Use the min, mean, and max functions to confirm these results.

17) (a) Write a MATLAB program that uses the diode equation given in Prog. 2.2 to find
the diode current id when the diode voltage is vd ¼ 0:7 volts.

(b) Modify the program of part (a) to make the diode voltage a vector of random
voltage values given by vd ¼ 0:7þ v, where v is a vector with N ¼ 100000 ele-
ments that are found with the built-in function randn. Use the MATLAB statement
v ¼ 0.01*randn(1,N) to assign to v a vector of N random voltages with a standard
deviation given by 0.01 volts. Use help randn to find out more about the function
randn. Obtain the vector id of random currents, and apply the built-in functions
min, mean, var, and max to vd and id . Compare the means of vd and id to vd and id
from part (a).

(c) Repeat part (b) with a standard deviation of v given by 0.02 volts. Does the mean of
id increase significantly as the standard deviation of v is increased?

Section 3.4
18) Write a MATLAB program that plots N ¼ 101 points of the signal xðtÞ ¼ eatsinðwtÞ

over the range 0 � t � 3T0, where T0 is the period of the sine function, a ¼ �2, and
w ¼ 4p rad=sec.

19) Given is the function H2ðwÞ ¼ e2C2ð1=wÞ=ð1þ e2C2ð1=wÞÞ, where CðqÞ ¼ 4q3 � 3q.
Write a MATLAB program that plots N ¼ 201 points of H2ðwÞ for �5 � w � 5 with
e ¼ 0:1. Note that H2ðw ¼ 0Þ ¼ 1. Then, in your program convert H2ðwÞ to dB (dec-
ibels) with H2ðwÞ dB ¼ 10logðH2ðwÞÞ�

� , and in a second figure, plot H2ðwÞ dBj over the
same range of w. Which plot gives better detail for small w? And, which plot gives
better detail for large w?

20) Using the matrices given in Prob. 3.1, what does MATLAB return for the
statements a ¼ trilðAÞ, b ¼ triuðAÞ, c ¼ fliplrðAÞ, d ¼ fliplrðBÞ, e ¼ flipudðCÞ,
f ¼ circshiftðA; ½1 1�Þ? Explain each operation.
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Section 3.5
21) For D ¼ 1 0:5

�2 3

� �

and E ¼ 2 1
�1 0:2

� �

, manually, find the determinants of D, E,

D E and E D. Generally, for two N � N matrices D and E, jD Ej ¼ jDjjEj. Do your
results agree with this property of determinants?

22) Given are two equations in two unknowns:

3� 4zþ 6a ¼ 5
�3aþ 2 ¼ �2z

(a) Define a column vector X ¼ ½z;a� of unknowns, and find the matrix A and the
vector Y , such that the given equations can be written as AX ¼ Y . Manually, by
repeated substitution find a and z. Then, in the Command Window find A�1 and
X ¼ A�1Y .

(b) Now, redefine X, A, and Y such that the given equations can be written as XA ¼ Y ,
and manually find A�1 and X . Does the solution agree with the solution of part (a)?
How is the matrix A of part (a) related to the matrix A of part (b)?

23) For the matrix A given in Prob. 3.1, find jAj using (3.32).
24) Suppose every element of any row or any column of a matrix A is multiplied

by a scalar k, for example, B ¼
að1; 1Þ að1; 2Þ að1; 3Þ
k að2; 1Þ k að2; 2Þ k að2; 3Þ
að3; 1Þ að3; 2Þ að3; 3Þ

2

4

3

5 or

B ¼
að1; 1Þ k að1; 2Þ að1; 3Þ
að2; 1Þ k að2; 2Þ að2; 3Þ
að3; 1Þ k að3; 2Þ að3; 3Þ

2

4

3

5 then prove that jBj ¼ kjAj. Hint: Use (3.32).

25) Find the solution of A X ¼ Y by Gauss elimination and backward substitution, where

A ¼
1 �1 2

�2 1 0
�1 3 �2

2

4

3

5, Y ¼
2

�1
4

2

4

3

5

In the Command Window, create A and Y , and check your solution with the MATLAB
mldivide function.

26) Repeat Prob. 3.25 using Gauss–Jordan elimination.

Section 3.6
For Probs. 3.27 through 3.29, use the following matrices:

A ¼
2 �1 �2 3 1

�3 2 0 �3 2
1 3 �1 2 4
4 1 2 5 3

2

6

6

4

3

7

7

5

; X ¼
1
2
3
4

2

6

6

4

3

7

7

5

; Y ¼ 5 4 3 2 1½ �

27) (a) Using continuation notation for each row, give a MATLAB statement that creates
the matrix A.
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(b) Give MATLAB statements that assign to y the 3rd row of A; assign to x the 4th
column of A; create a 2� 3 matrix B from the 1st and 2nd row of A and the 3rd
through 5th columns of A; remove the 2nd column of B; create a matrix C, where the
1st row comes from row 4, columns 2 through 4 of A and the 2nd row comes from
row 1, columns 2 through 4 of A.

(c) Give MATLAB statements that assign to y the elements of Y shifted to the left by
one position and make the last element of y the first element of Y, which is called a
left rotation; use y to assign to Z a left rotation of A.

28) Give MATLAB statements that add (3/2) times the 1st row of A to the 2nd row of A; and
then add (�1/2) times the 1st row of A to the 3rd row of A, and then add (�2) times the
1st row of A to the 4th row of A.

29) Give MATLAB statements that (a) use the function cat to create a matrix B by
augmenting on the left the matrix A with the vector X , (b) use the function horzcat to
obtain the matrix B, (c) use the function vertcat to create a matrix C by augmenting at
the top the matrix A with the vector Y , (d) create the matrix D by sorting the columns of
A in descending order, (e) assign to the 10� 2 matrix E a reshaped matrix from A0,
(f) use the function repmat to assign to the matrix F the vector Y replicated six times.

30) Write a MATLAB program that creates and plots a piecewise linear function xðtÞ such
that

xðtÞ ¼

0; t < 0
t; 0 � t < 1
�t þ 2; 1 � t < 3
t � 4; 3 � t < 4
0; t � 4

8

>

>

>

>

<

>

>

>

>

:

Use a sampling rate of fs ¼ 10 samples/sec.

Section 3.7
For Probs. 3.31 through 3.33, use the following circuit:

R3 ¼ 100 W, R4 ¼ 1000 W, R5 ¼ 50 W, V1 ¼ 5 volts, V2 ¼ �3 volts

I1

I4

V4

V5

V2

R4

R5

I5

I2

V3R3

I3

(c)m1
m2

V1

(a)

(b)
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31) (a) To do a component analysis, use the labeled voltages and currents, and (1) apply
KVL to nodes (a), (b) and (c); (2) apply KCL to meshes 1 and 2; and apply Ohm’s
law to each resistor.

(b) Define a vector of unknowns, such as X 0 ¼ ½I1 I2 I3 I4 I5 V3 V4 V5�, and specify a
matrix A and a vector Y , such that AX ¼ Y duplicates all of the equations of part (a).

(c) Write a MATLAB program that assigns to MATLAB variables resistor and voltage
source values, creates A and Y , and solves for X and assigns to each component
current and/or voltage an element of X , for example, V3 ¼ X ð6Þ. Then, the pro-
gram should check that all KVL and KCL equations are satisfied.

32) (a) Let i1 and i2 be the currents in meshes m1 and m2, respectively, with reference
directions as shown in the figure. Apply KVL, while also using Ohm’s law, to the
two meshes, and obtain two equations in two unknowns.

(b) Define a vector I of unknown mesh currents, a matrix R, and a vector V , such that
the equation R I ¼ V duplicates the KVL equations of part (a).

(c) Write a MATLAB program that solves for the mesh currents and all of the com-
ponent currents and voltages.

33) Manually, find the sum of the powers delivered to the voltage sources in mW and the
sum of the powers delivered to all of the resistors in mW. Find the sum of the powers
delivered to all components in the circuit.

For Probs. 3.34 through 3.36, use the following circuits, where V1 ¼ 5 volts,
I2 ¼ 20 mA, R3 ¼ 300 W, and R4 ¼ 1000 W.

I1

I3

I3

R3 V3

m1 m1
m2 I2 V2

I3

R3 V3 I4

V4R4

V1

I1

R4

I4

I2V4
V2

V3

V1

R3

R4
(a)

(b)

m1
m2

I4

V4

(b)

(a)

(b)
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34) For the circuit with two sources, do a component analysis to find the voltage V4. Follow
the steps given in Prob. 3.31.

35) The two lower circuits each have a source removed. In the left circuit, the voltage
source was removed, and in the right circuit, the current source was removed. Apply the
superposition principle by doing a nodal analysis of the left circuit to find V4 and doing
a loop analysis of the right circuit to find V4. Then add these two voltages to find V4 in
the top circuit.

36) Repeat Prob. 3.35, but reverse the analyses methods.

Section 3.8
37) Determine whether the system of equations

0:5x1 � 0:75x2 ¼ 1:5
1:5x1 � 2:25x2 ¼ 2 ! AX ¼ Y

is consistent and dependent, consistent and independent, or inconsistent. Apply the
function rank to both A and the augmented matrix.

38) Give the supremum of the following sets of real numbers: (a) the set of negative
numbers, (b) the set x such that x2 < 3, and (c) the set f1� e�xg, for x > 0.

39) The p-norm of a vector x is jjxjjp. Find the p-norm jjyjjp of y ¼ kx, where k is a real scalar.

40) Draw the vector x ¼ �3
4

� �

in a 2-D Cartesian space. Find its magnitude and angle.

Then apply a linear transformation A to x to obtain a vector y, which is x rotated by
�p=4. Give A. Write a MATLAB program that shows both x and y in the same figure.

41) For the matrix A given in Prob. 3.1 write a MATLAB program to find the eigenvalues
and eigenvectors of A. For each eigenvalue l and corresponding eigenvector n verify
that A n ¼ l n. Then, your program should find the characteristic polynomial of A and
the inverse of A, using the modal matrix and the eigenvalues.

Section 3.9
42) For the matrices A and B given in Prob. 3.1 write a MATLAB program to do a singular

value decomposition to find U , S, and V . The program must verify that U and V are
unitary matrices. Then find the inverse of A using the function inv and the matrices U,
S, and V.

43) Write a MATLAB program to find the determinant and singular value decomposition
of the matrix

D ¼ 1þ e 1� e
2þ e 2� e

� �

for e ¼ 10�n; n ¼ 1; . . .; 5. What happens to the singular values as e decreases?
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Section 3.10
44) (a) Use the MATLAB function norm to find the l1; l2; l1; and Frobenius norms of the

matrix D given in Prob. 3.43 for each value of e. Manually find the l1 and l2 norms
and compare your results with those obtained with the function norm.

(b) Use the function norm to find the norms of the inverse of each matrix used in part
(a).

(c) Using the results of parts (a) and (b) find the condition number for each e and
for each norm. Tabulate results. Do the condition numbers vary appreciably with
different norms?

45) Consider the equation DX ¼ Y ¼ ½ ffiffiffi2p
1�0, where D is given in Prob. 3.43. To solve this

equation with a computer, an estimate of Y must be used, where the estimation error is
dY ¼ ½eps 0�0. Write a MATLAB program to find the effect of decreasing e on the least
upper bound of the relative change in X . For each e, approximately how many digits in
the solution will be inaccurate?

46) Prove that if the product of two matrices A and B exists, then jjABjj1 � jjAjj1jjBjj1.
Hint: Start with

jjABjj1 ¼ max
k

X

M

m¼1

X

N

n¼1
Aðk; nÞBðn;mÞ

�

�

�

�

�

�

�

�

�

�

and use the property that for any two numbers a and b, we have jaþ bj � jaj þ jbj.

Section 3.11
47) Write a MATLAB program that uses the function fsolve to find the time point where

e�t ¼ t2. Use a function m-file to define the function to be solved.
48) Write a MATLAB program and vector function to solve the system of nonlinear

equations given by

x21 þ 4x22 ¼ 8
x1x2 ¼ 2
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CHAPTER 4

Program Flow Control

A method to solve a problem may include alternative steps. Which next step to take may
depend on results from previous steps. A script that implements a solution method must be
able to follow alternative steps based on answers to questions like: Is a variable value
different from an allowed set of values? Is the result of a calculation zero? Do two variables
have the same value? Which of many variables has a particular value? and other questions.
The answers to these kinds of questions can influence what to do next in a script.

After you have completed this chapter, you will know how to

● test conditions and execute alternative script segments
● repeatedly execute a script segment until a condition occurs
● execute one of many script segments depending on input data or intermediate results

4.1 Relational Operators

Relational operators are used to compare variable values and produce a result that is true or
false. For example:

>> a = 2; b = 3; % assign values to two variables

>> c = a < b % compare a and b using the relational operator <, meaning less than

c = 1

Since the value of a is less than the value of b, the comparison, a< b, is true, and c is
assigned the value c ¼ 1, which is interpreted to mean that the comparison result is true. If
the value of a is, for example, 4, then the comparison result will be false and c is assigned
the value 0. Since the value of c is the result of a relational operation, its value is either 1



(meaning true) or 0 (meaning false), and the variable c is called a logical variable, not an
arithmetic variable.

Table 4.1 gives the relational operators that can be used in MATLAB�. Notice that the
relational operator, ¼¼ , which tests equality, is not an assignment operator. The syntax of
a relational expression is

left_expression relational_operator right_expression

The expressions on each side of a relational operator can be any MATLAB expressions that
evaluate to scalars, vectors, or matrices having the same dimension. A relational expression
produces a logical result, which can be assigned to a variable.

Example 4.1

>> a = 2; b = 3; c = -1; d = 4; % define four arithmetic variables

>> % arithmetic expressions on each side of a relational operator

>> e = sqrt(a^2+b^2) <= sqrt(c^2+d^2)

e = 1

>> % logical values can be used in arithmetic expressions

>> f = (a > b) +2*(c < d)

f = 2

>> % f, an arithmetic variable, can be 0, 1, 2 or 3

>> w = 2*pi; t = 0:0.1:1; % assign a frequency and a time range

>> % compare two vectors element-by-element

>> X = sin(w*t) <= cos(w*t) % X is a logical vector

X = 1 1 0 0 0 0 0 1 1 1 1

>> % matrices that have the same dimension can be used on each side

>> % of a relational operator

>> g = exp(c*t) .* sin(w*t); % define an arithmetic vector

Table 4.1 List of relational operators

Relational operator Description

< Less than
<¼ Less than or equal to
> Greater than
>¼ Greater than or equal to
¼¼ Equal to
~¼ Not equal to
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>> % check times at which exponentially decaying sinusoid is positive

>> Z = g > 0

Z = 0 1 1 1 1 1 0 0 0 0 0

>> % Z, a logical vector, results from comparing each element of g

>> % a logical vector can be used in arithmetic expressions

>> g_pos = Z .* g

g_pos =

Columns 1 through 11

0 0.5319 0.7787 0.7046 0.3940 0.0000 0 0 0 0 0

Suppose the variables a and b are real scalars. Then, one of the relations

a < b

a == b

a > b

must be true. However, if a and b are replaced by A and B, which are matrices with the same
dimensions, then the relation is applied to corresponding elements of A and B, and the result
is a logical matrix with the dimension of A, where some elements are logic 1, while others
are logic 0. Since A and B are matrices, then these relations do not produce a scalar logical
value. To test the equality of two matrices, use the built-in MATLAB function isequal, as in
c ¼ isequal(A,B), where c is a scalar logical variable. Table 4.2 gives some built-in
MATLAB functions that operate on matrices and return a logical value.

Table 4.2 Functions that return a logical value

Function Example, A and B are matrices, c is a logical scalar, and C is a logical matrix

isequal c ¼ isequal(A,B), are all corresponding elements equal
islogical c ¼ islogical(A), are all elements either 0 or 1
isinteger c ¼ isinteger(A), are all elements integers
isfloat c ¼ isfloat(A), are all elements floating point numbers
isempty c ¼ isempty(A), does A have no elements
true C ¼ true(M,N), C is an M � N logical matrix of all logic 1 values
false C ¼ false(M,N), C is an M � N logical matrix of all logic 0 values
logical C ¼ logical(A), convert numeric matrix A to logical matrix C
any c ¼ any(A), is any element of A nonzero or logical 1, if A is a vector

C ¼ any(A), if A is a matrix, then the function, any, works on each column of A, and C is
a vector. To obtain a scalar, use c ¼ any(any(A))

all c ¼ all(A), are all elements of A nonzero, if A is a vector
C ¼ all(A), if A is a matrix, then the function, all, works on each column of A, and C is a

vector. To obtain a scalar, use c ¼ all(all(A))
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Relational expressions evaluate to a logical value. Relational expressions can be com-
pounded with the logical operators and, or, xor, and not.

4.2 Logical Operators

Logical operators work on logical variables and produce a logical result. For example, the
expression (a < b) and (c ¼¼ d) can only be true if both relations are true. It is false if either
relation or both relations are false. In MATLAB the word ‘‘and’’ is replaced by the symbol
&, and a MATLAB assignment statement becomes e ¼ (a<b)&(c ¼¼ d). Depending on the
values of a, b, c, and d, e can be 0 or 1. Use parentheses to specify the sequence in which the
parts of an expression should be evaluated. In a compound expression, MATLAB evaluates
the arithmetic parts first, then the relational parts, followed by the logical parts, where
logical and has precedence over logical or.

MATLAB uses the symbols &, |, and ~ for the logical operators and, or, and not,
respectively, and a built-in function xor for the logical operator xor (exclusive or). Table 4.3
defines the logical operators, where a, b, and c are scalar logical variables.

Logical operators can work with numbers. If a number is 0, then it is used as if it is
logical 0, and if it is nonzero, then it is used as if it is logical 1.

Example 4.2

>> a = 0; b = 1; c = -3; % assign scalar values

>> a | b % both operands have logical values

ans = 1

>> b & c % c does not have a logical value, but it is used as if it is logic 1

ans = 1

>> ~c

ans = 0

>> xor(a,c) % produces a logic 1 only if one of the two inputs is logic 1

ans = 1

Table 4.3 Definition of logical operators

AND OR XOR NOT

a b c ¼ a & b a b c ¼ a | b a b c ¼ xor(a,b) a ~a
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 0
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MATLAB also has built-in logical functions for the logical operators, that is, and(a,b) ¼
a&b, or(a,b) ¼ a | b, and not(a) ¼ ~a. There is an option when using the & and | operators.
Consider c¼expression_a & expression_b. If expression_a evaluates to logic 0 then there is
no need to evaluate expression_b, since c¼0. To require that MATLAB evaluates expres-
sion_b only if expression_a is logic 1, use && instead of &. Similarly, consider
c¼expression_a | expression_b. If expression_a is logic 1, then there is no need to evaluate
expression_b, since c¼1. To require that MATLAB evaluates expression_b only if
expression_a is logic 0, use || instead of |. These options can reduce execution time.

Logical operators can work with matrices when both operands have the same dimension.
The logical operation is done element by element, and the result is a logical matrix. If one
operand is a scalar, then the elements of the other operand, a matrix, are used element by
element to produce a logical matrix. If A is a matrix of numbers, then ~A produces a logical
matrix where a nonzero element of A results in a logic 0 element in ~A. And, ~(~A) produces a
logical matrix, where a nonzero element of A results in a logic 1 element of ~(~A). The
built-in functions given in Table 4.2 can be applied to logical matrices.

Another useful built-in function is the function find to locate the elements of a matrix
that are nonzero. The function returns the indices numbered linearly down each column
starting at the left column.

Example 4.3

>> A = [1 -5 0; -5 0 4; 0 0 2] % assign a matrix

A =

1 -5 0

-5 0 4

0 0 2

>> % the indices for the first column are: 1, 2 and 3, and for the second column

>> % the indices are: 4, 5 and 6, and so on

>> find(A) % find the linear indices of all elements in A that are nonzero

ans = 1 2 4 8 9

>> B = [0 -1.8 -4 5.2 0.6 0 1];

>> I = find(B) % find the indices of the nonzero elements of a vector

I = 2 3 4 5 7

>> find(B,3,’first’) % find the first 3 indices of the nonzero elements in a vector

ans = 2 3 4

>> find(B,4,’last’) % find the last 4 indices of the nonzero elements in a vector

ans = 3 4 5 7

>> % logical and relational operations can be combined in compound expressions

>> find((B > -1) & (B < 1)) % find indices of the elements in the range: -1 < element < 1

ans = 1 5 6

>> % here, (B > -1) produces a logical vector, which is anded element by element

>> % with the logic vector produced by (B<1) to produce the logical vector that is

>> % the input to the find function
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Use parentheses to control the sequence in which logical operations are evaluated.
MATLAB evaluates an expression within the innermost parentheses first.

Example 4.4

>> a = 0; b = 1; c = 1; d = 0; % assign logical values

>> a & b | c & ~d % MATLAB evaluates the logical and operations first

ans = 1

>> % this results from: (a&b) | (c & ~d)

>> a & (b | c) & ~d

ans = 0

>> % MATLAB evaluates the term within parentheses first, and then left to right

>> % parentheses must be carefully used to achieve the desired overall logical

>> % operation

4.3 If–Elseif–Else–End

With the if–elseif–else structure, a block of statements is executed only if a condition is met.
The syntax of the most general form of this structure is

if expression_1

block #1 of statements

elseif expression_2

block #2 of statements
..
.
insert as many additional elseif and block of statements as needed

else

block #N of statements

end

where each expression must evaluate to a logical value. When MATLAB encounters the if
key word, it does the following:

1) Evaluate expression_1
2) If expression_1 is true, then execute block #1 statements, and continue execution after

the end statement
3) If expression_1 is not true, then skip the block #1 statements to the first elseif key word

and evaluate expression_2
4) If expression_2 is true, then execute block #2 statements, and continue execution after

the end statement
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5) If expression_2 is not true, then skip the block #2 statements to the next elseif key word;
if there is one, evaluate its expression, and so on

6) If all expressions are false, then MATLAB will skip to the else key word, if there is one,
and execute the block #N statements, after which execution continues after the end
statement.

It is useful to indent each block of statements to easily see that each if key word is matched
by an end key word. The elseif through the else sections are optional. Within each block of
statements there can be nested if–elseif–else–end structures. You can nest these structures as
deeply as needed. The simplest if structure is

if expression

block of statements

end

Here, if the expression is true, then the block of statements is executed, and if it is
false, then the block of statements is skipped and execution continues after the end
statement. If the block of statements can fit on one line, then the if statement could be, for
example

>> x = -6.8;

>> % limit x to the range: -5 to +5

if (x<-5) | (x>5), x = 5*sign(x); end % the built-in function sign returns -1, 0 or +1

>> x

x = -5

Example 4.5

Suppose we are given a data point x, where its value can be anywhere in the range from a to
b, written as ½a; b�. The brackets indicate that the end point values are included in this range.
If we write ða; bÞ, then both end points are not included in this range. It is desired to know
which of N sub-intervals of the range contains x. Let us segment this range into N segments
(sub-intervals). Each segment is called a bin. The width of each bin is w ¼ ðb� aÞ=N . If we
know which bin contains x, then we can say that x is known to be within its bin range. The
centers of the bins are given by

cðkÞ ¼ aþ ð2k � 1Þw
2
; k ¼ 1; . . . ; N ð4:1Þ

Suppose that all we know about x is that it is contained within a particular bin, say bin k.
Then, given k only, the best estimate of the value of x is cðkÞ, and the maximum estimation
error is w=2.

4.3 If–Elseif–Else–End 155



Instead of using bins that all have the same width, a bin center vector c with N
elements could be given, where the bin ranges are ½a; ðcð1Þ þ cð2ÞÞ=2�,
½ðcð1Þ þ cð2ÞÞ=2; ðcð2Þ þ cð3ÞÞ=2�, . . . , ½ðcðN � 1Þ þ cðNÞÞ=2; b� for a total of N bins over
[a,b] that have varying widths. Using bins that all have the same width, Prog. 4.1 finds
k ¼ 1; . . . ;N , the bin number, given x.

There is another purpose of this program. It illustrates writing a program that is reason-
ably robust. This means that input data or intermediate results within the program do not
cause a computer to become nonresponsive or generate error messages. A program may be
robust and not give correct (or expected) results, because its programming is based on an
incorrect algorithm. If a program executes to completion and the results are incorrect, then the
programmer (possibly working with a user) must interpret the results and make corrections.

To find a bin number, the range ½a; b� is normalized with

y ¼ N
x� a
b� a

Therefore, if x ¼ a, then y ¼ 0, and if x ¼ b, then y ¼ N , and the range of y is ½0;N �.
For a given x, k ¼ ceilðyÞ, where ceil is a built-in function that returns the next higher
integer.

% Program to find the bin number

clear all; clc

disp(’program to find the bin number of x in the range [a,b]’)

err = 0; % used for checking if an error occurred

a = input(’enter lower range limit: ’);

b = input(’enter upper range limit: ’);

if a < b % a robust program must check inputs

N = input(’enter the number of bins, greater than 0: ’); N=round(N);

if N > 0 % check input

x = input(’enter x: ’);

if x >= a && x <= b % check input

w = (b-a)/N; % get bin width

k = ceil((x-a)/w); % round to next higher integer

else

err=1; % x is out of range

end

else

err=2; % N is out of range

end

else

err=3; % lower limit not less than upper limit
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end

if ~err % was an error detected

fprintf(’out of N = %i bins, the bin number is: %i \n’,N,k)

elseif err == 1, disp(’x is out of range’)

elseif err == 2, disp(’N is out of range’)

elseif err == 3, disp(’lower limit not less than upper limit’)

end

Program 4.1 Program to find the bin number of x in the range [a,b].

Notice that all statements within matched if, else, elseif, and end key words are indented for
clarity.

4.4 For Loop

With the for loop structure, you can repeat executing a block of statements a predetermined
number of times. Its syntax is

for loop_index = first_index: index_increment: last_index

block of statements

end

Every for key word must be matched by an end key word. The block of statements can
include additional for loops. For loops can be nested. The block of statements can include
if–elseif–else–end structures and any other valid MATLAB statements. It is useful to indent
the block of statements to easily see the matched for and end key words. The loop_index
must be a MATLAB variable. The first_index value, index_increment value, and last_index
value can be expressions that evaluate to a real scalar.

For convenience, denote the loop_index variable by k, first_index by a, index_increment
by incr, and last_index by b. When MATLAB encounters the for key word it does the
following:
1) Check incr, and if incr is positive, check that a <¼ b, and if a <¼ b, then set k ¼ a.
2) Execute the block of statements.
3) Go back to the for statement and set k ¼ k þ incr, which gives the new loop_index

value.
4) If k <¼ b, then execute the block of statements again and go back to step (3).
5) If k > b, then skip the block of statements, and continue execution after the end

statement.

If a> b, then the block of statements is not executed, and execution continues after the end
statement.
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If in step (1), incr is negative, then check that a >¼ b, and if a >¼ b, then set k ¼ a,
and do the following:

2) Execute the block of statements.
3) Go back to the for statement and set k ¼ k þ incr, which gives the new loop_index

value.
4) If k >¼ b, then execute the block of statements again and go back to step (3).
5) If k < b, then skip the block of statements, and continue execution after the end

statement.

If a< b, then the block of statements is not executed, and execution continues after the end
statement.

You can increment or decrement through a range of loop_index variable values. You
can also specify the loop_index values with a vector, as in

for k = v

block of statements

end

where v is a vector and k is first set to v(1) and the block of statements is executed. Then,
k¼v(2) and the block of statements is executed, and this continues until all elements of v
have been used. With this structure you can assign to k any values, including complex
values, for example, v ¼ [1-j*2 2* pi �1 exp( j*pi/4) u], where u ¼ [1/3 j*3].

If you do not include an index_increment, as in

for k = a:b

block of statements

end

then a default index_increment value of 1 is used, which requires that a <¼ b.

Example 4.6

Let us take a look at the details of multiplying two matrices with for loops. Let A be an
(N�K) matrix, and let B be a (K�M) matrix. Consider C ¼ A*B with dimension (N � M).
Prog. 4.2 finds C with for loops and the built-in MATLAB matrix multiply operation.

% Program to multiply two matrices (C=A*B) using for loops

clear all; clc

N=3; K=4; M=2; % specify matrix dimensions

A=[1 0 2 -1;2 1 -1 0; 1 -1 1 2]; % specify two matrices
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B=[3 0; -1 5; 1 3; 2 1];

C = zeros(N,M); % preallocating space for C, which decreases execution time

t = tic; % tic, a built-in function, starts a stopwatch timer

for n = 1:N % index for rows of C

for m = 1:M % index for columns of C

sum = 0; % initializing the sum of products

for k = 1:K % get dot product of a row of A and a column of B

sum = sum + A(n,k)*B(k,m); % accumulate products

end

C(n,m) = sum; % save dot product of a row of A and a column of B in C

end

end

loops_compute_time = toc(t) % toc gets elapsed computing time since tic

C % display result

t = tic % start stopwatch timer

D=A*B; % check

MATLAB_compute_time = toc(t) % get elapsed computing time since tic

Program 4.2 Use of for loops to multiply two matrices.

Notice that all statements within matched for and end key words are indented for
clarity. Since the innermost loop has only a few statements, it could have been written as

for k = 1:K, sum = sum + A(n,k)*B(k,m); end

This for loop could have been replaced to find C(n,m) with

C(n,m) = A(n,:)*B(:,m); % dot product of row n in A and column m in B

The program output is shown below. It was rearranged to take less space.

loops_compute_time = 0.0024 secs

C =

3 5

4 2

9 0

MATLAB_compute_time = 1.4848e-005 secs

This example demonstrates a programming utility of MATLAB, that is, it works with
the matrix data type. Moreover, D ¼ A*B is executed in much less computing time than it
took to obtain C, even though space for C was preallocated.
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The built-in functions tic and toc were used in Example 4.6 to measure the execution
times of parts of Prog. 4.2. The time required to execute a part of a program depends on the
speed of your computer. There may be occasions when, for example, between different
program outputs, you want to control the time in between these program outputs. To do this,
use the built-in function pause(seconds), for example, pause(4.5), which causes a program
to stop execution for 4.5 secs. Use pause without an argument to stop a program and wait
for the user to strike any key before continuing.

If in a program the size of a matrix (or vector) is increased with each pass through a
loop, it is best to preallocate space for the largest size of the matrix before getting into the
loop. This will save much execution time.

Example 4.7

A signal is xðtÞ ¼ A sinðwtÞ, and we want to see how the values of xðtÞ are distributed over
one cycle. The signal value varies over the range �A to A, written as ½�A;A�. Let us
segment this range into N bins. The width of each bin is 2A=N , and using (4.1) the bin
centers are given by

cðkÞ ¼ �Aþ ð2k � 1Þ A
N
; k ¼ 1; 2; . . . ;N ð4:2Þ

Let w ¼ 2p rad/sec, and therefore one cycle takes T0 ¼ 1 sec. The signal xðtÞ will be
sampled at the rate fs ¼ 44;100 samples/sec. Prog. 4.3 counts the number of times that the
value of xðtÞ is in each of the N bins. The resulting distribution is called a histogram.

% Program to find the histogram of a sine wave

clear all; clc

% specify the data

A = 1; freq = 1; T0 = 1/freq; % specify amplitude and freuency

fs = 44100; T = 1/fs; % sampling rate and time increment

t = 0.0:T:T0-T; % time points over one cycle

x = A*sin(2*pi*freq*t); N_data = length(x); % get samples of x(t)

N = 40; w = 2*A/N; k = 1:N; % number of bins, bin width, and bin index

c = -A+(2*k-1)*w/2; % bin centers

bin = zeros(1,N); % preallocate space and initialize bin counts to zero

for n=1:N_data

k = ceil((x(n)+1)/w);

if k==0

k=1; % x=-1 belongs to bin 1

end

bin(k)=bin(k)+1; % increment the bin count

end
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bar(c,bin,1) % get a barchart plot

grid on

% the labels were entered using the plot editor

Program 4.3 Program to find the histogram of a sine wave.

The histogram is shown in Fig. 4.1. We see that a sine wave spends almost equal
amounts of time in segments from �0.8 to þ0.8, while nearly 20% of the time in a cycle is
spent within 5% of the maximum and minimum values.

This example introduced the built-in function bar, which plots a bar chart. Like the
built-in function plot, the first input gives horizontal plotting information, the bar centers,
the second input gives the bar heights, and the third input controls spacing between bars in
the plot, where a value less than 1 causes a space between bars. More detail will be given in
Chapter 9.

In the previous examples, the for loops always executed to completion. Sometimes
it is useful to terminate a for loop before it has iterated through its entire index range.

Example 4.8

Evaluate the sinðxÞ function using its Taylor series, which is given by

sinðxÞ ¼
X1
k¼0

ð�1Þkx2kþ1
ð2k þ 1Þ!

In a program, the upper summation limit cannot be infinity. We must either set the
upper limit to a large integer or use some way of stopping the computation after some

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

sine wave value

va
lu

e 
di

st
rib

ut
io

n

sine wave histogram

Figure 4.1 Histogram of a sinusoidal signal.
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predetermined precision has been achieved. When x is incremented by 2p the function
sinðxÞ repeats itself. Let us evaluate the function for 0 � x � 2p. Prog. 4.4 evaluates the
Taylor series and plots the result. The resulting approximation of the sin function is shown
in Fig. 4.2.

% Program to evaluate the sin(x) function using its Taylor series

clear all; clc

N = 101; % N values for x will be used

theta = linspace(0,2*pi,N); % assign values to theta

y = sin(theta); % use the built-in function sin to compare with the series

K = 100; % K terms in the Taylor series will be used

precision = 1e-6; % this is a precision of 0.0001 percent

y_approx = zeros(1,N); k_value = zeros(1,N); % preallocate space

for n=1:N % loop for each value in theta

x = theta(n);

% no need to evaluate the Taylor series for x=0

if x == 0.0, y_approx(n) = 0; k_value(n) = 0; continue; end

sum_T = 0; % initialize Taylor series sum

factorial_term = 1; % initialize (2k+1)!

minus_one_term = 1; % initialize (-1)^k

x_power_term = x; % initialize x^(2k+1)

x_square = x^2; % used to get next x^(2k+1), computed only once

next_term = minus_one_term*x_power_term/factorial_term; % k=0 term

for k=1:K % loop to accumulate series terms

sum_T = sum_T + next_term; % accumulate terms
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Figure 4.2 Sine function produced with its Taylor series.
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% prepare the next term in the Taylor series

factorial_term = factorial_term*(2*k)*(2*k+1); % update (2k+1)!

% uses only two multiplies to find each (2k+1)!

minus_one_term = - minus_one_term; % update (-1)^k

x_power_term = x_power_term*x_square; % update x^(2k+1)

% uses only one multiply to find each x^(2k+1)

next_term = minus_one_term*x_power_term/factorial_term;

% compare next term in Taylor series to sum and check precision

if abs(next_term) >= abs(precision*sum_T);

continue % continue this for loop

else

sum_T = sum_T + next_term; % include the next term

break % jump out of this for loop

end

end

% the size of y_approx is increased with each pass through this loop

% space for its largest size was preallocated before this loop

y_approx(n) = sum_T;

k_value(n) = k; % save index for which this for loop achieved precision

end

% finished evaluating the Taylor series for each element of theta

max_k_value = max(k_value) % get maximum number of for loop iterations

max_error = max(abs(y-y_approx)) % get maximum error

plot(theta,y_approx)

grid on

xlabel(’angle - radians’)

title(’Sine function with Taylor series’)

Program 4.4 Evaluate the sine function using its Taylor series.

The outer for loop in Prog. 4.4 iterates over the values in the vector theta. The inner for loop
in Prog. 4.4 is set up to iterate K ¼ 100 times. It computes each term in the Taylor series.
Since K ¼ 100 terms may not be necessary to achieve a desired precision, each new term is
checked to see if it has become small enough to make a negligible contribution to the
summation. If it has not become small enough, the built-in function continue is used to
continue the inner for loop iteration. If it has become small enough, then the built-in func-
tion break is used to exit the inner for loop in which break occurs. Some program para-
meters of interest are shown below. While the inner for loop could have iterated up to
K ¼ 100 times, the maximum number of iterations to achieve the prescribed precision of
0.0001% over a cycle of the sine function turned out to be k ¼ 22, and the resulting max-
imum error when compared to sinðxÞ using the MATLAB built-in function is 3.7e-6 percent.
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The use of tic and toc will show that the algorithm that MATLAB uses to evaluate the sine
function is much faster than a direct application of its Taylor series.

max_k_value = 22

max_error = 3.7065e-008

Some built-in functions concerned with controlling loop activity are given in
Table 4.4.

While loops will be discussed in the next section.

4.4.1 Probability
To consider some interesting problems, a brief background in probability will now be given.

Suppose we do an experiment, and the outcome is not predictable. Assume that an
outcome can be one particular event among a finite number of possible events. The prob-
ability of an outcome gives an assessment of how likely it is that a particular outcome will
occur compared to all other possible outcomes.

For example, consider tossing a coin. Each coin toss is an experiment, and there are two
possible outcomes or events, that is, heads or tails. Suppose you toss a coin N times. Of the
N tosses, let nH be the count of the outcome heads, and let nT be the count of the outcome
tails. The probability pH of heads is given by

pH ¼ lim
N!1

nH
N

ð4:3Þ

Table 4.4 MATLAB functions to exit for loops, while loops and user-defined functions

Function Brief description

continue When continue is encountered in a loop, remaining loop statements are skipped
and execution continues with the next iteration of the loop in which it
appears. In nested loops, continue causes the next iteration of the loop
enclosing it.

break When break is encountered in a loop, it terminates execution of the loop. In
nested loops, break cause an exit from the loop enclosing it only.

return When return is encountered in a user-defined function, it causes an exit from
the function. Statements in the function after the return statement are not
executed. Also, return terminates the keyboard mode which will be discussed
in Chapter 10.
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and for tails, the probability pT is given by

pT ¼ lim
N!1

nT
N

ð4:4Þ

Since N ¼ nH þ nT , we have a fundamental property of the probabilities of all possible
outcomes, which in this case is

pH þ pT ¼ lim
N!1

nH
N

þ lim
N!1

nT
N

¼ 1

For a fair coin we expect that pH ¼ 0:5 and pT ¼ 0:5.
If there are K possible outcomes of an experiment, and pk ; k ¼ 1; 2; . . . ;K is the

probability of each outcome, thenXK
k¼1

pk ¼ 1 ð4:5Þ

Practically, we cannot do an experiment an infinite number of times to find a probability
by counting. However, if we make N large enough, then we might get useful values for the
probabilities. The probability of an impossible outcome is zero, while the probability of a
certain outcome is one. For the probability p of any outcome we have 0 � p � 1. Notice that
if an outcome occurs only once in an infinite number of trials of an experiment, then its
probability is zero. This means that if the probability of an outcome is zero, we cannot be
certain that it will never occur. Similarly, if the probability of an outcome is one, then we
cannot be certain that it did not occur at least once.

We can use the MATLAB built-in function rand to experimentally find probabilities
associated with the outcomes of some experiments. In MATLAB, each rand function
evaluation returns a number in the range 0 ! 1 (written as (0,1)), which we cannot predict,
and where all numbers in this range are equally likely, which means that the function rand is
a uniformly distributed random number generator. The MATLAB statement

x = rand; % 0 < x < 1

assigns to x a number in the range (0,1). Each use of rand returns a number that does not
depend on numbers obtained previously.

A pseudorandom number generator is an algorithm for generating a sequence of num-
bers that approximates the properties of random numbers. The sequence is not truly random.
The function rand is a pseudorandom number generator. A careful mathematical analysis is
required to have any confidence that a pseudorandom number generator produces numbers that
are sufficiently random to meet the needs of a particular application. Nevertheless, it is used in
simulations to study the behavior of systems in which random events can occur.

The algorithm for the function rand is initialized the same way each time a MATLAB
session is started. Therefore, when you start a MATLAB session, rand will produce the same
random sequence of numbers that it produced the previous time when a MATLAB session
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was started. During a MATLAB session you can reset the random number generator to the
default MATLAB start-up state with the statement rng(‘default’). Use the MATLAB help
facility to find out more about the rand function.

Example 4.9

Let us simulate the coin toss experiment to find pH and pT . This will be done by counting the
number of times each outcome occurs over a large number of coin tosses. Prog. 4.5 simu-
lates the coin toss experiment.

clear all; clc;

rng(’default’); % initialize random number generator to its default state

total_tosses = 1e6; % specify the total number of coin tosses

heads = 0; tails = 0; % initialize outcome counters

for n = 1:total_tosses

% do experiment

x = rand; % get a random number distributed from 0 to 1

if x < 0.5 % let this result be analogous to heads occurring

heads = heads + 1;

else % if not heads, then tails

tails = tails + 1;

end

end

disp(’probability of heads: ’);

pH = heads/total_tosses

disp(’probability of tails: ’);

pT = tails/total_tosses

Program 4.5 Using a random number generator to simulate tossing a coin.

The program output is shown below:

probability of heads: pH = 0.4995

probability of tails: pT = 0.5005

If we increase the number of tosses, then it is likely that pH and pT will each be closer
to 0.5. However, this does not mean that as the total number of tosses N is increased,
then the number nH of heads or the number nT of tails will ever become exactly N=2.
Since pH is essentially the same as pT, the outcomes heads and tails are equally likely.
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The mean (average) value of the numbers produced by rand can be found experimen-
tally with

rng(’default’) % initialize random number generator

N = 1e7; % specify the number of random numbers to get

% obtain a vector of N random numbers uniformly distributed from 0 to 1

x = rand(1,N);

x_mean = sum(x)/N % find the mean value

% this can be obtained with the MATLAB function mean to get x_mean=mean(x)

x_mean = 0.5000

With the function rand we can obtain uniformly distributed random numbers over any
range (a,b). The span of this range is (b�a). Since the range of x ¼ rand is (0,1), the range
and span of y ¼ (b�a)x are (0,(b�a)) and (b�a), respectively. Therefore, the range of
y ¼ (b�a)x þ a is (a,b).

Example 4.10

To obtain random numbers x with a uniform distribution over the range �5 < x < þ5,
use

>> N = 1e7; % specify the number of random numbers

>> % get a vector of N uniformly distributed random numbers between 0 and 1

>> x = rand(1,N);

>> x = 10*x - 5; % multiply by (5-(-5))=10 and translate by -5

>> x_mean = mean(x) % find the mean value

x_mean = 2.9411e-006

>> % ideally, the mean value of x should be x_mean = 0.

>>

Let us see the first 100 points in x with

>> y = x(1:100); % get first 100 points from x

>> y = y – mean(y); % make the mean of y zero

>> plot(y,’- .’); grid on; xlabel(’index’); ylabel(’random signal’)

>> % within single quotes, the dash causes the plot function to connect the points with

>> % straight lines, and the period causes the plot function to put a dot at each point

More about plotting will be given in Chapter 9. Fig. 4.3 shows a plot of some points from x.
It looks like a noise signal with a zero mean value.
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An important communications problem occurs due to noise. This is because a received
signal xðtÞ is a noise-corrupted version of a transmitted signal sðtÞ, such as

xðtÞ ¼ sðtÞ þ nðtÞ

where nðtÞ is additive noise. For example, the signal xðtÞ could be the playback from an old
audio recording, and sðtÞ is the audio signal that was originally recorded. Or, xðtÞ could be a
received cell phone signal, and sðtÞ is the signal that was transmitted from a distant location.
We are interested to design a process that performs as depicted in Fig. 4.4, where the process
output ŝðtÞ is an estimate of sðtÞ.

To design an estimation process, it will be useful to do simulation studies with a
computer to test the performance of various process designs and noise signals. This will
require simulating the noise signal with a model of noise, such as the noise signal shown in
Fig. 4.3. Such simulations are often done with MATLAB.

MATLAB also includes the two built-in functions randi and randn. The function randi
produces uniformly distributed random integers. For example, A ¼ randi(imax,M,N) is an
(M�N) matrix of random integers, where each element in A is in the range 1 to imax, while
x ¼ randi(imax) is a scalar integer in the range 1 to imax.

Process that operates on
its input x(t) to produce an

estimate of s(t)
ŝ(t)x(t)

Figure 4.4 Pictorial of a desired operation.
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Figure 4.3 A random signal.
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Before describing the random numbers produced by randn, let us study the random
numbers it produces by finding the mean, variance, and a histogram. The variance,
denoted by s2, of a set of random numbers is a measure of their volatility. The variance is
computed with

s2 ¼ 1
N
XN
n¼1

ðxðnÞ � xÞ2 ð4:6Þ

where x denotes the mean of x, and s is called the standard deviation. More specifically,
the variance (and standard deviation) of a set of random numbers is a measure of the degree
to which the random numbers in the set deviate away from their mean. MATLAB has a
built-in function, var, that computes the variance. A histogram of a set of random numbers
shows how the numbers are distributed.

The built-in function hist returns a vector, the elements of which are counts of the
number of times the elements of the vector of random numbers have values within the range
of each of the bins. We could have used the hist function in Example 4.7.

Example 4.11

Prog. 4.6 finds the mean, variance, and a histogram of the numbers obtained with randn.

% Histogram of numbers produced by the psuedo random number generator randn

clear all; clc

N = 1e7; % specify the number of random numbers to get

x = randn(1,N); % obtain a vector of N random numbers

x_mean = mean(x) % find the mean value

x_var = var(x) % get the variance of the random numbers in x

bin_width = 0.25; % specify a bin width less than 1

N_pos_x_bins = 25; % specify number of bins for positive x(n) values

pos_x_bin_center = N_pos_x_bins*bin_width; % right most bin center

% locate equally spaced bin centers

bin_centers = -pos_x_bin_center: bin_width : pos_x_bin_center;

fprintf(’using %i bins \n’,length(bin_centers))

x_hist = hist(x,bin_centers); % return a vector with the count in each bin

% prob_x = x_hist/N; % probability of x within each bin

bar(bin_centers,x_hist,1,’w’); % full bar width; and white color

axis([-4 4 0 1.05*max(x_hist)]); grid on

xlabel(’random number value’); ylabel(’bin count’)

title(’Distribution’);

bins_to_1 = round(1/bin_width); % number of bins accounting for 0<x<1
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index_to_center = N_pos_x_bins + 1; % index of distibution center

kp1 = index_to_center+(bins_to_1 - 1); % index in x_hist for x = 1

km1 = index_to_center-(bins_to_1 - 1); % index in x_hist for x = -1

prob_minus_to_plus_sigma=(x_hist(km1-1)/2 +sum(x_hist(km1:kp1))+ ...
x_hist(kp1+1)/2)/N

% this is the probability that a value of x will be in the range –sigma to

% +sigma, where sigma is the standard deviation. With randn, sigma = 1

% additional plot editing was done in the Figure Window

Program 4.6 Script to find the mean, variance, and a histogram of a set of numbers.

The program output, which is given below, shows that the built-in function randn produces
random numbers having a zero mean and a variance of one. The standard deviation is 1, and
within�1 standard deviation 67.92% of the returned values occur. The histogram has a bell-
shaped appearance. A normally (also called Gaussian) distributed random number sequence
has these properties.

x_mean ¼ �5.9235e-004

x_var ¼ 0.9993

using 51 bins

prob_minus_to_plus_sigma ¼ 0.6792

The function randn is designed to be a normally distributed pseudorandom number
generator, and produces numbers with zero mean and unity variance. With y ¼ axþ b you
can produce a normally distributed random number sequence y having a prescribed mean
and variance, where s2y ¼ a2 and y ¼ b.
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Figure 4.5 Distribution of random numbers obtained with the function randn.
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If each bin count is divided by the total of number of samples N used to get the
histogram of Fig. 4.5, then, like (4.3) and (4.4), we get the probability that a number
will occur in a particular bin. Designate the bin counts for positive (negative) numbers
by bk (b�k), respectively. Then, for example, b0 is the bin count for
�0:125 � x < 0:125, and the probability that an experiment outcome (invocation of
randn) will result in a value of x within the range �0:125 � x < 0:125 is
p0 ¼ b0=N ’ 10e5=1e7 ¼ 0:1. The function randn produces numbers in the range
�1 < x < þ1, where a large value of absðxÞ is very unlikely, and like (4.5) we have
that

Xþ1

k¼�1
pk ¼ 1 ð4:7Þ

4.4.2 Median Filtering
In signal processing, it is often desirable to perform some kind of noise reduction on a signal
(one-dimensional or 1-D signal) or an image (2-D signal). Median filtering is a digital
signal processing algorithm that is easy to apply and often used to reduce noise. For
example, an old audio recording, where there is crackling noise, can be improved by median
filtering. Median filtering of a speech signal is sometimes a pre-processing step before
speech recognition algorithms are applied. Median filtering is widely used in digital image
processing.

The median filter concept is actually simple. Let us see how it works with a demon-
stration. Suppose a signal s(t) is sampled, like in (3.33), to produce the number sequence
(discrete time signal) x ¼ [5 6 47 7 6 �29 4], where x(1)¼s(0), x(2)¼s(T), x(3)¼s(2T),
and so on. The third and sixth elements of x appear to be unusual, and they are called
outliers. Let y denote the number sequence produced by median filtering x. For element n of
y, use x(n�1), x(n), and x(nþ1). This is called a K¼3 element window, w ¼ [x(n�1) x(n)
x(nþ1)]. Sort w into ascending values to obtain a k¼3 element vector u. Now set y(n) to the
middle element of u. Then, increment n by 1, get the next w, and repeat to get the next y. For
example:

n ¼ 1, w ¼ [5 5 6] ? sort ? u ¼ [5 5 6], y(1)¼u(2)¼5. There is no x(0); x(1)
was repeated.

n¼2, w¼[5 6 47] ? sort ? u¼[5 6 47], y(2)¼6
n¼3, w¼[6 47 7] ? sort ? u¼[6 7 47], y(3)¼7
n¼4, w¼[47 7 6] ? sort ? u¼[6 7 47], y(4)¼7
n¼5, w¼[7 6 �29] ? sort ? u¼[�29 6 7], y(5)¼6
n¼6, w¼[6 �29 4] ? sort ? u¼[�29 4 6], y(6)¼4
n¼7, w¼[�29 4 4] ? sort? u¼[�29 4 4], y(7)¼4. There is no x(8); x(7) was

repeated.
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The outliers in x have been removed by median filtering. The signal y is less erratic (noisy)
than the signal x. Median filtering works best to replace outliers with a neighboring element
when other consecutive elements in x have similar values.

The window w is said to slide across the signal x. For this demonstration K¼3 was
used. We could have used K¼4, in which case w is set to w¼[x(n�2) x(n�1) x(n) x(nþ1)],
and u will not have a middle element. In this case, set y(n)¼(u(n�1)þu(n))/2. Or, we can
apply the K¼3 median filter again to y, and the result will be even less noisy and most likely
too different from x without the noise. The built-in MATLAB function median finds the
median of a vector w.

Example 4.12

For an 88 key piano, let n ¼ 1; 2; . . . ; 88 be the key number from the lowest to the highest
frequency tone. The frequency (pitch) f of the tone produced by key n is given by

f ¼ 440ð21=12Þðn�49Þ Hz ð4:8Þ

For n ¼ 40 the note is middle C, and for n ¼ 49, the note played is A440.
Prog. 4.7 consists of two parts. In the first part, a user can enter an integer n, and then

the program uses (4.8) to find the frequency of the note. A sinusoid at this frequency is then
sampled at the rate of 44,100 samples/sec for 5 sec. To make the sound produced more
realistic, the sampled sinusoid is multiplied by the pulse shown in Fig. 3.3, which becomes
the envelope of the sound. Therefore, the sound increases quickly and decays slowly. To
hear the sound, a two column (two channel stereo) matrix must be set up, and then, the built-
in MATLAB functions sound or soundsc can be used to send the matrix to the audio play
device of the computer. You can also use the built-in MATLAB function wavwrite, which
creates a Windows WAV file that can be played by any multimedia program. The syntax for
wavwrite is wavwrite(x,fs,‘name.wav’), where x is a two-column matrix and fs is the sam-
pling rate (also called sampling frequency), and name can be replaced by a name you can
choose.

% Program to sound an 88-key piano

% Keys are identified by an integer n, n = 1 to 88 from left to right

% Only the tone at the fundamental frequency (pitch) will be sounded

clc; clear all

fs = 44100; % this is the sampling rate used to produce audio CDs.

disp(’Play a note on a virtual piano.’)

n = input(’enter an integer from 1 to 88 of a piano key: ’); % using n=40
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n = round(n); % make sure entry is an integer

if n < 1, n = 1; end % keep n in range

if n > 88, n = 88; end

f = 440*(2^(1/12))^(n-49); % the frequency in Hz of the key

w0 = 2*pi*f; % convert Hz to rad/sec

T0 = 5; % the tone will be sounded for 5 secs

delta_t = 1/fs; % the time increment between sound samples

N = round(T0/delta_t); % integer number of samples

time = delta_t*[0:N-1]; % N time points where sound is sampled

p_key = sin(w0*time); % get samples of sound, limit amplitude to +/-1

% get an envelope

load(’pulse.mat’,’x’) % retrieve the pulse that was built in Example 3.15

p_key = x .* p_key; % multiply the sound by an envelope, this is optional

stereo_sound = [p_key’ p_key’]; % form left and right channels

sound(stereo_sound,fs) % send sound to audio play device

Program 4.7 (first part) Sound a piano key.

If the note produced in the first part of Prog. 4.7 comes from an old recording, then it
will likely contain some spike-like noise. The second part of Prog. 4.7 simulates the addition
of noise and spike noise, which occurs randomly in the sound, and then it applies median
filtering to reduce the spike noise contribution to the sound.

% Example of median filtering

noise = 0.1*randn(1,N); % using the normal random number generator

p_key = p_key + noise; % add noise to signal

% generating randomly positioned spikes

increment = 100; % add noise spike within every 100 samples of p_key

spikes = zeros(1,N); % zero out and preallocate space

for k = 1:increment:N;

location = floor(k + rand*increment); % use rand to locate spike

if rand > 0.5; % use rand to determine sign of the noise spike

sign = +1.0;

else

sign = -1.0;

end

spikes(location) = sign*2.0*rand; % use rand to determine spike value

end

p_key = p_key + spikes; % add spike noise to signal
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plot_points = 1500; range = 5e4:5e4+plot_points-1; % plotting few points

t_interval = time(range); y = p_key(range);

plot(t_interval,y);

axis([t_interval(1) t_interval(plot_points) -3 3])

title(’Segment of note middle C plus random noise plus random spikes’);

xlabel(’seconds’);

ylabel(’amplitude’);

grid on

max_value = max(abs(p_key));

% limit sound to +/- 1, required by audio device

normalized_p_key = p_key/max_value;

stereo_sound =[normalized_p_key’, normalized_p_key’];

sound(stereo_sound,fs)

% median filtering sound

filtered_p_key = zeros(1,N); % preallocate space

K = 3; % use 3 element median window

for k = 1:N

if k == 1

w = [p_key(1) p_key(1) p_key(2)];

filtered_p_key(1) = median(w);

elseif k == N

w = [p_key(N-1) p_key(N) p_key(N)];

filtered_p_key(N) = median(w);

else

w = [p_key(k-1) p_key(k) p_key(k+1)];

filtered_p_key(k) = median(w);

end

end

y = filtered_p_key(range); % plot a segment of filtered_p_key sound

figure % causes function plot to open a new figure window

plot(t_interval,y)

axis([t_interval(1) t_interval(plot_points) -3 3])

title(’Segment of median filtered note middle C’);

xlabel(’seconds’);

ylabel(’amplitude’);

grid on

max_value = max(abs(filtered_p_key));

% limit sound to +/- 1, required by audio device

normalized_filtered_p_key = filtered_p_key/max_value;
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stereo_sound =[normalized_filtered_p_key’, normalized_filtered_p_key’];

sound(stereo_sound,fs)

Program 4.7 (second part) Median filter piano key sound.

Fig. 4.6 shows note middle C with noise and spike noise, and the sound produced by this
signal is awful. Fig. 4.7 shows the result of median filtering to remove spike noise.

The signal shown in Fig. 4.7 still has some noise in it. However, additional digital signal
processing can be performed to reduce the noise further.
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Figure 4.6 Note middle C with noise and spike noise.
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Figure 4.7 Median-filtered note middle C.
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4.5 While Loop

With the while loop structure you can repeat executing a block of statements until an
expression is no longer true. Its syntax is

while expression

block of statements

end

Every while key word must be matched by an end key word. The block of statements can
include additional while loops and for loops. While loops can be nested. The block of
statements can include if–elseif–else–end structures and any other valid MATLAB state-
ments. It is useful to indent the block of statements to easily see the matched while and end
key words. The expression must evaluate to a logical or real scalar. If it evaluates to a real
number, then it is treated as a logical value.

When MATLAB encounters the while key word, it does the following:

1) Evaluate the expression
2) If the expression is true, then execute the block of statements
3) Go back to the while statement and continue with step 1
4) If the expression is not true, then skip the block of statements, and continue execution

after the end statement

A while loop can be made to work like a for loop. For example:

n = 1; N = 10;

while n <= N
..
.

n = n +1;

end

Here, the statements within the while loop will be executed N times. However, this is
not the intention of including a while loop structure in addition to a for loop structure
in the programming language. Usually, a while loop structure is used when we do not
know ahead of time how many loop iterations are necessary to accomplish some task.
For example:

err = 0;

while ~err

block of statements

end
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Within the block of statements, some condition must be tested that will either leave err
unchanged and the loop continues to iterate or set err to err ¼ 1, which causes the while loop
to terminate.

Example 4.13

The inner for loop in Prog. 4.4 of Example 4.8 could be replaced with

k = 1; negligible = 0;

while ~negligible

sum_T = sum_T + next_term; % accumulate terms

% prepare the next term in the Taylor series

factorial_term = factorial_term*(2*k)*(2*k+1); % update (2k+1)!

% uses only two multiplies to find each (2k+1)!

minus_one_term = - minus_one_term; % update (-1)^k

x_power_term = x_power_term*x_square; % update x^(2k+1)

% uses only one multiply to find each x^(2k+1)

next_term = minus_one_term*x_power_term/factorial_term;

% compare next term in Taylor series to sum and check precision

if abs(next_term) < abs(precision*sum_T);

sum_T = sum_T + next_term; % include the next term

negligible = 1; % no need for additional loop iterations

end

k = k + 1; % count iterations required to achieve precision

end

The if–end block of statements checks a condition that can change the result of evaluating
the while expression.

The break and continue commands can also be used in while loops. They work the same
way as in for loops. If a while loop expression is always true, then, for example, we have

while 1

block of statements

end

The block of statements must include a test of some condition that can cause a break,
otherwise the loop will execute endlessly. You can terminate a MATLAB program by
activating the Command Window and depressing Ctrl and C on the keyboard.
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4.6 Method of Steepest Descent

Consider the problem of finding the value of x that minimizes a function f ðxÞ, assuming that
f ðxÞ has a minimum. Denote the value of x that minimizes f ðxÞ by xopt. Therefore,
f ðxoptÞ � f ðxÞ, for x 6¼ xopt. A method to find xopt is based on the drawing shown in Fig. 4.8.
We can see three minima in Fig. 4.8. At x ¼ xopt, f ðxÞ has its global minimum (also called the
optimizer of f ðxÞ), and the other two minima at x ¼ xa and x ¼ xb are called local minima.

Suppose xn is a guess of xopt. In Fig. 4.8, xn is to the right of xopt, where the slope of f ðxÞ
at x ¼ xn is positive, as indicated by the tangential line. Therefore, if the slope of f ðxÞ at the
guess xn is positive, then we know that we must decrease this guess. Similarly, if xn is to the
left (but not too far) of xopt, then the slope of f ðxÞ at xn will be negative, and we know that
we must increase this guess. Therefore, given a guess xn of xopt, adjust the value of xn to
obtain the next guess xnþ1 with

xnþ1 ¼ xn � mf 0ðxnÞ ð4:9Þ

where m, called the step size, is a small positive number that we must pick and f 0ðxnÞ is the
derivative of f ðxÞ, assuming it exists, evaluated at x ¼ xn.

To find a value of x that maximizes a function f ðxÞ, change (4.9) to

xnþ1 ¼ xn þ mf 0ðxnÞ ð4:10Þ

The recursion, (4.9), of the method of steepest descent is operated for n ¼ 0; 1; 2; . . .,
where x0 ¼ initial guess of xopt. If x0 is within the vicinity of xopt and m is small enough,
then limn!1 xn ¼ xopt, since as xn ! xopt, f 0ðxnÞ ! 0. Selecting a suitable value of m is a
matter of trial and error, and depends on the behavior of f ðxÞ as well as computation pre-
cision. If the step size is too big, then the next value xnþ1 may be further away from xopt than
xn, or even in the vicinity of a local minimum, such as xa or xb in Fig. 4.8, in which case
(4.9) may never converge to xopt. If the step size is too small, then (4.9) will require many
iterations (much computing time) to converge. The recursion (4.9) (or (4.10)) is operated
until jxnþ1 � xnj < e, for some desired precision e.

f(x)

xxa xb xopt xn

Figure 4.8 A function with a minimum at x ¼ xopt.
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We do not have to keep the sequence xn, n ¼ 0; 1; 2; . . .. Equation (4.9) could be an
update of xold to obtain xnew, as in

1) set m to a small positive number and set xold to an initial guess of xopt.
2) compute xnew ¼ xold � mf 0ðxoldÞ.
3) if jxnew � xoldj � e, then xold ¼ xnew and repeat step 2, else xopt ffi xnew and stop.

Example 4.14

Find the value of t where e�t ¼ t2. This is an example of a problem where the method of
steepest descent, or another kind of optimization method, can be employed, if we convert
the given problem to an optimization problem. If it exists, we can find the solution, call it
topt, by minimizing f ðtÞ ¼ ðe�t � t2Þ2, where f ðtÞ � 0 for all t, and the minimum value is
f ðtoptÞ ¼ 0. The square of ðe�t � t2Þ is used to ensure that f ðtÞ is nonnegative. With
f 0ðtÞ ¼ 2ðe�t � t2Þð�e�t � 2tÞ, Prog. 4.8 finds topt. The results follow the program.

% Application of the method of steepest descent to solve the nonlinear

% algebraic equation: exp(-t) = t^2

clear all; clc; format long e

precision = 1e-8; % desired accuracy

mu = 1e-4; % step size

t_old = 1.0; % initial guess of the optimizer

f_of_t_initial_guess = (exp(-t_old)-t_old^2)^2

f_prime = 2*(exp(-t_old)-t_old^2)*(-exp(-t_old)-2*t_old);

t_new = t_old - mu*f_prime;

n_iterations = 1; % initialize an iterations counter

max_iter = 1e5; err = 0; % limit the number of iterations

while abs(t_new - t_old) >= precision % check for convergence

n_iterations = n_iterations + 1; % count iterations of algorithm

if n_iterations > max_iter, err = 1; break; end

t_old = t_new; % update recursion

% get new solution

f_prime = 2*(exp(-t_old)-t_old^2)*(-exp(-t_old)-2*t_old);

t_new = t_old - mu*f_prime;

end

if err == 0

t_opt = t_new

f_of_t_opt = (exp(-t_opt)-t_opt^2)^2

fprintf(’Algorithm required: %6i iterations to converge\n’,n_iterations)

else
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fprintf(’Algorithm exceeded: %6i iterations\n’,max_iter)

end

Program 4.8 Application of the method of steepest descent.

f_of_t_initial_guess = 3.995764008937280e-001

t_opt = 7.034812353615486e-001

f_of_t_opt = 6.900847459766987e-010

Algorithm required: 13347 iterations to converge

The method of steepest descent has some drawbacks. It is slow to converge, which can
be improved by increasing the step size. It requires a derivative of the function to be opti-
mized, which for some problems may be practically impossible to obtain. However, it and
its variations are widely applied, because it is a simple algorithm to implement. The required
derivative could be approximated with, for example

f 0ðxnÞ ’ f ðxn þ h=2Þ � f ðxn � h=2Þ
h

ð4:11Þ

where h is some small positive number, for example, some h < m. Then, the method requires
more function evaluations, which can increase computing time. Also, once xn is close to the
optimizer, (4.11) will give small and erratic f 0ðxnÞ values, making further convergence
unlikely. However, this depends on the behavior of f ðxÞ and the desired precision.

TheMATLABbuilt-in function fminsearch, which is a function function, is a derivative-
free optimization method (Nelder andMead, 1965), whichmakes it attractive to use. A syntax
is given by

[x_opt,f_opt] = fminsearch(fun,x_initial_guess)

where fun is a function handle. For example, fun could be @myfun, where myfun is the
name of a function m-file, or it could be a handle of an anonymous function. Use doc
fminsearch for more syntax options.

Let us apply fminsearch to the problem of Example 4.14. An anonymous function is
given to define f ðtÞ as follows:

>> format long e

>> f_of_t = @(t)(exp(-t)-t^2)^2; % define an anonymous function

>> f_of_t(1)

ans = 3.995764008937280e-001

>> [t_opt f_opt] = fminsearch(f_of_t,1)

t_opt = 7.035156249999998e-001

f_opt = 8.403998856470625e-009
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While fminsearch is easy to use and can give good results, it can also require many
function evaluations or never converge to useful results. This depends on the behavior of the
function to be optimized and the initial guess. The function f ðtÞ of Example 4.14 has only one
minimum, the global minimum, and both methods of optimization used here worked very
well regardless of the initial guess. However, there are no known methods of optimization
that can with certainty find the global minimum of a function in finite time (Li, Priemer and
Cheng, 2004). This depends on the behavior of the function, and it is important to provide an
initial guess in the vicinity of the optimizer.

4.7 Numerical Integration

Given is some function xðtÞ that is finite for �1 < t < þ1. To find yðtÞ given by

yðtÞ ¼
ðt

�1
xðtÞ dt ¼

ða
�1

xðtÞ dtþ
ðt
a

xðtÞ dt; t > a ð4:12Þ

is a common problem. We can write (4.12) as

yðtÞ ¼
ðt
a

xðtÞ dtþ yðaÞ; t � a ð4:13Þ

where yðaÞ is called the integration constant. If t ¼ a, then (4.13) becomes
yðt ¼ aÞ ¼ yðaÞ.

More specifically and for example, recall Fig. 2.3, where

dqðtÞ
dt

¼ iðtÞ

If we integrate this equation, we get

qðtÞ ¼
ðt

�1
iðtÞ dt ¼

ðt
a

iðtÞ dtþ
ða

�1
iðtÞ dt ¼

ðt
a

iðtÞ dtþ qðaÞ; t � a ð4:14Þ

The second term qðaÞ is the amount of charge that has passed through the wire cross-section
from t ¼ �1 until t ¼ a, and the first term is the additional amount of charge that has
passed through the wire cross-section from t ¼ a until sometime t, where t > a.

Depending on xðtÞ in (4.13), it may be difficult, if not impossible, to find a function for
yðtÞ, and we must resort to finding yðtÞ for a set of discrete time points with some numerical
integration method. Sometimes we do not know xðtÞ for all t. Instead, we only know xðtÞ for
a set of discrete time points.
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Without loss of generality, let a ¼ 0, and set the upper integration limit to t ¼ T0.
Consider the integral

A ¼
ðT0
0

xðtÞ dt ð4:15Þ

where A is the area under the curve xðtÞ from t ¼ 0 until t ¼ T0.

4.7.1 Euler’s Method
Let us segment the time range ½0; T0� into N sub-intervals, where the width of each sub-
interval is T ¼ T0=N . This is depicted in Fig. 4.9. The value of xðtÞ at the beginning of each
sub-interval is xðnTÞ; n ¼ 0; 1; . . . ;N � 1. Euler’s method approximates the area under the
curve in each sub-interval by a rectangular area given by the width T times the value of xðtÞ
at the beginning of the sub-interval. The integral of (4.15) is approximated by summing all
of the rectangular sub-interval areas to get

A ’
XN�1
k¼0

xðkTÞ T ¼ T
XN�1
k¼0

xðkTÞ ð4:16Þ

where xððN � 1ÞTÞ is the value of xðtÞ at the beginning of the last sub-interval. The
approximation gets better as N is increased, which makes T smaller.

In view of (4.16), let

SðnÞ ¼
Xn�1
k¼0

xðk TÞ

and then A ’ T SðNÞ. For some n, assume that we have xðkTÞ; k ¼ 0; . . . ; n� 1, which
means that we can find SðnÞ. When xðnTÞ becomes available, we can update SðnÞ to get
Sðnþ 1Þ with

x(t)

t

x(T0 = NT )

x((N−1)T)

(N−1)T

x(0)

x(T )

x(2T )

x(3T )
N TT 2T

Figure 4.9 Segmentation of xðtÞ over [0,T0 ¼ NT].
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Sðnþ 1Þ ¼ SðnÞ þ xðnTÞ; n ¼ 0; 1; . . . ; N � 1; Sð0Þ ¼ 0 ð4:17Þ

This is a recursion in SðnÞ, where

Sð1Þ ¼ Sð0Þ þ xð0TÞ; set Sð0Þ ¼ 0
Sð2Þ ¼ Sð1Þ þ xðTÞ
Sð3Þ ¼ Sð2Þ þ xð2TÞ

..

.

SðNÞ ¼ SðN � 1Þ þ xððN � 1ÞTÞ

Each time a new value xðnTÞ becomes available, SðnÞ is updated to obtain Sðnþ 1Þ. The
recursion (4.17) is operated for n ¼ 0; 1; . . . ; ðN � 1Þ, with Sð0Þ ¼ 0.

Example 4.15

Let xðtÞ be the function defined by

xðtÞ ¼
(1; t ¼ 0
sinðptÞ
pt

; t 6¼ 0 ð4:18Þ

This function is called the sinc function, that is, xðtÞ ¼ sincðtÞ, and it is a built-in MATLAB
function. With

>> t = linspace(-10,10,1000); % specify time points

>> x = sinc(t); % evaluate x(t) = sin(� t)/�t

>> plot(t,x); grid on

>> xlabel(’t - secs’); ylabel(’sinc(t)’);

we get the plot shown in Fig. 4.10. The sinc function oscillates indefinitely in both direc-
tions with an amplitude that decays to zero. The integral of xðtÞ ¼ sincðtÞ from �1 to þ1
is 1.

An accurate value for the integral of the sinc function from t ¼ 0 until t ¼ 10 is
0.4898881. Therefore, the integral from t ¼ 10 to t ! þ1 is (0.5 � 0.4898881).
Prog. 4.9 uses Euler’s method to find this integral, and the results for N ¼ 50, 550, 1050
follow.

% Program to find the integral of a function using Euler’s method

clear all; clc

T0 = 10; % time range is from 0 to T0
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for m=1:3

N = 50+500*(m-1); % number of sub-intervals

T = T0/N; % sub-interval width

S = 0; % initialize the sum

for n = 0:N-1 % loop to include each sub-interval

t = n*T; % time point

S = S + sinc(t); % recursion

end

Area(m) = T*S; % area

N_subs(m) = N;

end

format short

table = [N_subs;Area];

disp(’ N Area’)

fprintf(’ %i %f \n’,table)

Program 4.9 Program to find the integral of sinc(t) using Euler’s method.

N Area

50 0.590224

550 0.498982

1050 0.494651

These results show that N must be large to achieve a small numerical integration error.
Nevertheless, depending on the behavior of xðtÞ, Euler’s method is often used because of its
simplicity.
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Figure 4.10 The sinc function plotted from t ¼ �10 to t ¼ 10
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4.7.2 Trapezoidal Rule
The trapezoidal rule is a slight modification of Euler’s method, and gives better results.
Instead of using the value of xðtÞ at the beginning of each sub-interval, the trapezoidal rule
uses the average of the values of xðtÞ at the beginning and end of each sub-interval, and
(4.16) and (4.17) become

A ’
XN�1
k¼0

xðkTÞ þ xððk þ 1ÞTÞ
2

T ¼ T
2
XN�1
k¼0
xðkTÞ þ xððk þ 1ÞTÞ

Sðnþ 1Þ ¼ SðnÞ þ xðnTÞ þ xððnþ 1ÞTÞ; n ¼ 0; 1; . . . ;N � 1; Sð0Þ ¼ 0

ð4:19Þ

where A ’ ðT=2ÞSðNÞ:

Example 4.16

To apply the trapezoidal rule to the integration problem of Example 4.15, the inner for loop
in Prog. 4.9 is replaced by

xnT ¼ sinc(0); % this is x(nT) for n ¼ 0 and it will be updated in the loop

for n ¼ 0:N-1 % loop to include each sub-interval

t ¼ (nþ1)*T; % next time point

% evaluating the sinc function just once for each loop iteration

xn1T ¼ sinc(t);

S ¼ S þ xnT þ xn1T; % trapezoidal rule recursion

xnT ¼ xn1T; % update x(nT)

end

and the area is computed with

Area(m) ¼ (T/2)*S;

The results are

N Area

50 0.490224

550 0.489891

1050 0.489889

Here, the result for N ¼ 50 is better than the result for N ¼ 550 using Euler’s method.
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4.7.3 Built-in Integration Functions
MATLAB has several sophisticated built-in functions for evaluating a definite integral.
One of these functions is quad. It is a function function, and the syntax to use this
function is

area = quad(@my_function,a,b, tol)

where the name of the m-file that defines the function to be integrated from a to b must be
my_function.m. The fourth argument specifies an error tolerance. If tol is not included in the
input argument list, then MATLAB uses a default value of 1e-6.

The function quad was used to obtain the accurate result from integrating
the sinc function in Example 4.15. The statement that was used is area ¼
quad(@sinc,0,10.0,1e-8).

When MATLAB executes the quad function algorithm, it will want to pass to the user-
defined function a vector input. Therefore, the user-defined function must be properly
vectorized to return a vector. See Table 3.3 for more details about vectorizing expressions
within a function that involve function input vectors.

Example 4.17

Let us find the amount of charge that has passed through a diode over one cycle of a
sinusoidal voltage across it. Recall the diode i-v characteristic, for which a function is given
below:

function current = diode(t)

% current through a diode when the voltage across it is v=Asin(wt)

global w A % frequency and amplitude

v = A*sin(w*t);

I_S = 1e-12; % saturation current

V_T = 25.85e-3; % thermal voltage at 300 K

current = I_S*(exp(v/V_T) - 1);

Here, the function input variable is t, which is used as the input time argument for the
sinusoidal voltage. The frequency and amplitude of the voltage are passed to this function as
global variables. This function was saved as diode.m. To see how charge moves through the
diode over one cycle of the voltage, let us segment one cycle into N sub-intervals, and
integrate the current over each sub-interval. Prog. 4.10 gives a script to plot charge move-
ment over one cycle.
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% Program to plot charge movement through a diode over one cycle of

% a sinusoidal voltage across it

clear all; clc

global w A

frequency = 60; % specify frequency

w = 2*pi*frequency;

A = 0.8; % amplitude of sinusoid

T0 = 1/frequency; % time of one cycle

N = 100; T = T0/N; % will use N+1 plot points

tol = 1e-8; % specify tolerance

q(1) = 0; % initial charge is zero

v(1) = 0; % initial voltage value

t = 0.0:T:T0; % specify N+1 time points

for k = 1:N

v(k+1) = A*sin(w*t(k+1));

q(k+1) = q(k) + quad(@diode,t(k),t(k+1),tol); % accumulate charge

end

plotyy(t,q,t,v); grid on % use right y-axis for v

xlabel(’time secs’); ylabel(’Coulombs’)

title(’Charge movement through a diode’)

Program 4.10 Script to find the amount of charge that has passed through a diode.

Fig. 4.11 shows how charge moves through a diode over one cycle of the voltage across
it. Notice that as the voltage increases, there is no appreciable movement of charge through
the diode until the voltage reaches a threshold voltage of about 0.7 volts at t ’ 2 msec.
Then, once the voltage exceeds this threshold, the amount of charge that has moved through
the diode increases quickly until the voltage again goes below the threshold, after which the
net amount of charge through the diode no longer increases.

There are several other built-in functions for numerical integration. These functions
adaptively adjust the way they work to achieve prescribed error tolerances. For example,
quadl may be more efficient than quad, while also giving more accurate results, especially
for smoothly behaving integrands. The built-in function quad2d numerically obtains double
integrals over a planar surface. See the MATLAB help facility for details and additional
built-in functions for numerical integration.

4.8 Switch–Case–Otherwise

The switch–case–otherwise structure provides a way to select which block of statements in
a set of blocks of statements should be executed. The syntax of this structure is
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switch expression

case expression_1

block #1 of statements

case expression_2

block #2 of statements
..
.
insert as many additional case expression and block of
statements as needed

otherwise

block #N of statements

end

where each switch key word must be matched by an end key word. The otherwise and
block #N of statements is optional. The switch expression must evaluate to a scalar or a
character string. When MATLAB encounters the switch key word, it does the following:

1) Evaluate the switch expression and
2) If the result of evaluating the switch expression matches the case expression_1 value,

then execute block #1 statements, and continue execution after the end statement
3) If the result of evaluating the switch expression does not match the case expression_1

value, then skip the block #1 statements to the next case
4) If the result of evaluating the switch expression matches the case expression_2 value,

then execute block #2 statements, and continue execution after the end statement
5) If the result of evaluating the switch expression does not match the case expression_2

value, then skip the block #2 statements to the next case, and so on
6) If the result of evaluating the switch expression does not match any case expression

value, then execute the block #N statements after the otherwise key word (if there is
one) and continue execution after the end statement.

It is useful to indent each block of statements to easily see each case block of statements and
that each switch key word is matched by an end key word. Within each block of statements
there can be any of the program flow control structures, including nested switch–case–
otherwise structures.

Example 4.18

You are approaching an intersection with a traffic light. Different actions are required
depending on the color and behavior of the traffic light. Prog. 4.11 is a demonstration of the
application of the switch-case-otherwise structure to this situation.

% Suggested action when approaching an intersection

% Local conditions may require other actions

clear all; clc

disp(’Upon approaching an intersection with working traffic lights,’)
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disp(’different actions are required.’)

behavior = input(’Enter a traffic light behavior in single quotes: ’);

switch behavior

case ’red’

disp(’Come to a complete stop; and wait for green light to proceed.’)

case ’yellow’

disp(’Slow down; prepare to stop.’)

case ’green’

disp(’Proceed with caution.’)

case ’flashing yellow’

disp(’Slow down; proceed with caution; be ready to stop.’)

case ’flashing red’

disp(’Come to a complete stop; proceed with caution.’)

otherwise

disp(’Traffic lights may be out of service.’)

disp(’Come to a complete stop.’)

disp(’Local conditions may require other actions.’)

end

Program 4.11 Program to suggest action when approaching an intersection with
traffic lights.

4.9 Conclusion

Testing a condition, executing alternative parts of a program and repeatedly executing a part
of a program are essential for implementing problem solution methods. All programming
languages have means to do this. You should now know how

● to use relational operators for formulating condition tests
● to use logical operators to make compounded statements using logical parts
● the if–elesif–else structure is used to execute alternative program parts
● to make a program more robust
● the for loop structure works to repeatedly execute a block of MATLAB statements
● to find the time required to execute a block of statements
● a histogram is obtained
● to determine the probability of an event by counting
● a pseudorandom number generator can be used to simulate random events
● a median filter works
● to use the sound device
● the while loop structure works to repeatedly execute a block of statements depending on

a condition
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● Euler’s method and the trapezoidal rule are used for numerical integration
● the switch–case–otherwise structure is used to execute alternative program parts

Table 4.5 gives the MATLAB functions that were introduced in this chapter. Use the
MATLAB help facility to learn more about these built-in functions, where you will also find
out about many other related built-in functions.

Table 4.5 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

isequal(A,B) Returns logical 1, meaning true, if arrays A and B are the same size and contain the
same values, and logical 0, meaning false, otherwise

L ¼ and(A,B) An element of the output array is set to 1 if both input arrays contain a nonzero
element at that same array location, and otherwise, that element is set to 0

L ¼ or(A,B) An element of the output array is set to 1 if either input array contains a nonzero
element at that same array location, and otherwise, that element is set to 0

L ¼ xor(A,B) An element of the output array is set to 1 if either input array contains a nonzero
element at that same array location, but not both, and 0 if both elements are zero
or nonzero

L ¼ not(A) An element of the output array is set to 1 if A contains a zero value element at that
same array location, and 0 otherwise

&& Short logical and
| | Short logical or
I ¼ find(A) Returns the linear indices corresponding to the nonzero entries of the array A
L ¼ sign(A) Signum function, returns 1 if the element is greater than zero, 0 if it equals zero

and �1 if it is less than zero; for the nonzero elements of complex A, sign(A) ¼
A./abs(A)

tic Start a stopwatch timer
T ¼ toc Saves the elapsed time in T (seconds) since the last execution of tic
pause(t) Pauses for t seconds before continuing, where t can also be a fraction; just pause

causes a program or function to stop and wait for the user to strike any key
before continuing

bar(X,Y,width) Draws the columns of the M� N matrix Y as M groups of N vertical bars; bar(Y)
uses the default value of X ¼ 1:M. For vector inputs, bar(X,Y) or bar(Y) draws
length(Y) bars. There is no space between bars if width ¼ 1

continue Pass control to the next iteration of for or while loop
break Terminate execution of for or while loop
return Causes a return to the invoking program or function or to the keyboard; also

terminates the keyboard mode
keyboard When placed in an m-file, stops execution of the file and gives control to the user’s

keyboard. The special status is indicated by a K appearing before the prompt.
Variables may be examined or changed; all MATLAB commands are valid. The
keyboard mode is terminated by executing the command return

R ¼ rand(N,M) Returns an N�M matrix containing pseudorandom numbers uniformly distributed
over the open interval (0,1)

I ¼ randi(N,M,imax) Returns an N�M matrix containing pseudorandom integer values uniformly
distributed over the range 1:imax

(Continues)
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The essentials of the MATLAB programming language have been presented in the
first four chapters of this book. Use demo to watch an excellent audio/video tutorial about
if–elseif–else, for, and while loop control structures. In these chapters some special features,
for example, plotting, were introduced to make examples more complete with visual dis-
plays. In the remaining chapters, special, unique, and particularly useful features of this
programming language will be discussed.

In the next chapter the concept of a logical variable will be extended to understand its
role in Boolean algebra, logic circuits, and binary arithmetic.
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Table 4.5 (Continued)

Function Brief explanation

R ¼ randn(N,M) Returns an N�M matrix containing pseudorandom values from the standard
normal distribution

Y ¼ mean(X) Y is a row vector containing the mean of each column of X
Y ¼ var(X) Y is a row vector containing the variance of each column of X
I ¼ hist(X,N) Bins the elements of X into N bins
fprintf Write formatted data to a display or a file; more about this later
y ¼ median(X) Returns the median value of the elements in the vector X
sound(X,fs) Sends the signal in vector X, with sampling frequency fs to the sound device; X can

be a two-column matrix for stereo. Clips values outside the range of �1 to þ1.
soundsc(X,fs) Same as sound, but autoscales
wavwrite(X,fs,‘file.
wav’)

Writes data X to a Windows WAV file specified by the file name file.wav, with a
sampling rate fs Hz; stereo data must be specified as a matrix with two columns

Y ¼ sinc(X) Returns in the matrix Y elements found with sin(pi*x)/(pi*x) of the elements in the
matrix X

quad(func,a,b) Returns an approximation of the integral from a to b of the function specified by
the function handle func

plotyy(x1,y1,x2,y2,
plot_func)

Plots y1 versus x1 with y-axis labeling on the left and plots y2 versus x2 with y-
axis labeling on the right, using the plotting function specified by the function
handle plot_func

quadl Same as quad, but uses a more accurate numerical integration method
quad2d(func,a,b,c,d) Returns an approximation of the double integral of a function f(x, y) specified by

the function handle func, where a � x � b and c � y � d . See MATLAB help
for more options
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Problems

In all of the scripts that you are required to write for the following problems, include
comments that state the purpose and activity of the script.

Section 4.1
1) Use a ¼ –2, b ¼ 3, and c¼5, and find the result of each of the following relational

expressions. (a) d ¼ a^2 >¼ c, (b) e ¼ (a > b �4)þc <¼ b^2, (c) f ¼ aþb ¼¼ c – 4.
2) For t ¼ �1:0.1:2, w¼2*pi and x ¼ cos(w*t), use a logical operation to find a vector y,

which has the same dimension as x, where all of the positive elements of x have been
replaced by zero.

3) A ¼ [–1 9 2; 0 �3 4], B ¼ [], C ¼ ones(3,2)’. Give the result of (a) isempty(A),
(b) isempty(B), (c) logical(A), (d) any(A), (e) islogical(C), (f) C < false(2,3) | A,
(g) isinteger(sqrt(A)), (h) isfloat(C).

Section 4.2
4) For a ¼ 2, b ¼ 0, and c¼–5, give the results of (a) d ¼ a | (b & c), (b) e ¼ and(a,b)|c,

(c) f ¼ a & c | (b & ~a), (d) g ¼ a & c | b & ~a, (e) h ¼ (b && c) | (b || a), (f) p ¼
a & xor(~b,c).

5) (a) Describe the difference between (a & b) and (a && b).
(b) Describe the difference between (a | b) and (a || b).

6) For A ¼ [0 1; 1 0], C ¼ [0 0; 1 0], and C ¼ A & B, give all possible B.
7) For a ¼ –2, b ¼ 4, and c¼2, give the results of (a) d ¼ (a ~¼ c �2) & a^2 > b,

(b) e ¼ sqrt(a^2 þ b^2) < abs(c) | (aþb)/2 >¼ c, (c) f ¼ ~isempty(find([a b 2*c sqrt
(a^2 þ c^2)] > 4)).

8) For A ¼ [–1 0.5 5; 2 �4 0; 0 0 1], (a) give y ¼ find(A <¼ –1 | A>¼ 1), and explain the
meaning of y. (b) Let B ¼ reshape(A,1,9) and give C ¼ B(y).

Section 4.3

9) (a) If the inputs to Prog. 4.1 are a ¼ 0, b ¼ 5, N ¼ 9, and x ¼ 5.6, then what is the
program output?

(b) If the inputs are the same as in part (a), except that x ¼ 2.7, then what is the
program output?

10) (a) Convert Prog. 4.1 into a function, call it bin_number. The function input arguments
are a, b, x, and N, and the output arguments are k and err. Include comments that
explain the purpose of the function and the meaning of the err codes. Provide a
copy of the function.

(b) Write a script that demonstrates using the function bin_number. Provide a program
listing and demonstration of program operation.
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11) Write a script that implements the flowchart given in Fig. P4.11. Use an if–else–end
control structure. Provide a program listing and a demonstration of program operation.
Does the current have to be a positive number?

12) Write a script that inputs an integer N in the range 0–9. Your script must check that the
input is an integer and that it is within the required range. Otherwise, display an error
message for each input error type. Then, the script must determine if N is an odd or even
integer and display a message about the result. Provide a program listing and a
demonstration of program operation.

Section 4.4
13) Describe what is wrong with each of the following for statements: (a) for k ¼ 0:–1:10,

(b) for n ¼ 10:2:3, (c) for 2k ¼ 0:5, (d) for Number ¼ –1:–5. In each case, what will
MATLAB do when the for loop is completed with an end statement?

14) (a) Write a function script, call it inner_prod, that uses a for loop to find the inner
product A_dot_B of two vectors A and B with dimension 1�N. The function input
arguments must be A and B, and the function returns A_dot_B.

(b) Write a script to demonstrate the operation of your function where t ¼ 0:T:T 0-T,
T ¼ T 0/N sec, T 0 ¼ 2p=w0 sec, A ¼ cos(w0 t) and B ¼ cos(Kw0 t) for K¼1, 2,
and 5. You choose N and w0. For each K, what is A_dot_B? What do you think
A_dot_B will be for any integer K6¼ 1?

(c) Repeat part (b) for B ¼ sinðKw0tÞ.
(d) When the inner product of two vectors is zero, it is said that the vectors are

orthogonal. Here, we find that this concept can be extended to functions, for
example, cosðMw0tÞ and cosðKw0tÞ,M 6¼ K, are orthogonal functions over a period
T0. What other sinusoidal functions are orthogonal over a period?

15) Write a script that uses for loops to evaluate the power series given by (2.13) of an
exponential function xðtÞ ¼ e�2t, for t ¼ 0:0.1:2. Break out of the for loop that does the

Input a resistor value R

R > 0 ? Display message
Terminating program

NoYes
Input a current I

Calculate power
delivered to resistor

Display
power End program

Figure P4.11 Flowchart to calculate power delivered to a resistor.
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power series computation when the next term in the series contributes less than
0.0001% of the sum of terms. For example, see Prog. 4.4. Provide a figure of a plot of
your result. Include in the figure a stem plot that uses the MATLAB built-in function
exp. The figure should include a grid, axes labels and a title.

16) Given is the circuit shown in Fig. P4.16.

(a) In terms of V, Rs and R, obtain an expression for the power P delivered to R.
(b) Write a script that receives as input the values of V and Rs, and makes a vector R

with element values that range from 0.1*Rs to 10*Rs in increments of 0.1*Rs. Use a
for loop to create a vector of power delivered to each element value of R. Then, plot
the power P versus R. Do this for V ¼ 10 volts, Rs ¼ 10 Ohms and Rs ¼ 100 Ohms.
For each case, from inspection of the plots, give a value of R such that V delivers
the maximum power to R. Provide a program listing and plots, including axes
labels and titles.

(c) Vectorize your expression for P, and repeat part(b) without using a for loop.
(d) In general, for a given value of Rs, what value of R enables the resistor R to receive

the most power from the voltage source V ?
17) Write a script that starts by obtaining a vector x of N ¼ 1e6 normally distributed

random numbers with the function randn.
(a) Obtain the mean, variance and histogram of x. Use 51 bins for the histogram. Use

the MATLAB built-in functions mean, var, and hist to obtain these results.
(b) Let y ¼ ax þb, where a ¼ 3 and b ¼ 2. Use a for loop to find the mean of y. Then,

use another for loop to implement (4.6). How does your result compare with using
the MATLAB function var to find the variance of y?

(c) Obtain a histogram of y, using 51 bins. How are the parameters a and b related to
the variance and mean of y?

18) Suppose that an experiment consists of tossing two die. Each die will show an integer
from 1 to 6. This can be simulated with die_1 ¼ ceil(6*rand) and die_2 ¼ ceil(6*rand),
where each invocation of rand produces a random number from 0 to 1. Write a
script that uses a for loop to do N_exps ¼ 1e7 experiments, and within the loop uses an

V R

Rs

Figure P4.16 Battery with internal resistance Rs connected to a load R.
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if–elseif–end structure to count the number of times die_1 þ die_2 ¼ 7 or 11. Begin
your script with the statement: rng(‘default’) to bring the random number generator to
its default initial state. By counting, find the probability that an experiment outcome
will be 7 or 11.

19) Let us study the performance of the algorithm given by

yðk TÞ ¼ 1
4
ðxðkTÞ þ 2 xððk � 1ÞTÞ þ xððk � 2ÞTÞ

for k ¼ 0; 1; . . . , where xðk TÞ comes from sampling a sound given by
sðtÞ ¼ sinðw1 tÞ þ 0:5 cosðw2 tÞ that is corrupted by additive noise nðtÞ. Let
w1 ¼ 2pð262Þ and w2 ¼ 2pð440Þ. The sampling rate is fs ¼ 8000 samples/second, and
T ¼ 1=fs. The data xðkT Þ for this simulation is given by xðkTÞ ¼ sðkTÞ þ a nðkTÞ,
where nðkTÞ is found by using a normal random number generator and a controls the
noise amplitude. To help you get started, use

% This is an example of digital signal processing

% Program to implement a digital low-pass filter

clear all; clc;

fs =8000; T = 1/fs;

w1 = 2*pi*262; w2 = 2*pi*440;

a = 0.5; % used to see how noise affects the result

k = 0; t = k*T; time(k+1) = t; % initialize sample time

x(k+1) = sin(w1*t) + 0.5*cos(w2*t) + a*randn; % first sample

% since there is no x(-T) and x(-2T) use

y(k+1) = x(k+1)/4;

k = k+1; t = k*T; time(k+1) = t; % save time for plotting

x(k+1) = sin(w1*t) + 0.5*cos(w2*t) + a*randn; % second sample

% since there is no x(-T) use

y(k+1) = (x(k+1)+2*x(k))/4;

N = 100; % process N-2 more samples of the input

for k = 2:N-1

t = k*T; time(k+1) = t; % save time for plotting

x(k+1) = sin(w1*t) + 0.5*cos(w2*t) + a*randn; % kth sample

y(k+1) =

Complete the for loop with the given algorithm, and then plot x and y versus time. What
does the algorithm appear to do?
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Section 4.5
20) Do Prob. 4.11 using a while loop. The program should allow for repeated execution of the

program until a program user enters an R value less than or equal to zero. For example:

clear all; clc;

while 1

R = input(’Enter a resistance value: ’)

if R <= 0

disp(’Terminating program’)

break

end

Complete the script. For a nice looking output, use, for example, fprintf(‘Power
delivered ¼ %6.2f watts\n’, P). Provide a program listing, and demonstrate its
operation.

21) Do Prob. 4.15 using a while loop inside a for loop. With the for loop index ranging
from n ¼ 1 to n ¼ N, where N ¼ length(t), then, for example, the while loop could be

x = -2.0*t(n);

exp_sum = 1.0; % first term in power series

next_term = x; k = 1; % second term in power series

while abs(next_term) > 1e-6*abs(exp_sum)

exp_sum = exp_sum + next_term;

k = k+1;

next_term = next_term*x/k;

end

exp_func(n) = exp_sum + next_term; % use last term

Explain why the abs function must be used. Complete the script, and provide results as
described in Prob. 4.15.

Section 4.6
22) Consider again Prob. 4.16.Write a script that applies the method of steepest ascent, (4.10),

to find the value of R that maximizes the power delivered to it by the voltage source V. Use
input statements to obtain the values of V and Rs, and a while loop to implement an update
method to find Rnew given Rold similar to the update method of (4.9). See Example 4.14.
Find a suitable value of the step size by trial and error. Use Rold ¼ Rs/2 as the initial guess
of Ropt. Provide a program listing and a demonstration of its operation.

4.9 Conclusion 197



23) Given a number x, find y ¼ x1/2. Of course, y ¼ sqrt(x). However, an algorithm must be
designed to find y. This can be done by converting the given problem to an optimization
problem. Consider minimizing the function f (y) ¼ (y2�x)2, where f ’(y) ¼ 2(y2�x)(2y).
Write a script that uses a while loop within a while loop to apply the method of steepest
descent. The outer while loop must contain an input statement to receive a value of x, and
if the input is not greater than zero, then break out of this loop, which terminates the
program. If the input x is greater than zero, then the inner while loop must apply the
method of steepest descent to find y. Implement an update method to find ynew given yold
like the update method of (4.9). Use yold ¼ x as an initial guess of yopt. See Example 4.14.
Find a suitable step size by trial and error. Provide a program listing and a demonstration
of its operation for three positive values of x.

24) Repeat Prob. 4.23, but replace the inner while loop with an invocation of the MATLAB
built-in function fminsearch. Create a function m-file to define the function to be
optimized by fminsearch. Provide listings of your program, the function m-file, and a
demonstration of program operation.

Section 4.7
25) Given is the function x(t) ¼ e�at�e�bt. Let a ¼ 1 and b ¼ 2.

(a) Manually, find an expression for the area A under x(t) from t ¼ 0 to t ¼ 5.
Write a script to:
(b) Plot x(t) for t ¼ 0 to t ¼ 5. Use N ¼ 501 values of t in the given time range
(c) Calculate A using the expression found in part (a)
(d) Apply Euler’s method to find an approximation of A for N ¼ 11, 111, and 211
(e) Output a table of the difference between A and its approximation for each N.

Use format long e for all program output. Provide a listing of your program and the
results.

26) Repeat Prob. 4.25, but use the trapezoidal rule.
27) For the x(t) given in Prob. 4.25, use the built-in MATLAB function quad to find the

area A under x(t) from t ¼ 0 to t ¼ 5. Use an anonymous function to define x(t).
Compare the result to A found in Prob. 4.25, part (a). Use format long e for all program
output. Provide a listing of your program and results.

Section 4.8
28) Write a function script, call it linear_eqs_solver, where the inputs are a square matrix A,

a column vector Y and a character string named solution_method, and the outputs are
the condition number K of A and the solution X of AX ¼ Y, assuming that the deter-
minant of A is not zero. First, check the determinant of A, and if it is zero, set solu-
tion_method ¼ ‘none’. The possible solution methods you should use are inv (the
function), left matrix divide, eigenvalues and eigenvectors or singular value decom-
position, as designated with solution_method ¼ ‘inv’, ‘left_mat_div’, ‘eigen’, or
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‘singular_decomp’. Use the switch-case-otherwise-end structure to select the method to
be used. Use the otherwise option to return an empty vector X and K¼ inf in the event
that the character string solution_method is not one of the allowed solution method
options. Write a script that demonstrates the application of your function. Provide
program and function listings and program output.

29) Repeat Prob. 4.18, where within the for loop a switch-case-end structure is used to
count the number of times that an experiment outcome is 7 or 11. Use die_1 þ die_2,
for the switch expression and case 7 and case 11.
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CHAPTER 5

Binary Data

A digital circuit is an electronic circuit that receives binary voltage inputs and produces
binary voltage outputs. Digital circuits are designed to perform various logical operations,
and they are the building blocks of digital systems, which are employed in virtually all
electronic products. In digital systems, a data bit is associated with a binary voltage. A data
bit can be logic 1 or logic 0, where logic 0 is associated with one of the binary voltages, and
logic 1 is associated with the other voltage. A commonly used binary voltage pair and data
bit association is: 0 volts $ logic 0 and 5 volts $ logic 1. This is called positive logic,
where logic 1 corresponds to the high voltage, which may be a voltage other than 5 volts.
Many other binary voltage pairs are in common use. A group of data bits can have different
meanings. In this chapter some of the possibilities will be examined.

After you have completed this chapter, you will know

● the elements of Boolean algebra
● about the binary number system and binary arithmetic
● about basic electronic logic gates
● how to formulate and implement Boolean functions
● how MATLAB� can be used to simulate logic circuits
● about the operation of an analog to digital converter and quantization error

5.1 Boolean Algebra

In Boolean algebra, scalar variables can assume only one of two values: 0 or 1, also called
false or true, respectively. Boolean variables are logical variables.

Boolean algebra is based entirely on three basic operations: AND, OR, and NOT, also
called conjunction, disjunction, and negation or complement, respectively. These opera-
tions were defined in Table 4.3, which is repeated here, for convenience, as Table 5.1.



In Boolean algebra, x and y is written as x � y or simply xy, where x and y are logical
variables, x or y is written as xþy, and not x is written in several different ways, but we will
use x to mean not(x). Recall that MATLAB uses x&y ¼ xy, x | y ¼ xþy and ~x ¼ x. Instead,
MATLAB also uses x&&y ¼ xy and x || y ¼ xþy, which will be explained later.

The and(or) operation can be extended over many input variables, and the result is
logic 1 (0) only if all inputs are logic 1 (0).

The fundamental laws or axioms of Boolean algebra are given in Table 5.2. Parentheses
are used to specify the order of evaluation. Recall that MATLAB evaluates logical
expressions from left to right, and therefore, in MATLAB parentheses must be used to
specify the order of evaluation.

Any of the axioms can be verified (proved) by an exhaustive search, that is, evaluate the
expression on each side of an equality for every binary assignment to the variables, and if the
expressions are equal for all possible binary assignments to the variables, the axiom is proved.

Example 5.1

Let us prove the distributive property. This property involves k ¼ 3 variables, and therefore,
there are 2k = 8 different binary assignments from all three variables equal to logic 0 to all

Table 5.1 Basic operations of Boolean algebra (x and y are logical scalars)

AND OR NOT

x y x and y ¼ x � y x y x or y ¼ xþy x not(x) ¼ x

0 0 0 0 0 0 0 1
0 1 0 0 1 1
1 0 0 1 0 1 1 0
1 1 1 1 1 1

Table 5.2 Axioms of Boolean algebra (x, y, and z are logical scalars)

Axiom (or property) AND version OR version

Cummutative x � y ¼ y � x xþ y ¼ yþ x
Associative x � (y � z) ¼ (x � y) � z xþ (yþ z) ¼ (xþ y)þz
Idempotence x � x ¼ x xþ x ¼ x
Absorption x � (xþ y) ¼ x xþ (x � y) ¼ x
Distributive x � (yþ z) ¼ (x � y)þ(x � z) xþ (y � z) ¼ (xþ y) � (xþ z)
Complement x � x ¼ 0 xþ x ¼ 1
Annihilation x � 0 ¼ 0 xþ 1 ¼ 1
Identity x � 1 ¼ x xþ 0 ¼ x
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three variables equal to logic 1. Prog. 5.1 evaluates the expression on each side of the equal
sign of the distributive property for each binary assignment to x, y, and z, and it generates a
table, called a truth table.

% Program to prove the distributive property: x(y + z) = xy + xz, or

% x + yz = (x + y)(x + z) by exhaustive search

clear all; clc

x = logical([0 0 0 0 1 1 1 1]); % all assignments to x, y and z

y = logical([0 0 1 1 0 0 1 1]);

z = logical([0 1 0 1 0 1 0 1]);

for k = 1:8

L_side_and(k) = x(k)&(y(k)|z(k)); % left side AND version

R_side_and(k) = (x(k)&y(k))|(x(k)&z(k));

L_side_or(k) = x(k)|(y(k)&z(k)); % left side OR version

R_side_or(k) = (x(k)|y(k))&(x(k)|z(k));

end

% the for loop could be replaced by

% L_side_and = x&(y|z); R_side_and = (x&y)|(x&z);

% L_side_or = x|(y&z); R_side_or = (x|y)&(x|z);

disp(’Truth Table for the Distributive Property’)

disp(’ AND version OR version’)

disp(’ x y z left right left right’)

disp(’ side side side side’)

table = [x;y;z;L_side_and;R_side_and;L_side_or;R_side_or];

fprintf(’ %i %i %i %i %i %i %i \n’,table)

% the fprintf function prints a column of a table in a row of output

Program 5.1 Program to prove the distributive property.

Truth Table for the Distributive Property

AND version OR version

x y z
left
side

right
side

left
side

right
side

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1
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Since the left side column matches the right side column of both versions of the dis-
tributive property for all binary assignments to the variables x, y, and z, the property is
proved.

Table 5.3 gives several additional commonly used logical operations. Notice that the
equivalence operation (denoted by �) is the complement of the exclusive or operation
(denoted by �).

Another important property is called DeMorgan’s theorem, which consists of two parts
given by

ðx � yÞ ¼ x þ y
ðxþ yÞ ¼ x � y

ð5:1Þ

Let us prove DeMorgan’s theorem with the truth table given below, which can be obtained
with a program similar to Prog. 5.1. Since columns 6 and 7 match and columns 8 and 9
match for all assignments to x and y, DeMorgan’s theorem is proved.

Truth table for proof of DeMorgan’s theorem

x y x y x � y ðx � yÞ x þ y xþy ðxþ yÞ x � y
0 0 1 1 0 1 1 0 1 1
0 1 1 0 0 1 1 1 0 0
1 0 0 1 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0

A major application of Boolean algebra is the design of electronic systems for general
purpose computing and the computing required in many kinds of devices, such as cell
phones, digital cameras, monitor of patient vital signs, and much more. Such systems are
composed of interconnections of a variety of logic circuit modules. Each module performs
a particular task, for example, addition or comparison of numbers. Each input and output
of a logic circuit module can have only one of two allowed values, logic 0 or logic 1.

Table 5.3 Additional basic operations of Boolean algebra

NAND ¼ NOT(x � y) NOR ¼ NOT(xþy) XOR EQ ¼ XOR

x y ðx � yÞ x y ðxþ yÞ x y x � y x y x � y

0 0 1 0 0 1 0 0 0 0 0 1
0 1 1 0 1 0 0 1 1 0 1 0
1 0 1 1 0 0 1 0 1 1 0 0
1 1 0 1 1 0 1 1 0 1 1 1
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The building blocks of these modules are electronic circuits that perform the basic logical
operations that have been described in this section. Physically, the input(s) and output(s) of
the electronic circuits are each a voltage that can have only one of two allowed voltage
values. To utilize this kind of behavior of an electronic circuit requires that all data (text and
numeric) be represented in binary form, where logic 0 is associated with one of the allowed
voltages and logic 1 is associated with the other allowed voltage. In the following sections,
we will see how data can be represented in binary form.

5.2 Binary Numbers

We use the base ten number system for numeric data, an alphabet for text data, and other
special symbols (data such as !, /, #, ~, and others) for various kinds of intentions and
operations. To process data with an electronic system requires that each kind of data must be
represented by a set of binary voltages, which correspond to a set of logic values. Regardless
of its meaning, a set of logic values can be considered to be a binary number. Let us see the
kinds of meaning that we can attribute to a binary number.

5.2.1 Base Ten to Binary Conversion
A base ten integer is written as

N ¼ � � � d4 d3 d2 d1 d0 ð5:2Þ

where the digits dk ; k ¼ 0; 1; 2; : : : can each be one of 0; 1; 2; : : : ; 9. N gives a count
implicitly. Each digit in N gives the number of times each corresponding power of ten
contributes to the count that N represents. The value of N is given by

N ¼ � � � þ d4�104 þ d3�103 þ d2�102 þ d1�101 þ d0�100 ð5:3Þ
and here we see that dk specifies the number of times that 10k contributes to the value of N .
While N in (5.3) gives the actual count, N in (5.2) conveys the same information.

Similar to the base ten number system, in the base two (or binary) number system an
integer N is written like N in (5.2), where instead, the binary digits (also called bits)
dk ; k ¼ 0; 1; 2; . . . , can each be 0 or 1, and still N gives a count implicitly. The value of N
is given by

N ¼ � � � þ d4�24 þ d3�23 þ d2�22 þ d1�21 þ d0�20 ð5:4Þ
Here, since dk can only be 0 or 1, it determines whether or not 2k contributes to N . For
example, if N ¼ 101101, then we know that N does not contain 24 and 21, and it does
contain 25, 23, 22, and 20. With (5.4), we can convert the binary version of N to its base ten
version, which is N ¼ 32þ 8þ 4þ 1 ¼ 45. Table 5.4 gives the range of values of 3-bit
binary numbers.
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Notice that in the truth table of Example 5.1, all of the binary assignments to the three
variables x, y, and z are listed as a binary count from 0 to 7.

To convert a base ten integer N into binary, start with (5.4), denote N by N0, and
1) set k ¼ 0
2) divide Nk by 2 to get

Nk
2

¼ � � � þ d4�23�k þ d3�22�k þ d2�21�k þ d1�2�k þ d0�2�1�k

3) if Nk=2 is an integer, then dk ¼ 0, otherwise dk ¼ 1
4) let Nkþ1 ¼ Nk

2 � dk
2

5) if Nkþ1 6¼ 0, then k ¼ k þ 1 and go to step 2, otherwise, stop, process has terminated

For example, if N ¼ 67, then the following table is a demonstration of the given algorithm:

N0 = 67 dk

N1 = 33 d0 = 1
N2 = 16 d1 = 1
N3 = 8 d2 = 0
N4 = 4 d3 = 0
N5 = 2 d4 = 0
N6 = 1 d5 = 0
N7 = 0 d6 = 1

Thus, N ¼ 67 ¼ d6 26 þ d1 21 þ d0 20, and in binary N ¼ 1 0 0 0 0 1 1.
In binary, a fraction is written as

F ¼ :d�1 d�2 d�3 d�4 d�5 � ��
where the digits d�k ; k ¼ 1; 2; � � � are either 0 or 1. The base ten value of F is given by

F ¼ d�1�2�1 þ d�2�2�2 þ d�3�2�3 þ d�4�2�4 þ � � � ð5:5Þ
To convert a base ten fraction F into binary, start with (5.5), denote F by F�1, and

1) set k ¼ 1
2) multiply F�k by 2 to get

2F�k ¼ d�1�2�1þk þ d�2�2�2þk þ d�3�2�3þk þ d�4�2�4þk þ � � �

Table 5.4 Range of 3-bit binary numbers from 0 to 23�1

Base ten 0 1 2 3 4 5 6 7
Base two 000 001 010 011 100 101 110 111
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3) if 2 F�k is a fraction, then d�k ¼ 0, otherwise d�k ¼ 1
4) let F�ðkþ1Þ ¼ 2 F�k � d�k
5) if F�ðkþ1Þ 6¼ 0, then k ¼ k þ 1 and go to step 2, otherwise, stop, process has terminated

Depending on F, this process may or may not terminate. For example, if F ¼ 0:67, then the
following table is a demonstration of the given algorithm.

F-1 = 0.67 d-k

F-2 = 0.34 d-1 = 1
F-3 = 0.68 d-2 = 0
F-4 = 0.36 d-3 = 1
F-5 = 0.72 d-4 = 0
F-6 = 0.44 d-5 = 1
F-7 = 0.88 d-6 = 0
F-8 = 0.76 d-7 = 1
..
. ..

.

Thus, F ¼ 0:67 ¼ d�12�1 þ d�32�3 þ d�52�5 þ d�72�7 þ . . . , and in binary
F ¼ :1 0 1 0 1 0 1 . . ..

To store a fraction in the memory of a computer, where only a finite number of bits can
be stored, its binary representation must be truncated, and then the value of the binary
fraction stored in memory is an approximation of the given fraction. Assuming that the
binary fraction becomes involved in arithmetic operations, subsequent results will be inac-
curate. Such errors are referred to as finite word length effects. To retain as much accuracy
as possible, by default, all computation in MATLAB is done in double precision, which will
be explained later.

Bits are commonly grouped into 4 bits (called a nibble) and 8 bits (called a byte). A
group of bits that together represent some unit of information is called a word. For example,
if 24 bits are used for a binary fraction, then the word length of a binary fraction is 24 bits or
3 bytes. The left most bit of a word is called the most significant bit (MSB), and the right
most bit is called the least significant bit (LSB). In a computer system all information is
stored and processed using bits, nibbles, and bytes, which are interpreted to mean different
things, as we shall see in this chapter.

5.2.2 ASCII Codes
Each entry from a keyboard is encoded with a 1-byte binary number. The most commonly
used code is ASCII (American Standard Code for Information Interchange). See Appendix
B for a complete table of ASCII codes. The printable characters have ASCII codes from
32 to 127. To get them, use the char built-in MATLAB function, as in

>> ASCII_codes = 32:127; % a base ten numeric vector of printable ASCII codes

>> % convert the numeric vector into a character vector, the codes remain unchanged
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>> characters = char(ASCII_codes)

characters =

!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcdefghijklmnop

qrstuvwxyz{|}~

>> characters(1) % this element holds the ASCII code 32

ans = % this is a space or blank, as when you depress the space bar on the keyboard

>> characters(2) % this element holds the ASCII code 33

ans = ! % this is the exclamation mark

For example, the MATLAB key word for is stored in computer memory using three
ASCII codes, which are f! 01100110, o! 01101111, and r! 01110010. In base ten we can
write f! 102, o! 111, and r! 114. When MATLAB begins to process a statement and it
first encounters these three binary numbers, then this context causes the three numbers to be
interpreted as the key word for, in which case MATLAB sets up further processing to execute
a for loop. When a program is entered from a keyboard (using the MATLAB editor or some
word processor), it is stored as a sequence of characters using ASCII codes, like in a text file.

When MATLAB executes a statement in an m-file, a sequence of characters (ASCII
codes) that represents an actual number is converted into a floating point binary number
using 64 bits (double precision), by default.

Example 5.2

>> A = [-397 0.183 pi sin(pi/4) exp(-2.5) 0] % the default display format is short

A = -397.0000 0.1830 3.1416 0.7071 0.0821 0

>> % the elements of A are stored using 64-bit floating point notation, double precision

>> % for display, the entire line is a string of ASCII codes

>> whos % the elements of A are stored using 8 bytes per number

Name Size Bytes Class Attributes

A 1x6 48 double

>> format long % the format function only controls how numbers are displayed

>> A

A = Columns 1 through 6

-3.97000000000000 0.001830000000000 0.031415926535898 0.007071067811865

0.000820849986239 0

>> format long e % floating point notation

>> A

A = Columns 1 through 6

-3.970000000000000e+002 1.830000000000000e-001 3.141592653589793e+000

7.071067811865475e-001 8.208499862389880e-002 0

format short

>> whos % numbers remain in double precision

Name Size Bytes Class Attributes

A 1x6 48 double
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5.2.3 Storage Allocation
You can control the amount of memory space to be used, depending on the class and range
of a number. Table 5.5 lists built-in MATLAB functions with which to do this.

Example 5.3

>> a = 40000; % out of range of a 16 bit signed integer

>> int16(a) % will result in biggest possible positive signed integer

ans = 32767

>> b = uint16(a) % a is within the range of an unsigned 16 bit number

b = 40000

>> c = -98; % c is within the range of a signed 8 bit number

>> int8(c)

ans = -98

>> % c is out of range of an unsigned 8 bit number

>> uint8(c) % will result in smallest possible unsigned integer

ans = 0

>> int8(-37) + int16(2304) % both numbers are within their respective ranges

??? Error using +

Integers can only be combined with integers of the same class, or scalar doubles.

>> d = [-68 57 121]; % each integer element of d uses 8 bytes of memory

>> e = int8(d)

Table 5.5 Built-in functions concerned with numeric data (scalar, vector, and matrix)

Function Output range (base ten)
(activity)

Output type
(class)

Bytes per
element

X ¼ int8(N) �128 to 127 ! �27 to 27 � 1 Signed 8-bit integer 1
int16 �32,768 to 32,767 ! �215 to 215 � 1 Signed 16-bit integer 2
int32 �2,147,483,648 to 2,147,483,647 Signed 32-bit integer 4
int64 �9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
Signed 64-bit integer 8

intmin �2147483648 Signed 32-bit integer 4
intmax 2147483647 Signed 32-bit integer 4
uint8 0 to 255 ¼ 28 – 1 Unsigned 8-bit integer 1
uint16 0 to 65,535 ¼ 216 – 1 Unsigned 16-bit integer 2
uint32 0 to 4,294,967,295 ¼ 232 – 1 Unsigned 32-bit integer 4
uint64 0 to 18,446,744,073,709,551,615 ¼ 264 – 1 Unsigned 64-bit integer 8
double Convert to double precision 64-bit floating point 8
single Convert to single precision 32-bit floating point 4
isnumeric Test class Logical 1
isfloat Test class Logical 1
isinteger Test class Logical 1
islogical Test class Logical 1
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e = -68 57 121 % each integer element of e uses 1 byte of memory

>> d + e % this will not work, because d and e are not of the same class

??? Error using +

Class of operand is not supported.

>> whos % check to see the class of each variable

Name Size Bytes Class Attributes

a 1x1 8 double

ans 1x1 1 uint8

b 1x1 2 uint16

c 1x1 8 double

d 1x3 24 double

e 1x3 3 int8

If you know the class and range of numbers you will use in a program, then it is useful
to use the least amount of memory required for these numbers, as this will also decrease
execution time. Table 5.6 gives a list of the data classes that MATLAB supports.

So far, a variety of data types have been introduced, and in the following chapters
additional data types will be introduced. A MATLAB variable can be a scalar, vector,
matrix, or array of any of the data types mentioned in Table 5.6 and more, as we will see. In
a programming environment, it is useful to have a term that is nonspecific, but means any
variable of any data type. The term object is commonly used for this purpose. Thus, for
example, a matrix of floating point numbers, a character string, a plot, the handle of a
function, etc. are referred to as objects. The built-in function class returns the class of an
object, and its syntax is given by

X = class(object)

Table 5.6 MATLAB data classes

Class name Class description

double Double precision floating point numeric matrix
logical Logical matrix
char Character array
single Single precision floating point numeric matrix
float Single or double precision floating point numeric matrix
intn n-Bit signed integer matrix, replace n with 8, 16, 32, or 64, as in int8
uintn n-Bit unsigned integer matrix, replace n with 8, 16, 32, or 64, as in uint8
integer Any of the eight integer matrix classes
numeric Integer or floating point matrix
cell Cell array (described in Chapter 7)
struct Structure array (described in Chapter 7)
function_handle Function handle
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where the variable X is assigned a character string that is one of the class names given in
Table 5.6. For example:

>> A = [2.5 pi;atan(pi/4) -3]; % the matrix A is an object

>> X = class(A)

X = double

>> class(X) % X is an object

ans = char

Another commonly used number base is hexadecimal (base 16). Table 5.7 gives the
digits used in this base. Hexadecimal uses the base ten digit symbols for the first ten
hexadecimal digits and the remaining hexadecimal digit symbols are the letters a through
f. It is easy to convert a binary integer to hexadecimal by starting at the right, group every
four binary digits, get the base ten value, but write it in hexadecimal. For example, N
in base 2 = 1011101001011110111 = 101, 1101, 0010, 1111, 0111 ! 5, 13, 2, 15, 7 in
base 10 ! 5d2f7 in base 16. For a binary fraction, start at the left and make groups of
four binary digits. In reverse it is easy to convert a base 16 number to binary. Or, go
directly from base 2 to base 16 using 4 bits at a time. Base 16 is used to reduce output print
space. Here, 19 characters are required to print N in binary, while only 5 characters are
required to print N in base 16. Base 16 is often used to print (communicate) binary
numbers.

5.2.4 Binary Arithmetic
MATLAB does not explicitly support arithmetic with numbers given in binary notation. In
MATLAB a binary number is specified with a character string.

Example 5.4

>> a = ’10010111’ % assign a character string, which represents a binary number, to a

a = 10010111

>> isfloat(a) % a is not a floating point number

ans = 0

>> isnumeric(a) % a is not a number

Table 5.7 Hexadecimal (base 16) digits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 a b c d e f

Note: First row is base ten, second row is base 2, and third row is base 16.
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ans = 0

>> islogical(a) % a is not a logical variable

ans = 0

>> whos

Name Size Bytes Class Attributes

a 1x8 16 char

ans 1x1 1 logical

>> a(1) % a is an 8 element character vector

ans = 1

>> a(2)

ans = 0

>> % convert a into an integer vector of ASCII codes

>> b = uint8(a)

b = 49 48 48 49 48 49 49 49

>> % 49 and 48 are the ASCII codes for 1 and 0, respectively

>> isnumeric(b) % b is a numeric vector

ans = 1

Table 5.8 gives a list of the many built-in MATLAB functions that work with binary
character strings.

Table 5.8 MATLAB functions concerned with binary
character strings

Function Activity

bin2dec Convert binary string to decimal number
bitand Bitwise AND
bitcmp Bitwise complement
bitget Get bit at specified position
bitmax Maximum double precision floating point integer
bitor Bitwise OR
bitset Set bit at specified position
bitshift Shift bits specified number of places
bitxor Bitwise XOR
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
num2str Convert number to string
str2num Convert string to number
strcmp Compare strings, case sensitive
strcmpi Compare strings, not case sensitive
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Example 5.5

As you go through this example, keep in mind that most of these functions expect unsigned
integer inputs and they return unsigned integer outputs. To see a result in binary, the integer
result must be converted to a binary character string. Prog. 5.2 exercises some of the
functions given in Table 5.8, and the results follow.

clear all; clc

a_bin = dec2bin(47) % convert integer to a binary character string, a vector

b_bin = ’10011010’ % assign a binary character string to b_bin, a vector

% you can also use b_bin = int2str(10011010)

c_int = bin2dec(b_bin) % binary to decimal conversion

d_int = bin2dec(a_bin) + c_int % add integers and get integer result

d_bin = dec2bin(d_int) % convert to binary character string

d_bin_first_bit = bitget(d_int,1) % get first bit

% Notice that for the vector b_bin, the first element is on the left, while

% the first bit of d_int is on the right. See the program output.

d_bin_second_bit = bitget(d_int,2) % get second bit

d_bin_complement = dec2bin(bitcmp(d_int,8)) % complement first 8 bits

d_bin_bit_six_set = dec2bin(bitset(bin2dec(d_bin),6,1)) % set bit 6 to 1

d_2_byte = uint16(bin2dec(d_bin)) % make a 2 byte integer

d_shifted_left = dec2bin(bitshift(d_2_byte,2)) % multiply by 4

% if 2 is replaced by -2, a right shift occurs, which is a divide by 4

whos

Program 5.2 Demonstration of various MATLAB binary operations.

a_bin = 101111 % 47 in decimal

b_bin = 10011010

c_int = 154

d_int = 201 % this is 47 + 154

d_bin = 11001001 % 201 in binarry

d_bin_first_bit = 1 % least significant bit of d_bin

d_bin_second_bit = 0 % next bit

d_bin_complement = 110110 % bitwise complement

d_bin_bit_six_set = 11101001 % 6th bit of d_bin set to 1

d_2_byte = 201 % convert d_bin to a 2 byte integer to make room for a shift to the left

d_shifted_left = 1100100100 % a shift to the left by 2 bits is like multiplying d_bin by 4

Name Size Bytes Class Attributes

a_bin 1x6 12 char

b_bin 1x8 16 char

c_int 1x1 8 double

d_2_byte 1x1 2 uint16

d_bin 1x8 16 char
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d_bin_bit_six_set 1x8 16 char

d_bin_complement 1x6 12 char

d_bin_first_bit 1x1 8 double

d_bin_second_bit 1x1 8 double

d_int 1x1 8 double

d_shifted_left 1x10 20 char

Notice the various class types. Even 1 bit is stored using 8 bytes. If memory space is critical,
then use uint8 to save space. For example, d_bin_first_bit = uint8(bitget(d_int,1)) uses 1
byte of memory.

5.2.5 Floating Point Notation
MATLAB uses two floating point formats as specified by the IEEE-754 standard. They are
single precision with 32 bits (word length is 4 bytes) and double precision with 64 bits
(word length is 8 bytes).

5.2.5.1 Single Precision
Denote the 32 bits of single precisionwith dk ; k ¼ 0; 1; . . . ; 31, where d31 is theMSBand d0 is
the LSB. These 32 bits, which can be written with 8 hexadecimal digits, are used to represent a
floating point number. In binary, a normalized 32-bit floating point number is given by

N ¼ ð�1ÞS�1: f�1 f�2 f�3 � � � f�21 f�22 f�23�2G ð5:6Þ
where S is the sign bit, 0 for positive or 1 for negative, which is assigned to d31,
1. f�1 f�2 f�3 � � � f�21 f�22 f�23, called the significand, are 24 bits, and the 23 fraction bits,
denoted by F, are assigned to d22, . . . , d0, and G, a signed integer, is restricted to the range
from�126 toþ127. The 23 fraction bits F of the significand determine the fraction given by

f�1�2�1þ f�2�2�2þ � � � þ f�22�2�22þ f�23�2�23

Since the digit 1 in the significand of (5.6) is always assumed in a normalized number, it
is not assigned to any dk. This bit is called the hidden bit, and it gives the 32-bit format an
extra bit of precision. The hidden bit is inserted when N is reconstructed from
dk ; k ¼ 0; 1; . . . ; 31. With the 24 bits of the significand, 32-bit floating point notation gives
a precision of 24 bits, which is equivalent to about 7.2 base ten digits.

For example, X ¼ �379:46 ! �101111011:01110101110000101 . . . , where the
binary fraction does not terminate. Normalizing X gives
�1:0111101101110101110000101 � � ��28, where 25 bits of the fractional part are shown.
The fraction is reduced to 23 bits by rounding. There are many rounding methods.
One possibility is to truncate the fraction (delete bits) after 23 bits, which is rounding
toward zero. The IEEE-754 standard uses rounding to the nearest value. To demonstrate
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this, suppose we have a fraction, and move the binary point to the right of the 23rd bit to get,
for example, Y ¼ 01111011011101011100001:01 . . . , and here the fractional part is less than
0.1. Now, round Y to the nearest integer resulting in 01111011011101011100001: After
rounding, the normalized 32-bit floating point number becomes N ¼ ð�1Þ1�1:011110110111
01011100001�28. Suppose instead that for a different X , Y ¼ 01111011011101
011100001:11 . . . , where the fractional part is greater than 0.1. Rounding this Y to the nearest
integer gives 01111011011101011100010: In the event that the fractional part of Y is exactly
0.1, called a tie, then Y is rounded to the nearest even integer. Also, if the integer part of Y is
all 1s, then Y is rounded to an integer by deleting the fractional part.

Regarding the exponent G, there are several commonly used ways to write a positive or
negative integer in binary. One way is called sign magnitude notation, where the MSB is
set to 0 or 1 if the number is positive or negative, respectively, and the remaining bits are
used to denote the magnitude of the number in binary. For example, using 8 bits, the
negative integer �15 is written as 10001111, where 7 bits are used for the magnitude. Note
that 8 bits would not be enough bits to represent, for example, �317 in signed magnitude
notation, where instead, at least 10 bits are required.

Given the allowed range of G, 8 bits are enough to write G in sign magnitude notation.
However, according to the IEEE-754 standard, the 8 bits d30 � � � d23, which account for the
signed exponent G, are determined by E = Gþ b, where b = +127. Thus, E ranges from 1 to
254, which can be written in binary with 8 bits e7e6 � � � e1e0 that are assigned to d30 � � � d23.
The number b is called a bias. E = 0 and E = 255 are reserved (to be explained soon) for a
purpose other than representing N with (5.6). A single precision floating point number is
stored in memory as

N � d31 d30 d29 � � � d23 d22 d21 d20 � � � d1 d0
S e7 e6 � � � e0 f�1 f�2 f�3 � � � f�22 f�23

(

ð5:7Þ

With (5.6) stored according to (5.7), there is no way to represent the number 0.
Therefore, the rules to get the value of N are as follows:

● If E = 0 and F is nonzero, then N = (� 1)S� (0.F)�2(�126), unnormalized values.
● If E = 0, F = 0, and S = 1, then N = � 0, the hidden bit is replaced by 0.
● If E = 0, F = 0, and S = 0, then N = +0, the hidden bit is replaced by 0.
● If 0 < E < 255 then N = (�1)S� (1.F) � 2(E�b), recall that the 1 in 1.F is implicit.
● If E = 255 (all 1s) and F is nonzero, then N = NaN (‘‘Not a number’’).

This serves as notation for the case: 0/0, which is indeterminate.
● If E = 255, F = 0 (all 0s), and S = 1, then N = � infinity.

This serves as notation for the case: negative number/0.
● If E = 255, F = 0, and S = 0, then N = +infinity.

This serves as notation for the case: positive number/0.
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For example:
0 11111110 11111111111111111111111 ! +1 � 1.11111111111111111111111 � 2(254�127)

= 1.11111111111111111111111�2127, largest positive value
0 10000000 00000000000000000000000 ! +1�1.0�2(128�127) = 2
0 01111111 00000000000000000000000 ! +1�1.0�2(127�127) = 1
0 00000001 00000000000000000000000 ! +1�1.0�2(1�127) = 2(�126)
0 00000000 10000000000000000000000 ! +1�0.1�2(�126) = 2(�127)
0 00000000 00000000000000000000001! +1�0.00000000000000000000001�2(�126) =

2(�149), smallest positive value

5.2.5.2 Double Precision
In (5.6), the significand of double precision consists of 53 bits and G ranges from �1022 to
+1023. Double precision is more precise than twice the precision of single precision. In
(5.7), b = +1023, and E, which consists of 11 bits, ranges from 1 to 2046. E = 0 and E = 2047
are reserved, similar to single precision. The remaining rules for finding N are similar to the
single precision rules.

5.3 Logic Gates

Electronic circuits that behave as described by Table 5.1 are called logic gates. These
circuits are fabricated with resistors, diodes, and transistors using integrated circuit (IC)
technology. Fig. 5.1 shows how inputs and outputs are connected to a logic gate. The
constant voltage source supplies the power, P = V i(t) watts to make the electronic circuit
work. There are two input voltages vx(t) and vy(t) that can be logic 0 (0 volts) or logic 1
(5 volts). The design of the electronic circuit must satisfy an important requirement.
Regardless of the value of the input voltages, the currents ix(t) and iy(t) must be very small,
for example, less than a few mA. Then, the power supplied by the input voltage sources vx(t)
and vy(t) will also be very small. Suppose the circuit is designed to perform the AND

Electronic
CircuitV

Constant
Voltage
Source

vx(t) vz(t)
vy(t)

iy(t)

ix(t)

i(t)

Figure 5.1 Circuit diagram for connection to a logic gate.
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operation. Then, vz(t) = 5 volts (logic 1) only if vx(t) = 5 volts (logic 1) and vy(t) = 5 volts
(logic 1), and otherwise, vz(t) = 0 volts (logic 0).

It is conventional that logic circuit diagrams do not include the details shown in Fig. 5.1.
Instead, only the symbol for a gate is given, with the names of the inputs and outputs. This is
shown in Fig. 5.2. In these drawings it is presumed that a constant voltage source supplies
power to the circuits, that the inputs are voltages from the input terminals to the negative
side of the constant voltage source, and that the output is a voltage from the output terminal
to the negative side of the constant voltage source. Furthermore, the inputs and outputs are
interpreted to be logical variables.

The input voltages to a logic circuit can change with time. For example, Fig. 5.3 shows
two input voltages applied to anOR gate and the output voltage as the input voltages change
with time. Notice that the output does not change exactly at the same time that the inputs
change. Ideally, an output should change exactly when an input changes. However, for
physical reasons the output of a real circuit cannot change instantaneously with its inputs.
The time required for the output to respond to inputs is called propagation delay. This and
other kinds of propagation delays limit the speed of a digital system.

In addition to the basic gates depicted in Fig. 5.2, which perform the logic operations
given in Table 5.1, there are basic gates that perform the logic operations given in Table 5.3.
The NAND operation gives z ¼ ðx � yÞ. This can be achieved by connecting the output of an
AND gate to the input of a NOT gate, which outputs z. The NOR operation gives
z ¼ ðxþ yÞ. This can be achieved by connecting the output of an OR gate to the input of a
NOT gate, which outputs z. The XOR operation gives z ¼ x� y, and soon we will see how

AND OR NOTzz
x x

x
y y

y

Figure 5.2 Symbols for the and, or, and not gates.

time - micro seconds
1 2 3 4 5 6 7

1
0

1
0

1
0

x

y

z

Figure 5.3 Timing diagram of inputs to and output from an OR gate.
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this can be achieved with an interconnection of basic gates. The symbols for the NAND,
NOR, and XOR gates are shown in Fig. 5.4. The small circle included in the NAND and
NOR gates is called a bubble, and it is notation for the complement (NOT) operation.

A bubble can be used by itself to indicate a complement (NOT) operation. For example,
the equivalent logic circuits shown in Fig. 5.5 have the same output given by

y ¼ ðabÞ þ c
¼ ðabÞc; by DeMorgan’s theorem
¼ ðaþ bÞc; by DeMorgan’s theorem

Notice how the logic circuit determines how to write the Boolean expression for y. This also
shows that axioms and theorems of Boolean algebra can be useful to modify and possibly
simplify a logic circuit.

5.4 Boolean Functions

A Boolean function f of K logic variables is a rule that describes how to assign a logic value
to f given a logic assignment to the K variables. There are 2K different logic assignments to
the K logic variables. However, f need not be defined for all possible logic assignments. A
Boolean function can be given by a logic statement involving AND, OR, and NOT opera-
tions with parentheses to provide precedence or by a truth table.

Example 5.6

Given is the Boolean function

f ða; b; cÞ ¼ aðbþ cÞ þ a b c

This is a Boolean function of K = 3 logic variables. There are 2K = 8 possible combinations
(binary assignments) of a, b, and c, which are abc = 000, 001, 010, 011, 100, 101, 110, and 111.

NAND NOR zz
x x

y y
XOR z

x

y

Figure 5.4 Symbols for the NAND, NOR, and XOR gates.

a
b

y
c

a
b

c
y

Figure 5.5 Example of using a bubble to complement a variable.
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Notice that the binary assignments are a count in binary from 0 to 7 = 2K � 1. For each
binary assignment the function rule describes how to find the function logic value. Another
way to describe the relationship between the three logic variables and the function value is
with the truth table shown below, where each binary assignment and the corresponding
function value are listed.

Truth Table

a b c f(a,b,c)

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

A MATLAB script to generate this table follows.

clear all; clc

a = logical([0 0 0 0 1 1 1 1]); % all assignments to a, b and c

b = logical([0 0 1 1 0 0 1 1]);

c = logical([0 1 0 1 0 1 0 1]);

for k = 1:8

f(k) = ~a(k)&(b(k)|~c(k))|(a(k)&~b(k)&c(k));

end

% the for loop could be replaced with f = ~a&(b|~c)|(a&~b&c)

disp(’Truth Table’)

disp(’ a b c f(a,b,c)’)

table = [a;b;c;f];

fprintf(’ %i %i %i %i \n’,table)

It is easy (maybe tedious if you do this manually) to find a truth table given a Boolean
function. Soon, we will see how to find a Boolean function given a truth table. In practice,
however, we usually start with a description of some problem and a desired resolution of the
problem. With this starting point we must find a truth table or a Boolean function that
resolves the problem.

Example 5.7

Given are two 4-bit binary numbers a and b. Find a Boolean function f(a,b) that is logic 1
if the binary numbers a and b are equal and logic 0 if the binary numbers are unequal.
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Denote the binary number a with a3 a2 a1 a0. In MATLAB, we can write a = ‘a3 a2 a1 a0’,
where, for example, a = ‘1 0 0 1’, a(1) = a3 = 1, which defines a as a character string.
Define b in a similar way. The numbers a and b are equal if a(1) = b(1), and a(2) = b(2), and
a(3) = b(3), and a(4) = b(4).

If instead, a and b are defined as logical vectors given by

a¼ logicalð½a3 a2 a1 a0	Þ
b¼ logicalð½b3 b2 b1 b0	Þ

then the logical operations EQ (equivalence) and AND can be used, and the Boolean
function f (a,b) is given by

f ¼ ðað1Þ� bð1ÞÞðað2Þ� bð2ÞÞðað3Þ� bð3ÞÞðað4Þ� bð4ÞÞ ð5:8Þ

Here, f is a Boolean function of K = 8 logic variables, and a truth table would require 28 =
256 rows of binary assignments to a and b. This logical expression for f specifies how to
write a MATLAB function, where the inputs a and b are defined as logical binary numbers.
A MATLAB function is given in Prog. 5.3.

function equal = binary_equality(a,b)

% Boolean function to compare two binary numbers for equality

% a and b can be logical or numeric binary vectors

a_logic = logical(a); b_logic = logical(b); % logical vectors

J = length(a_logic); K = length(b_logic); % get lengths

N = J; % assume length J

if J > K

b_logic = [false(1,J-K),b_logic]; % add leading logic 0s to b_logic

elseif J < K

N = K;

a_logic = [false(1,K-J),a_logic]; % add leading logic 0s to a_logic

end

equal = true; n = 1; % initially assume equal

while equal && (n <= N)

equal = equal & (~xor(a_logic(n),b_logic(n))); % EQ equals ~XOR

n = n+1;

end

Program 5.3 Function to check if two logical vectors are equal.
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With this function we get

>> x = logical([1 0 1 1]);

>> y = logical([1 1 0 0]);

>> z = [0 0 1 0 1 1]; % z is a numeric vector

>> x_y = binary_equality(x,y) % x and y are not equal binary vectors

x_y = 0

>> x_z = binary_equality(x,z) % leading zeros in z do not change the binary value of z

x_z = 1

>> whos

Name Size Bytes Class Attributes

x 1x4 4 logical

x_y 1x1 1 logical

x_z 1x1 1 logical

y 1x4 4 logical

z 1x6 48 double

The Boolean expression for f given in (5.8) also specifies how to design (build) a logic
circuit for f, which is shown in Fig. 5.6. This is called a realization of the Boolean function,
and Prog. 5.3 simulates the logic of this circuit.

If a and b are defined as character strings, then the function f is given by f = strcmp(a,b).
However, this form for f provides no insight about designing a logic circuit.

XOR
a3

b3

a2

b2

a1

b1

a0

b0

AND

XOR

XOR

XOR

f

Figure 5.6 Realization of the equivalence Boolean function given in (5.8).
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Any Boolean function can be realized with only AND, OR, and NOT gates. Let us look
at the truth table for an XOR gate, which is shown below.

x y x� y x� y

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

In the second row where x = 0, y = 1, and x� y = 1, the term x y is logic 1. For all other
logic assignments to x and y, the term xy is logic 0. In the third row where x = 1, y = 0, and
x� y = 1, the term xy is logic 1. For all other logic assignments to x and y, the term xy is
logic 0. Therefore, Boolean functions for x� y and x� y are given by

x� y ¼ xyþ xy
x� y ¼ x� y ¼ x y þ x y ð5:9Þ

where the rows in which x� y = 1 were used to write it in (5.9). With (5.9), the circuit in
Fig. 5.6 can be built using only AND, OR, and NOT gates.

With Prog. 5.3 as an example, it should not be difficult to write MATLAB functions that
do bitwise AND, NAND, OR, NOR, and more, where the inputs are logical vectors. This
will lead to the kinds of logic circuits that are realized within the CPU (central processing
unit) of a computer.

Now consider binary addition. Given are two binary numbers a and b, for example,
a ¼ [1 1 0 1] and b ¼ [1 1 1]. To add them, line them up in two rows, and start addition in
the right most (LSB, least significant bit) column, as shown in Fig. 5.7. Here, a0 þ b0 ¼ 10,
which is 2 in binary, and therefore, the sum bit is s0 ¼ 0 and the carry bit into the column to
the left is c1 ¼ 1. In the next column, we have c1 þ a1 þ b1 ¼ 10; s1 ¼ 0 and c2 ¼ 1. In the
next column, we have c2 þ a2 þ b2 ¼ 11, which is 3 in binary, giving s2 ¼ 1 and c3 ¼ 1.
This continues until we get the 5-bit sum. The mechanics of binary addition are the same as
the mechanics of base ten addition.

Given ak and bk , let us consider addition in the kth column, but without a carry bit from
the (k�1)th column. The table in Fig. 5.8 shows the possibilities. By inspection of this

a3 a2 a1 a0

b3 b2 b1 b0

c4 c3 c2 c1

s4 s3 s2 s1 s0

1 1 0 1

0 1 1 1

1 1 1 1

1 0 1 0 0

Figure 5.7 Addition of two binary numbers.
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table, the sum bit is given by sk ¼ ak � bk , and the carry bit into the next column is
ckþ1 ¼ akbk . This results in the logic circuit shown in Fig. 5.8, which is called a half-
adder (HA).

For full addition in the kth column, we must take into account the carry bit ck from the
(k�1)th column. Given ak , bk , and the carry bit ck into the kth coulmn from the (k�1)th
column, Table 5.9 shows the sum bit sk and the carry bit ckþ1 into the (kþ1)th column. This
is full addition.

From the rows where sk is logic 1, the Boolean function for sk is given by

sk ¼ akbkck þ akbkck þ akbkck þ akbkck ð5:10Þ
Here, each of the four terms that are ORed comes from a row where sk ¼ 1, and they can be
formed by an inspection of the binary assignment in each of these rows. Furthermore, each
term looks as if the variables or their complements are being multiplied. Each term is called
a product term (also called a minterm). The product terms are ORed to form the function

ak

ak bk sk

bk

sk

ak bk

skck+1

ck+1 ck+1

0
0
1
1

0
1
0
1

0
1
1
0

0
0
0
1

Figure 5.8 Binary addition in the kth column with ck ¼ 0.

Table 5.9 kth column binary addition

ak bk ck sk ckþ1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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sk , and this looks like addition. Therefore, this structure of the function sk is called a sum-of-
products form, which can be written by inspection of the truth table. Applying the dis-
tributive property to the second and third minterms and also to the first and fourth minterms
gives

sk ¼ ðakbk þ akbkÞck þ ðakbk þ akbkÞck ð5:11Þ

In view of (5.11), let Xk be defined by Xk ¼ akbk þ akbk ¼ ak � bk , which is one of the
outputs of a half-adder, and then (5.11) becomes

sk ¼ Xkck þ X kck ¼ ck � Xk ð5:12Þ

which can be obtained with a second half-adder. From the rows where ck+1 is logic 1, a sum-
of-products form of a Boolean function for ck+1 is given by

ckþ1 ¼ akbkck þ akbkck þ akbkck þ akbkck
¼ ðakbk þ akbkÞck þ akbkðck þ ckÞ
¼ Xkck þ akbk

ð5:13Þ

With (5.12) and (5.13), a logic circuit can be designed, where the inputs are ak, bk, and ck,
and the outputs are sk and ck+1. The logic circuit, which is called a full-adder, is shown in
Fig. 5.9.

In view of (5.9), a full adder can be fabricated using AND, OR, and NOT gates.

Full
Adder

ck+1
ck+1 ckck

Xk

ak

sk

sk

bk

ak bk

Figure 5.9 Logic circuit for addition obtained with Table 5.8.
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Example 5.8

Design a logic circuit that can add two 4-bit numbers. Using full-adders, Fig. 5.10 gives a
logic circuit that adds two 4-bit numbers. Since c0 = 0, the least significant bit (LSB) full-
adder can be replaced by a half-adder. This adder design is called a serial adder. Assume
that all inputs are applied at the same time. Due to propagation delay, the carry bit c1 cannot
be valid immediately. This means that the sum bit s1 cannot be valid until after c1
has become valid. This delay action propagates serially through each full adder until finally
s4 becomes valid.

The logic of this circuit is simulated by Prog. 5.4, which is a function that includes a
sub-function. Some tests of this function follow the program.

function binary_sum = binary_adder(a,b)

% This function does binary addition of the logic vectors a and b

% The output is the logic vector binary_sum

% Uses a subfunction to perform the operation of a half-adder

a_logic = logical(a); b_logic = logical(b); % logical vectors

J = length(a_logic); K = length(b_logic); % get lengths

N = J; % assume length J

if J > K

b_logic = [false(1,J-K),b_logic]; % add leading logic 0s to b_logic

elseif J < K

N = K;

a_logic = [false(1,K-J),a_logic]; % add leading logic 0s to a_logic

end

% binary_sum will have N+1 bits

bin_sum = false(1,N); % preallocate space for the binary sum

ck = false; % first carry in bit

Full
Adder c0 = 0Full

Adder
Full

Adder
Full

Adder

a3 b3 a2 b2 a1 b1 a0 b0

s3 s2 s1 s0s4

Figure 5.10 A 4-bit serial adder logic circuit using AND, OR, and NOT gates.
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for k = N:-1:1 % processing a and b from right to left

% use first half-adder in a full-adder

[ak_and_bk Xk] = half_adder(a_logic(k),b_logic(k));

% use second half-adder in a full-adder

[ck_and_Xk bin_sum(k)] = half_adder(ck,Xk);

ck = ak_and_bk | ck_and_Xk; % carry out bit

end

if ck % check if there is a final logic 1 carry out bit

binary_sum = [ck, bin_sum]; % including the most significant bit

else

binary_sum = bin_sum; % suppress a logic 0 final carry out bit

end

%

function [x_and_y x_xor_y] = half_adder(x,y)

% Evaluates the logic of a half-adder; has two outputs

x_and_y = x & y;

x_xor_y = (~x&y) | (x&~y);

Program 5.4 A function that does binary addition using full-adders.

>> a = logical([1 0 1 0]);

>> b = logical([0 1 0 1 1]);

>> c = logical([1 0 1]);

>> binary_adder(a,b)

ans = 1 0 1 0 1

>> binary_adder(a,c)

ans = 1 1 1 1

A MATLAB program that produces an animation of a serial binary adder is given in
Chapter 9.

5.5 Quantization Error

Real world phenomena vary continuously with time over continuous ranges. An analog
(analogous) signal vðtÞ, a voltage or possibly a current, is called an analog signal, because it
varies analogously with some physical phenomenon. An analog signal can have any value in
a continuous range, for example, �V 
 vðtÞ 
 þV ; 0 < V < 1.

An audio signal produced by a microphone, a voltage that varies over a continuous
range continuously with time, is an example of an analog signal. The voltage is analogous to
the variation of the pressure pðtÞ of the air at the surface of the microphone’s diaphragm.
This analog signal can be amplified to obtain another analog signal within a range like, for
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example, the range mentioned above. The pressure pðtÞ is also an analog signal, as it is
analogous to the physical phenomenon. The microphone is a transducer that converts the
analog signal pðtÞ, which is expressed in psi, to another analog signal expressed as a voltage.

To process an analog signal with a computer, it must be sampled, as described by (3.33).
Then, each sampled value must be converted into a binary number. An analog to digital
converter (ADC) is an electronic device that receives a sample value (a voltage) of an
analog signal and outputs a binary number representing the sampled signal value. This is
depicted in Fig. 5.11, where T = 1/fs is the time between samples of v(t), and fs is the
sampling rate. This entire process is referred to as data acquisition.

If, for example, the goal of a data acquisition system is to produce a music CD, then
fs = 44,100 samples/sec, and each vd (nT) is a K = 16 bit binary number, where the ADC
output consists of K = 16 binary voltages. For CD production, a K = 24 bit ADC is commonly
used with a sampling rate of 88,200 samples/sec and even higher. To process the incoming
data with algorithms that modify the nature of the sound, each K-bit number received by the
computer is converted into a 32-bit floating point number. Modifications such as adding
reverberation, enhancing different frequency ranges of the sound, and adding special effects
such as flanging are typical, and MATLAB is well suited for program development to do this
kind of processing. After processing with 32-bit floating point arithmetic, the resulting data is
converted back to 16-bit or 24-bit data at 44,100 samples/sec for recording in a CD.

Computers are used to process all kinds of analog signals, for example, the outputs of
sensors in a car, electrocardiograms, microphones in a cell phone, thermometers in a building
heating/cooling system, pH meters in a chemical process, and many others. Each of these
different applications use an appropriate transducer that converts the behavior of some phy-
sical phenomenon to a voltage as it varies continuously in value and continuously with time.

There are many advantages in using a computer to process an analog signal. Two
advantages are programming flexibility and the possibility to execute operations that are
impossible to do with an electronic circuit that operates directly on vðtÞ. Among others,

Sampler
t = nT

v(nT) Analog to
Digital Converter

(ADC)

vd (nT)
v(t)

binary number sequence
(digital signal)

Computer

CD

Display

discrete time signal

analog and continuous
time signal

Figure 5.11 Data acquisition (DAQ) system.
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there is an important concern. Since each binary number in the sequence of numbers vdðnTÞ
must use a finite number of bits, it is likely that the value of each number in the sequence
vdðnTÞ is never exactly equal to each number in the sequence of numbers vðnTÞ. The
difference is called quantization error, and for each n there will be a quantization error,
which is given by

qðnTÞ ¼ vðnTÞ � vdðnTÞ ð5:14Þ

For example, if for some time point t = nT, vðnTÞ ¼ þ0:86 V, a finite number of digits, then
in sign magnitude notation vðnTÞ ¼ 0110111000011010001111 . . . , (0 for +), which
requires an infinite number of bits that must be truncated (or possibly rounded) to obtain
vdðnTÞ. Here, if K = 16 bits are used, then vdðnTÞ ¼ 0110111000011010, a sign bit and a
15-bit fraction. The bits that were discarded to obtain vd (nT) are the quantization error at the
time t = nT. With K = 16 bits, vdðnTÞ can be any one of 216 = 65,536 possible binary
numbers.

Let us denote the sequence of numbers v(nT) by {v(nT)}, and similarly for the number
sequences vd (nT) and q(nT). Since fvdðnTÞg results from truncating the binary representa-
tion of {v(nT)}, fqðnTÞg is considered to be a random number sequence. Since v(nT) can be
positive or negative, it is preferred that the mean of fqðnTÞg is substantially zero and that
fqðnTÞg has a small variance. This depends mainly on the number K of bits used to obtain
fvdðnTÞg. While increasing K reduces the variance of fqðnTÞg, this may not mean that
fvdðnTÞg will be a better representation of the physical phenomenon to which vðtÞ is ana-
logous, as vðtÞ may include electrical noise and the influence of other unwanted physical
phenomena.

Let us rearrange (5.14) to become

vdðnTÞ ¼ vðnTÞ � qðnTÞ ð5:15Þ

Here, we can think of vdðnTÞ as a distorted version of v(nT), and qðnTÞ is the source of the
distortion. If vðtÞ is perfectly analogous to the physical phenomenon of interest, such as,
for example, the sound made by a singer in a studio, then qðnTÞ is the only source of
distortion. However, this depends on an ideally functioning ADC, which may not be the
case.

We must know how to assess the degree of distortion caused by quantization error to
select an appropriate K value for a particular application. It could be that any one of K = 4, 8,
10, 12, 16, or 24 is suitable for a particular application, which depends on how accurately
fvdðnTÞg must represent some physical phenomenon. For example, in the production of a
music CD, it is preferred to use K = 24 for acquiring and processing the data. Recall that in
single precision the significand consists of 24 bits, and therefore, it is preferred to use all of
this precision. Then, a smaller K is preferred for recording data in a CD to increase the
amount of music that can be stored in the CD.
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Essentially, an ADC performs the activity discussed in Example 4.5, where a MATLAB
program is used to determine which of N sub-intervals of a voltage range contains a given
voltage v(nT). Here, an ADC is used to do this, which is illustrated in Fig. 5.12 for N = 2K
and the case K = 3. V+ and V� are positive and negative voltages from voltage sources that
supply the power required by the ADC to work. +VRef and –VRef are reference voltages that
specify the voltage range that is subdivided by the ADC, where the width of each sub-
interval is given by

Q ¼ þVRef � ð�VRef Þ
2K

¼ 2VRef
2K

¼ VRef
2K�1

ð5:16Þ

The input to the ADC is the sampled voltage v(nT), which is in the range
�VRef 
 vðnTÞ 
 þVRef . VRef is selected to satisfy VRef 
 V. It is desired to know which of
N ¼ 2K sub-intervals of the range [�VRef, +VRef] contains v(nT). Each sub-interval is asso-
ciated with one of N possible binary numbers, which become the output of the ADC. In
Fig. 5.12, where K = 3, the output of the ADC consists of three binary voltages grouped
together as vdðnTÞ, which is a binary assignment to each sub-interval. Two kinds of binary
assignments are given in Fig. 5.12, a binary count from the most negative to the most positive
voltage sub-interval and a modified binary assignment where the MSB indicates a corre-
spondence to negative and positive voltage sub-intervals. A binary assignment of a sub-
interval is called a code for the sub-interval, and both coding methods are linear coding
methods. The sub-intervals next to –VRef and +VRef do not have the same widths as the
remaining N � 2 sub-intervals, and the reason will be made clear in a moment. These N � 2
sub-intervals have a width given by (5.16). The relationship between vdðnTÞ and v(nT) is
easier to see in Fig. 5.13.

K = 3 bit
ADC

V +VRef

+VRef +VRef

V

v(nT) vd (nT)

3 binary
voltage outputs

–VRef

–VRef

–VRef

binary signed binary

Q

000

001

010

011

100

101

110

111

100

101

110

111

000

001

010

011

Figure 5.12 Connections of voltage sources to an ADC and the binary output.
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The signed binary output of the ADC is shown in Fig. 5.13, and it is given in Table 5.10.
There is a one-to-one correspondence between each sub-interval and its binary assignment.
If vðnTÞ is near zero, either positive or negative, then the binary assignment is 000. If the
mapping from vðnTÞ to vdðnTÞ is shifted to the right by Q/2, then all sub-intervals will have
the same width. However, then a small positive vðnTÞ will produce a different binary
assignment than a negative vðnTÞ near zero, which means that if j vðnTÞ j is near zero, the
binary assignment is not unique, and this is not preferred. Notice that the signed binary
output given in Fig. 5.12 distinguishes negative vðnTÞ from positive vðnTÞ with the bit on
the left, the most significant bit (MSB), which makes it a sign bit. If the binary assignment is
instead a straight binary count C from 000 to 111 going up in Fig. 5.12, the binary assign-
ments given in Table 5.10 can be found with C+ 2K�1, and drop the left most carry bit.

v(nT)

vd (nT)

VRefVRef
001

010

011

100

101

110

–Q–2Q–3Q–4Q Q 2Q 3Q 4Q
111

Figure 5.13 Ideal operation of a K ¼ 3 bit analog to digital converter.

Table 5.10 ADC analog input ! binary output

Analog input, v(nT) Binary output, vd(nT)

5Q=2 
 vðnTÞ 
 þVRef 011
3Q=2 
 vðnTÞ < 5Q=2 010
Q=2 
 vðnTÞ < 3Q=2 001

�Q=2 
 vðnTÞ < þQ=2 000
�3Q=2 
 vðnTÞ < �Q=2 111
�5Q=2 
 vðnTÞ < �3Q=2 110
�7Q=2 
 vðnTÞ < �5Q=2 101
�VRef 
 vðnTÞ < �7Q=2 100
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Now that we know what an ADC does, there is the question of how to produce a
continuous time signal given a recording of a digital discrete time signal fvdðnTÞg, a
number sequence. For example, a CD player reads a number sequence at the rate of 44,100
samples/sec from a CD and produces a continuous time signal that becomes the sound that
you hear. Let us continue to work with K = 3, in which case, the binary number sequence
from a CD consists of binary numbers from Table 5.10. Suppose that at some time point the
number vdðnTÞ ¼ 010 is retrieved from the CD. From Table 5.10 we know that this
occurred because at that time point 3Q=2 
 vðnTÞ < 5Q=2, which does not tell us the actual
value of vðnTÞ. Therefore, choose a value for vðnTÞ to be in the middle of the sub-interval,
and denote it by v̂ðnTÞ, which is an estimate of vðnTÞ, that is, v̂ðnTÞ ¼ 2Q. Since vðnTÞ
could have been anywhere within the sub-interval, the worst estimation error is � Q/2,
which according to (5.14) makes themaximum quantization error magnitude, qmax = Q/2.
There is only one sub-interval where the maximum quantization error magnitude is Q
instead of Q/2, and this occurs in the sub-interval next to +VRef, where if vdðnTÞ ¼ 011, then
v̂ðnTÞ ¼ 3Q, where vðnTÞ could have been near +VRef (see Fig. 5.13). This quantization
error is of no concern, because if, for example, K = 16, then it is one sub-interval in 65,536
sub-intervals, and this quantization error is considered to rarely occur.

Based on Fig. 5.13, the quantization error behaves as shown in Fig. 5.14. For example,
if Q=2 
 vðnTÞ < 3Q=2, then vdðnTÞ ¼ 001, and if vdðnTÞ ¼ 001, then v̂ðnTÞ ¼ Q. Fur-
thermore, if vðnTÞ ¼ Q, then vdðnTÞ ¼ 001, and v̂ðnTÞ ¼ Q, and the quantization error is
zero for this particular value of vðnTÞ, as well as any vðnTÞ ¼ kQ; k ¼ �4;�3; . . .; 2; 3.

If vðnTÞ occurs anywhere within a sub-interval, then its value must change by Q to
change the LSB of vdðnTÞ. The voltage resolution of an ADC is given by Q. In Table 5.10,
for example, we see that if vðnTÞ changes in value by Q, then vdðnTÞ changes in the LSB. K
is called the resolution of an ADC, since the range [�VRef, +VRef] is subdivided into 2K sub-
intervals. The dynamic range of an ADC is the ratio of the largest input signal level change

q(nT)

Q

qmax

VRefVRef

–4Q –2Q –Q–3Q Q 2Q 3Q 4Q v(nT)

– qmax

–

Figure 5.14 Quantization error versus the ADC input for the case K ¼ 3.
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to the smallest input signal level change that the ADC can resolve. Given any input level,
the input vðnTÞ must change by Q to change the LSB of vdðnTÞ, and the largest input level
change is 2KQ. Therefore, the dynamic range (DR), which by convention is expressed on a
logarithmic scale, is given by

DR ¼ 20 log
2KQ
Q

� �

¼ 20 logð2KÞ dB

where dB is an abbreviation for decibels, a unit used to indicate a logarithmic scale. The signal
variance to noise variance ratio (SNR) of an ADC is another parameter that is commonly
used to assess the performance of anADC. In (5.15), the signal is vðnTÞ, and the noise is qðnTÞ.
As a standard, vðtÞ ¼ A sinðwtÞ is used to find the SNR, where f ¼ 1000 Hz andw ¼ 2pf .

Example 5.9

Determine the resolution of an ADC such that the maximum quantization error is less than
0.00001% of the full range of the ADC. The full range (also called full scale) is 2VRef.
Therefore, it is required that

qmax ¼ Q
2
< 10�7�2VRef ; Q ¼ 2VRef

2K
; ! VRef

2K
< 2�10�7�VRef ! 2Kþ1 > 107

Since 220 ¼ 210 � 210 ¼ 1024� 1024, the requirement is satisfied if Kþ 1� 24, where
224 ¼ 24� 220. Therefore, K � 23. Since a 23-bit ADC is not commercially available, a
24-bit ADC must be used. Suppose that VRef = 5 volts. Then, the voltage resolution of the
ADC is given by Q ¼ 10/224 ¼ 0.596 mvolts. It is likely that in a real-world situation,
electrical noise and other sources of distortion will have amplitudes comparable to this Q,
and cause the LSB and possibly bits with higher weightings to not accurately represent the
physical phenomenon of interest.

Example 5.10

Suppose that it is known that an analog signal v(t) varies over the range [�V, +V], where V =
2 volts. The signal must be sampled and converted into a binary sequence such that the
signal resolution is not greater than 1 mV. What ADC resolution is necessary to achieve this
requirement? Using (5.16) gives

Q ¼ 4
2K


 10�3 ! 2K � 4000 ! K ¼ 12

To achieve the required signal resolution, VRef must be set to VRef = 2 volts, and then the
ADC voltage resolution will be the same as the desired signal resolution.

However, if, for example, VRef = 5 volts is used, then the 12-bit ADC voltage resolution
is 10/212 = 2.4 mV. This means that vðnTÞ must change by 2.4 mV to change the LSB
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of vdðnTÞ. Therefore, a change in vðnTÞ by 1 mV will not necessarily change vdðnTÞ, and
the signal resolution requirement is not satisfied. With VRef = 5 volts, a K = 14 ADC must be
used to achieve the signal resolution requirement. This means that either VRef is set to VRef =
2 volts or v(t) is amplified by a factor of 2.5, which changes the signal resolution require-
ment from 1 mV to an equivalent 2.5 mV.

A continuous time signal v̂ðtÞ, which is an estimate of v(t), is produced from vdðnTÞ
with a digital to analog converter (DAC). A DAC is an electronic device that receives a
binary number input and it outputs a constant voltage until it receives the next binary
number input. For K = 3, Table 5.11 lists the activity of a 3-bit DAC. Therefore, v̂ðtÞ is a
piecewise constant continuous time signal. This is illustrated in Fig. 5.15.

Strictly speaking, v̂ðtÞ is not an analog signal, because within each time range
nT 
 t <(n+1)T it can have only one of a finite number of values. However, for example,
every CD player uses a DAC and additional electronic circuits to smooth out the sudden
jumps in v̂ðtÞ.

Table 5.11 DAC digital input ! analog output

Digital input, vd(nT) at t ¼ nT Analog output, v̂ðtÞ over nT 
 t < ðnþ 1ÞT
011 3Q
010 2Q
001 Q
000 0
111 �Q
110 �2Q
101 �3Q
100 �4Q

v(t)

v(t)

T 2T 3T 4T

5T 6T 7T t

ˆ

–4Q

–3Q

–2Q

–Q

Q

2Q

3Q

4Q

v(5T)

vd (5T) = 010

Figure 5.15 Illustration of data acquisition and data reconstruction with K ¼ 3.
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An inspection of Fig. 5.15 shows that v̂ðtÞ is a poor reconstruction of v(t). K must be
increased to reduce the quantization error, and T must be reduced (fs must be increased) to
better follow the rapidly changing v(t).

Example 5.11

Find the dynamic range and signal to noise ratio of an ADC for resolutions given by K ¼ 4,
8, 10, 12, 16, and 24 bits. The signal vðtÞ ¼ AsinðwtÞ, where f ¼ 1000 Hz and w ¼ 2pf ,
will be sampled at the rate fs ¼ 44,100 samples/s for 5 secs. To obtain vdðnTÞ, the binary
representation of vðnTÞ will be truncated with the function given by Prog. 5.5. This function
implements the algorithm for converting a base ten fraction to a binary fraction. The built-in
function var will be used to find a variance.

function y = truncate(x,nF)

% Convert a base ten signed fraction x to an nF-bits binary fraction y

% x must be a scalar

nB = nF-1; % the MSB in nF bits is the sign bit

if length(x) > 1, disp(’error, input not a scalar’); y = x; return; end

if x == 0, y = 0; return; end

if nB <= 0, disp(’error, specified less than 2 bits’); y = x; return; end

mag_x = abs(x); % strip off sign

if x == mag_x, s = 1; else s = -1; end % s is the sign of the input

if mag_x > 1, disp(’warning, input greater than one’); y = s; return; end

if mag_x == 1, y = s; return; end

F_x = mag_x; % work with fractional part

y = 0; half_power = 1.0; % initialize truncated fraction

for n = 1:nB % find truncated fraction

half_power = 0.5*half_power; % used for repeated addition of 2^-n

two_F_x = 2*F_x; % multiply fraction by 2

if two_F_x >= 1 % check if not a fraction

y = y + half_power; % add 2^-n to truncated fraction

F_x = two_F_x - 1; % get fractional part

else

F_x = two_F_x; % two_F_x is a fraction

end

end

y = s*y; % restore sign

Program 5.5 Function to truncate a base ten fraction to an nF-bits binary fraction.
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Program 5.6 uses the function truncate to find the SNR for each resolution. A table of
results follows the program.

% Program to find the SNR and DR of an ADC

clc; clear all

fs = 44100; T = 1/fs; % sampling frequency and time increment

K = [4 8 10 12 14 16 24]; KR = length(K); % KR ADC resolutions

T0 = 5.0; % time range

t = 0.0:T:T0; % time points

N = length(t); % number of samples used for SNR

f = 1000; % frequency of v(t) = A sin(wt)

w = 2*pi*f; A = 0.999; % frequency and amplitude

v = A*sin(w*t); % signal samples

var_v = var(v); % variance of the signal

vd = zeros(1,N); % preallocate space for vd(nT)

for k = 1:KR % loop for resolutions

for n = 1:N % loop to find truncated fraction of each sample

vd(n) = truncate(v(n),K(k)); % truncate v(nT)

end

q = v - vd; % quantization error

var_q = var(q); % variance of the quantization error

SNR(k) = 10*log10(var_v/var_q); % SNR in dB

DR(k) = 20*log10(2^K(k)); % DR in dB

end

table = [K;SNR;DR]; % table of results

disp(’Resolution SNR(dB) DR(dB)’)

fprintf(’ %i %6.2f %6.2f \n’,table)

% the format 6.2f means to use 6 print characters with 2 digits

% after the decimal point

Program 5.6 Program to find the SNR and DR of an ADC for v(t) ¼ A Sin(wt).

Resolution SNR(dB) DR(dB)

4 19.02 24.08
8 43.74 48.16
10 56.28 60.21
12 67.94 72.25
14 79.79 84.29
16 92.16 96.33
24 140.45 144.49
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To put these results into perspective, an SNR = 100 dB means that if the signal is a
sound, then the noise sound level is 1/100,000 of the signal sound level.

5.6 Conclusion

The logical data type was introduced in Chapter 4 for decision making in program flow
control. In this chapter, the fundamentals of Boolean algebra, which work with logical
variables, were presented. It was shown that a Boolean function corresponding to a truth
table can be written by inspection of the table. MATLAB was used to evaluate Boolean
functions. Boolean algebra was applied to design a logic circuit for binary addition, and with
MATLAB the logic circuit was simulated.

Many built-in MATLAB functions were introduced that bridge the different inter-
pretations (numeric, logical, and character) of binary data. Numeric data is structured in
integer and floating point formats, both of which are supported in MATLAB. MATLAB
has many built-in functions to control the allocation of storage space for binary data.
Built-in MATLAB functions for manipulating character strings will be introduced in
Chapter 7.

To use MATLAB for the study of real-world signals requires analog to digital con-
version. The analog to digital conversion process was studied to understand the impact of
quantization error. There is much more to learn about the conversion process. For exam-
ple, there are ADC encoding methods other than a linear encoding method, which was
described here, that can give performance with an 8-bit output code that is almost
equivalent to a 13-bit linearly encoded output. This reduces storage space and decreases
communication time.

We found that a binary number can have many different meanings.
Now, you should know

● about the fundamentals of Boolean algebra
● how to write truth tables that describe a logical relationship
● how to write a Boolean function from a truth table and use MATLAB to evaluate a

Boolean function
● how to realize a Boolean function with basic logic gates
● how to convert a base ten integer or fraction to binary and hexadecimal notation
● about binary arithmetic
● about the built-in MATLAB functions for decimal to binary character string conversion
● how to write a MATLAB program for base ten to binary conversion
● about floating point notation
● about analog to digital conversion and quantization error

Table 5.12 gives the MATLAB functions that were introduced in this chapter. Use the
MATLAB help facility to learn more about these built-in functions, where you will also find
out about many other related built-in functions.
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A very important kind of number in electrical and computer engineering is the complex
number. It is the subject of the next chapter, where MATLAB will be applied for AC
(alternating current) circuit analysis.

Further reading

http://www.math.grin.edu/~stone/courses/fundamentals/IEEE-reals.html
ANSI/IEEE Standard754-1985, Standard for binary floating point arithmetic

Problems

Section 5.1
1) Write a MATLAB script that produces a truth table for the AND, OR, EXOR, and EQ

operations.
2) Write a MATLAB script that proves both versions of DeMorgan’s theorem.

Section 5.2
3) (a) Convert the base ten integers: 99 and 250 to 8-bit binary numbers.

(b) What is the largest base ten integer that can be converted to an 8-bit binary
number?

4) (a) Convert the base ten fractions: 0.2, 0.21, and 0.91 to 8-bit binary fractions.
(b) What is the smallest base ten fraction that can be converted to an 8-bit binary

fraction without error?
5) (a) Give the ASCII codes for the integers: 0 to 9 in base ten and in binary.

(b) Give the base ten ASCII codes for the name MATLAB. Then, use the function char
to obtain the character string, MATLAB, given a vector of its base ten ASCII
codes.

6) The standard ASCII code uses 7 bits per code. However, each code is stored as a byte,
leaving the eighth bit unused. A useful purpose for the eighth bit is transmission error
checking. One possibility is to count the number of ones in a given ASCII code, and if it

Table 5.12 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

& MATLAB notation for the logical AND operation, as in a & b
| MATLAB notation for the logical OR operation, as in a | b
~ MATLAB notation for the logical NOT (complement) operation, as in ~a
S ¼ char(X) Converts the array X that contains nonnegative integers representing character

codes into a MATLAB character array S
class(obj) Returns the name of the class of object obj
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is odd(even), make the eighth bit logic one(zero). Therefore, every byte will have an
even number of ones. This is called even parity, and the eighth bit is called the parity
bit, denoted by P. When this byte is transmitted, the receiver can count the number of
ones, and if the number of ones is not even, then a transmission error must have
occurred, prompting the receiver to transmit to the sender an ASCII code which means
to request a retransmission of the previously transmitted byte. An alternative to even
parity is odd parity, where the eighth bit is logic one(zero) to make the total number of
ones in a byte an odd number. The parity bit method of transmission error detection
assumes that the probability of two transmission errors is very small compared to the
probability of one transmission error. To both generate a parity bit and detect correct
parity, the circuit given in Fig. P5.6 can be used.

Given is a 7-bit ASCII code d6d5d4d3d2d1d0. To generate a parity bit, set the inputs
of the parity generator a6a5a4a3a2a1a0 to the ASCII code. Use the input a7 to select either
even or odd parity. Then, P is used as the eighth data bit d7. For parity detection, another
parity generator is used to receive the eight data bits d7 � � � d0, and the output P detects
correct parity. Write a MATLAB program to investigate the operation of this circuit for
parity bit generation. Try different ASCII codes, and find out how to select a7 for even or
odd parity. Then, your program should check parity by finding P given a byte that con-
tains an ASCII code and a parity bit. Explain how the parity generator works as an even
or odd parity checker. Give P to check odd and even parity.

7) In a MATLAB program, a matrix X is known to contain elements that are integers with
values over the range �9999 to +9999. Give a MATLAB statement that allocates the
least amount of memory space necessary to store the matrix X. What will happen if the
program contains the statement Y ¼ X þ 50000?

8) (a) Convert the following base ten numbers: 15, 255, 1023, and 2000 to hexadecimal.
Hint: First convert each number to binary.

(b) Convert the hexadecimal numbers 1e, ab, and 7ff to binary and base ten.
9) Given are the unsigned integers a = 517 and b = 9872. Assign each integer to a variable

using 16 bits for each number. Then, in computer memory the numbers are stored as
d15d14 . . . d3d2d1d0.

a0
a1
a2
a3
a4
a5
a6
a7

P

Figure P5.6 Parity bit generator/checker.

238 Binary Data



(a) Give MATLAB statements that use the function bitget to find d8 of each number.
(b) What numbers result from applying the function bitcmp to each number?
(c) Use the function bitand to find the and of each number with c = 255.
(d) Use the function bitshift to multiply the number a by two.
(e) Obtain a binary string for each number.
(f) Use the function dec2base to convert each number to base 8 (octal) and

hexadecimal.
10) (a) Give the number �17.375 in 32-bit floating point notation.

(b) Give the 32-bit floating point notation for NaN.
(c) Give the 32-bit floating point notation for: �infinity.
(d) To the nearest value, round the fraction 0.101100101110111110111001 to a 16-bit

fraction.

Section 5.3
11) Fig. 5.3 gives the inputs and output timing diagram for an OR gate. Using the same

inputs, give the timing diagram of the output of an AND gate.
12) Repeat Prob. 5.11 with an exclusive OR gate.
13) Use the signals x, y, and z given in Fig. 5.3 as the three inputs a, b, and c, respec-

tively, in Fig. 5.5. Find the timing diagrams of the output y for both circuits shown
in Fig. 5.5. Assume there are no propagation delays in z and the gates shown in
Fig. 5.5.

14) (a) Give the truth table for a NAND gate.
(b) Draw a NAND gate, and connect the two inputs together. In view of the truth table of

a NAND gate, does this connection convert a NAND gate into a NOT gate?
(c) Using a NAND gate and a NAND gate converted into a NOT gate give a circuit

that works as an AND gate.
(d) DeMorgan’s theorem states that ðaþ bÞ ¼ a b. Complement both sides, and then

use NAND gates converted into NOT gates and a NAND gate to make a circuit that
works like an OR gate.

This problem shows that any Boolean function can be realized with only NAND gates,
which is called a universal gate.

15) (a) Give the truth table for a NOR gate.
(b) Draw a NOR gate, and connect the two inputs together. In view of the truth table of

a NOR gate, does this convert a NOR gate into a NOT gate?
(c) Using a NOR gate and a NOR gate converted into a NOT gate, give a circuit that

works as an OR gate.
(d) DeMorgan’s theorem states that ab ¼ a þ b. Complement both sides, and then use

NOR gates converted into NOT gates and a NOR gate to make a circuit that works
like an AND gate.

Like a NAND gate, a NOR gate is also called a universal gate.
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Section 5.4
16) Write a MATLAB program that generates the truth table for the Boolean function

f(a,b,c,d) = a b +(a bd + c d)(b cd + abd).
17) Find a Boolean function f(a,b), where a and b are each 3-bit numbers, that is logic 1

if a > b, and logic 0 otherwise. This is a Boolean function of six logic variables.
Hint: Start by checking if a2 = 1 and b2 = 0, which gives the first term a2 b2 in f. Then,
if a2 = b2, check if a1 = 1 and b1 = 0 with (a2 b2 + a2 b2)(a1 b1), and so far we have f =
a2 b2 + (a2 b2 + a2 b2) (a1 b1). Now, continue adding term(s) to f. With the completed
function f, write a MATLAB program that generates a truth table for the Boolean
function. Check the truth table to confirm that the Boolean function works as
specified.

18) Using the basic gates AND, OR, and NOT, give a realization of the function obtained in
Prob. 5.17.

19) A decoder is a device that outputs a logic signal to indicate that the inputs are a
particular binary assignment. It usually has another input that enables it to function.
A 3� 8 decoder has three inputs and eight outputs, where each output is a logic signal
that indicates that the three inputs have a particular one of the eight possible input
binary assignments. A block diagram is shown in Fig. P5.19, where a design of the
decoder has been started.

If the enable input is logic 0, then all outputs are logic 0. If the enable input is
logic 1, then only one decoder output can be logic 1. So far the circuit works to make b0
logic 1 if and only if the input binary assignment is a2a1a0 = 000. Complete the design
of the decoder.

20) Write a MATLAB program that receives from the program user an input D that is any
digit, 0–9. Then, the program should obtain its 4-bit binary code, called binary coded
decimal (BCD), and assign the 4 bits to logic variables w, x, y, and z. Define a matrix
of codes, and use the input to make an index to access a code in the table. To display the
digit with 7 LEDs (light emitting diodes) arranged as shown in Fig. P5.20, the 4-bit
digit code must be the input to seven Boolean functions to determine the on or off state
of each diode in the 7-segment LED display.

3 × 8
decoder

Enable

a2

a0

a1

a2

a0

a1

b0
b1
b2
b3
b4
b5
b6
b7

Enable

b0

Figure P5.19 A 3� 8 decoder.
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The on or off state of each LED is the value of a Boolean function of the logic
variables w, x, y and z, for example, a(w,x,y,z), b(w,x,y,z), . . . , g(w,x,y,z). Complete
the truth table, shown below, for each BCD code. The table shows which LEDs must
be on to display the digit corresponding to the given BCD code.

BCD code Seven segment LED input

w x y z a b c d e F g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

With a completed table, you can find each of the seven Boolean functions
to control the on or off state of each diode. For example, the function for diode a is
a(w,x,y,z) given by

aðw; x; y; zÞ ¼ w x y z þ w x yz þ w x yzþ w xy zþ w xy zþ wx y z þ wx y z

Another way to write a Boolean function given a truth table is to complement the
function, which changes logic 0(1) to logic 1(0). Then, write a sum of products form
for the complement of the function. For a w; x; y; zð Þ and then a w; x; y; zð Þ we get

a w; x; y; zð Þ ¼ w x y zþ w xy z þ w xyz
aðw; x; y; zÞ ¼ ðw x y zþ w xy z þ w xyzÞ ¼ ðw x y zÞ ðw xy zÞ ðw xy zÞ

¼ ðwþ xþ yþ zÞðwþ x þ yþ zÞðwþ x þ y þ zÞ

a

b

c

d

e

f

g

Figure P5.20 Names and configuration of a 7-segment LED display.
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This will require less hardware to realize a logic circuit, because there are fewer
zeros than ones in the truth table for a. However, a w; x; y; zð Þ can be simplified even
further. There are methods, which are beyond the scope of this book, to obtain the most
simplified version of a Boolean function.

Give the Boolean functions for the remaining six LEDs in the display.
Continue the MATLAB program, where now the logic variables w, x, y, and z have

been assigned values, and evaluate and output each of the seven Boolean functions a
through f for the 7-segment LED display.

To repeatedly get a digit input D and find the 7-segment LED display input, place
all of the program activity in a while loop, and if the program user enters a number
other than an integer in the range 0�9, then terminate the program.

21) (a) Manually, obtain the sum S of the binary numbers A = 10.111011101 and
B = 1001100.011.

(b) Define appropriate vectors for A and B, and give MATLAB statements to obtain S.
22) Write a MATLAB function that performs the operation of a half-adder, call it half_add.

The function should have two inputs, a and b, and return two outputs, X and c. Then, write
another function, call it full_add, that invokes half_add to perform the operation of a full
adder. The function full_add should have three inputs, a, b, and c_in, and return two
outputs, s and c_out. Finally, write a program that uses the function full_add to find and
display s and c_out for each possible combination of a, b, and c_in.

Section 5.5
23) For the case K = 3, Fig. 5.13 gives the characteristic of a 3-bit ADC. Write a MATLAB

function, call it ADC, that receives V_ref and a number in the range �V_ref to +V_ref,
and returns a 3-bit code as given in the figure.

24) Like Fig. 5.13, draw a characteristic of a 4-bit ADC. Then, write a MATLAB function,
call it DAC, that receives a 4-bit code and V_ref, and returns a number in the range
�V_ref to +V_ref that would be produced by a digital to analog converter.

25) An analog signal varies over the range �1 volt to +1 volt. Assume that VRef = 1 volt.
Specify the resolution of an ADC such that the maximum quantization error is less than
0.0001% of full-scale. What will be the resulting voltage resolution of the ADC?

26) For the case K = 3, Table 5.11 gives the characteristic of a 3-bit DAC. Write a
MATLAB function, call it DAC, that receives a 3-bit logical vector vd and V_ref, and
returns a number in the range �V_ref to +V_ref.
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CHAPTER 6

Complex Numbers

The complex number is a very useful and important concept in many fields of science and
engineering and especially in almost all areas of electrical engineering. An important dis-
tinguishing feature of MATLAB� is its ability to work with the complex data type.

After you have completed this chapter, you will know

● about the origin of complex numbers
● fundamental properties of complex numbers
● how MATLAB is particularly well suited for complex number computations
● how complex numbers are used for signal representation
● about the role that complex numbers play in circuit analysis

6.1 Origin of Complex Numbers

Complex numbers were invented as a resolution of the dilemma that can arise when we want
to find the solution of

f ðxÞ ¼ ax2 þ bxþ c ¼ 0 ð6:1Þ

where a, b, and c are real numbers and f ðxÞ is a second-order polynomial in x. The values of
x for which f ðxÞ ¼ 0 are called the roots of f ðxÞ.

Assuming that a is not zero, (6.1) can be written as

x2 þ b
a
xþ c

a
¼ 0



and adding and subtracting (b/2a)2 gives

x2 þ b
a
x þ b

2a

� �2

� b
2a

� �2

þ c
a
¼ 0

This equation can be written as

xþ b
2a

� �2

¼ b
2a

� �2

� c
a

¼ b2 � 4ac
4a2

ð6:2Þ

The steps from (6.1) to (6.2) are called completing the square. Taking the square root of
both sides of (6.2) yields

x ¼ � b
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
4a2

r

¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
ð6:3Þ

The formula in (6.3) gives the two solutions (roots) of (6.1).
The factor, b2 � 4ac, is called the discriminant, and it may be positive, in which case

there are two distinct real roots of (6.1). If the discriminant is zero, then there are two real
and equal roots. By denoting the two roots by x1 and x2, we can write the polynomial f ðxÞ as
a product of two first-order factors given by

f ðxÞ ¼ aðx� x1Þðx� x2Þ ¼ aðx2 � ðx1 þ x2Þxþ x1x2Þ
If the discriminant is negative, can f ðxÞ still be written as a product of two first-order
factors? In this case, let us write (6.3) as

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
¼ �b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þð4ac� b2Þp

2a
¼ �b� ffiffiffiffiffiffiffi�1p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p

2a
Since

ffiffiffiffiffiffiffi�1p
cannot have a real value, it is taken into account with a symbol, such as

j ¼
ffiffiffiffiffiffiffi

�1
p

ð6:4Þ
and j 2 ¼ �1. Therefore, if the discriminant is negative, then the two roots of (6.1) are given by

x ¼ �b� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p

2a
ð6:5Þ

and x is called a complex number. It is also common (especially in the mathematics lit-
erature) to use i for

ffiffiffiffiffiffiffi�1p
. However, in electrical and computer engineering, i is commonly

used to mean electric current.
In general, a complex number x is given by

x ¼ aþ jb ð6:6Þ
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where a, a real number, is called the real part of x, denoted by a ¼ ReðxÞ, and b, a real
number, is called the imaginary part of x, denoted by b ¼ ImðxÞ. This way of writing a
complex number is called the rectangular form. A complex number can be a real
number, in which case the imaginary part is zero, and a complex number can be an
imaginary number, in which case the real part is zero. A useful operation on a complex
number is to change the sign of the imaginary part. If two complex numbers differ only
in the sign of their imaginary parts, then these two numbers are said to be complex
conjugates of each other. The complex conjugate of x in (6.6) is denoted by x�, and it is
given by

x� ¼ ðaþ jbÞ� ¼ a� jb ð6:7Þ

Notice that ðx�Þ� ¼ x. Also notice that the two complex roots given in (6.5) of a quadratic
polynomial with real coefficients occur as a complex conjugate pair. Let us obtain the
product of two first-order factors using a pair of complex conjugate roots to get

ðx� ðaþ jbÞÞðx� ða� jbÞÞ ¼ x2 � xaþ jxb� axþ a2 � jab� jbxþ jbaþ b2

¼ x2 � 2axþ ða2 þ b2Þ

As for real roots, the result is a polynomial with real coefficients.

Example 6.1

Let us find the roots of (6.1) for some specific cases.
(a) Let a ¼ 2, b ¼ �2, and c ¼ �12. With (6.3) we get

x ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 96
p

4
¼ 2� 10

4
¼ 3;�2

Let x1 and x2 denote the roots obtained with the plus sign and minus sign, respectively.
Therefore, x1 ¼ 3 and x2 ¼ �2. With the roots, we can factor the second-order polynomial
into a product of two first-order factors given by

f ðxÞ ¼ 2x2 � 2x� 12 ¼ 2ðx� x1Þðx� x2Þ ¼ 2ðx� 3Þðxþ 2Þ

Since x ¼ x1 and x ¼ x2 make f ðxÞ equal to zero, x1 and x2 are also called the zeros of f ðxÞ.
For another point of view, let us plot f ðxÞ versus x, which is shown in Fig. 6.1. Here we

see that the real zeros of a polynomial are the values of x where the polynomial crosses the
abscissa, the x-axis, where y ¼ 0. The MATLAB script that was used to obtain the plot in
Fig. 6.1 is given in Prog. 6.1.

6.1 Origin of Complex Numbers 245



% MATLAB program to plot a quadratic function of the form

% y = f(x) = a x^2 + b x + c

% versus x

clear all; clc;

a = 2.0; b = -2.0; c = -12.0; % specifying coefficients

x_begin = -6.0; % specifying the first value of x

x_end = +7.0; % specifying the last value of x

N = 101; % specifying the number of points to be plotted

% using a built-in MATLAB function to specify a vector of points

x = linspace(x_begin,x_end,N);

y = a*x.*x + b*x + c; % using element by element multiply

plot(x,y)

grid on

xlabel(’x’)

ylabel(’y’)

Program 6.1 MATLAB program to plot a quadratic function of x.

(b) Let a ¼ 1, b ¼ 2, and c ¼ 5. With (6.3) we get

x ¼ �2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 20
p

2
¼ �2� 4

ffiffiffiffiffiffiffi�1p

2
¼ �1þ j2;�1� j2

where the symbol j is used to mean
ffiffiffiffiffiffiffi�1p

. Let us verify that x1 ¼ �1þ j2 and x2 ¼ �1� j2
are the zeros of f ðxÞ. With x ¼ x1 we get

–6 –4 –2 0 2 4 6 8
–20

0

20

40

60

80

x

y

Figure 6.1 Plot of a quadratic function that has two real zeros.
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x21 þ 2x1 þ 5 ¼ ð�1þ j2Þð�1þ j2Þ þ 2ð�1þ j2Þ þ 5
¼ 1� j2� j2þ ðj2Þðj2Þ � 2þ j4þ 5
¼ 1� j4� 4� 2þ j4þ 5 ¼ 0

Similarly, we can verify that x2 is a zero of f ðxÞ. As with real zeros of f ðxÞ, f ðxÞ can be
factored into a product of two first-order factors given by

f ðxÞ ¼ ðx� x1Þðx� x2Þ ¼ ðxþ 1� j2Þðxþ 1þ j2Þ
¼ x2 þ xþ j2xþ xþ 1þ j2� j2x� j2� ðj2Þðj2Þ
¼ x2 þ 2xþ 5

Fig. 6.2 shows f ðxÞ versus x, and we see that f ðxÞ does not cross the abscissa, because it has
complex zeros.

6.2 Rectangular Form and Complex Arithmetic

Arithmetic with complex numbers is similar to arithmetic with real numbers. Let
x1 ¼ a1 þ jb1 and x2 ¼ a2 þ jb2 be two complex numbers. Table 6.1 lists several arithmetic
properties.

In MATLAB, it is very easy to work with complex numbers. MATLAB uses the
symbols i or j for

ffiffiffiffiffiffiffi�1p
.

40

30

20

10

0
–4 –3 –2 –1 0 1

x

y

2 3 4 5

Figure 6.2 Plot of a quadratic function that has a pair of complex conjugate zeros.
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Example 6.2

Using the MATLAB command window, the following statements demonstrate how
convenient it is to use MATLAB to work with complex numbers written in rectangular form.

>> clear all

>> a=j*2 % a is a purely imaginary number

a = 0 + 2.0000i

>> % MATLAB replaces the symbol j with the symbol i

>> b=2-j*3

b = 2.0000 - 3.0000i

>> c=a+b % MATLAB follows the rules of arithmetic given in Table 6.1

c = 2.0000 - 1.0000i

>> d=c*j % this is a multiplication

d = 1.0000 + 2.0000i

MATLAB has several built-in functions that work with complex numbers. The following
statements demonstrate some of these functions.

>> e=complex(2,3) % built-in MATLAB function complex assigns a complex number to e

e = 2.0000 + 3.0000i

>> % built-in function isreal checks if e is real, and then sets f to a logic value

>> f=isreal(e)

f = 0

>> g=conj(e) % built-in function conj takes the complex conjugate

g = 2.0000 - 3.0000i

Table 6.1 Properties of rectangular form complex numbers and arithmetic

Equal x1 ¼ x2 , if and only if a1 ¼ a2 and b1 ¼ b2
Addition x1 þ x2 ¼ ða1 þ a2Þ þ jðb1 þ b2Þ
Subtraction x1 � x2 ¼ ða1 � a2Þ þ jðb1 � b2Þ
Multiplication x1x2 ¼ ða1 þ jb1Þða2 þ jb2Þ ¼ ða1a2 � b1b2Þ þ jða1b2 þ b1a2Þ

Division
x1
x2

¼ x1x�2
x2x�2

¼ ða1 þ jb1Þða2 � jb2Þ
ða2 þ jb2Þða2 � jb2Þ

¼ a1a2 þ b1b2
a22 þ b22

þ j
�a1b2 þ b1a2

a22 þ b22

Conjugation ðx1 þ x2Þ� ¼ x�1 þ x�2 , ðx1x2Þ� ¼ x�1x�2 and
x1
x2

� ��
¼ x�1
x�2

Polynomial with real coefficients f �ðxÞ ¼ f ðx�Þ , for x ¼ aþ jb
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>> h=real(g) % built-in function real gets the real part

h = 2

>> p=imag(g) % built-in function imag gets the imaginary part

p = -3

>> q=d/e % division with complex numbers

q = 0.6154 + 0.0769i

>> r=(d*conj(e))/(e*conj(e)) % the denominator is a real number

r = 0.6154 + 0.0769i

>> % a complex number multiplied by its complex conjugate always produces

>> % a real number

In MATLAB, complex numbers can be elements of matrices. The following statements
illustrate some of the possibilities.

>> clear all

>> A=[j j*2*(1+j) -1+2*j] % the vector A has 3 complex elements

A = 0 + 1.0000i -2.0000 + 2.0000i -1.0000 + 2.0000i

>> A(2) % obtain the second element in the vector

ans = -2.0000 + 2.0000i

>> % the transpose of a complex matrix includes conjugating every element

>> B=[-1 -2+j*2 4-j*5]’ % B becomes a column vector

B =

-1.0000

-2.0000 - 2.0000i

4.0000 + 5.0000i

>> c=conj(A)*B % element by element conjugation of A and then matrix multiply

c = -11.000 + 6.0000i

>> d=A.*conj(A) % each element of A is multiplied by its complex conjugate

d = 1 8 5

Example 6.3

In this example we will use a MATLAB script to apply the formula given in (6.3). Most of
the programs that we will write serve to illustrate various MATLAB features and operations.
However, when we write an application program that is intended to be used by others or the
program writer at a later time, it is useful to document the program so that its purpose and
methods can be easily understood. The following MATLAB program illustrates preferred
program organization. You must always strive to write programs that provide the user an
opportunity to test for the proper functioning of the program and a means to terminate the
program within the program development environment.
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% EXAMPLE OF PROGRAM ORGANIZATION

%

% Program calc_roots.m

%

% Purpose:

% This program solves for the roots of a quadratic equation

% of the form: a*x^2 + b*x +c = 0. It finds real roots

% and complex roots of the equation.

%

% Program information

% Date Programmer Description

% 2/22/10 Priemer Original code, version 1.0

%

% Define variables

% a --coefficient of x^2 term

% b --coefficient of x term

% c --constant term

% disc --discriminant

% i_part --imaginary part

% r_part --real part

% x1 --first root

% x2 --second root

%

clear all; clc;

disp(’This program solves for the roots of a quadratic equation’);

disp(’of the form: a*x^2 + b*x + c = 0.’);

disp(’To terminate this program,’);

disp(’enter zero when prompted for the coefficient a’);

while 1 % this causes the while loop to execute endlessly

% Prompt user for equation coefficients

a=input(’Enter the coefficient a: ’);

if a == 0.0

break % user has terminated the while loop and the program

end

b=input(’Enter the coefficient b: ’);

c=input(’Enter the coefficient c: ’);

% Find the discriminant

disc=b^2-4*a*c;

% Check the discriminant
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if disc > 0 % There are two real roots

d=sqrt(disc);

x1=(-b+d)/(2*a); % first root

x2=(-b-d)/(2*a); % second root

disp(’The equation has two real roots:’);

fprintf(’x1= %f \n’, x1); % Using floating point formatted print

fprintf(’x2= %f \n’, x2);

elseif disc == 0 % There are two real roots

x1=(-b)/(2*a); % x2 = x1

disp(’The equation has two repeated real roots:’);

fprintf(’x1=x2= %f \n’, x1);

else % There are two complex conjugate roots

r_part=(-b)/(2*a);

i_part=sqrt(abs(disc))/(2*a);

disp(’The equation has two complex conjugate roots:’);

fprintf(’x1= %f +j %f \n’, r_part, i_part);

fprintf(’x2= %f -j %f \n’, r_part, i_part);

end

end

disp(’Program terminated’);

Program 6.2 Program to find the roots of a quadratic polynomial.

The method used for formatted print of the results from this program is discussed in
Chapter 8. The execution of this program gives the following results.

This program solves for the roots of a quadratic equation

of the form: a*x^2 + b*x + c = 0.

To terminate this program,

enter zero when prompted for the coefficient a

Enter the coefficient a: 2

Enter the coefficient b: 4

Enter the coefficient c: 6

The equation has two complex conjugate roots:

x1= -1.000000 +j 1.414214

x2= -1.000000 -j 1.414214

Enter the coefficient a: 1

Enter the coefficient b: 2

Enter the coefficient c: 1
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The equation has two repeated real roots:

x1=x2= -1.000000

Enter the coefficient a: 0

Program terminated

Let us write an Nth order polynomial (a polynomial of degree N ) as

f ðxÞ ¼ xN þ
X

N

k¼1
aN�kxN�k ð6:8Þ

where the coefficients aN�k ; k ¼ 1; . . . ;N are real numbers. The Fundamental Theorem of
Algebra states that an Nth order polynomial has N roots, where the roots may not be distinct,
can be complex and then occur in complex conjugate pairs, and include at least one real root
if N is an odd integer.

For polynomials with degree higher than 4, there are no formulas to find the roots.
However, there are numerical methods for root finding, and MATLAB has a built-in func-
tion roots to find the roots of a polynomial and another built-in function poly to find the
coefficients of a polynomial given its roots.

Example 6.4

The following script shows how to use the functions: roots and poly.

% Find the roots of a polynomial

clear all; clc;

disp(’To find the roots of: x^N + a_N-1 * x^(N-1) + ... + a_1 * x^1 + a_0’)

disp(’enter the polynomial degree and then the coefficients.’);

disp(’To terminate the program, enter zero degree.’); disp(’ ’);

while 1;

N = input(’Enter polynomial degree: ’);

if N > 0

a(1)=1.0; % coefficient of highest power of x

for n=1:N;

disp(’Power of x is:’); disp(n-1);

a(N+2-n) = input(’Enter coefficient: ’);

% roots expects polynomial coefficients in descending power order

end

r = roots(a); % using built-in function roots to find the N roots
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disp(’ ’); % skip a line

disp(’The roots of the polynomial are:’);

disp(r);

% find polynomial coefficients given the roots

b = poly(r);

disp(’ ’); disp(’The coefficients of the polynomial are:’);

disp(b);

else

break; % causes termination of the while loop

end

clear all; % clearing a, r and N from previous while loop execution

end

clear all; % cleaning up work space

disp(’Terminated program’)

Program 6.3 MATLAB program to find the roots of a polynomial.

For the polynomial: x5 þ x4 þ 2x3 þ 3x2 þ 4x1 þ 5x0, Prog. 6.3 gives

To find the roots of: x^N + a_N-1 * x^(N-1) + ... + a_1 * x^1 + a_0* x^0

Enter the polynomial degree and then the coefficients.

To terminate the program, enter zero degree.

Enter polynomial degree: 5

Power of x is: 0

Enter coefficient: 5

Power of x is: 1

Enter coefficient: 4

Power of x is: 2

Enter coefficient: 3

Power of x is: 3

Enter coefficient: 2

Power of x is: 4

Enter coefficient: 1

The roots of the polynomial are:

0.7145 + 1.3076i

0.7145 - 1.3076i

-1.2663

-0.5814 + 1.2001i

-0.5814 - 1.2001i
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The coefficients of the polynomial are:

1.0000 1.0000 2.0000 3.0000 4.0000 5.0000

Enter polynomial degree: 0

Terminated program

Notice that complex roots appear in complex conjugate pairs. With the roots rðnÞ,
n ¼ 1; 2; . . . ;N , we can write a polynomial as a product of N first-order factors given by

f ðxÞ ¼
Y

N

n¼1
ðx� rðnÞÞ ð6:9Þ

6.3 Polar Form and Complex Arithmetic

There is another way, called the polar form, to arithmetically define a complex
number, which in many circumstances is more convenient to work with than the rectangular
form.

A complex number is described by two real numbers. Instead of writing x ¼ aþ jb, we
could write x ¼ ða; bÞ to communicate the real part and the imaginary part of x. However,
x ¼ ða; bÞ is not an arithmetic expression for x. Another way to write an arithmetic
expression for a complex number is based on locating x in a plane, called the complex
plane, where a is the distance along the abscissa, called the real axis, and b is the distance
along the ordinate, called the imaginary axis. This is illustrated in Fig. 6.3.

The point x can also be located by rotating a line of length, denoted by jjxjj, in the
counterclockwise direction from the positive abscissa by an angle, denoted by ffx. By pro-
jection we have

a ¼ jjxjjcosðffxÞ ð6:10Þ

x

α

β

x
x∠

Re(x)

Im(x)

Complex Plane

Figure 6.3 Complex number located in the complex plane.
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b ¼ jjxjjsinðffxÞ ð6:11Þ

Summing the squares of (6.10) and (6.11) gives

a2 þ b2 ¼ jjxjj2

Therefore

jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
q

ð6:12Þ

and jjxjj is called the magnitude of x. Dividing (6.11) by (6.10) gives

b
a
¼ sinðffxÞ
cosðffxÞ

Therefore

ffx ¼ tan�1
b
a

� �

ð6:13Þ

and ffx is called the angle of x. Substituting (6.10) and (6.11) into the rectangular form of
(6.6) gives

x ¼ jjxjjcosðffxÞ þ jjjxjjsinðffxÞ ¼ jjxjjðcosðffxÞ þ jsinðffxÞÞ ð6:14Þ

Equation (6.14) is a rectangular form expression for x, except that the real and imaginary
parts of x are given in terms of the magnitude and angle of x.

Now, let us consider the Maclaurin series expansion (Taylor series expansion about
c ¼ 0) of the exponential function e c, for any real or complex number c. The power series is
given by

ec ¼
X

1

k¼0

ck

k!
; 0! ¼ 1

Let c ¼ jq, and we get

e jq¼ ðjqÞ0
0!

þ ðjqÞ1
1!

þ ðjqÞ2
2!

þ ðjqÞ3
3!

þ ðjqÞ4
4!

þ ðjqÞ5
5!

þ � � �

¼ 1þ j
q1

1!
� q2

2!
� j

q3

3!
þ q4

4!
þ j

q5

5!
� � � �
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Gathering real and imaginary parts gives

e jq ¼ 1� q2

2!
þ q4

4!
� � � �

� �

þ j
q1

1!
� q3

3!
þ q5

5!
� � � �

� �

ð6:15Þ

The real part of (6.15) is the power series (Maclaurin series expansion) for cosðqÞ, and the
imaginary part of (6.15) is the power series (Maclaurin series expansion) for sinðqÞ. Thus,
(6.15) becomes

e jq ¼ cosðqÞ þ jsinðqÞ ð6:16Þ
which is called Euler’s identity.

With Euler’s identity, the expression for the complex number given in (6.14) becomes

x ¼ jjxjje jffx ð6:17Þ
This way of writing a complex number is call the polar form. With (6.12) and (6.13), a
complex number can be converted from rectangular form to polar form, and with (6.10) and
(6.11), a complex number can be converted from polar form to rectangular form. Table 6.2
lists several arithmetic properties of complex numbers written in polar form.

Example 6.5

The following statements illustrate how convenient it is to work in MATLAB with complex
numbers written in polar form.

>> clear all

>> a=3*exp(j*pi/2) % the angle of a is pi/2 radians, which places a on the imaginary axis

a =

0.0000 + 3.0000i

Table 6.2 Properties of polar form complex numbers and arithmetic

Equal x1 ¼ x2 , if and only if jjx1jj ¼ jjx2jj and ffx1 ¼ ffx2
Addition x1 þ x2 , must convert to rectangular form
Subtraction x1 � x2 , must convert to rectangular form

Multiplication x3 ¼ x1x2 ¼ jjx1jjjjx2jjejðffx1þffx2Þ , jjx3jj ¼ jjx1jjjjx2jj and ffx3 ¼ ffx1 þ ffx2

Division x3 ¼ x1
x2

¼ jjx1jj
jjx2jj e

jðffx1�ffx2Þ , jjx3jj ¼ jjx1jj
jjx2jj and ffx3 ¼ ffx1 � ffx2

Conjugation x ¼ jjxjjejffx , x� ¼ jjxjje�jffx , ðx1x2Þ� ¼ x�1x�2 and
x1
x2

� ��
¼ x�1
x�2

Polynomial with real
coefficients

f �ðxÞ ¼ f ðx�Þ , for x ¼ jjxjjejffx
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>> b=exp(j*pi) % the angle of b is pi, which places b on the negative real axis

b =

-1.0000 + 0.0000i

>> c=a*b

c =

-0.0000 - 3.0000i

>>% magnitude of c equals the magnitude of a times the magnitude of b

>> % angle of c is pi/2 plus pi, or -pi/2

>> angle_c = angle(c) % using the MATLAB built-in function angle

angle_c =

-1.5708

>> magnitude_c = abs(c) % using the MATLAB built-in function abs

magnitude_c =

3

>> v=[j*pi/2 j*pi j*2*pi]

v =

0 + 1.5708i 0 + 3.1416i 0 + 6.2832i

>> w=exp(v) % a complex matrix can be the argument of a built-in function

w =

0.0000 + 1.0000i -1.0000 + 0.0000i 1.0000 - 0.0000i

6.4 Euler’s Identity

Euler’s identity in (6.16) can be written in several different ways. If q in (6.16) is replaced
by �q, then we get

e�jq ¼ cosð�qÞ þ j sinð�qÞ ¼ cosðqÞ � j sinðqÞ ð6:18Þ

Comparing (6.16) and (6.18) shows that conjugating a complex number changes the sign of
its angle. Adding (6.16) and (6.18) gives

cosðqÞ ¼ e jq þ e�jq

2
ð6:19Þ

With (6.19), cos ðqÞ can be written as the sum of two complex conjugate exponential
functions. Subtracting (6.18) from (6.16) gives

sinðqÞ ¼ e jq � e�jq

j2
¼ e jq � e�jq

2e jp=2
¼ e jðq�p=2Þ þ e jpe jð�q�p=2Þ

2

¼ e jðq�p=2Þ þ e�jðq�p=2Þ

2
¼ cos q� p

2

� �

ð6:20Þ
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With (6.20), sinðqÞ can be written as the sum of two complex conjugate exponential func-
tions. Equations (6.18)–(6.20) are also called Euler’s identity.

Example 6.6

Let us verify Euler’s identities with the following MATLAB statements.

>> theta=pi/3; % this is 60 degrees

>> a=cos(theta)

a =

0.5000

>> b=sin(theta)

b =

0.8660

>> c=(exp(j*theta)+exp(-j*theta))/2 % this gives cos(theta)

c =

0.5000

>> d=(exp(j*theta)-exp(-j*theta))/(j*2) % this gives sin(theta)

d =

0.8660

Consider the sine function given by

xðfÞ ¼ sinðfÞ
where f, the independent variable, is expressed in radians. When f goes through a change
of 2p radians, then x will repeat itself, or

xðfÞ ¼ xðfþ r2pÞ

for all integers r and any f. We say that 2p is the period of xðfÞ.
Now, let us work with a sinusoidal function of time (time is expressed in seconds) given

by

xðtÞ ¼ Acosðw0t þ qÞ ð6:21Þ
where w0 (expressed in radians/sec) is called the frequency of xðtÞ; A, a positive number, is
called the amplitude of xðtÞ; and q is called the phase angle of xðtÞ. Like sinðfÞ, this
function will repeat itself when ðw0t þ q Þ goes through a change of 2p, where t is now the
variable. The time interval, T0, over which xðtÞ repeats itself is called the period of xðtÞ, and
we write

xðtÞ ¼ xðt þ T0Þ ð6:22Þ
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This means that

Acosðw0t þ qÞ ¼ Acosðw0ðt þ T0Þ þ qÞ ¼ Acosðw0t þ w0T0 þ qÞ

This requires that w0T0 ¼ 2p, and we can get w0 from knowing T0 with

w0 ¼ 2p
T0

We also express the frequency with f0 ¼ 1=T0 cycles/sec (1 cycle/sec ¼ 1 hertz, abbreviated
to Hz), and w0 ¼ 2pf0.

Example 6.7

Below is a script to plot the signal given in (6.21). This example also shows how to place
more than one plot in a figure with the built-in MATLAB function subplot. To find out
more about the function subplot, use help subplot. Fig. 6.4 shows the signal for two
frequencies.

clear all; clc;

amplitude = 2.0; % specify amplitude

phase = pi/4.0; % specify phase angle

f0 = 2.0; % specify frequency in Hz

w0 = 2.0*pi*f0; % convert frequency to rad/sec

T0 = 1.0/f0; % find the period, the time of one cycle

N = 101; % plot N points of the signal

total_time = 2*T0; % plot over two periods

t = linspace(0.0,total_time,N); % use linspace to set up time points

x = amplitude*cos(w0*t + phase); % evaluate signal for each time point

% organizing two plots into 2 rows and 1 column

subplot(2,1,1); plot(t,x) % placing the first plot in a 2X1 matrix of plots

xlabel(’time - seconds’)

ylabel(’signal unit’)

grid on

x = amplitude*cos(2*w0*t + phase); % double the frequency

subplot(2,1,2); plot(t,x) % placing the second plot in a 2X1 matrix of plots

xlabel(’time - seconds’)

ylabel(’signal unit’)

grid on

Program 6.4 Program that demonstrates using subplot.
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The behavior of most machines, devices, and systems that engineers design is inherently
cyclical, which is usually described using sinusoidal functions. However, it is much more
convenient to work with exponential functions. This is possible through Euler’s identity.
Applying (6.19) to (6.21) gives

xðtÞ ¼ Acosðw0t þ qÞ ¼ A
e jðw0tþqÞ þ e�jðw0tþqÞ

2
ð6:23Þ

xðtÞ ¼ A
2
e jqe jw0t þ A

2
e�jqe�jw0t ¼ X

2
e jw0t þ X �

2
e�jw0t ð6:24Þ

where X ¼ Ae jq is called the phasor of xðtÞ. Therefore, xðtÞ has been written as the sum of
two complex conjugate exponential functions.

Example 6.8

The following MATLAB script and table verify (6.23).

>> A=2.0; % specify the amplitude

>> w=2*pi; % specify a frequency of 1 cycle/second

>> phase=pi/4; % specify a phase

%

>> % evaluate the sinusoid over just a quarter of a cycle

%

>> t=[0:0.025:0.25]; % evaluate only 11 points

>> x=A*cos(w*t+phase); % evaluate trigonometric function
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Figure 6.4 Placement of two plots in one figure.
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>> X=(A)*exp(j*phase); % specify phasor

>> x_exponential=(X/2)*exp(j*w*t)+(conj(X))/2*exp(-j*w*t);

>> table=[t’ x’ x_exponential’] % give results in three columns

>> % the first column is time

>> % the second column is the trigonometric expression

>> % the third column is the complex exponential expression

table =

0 1.4142 1.4142

0.0250 1.1756 1.1756

0.0500 0.9080 0.9080

0.0750 0.6180 0.6180

0.1000 0.3129 0.3129

0.1250 0.0000 0.0000

0.1500 -0.3129 -0.3129

0.1750 -0.6180 -0.6180

0.2000 -0.9080 -0.9080

0.2250 -1.1756 -1.1756

0.2500 -1.4142 -1.4142

6.5 Fourier Series

Practical periodic signals may not have a function representation. However, periodic signals
can be represented with a series sum of complex exponential functions, called a Fourier
series.

Let s1ðtÞ ¼ sinðw0tÞ. The frequency w0 is given by w0 ¼ 2p=T0, where T0 is the period
of s1ðtÞ. Now, consider the time function

s2ðtÞ ¼ sinð2w0tÞ

This time function will go through two cycles over the time range T0, and the period of s2ðtÞ
is given by

2p
2w0

¼ T0
2

Although the period of s2ðtÞ is T0=2, s2ðtÞ also repeats itself every T0 sec, over which it goes
through two cycles. In general, the function of time given by

skðtÞ ¼ bksinðkw0tÞ
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for k ¼ 1; 2; : : : ;1, where bk is the amplitude, repeats itself every T0=k secs, and over the
time range T0, skðtÞ goes through k cycles. Similarly, the cosine function given by

ckðtÞ ¼ ak cosðkw0tÞ
for k ¼ 1; 2; : : : ;1, where ak is the amplitude, repeats itself every T0=k secs, and over the
time range T0, ckðtÞ goes through k cycles.

Therefore, if we sum all sine and cosine functions as defined above, we get

xðtÞ ¼ a0 þ
X

1

k¼1
½akcosðkw0tÞ þ bksinðkw0tÞ� ð6:25Þ

and then xðtÞ will also repeat itself every T0 secs, because for each k the cosine and
sine functions go through an integer number of cycles over the time range T0 secs. Since
the average value of the sine and cosine terms is zero, a0 is included to account for the
average value of xðtÞ. The signal xðtÞ given in (6.25) is a periodic function, since for all t
we have

xðtÞ ¼ xðt þ T0Þ

and (6.25) is called a trigonometric Fourier series of xðtÞ. The frequency given by
w0 ¼ 2p=T0 is called the fundamental frequency of xðtÞ. If the Fourier series (sum of
sinusoidal functions) is to have the same period as xðtÞ, then all sinusoidal functions in the
Fourier series must have frequencies given by kw0 rad/sec, where k is an integer.

Given a practical periodic signal xðtÞ, we can find the ak and bk coefficients such that
xðtÞ can be written as a Fourier series. These coefficients, called the trigonometric Fourier
series coefficients, are found with

ak ¼ 2
T0

ðT0

0
xðtÞcosðkw0tÞdt ¼ 2

T0

ðt0þT0

t0
xðtÞcosðkw0tÞdt; a0 ¼ 1

T0

ðt0þT0

t0
xðtÞdt ð6:26Þ

bk ¼ 2
T0

ðT0

0
xðtÞsinðkw0tÞdt ¼ 2

T0

ðt0þT0

t0
xðtÞsinðkw0tÞdt ð6:27Þ

for any t0.

Example 6.9

Let us apply (6.25) to represent the sawtooth wave xðtÞ shown in Figure 6.5. The period of
xðtÞ is T0 ¼ 1 sec. The fundamental frequency is w0 ¼ 2p=T0 ¼ 2p rad/sec. A period of xðtÞ
can be any part of xðtÞ over a time range of t0 � t < t0 þ T0 sec for any time point t0. Over
the time range �0:25 � t < 0:75, the signal xðtÞ can be written as xðtÞ ¼ t þ 0:25. Let us
use this part of xðtÞ to evaluate (6.26) and (6.27). With (6.26) and (6.27) we get
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a0 ¼ 1
1

ð0:75

�0:25
ðt þ 0:25Þdt ¼ 1

2

ak ¼ 2
1

ð0:75

�0:25
ðt þ 0:25Þcosð2kptÞdt ¼ � sinðkp=2Þ

kp
; k ¼ 1; 2; . . .

bk ¼ 2
1

ð0:75

�0:25
ðt þ 0:25Þsinð2kptÞdt ¼ � cosðkp=2Þ

kp
; k ¼ 1; 2; . . .

These coefficients are used in the following MATLAB script to evaluate the Fourier series
and plot the signals shown in Figs. 6.6 and 6.7.

% This program uses a given set of trigonometric Fourier series coefficients

% to evaluate a Fourier series over three periods of the function.

T0=1.0; % the period of the function

w0=2*pi/T0; % the fundamental frequency

N=3001; % evaluate function for 3001 time points

t=linspace(-T0,2*T0,N);

K=10; % using only ten terms in the Fourier series

k=1:K; % a vector for the Fourier series coefficient index values

a0=0.5; % the average value of the function

% find all trigonometric Fourier series coefficients

ak=-sin(k*pi/2)./(pi*k); % element by element division of two vectors

bk=-cos(k*pi/2)./(pi*k); % element by element divide

% ak and bk are row vectors

w = k*w0; % row vector of all frequencies

for n=1:N % loop to evaluate x(t) at each time point

x(n)=a0+ak*cos(w*t(n))’+bk*sin(w*t(n))’; % using inner product to do summation

end

plot(t,x)

grid on

xlabel(’time - sec’)

ylabel(’signal value’)

Program 6.5 Program to construct a signal with a Fourier series.

1–1–2 2 3
t - sec

1

x(t)

Figure 6.5 A sawtooth wave.
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The oscillation about the discontinuity is called Gibbs’ oscillation. The amplitude of the
oscillation does not go to zero as the number of terms used in the Fourier series increases.
However, the time duration of Gibbs’ oscillation does go to zero as the number of terms
increases. This means that the Gibbs’ oscillation contribution in the Fourier series of xðtÞ has
no energy, and practically it can be ignored.

The Fourier series expression for xðtÞ can be written in another way. Based on Euler’s
identity we have

cosðkw0tÞ ¼ e jkw0t þ e�jkw0t

2

and

sinðkw0tÞ ¼ e jkw0t � e�jkw0t

j2
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Figure 6.6 Reconstructed signal using K ¼ 10 terms in the Fourier series.
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Figure 6.7 Reconstructed signal using K ¼ 100 terms in the Fourier series.
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Therefore, the Fourier series in (6.25) for xðtÞ becomes

xðtÞ ¼ a0 þ
X

1

k¼1
ak
e jkw0t þ e�jkw0t

2
þ bk

e jkw0t � e�jkw0t

j2

� �

¼ a0 þ
X

1

k¼1

ak þ jbk
2

e�jkw0t þ
X

1

k¼1

ak � jbk
2

e jkw0t

Now, let Xk be defined by

Xk ¼ ak � jbk
2

; k ¼ 1; 2; 3; . . . ð6:28Þ

Since according to (6.26), a�k ¼ ak , and according to (6.27), b�k ¼ �bk , we have

X�k ¼ a�k � jb�k
2

¼ ak þ jbk
2

¼ X �
k ; k ¼ 1; 2; 3; . . . ð6:29Þ

Thus, ak ¼ 2ReðXkÞ, and bk ¼ 2ImðX �
k Þ. Now, xðtÞ can be written as

xðtÞ ¼ a0 þ
X

1

k¼1
X �
k e

�jkw0t þ
X

1

k¼1
Xke jkw0t ¼ a0 þ

X

�1

k¼�1
Xke jkw0t þ

X

1

k¼1
Xke jkw0t ð6:30Þ

which becomes

xðtÞ ¼
X

1

k¼�1
Xke jkw0t ð6:31Þ

where X0 ¼ a0 and the Xk , called the complex Fourier series coefficients, are found by
substituting (6.26) and (6.27) into (6.28) to get

Xk ¼ 1
T0

ðT0

0
xðtÞe�jkw0tdt ¼ 1

T0

ðt0þT0

t0
xðtÞe�jkw0tdt ð6:32Þ

for any t0 and k ¼ �1; . . . ;�1; 0; 1; . . . ;1. The Fourier series in (6.31) is called the
complex exponential Fourier series.

The idea of writing a periodic time function or signal in terms of a sum of sinusoidal
functions is a very fundamental concept that is widely applied in engineering. In view of
(6.28), the Xk are in general complex numbers, which can be written in polar form to get

Xk ¼ jjXk jje jffXk

Since X�k ¼ X �
k , then jjX�k jj ¼ jjXk jj, which makes jjXk jj an even function of k, and

ffX�k ¼ �ffXk , which makes ffXk is an odd function of k. Substituting the polar form for Xk into
(6.31) gives
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xðtÞ ¼
X

1

k¼�1
jjXk jjejffXk ejkw0t

¼ ��� þjjX2jje�jffX2e�j2w0tþjjX1jje�jffX1e�jw0tþX0þjjX1jjejffX1ejw0tþjjX2jjejffX2ej2w0tþ���
Applying Euler’s identity to pairs of terms from corresponding positive and negative k
gives

xðtÞ ¼ jjX0jj þ 2
X

1

k¼1
jjXk jjcosðkw0t þ ffXkÞ ð6:33Þ

This shows that 2jjXk jj gives the amplitude and ffXk gives the phase of the sinusoidal con-
tribution to xðtÞ at the frequency w ¼ kw0 rad/sec. To assess the nature of a signal xðtÞ, the
amplitude and phase of each sinusoidal function that contributes to xðtÞ are plotted versus
the frequency of the sinusoidal function.

Example 6.10

For the periodic signal xðtÞ given in Example 6.9, (6.32) gives the complex Fourier series
coefficients, which results in

Xk ¼ 1
1

ð0:75

�0:25
ðt þ 0:25Þe�jk2ptdt ¼ 1

2kp
e jðkþ1Þp=2; k 6¼ 0

¼ 1
2
; k ¼ 0

ð6:34Þ

Integration by parts was applied to obtain this result. Fig. 6.8 shows the amplitudes of the
sinusoidal contributions to xðtÞ versus the frequency of each sinusoid. This plot is called the
magnitude spectrum of xðtÞ. The plot shows that the average value of xðtÞ is 0.5, and that
the amplitude of the sinusoid at the fundamental frequency w0 is almost twice the amplitude
of the sinusoid at the frequency 2w0. Also, we see that at higher frequencies the amplitudes
of sinusoids contributing to xðtÞ decrease.
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Figure 6.8 Magnitude spectrum of the sawtooth wave.
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The following script uses the complex Fourier series coefficients to plot the magnitude
spectrum of the sawtooth wave.

clear all; clc;

K=20; %

freq_index=[-K:1:K];

% find complex Fourier series coefficients

X0=0.5

for k=1:K

X_pos_k(k)=exp(j*(k+1)*pi/2)/(k*2*pi);

X_neg_k(k)=conj(X_pos_k(k));

end

% organize Fourier series coefficients for k = -K, ..., -1, 0, 1, ..., K

X=[fliplr(X_neg_k), X0, X_pos_k]; % flipping X_neg_k

X_mag=abs(X); % get magnitude of complex Fourier series coefficients

stem(freq_index,X_mag); % draw a stem plot

grid on

xlabel(’frequency index k’)

ylabel(’Magnitude’)

Program 6.6 Using complex Fourier series coefficients to plot the magnitude
spectrum.

In this section we saw how convenient it is to use the MATLAB facility to work with
complex numbers for representing a periodic signal. In several of the following chapters this
approach to signal representation will be extended to include aperiodic continuous time
signals, discrete time periodic signals, and aperiodic discrete time signals.

6.6 Energy

Consider the circuits shown in Fig. 6.9, where a voltage source vðtÞ ¼ Acosðwt þ qÞ,
(T0 ¼ 2p=w), is connected to a resistor with value R ¼ 1 W, and a constant voltage source V
is connected to another 1 W resistor.

VR = 1 Ω

I

v(t)

i(t)

R = 1 Ω

Figure 6.9 Voltage sources connected to 1W resistors.
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The power delivered by vðtÞ to the 1 W resistor is given by

pðtÞ ¼ vðtÞiðtÞ ¼
RiðtÞiðtÞ ¼ i2ðtÞ watts
vðtÞ vðtÞ

R
¼ v2ðtÞ watts

8

<

:

ð6:35Þ

and the energy E delivered to the resistor by the voltage source vðtÞ over one cycle is
given by

E ¼
ðT0

0
pðtÞdt ¼

ðT0

0
v2ðtÞdt ¼

ðT0

0
A2cos2ðwt þ qÞdt

¼ A2

2

ðT0

0
ð1þ cosð2ðwt þ qÞÞÞdt

¼ A2

2

ðT0

0
dt þ A2

2

ðT0

0
cosð2ðwt þ qÞÞdt ¼ A2

2
T0 joules ð6:36Þ

The average power P delivered to the resistor is P ¼ E=T0 ¼ A2=2 watts. In the other cir-
cuit, the power and the average power delivered by the battery to the 1 W resistor is given by
P ¼ VI ¼ V 2 ¼ I2 watts.

Now, consider the question, what constant voltage source delivers the same average
power to the resistor as does vðtÞ? If V ¼ A=

ffiffiffi

2
p

volts, then the voltage sources vðtÞ and V
deliver the same average power to the resistor. In view of (6.36), to assess the power
delivery capability of a sinusoidal voltage source, it is common practice to give its root
mean square (RMS) value given by

VRMS ¼ 1
T0

ðT0

0
v2ðtÞdt

� �1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T0

A2

2
T0

� �� �

s

¼ A
ffiffiffi

2
p ¼ V ð6:37Þ

It is also common practice to state that the voltage available at a wall outlet is 110 volts.
However, this is its RMS value. The voltage available at the wall outlet is actually
vðtÞ ¼ 110

ffiffiffi

2
p

cosð2pft þ qÞ, where the amplitude is 110 ffiffiffi

2
p ¼ 155 volts and the frequency

is f = 60 Hz.
Again, in view of (6.36), it is common practice to associate with any periodic signal

xðtÞ, with period T0, an energy E given by

E ¼
ðt0þT0

t0
x2ðtÞdt ð6:38Þ

for any t0. For example, if xðtÞ represents temperature in degrees fahrenheit ðFÞ as it varies
periodically with time in hours ðHÞ, then the unit of E is F2H , which has no physical
meaning.
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There is another way to compute E. Substitute (6.31) into (6.38), and we get (with
t0 ¼ 0 for convenience)

ðT0

0
x2ðtÞdt ¼

ðT0

0

X

1

k¼�1
Xk e jkw0t

X

1

l¼�1
Xl e jlw0tdt

¼
X

1

k¼�1

X

1

l¼�1
XkXl

ðT0

0
e jðkþlÞw0tdt

ð6:39Þ

where the integral is given by

ðT0

0
e jðkþlÞw0tdt ¼

ðT0

0
ðcosððk þ lÞw0tÞ þ jsinððk þ lÞw0tÞÞdt ¼ T0; l ¼ �k

0; l 6¼ �k
	

Therefore, (6.39) reduces to

P ¼ 1
T0

ðT0

0
x2ðtÞdt ¼

X

1

k¼�1
XkX�k ¼

X

1

k¼�1
jjXk jj2 ð6:40Þ

which is called Parseval’s relation. This means that we can calculate the average power P
of a periodic signal using the signal or its complex Fourier series coefficients.

Example 6.10 (continued)

Apply Parseval’s relation to the sawtooth signal of Example 6.10, where for one period
xðtÞ ¼ t þ 0:25;�0:25 � t < 0:75 and T0 ¼ 1:0 secs. Let us use the built-in function
function quad to numerically evaluate (6.38). The signal is passed to quad as an anonymous
function, as follows.

>> T0 = 1.0;

>> % must use vectorized form of the square operation

>> x_squared = @(t) (t+0.25).^2;

>> E = quad(x_squared,-0.25,0.75);

>> P = E/T0

P = 0.3333

This is the same as the integral of t2 from t ¼ 0 to t ¼ 1.
Equation (6.34) gives jjXk jj2 ¼ 1=ð2kpÞ2 and jjX0jj2 ¼ 0:25; therefore, with (6.40) we get

X

1

k¼�1
jjXk jj2 ¼

X

�1

k¼�1

1
ð2kpÞ2 þ 0:25þ

X

1

k¼1

1
ð2kpÞ2 ¼ 0:25þ 2

4p2
X

1

k¼1

1
k2
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The infinite series is a special case of the Riemann zeta function given by

VðsÞ ¼
X

1

k¼1

1
ks
; s ¼ aþ jb

which converges if and only if a > 1. With Parseval’s relation we have proved that

X

1

k¼1

1
k2

¼ 2p2 P� 1
4

� �

¼ p2

6
ð6:41Þ

6.7 Impedance

The complex exponential function also plays an important role in linear system analysis and
design. To see how readily MATLAB can be involved in this, Euler’s identity will be
applied to AC circuit analysis. Then, using MATLAB, we will analyze circuits for the
sinusoidal response to sinusoidal inputs. Before we proceed, let us consider some electrical
devices used to build circuits. Fig. 6.10 shows, from left to right, the commonly used
symbols for the components: resistor, capacitor, and inductor. These devices are said to be
passive devices, because they are not sources of power. A voltage source is said to be an
active device, because it is a power source.

An inductor is made with a wire (conductor) wound into a coil to increase the magnetic
field inside the coil when there is a current. The degree to which the magnetic field in the
coil is increased depends on the coil geometry, the number of turns of wire, and the coil core
material. These factors determine the value of the parameter L, called inductance. The unit
for inductance is the henry (H).

A time-varying current through the inductor coil causes a time-varying magnetic field in
and around the coil, which then causes a voltage across the inductor coil that opposes the
change in current. With respect to the current iðtÞ and voltage vðtÞ references given in
Fig. 6.10, if the current through a 1 H inductor increases at the rate of 1 A/sec, then the
voltage across the inductor is 1 volt.

v(t) v(t)R C Lv(t)

i(t)i(t) i(t)

Figure 6.10 Current and voltage references of electrical circuit components:
R, C, and L.
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For the inductor, the voltage–current relationship is

vðtÞ ¼ L
diðtÞ
dt

ð6:42Þ

For example, if the current through an inductor is a constant, then the voltage across the
inductor is zero. Furthermore, if the current is increasing (decreasing), then the voltage
across the inductor is positive (negative).

Suppose the current is some sinusoidal function, iðtÞ ¼ A cosðwt þ qÞ. Then, the phasor I
for the current is given by

I ¼ Ae jq

so that

I
2
e jwt þ I�

2
e�jwt ¼ Ae jq

2
e jwt þ Ae�jq

2
e�jwt ¼ A

e jðwtþqÞ þ e�jðwtþqÞ

2

� �

¼ Acosðwt þ qÞ

According to (6.42), the voltage across the inductor becomes

vðtÞ ¼ �AwLsinðwt þ qÞ ¼ AwLcos wt þ qþ p
2

� �

and therefore, the phasor V for the inductor voltage vðtÞ is given by
V ¼ AwLe jðqþp=2Þ ¼ jwLAe jq

With the voltage and current phasors we have

V ¼ jwLI ¼ ZLI ð6:43Þ
The term ZL ¼ jwL, which relates the inductor current phasor to the inductor voltage phasor
is called the impedance of an inductor. If we use instead the current–voltage relationship
given by

iðtÞ ¼ 1
L

ð

vðtÞdt

then we get the phasor relationship given by

I ¼ 1
jwL

V ¼ 1
ZL
V ð6:44Þ

For AC circuit analysis, we have changed the time-domain derivative relationship between
the inductor voltage and inductor current into a frequency-domain algebraic relationship
between the inductor voltage phasor and the inductor current phasor.

A capacitor is made with two conducting plates in close proximity that are separated by
a layer of insulating material. A wire is attached to each conducting plate. To reduce
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package size, long strips of metal foil separated by a long strip of insulating material are
wound from one end to the other end of the strips into a cylindrical shape. When a voltage
difference is applied across the conducting plates, negative charge is drawn from the plate
connected to positive side of the voltage difference, which effectively makes this plate hold
a positive charge that attracts negative charge to the other plate. The accumulated positive
and negative charges on each plate cause an electric field between the plates. The magnitude
of the electric field depends on the area of the plates, the distance between the plates, and the
material between the plates. These factors determine the value of the parameter C, called
capacitance. The unit of capacitance is the farad (F).

A time-varying voltage across the plates of a capacitor causes a time-varying electric
field between the plates and a current, called displacement current. With respect to the
current iðtÞ and voltage vðtÞ references given in Fig. 6.10, if the voltage across a 1 F capa-
citor increases at the rate of 1 V/sec, then the displacement current of the capacitor is 1
ampere. Even though there is no conductive path from one plate of a capacitor to the other
plate, externally, the displacement current of a capacitor is measured like a conductive
current through other electronic devices.

For the capacitor, the current–voltage relationship is

iðtÞ ¼ C
dvðtÞ
dt

ð6:45Þ

For example, if the voltage across a capacitor is a constant, then the capacitor current is zero.
It is said that a capacitor blocks current due to a constant voltage. Furthermore, if the voltage
is increasing (decreasing), then the current is positive (negative).

Suppose the voltage is some sinusoidal function, vðtÞ ¼ Acosðwt þ qÞ. Then, the phasor V
for the voltage is given by

V ¼ Ae jq

According to (6.45), the capacitor current becomes

iðtÞ ¼ �AwCsinðwt þ qÞ ¼ AwCcos wt þ qþ p
2

� �

and therefore, the phasor I for the capacitor current iðtÞ is given by
I ¼ AwCe jðqþp=2Þ ¼ jwCAe jq

With the current and voltage phasors we have

I ¼ jwCV ð6:46Þ
and

V ¼ 1
jwC

I ¼ ZCI ð6:47Þ
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The term ZC ¼ 1=jwC, which relates the capacitor current phasor to the capacitor voltage
phasor, is called the impedance of a capacitor.

For the resistor, the voltage–current relationship is vðtÞ ¼ RiðtÞ, and, since this is an
instantaneous relationship, the relationship between the resistor voltage phasor and the
resistor current phasor is given by

V ¼ RI ¼ ZRI ð6:48Þ
where ZR ¼ R is called the impedance of a resistor.

In (6.43), (6.47), and (6.48), which are structured like Ohm’s law, we see that multi-
plying a current phasor by an impedance produces a voltage phasor. These equations show
that if we are only interested to solve the integral–differential equations that result from
applying Kirchhoff’s laws to linear circuits for the steady-state response to sinusoidal inputs,
then we can immediately convert these equations to complex algebraic equations in terms of
current phasors, voltage phasors, and impedances.

6.8 AC Circuit Analysis

AC circuit analysis is concerned with finding the steady-state sinusoidal response of a linear
circuit to a sinusoidal input. Since MATLAB can work with the complex data type, applying
MATLAB to AC circuit analysis is similar to applying MATLAB to resistive circuit analysis.

As a general example, consider the RLC circuit shown in Fig. 6.11, where the input is
the voltage given by

vsðtÞ ¼ Acosðwt þ qÞ
The amplitude A and phase q determine the phasor Vs ¼ Ae jq of vsðtÞ, and the frequency w
will be assigned values over a range to see how the circuit responds differently, depending
on the frequency of the input.

To find the steady-state sinusoidal current, let us do a mesh analysis of the circuit, and
apply Kirchhoff’s voltage law. Summing the voltage drops around the mesh gives

�vsðtÞ þ 1
C

ð

iðtÞdt þ L
diðtÞ
dt

þ RiðtÞ ¼ 0 ð6:49Þ

Methods to solve this integral–differential equation will not be considered until Chapter 12.
However, since vsðtÞ is a sinusoid, then in steady-state iðtÞ must also be a sinusoid given by
iðtÞ ¼ jjI jjcosðwt þ ffIÞ, where I ¼ jjI jjejffI is the phasor of iðtÞ. Replacing vsðtÞ and iðtÞ by
their Euler identity equivalents results in

� 1
2
ðVse jwt þ V �

s e
�jwtÞ þ 1

2C
1
jw
Ie jwt � 1

jw
I�e�jwt

� �

þ
L
2
ðjwIe jwt � jwI�e�jwtÞ þ R

2
ðIe jwt þ I�e�jwtÞ ¼ 0
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Rearranging this equation gives

�Vs þ 1
jwC

I þ jwLI þ RI
� �

e jwt þ �Vs þ 1
jwC

I þ jwLI þ RI
� ��

e�jwt ¼ 0

which must be true for all t. This requires that

�Vs þ 1
jwC

I þ jwLI þ RI ¼ 0 ð6:50Þ

The time-domain sum of voltage drops in (6.49) has been replaced by the sum of phasor
voltage drops in (6.50) resulting in an algebraic equation, which we could have obtained by
inspection of the circuit. Solving for I gives

I ¼ 1
1
jwC

þ jwLþ R
Vs ¼ jwC

1� w2LC þ jwRC
Vs ¼ Y ðjwÞVs

¼ jjY ðjwÞjje jffY ðjwÞAe jq ¼ jjY ðjwÞjjAe jðffY ðjwÞþqÞ

ð6:51Þ

Notice that when the frequency of the input voltage vsðtÞ is w ¼ 1=
ffiffiffiffiffiffiffi

LC
p

rads/sec, then
I ¼ Vs=R, as if the capacitor and inductor connected in series are equivalent to an ideal
conductor. With (6.51) we can find how the circuit modifies the amplitude and phase of the
input voltage vsðtÞ to obtain the amplitude and phase of the current iðtÞ, and

iðtÞ ¼ jjY ðjwÞjjAcosðwt þ ffY ðjwÞ þ qÞ
With (6.48) the phasor V for the voltage vðtÞ is given by

V ¼ RI ¼ jwRC
1� LCw2 þ jwRC

Vs ¼ HðjwÞVs
¼ jjHðjwÞjjAe jðffHðjwÞþqÞ

ð6:52Þ

vs(t) R

LC

i(t) v(t)

Figure 6.11 Series connected RLC circuit.
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where HðjwÞ is a complex function of the real variable w and the frequency of the input
voltage vsðtÞ. Since Hðj0Þ ¼ 0, Hðj1Þ ¼ 0, and Hðj= ffiffiffiffiffiffiffi

LC
p Þ ¼ 1, then the circuit behaves

like a band-pass filter as w ¼ 0 ! 1. We will look at this more closely in Example 6.11.
With V , vðtÞ is given by

vðtÞ ¼ jjHðjwÞjjAcosðwt þ ffHðjwÞ þ qÞ

If we consider the output of the circuit to be the voltage vðtÞ, the voltage across the resistor,
then HðjwÞ, which is called the transfer function, describes how the circuit modifies the
amplitude A and phase angle q of the input vsðtÞ to obtain the amplitude jjHðjwÞjjA and
phase angle ffHðjwÞ þ q of the output.

If instead, the current iðtÞ is the output of interest, then Y ðjwÞ in (6.51) is the transfer
function from the input vsðtÞ to this output.

Example 6.11

With the complex arithmetic capability of MATLAB, we can assess the performance of the
circuit given in Fig. 6.11 for different values of circuit components. Let R ¼ 100 W,
L ¼ 11 mH, and C ¼ 0:01 mF. The following MATLAB script finds HðjwÞ, and plots the
magnitude shown in Fig. 6.12.

clear all; clc;

R=100; % resistor value

L=11*10^-3; % inductor value

C= 0.01*10^-6; % capacitor value

f=linspace(0,5.0*10^4,1001); % frequency range
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Figure 6.12 Magnitude frequency response of the RLC circuit.
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w=2.0*pi*f; % vector of frequencies

H_num=j*w*R*C; % transfer function numerator

H_den=1-L*C*w.*w+j*w*R*C; % transfer function denominator

H=H_num./H_den; % element by element complex divide

plot(f/1000,abs(H)); % plot band-pass filter magnitude

grid on

xlabel(’KHz’)

ylabel(’H magnitude’)

Program 6.7 Find and plot the magnitude frequency response.

From Fig. 6.12 we conclude that when the input sinusoid has a frequency given by
15K Hz, then the output sinusoid will have an amplitude larger than the amplitude of an
output for any other input sinusoid frequency. If the frequency of any sinusoidal input is
close to 15K Hz, then the output amplitude is close to the input amplitude, while if an input
sinusoid has a frequency significantly below or above 15K Hz, then the output sinusoid will
have a much smaller amplitude than the input. This is the behavior of a band-pass filter.
We can control where the magnitude frequency response shown in Fig. 6.12 peaks by
adjusting, for example, the value of the capacitor.

The frequency selective behavior of circuits like the one in Fig. 6.11 is widely applied in
communication systems. In fact, we can say that if it were not possible to achieve such
behavior, then the simultaneous activity of all AM radio, FM radio, cell-phone, wireless
Internet, etc., communications would not be possible.

Example 6.12

Let us apply the complex impedance concept to the circuit given in Fig. 6.13, and find the
response (output) vðtÞ to the input vsðtÞ.

vs (t) v(t)R

L1 L2

Ci1(t) i2(t)

Figure 6.13 Circuit of a third-order Butterworth low-pass filter.

276 Complex Numbers



Let the component values be: L1 ¼ 3=2 H, L2 ¼ 1=2 H, C ¼ 4=3 F, and R ¼ 1 W.
Suppose the input is the sum of two sinusoids given by

vsðtÞ ¼ 2 cos 2pf1t � p
4

� �

þ 3 cos 2pf2t � p
6

� �

where f1 = 0.2Hz and f2 = 2Hz. The input is shown in Figure 6.14. This input was plotted
with the following script.

clear all; clc;

% frequencies of the two components of vs(t)

f1=0.2; w1=2*pi*f1; f2=2.0; w2=2*pi*f2;

T_total=2/f1; % total plot time, which is two cycles of the f1=0.2 Hz sinusoid

N=5001; % specify number of time points

t=linspace(0,T_total,N); % time points

vs=2*cos(w1*t-pi/4)+3*cos(w2*t-pi/6); % the input to the circuit

plot(t,vs)

grid on

xlabel(’time - sec’)

ylabel(’input’)

Program 6.8 Find and plot the input.

Now, replace each circuit component by its impedance and each sinusoidal current and
sinusoidal voltage by its phasor resulting in the frequency-domain circuit shown in
Fig. 6.15. Since the given circuit is described by a set of linear equations, we can find the
steady-state response to vsðtÞ by finding the response to each sinusoidal component in vsðtÞ
and then sum these responses. This is the same as considering vsðtÞ to be the series con-
nection of two voltage sources, each producing one of the sinusoids in vsðtÞ, and then
applying the superposition principle.

0 1 2 3 4 5 6 7 8 9 10
–5

0

5

time - sec

in
pu

t

Figure 6.14 Voltage input.
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In the frequency domain (using impedances), the Kirchhoff voltage law (KVL) equa-
tions for the circuit meshes are given by

�Vs þ jwL1I1 þ 1
jwC

ðI1 � I2Þ ¼ 0 ð6:53Þ

1
jwC

ðI2 � I1Þ þ jwL2I2 þ RI2 ¼ 0 ð6:54Þ

which are two equations in the two unknowns I1 and I2. We must solve (6.53) and (6.54)
with w ¼ w1 to find the phasor I2, and then the contribution to vðtÞ due to the first com-
ponent in vsðtÞ can be found, and then again with w ¼ w2 to find the contribution to vðtÞ due
to the second component in vsðtÞ. This is done by the following MATLAB script, and the
resulting output is shown in Fig. 6.16, where you see that the high frequency component of
vsðtÞ has been significantly attenuated (filtered) by the circuit.

% AC analysis of a third order Butterworth low-pass filter

clear all; clc

L1=3/2; L2=1/2; C=4/3; R=1; % specify circuit component values

f1=0.2; f2=2.0; % frequencies of sinusoidal components of the input signal

w=2*pi*[f1 f2];

Vs=[2*exp(-j*pi/4) 3*exp(-j*pi/6)]; % phasors of the two input components

T_total=2/f1; N=1001; % plot output over 2 cyles of the first input component

t=linspace(0,T_total,N);

v=zeros(1,N); % preallocate the output voltage vector to zero

for k=1:2 % analyze the circuit for each input component frequency

% find impedances

ZL1=j*w(k)*L1;

ZL2=j*w(k)*L2;

ZC=1/(j*w(k)*C);

Z=[ZL1+ZC -ZC; ... % set up the impedance matrix Z

-ZC ZC+ZL2+R];

Vs I1 I2 VRjwC
1

jwL1 jwL2

Figure 6.15 Frequency-domain circuit.
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V=[Vs(k) 0]’; % mesh voltage vector

Y=inv(Z); % invert the impedance matrix

I=Y*V; % solve for the mesh current phasor vector

% I(2) is the phasor of the current in mesh 2 for the frequency w(k)

V(k)=R*I(2); % phasor of output voltage component

v=v+abs(V(k))*cos(w(k)*t + angle(V(k))); % contribution to output for w(k)

end

plot(t,v)

grid on

xlabel(’t - sec’)

ylabel(’output voltage’)

Program 6.9 MATLAB program for AC circuit analysis.

This plot shows that the circuit has almost entirely removed (filtered) the higher frequency
sinusoidal contribution to vsðtÞ, even though the amplitude of the higher frequency sinusoid
is larger than the amplitude of the lower frequency sinusoid. It is said that the circuit is a
low-pass filter, meaning that sinusoids at low frequencies get through the circuit almost
unaltered, while sinusoids at high frequencies are attenuated (almost removed). This and
other kinds of filtering are widely applied activities in signal processing and communication
systems.

To find the transfer function HðjwÞ from the input to the output vðtÞ, use (6.54) to
express I1 in terms of I2, and substitute this into (6.53) resulting in

V ¼ RI2 ¼ R
R� w2L1RC þ jwðL1 þ L2Þ � jw3L1L2C

Vs ¼ HðjwÞVs ð6:55Þ

Notice that Hðj0Þ ¼ 1 and limw!1HðjwÞ ¼ 0. This means that input sinusoidal signals with
very high frequencies are attenuated by the circuit, while input sinusoidal signals with very
low frequencies pass through the circuit. For example, see the difference between the input
in Fig. 6.14 and the output in Fig. 6.16. This will be studied further, after some plotting tools
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Figure 6.16 Output of the low-pass filter.
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have been presented in Chapter 9. A parameter that describes the frequency selective
behavior of a low-pass filter is the bandwidth (BW), which is the highest frequency for
which the magnitude squared of the transfer function is greater than one half its maximum
value. The low-pass filter in this example has BW ¼ 1 rad/sec.

6.9 Operational Amplifier

The operational amplifier (Op-Amp) is a very versatile device. It is a fundamental building
block in many circuits designed for analog signal processing. The symbol of the Op-Amp, a
triangle, is shown in Fig. 6.17. The left side of Fig. 6.17 shows how an Op-Amp receives
electric power, which ranges from �VRef to +VRef with respect to the common ground
(reference) terminal. An Op-Amp has two inputs, Va and Vb, connected to the Op-Amp input
terminals labeled with the plus and minus signs, respectively.

Basically, an Op-Amp is a circuit comprised of many transistors that is designed to have
a few, but very important properties, which are:

1) The currents Ia and Ib into the plus and minus terminals of the Op-Amp are nearly zero,
which means that the resistances between these terminals and the reference terminal are
very large.

2) The output voltage Vo is given by Vo = A (Va � Vb), where A is very large, A>106, and
�VRef � Vo� +VRef .

3) The resistance between the output terminal and the reference terminal is nearly zero,
which means that the output voltage is nearly an ideal voltage source.

It is said that according to property (1), an Op-Amp has a very high input impedance,
according to property (2) an Op-Amp has a very high gain, and according to property (3) an
Op-Amp has a very low output impedance. The output voltage Vo cannot be greater than
+VRef , and it cannot be less than�VRef. If the input voltages Va and Vb cause Vo to reach either
+VRef or �VRef, then it is said that the Op-Amp is saturated. In a schematic, for convenience,
the power connections are usually not shown, as in the drawing on the right of Fig. 6.17.

va

vb

Op-Amp
vo

VRef

VRef

va

vb

Op-Amp
vo

Ia Ia

IbIb

Figure 6.17 Operational amplifier circuit and simplified version.
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The operation of a circuit made with Op-Amps depends on the kinds and configuration
of additional components connected to the Op-Amps. For example, consider the two circuits
shown in Fig. 6.18, where va ¼ 0 and the input voltage viðtÞ is due to some voltage source.

To find the relationship between voðtÞ, the output voltage, and viðtÞ, the input voltage, of
the circuit in Fig. 6.18(a), apply KCL to the minus terminal of the Op-Amp. This gives

vb � viðtÞ
R1

þ ðvb � voðtÞÞ
R2

¼ 0 ð6:56Þ

where the current into the minus terminal of the Op-Amp is set to zero. The output voltage
voðtÞ of the Op-Amp is given by

voðtÞ ¼ Að0� vbÞ ! vb ¼ � voðtÞ
A

ð6:57Þ

Substituting (6.57) into (6.56) results in

1
R1

þ 1
R2

� �

voðtÞ
A

� �

þ viðtÞ
R1

þ voðtÞ
R2

¼ 0

Since A is very large, the first term is negligible compared the second and third terms, and
we get

v0ðtÞ ¼ �R2
R1
viðtÞ ð6:58Þ

This circuit is called an inverting amplifier. For example, to design an amplifier with a gain
of –10, so that voðtÞ ¼ �10viðtÞ, use R2 ¼ 100K W and R1 ¼ 10K W. Generally, Op-Amps
are low-power devices, and resistor values are used such that currents through them are not
more than a few mA.

Notice that the equations describing the circuit in Fig. 6.18(a) are linear equations. This
means that if the input voltage is a sinusoid, then the output voltage is also a sinusoid with
the same frequency as the input sinusoid.

Let us find the output voltage of the circuit shown in Fig. 6.18(b) when the input is a
sinusoid given by viðtÞ ¼ Kcosðwt þ qÞ. Recall that for AC analysis of linear circuits we can

R1

R1

R2

R2

vo(t)
vi(t) vb

Vo
Vi Vb

(a)

C

(b)

Figure 6.18 (a) Inverting amplifier and (b) low-pass filter.
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replace voltage and current sources by their phasors and circuit components by their
impedances, and then apply Kirchhoff’s laws in terms of phasors and impedances. Applying
KCL to the minus terminal of the Op-Amp in Fig. 6.18(b) gives

Vb � Vi
R1

þ Vb � Vo
R2

þ Vb � V0
1=jwC

¼ 0 ð6:59Þ

where Vi ¼ Kejq, the phasor of the input. Based on (6.57) we have the phasor relationship
Vb ¼ �Vo=A, and therefore (6.59) becomes

1
R1

þ 1
R2

þ jwC
� �

Vo
A

� �

þ Vi
R1

þ 1
R2

þ jwC
� �

Vo ¼ 0

Compared to the second and third terms, the first term is negligible, and solving for V0
results in

Vo ¼ � R2
R1ð1þ jwR2CÞVi; HðjwÞ ¼ � 1

R1ðð1=R2Þ þ jwCÞ ð6:60Þ

Equation (6.60) gives the transfer function HðjwÞ of the circuit. We see that as the frequency
of the input changes from w ¼ 0 to w ! 1, the transfer function magnitude decreases from
R2=R1 to zero, respectively, which means that this circuit is a low-pass filter. With R1 and
R2, we can design a low-pass filter to have a desired low frequency gain, and with C we can
specify the BW of the filter.

If the resistor R2 is removed, which is like R2 ! 1, then the transfer function becomes
HðjwÞ ¼ �1=jwR1C. Then, like (6.44), the circuit input-to-output relationship is given by

voðtÞ ¼ �1
R1C

ð

viðtÞdt ð6:61Þ

which means that the output of the circuit is proportional to the integral of the circuit input.
This circuit is called an integrator.

Let us consider a few more useful circuits that were designed with Op-Amps. Consider
the two circuits shown in Fig. 6.19.

R1

R2

vo(t)
vo(t)

vi(t)

vi(t)

(a) (b)

va

+

+

–

–

Figure 6.19 (a) Positive gain amplifier and (b) a buffer.
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To find the relationship between voðtÞ, the output voltage, and viðtÞ, the input voltage, of
the circuit in Fig. 6.19(a), apply KCL to the minus terminal of the Op-Amp. This gives

va
R1

þ va � voðtÞ
R2

¼ 0 ð6:62Þ

For the Op-Amp we have

voðtÞ ¼ �Aðva � viðtÞÞ ð6:63Þ

From (6.63) we get

va ¼ viðtÞ þ voðtÞ
�A

and since A is very large, va ffi viðtÞ. Substituting va into (6.62) gives

voðtÞ ¼ 1þ R2
R1

� �

viðtÞ ð6:64Þ

This circuit is a noninverting amplifier. For example, to amplify a signal viðtÞ by a
gain of 10, use R2 ¼ 45K W and R1 ¼ 5K W to get voðtÞ ¼ 10viðtÞ. Note that depending
on the maximum input level, the gain must be limited to avoid saturating the Op-Amp
output.

Suppose we remove R1 and replace R2 by a short circuit. Then we get the circuit in
Fig. 6.19(b). According to (6.64), we have voðtÞ ¼ viðtÞ. The circuit is called a buffer. A
buffer does not amplify an input signal. It does, however, have a very high input resistance
and a very low output resistance. A buffer is often connected between a signal source, for
example, some transducer such as a microphone, and a device that is intended to receive the
output of the transducer. The buffer electronically isolates the signal source from whatever
is intended to receive the signal source output.

vs RL

vR (a) (a)

(b)
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Figure 6.20 Buffer application.
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Let us consider the practical problem of connecting a signal source to some circuit, as
depicted in Fig. 6.20. On the left is a practical voltage source connected to some circuit,
represented by the resistor RL. Generally, a practical voltage source has an internal resis-
tance. This is modeled by an ideal voltage source vs in series with a resistor R. When a
circuit is connected to the terminals (a) and (b) of the voltage source, a current I will cause a
voltage drop VR, and the voltage at the terminals will be v ¼ vs � vR ¼ vs � RI . If RL is
small, then I may be large enough to make v < vs. Therefore, the voltage at the terminals of
the voltage source depends on the resistance of the circuit to which the voltage source is
connected. It is said that the circuit loads down the voltage source.

To avoid the loading problem, a buffer is used, as shown on the right of Fig. 6.20, where
the buffer output should be connected to the circuit. Since the input resistance of the buffer
is very large, VR will be small, and v ffi vs.

Another very useful circuit is shown in Fig. 6.21. This circuit is called an instru-
mentation amplifier, and its output voltage is given by Vo ¼ KðV2 � V1Þ, where the constant
K is determined by the resistor values. This circuit has seven unknown node voltages, and it
will be analyzed in Chapter 11 with the help of the MATLAB Symbolic Math Toolbox.

An instrumentation amplifier is widely used in audio, medical, and other electronic
equipment where there is concern about environmental electrical noise.

6.10 Conclusion

In this chapter the complex number was defined in rectangular and polar forms. MATLAB
also works with complex numbers given as scalars, vectors, and matrices. It was demon-
strated that complex numbers play an important role in signal analysis to represent a peri-
odic signal as a linear combination of complex conjugate exponential functions. The
inductor and capacitor circuit components were introduced. For RLC circuit analysis, the
concepts of a phasor and impedance of circuit components were introduced to convert
integral–differential equations that describe the behavior of a circuit in the time domain into

R

V1 V6 V7

V5

V4

R1

R2 R3

R1

V2 V3 V8R2 R3

Vo

Figure 6.21 Schematic of an instrumentation amplifier.
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algebraic equations in the frequency domain. And, with MATLAB it was convenient to
solve complex systems of linear equations. There is much more to find out. You should now
know how to

● find the real and complex roots of a polynomial with MATLAB
● do arithmetic with complex numbers
● use many of the MATLAB built-in functions concerned with complex numbers
● apply Euler’s identity for representing sinusoidal time functions
● use MATLAB for analyzing a periodic signal
● work with the concept of an impedance and apply MATLAB for AC circuit analysis
● investigate the frequency selective behavior of a circuit with MATLAB
● analyze some circuits designed with Op-Amps

Table 6.3 gives the MATLAB functions that were introduced in this chapter. Use the
MATLAB help facility to learn more about these built-in functions, where you will also find
out about many other related built-in functions.

Also, character strings were used to enhance plot output. In the next chapter built-in
functions for character string construction, identification, and manipulation will be
discussed.

Problems

Section 6.1
1) Manually, write each polynomial as a product of first-order factors: (a) x2 � 2x� 15,

(b) �x2 � xþ 6, and (c) x3 þ 5x2 þ 8xþ 6 (hint: one of the roots is x ¼ �3).
2) For each polynomial of Prob. (1) find the value(s) of x where the polynomial

has a minimum or maximum. Give the minimum or maximum value of each
polynomial.

Table 6.3 Built-in MATLAB functions introduced in this chapter

Function Brief explanation

complex Constructs a complex number
isreal Checks to see if a complex number has a zero imaginary part
conj Returns the complex conjugate of a complex number
real Returns the real part of a complex number
imag Returns the imaginary part of a complex number
roots Finds the roots of a polynomial
poly Finds the polynomial coefficients given its roots
angle Finds the angle of a complex number
abs Finds the magnitude of a real or complex number
subplot(m,n,p) Breaks the Figure Window into an m-by-n matrix of

p ¼ 1, . . . , mn small plots
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Section 6.2
Where required in the following problems, use the following numbers:

c1 ¼ j, c2 ¼ 2þ j3, c3 ¼ �3þ j, c4 ¼ �4� j3, c5 ¼ �j3, c6 ¼ 2� j3, c7 ¼ 2e jp=4,
c8 ¼ 3e jp=2, c9 ¼ 3e j5p=4, c10 ¼ 3e j7p=3

3) Manually, obtain: (a) c1 þ c2 þ c3, (b) c3 � c4, (c) c2c3, (d) c1=c2, (e) c2=c3, and
(f) c5=c6.

4) For each part of Prob. (3) give MATLAB statements to do the arithmetic.
5) Give a sketch of each of the complex numbers c1; . . .; c6 in the complex plane.
6) (a) Find the real part of: 1=c2. Find the imaginary part of: (b) c3c�4, (c) c5=c6.
7) For each part of Prob. (6) give MATLAB statements to find the answer.
8) (a) Use the MATLAB function roots to find the roots of: 2x6 þ 3x4 � x3 þ 4x� 5.

(b) Use the MATLAB function poly to find the polynomial with roots given by: �j, +j,
3, 2+j5, 2�j5.

9) Write a script to find the number of real roots of an Nth order polynomial. Use the
function input to obtain N from the program user. Then, continue to use the function
input to obtain the polynomial coefficients. Terminate the program if the user enters
N � 0.

10) For any two complex numbers x1 and x2 prove that: jjx1 þ x2jj � jjx1jj þ jjx2jj. Hint: let
x3 ¼ x1 þ x2, and then x1; x2, and x3 form a triangle in the complex plane, to which you
can apply the triangle inequality.

Section 6.3
11) Manually, convert the complex numbers: c1; . . .; c6 to polar form.
12) For each complex number of Prob. (11) give MATLAB statements to find the magni-

tude and angle.
13) Manually, convert the complex numbers: c7; . . .; c10 to rectangular form.
14) Manually, obtain: (a) c7c8, (b) c8 þ c9, (c) c�10, and (d) c7=c9.
15) For each part of Prob. (14) give MATLAB statements to find the answer.
16) For any two complex numbers x1 and x2 prove that: (a) jjx1=x2jj ¼ jjx1jj=jjx2jj,

(b) ðx1x2Þ� ¼ x�1x�2 , and (c) ffðx1=x2Þ ¼ ffx1 � ffx2.
17) Given is a polynomial function f ðxÞ of a complex variable x with real coefficients.

Prove that f �ðxÞ ¼ f ðx�Þ.
Section 6.4
18) Use Euler’s identity to prove that cosðaþ bÞ ¼ cosðaÞcosðbÞ � sinðaÞsinðbÞ.
19) For the sinusoidal voltage xðtÞ ¼ �3cosð20pt þ ðp=6ÞÞ mV, find the amplitude, fre-

quency, period, and phase angle. Give units with each answer.
20) Write a script to plot on one axes xðtÞ ¼ cosð2pftÞ, where f ¼ 3; 6; 12; and 18Hz. Plot

each signal over one period of the sinusoid with the lowest frequency. Use a sampling
rate of fs ¼ 300 samples/sec. Include axes labels.
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21) Find the phasor X of each sinusoid: (a) xðtÞ ¼ �3cosð20pt þ p=6Þ, (b) xðtÞ ¼
5cosð120pt � p=4Þ, (c) xðtÞ ¼ �7sinð4pt � p=6Þ, and (d) xðtÞ ¼ 2sinð1000ptÞ.

22) Use w ¼ 10p rad/sec, and find the sinusoidal time functions that have the phasors:
(a) X ¼ 3e jp=3, (b) X ¼ e jp, (c) X ¼ �j, and (d) X ¼ �3þ j4.

23) With w0 ¼ 4p rad/sec and X ¼ 4e jp=6, use (6.24) to write a script that plots xðtÞ over
two periods. Plot enough points to obtain a smooth looking plot. Include axes labels.

Section 6.5
24) One period of a rectangular wave xðtÞ is given by

xðtÞ ¼ �2;�1 � t < 1
4; 1 � t < 3

	

(a) Manually, give a sketch of xðtÞ for �5 � t � 7. What is the fundamental frequency
f0?

(b) Find the trigonometric Fourier series coefficients a0, ak , and bk , k ¼ 1; 2; . . . .
25) For the periodic function described in Prob. (24) find the complex exponential Fourier

series coefficients.
26) For some square wave xðtÞ with period T0 ¼ 8 secs, the complex exponential Fourier

series coefficients are given by

Xk ¼ ð�2e jkp=4 þ e�jk3p=4Þ sinðkp=2Þ
kp

; X0 ¼ �1=2

Write a script to plot two periods of the Fourier series of xðtÞ given by (6.31). Obtain
two plots, one with a total of 11 terms in the Fourier series and one with a total of 51
terms in the Fourier series. In each case, plot a total of 1001 points. Explain the dif-
ference between the two plots. To see the details, you may have to plot more than 1001
points.

27) For the square wave of Prob. 26, write a script to plot the magnitude spectrum versus
frequency over the range �50f0 � f � 50f0, where f0 is the fundamental frequency.

28) Write a script that applies Parseval’s relation to find the average power of the signal
described in Prob. 26. Use enough terms to make your result accurate to four significant
digits.

Section 6.6
29) What does the impedance of (a) an inductor become as w ! 0 and as w ! 1, (b) a

capacitor become as w ! 0 and as w ! 1. If the impedance goes to zero, then the
component looks like a short circuit, and if the impedance goes to infinity, then the
component looks like an open circuit.
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30) In the circuit shown in Fig. P6.30, the voltage source is vsðtÞ ¼ 5sinð10; 000tÞ volts, and
C ¼ 0:25 mF, L ¼ 10 mH, and R ¼ 100 W. Draw another circuit, where the voltage
source, loop current, and output voltage are replaced by their phasors, and all compo-
nents are replaced by their impedances.

Section 6.7
31) (a) To the circuit shown in Fig. P6.30 apply KVL to obtain a loop equation in terms of

phasors and impedances. Use component values given in Prob. 6.30. Then, write a
MATLAB script to solve for the phasors of iðtÞ and vðtÞ.

(b) Continue the MATLAB script to plot vsðtÞ and vðtÞ on the same axes over two
periods.

(c) Find the frequency of vsðtÞ that will cause vðtÞ to have the largest amplitude.
32) (a) For the circuit shown in Fig. P6.32, find the transfer function HðjwÞ from the input

vsðtÞ to the output vðtÞ.

(b) Set R ¼ 442 W and C ¼ 0:1 mF, and write a MATLAB script to plot the magnitude
squared frequency response for 0 � f � 10K Hz. What kind of a filter is this cir-
cuit? From the plot of the magnitude squared frequency response determine the
bandwidth of the filter.

33) Let the input vsðtÞ of the circuit given in Fig. P6.32 be a square wave with period To ¼ 8
msecs. Then, we can write

vs(t) R

LC

i(t) v(t)

Figure P6.30 Series RLC circuit.

vs(t)

R

i(t)
v(t)C

Figure P6.32 RC circuit.
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vsðtÞ ffi
X

K

k¼�K
Xke jkw0t

where wo ¼ 2p=To ¼ 1000p=4 rad=sec. Suppose the complex Fourier series coeffi-
cients are given by

Xk ¼ ð�2e jkp=4 þ e�jk3p=4Þ sinðkp=2Þ
kp

; X0 ¼ �1=2

Since the circuit is a linear circuit, we can employ superposition to find the output due
to each sinusoid at the frequency w ¼ kwo in vsðtÞ, and then sum all the outputs due to
each sinusoidal input to obtain vðtÞ. In Prob. 6.32 the transfer function HðjwÞ was
found. Use the component values given in Prob. 6.32. The phasor Yk of each sinusoid in
the output v ðtÞ is given by

Yk ¼ HðjkwoÞXk ; Y0 ¼ Hðj0ÞX0
Summing the responses to each sinusoidal input gives

vðtÞ ffi
X

K

k¼�K
Yke jkw0t

Write a MATLAB script to plot vsðtÞ and vðtÞ over two periods. Notice that, while the
input is discontinuous, the output of the low-pass filter is continuous. Execute
the program for K ¼ 5 and K ¼ 50 to see the effect of the number of terms used in
the Fourier series.

34) (a) Fig. P6.34 shows a circuit of a high-pass filter. Find the transfer function HðjwÞ
from the input vsðtÞ to the output vðtÞ.

(b) Using the same component values as in Prob. 6.32, write a MATLAB script to plot
the magnitude squared frequency response for 0 � f � 10K Hz. What is the
bandwidth of this filter?

vs(t) i(t)
v(t)R

C

Figure P6.34 A high-pass filter.
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35) (a) Prove that if a periodic function is an even function, then the complex Fourier series
coefficients are real. In this case, what is true about the trigonometric coefficient
bk?

(b) Prove that if a periodic function is an odd function, then the complex Fourier series
coefficients are imaginary. In this case, what is true about the trigonometric coef-
ficient ak?

Section 6.8
36) The inverting amplifier given in Fig. 6.18(a) can be cascaded with another inverting

amplifier, where the output of the first amplifier is connected to the input to the second
amplifier. Overall, the result is a positive gain amplifier. Use two inverting amplifiers to
design a positive gain amplifier with an overall gain of 100. Let each inverting
amplifier have a gain of �10. Give the schematic.

37) The input voltage of a noninverting amplifier varies over the range �100mV to
+200mV. The power supply voltage is VRef ¼ 9 volts. What is the most gain that can be
used and avoid saturating the output?

38) Fig. P6.38 shows another way to use an Op-Amp. Following the derivation of (6.58),
show that

voðtÞ ¼ � R3
R1
v1ðtÞ þ R3

R2
v2ðtÞ

� �

R2

R3

vo(t)

v1(t)

v2(t)
vb

R1

Figure P6.38 Summing amplifier.
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CHAPTER 7

Character Data

While computing does include the processing of numerical data, more generally, computing is
concerned with collecting, processing, and presentation of information. In a digital computer
system, information is coded in binary format. The binary codes represent not only numerical
and logical data, but also character data, which can have many kinds of meaning. For
example, in a program file, all variable names and their values, key and reserved words,
operations, data, and more are character strings. In this chapter you will learn how to

● create character strings
● manipulate character strings
● search character strings
● create and work with structure arrays
● create and work with cell arrays

7.1 Character Strings

A character string can be created in several different ways. The syntax of a direct way is

s = ’ .... text .... ’

where s, a valid MATLAB� variable name, is the character string, and the text is its value.
With this syntax, the variable s is a one-row array that contains the ASCII (American
Standard Code for Information Interchange) codes of the text characters. See Appendix B for
a table of ASCII codes. The length of s is the number of characters in the text. This includes
the ASCII codes for unprintable characters such as space, carriage return, tab, and others.
To include a single quotation mark within the text, use single quotation marks twice.
For example,



>> % the spaces before and after the minus sign are also characters

>> current = ’I2 - I1’;

>> length(current) % there are 7 elements in the character array current

ans = 7

>> % the elements of a character array are referenced like the elements of a matrix

>> current(4) % the fourth element in current is a minus sign

ans = -

>> disp(current) % same as disp(’I2 - I1’)

I2 - I1

>> comment = ’you’’re doing very well’ % ’’ counts as one character

comment = you’re doing very well

Table 7.1 gives built-in MATLAB functions concerned with creating character strings
and character arrays. A cell array can be an array of character strings. However, a cell
array, as we shall see later, provides a means to collect and organize data arrays of any size
and any kind of data type.

Example 7.1

>> % concatenate three character strings

>> resistor_property = [’Ohm’’s’ ’ Law:’ ’ v=Ri’]

resistor_property = Ohm’s Law: v=Ri

Table 7.1 Built-in MATLAB functions concerned with character data

Built-in function Brief description (cell arrays will be discussed in section 7.4)

s ¼ [s1 s2 . . . ] Concatenate character arrays into a new character array
C ¼ {s1 s2 . . . } Create a cell array of character strings. Separate each row of the cell array

with a semicolon (;). Notice the use of braces.
s ¼ strcat(s1, s2, . . . ) Horizontally concatenate s1, s2, etc., which can be character arrays or cell

arrays of strings
s ¼ strvcat(s1, s2, . . . ) Vertically concatenate s1, s2, etc., which can be character arrays or cell

arrays of strings
s ¼ char(s1, s2, . . . ) Vertically concatenate character arrays s1, s2, etc., padding each input

string with blank characters as needed such that each row contains the
same number of characters

s ¼ char(A) Convert a numeric array A that contains positive integers of ASCII
numeric codes into a character array

s ¼ char(C) Convert cell array C of character strings into a character array, and place
each element of C into a row of the column character array s

B ¼ double(A) Convert a character array A or string s of ASCII codes into numeric
ASCII codes

cellstr(s) Create cell array of strings from character array s
blanks(n) Create character string of n blanks
num2str(A) Convert numeric matrix A into a character array
int2str(N) Convert integer matrix N into a character array
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>> % or, use the function strcat to

>> % concatenate three character strings

>> resistor_property = strcat(’Ohm’’s’, ’ Law:’, ’ v=Ri’)

resistor_property = Ohm’s Law: v=Ri

>> length(resistor_property)

ans = 14

>> disp([’insert some’ blanks(10) ’space’]) % display character string

insert some space

>> x = [72 101 108 108 111] % numeric vector of 5 ASCII codes

x = 72 101 108 108 111

>> y = [116 104 101 114 101 33] % another numeric vector of 6 ASCII codes

y = 116 104 101 114 101 33

>> s = char(x,y) % convert to character array and pad with blanks if necessary

s =

Hello

there!

>> size(s) % s is a character array of 2 rows and 6 columns

ans = 2 6

>> z = double(s) % convert characters to numeric values, ASCII codes

z =

72 101 108 108 111 32

116 104 101 114 101 33

>> % notice the addition of the ASCII code for a blank in the first row and

>> % sixth column of z

>> s1 = ’up’; s2 = ’down’; s3 = ’left’; s4 = ’right’;

>> s = strvcat(s1,s2,s3,s4) % vertically concatenate the four character strings

s =

up

down

left

right

>> size(s) % s is an array of characters, where each row has 5 elements

ans = 4 5

>> s(2,3) % element of s in row 2 and column 3

ans = w

>> % elements of s are characters

>> % braces, instead of brackets, are used to create a cell array

>> % create a cell array of character strings

>> direction = {’up’, ’down’; ’left’, ’right’}

direction =

’up’ ’down’

’left’ ’right’

>> % in a cell array, the elements can have different sizes

>> direction{2,2} % use braces to reference elements of a cell array

ans = right

>> s = char(direction) % convert cell array into a character array
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s =

up

left

down

right

>> % each row of s has the same number of characters due to padding with blanks

>> C = cellstr(s) % create cell array of strings from character array

C =

’up’

’left’

’down’

’right’

>> C{2} % elements of C are character strings

ans = left

Sometimes it is useful to place numeric information in a plot title or some other char-
acter string. To do this, numerical data must be converted into character data. For example,

>> K = 100; % numeric value

>> % to include the value of K in a character string, in must be converted

>> % into a character string

>> % then, concatenate three character strings

>> title = [’Fourier series of x(t) using K = ’, num2str(K),’ terms’]

title = Fourier series of x(t) using K = 100 terms

Table 7.2 gives built-in MATLAB functions with which you can check for each kind of
character data. See Table 5.6 for a list of the classes of data that MATLAB supports.

Table 7.2 Built-in functions concerned with checking character data

Built-in function Brief description

ischar(s) Returns 1, meaning true, if s is a character array and 0 otherwise
iscellstr(C) Returns 1 if C is a cell array of character strings and 0 otherwise
isa(x,‘classname’) Returns 1 if x is of a particular class of data. See Table 5.6 for class names.
isletter(s) Returns a logical matrix with elements that are 1 for corresponding elements

of s that are letters of the alphabetic and 0 otherwise
isscalar(s) Returns 1 if s is a scalar and 0 otherwise
isspace(s) Returns a logical matrix with elements that are 1 for corresponding elements

of s that are unprintable characters, such as space, tab, etc., and 0 otherwise
isstrprop(s,‘type’) Returns a logical matrix with elements that are 1 for corresponding elements

of s that are of a particular type, such as alpha, digit, lower (lower case),
upper (upper case), punct, (punctuation) etc., and 0 otherwise

isvector(v) Returns 1 if v is a row vector, column vector or a scalar and 0 otherwise
validatestring(s, C, etc.) Checks validity of text string s to see if s matches (case insensitive) a

character string in cell array C and returns string in C. See MATLAB help
facility for additional options
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For example,

>> s = strvcat(’The current equals 10 mA’, ’The voltage equals 6.3 volts’)

s =

The current equals 10 mA

The voltage equals 6.3 volts

>> where_letters = isstrprop(s,’alpha’) % find all alphabetic elements of s

where_letters =

Columns 1 through 14

1 1 1 0 1 1 1 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 1 1 0 1 1

Columns 15 through 28

1 1 1 1 0 0 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0 0 1 1 1 1 1

With the logical matrix, where_letters, you can find all of the elements of s that are ASCII
codes of alphabetic characters. Or, with where_digits = isstrprop(s,‘digit’) you can find all
of the elements of s that are ASCII codes of digits.

7.2 Manipulate and Search Character Strings

Table 7.3 gives MATLAB built-in functions for manipulating character arrays, and
Table 7.4 gives built-in functions for searching character arrays.

Table 7.3 MATLAB functions for manipulating character arrays

Built-in function Brief description

deblank(s) Strip trailing blanks from end of string
lower(S) Convert character string to lower case
strjust(s,format) Justify character array s, format ¼ ‘right’,‘left’ or ‘center’
strrep(s1,s2,s3) Replace occurrences of s2 in s1 with s3; s1, s2 and s3 can be cell arrays of the

same dimension
strtrim(s), strtrim(C) Remove leading and trailing unprintable characters from character string or

cell array
upper(s) Convert character string to upper case

Table 7.4 MATLAB functions for searching character arrays

Built-in function Brief description

findstr(s1,s2) Returns in a vector the starting indices of any occurrences of the shorter string in
the longer string

regexp(s1,pat) Returns the starting indices of any occurrences of a match of characters in s1 and a
pattern of characters specified by pat

(Continues)
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Example 7.2

clear all; clc

% by including ’s’ in the input function argument list, MATLAB expects

% a character string input without requiring single quotes

your_name = input(’What is your name? ’,’s’);

initial = upper(your_name(1)); % use upper case for the first character

your_name = [initial,your_name(2:length(your_name))];

question = [your_name,’, do you look forward to using MATLAB more? ’];

answer = input(question,’s’);

if strncmpi(answer,’yes’,1) % compare the first characters

disp(’You will find MATLAB to be very useful.’)

elseif strncmpi(answer,’no’,1)

disp(’Read on anyway, you may change your opinion.’)

else

disp(’A little more experience with MATLAB will help.’)

disp([your_name,’, try using demo in the Command Window.’])

disp(’The audio/video tutorials are very informative.’)

end

Program 7.1 Demonstration of text input.

Running this program gives, for example,

What is your name? wxyz

Wxyz, do you look forward to using MATLAB more? maybe

Table 7.4 (Continued)

Built-in function Brief description

regexpi(s1,pat) Case insensitive version of regexp
regexprep(s1,pat,s2) Replaces all characters in s1 that match the pattern of characters specified by pat

with the characters given by s2
sscanf(s,‘format’) Reads data in the character string s according to the specified format; format

syntax will be discussed in Chapter 8
strfind(s1,s2) Returns in a vector the starting indices of all occurrences of the character string s2

in the character string s1; s2 must be shorter than s1
[a,b, . . . ] ¼ strread(s) Assigns to a,b, . . . the numbers, delimited by blanks, in s; see the MATLAB help

facility for more options
eval(‘expression’) Evaluate expression; see Chapter 2
strcmp(s1,s2) Returns logical 1 if strings s1 and s2 are identical, and 0 otherwise
strcmpi(s1,s2) Case-insensitive version of strcmp
strncmp(s1,s2,N) Returns logical 1 if the first N characters of s1 and s2 are the same, and 0 otherwise
strncmpi(s1,s2,N) Case-insensitive version of strncmp
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A little more experience with MATLAB will help.

Wxyz, try using demo in the Command Window.

The audio/video tutorials are very informative.

7.3 Structure Arrays

A scalar variable can have just one data type value, which could be numerical, logical, or
a character. If a variable is an array, then all elements in the array must be the same data type.
A scalar structure variable, which can have any valid MATLAB variable name, can have
any number of variables associated with it, and each of the associated variables can be
assigned any kind of data type. Each associated variable of the structure variable is called a
field of the structure variable, and each field of the structure variable is given a name that can
be any valid MATLAB variable name. The syntax for a scalar structure variable is

structure_variable_name.field_name_1 = data_1

..

.

..

.

structure_variable_name.field_name_N = data_N

Here, a period is the delimiter between the structure variable name and the field name, the
structure variable has N fields, and the data assigned to each field can be a matrix, vector,
scalar, or array of any kind of data type, and even another structure variable.

Example 7.3

Create a scalar structure variable for the inventory of components in a circuit on a printed
circuit board (PCB). Assume this is the third circuit on the PCB of some product. Prog. 7.2
creates a scalar structure variable named CKT_3, and associates with this variable nine
fields to which are assigned character strings and numeric vectors of the values of circuit
components. For this purpose, the nine fields are named:

● ckt_function, to describe what the circuit does
● schematic, to give a complete path name of the file, an enhanced meta file (emf), that

contains a schematic of the circuit
● resistor_names, to list the notation used to identify all resistors
● resistor_values, to give the values, in K ohms, of all resistors
● capacitor_names, to list the notation used to identify all capacitors
● capacitor_values, to give the values, in mF, of all capacitors
● IC_names, to list the notation used to identify all integrated circuits (ICs)
● IC_parts, to give the part number of all ICs
● misc, to provide a description of any other circuit components
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Additional fields can be included, for example, distributor SKU numbers, cost of each
component, etc. Then, the program illustrates how to use various built-in MATLAB func-
tions to report about the content of CKT_3. Notice that the elements of the structure variable
and its fields are indexed in a manner similar to the way that we work with matrices. The
program output follows.

% Program to create a structure variable and report about its content

clc; clear all

CKT_3.ckt_function = ’4-bit adder’; % assign data to field ckt_function

CKT_3.schematic = ’C:\schematics\four_bit_adder.emf’; % file path name

CKT_3.resistor_names = char(’R1’,’R2’,’R3’,’R4’,’R5’,’R6’,’R7’,’R8’,...

’R9’,’R10’,’R11’,’R12’,’R13’); % assign character strings

CKT_3.resistor_values = [10,10,10,10,10,10,10,10,0.333,0.333,...

0.333,0.333,0.333]; % assign resistor_values in K Ohms

CKT_3.capacitor_names = char(’C1’,’C2’); % assign character strings

CKT_3.capacitor_values = [0.01,100]; % assign capacitor values in uF

CKT_3.IC_names = char(’IC1’,’IC2’,’IC3’,’IC4’,’IC5’,’IC6’,’IC7’);

CKT_3.IC_parts = char(’74LS08’,’74LS08’,’74LS32’,’74LS86’,’74LS86’,...

’74LS04’,’74LS04’); % assign part numbers as character strings

CKT_3.misc = char(’5 red LED’, ’8-switch DIP’);

disp ’Structure for inventory of PCB circuit #3’ % display a heading

disp(CKT_3) % display the entire structure

disp ’IC parts field is’ % display a heading

disp(CKT_3.IC_parts) % display the IC parts field

disp(’ ’) % skip a line

% display the value of the first component in the resistor_names field

% get number of resistors and number of characters per name

[N_resistors N_chars] = size(CKT_3.resistor_names);

% concatenate 4 character strings and display the resulting string

disp([CKT_3.resistor_names(1,1:N_chars),’ = ’,...

num2str(CKT_3.resistor_values(1)),’K Ohms’])

% concatenate 3 character strings and display the resulting string

disp([’The circuit has ’,num2str(N_resistors),’ resistors’])

[N_ICs M] = size(CKT_3.IC_names); % get number of rows (ICs)

IC_names = char(CKT_3.IC_names); % all rows will have the same length

IC_parts = char(CKT_3.IC_parts); % all rows will have the same length

disp (’ ’) % skip a line

disp ’List of IC parts’ % display heading

% concatenate 3 character arrays, each with N_ICs rows and

% display the resulting array, a table of IC parts

disp([IC_names,repmat(’ = ’,N_ICs,1),IC_parts])

Program 7.2 Program creates a scalar structure variable CKT_3 and reports
about it.
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Structure for inventory of PCB circuit #3

ckt_function: ’4-bit adder’

schematic: ’C:\schematics\four_bit_adder.emf’

resistor_names: [13x3 char]

resistor_values: [1x13 double]

capacitor_names: [2x2 char]

capacitor_values: [0.0100 100]

IC_names: [7x3 char]

IC_parts: [7x6 char]

misc: [2x12 char]

IC parts field is

74LS08

74LS08

74LS32

74LS86

74LS86

74LS04

74LS04

R1 = 10K Ohms

The circuit has 13 resistors

List of IC parts

IC1 = 74LS08

IC2 = 74LS08

IC3 = 74LS32

IC4 = 74LS86

IC5 = 74LS86

IC6 = 74LS04

IC7 = 74LS04

Take a look at the last statement in the program, where three character arrays are con-
catenatedwithin the brackets tomake one character array, a list of IC components. The elements
of the first array, which consists of N_ICs rows, are each a row character array of the IC name.
To use a space, equal sign, and space in the list, concatenation requires that the second character
array also has N_ICs rows. The second array is formedwith the built-in function repmat, which
replicates the given three character string, ‘ = ’, into a character array of dimension, N_ICs � 3
characters. Since the third character array, IC_parts, has N_ICs rows, the resulting character
array has N_ICs rows, and after concatenation the result is one new character array with N_ICs
rows, all having the same number of characters/row, that is displayed.
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Example 7.3 demonstrated how to construct a scalar structure variable, with associated
variables that can be any data type and any size. This concept can be extended to a structure
array of structure variables tomake one object out of scalar structures of any number of circuits.

Example 7.3 (continued)

In Prog. 7.2, a scalar structure variable was defined. Suppose there are other circuits, such as
circuit #1, circuit #2, and others, on the PCB, for which an inventory must be kept. For each
circuit, we could create a scalar structure, like CKT_3. Or, redefine CKT_3 as PCB(3) to
become

PCB(3).ckt_function = ’4-bit adder’; % assign data to field ckt_function

PCB(3).schematic = ’C:\schematics\four_bit_adder.emf’; % file path name

PCB(3).resistor_names = char(’R1’,’R2’,’R3’,’R4’,’R5’,’R6’,’R7’,’R8’,...

’R9’,’R10’,’R11’,’R12’,’R13’); % assign characters strings

PCB(3).resistor_values = [10,10,10,10,10,10,10,10,0.333,0.333,...

0.333,0.333,0.333]; % assign resistor values

PCB(3).capacitor_names = char(’C1’,’C2’); % assign character strings

PCB(3).capacitor_values = [0.01,100]; % assign capacitor values

PCB(3).IC_names = char(’IC1’,’IC2’,’IC3’,’IC4’,’IC5’,’IC6’,’IC7’);

PCB(3).IC_parts = char(’74LS08’,’74LS08’,’74LS32’,’74LS86’,’74LS86’,...

’74LS04’,’74LS04’); % assign part numbers as character strings

PCB(3).misc = char(’5 red LED’, ’8-switch DIP’);

This defines the third element of a one-dimensional structure array named PCB. Each
element of PCB is called a record. In the remainder of Prog. 7.2, CKT_3 must be replaced
by PCB(3). Then, the contents of records PCB(1) and PCB(2) give the inventories of
circuits #1 and #2, and so on. For example,

% inventory of PCB circuit #1

PCB(1).ckt_function = ’1 KHz oscillator’; % assign data to ckt_function

PCB(1).schematic = ’C:\schematics\oscillator.emf’; % file path name

PCB(1).resistor_names = char(’R1’,’R2’); % assign character strings

PCB(1).resistor_values = [8.3,6.8]; % assign resistor values in K Ohms

PCB(1).capacitor_names = ’C1’; % assign a character string

PCB(1).capacitor_values = 0.01; % assign a capacitor values in uF

PCB(1).IC_names = ’IC1’;

PCB(1).IC_parts = ’LM555’; % assign part number as a character string

PCB(1).misc = []; % leave empty

% inventory of PCB circuit #2

PCB(2).ckt_function = ’non-inverting amplifier’; % assign data

PCB(2).schematic = ’C:\schematics\amplifier.emf’; % file path name

PCB(2).resistor_names = char(’R1’,’R2’); % assign character strings

300 Character Data



PCB(2).resistor_values = [10,50]; % assign resistor values in K Ohms

PCB(2).capacitor_names = []; % leave empty

PCB(2).capacitor_values = []; % leave empty

PCB(2).IC_names = ’IC1’;

PCB(2).IC_parts = ’LM741’;

PCB(2).misc = []; % leave empty

PCB(1) and PCB(2) must have the same fields as PCB(3). However, the fields of PCB(1)
or PCB(2) do not have to have the same lengths or be the same data types. This depends on
how the fields will be used. Depending on how the structure array is referenced, you can
access a variety of data. For example, to display all IC parts, use

PCB.IC_parts % display all IC parts in each record

ans = LM555

ans = LM741

ans =

74LS08

74LS08

74LS32

74LS86

74LS86

74LS04

74LS04

By including indices, any data can be accessed. For example,

PCB(3).resistor_values(1:2)

ans = 10 10

Notice the similarity to the way elements of a matrix are referenced. However, you must be
careful, since fields of different records can have different lengths. To see an overall
description of the array structure, use

PCB % display overall description

PCB =

1x3 struct array with fields:

ckt_function

schematic

resistor_names

resistor_values

capacitor_names

capacitor_values
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IC_names

IC_parts

misc

Here, the records of the structure array PCB are organized in a row.

There are several MATLAB built-in functions that work with structure arrays. These are
listed in Table 7.5. The function struct provides a convenient way to create a scalar struc-
ture variable. Its syntax is given by

S = struct(’field_1’,values_1,’field_2’,values_2, …)

where S is the name of the structure, field_1 is the first field name, values_1 is the data to be
assigned to field_1, and this continues for as many fields as needed.

Example 7.3 (continued)

Use the function struct to specify the inventory of circuit #1, which is given below.

clc; clear all

CKT_1 = struct(’ckt_function’,’1 KHz oscillator’,...

Table 7.5 MATLAB functions concerned with structure arrays

Built-in function Brief description

struct Create a scalar structure; see Example 7.3
isstruct(S) Returns logical 1 if S is a structure, and 0 otherwise
setfield(S,‘field’,v) Set the contents of the specified field to the value v
getfield(S,‘field’) Returns the contents of the specified field
C ¼ fieldnames(S) Returns a cell array C of strings containing the structure S field names
S2 ¼ orderfields(S1) Order fields in structure array S1 into a structure array S2 with field names

in ASCII dictionary order
isfield(S,‘field’) Returns logic 1 if field is the name of a field in the structure array S, and

0 otherwise
rmfield(S,‘field’) Remove the specified field from the N � M structure array S; the size of S

is preserved
[S.fields] ¼ deal(v) Set all the fields with the named fields in the structure array S to the value v
[a,b,c, . . . ] ¼ deal(S.field) Copy the contents of the structure array field with the name field to the

variables a,b,c, . . .
struct2cell See Table 7.6
cell2struct See Table 7.6
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’schematic’,’C:\schematics\oscillator.emf’,...

’resistor_names’,char(’R1’,’R2’),’resistor_values’,[8.3,6.8],...

’capacitor_names’,’C1’,’capacitor_values’,0.01,...

’IC_names’,’IC1’,’IC_parts’,’LM555’,...

’misc’,[]);

Assuming that CKT_2 and CKT_3 have been defined in the same way, we can obtain PCB
as in Example 7.3 by concatenating these three scalar structure variables with

PCB = [CKT_1, CKT_2, CKT_3];

and then we get, for example,

PCB(1)

ans =

ckt_function: ’1 KHz oscillator’

schematic: ’C:\schematics\oscillator.emf’

resistor_names: [2x2 char]

resistor_values: [8.3000 68.0000]

capacitor_names: ’C1’

capacitor_values: 0.0100

IC_names: ’IC1’

IC_parts: ’LM555’

misc: []

PCB % display overall description

PCB =

1x3 struct array with fields:

ckt_function

schematic

resistor_names

resistor_values

capacitor_names

capacitor_values

IC_names

IC_parts

misc

It is not hard to think of situations where a structure array can be used to record and
access information, literally like using a file cabinet and paper folders, for example, a name/
address/phone book, courses with titles, instructors, scores and grades taken each semester,
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video/music library, etc. Once a structure array has been started, it is easy to expand it by
adding more elements and report on information it contains.

MATLAB also has built-in functions that return structure arrays, one of which is the
built-in function dir that returns a structure array of file names in a specified directory
(folder). A syntax option for the built-in function dir is given by

D = dir(’directory_name’) % can include a file specification

where D is an N � 1 structure array of N records with the fields:

name, file name

date, date last modified

bytes, size in bytes

isdir, equals 1 if directory name is a directory, and 0 otherwise

datenum, modification date as a MATLAB serial date number

More functions concerned with directories will be discussed in the next chapter.

Example 7.4

Suppose you have a folder (directory) ofWAV files of songs, and youwant to play a song. Each
song is identified by its title, and maybe you do not remember exactly each title. It would be
convenient to provide only enough about the title to find and play it.

In addition to the built-in functions that were described previously, Prog. 7.3 uses the
following built-in functions.

● wavread returns the stereo samples of a WAV file and the sampling rate
● wavplay plays stereo samples at a specified sampling rate

In this application, the function play_WAV is located in the Current Folder, and the
songs are located in the directory: C:\Music\. The names of the song files are: *.wav, where
the asterisk is a wildcard. With this file specification, only files with the suffix .wav will be
retrieved. For example,

>> song_titles = dir(’C:\Music\*.wav’) % get structure array of WAV files

song_titles =

11x1 struct array with fields:

name

date

bytes

isdir

datenum
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>> % use char to create a character array of titles

>> titles = char(song_titles.name)

titles =

Aretha Franklin_Son Of A Preacher Man.wav

Pandit Jasraj.wav

Coltrane_Out of This World.wav

Dirty Vegas.wav

Fly Away.wav

Hot Buttered Soul.wav

One More Road to Cross.wav

Shaman_Drums.wav

Sweet Home Alabama.wav

Thriller.wav

Werewolves of London.wav

function play_WAV(Song_Word,seconds)

% Function to find and play a WAV file of a song

% For example: play_WAV(’Fly’,20)

% where Song_Word, a character string, is any part of the song name that

% is sufficient to find the song WAV file, and

% seconds, in seconds, is the length of time you want to play the song

song_word = lower(Song_Word); % change input string to lower case

%

song_directory = strcat(’C:\’,’Music’,’\*.wav’); % build a path name

song_titles = dir(song_directory); % get structure array of song WAV files

%

N_titles = length(song_titles); % get number of records (WAV files)

%

if N_titles > 0 % check if no WAV files in the specified song directory

i_song = 0; % initialize index pointing to a WAV file

for i=1:N_titles % search all titles for song_word

Title = song_titles(i).name; % get a title from a record

title = lower(Title); % make search case insensitive

% check if title has song_word part

found_word = ~(isempty(findstr(song_word,title)));

% if song WAV file found, set index

if found_word

i_song = i;

break % found song, jump out of for loop

end

end

if i_song == 0 % check if song was found
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disp(’No song title match’)

% return from function play_WAV without playing a song

return

end

% read the song WAV file

[Song,fs] = wavread(strcat(’C:\Music\’,Title)); % get song

T = 1/fs; % sample time increment

% Here, song consists of two columns, the left and right channels

%

% get the duration, in seconds, of the song

[N_samples N_channels] = size(Song); % get number of samples

duration = N_samples*T; % seconds

% limit play time to specified number of seconds

if duration > seconds

duration = seconds;

end

N_samples = floor(duration/T); % get number of samples to play

% get song samples

song(1:N_samples,:) = Song(1:N_samples,:); % copy both channels

disp(Title); % display tile of song

wavplay(song,fs); % play song

else % get here if folder has no WAV files

disp(’There are no WAV files in this directory’);

end

Program 7.3 Function to find and play a WAV file.

To play a song, use, for example,

>> play_WAV(’Fly’,120) % specify any part of a title

Fly Away.wav

>> % now, the audio device is playing the song

Another built-in MATLAB function that returns a structure is the function solve that
symbolically solves systems of equations. Its syntax is given by

solution = solve(’f1(var1,..., varN) = g1(var1, ..., varM)’, ...

’f2(var1,..., varN) = g2(var1, ..., varM)’, ...

’f3(var1,..., varN) = g3(var1, ..., varM)’, ...

.

’fK(object1,...,objectN) = gK(var1, ..., varM)’, ...

’solution_var1, ..., solution_varK’)
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where the expressions f and g can each involve any number of variables and a solution of
any number of variables can be found in terms of the other variables.

Although symbolic math will be presented in Chapter 11, let us consider the following
example.

Example 7.5

In the circuit given in Fig. 7.1, solve for the voltage Vo in terms of the inputs V1 and V2.

The KCL equations at nodes a and b are given by

V2 � Va
R1

¼ Va
R2

V1 � Vb
R1

¼ Vb � Vo
R2

and the Op-Amp gain equation is

Vo ¼ AðVa � VbÞ
The following MATLAB statement finds Va, Vb and Vo.

>> voltages = solve(’(V2 - Va)/R1 = Va/R2’,’(V1 - Vb)/R1 = (Vb - Vo)/R2’, ...

’Vo =A*(Va - Vb)’,’Va,Vb,Vo’)

The argument of the function solve contains three equations of five voltages and the three
voltages Va, Vb, and Vo to be found. The result is a structure given by

voltages =

Va: [1x1 sym]

Vb: [1x1 sym]

Vo: [1x1 sym]

R1 R2

R1 R2

V1

V2

Vo

Vb

Va

Figure 7.1 A one Op-Amp differential amplifier.
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>> Vo = voltages.Vo % the value of voltages.Vo is a character string

Vo = -(A*R2*V1 - A*R2*V2)/(R1 + R2 + A*R1)

The structure voltages has three fields that are symbolic (sym) variables, called objects. The
third field name is Vo. If we let A ! 1 , then we get

Vo ¼ R2
R1

ðV2 � V1Þ

which is a symbolic relationship between the inputs and the output. MATLAB also has a
built-in function that finds the limit as A ! 1, which will be discussed in Chapter 11.

7.4 Cell Arrays

A cell array is a collection of cells (sort of like containers) that can contain objects none of
which must be the same size or data type as any other object contained by any other cell of
the cell array. Each cell is an element of the cell array, which is referenced using indices in
the same way as an element of a matrix is referenced. However, to specify or access the
content of a cell in a cell array, braces must be used instead of parentheses. If you do use
parentheses, then you are referencing a cell, not its content. For example, to define a 2� 2
cell array, braces must be used, and the syntax is given by

C = {object_1 object_2; object_3 object_4}

where C is the cell array, and the row and column delimiters are the same as for a matrix.
The braces mean that the contents of the cells of the cell array are being specified. An object
in a cell of a cell array can even be another cell array.

Example 7.6

Recall that in Example 7.3, a three-record structure array PCB was defined. It can be placed
in an element of a cell array, while other elements of the cell array can contain different
kinds of objects. For example, the following statements were appended to the program that
created PCB, and the results follow.
C = {’Inventory of PCB’ 23711005; ’12/14/2012’ PCB}; % define a cell array

% the object in the cell located at (1,2) is meant to be a serial number

disp(C) % display the cells of C

celldisp(C) % display the contents of the cells of C

C11 = C(1,1) % referencing an element to get cell attributes

c11 = C{1,1} % get the content of the cell at location (1,1)

’Inventory of PCB’ [ 23711005]

’12/14/2012’ [1x3 struct]

C{1,1} = Inventory of PCB
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C{2,1} = 12/14/2012

C{1,2} = 23711005

C{2,2} =

1x3 struct array with fields:

function

schematic

resistor_names

resistor_values

capacitor_names

capacitor_values

IC_names

IC_parts

misc

C11 = ’Inventory of PCB’

c11 = Inventory of PCB

Notice the difference between using parentheses and braces when referencing an element of
the cell array. To access the content of PCB, use, for example,

% get resistor names in first record in structure array C(2,2)

C{2,2}(1).resistor_names

ans =

R1

R2

In this example we see that a cell array is a means to bundle a variety of kinds of
information into one object.

Another way to create a cell array is with the built-in function cell, which has the syntax
given by

C = cell(N_rows,N_columns)

where the argument of the function cell is the desired dimension, and C is a cell array of
empty cells. For example, in Example 7.6, we could have used

C = cell(2,2); % set up a 4 element cell array

C{2,2} = PCB % place an object in the (2,2) element of C

C =

[] []

[] [1x3 struct]

Notice that three elements of C are still empty.
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Table 7.6 Some MATLAB functions concerned with cell arrays

Built-in function Brief description

C ¼ cell(N,M) Set up a cell array of empty cells
C ¼ {s1 s2 . . . } Create a cell array of character strings; separate each row of the cell array

with a semicolon (;)
celldisp(C) Display the content of the cells in a cell array
iscell(C) Returns logic 1 if object is a cell array, and 0 otherwise
iscellstr(C) Returns logic 1 if C is a cell array of strings, and 0 otherwise
C ¼ cellstr(s) Create a cell array C of strings from a character array s
C ¼ num2cell(A) Converts a numeric array A into a cell array C by placing each element of

A into a separate cell in C
S ¼ cell2struct(C,fields,M) Convert an N�M cell array C into a structure array S having N records;

fields can be a character or a cell array of strings of M field names
C ¼ struct2cell(S) Convert an N�M structure array S with P fields into a P� N�M cell

array C; if S is a scalar structure array, then C will be a P� 1 cell array
cellplot(C) Display graphical depiction of cell array
C ¼ fieldnames(S) Returns a cell array of strings containing the field names associated with

the structure array S.
[a,b,c, . . . ] ¼ deal(C{:}) Copies the contents of the cell array C to the separate variables a,b,c, . . . ;

see MATLAB help facility for more options
[C{:}] ¼ deal(S.field) Copies the values of the S structure array field with name field to the cell

array C; see MATLAB help facility for more options
D ¼ sort(C) Sort the strings in a cell array C of strings into ASCII dictionary order of

strings in a cell array D

23711005

12/14/2012

Figure 7.2 Graphic depiction of the cell array produced in Example 7.6.
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Several built-in functions that work with cell arrays are given in Table 7.6. The cellplot
function gives an interesting graphic that depicts the organization of objects in a cell array.
For example, see Fig. 7.2, which was obtained with cellplot(C), where C is the cell array
produced by the program given in Example 7.6.

7.5 Conclusion

With MATLAB, any combination of numerical, logical, and character data can be pro-
cessed. Many built-in functions were given in Tables 7.1 through 7.6 to support processing
character strings. You should now know how to

● create and combine character strings
● search and modify character strings
● convert character strings to numerical and logical data and back
● construct an organization of character strings and other data types
● bind together data of any type and size

Table 7.7 gives the additional built-in functions that were introduced in this chapter.
Use the MATLAB help facility to learn more about these built-in functions, where you will
also find out about many other related built-in functions.

Some methods to input and output data have been used in this and previous chapters. In
the next chapter a more detailed discussion about formatted input/output is given.

Problems

Section 7.1
1) Give MATLAB statements to define character data type variables as follows.

(a) String named first, middle, and last of the name James Clerk Maxwell

Table 7.7 Built-In MATLAB functions introduced in this chapter

Built-in function Brief description

repmat(A,N,M) Replicates an object A into the elements of an N�M array
dir(‘path name’) Returns a structure array of file names in the directory pointed to by path

name; see the MATLAB help facility for more options
wavread(music,fs) Returns the left and right channels of sampled music in a WAV file and

the sampling frequency, fs
wavplay(music,fs) Sends to the audio play device the samples contained in music and the

sampling frequency, fs
s ¼ solve(‘f(x1,x2,x3, . . . ) ¼
g(x1,x2,x3, . . . )’,‘x1,x2’.)

Solve a system of algebraic equations; solution given by s.x1 and s.x2
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(b) String named full by horizontally concatenating last, first, and middle with comma
and a blank between last and first and a blank between first and middle. Give two
ways.

(c) Array named Full by vertically concatenating last, first, and middle. Is there a
difference between using the functions char and strvcat?

2) Using the results of Prob. P7.1, give MATLAB statements to obtain
(a) last_n, first_n, and middle_n vectors of numeric ASCII codes. See Appendix B of

ASCII codes to check results.
(b) numeric array, Full_n, of ASCII codes. What is the size of Full_n?
(c) What is the difference between Full_n and the result of num2str(Full_n)?
(d) What is the difference between Full_n and the result of int2str(Full_n)?

3) Discuss the differences between x=pi, y=num2str(pi), and z=int2str(pi).
4) Give a MATLAB statement to define a cell vector named full_c of the variables last,

first, and middle defined in Prob. P7.1. What is the size of full_c? Give full_c(1).
5) Give a MATLAB statement that defines a character string named Maxwells_equations

that is the sentence: In 1865 Maxwell published, ‘‘A Dynamical Theory of the Elec-
tromagnetic Field.’’.

6) Given is a character vector S, the value of which is some sentence. For example, S = ‘Now
is the time to learn MATLAB.’, and, S = ‘The number pi = 3.1416 is an irrational
number.’. Write a MATLAB program that creates a character array of all of the words in a
sentence. Provide a copy of your program and several examples of using it.

Section 7.2
7) A character string Pi is given by: Pi = ‘In long format, pi = 3.141592653589793.’.

Give MATLAB statements that do or find the following.
(a) The size of Pi.
(b) The index in Pi where the word long starts.
(c) Replace the word, ‘‘long,’’ with, ‘‘double precision.’’ Name the result Pi_too.
(d) Determine if Pi and Pi_too are the same strings.
(e) Determine if the first three characters in Pi and Pi_too are the same.

8) (a) Explain what the following MATLAB statements do.

numbers = char();

numbers = char(numbers,’three’)

numbers = char(numbers,’one’)

(b) Write a MATLAB script that
1) starts with an empty character array named digits
2) uses an input statement in a while-loop to obtain a digit name until the entry is

not a digit name, when the while-loop is terminated
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3) converts all upper case letters in an entry to lower case letters
4) appends an inputted digit name to digits only if the inputted digit name is not a

duplicate of a previously entered digit name
5) continues after the while-loop to sort the elements of digits in ascending

numerical value order.
Provide a copy of your program and examples of entering at least three digit names. Be
sure that your examples demonstrate that the program meets all requirements.

9) Write a MATLAB function script, call it check_variable, that determines whether or
not an input character string is a valid MATLAB variable name. Use an input statement
within a while-loop of a program to obtain a character string. If the input is just a
carriage return (enter), then terminate the while-loop. Otherwise, apply your function to
the inputted character string. Let the function return logic 0 or 1. Provide a copy of your
program, function, and several examples of using them.

Section 7.3
10) Given below is the table of a few electrical scientists.

Give MATLAB statements to
(a) create a scalar structure named electrical_scientists with field names: name, lived,

and research_field
(b) display the structure
(c) display the second field
(d) get the contents of the field name

11) Write a MATLAB script that
(a) starts with using the function struct to initialize a scalar structure named resistors

with field names: resistor_name and resistor_value, where the two fields are
empty.

(b) continues to do the same for the structure capacitors and fields capacitor_names
and capacitor_values.

Table P7.10 Electrical scientists

Name Lived Research field

Charles-Augustin de Coulomb 1736–1806 electrostatic force
Andre Marie Ampere 1775–1836 electrodynamics
Michael Faraday 1791–1867 electricity and magnetism
James Clerk Maxwell 1831–1879 electromagnetic field theory
Nikola Tesla 1856–1943 electromagnetic technology
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(c) continues by using input statements within a while-loop to obtain resistor and
capacitor information to be placed in the respective fields. Use questions with yes/
no answers to find out about entering resistors and capacitors.

(d) continues by displaying tables of resistor and capacitor names and values.
(e) finishes by creating a structure array named components with elements resistors

and capacitors.
Provide a copy of your program and a demonstration of using the program.

12) With the MATLAB statement: my_m_files = dir(‘*.m’), you can obtain a structure that
contains among other fields a field of all m-file names in your Current Folder. Give
MATLAB statements to do or find
(a) size of my_m_files
(b) field names of my_m_files
(c) first object in my_m_files
(d) assign to the variable mfile3 the third m-file name
(e) date when the second m-file was last modified

Section 7.4
13) Given are the following structures and character array.

names = struct(’last’,char(’Coulomb’,’Ampere’,’Faraday’, ...

’Maxwell’,’Tesla’), ...

’first’,char(’Charles’,’Andre’,’Michael’,’James’,’Nikola’))

lived = struct(’born’,[1736;1775;1791;1831;1856], ...

’died’,[1806;1836;1867;1879;1943])

research = char(’electrostatic force’,’electrodynamics’, ...

’electricity and magnetism’,’electromagnetic field theory’, ...

’electromagnetic technology’)

Give MATLAB statements to do or find
(a) assign the field names of the structure names to a cell array
(b) create a 1x3 cell array named ES, with empty cells
(c) place the structure names into the first element of ES
(d) get ES(1) and ES{1}. What is the difference between ES(1) and ES{1}?
(e) assign the first names from ES{1} to a cell array named first_names
(f) get the first name of Faraday from ES
(g) place into the second and third elements of ES the structure lived and the character

array research
(h) display the content of the cells of ES
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14) Given is the following program.

1 % Program to sort the names in a field of a structure array contained in a

2 % cell of a cell array

3 clear all, clc

4 names = struct(’last’,char(’Coulomb’,’Ampere’,’Faraday’, ...

’Maxwell’,’Tesla’), ...

5 ’first’,char(’Charles’,’Andre’,’Michael’,’James’,’Nikola’));

6 lived = struct(’born’,[1736;1775;1791;1831;1856], ...

7 ’died’,[1806;1836;1867;1879;1943]);

8 research = char(’electrostatic force’,’electrodynamics’, ...

9 ’electricity and magnetism’,’electromagnetic field theory’, ...

10 ’electromagnetic technology’);

11 ES = {names, lived, research};

12 Names{1} = ES{1}.last;

13 Last_Names = char(Names{1});

14 [n_names n_chars] = size(Last_Names);

15 for k=1:n_names

16 Last{k,1} = Last_Names(k,:);

17 end

(a) Explain the activity of lines (12) and (13).
(b) What is Last after the for-loop has completed?
(c) Give MATLAB statements that can be appended to the program to sort the ele-

ments of Last to obtain and display Last_sorted.
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CHAPTER 8

Input/Output

To make a program interactive, it must be possible for the program to receive from the
program user input data or information about where data can be found. And, the program
must be able to output data and information in a form that is useful to the program user and
possibly to another program. Graphical output will be discussed in Chapter 9. In this
chapter, you will learn how to

● input data and information about where data can be found
● input information to guide program execution
● output structured and formatted data and information
● provide data and information to another program

8.1 Output

By building a character array A, the built-in function disp(A) is useful to output (display) a
combination of numeric and character data. The result is the same as omitting a semicolon at
the end of an assignment statement, except that the name of the array is not displayed.

8.1.1 Text Output
To provide access to data by programs other than m-files, it is useful to create a text file of
the data. The built-in function fprintf can be used to do this. The function fprintf applies a
format to the elements in each column of an array A and any additional array arguments. Its
syntax is given by

fprintf(format, A1, A2, … )



where format is a character string that describes the output fields. The format can contain
combinations of

● text to be printed
● percent sign followed by a conversion character
● operators that describe the output width, precision, and other options
● escape characters

For example,

>> fprintf(’The number pi is: %19.16f, using %2u fractional digits.\n’,pi,16)

The number pi is: 3.1415926535897931, using 16 fractional digits.

The format in this invocation of fprintf starts with text that is printed. The location of
the first percent sign within the format string is the location where the first argument,
pi, is placed in the output. Following the first percent sign, 19.16f means that pi should
be printed using a field width of no less than 19 characters, 16 fractional digits,
and fixed point notation. After the conversion character, f, there is additional text until
the next percent sign, where the second argument is placed in the output. Following the
second percent sign, 2u means that the second argument should be printed using a
field width of no less than two characters and base ten unsigned integer notation. Then,
after additional text there are the escape characters, \n, which mean to continue on a
new line. You can assign the format character string to a variable, and use it in fprintf.
For example

>> pi_format = ’The number pi is: %19.16f, using %2u fractional digits.\n’;

>> fprintf(pi_format,pi,16)

You can also create a cell array of formats, where each cell of the cell array contains a
format character string. For example,

>> N_formats = 5; % numbers of formats to be used

>> formats = cell(1,N_formats)

formats = [] [] [] [] []

>> formats{1} = ’pi is: %19.16f, using %2u fractional digits.\n’

formats = [1x46 char] [] [] [] []

>> fprintf(formats{1},pi,16)

Some of the escape characters are given in Table 8.1.
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Between the percent sign and the conversion character there can be other information
as shown below. Table 8.2 gives some of the conversion characters.

(%)(identifier) (flags) (field width) (.precision)(conversion character(subtype) )

The identifier, with notation n$, specifies which of the arguments should be printed.
For example,

>> fprintf(’The number pi is: %2$ 19.16f, using %1$ 2u fractional digits.\n’,16,pi)

The number pi is: 3.1415926535897931, using 16 fractional digits.

>>

Table 8.2 List of some conversion characters

Class Conversion Brief description

integer, signed d or i Base ten values
ld or li Subtype, 64-bit base ten values
hd or hi Subtype, 16-bit base ten values

integer, unsigned u Base ten value
lu Subtype, 64-bit base ten value
hu Subtype, 16-bit base ten value

floating point number f Fixed point notation
e Exponential notation
E Uppercase version of e
g The more compact of e or f
G Uppercase version of g
bu Subtype, double precision
tu Subtype, single precision

characters c Single character
s String of characters

Table 8.1 List of some escape characters

Symbol Brief description
0 0 Single quotation mark
% % Percent character
\\ Backslash
\a Alarm
\b Backspace
\n New line
\r Carriage return
\t Horizontal tab
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The flags that can be inserted are listed in Table 8.3.

The field width is the minimum number of characters to be printed. For conversion
characters f, e, and E, precision is the number of digits to the right of the decimal point
to print, and for conversion characters g and G, precision is the number of significant
digits to print.

In a second syntax option you can use fprintf in an assignment statement, in which case
it returns a count of the number of bytes it writes. For example,

>> count = fprintf(’The number pi is: %19.16f, using %2u fractional digits.\n’,pi,16)

The number pi is: 3.1415926535897931, using 16 fractional digits.

count = 67

A third option has the syntax given by

fprintf(file_ID, format, A1, A2, … )

where file_ID can be 1 for output to the screen (Command Window), 2 if the output is
intended to be an error message, or a file identifier (greater than 2) obtained with the built-in
function fopen for output to or input from a file (see Table 8.4).

Table 8.3 List of flags

Flag Action Example

minus sign Left justify %�21.16f
plus sign Print sign %þ19.16f
space Insert space before value % 19.16f
zero Pad with zeros %021.16f
pound sign For conversion characters f, e and E print decimal

point even if precision is zero; for g or G do not remove
trailing zeros or decimal point

%#19.0f

Table 8.4 List of built-in functions concerned with data output

Function Brief description

disp(A) Display the array A on the screen
type m-file
type file_name
dbtype file_name

Displays the contents of the specified file in the
Command Window; the function dbtype lists the
m-file with line numbers

f ¼ fullfile(‘disk_name’, ‘folder1_name’,
‘folder2_name’, . . . ,‘file_name’)

Returns in f a character string of the path name to the
file file_name; use doc fullfile for more options

(Continues)
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While you can specify for input or output the complete path name of a file, when you
use only a file name, MATLAB� uses the Current Folder. Therefore, specify a Current
Folder that you want MATLAB to use.

Table 8.4 (Continued)

Function Brief description

file_ID ¼ fopen(‘file_name’)
file_ID ¼ fopen(‘file_name’,‘permission’)
[file_ID, message] ¼ fopen(‘filename’, . . . )

Opens the file file_name and returns an integer file
identifier file_ID; returns file_ID ¼ �1 if file_-
name could not be opened. Permission possibi-
lities are given in Table 8.5. Use doc fopen for
more options.

fprintf Writes formatted data; see this section
S ¼ sprintf Same as fprintf without the file_ID, except that

results are returned to the character string S
dlmwrite See this section and Example 8.1
fclose(file_ID) Closes an opened file, where file_ID is an integer file

identifier obtained from fopen; fclose(‘all’) closes
all open files

more on (off) More on enables paging the output to the screen;
output continues by pressing: return for one line at
a time or the space bar for one page at a time. Type
q to quit more.

fwrite(file_ID, A, ‘precision’) Writes the elements of array A to a binary file in
column order and translates the values of A
according to the form and size described by the
precision, where precision can be double, single,
char, int64, uint64, etc. Use doc fwrite for more
options.

save(‘file_name’)
save(‘file_name’,‘var_1’,‘var_2’, . . . )
save(‘file_name’,‘-struct’,‘struct_name’)
save(‘file_name’,‘-append’)
save(‘filename’, . . . , format)

Store all variables from the current Workspace in a
MATLAB formatted binary file (mat-file) called
file_name; save(‘file_name’,‘var_1’,‘var_2’, . . . )
stores only the specified variables. Also saves in
the specified format: ‘-mat’ (‘my_file.mat’) or
‘-ascii’ (‘my_file.txt’).

f_check ¼ exist(‘A’) Returns: 0 if A does not exist, 1 if A is a variable in
the workspace, 2 if A is an m-file on the
MATLAB search path or if A is a full path name
to a file, 5 if A is a built-in MATLAB function.
See help for more options.

open(‘file_name’)
output ¼ open(‘file_name’)

Opens files such as m-files in editor window, fig-
files in figure window, mat-files, p-files, etc; if
opening a mat-file, then output is a structure that
contains the variables in that file. Use doc open for
more options.
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The dlmwrite function can also be used to output data to a text file. It combines
opening a file and writing delimited data, and its syntax is given by

dlmwrite(’textfile.txt’,M,’delimiter’, ...

’datadelimiter’,’precision’,’dataprecision’)

where textfile is a file name, M is a rectangular matrix of data, delimiter is a key word,
datadelimiter is, for example, a space, a comma, a tab (\t), and more, precision is a key word
and dataprecision is, for example, %19.16f. Use doc dlmwrite to see many more options.

Example 8.1

Using the functions dlmwrite, fprintf, and save, let us create text files of data with Prog. 8.1.
The resulting files follow.

% Program to write a matrix of data to text files

clear all; clc;

f = 10; w = 2*pi*f; T0 = 1/f; % frequency and period

N = 9; t = linspace(0,T0,N); % obtain N samples over one cycle

s = sin(w*t); c = cos(w*t); % samples

SC_t = [t;s;c]; SC_tT = SC_t’; % collect data in rows and columns

dlmwrite(’example1_data.txt’,SC_tT,’delimiter’,’ ’,’precision’,’%10.6f’)

% each output line comes from a row of SC_tT

type example1_data.txt

% create and open a text file with write permission

ID2 = fopen(’example2_data.txt’,’w’);

fprintf(ID2,’ time sine cosine\n’); % include a heading

fprintf(ID2,’%6.4f %8.4f %8.4f\n’,SC_t); % format the data

% each output line comes from a column of SC_t

Table 8.5 Permissions for fopen function

Permission Action

r Open file for reading (default)
w Open or create new file for writing; discard existing

content, if any
a Open or create new file for writing; append data to

the end of the file
rþ Open file for reading and writing
wþ Open or create new file for reading and writing;

discard existing content, if any
aþ Open or create new file for reading and writing;

append data to the end of the file

322 Input/Output



type example2_data.txt

%

save(’example3_data.txt’,’-ascii’,’SC_tT’) % save ASCII coded data

type example3_data.txt

fclose(’all’);

Program 8.1 Demonstration of using the built-in functions dlmwrite, fprintf, and save.

dlmwrite ID2 = 3 Save

time sine cosine
0.000000 0.000000 1.000000 0.0000 0.0000 1.0000 0.0000000e+000 0.0000000e+000 1.0000000e+000
0.012500 0.707107 0.707107 0.0125 0.7071 0.7071 1.2500000e�002 7.0710678e�001 7.0710678e�001
0.025000 1.000000 0.000000 0.0250 1.0000 0.0000 2.5000000e�002 1.0000000e+000 6.1232340e�017
0.037500 0.707107 �0.707107 0.0375 0.7071 �0.7071 3.7500000e�002 7.0710678e�001 �7.0710678e�001
0.050000 0.000000 �1.000000 0.0500 0.0000 �1.0000 5.0000000e�002 1.2246468e�016 �1.0000000e+000
0.062500 �0.707107 �0.707107 0.0625 �0.7071 �0.7071 6.2500000e�002 �7.0710678e�001 �7.0710678e�001
0.075000 �1.000000 0.000000 0.0750 �1.0000 0.0000 7.5000000e�002 �1.0000000e+000 7.0448140e�016
0.087500 �0.707107 0.707107 0.0875 �0.7071 0.7071 8.7500000e�002 �7.0710678e�001 7.0710678e�001
0.100000 �0.000000 1.000000 0.1000 �0.0000 1.0000 1.0000000e�001 �2.4492936e�016 1.0000000e+000

With the function fprintf we have the most control over the format of the output file
content. As a text file, data can be accessed by m-files and other programs that work with
text files, for example, Microsoft Word� and WordPad�.

You can also save the Workspace from the desktop with the file menu sequence

File ! Save Workspace As . . .

Then, the Save to Mat-File Window opens, and you can name a mat-file into which you want
to save the Workspace.

Example 8.2

Recall that in Prog. 7.2 of Example 7.3, a scalar structure array, named CKT_3, was created
that contains an inventory of components in a circuit. To save this information for later
retrieval, the following MATLAB statements were appended to Prog. 7.2.

ckt_path = fullfile(’C:’,’My_MATLAB_Programs’,’CKT_3.mat’); % path name

save(ckt_path,’-struct’,’CKT_3’) % save structure CKT_3 into file CKT_3.mat

Here, the built-in function fullfile is used to create a complete path name. This could also
have been accomplished with the statement

ckt_path = ’C:\My_MATLAB_Programs\CKT_3.mat’;
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Then, the built-in function save is used to create the file CKT_3.mat, and store in it the
scalar structure array CKT_3. The second argument -struct, a qualifier, indicates to
MATLAB that a structure array will be saved.

The resulting MATLAB desktop is shown in Fig. 8.1. The Workspace Window shows
all of the variables that were assigned values during execution of the program. Notice the
complete path name that was produced by the function fullfile. The function save placed the
mat-file in the folder My_MATLAB_Programs, which is the Current Folder. In the Current
Folder, the file CKT_3.mat is highlighted, and its content description is shown in the
window below the Current Folder Window. Since My_MATLAB_Programs is the current
folder, the complete path name ckt_path could have been replaced by ‘CKT_3.mat’.

Now, suppose we want to generate a report about the circuit. Prog. 8.2 does this, and the
results follow.

% Program to generate a report about a circuit

clear all; clc

f_name = input(’Enter a mat-file name: ’,’s’); % get file name string

mat_suffix = ’.mat’; % used to append a suffix

s1 = lower(fliplr(f_name)); s2 = fliplr(mat_suffix); % put suffix in front

if ~strncmpi(s1,s2,4) % check for a match of the first 4 characters

f_name = strcat(f_name,mat_suffix); % append suffix if missing

end

f_path = fullfile(’C:’,’My_MATLAB_Programs’,f_name); % create path to file

Figure 8.1 Desktop after Prog. 7.2 and the appended statements have executed.
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f_check = exist(f_path); % check if file exists

if f_check == 2 % function exist returns 2 if file exists

ckt = open(f_path); % assign to ckt the structure in the file

% report contents of the scalar structure ckt

fprintf(’Circuit function: %s\n’,ckt.ckt_function) % print field

fprintf(’Path to schematic: %s\n’,ckt.schematic)

Rs=char(ckt.resistor_names);[Nr Mr]=size(Rs); % get resistor info

Rvs=char(num2str(ckt.resistor_values’)); % convert values to strings

Cs=char(ckt.capacitor_names);[Nc Mc]=size(Cs); % get capacitor info

Cvs=char(num2str(ckt.capacitor_values’)); % convert values to strings

ICn=char(ckt.IC_names);[NIC MIC]=size(ICn); % get IC info

ICp=char(ckt.IC_parts); % get IC part numbers

misc=char(ckt.misc);[Nm Mm]=size(misc); % get misc info

N = [Nr,Nc,NIC,Nm]; N_rows = max(N)+1; ckt_comps=[]; % initialize report

% pad different sized data with space and build table ckt_comps

if Nr > 0 % check if there are any resistors

resistors=[Rs,repmat(’ = ’,Nr,1),Rvs];[NR Mr]=size(resistors);

resistors=[resistors;repmat(’ ’,N_rows-Nr,Mr)]; % add space

ckt_comps=[ckt_comps,repmat(’ ’,N_rows,5),resistors]; % add resistors

end

if Nc > 0 % check if there are any capacitors

capacitors=[Cs,repmat(’ = ’,Nc,1),Cvs];[NC Mc]=size(capacitors);

capacitors=[capacitors;repmat(’ ’,N_rows-Nc,Mc)]; % add space

ckt_comps=[ckt_comps,repmat(’ ’,N_rows,5),capacitors];%add capacitors

end

if NIC > 0 % check if there are any integrated circuits

ICs=[ICn,repmat(’ = ’,NIC,1),ICp];[NIC MIC]=size(ICs);

ICs=[ICs;repmat(’ ’,N_rows-NIC,MIC)]; % add space

ckt_comps=[ckt_comps,repmat(’ ’,N_rows,5),ICs]; % add ICs

end

if Nm > 0

Misc=[misc;repmat(’ ’,N_rows-Nm,Mm)]; % add space

ckt_comps=[ckt_comps,repmat(’ ’,N_rows,5),Misc]; % add misc parts

end

ckt_comps=ckt_comps’; [Nckt Mckt]=size(ckt_comps); % table size

fprintf(’\n Resistors in K Ohms and capacitors in uF\n\n’); % heading

for k=1:Mckt

fprintf(’%s\n’,ckt_comps(:,k)); % one column per output line

end

else

fprintf(’The file could not be found.\n’);

end

fclose(’all’);

Program 8.2 Program to report the inventory of a circuit given in a mat-file.
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Enter a mat-file name: CKT_3

Circuit function: 4-bit adder

Path to schematic: C:\schematics\four_bit_adder.emf

Resistors in K Ohms and capacitors in mF

R1 = 10 C1 = 0.01 IC1 = 74LS08 5 red LED
R2 = 10 C2 = 100 IC2 = 74LS08 8-switch DIP
R3 = 10 IC3 = 74LS32
R4 = 10 IC4 = 74LS86
R5 = 10 IC5 = 74LS86
R6 = 10 IC6 = 74LS04
R7 = 10 IC7 = 74LS04
R8 = 10
R9 = 0.333
R10 = 0.333
R11 = 0.333
R12 = 0.333
R13 = 0.333

8.1.2 Binary Output
The built-in function fwrite writes a bit stream of binary data to a file. By default it writes
values from an array in column order as 8-bit unsigned integers (uint8). Its syntax is given by

fwrite(file_ID, A) % use default precision

fwrite(file_ID, A, ’precision’) % precision options given in Table 8.6

where file_ID can be 1 (output to screen), 2 (output intended as an error message) or an
integer file identifier obtained from fopen, A is a numeric or character array of data and
where some precision options are given in Table 8.6.

Table 8.6 Some fwrite precisions

Precision Brief description

uint Unsigned integer, 4 bytes
uintn n ¼ 8(1 byte), 16, 32, 64(8 bytes)
ubitn Unsigned integer, n ¼ 1, . . . , 64
int Signed integer, 4 bytes
intn Signed integer, n ¼ 8(1 byte), 16, 32, 64(8 bytes)
bitn Signed integer, n ¼ 1, . . . , 64
single Floating point, 4 bytes
double Floating point, 8 bytes
char*1 Character, 1 byte
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The following programs demonstrate how to write different kinds of data to binary files.
Associated with a file is a file position indicator. When a file is opened, the file position
indicator is automatically set to zero, the beginning of the file (bof), and after writing to a
file, the file position indicator points to the last file location where data was written, which
may be the end of the file (eof). To read a file from the beginning, the file position indicator
must point to the beginning of the file. Therefore, after a file write and before a file read, use
the function frewind to set the file position indicator to the bof.

Example 8.3

% Demonstration of writing a character string to a binary file

clc; clear all; fclose(’all’);

Pi = sprintf(’Pi equals: %10.7f\n’,pi); % a character string

N_codes = length(Pi); % Pi is a row character vector of ASCII codes

ID1 = fopen(’Binary_data_1.bin’,’w+’) % open file for read and write

fwrite(ID1,Pi); % using default precision, uint8

frewind(ID1); % set file pointer to bof

S = fread(ID1,[1,N_codes]) % get a row vector using default precision

fclose(ID1);

char(S) % convert binary data to text

ID1 = 3

S =

Columns 1 through 22

80 105 32 101 113 117 97 108 115 58 32 32 51 46 49 52 49 53 57 50 55 10

ans = Pi equals: 3.1415927

% Demonstration of writing signed integers to a binary file

clc; clear all; fclose(’all’);

A = [-347 239;-701 3]; % each element of A requires no more than 11 bits

ID1 = fopen(’Binary_data_2.bin’,’w+’); % open file for read and write

fwrite(ID1,A,’bit11’); % signed integer 11-bit precision

frewind(ID1); % set file pointer to beginning of the file

B = fread(ID1,[2,2],’bit11’) % using same precision as for fwrite

fclose(ID1);

B =

-347 239

-701 3

% Demonstration of writing floating point numbers to a binary file

clc; clear all; fclose(’all’);

A = [pi sqrt(2);exp(1) acos(-1)];

ID1 = fopen(’Binary_data_3.bin’,’w+’); % open file for read and write

position_indicator = ftell(ID1) % returns the file position indicator

fwrite(ID1,A,’double’); % signed double precision

frewind(ID1); % set file pointer to beginning of the file
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format long

B = fread(ID1,[2,2],’double’) % using same precision as for fwrite

position_indicator = ftell(ID1) % returns the file position indicator

fclose(ID1);

position_indicator = 0

B =

3.141592653589793 1.414213562373095

2.718281828459046 3.141592653589793

position_indicator = 32

% notice that the position indicator counts bytes

8.2 Input

The input function provides a means for a programmer to prompt a program user for input.
Its syntax is given by

X = input(’ .... prompt text ....’)

where x is any valid MATLAB variable name. The prompt text can contain any number of
the escape characters \n, which cause continuation on a new line for each occurrence of the
escape characters, and then, a multi-line prompt text can be used. When the input statement
is executed, MATLAB prints the prompt text in the Command Window and stops program
execution, waiting for the program user to respond in the Command Window. The response
can be any valid MATLAB expression followed by depressing the Enter Key. Then,
MATLAB evaluates the expression, assigns the result to x and continues program execution.
If nothing is entered and the Enter Key is depressed, then x is assigned an empty array. An
input option has the syntax given by

X = input(’ .... prompt text ....’, ’s’)

where the input, without using single quotes, is treated as a character string that is assigned to x.
Another way to obtain direct input from a program user is with the built-in function

menu, which has the syntax given by

choice = menu(’menu_title’,’option1’,’option2’, .... , ’optionN’)

For example,

>> analysis_type = menu(’Select the kind of circuit analysis method’, ...

’elemental’,’loop’,’nodal’)

After this statement has executed, the selection menu shown in Fig. 8.2 is displayed, and
program execution is stopped until one of the buttons is clicked. If an option button is
clicked, then analysis_type is assigned an integer, 1, 2, or 3 corresponding to option1,
option2, or option3. If instead, the menu window is closed, then menu returns 0. After any
button is clicked the menu window closes.
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If the loop (option2) button is clicked, then we get

analysis_type = 2

With this user input, if-elseif-else or switch-case methods can be used to control which
script segment is executed.

Table 8.7 gives several built-in MATLAB functions concerned with accessing the
content of a file.

Figure 8.2 Selection menu.

Table 8.7 Some functions concerned with accessing data in a file

Function Brief description

M ¼ load(‘filename’)
load (‘filename’,‘var1’, . . . , ‘varN’)

Load data from a mat-file into the Workspace; mat-file
can contain a structure or ASCII data. Or, load
designated variables. Use doc load for more options.

S ¼ fileread(‘filename’) Returns content of a file as a string vector
M ¼ dlmread(‘filename’)
M ¼ dlmread(‘filename’,‘delimitier’,R1,C1)
M ¼ dlmread(‘filename’,‘delimiter’,R)

Reads numeric data from the ASCII delimited file file-
name; R1 and C1 specify the upper left corner (row
and column) where the data read starts. R ¼ R1 C1
R2 C2] also specifies the lower right corner (row and
column) where the data read ends.

f_path ¼ which(‘filename’) Returns the path name of filename
A ¼ fread(file_ID,size,‘precision’) Reads binary data from file_ID; the number of elements

is specified by size, where size can be N to read N
elements into a column vector A, inf to read to the end
of the file and [N,M] to read elements to fill an N�M
matrix, in column order; some precision possibilities
are given in Table 8.6. See Example 8.3.

(Continues)
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Example 8.4

The files created by Prog. 8.1 will be used to demonstrate some of the functions given in
Table 8.7. See Example 8.3 for demonstrations of using the fread function.

With the fgetl function you can read a file one line at a time. For example,

clear all; clc; close all

ID1 = fopen(’example2_data.txt’);

while 1

txt_line = fgetl(ID1); % get a line from file ID1

if ~ischar(txt_line), break; end

disp(txt_line) % display line from file ID1

% could use instead: if feof(ID1), break; end

end

fclose(ID1);

The output produced by this program is the same as the center columns of the table given in
Example 8.1.

Table 8.7 (Continued)

Function Brief description

A ¼ fscanf(file_ID,‘format’,size) Same as fread, but converts data according to the
specified format string

frewind(file_ID) Sets the file position indicator to the beginning of
the file

L ¼ feof(file_ID) Returns logic 1 if a read from the end of the file with
file_ID has occurred

S ¼ ferror(file_ID) Returns an error message if an error occurred during the
most recent file_ID input/output operation

S ¼ fgetl(file_ID) Returns as a string the next line of the file with file_ID; a
�1 if an end-of-file occurred. The line terminator is
not included.

S ¼ fgets(file_ID) Same as fgetl, but includes the line terminator
status ¼ fseek(file_ID,offset,origin) Sets the file position indicator to the byte with the

specified offset relative to origin; offset, an integer,
can be positive or negative and origin can be �1 for
beginning of file, 0 for current file position and 1
for end of file. Status is 0 if successful and �1 if not
successful

position ¼ ftell(file_ID) Returns the location of the file position indicator
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With the load function, the content of a file can be placed in the Workspace. For example,

>> % using command line format

>> load example3_data -ascii % mat-file contains ascii coded data

With the fscanf function, you can read a file according to a size specification. For
example, in Prog. 8.1, the dlmwrite function was used to store in a text file each row of a
matrix using one space as a delimiter and ten spaces for each number. Therefore, each
number occupies ten character spaces. Let us retrieve the fourth row of the matrix stored in
example1_data.txt with the following script.

clear all; clc; close all

ID1 = fopen(’example1_data.txt’);

N_chars = 10; % number of characters used to store each number

status = fseek(ID1,9*(N_chars+1)+1,’bof’) % locate position indicator

for k =1:3

row_two(k,1:N_chars) = fscanf(ID1,’%c’,N_chars); % get each number

fseek(ID1,1,0); % skip one character (the delimiter)

end

fclose(ID1);

row_two % this is a character array

status = 0

row_two =

0.037500

0.707107

-0.707107

The output produced by this script is the fourth row of the left columns in the table given in
Example 8.1.

We can also search a file by first retrieving it into a character string with the fileread
function. For example,

>> S = fileread (’example1_data.txt’)

S =

0.000000 0.000000 1.000000

0.012500 0.707107 0.707107

0.025000 1.000000 0.000000

0.037500 0.707107 -0.707107

0.050000 0.000000 -1.000000

0.062500 -0.707107 -0.707107

0.075000 -1.000000 0.000000
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0.087500 -0.707107 0.707107

0.100000 -0.000000 1.000000

>> S(35:44) % first number in the second row

ans = 0.012500

The dlmread function is useful to read numeric data from an ASCII file produced by an
m-file and other scripts.

Example 8.5

A data acquisition (DAQ) system was used to simultaneously sample the outputs of four
electronic stethoscopes positioned on a person’s chest in the vicinity of the heart. A
recording of the heart sound is called a phonocardiogram. The DAQ software was set to
sample each of the four input channels at the rate fs = 5,000 samples/sec for 10 secs. Then, a
text file, heart_sound.txt, was produced that contains 50,000 samples of each of the four
phonocardiograms. The first few lines of this text file are shown below.

Simultaneous data acquisition of four stethoscope outputs

Channel 1 Channel 2 Channel 3 Channel 4

0.021488016532000 0.011297458343000 0.009650987007000 0.019350983292000
0.012722182546000 0.008381021024000 0.010532377762000 0.014182648164000
0.005507278486000 0.001055447980000 0.008542691504000 0.011926686962000
0.003813026290000 �0.007777469734000 0.005921087722000 0.006991390552000
0.003179968774000 �0.014918743956000 0.000258228366000 0.001760220377000
0.002405418634000 �0.015743206567000 �0.005977382491000 0.004876960718000

�0.00164907690200 �0.008207093478000 �0.008384890664000 0.001980448066000
�0.000740962604000 �0.001375831844000 �0.003824837180000 0.001073305203000
�0.001673472182000 0.001246459673000 0.000276527136000 �0.000185835933000
�0.005308368902000 �0.001171394409000 0.003352550373000 �0.001687166522000

Prog. 8.3 was used to import the data into MATLAB.

% Program to read a text file of digitized phonocardiograms

clc; clear all; close all

PCG_file_name = input(’Enter a data file name: ’,’s’);

PCG_file_name_txt = [PCG_file_name,’.txt’]; % form complete file name

DAQ_output = dlmread(PCG_file_name_txt,’’,0,0); % get data

%

[N_samples N_channels] = size(DAQ_output); % get array size

fs = 5000; T = 1/fs; % set sampling frequency and sample time increment

n = 0:N_samples-1; t = n*T; % sample time points
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while 1

channel = input(’Enter a channel number: ’);

if channel < 1 || channel > N_channels

disp(’Terminated Program.’)

break;

end

y = DAQ_output(:,channel); % get data from one channel

plot(t,y’) % plot data

grid on

xlabel(’Time - seconds’); ylabel(’Phonocardiogram’);

title([’Data from Channel ’,num2str(channel)]) % show channel number

end

Program 8.3 Import data with the dlmread function.

Enter a data file name: heart_sound

Enter a channel number: 4

Enter a channel number: 0

Terminated Program.

Program 8.3 plotted the data from 0 to 10 seconds. Fig. 8.3 was obtained by using the
zoom feature in the MATLAB Figure Window. Fig. 8.3 shows the heart sound over two
cardiac cycles. The sound called S1, the first heart sound, is a combination of the sounds
caused by the closure of theMitral and Tricuspid valves, over almost the same time range.
The second heart sound, called S2, is caused by the closure of the Pulmonary and Aortic
valves, where normally the Aortic valve begins to close first. To a medical practitioner, this
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Figure 8.3 Phonocardiogram over two cardiac cycles.
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plot can provide useful information about the state of cardiac function. A heart dysfunction
can cause additional sounds, calledmurmurs, to appear in a phonocardiogram. The location
of a murmur within the time duration of a cardiac cycle can help a medical practitioner to
identify the kind of heart dysfunction that caused the murmur.

As often occurs, the information of interest about a physical process is not easy to
obtain, and the data that is obtained includes various kinds of distortions. Fig. 8.3 illustrates
this. There is a considerable amount of noise. With a little additional MATLAB program-
ming, the heart beat rate can be determined with very good confidence using an inexpensive
instrument and a noninvasive method. However, it would be particularly useful if, for
example, the sound made by the aortic valve could be extracted from the S2 sound.

A program can only work on the content of a file after the data contained in the file has
been transferred to the Workspace. MATLAB has a GUI that will enable you to import data
from any kind of a file recognized by MATLAB and place the data in the Workspace. To
use this GUI, go to the MATLAB desktop and click the menu sequence

File ! Import Data

which opens the Import Data Window that shows all of the data files in the Current Folder.
Click on the file of interest to highlight it, and then click the open button. Then, the file
content is displayed in the Import Wizard Window, where you can elect to transfer the file
content to the Workspace. Once the data is in the Workspace, it can be accessed from the
Command Window or a script, like any defined MATLAB variable.

Another way to import data is with the built-in function importdata, with which you
can load the content of a variety of kinds of data files into the Workspace. Use the
MATLAB help facility (doc importdata) for more information.

8.3 File Management

MATLAB includes several built-in functions that are useful for managing files and folders.
We have already discussed how to create a variety of files. Table 8.8 gives built-in functions
for creating a folder, moving files from a folder to another folder and other activities.

Table 8.8 Functions concerned with file and folder management

Function Brief description

isdir(fullfile(‘C:’,‘My_MATLAB_
Programs’)) isdir(‘Music’)

Returns logic 1 if given name is a folder

S ¼ dir(‘folder_name’) Returns an Mx1 structure array with fields: name, date, bytes,
isdir and datenum; see Example 7.4

rmdir(‘folder_name’)
rmdir(‘folder_name’,‘s’)

Remove folder_name from the current folder when
folder_name is empty; and use the ‘s’ option to
remove folder_name and all of its contents

(Continues)
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Example 8.6

>> % save storage space and time to email files by compressing them

>> % text file heart_sound.txt uses 4.52 Mb of storage

>> zip(’heart_sound.zip’,’heart_sound.txt’)

>> % heart_sound.zip uses 1.53 Mb of storage

>> % unzip heart_sound.zip and place output in folder Music

>> unzip(’heart_sound.zip’,’Music’)

>>

>> isdir(’Music’) % check if Music is a folder in the current folder

ans = 1

>> % use a complete path name to check elsewhere

>>

>> old_folder = cd(’Music’)

old_folder = C:\My_MATLAB_Programs

>> % now, Music is the current folder

>> cd(old_folder) % change back to C:\My_MATLAB_Programs

>>

>> mkdir(’circuits’) % create a folder named circuits within the current folder

>> % move circuit_report.m to sub-folder circuits

>> movefile(’circuit_report.m’,’circuits’)

Table 8.8 (Continued)

Function Brief description

mkdir(‘folder_name’) Create folder_name within the current folder; use a complete
pathname to create folder_name in another folder

cd(‘new_folder’)
current_folder ¼ cd(‘new_folder’)

Changes the current folder to the new_folder; and returns the
current_folder name

movefile(‘source’)
movefile(‘source’,‘destination’)

Move the file or folder named source to the current folder;
move file or folder named source to file or folder named
destination

delete filename
delete(‘fileName1’,‘filename2’, . . . .)
delete(h)

Command syntax to delete filename; function argument syntax
to delete files; delete graphic object with handle h; use
wildcard * to delete all files with the same suffix

copyfile(‘source’,‘destination’) Copy source file or folder to destination file or folder
F ¼ ls Returns an m� n character array of the names of files and

folders in the current folder, where there are m names
zip(‘zip_file_name’, ‘name1’, . . . ,
‘nameN’)

Creates a zip file with the name zip_file_name from the list of
files and folders specified by strings name1 through nameN
or cell array of strings that specify the files or folders; and *
may be used as a wild card for all files having the same suffix

unzip(‘zip_file_name’)
unzip(‘zip_file_name’,‘output_folder’)

Unzip a zipped file named zip_file_name into the current
folder; unzip into the output folder
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>> % use wildcard * to move all mat-files starting with CKT

>> movefile(’CKT*.mat’,’circuits’)

>>

>> cd(’circuits’) % make circuits the current folder

>> circuit_files = ls % get a character array of all files in current folder

circuit_files =

.

..

CKT_1.mat

CKT_2.mat

CKT_3.mat

circuit_report.m

8.4 Sound

MATLAB has a few built-in functions with which you can send data to the audio output
device of your computer. These functions are given in Table 8.9.

Table 8.9 Functions concerned with sound

Function Brief description

beep on beep off Turns the beep sound on and off
sound(audio_data,fs) Sends audio_data to the speaker at sample rate fs; for a

single channel, audio_data is an m � 1 column vector,
where m is the number of audio samples; audio_data can
be an m � 2 matrix, where the first column corresponds
to the left channel and the second column corresponds to
the right channel. Data outside the range [�1,þ1] will be
clipped.

soundsc Same as sound; and also automatically scales the data to the
range [�1,þ1]

wavplay Play WAV files; see Example 7.4
[Y,fs,nbits] ¼ wavread(‘file_name’) Returns in the two columns of Y the left and right sound

channels of a wav file; fs is the sampling frequency and
nbits is the number of bits per sample. There is also an
option about the data in Y.

wavwrite(Y,fs,nbits,‘file_name’) Create a wav file
record ¼ audiorecorder(fs,nBits,
nChannels)

Set up, record and store audio input; see Example 8.8

recordblocking
getaudiodata
Y ¼ wavrecord(N,fs) Records N samples of an audio signal, sampled at a rate of

fs samples per second
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Example 8.7

Interesting effects are possible by assigning a handle to a plot. This example demonstrates
using the delete and sound built-in functions. Prog. 8.4 simulates the movement of the
second hand of a clock, including a tick sound. To achieve real-time operation, the built-in
function pause is used.

% Animation of the second hand of a clock

clear all; clc; close all

fs = 44100; T = 1/fs; % set sampling frequency

f = 1500; w1 = 2*pi*f; w2 = 2*pi*(1.5*f); % set frequencies for tick sound

N = 4000; n = 0:N-1; t = n*T; % let tick last for about 0.1 sec

envelope = 0.5*(exp(-50*t)-exp(-100*t)); % tick sound envelope

tic_sound = envelope.*(sin(w1*t) + sin(w2*t)); % tick sound

angle_increment = 2*pi/60; % second hand angle increment

sec_angle = pi/2:-angle_increment:-3*pi/2; % once around

K = length(sec_angle);

xt = cos(sec_angle); % coordinates for circular movement

yt = sin(sec_angle); % coordinates for circular movement

Limit = 1.5; axis([-Limit Limit -Limit Limit]); %set x-axis and y-axis limits

hold on % all plots on the same figure

% draw a dial

plot(xt,yt,’Color’,’red’,’LineWidth’,2) % plot outside circle

plot(0.15*xt,0.15*yt) % plot center hub

for k=1:K % plot tick marks

plot([0.15*xt(k),xt(k)],[0.15*yt(k),yt(k)])

end

xt = 0.9*xt; yt = 0.9*yt; % adjust second hand length

loop_time = (63.435027-60)/60; % time to execute the following for loop once

% loop execution time, which is system dependent, was found with tic and toc

wait = 1 - loop_time; % time adjustment to account for loop execution time

% tic % used to start stop watch

for k=1:K % animate second hand

sec_hand = plot([0,xt(k)],[0,yt(k)],’LineWidth’,2.5); % assign a handle

sound(tic_sound,fs) % send tick sound to audio device

pause(wait) % wait for about 1 second

delete(sec_hand) % delete previous second hand

end

% toc % used to find for loop execution time (63.435027 seconds) with wait=1

plot([0,xt(K)],[0,yt(K)],’LineWidth’,2.5) % show second hand stopped

Program 8.4 Animation of the second hand of a clock.
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In Example 8.7, the plot function was used with options that were not used before this
example. One case is the statement

plot(xt,yt,’Color’,’red’,’LineWidth’,2) % plot outside circle

which includes the arguments, ‘‘Color,’’‘‘red,’’‘‘LineWidth,’’2. The plot of yt versus xt,
which in this case makes a circle, is an object that can have many properties, for example, the
color of the line and the width of the line. You can set these properties by specifying their
values after naming them. The property names, ‘‘Color’’ and ‘‘LineWidth,’’ are field names in
an array structure that defines the object, where the desired value is given immediately fol-
lowing the field name. A line object can have many other properties to which you can assign
values this way. This will be discussed in greater detail in the next chapter.

The other case is the statement

sec_hand = plot([0,xt(k)],[0,yt(k)],’LineWidth’,2.5); % assign a handle

which also includes a property specification. Moreover, the plot function was used like in
an assignment statement. However, the name, sec_hand, is not called a variable
name. Instead, it is called a handle. The handle is a name, which can be any valid MATLAB
name, of the plot object, the second hand. Its handle gives us a way to refer to the plot object,
find out more information about it and set values, other than default values, to its properties.
In the for loop, using its handle, the second hand is deleted to plot a second hand in another
position. Handle graphics will also be discussed in greater detail in the next chapter.

Example 8.8

This example demonstrates using built-in functions for recording audio input from a
microphone. You can play back the input, plot it, and store it in a binary file for further
processing. For example, for speech recognition, it is useful to find how the frequencies and
amplitudes of the sinusoidal time functions that together make up the sound, change over the
time duration of the sound. Program output follows Prog. 8.5, and Fig. 8.4 shows an
example recording.

% Program to record microphone input

clear all; clc; close all

fs = 44100; N_bits = 16; N_chan = 1;

% specify sampling freq, number of bits per sample and 1 or 2 channels

mic_record = audiorecorder(fs,N_bits,N_chan); % set recording parameters

while 1

disp(’Enter zero record time to terminate recording program’)

rec_time = input(’Enter record time in seconds: ’);

if rec_time <= 0

disp(’Program terminated.’)
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break

end

disp(’Press enter key to start recording’)

pause

recordblocking(mic_record,rec_time); % recording

disp(’End of recording’)

answer = input(’Do you want to hear the recording, Yes or No? ’,’s’);

if strcmpi(answer,’yes’)

play(mic_record) % play MATLAB formatted recording

end

Mic_record = getaudiodata(mic_record); % store data in an array

answer = input(’Do you want to save the recording, Yes or No? ’,’s’);

if strcmpi(answer,’yes’)

file_name = input(’Enter a file name: ’,’s’); % get file name

File_name = [file_name,’.bin’]; % add suffix

ID1 = fopen(File_name,’w+’); % open binary file for write

fwrite(ID1,Mic_record,’double’); % store binary data

fclose(ID1);

% to read the file, use, for example,

% ID1 = fopen(File_name);

% x = fread(ID1,’double’);

% fclose(ID1)
end

answer = input(’Do you want recording plotted, Yes or No? ’,’s’);

if strcmpi(answer,’yes’)

N_samples = floor(rec_time*fs); T = 1/fs;

time_pts = [0:N_samples-1]*T; % time in seconds

plot(time_pts,Mic_record)

grid on

xlabel(’Time - seconds’)

ylabel(’hello’)

title(’Microphone Recording’)

end

end

Program 8.5 Program for recording audio input from a microphone.

Enter zero record time to terminate recording program

Enter record time in seconds: 2

Press enter key to start recording

End of recording

Do you want to hear the recording, Yes or No? yes

Do you want to save the recording, Yes or No? yes

Enter a file name: hello
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Do you want recording plotted, Yes or No? yes

Enter zero record time to terminate recording program

Enter record time in seconds: 0

Program terminated.

The zoom and label features of the MATLAB Figure Window were used to edit this plot.

8.5 Conclusion

With MATLAB, you can write interactive scripts that receive input from the program user
and files produced by other programs, and output computing results to the program user and
files. You should now know how to

● create files for output of text data
● create files for output of binary data
● display formatted output
● save and load the Workspace
● prompt a program user for input
● import text and binary data
● locate file positions
● manage files and directories
● write and read a structure array
● compress and decompress files
● use the MATLAB sound functions

As we have seen many times already, another important part of interactive computing is
graphics, which is the topic of the next chapter.

Problems

In many of the following problems you will be asked to give MATLAB statements or write
MATLAB scripts. You must also provide copies of statement results, scripts, and their
outputs. Include any required or explanatory discussion.

Section 8.1
1) Suppose the following MATLAB statements have been executed.

birth_year = input(’In what year were you born? ’)

birth_date = input(’What is your birth date, (mm/dd/yyyy)? ’,’s’)
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(a) Using the fprintf function, give a MATLAB statement that outputs a complete sen-
tence starting with, ‘‘I was born in’’. Include the year, and be sure to include, \n.

(b) Using the num2str function, create an appropriate vector to use the disp function for
outputting the same sentence as in part (a).

(c) Repeat part (a), but start the sentence with, ‘‘I was born on’’. Include the date.
2) Suppose the following MATLAB statement has been executed

Eulers_number = exp(1);

(a) Using the fprintf function, give a MATLAB statement that outputs a complete
sentence starting with ‘‘The number e is: ’’. Use fixed point notation and include
seven fractional digits in a field width of 10.

(b) Repeat part (a) using exponential notation.
3) In a statement that uses the fprintf function, give an example of using (a) \t, (b) %#,

(c) %-15.5f, (d) %0, (e) several %n$, where n is an integer.
4) Give a MATLAB statement to

(a) type an m-file in your current folder to include line numbers
(b) obtain the complete path name of an m-file in your current folder
(c) open a new file test.txt for writing, and assign to it a file ID
(d) check if the function eig is a built-in function

5) Write a MATLAB script that creates an 11� 11 array mult_tab of the multiplication
table. The first row, starting in the second column, must be the ten digits 9-0, and the
first column, starting in the second row, must be the ten digits 0-9. Place the character X
in the top left corner (first row, first column). Describe what happens if you include the
statement, more(1), just before the script segment that displays the table.

6) Write a MATLAB script that uses the dlmwrite function to write to a file, named
squares.txt, a table of two columns for x and x2, where x = 0:0.1:1.

7) Repeat Prob. P8.6, but use instead the fprintf function.
8) Repeat Prob. P8.6, but use instead the save function.
9) Write a MATLAB script that creates a structure, named my_info, with fields: last_name,

first_name, birth_date, and address. Place the structure in a file, named MyInfo. Then,
open the file, and use the fprintf function to display the structure content.

10) Write a MATLAB script that assigns to the variable Name a character string that is your
name and assigns to the variable Age your age. Find the length of each variable. Using
the fopen function, obtain a file ID to write into a file named name.bin. With the fwrite
function write Name and Age into name.bin.

Section 8.2
11) Repeat Prob. 8.10, and append statements to locate the file position indicator at your

age, and retrieve your age from the file.
12) Using the function input, give a MATLAB statement to enable a program user to enter a
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(a) matrix and assign it to the variable X
(b) cell array of strings and assign it to the variable C
(c) character vector and assign it to the field of a structure Ckt.resistor_names
(d) numeric vector and assign it to the field of a structure Ckt.resistor_values

13) Assume that you have executed a program located in your current folder, and that one
of the variables listed in the Workspace is named X.
(a) Usingthefunctionformat,giveaMATLABstatement tosaveyourWorkspace in the file

my_prog_data.mat. Now, assume that the Workspace has been cleared. Using the
function format, give aMATLAB statement to load X into theWorkspace.

(b) Repeat part (a) using the command line format.
14) Write a MATLAB script that starts by opening one of your m-files and assigns a file ID.

Then, read and display the file one line at a time until the end of file is reached.
15) Write a MATLAB script that starts by reading an m-file in your current folder into a

string vector. Then, find the first occurrence of an assignment statement, and display
that statement. Hint: Convert vector to class double, look up the ASCII codes for
linefeed and carriage return and use the find function.

16) Assume the following program has executed.

% Program to write a matrix of data to a text file

clear all; clc;

f = 10; w = 2*pi*f; T0 = 1/f; % frequency and period

N = 9; t = linspace(0,T0,N); % obtain N samples over one cycle

s = sin(w*t); c = cos(w*t); % samples

TSC = [t’,s’,c’]; % collect data in columns

dlmwrite(’P8_16_data.txt’,TSC,’delimiter’,’ ’,’precision’,’%10.6f’)

% each output line comes from a row of TSC

(a) Continue the script by using the function dlmread to read the file and display a
table of the data.

(b) Use the Import Data GUI to look at the data. Describe the display.
17) Use the MATLAB help facility, and find out how to use the function importdata.

Import the data from the file created by the script given in Prob. P8.16. Describe what
happens.

Section 8.3
18) Write a MATLAB script that starts by using the function input to obtain the name for a

new folder, and create the new folder with the inputted name within your current folder.
Then, obtain a structure array named my_m_files that includes in a field the names of all
of your m-files in the current folder. Copy only those files that have a date within the past
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month from the current folder to the new folder. Suggestion: look up built-in functions
date and datevec to obtain the present date. Finally, make the new folder the current
folder. Does the new folder name appear in the MATLAB desktop toolbar?

19) Give a MATLAB statement that creates a zip file of all of the m-files in your current folder.
Then, give another MATLAB statement that unzips the zip file into another folder.

Section 8.4
20) The following MATLAB script uses the built-in function chirp to create samples of a

sweep frequency signal.

% Program to generate and sound a chirp signal

% specify fs, sampling frequency

fs = 44100; T = 1/fs; total_time = 1; N = floor(total_time/T);

n = 0:N-1; time = n*T; % time points

fstart = 30; fend = 4000; % frequency range in Hz

x = chirp(time, fstart, total_time, fend); % get chirp signal samples

y = fliplr(x); z = [x,y]; % flip chirp signal and concatenate

% change time increment between samples by changing sampling frequency

fz = 0.1*fs;

sound(z,fz); % sound z at sampling rate fz

plot(time(1:3000),x(1:3000)); grid on % plot some points

(a) Enter this program into your computer and run it. Describe the sound. What does
the fliplr function do to generate the second half of the sound?

(b) Change fz to 0.25*fs. How has the sound changed? The sound function uses the
samples at time increments given by 1/fz secs. How has the time increment chan-
ged from the time increment used in part (a)?

(c) Change fz to 1.25*fs, and repeat part (b).
21) The following MATLAB script is a shortened version of Prog. 8.5.

(a) If you have a microphone that is plugged into the audio input of your computer,
then enter the script and run it. Record for 2 secs, and speak one word into the
microphone. Describe what happened.

% Program to record microphone input

clear all; clc; close all

fs = 44100; N_bits = 16; N_chan = 1;

% specify sampling freq, number of bits per sample and 1 or 2 channels

mic_record = audiorecorder(fs,N_bits,N_chan); % recording parameters

disp(’Enter zero record time to terminate recording program’)
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rec_time = input(’Enter record time in seconds: ’);

if rec_time <= 0

disp(’Program terminated.’)

else

disp(’Press enter key to start recording’)

pause

recordblocking(mic_record,rec_time); % recording

disp(’End of recording’)

play(mic_record); % play MATLAB formatted recording

Mic_record = getaudiodata(mic_record); % store data in a vector

N_samples = length(Mic_record);

T = 1/fs; % time increment

time_pts = [0:N_samples-1]*T; % time in seconds

plot(time_pts,Mic_record)

grid on; xlabel(’time - seconds’); ylabel(’Microphone Recording’)

end

(b) The vector Mic_record contains the samples of the audio signal, which can be used
as input to the function sound. For example,

fx = 0.5*fs;

sound(Mic_record,fx)

Append these statements to the else part of the script, and try different values for fx.
Describe what happened for fx = 0.5*fs and fx = 1.5*fs. You may have to change
the play statement into a comment statement to avoid interference.
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CHAPTER 9

Graphics

An outstanding feature of MATLAB� is its facility for visualizing data. The built-in
function plot has already been used many times. It automatically scales the axes and
locates grid lines, which make it convenient to use the plot function. Labels for the axes
and a plot title can be added easily. The functions bar and stem to obtain bar charts
and stem plots were also easy to use. The plots obtained with these and other two-
dimensional (2-D) plotting functions can be edited extensively to create custom figures.
Also, MATLAB has a variety of 3-D plotting functions. In this chapter, you will learn
how to

● use additional 2-D plotting functions
● place multiple plots within a figure
● display the frequency response of an analog filter
● use 3-D plotting functions
● do translation and rotation of objects in 3-D space
● create animations
● customize graphics

9.1 Figure

A MATLAB graphic is a collection of graphic objects. Every graphic is created by first
creating a figure graphic object. A figure object is a window that appears on the screen into
which you can place other graphic objects using various MATLAB functions. The built-in
function figure creates a new figure object using default property values, which you can
alter. A newly created figure automatically becomes the current figure, which appears above
all other figures on the screen until another figure object is either created or activated. The
syntax options for the figure function are given by



figure

figure(’PropertyName’,PropertyValue, ...)

h ¼ figure(...)

figure(g)

When the function figure is invoked without an argument, MATLAB creates a new
figure object using default property values, assigns to the figure a number, which is called
the handle of the figure, and makes the new figure object the current figure. The handle of a
figure object is an integer. Its value is the next higher integer value after integer values
assigned to previously created figures. For example, if figure 1 is the only figure that already
exists, then invoking figure will create figure 2, and make it the current figure. Then, to
make figure 1 the current figure, invoke the function figure with a handle operand, as in
figure(1).

The second syntax allows you to create a new figure object and override default prop-
erty values. First, the property name is given, and then comes its new value. For example,
one property is color, the color of the figure background. The background color is described
by a three-element row vector that specifies the intensity of red, green and blue (RGB) each
with values ranging from 0 to 1. Thus, a color vector of [1 0 0] makes the background color
red. The default background has a color vector given by [0.8 0.8 0.8], which makes the
background light gray. To create a figure object with, for example, yellow as its background
use

figure(’Color’,[1 1 0])

To associate a name with a magenta background figure, use the statement, for example,

figure(’Color’,[0 1 1],’Name’,’i-v plot’)

In addition to color and name, a figure object has many properties. See Example 9.1, and use
doc figure for detailed explanations.

With the third syntax, which looks like an assignment statement, you can associate a
valid MATLAB variable name with the created figure object. The name is also called the
handle of the figure object. The handle name is equivalent to the handle number assigned to
the figure object. If a graphic object has a named handle, then it can be referred to by using
its handle name. If a previously created figure has a handle name, then in the argument of
the fourth syntax you can use its handle name to make it the current figure. By associating a
graphic object with a handle name, you do not have to keep track of its handle number. The
fourth syntax allows you to either create a new figure object by using an integer for the
argument or make a previously created figure object the current figure by using its handle
name or number.

Table 9.1 gives a list of built-in functions concerned with figure graphic objects.
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Example 9.1

Let us exercise some of the built-in functions given in Table 9.1.

>> clc; % clear command window

>> % create a new figure object (becomes the current figure) and assign a handle

>> diode_characteristic ¼ figure(1) % the handle name is diode_characteristic

diode_characteristic ¼ 1

>> gcf % (get current figure) returns the current figure handle number

ans ¼ 1

>> set(diode_characteristic,’Name’,’i-v plot’) % give figure 1 the name i-v plot

>> % this could also have been accomplished with: set(gcf,’Name’,’i-v plot’)

>> figure(2) % create a new figure; becomes the current figure

>> gcf % get current figure handle

ans ¼ 2

>> get(diode_characteristic) % returns all figure 1 properties and their values

>> % the properties of figure 1 and their current values are given in Table 9.2

>> % delete the figure 1 object; figure 1 no longer exists

>> delete(diode_characteristic)

>> % you can also use, delete(1), to delete the figure 1 object

Table 9.1 Built-in functions concerned with figure objects

Function Brief description

clf Clear current figure of all graphic objects; clear the specified figure with
handle h of all graphic objectsclf(h)

close Close the current figure window; close the specified figure window with
handle h; close all open figure windowsclose(h)

close all
delete(h) Delete the specified graphic object with handle h
gcf Get current figure handle
gco Get current object handle
get(h) Get all graphic object property values; return a structure F, where each

field name is the name of a property and each field contains the value of
the property; get value of specified property and get all default property
values of a graphic object

F ¼ get(h)
get(h,‘PropertyName’)
get(h,‘Default’)
propedit(h) Open property edit window and edit graphic object properties
saveas(h,‘FileName.ext’) Save figure with handle h to a file; ext can be, for example, bmp (bit map),

emf (enhanced metafile), fig (MATLAB figure), jpg (JPEG image), pdf
(portable document format)

saveas(gcf,‘FileName.ext’)

set(h,‘PropertyName1‘, Set named graphic object properties to specified values
PropertyValue1, . . . )
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>> % get value of the color property and assign it to fig_color

>> fig_color = get(2,’Color’)

fig_color ¼
0.8000 0.8000 0.8000

>> % since figure 2 is the current figure, it can also be deleted with

>> delete(gcf)

Notice that the property, Name, has the value ‘‘i-v plot’’. Since no graphic objects have
been placed on figure 1, many properties have no values or are assigned an empty matrix, while

Table 9.2 Properties and values of figure 1

Property name and current value Property name and current value

Alphamap ¼ [ (1 by 64) double array] ResizeFcn ¼
CloseRequestFcn ¼ closereq SelectionType ¼ normal
Color ¼ [ (1 by 3) double array] ToolBar ¼ auto
ColorMap ¼ [ (64 by 3) double array] Units ¼ pixels
CurrentAxes ¼ [] WindowButtonDownFcn ¼
CurrentCharacter ¼ WindowButtonMotionFcn ¼
CurrentObject ¼ [] WindowButtonUpFcn ¼
CurrentPoint ¼ [0 0] WindowKeyPressFcn ¼
DockControls ¼ on WindowKeyReleaseFcn ¼
FileName ¼ WindowScrollWheelFcn ¼
IntegerHandle ¼ on WindowStyle ¼ normal
InvertHardcopy ¼ on WVisual ¼ [ (1 by 32) char array]
KeyPressFcn ¼ WVisualMode ¼ auto
KeyReleaseFcn ¼ BeingDeleted ¼ off
MenuBar ¼ figure ButtonDownFcn ¼
Name ¼ i-v plot Children ¼ []
NextPlot ¼ add Clipping ¼ on
NumberTitle ¼ on CreateFcn ¼
PaperUnits ¼ inches DeleteFcn ¼
PaperOrientation ¼ portrait BusyAction ¼ queue
PaperPosition ¼ [ (1 by 4) double array] HandleVisibility ¼ on
PaperPositionMode ¼ manual HitTest ¼ on
PaperSize ¼ [8.5 11] Interruptible ¼ on
PaperType ¼ usletter Parent ¼ [0]
Pointer ¼ arrow Selected ¼ off
PointerShapeCData ¼ [(16 by 16) double array] SelectionHighlight ¼ on
PointerShapeHotSpot ¼ [1 1] Tag ¼
Position ¼ [ (1 by 4) double array] Type ¼ figure
Renderer ¼ None UIContextMenu ¼ []
RendererMode ¼ auto UserData ¼ []
Resize ¼ on Visible ¼ on
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other properties have default values. Remember, you can inquire about the value of any
property with, for example, get(gcf,‘Type’), which, if figure 1 is the current figure, returns
figure.

Graphic objects, for example, axes, that have been placed on a figure are called the
children of that figure, and the figure itself is called the parent. All figure graphic
objects are children of figure(0), which is called the root object. You can see the
properties of figure(0) (the root object) with the statement get(0), and you can set some
of these properties to values other than their default values with the function set. How-
ever, you cannot delete the root object. Notice that since no graphic objects were placed
on figure 1 in Example 9.1, Table 9.2 shows that the property, Children, is assigned an
empty matrix. As axes graphic objects are placed on figure 1, their handles are entered as
elements of the vector assigned to the Children property. You can also see in Table 9.2
that the Parent property has the value [0], meaning that the root object is the parent of
figure 1.

The Figure Window, into which you can place graphic objects, has normalized hor-
izontal and vertical dimensions from zero to one, where the point (0,0) is the lower left
corner and the point (1,1) is the upper right corner of the Figure Window. These dimensions
can be used to place graphic objects at specific locations within a figure.

A few examples, with more details to be given later, of the graphic objects that you can
place on a figure object are:

Axes
Axes objects are children of figure graphic objects and are parents of graphic objects pro-
duced by, for example, plot functions. Axes objects define a reference frame in a
figure window for the display of objects that are generally defined by data. All functions that
draw graphics, for example, plot, surf, mesh, and bar, create an axes object if one does not
exist. More about this will be discussed later.

Line
Line objects are the basic graphic objects used to create most 2-D and some 3-D plots. Line
objects become children of axes objects.

Rectangle
Rectangle objects are 2-D filled areas having a shape that can range from a rectangle to an
ellipse.

Surface
Surface objects are 3-D representations of matrix data created by plotting the value of each
matrix element as a height above the x–y plane.
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Text
Text objects are character strings. Functions, for example, title, xlabel, ylabel, zlabel, text,
and gtext create text objects, which you can place at a default or specified position on the
current axes. The text location is specified with respect to the current axes limits. For
example,

>> figure(1) % create a figure graphic object

>> % place, "Hello", in the center of the current axes

>> text(’Position’,[0.5 0.5],’String’,’Hello’)

To place the text, an axes graphic object is automatically created. The axes object is a child
of the figure object, and the text object is a child of the axes object. See the following
examples for more details about placing graphic objects on a figure.

9.2 Plots

MATLAB includes a wide variety of 2-D plotting functions, and much can be done to
customize plots, including plot line types and widths, line colors, marker types, grid nota-
tion, text and legend insertion, fonts, math symbol insertion, and more. Special commands
and a graphics GUI make it convenient to customize a plot.

9.2.1 2-D Plots
Table 9.3 gives a list of some of the graphic objects that can be placed on a figure graphic
object and on an axes graphic object.

Table 9.3 Some graphic objects that can be placed on a figure and axes

Function Brief description

area(x,y) Same as plot(x,y), except that area under the plot line is filled
with a color

axes(‘position’,‘default’) Place axes with a default size in the current figure; place axes
at a specified position, xmin ¼ 0 ! 1, ymin ¼ 0 ! 1,
width ¼ 0 ! 1, height ¼ 0 ! 1; assign a handle to the axes

axes(‘position’,[xmin,ymin,width,
height])

h ¼ axes((‘position’,[xmin,ymin,
width,height])

bar(Y) Draws length(Y) bars; draws the columns of the M-by-N
matrix Y as M groups of N vertical bars; width > 1, bars
overlap, width ¼ 1, bars touch and width < 1, leaves space
between bars

bar(X,Y)
bar(X,Y,width)

barh Horizontal bar graph
(Continues)
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Table 9.3 (Continued)

Function Brief description

comet(Y) Displays an animated comet plot of the vector Y; displays an
animated comet plot of vector Y vs. X; uses a comet of
length p*length(Y), where default is p ¼ 0.1

comet(X,Y)
comet(X,Y,p)
compass(U,V) Draws a graph that displays the vectors with components (U,V)

as arrows emanating from the origin; for linespec, see plot
function

compass(Z) ¼ compass(real(Z),
imag(Z))

compass(U,V,‘linespec’)
drawnow Causes a figure window and its children to update; see

Example 9.11
feather(U,V) Plots vectors with components U and V as arrows emanating

from equally spaced points along a horizontal axis
fill(X,Y,c) Fills the 2-D polygon defined by vectors X and Y with the

color specified by c, where c can be, for example, ‘r’, or a
color vector

fplot(function,limits) Plot function; limits ¼ [xmin xmax] or limits ¼ [xmin xmax
ymin ymax]; for example, fplot(@(t) [sin(2*pi*t), sin
(10*pi*t)], [0 2])

[X Y] ¼ ginput Use the mouse to get an unlimited number of points from the
current axes coordinates, where each point is returned by
left-clicking the mouse, until the enter key is depressed; get
a total of N points

[X Y] ¼ ginput(N)

gtext(‘string’) Causes cross-hairs to appear on the current figure, which can
be moved with the mouse, to place the character string at the
cross-hair position by left-clicking the mouse

N ¼ hist(Y,M) Bins elements of Y into M bins with bin count returned in N;
bins elements of Y into bins with centers specified by X; no
return produces bar chart instead

N ¼ hist(Y,X)
hist( . . . )
image(X) Display matrix X as an image, where each element of X

specifies the color of a rectangular patch in the image; scale
data to use the full colormap range; see Section 9.4

imagesc(X)

legend place legend on current axes
line(X,Y) Adds the line in vectors X and Y to the current axes; if X and Y

are matrices, one line per column is added; creates lines in
3-D coordinates

line(X,Y,Z)

loglog( . . . ) Same as PLOT( . . . ), except logarithmic scales are used
pie(X) Draws a pie plot of the data in the vector X; slices, with same

length as X, specifies the slices that should be pulled out
from the pie; labels, a cell array, contains labels for each
pie slice

pie(X,slices)
pie( . . . , labels)

plot( . . . ) See text
plotedit on Turn on tools for editing and annotating plots

(Continues)
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To place a plot graphic object on a Figure Window, axes must first be placed on the
figure. Some functions automatically create an axes graphic object, if one does not already
exist. Table 9.4 gives some built-in functions concerned with axes graphic objects. You can
place multiple axes on a Figure Window. See the following examples.

Table 9.3 (Continued)

Function Brief description

plotedit off
plotmatrix(X,Y) Scatter plots the columns of X against the columns of Y
plotyy(X1,Y1,X2,Y2) Plots Y1 versus X1 with y-axis labeling on the left and plots Y2

versus X2 with y-axis labeling on the right
polar(theta,r) Draws a plot using polar coordinates of the angle THETA, in

radians, versus the radius rpolar(theta,r,‘linspec’)
scatter(X,Y) Displays colored circles at the locations specified by the vec-

tors X and Y, where S, in points squared, specifies the area
of each point and C specifies the color; 3-D scatter plot

scatter(X,Y,S,C)
scatter3(X,Y,Z, . . . )
semilogx Same as plot( . . . ), except a logarithmic (base 10) scale is used

for the x-axis
semilogy Same as plot( . . . ), except a logarithmic (base 10) scale is used

for the y-axis
sphere A built-in function that plots a sphere
stairs Similar to plot( . . . ), except produces a piecewise constant plot
stem(x,y) Plots a marker at the data sequence and a vertical line from the

marker to the x-axis; produces a stem plot with filled mar-
kers; use help stem for additional options

stem( . . . ,‘filled’)
stem3(x,y,z)
subplot(m,n,p) Breaks the current Figure Window into an m � n matrix of

small axes, selects the p-th axes for the current plot; use help
subplot for additional options

text(x,y,‘string’) Places the character string at the location (x,y) on the current
axes, where (x,y) are in units from the current axes

title(‘text’) Adds text above the current axis; sets the values of the speci-
fied properties of the title; adds the title to the specified axes;
returns a handle of the text object used as the title

title(‘text’,‘Property1’,Property
Value1, . . . )

title(ax_h, . . . )
h ¼ title( . . . )
xlabel(‘text’) Adds text beside the x-axis of the current axes; sets the values

of the specified properties of the xlabel; adds the xlabel to
the specified axes; returns a handle to the text object used as
the label

xlabel(‘text’,‘Property1’,Property
Value1, . . . )

xlabel(ax_h, . . . )
h ¼ xlabel( . . . )
ylabel Same as xlabel( . . . ), except that text is vertically oriented
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Depending on what you want a plot to look like and communicate, the syntax for the
plot function varies considerably. When the plot function is invoked, it automatically cre-
ates a figure graphic object and an axes graphic object. Some syntax options are:

plot(y)

The argument y can be an M � N matrix. Each column of y is plotted in the same
figure versus the row index.

Table 9.4 Built-in functions concerned with axis graphic objects

Function Brief description

axis([xmin xmax ymin ymax]) Set limits on the axes
Returns in ax, a row vector, that contains ax = axis scaling of the
current plot; action can be:ax ¼ axis
auto, sets axis scaling to its default automatic modeaxis action
manual, freezes the scaling at the current limits
tight, sets the axis limits to the range of the data
equal, sets the aspect ratio so that equal tick mark increments
on the x, y, and z axis are equal in size
square, makes the current axis box square in size
normal, restores the current axis box to full size
vis3D, freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill
off, turns off all axis labeling, tick marks and background
on, turns axis labeling, tick marks and background back on see
doc axis for more options

box on Add box around current axes
cla Clear current axes
gca Get handle of current axes

grid on; grid off Adds major grid lines to the current axes; adds major grid lines to
the named axesgrid(ax_h, ‘on’)

rectangle(‘Position’, [x y w h]) Place a rectangle with left lower corner at location (x,y) on the
current axes; w and h are width and height of the rectangle; use
doc rectangle for many options

X_lim¼xlim Get limits of current axis; set limits of current axis; set limits of
axis with handle ax_hxlim([xmin xmax])

xlim(ax_h, . . . )
Y_lim¼ylim Get limits of current axis; set limits of current axis; set limits of

axis with handle ax_hylim([ymin ymax])
ylim(ax_h, . . . )
Z_lim¼zlim Get limits of current axis; set limits of current axis; set limits of

axis with handle ax_hzlim([zmin zmax])
zlim(ax_h, . . . )
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plot(X1,Y1,...,XN,YN)

This version plots the elements of the vector Yi versus the elements of the vector Xi,
i ¼ 1, . . . , N, on the same axes.

plot(X1,Y1,LineSpec, ... , XN,YN,LineSpec)

With the character string LineSpec you can specify line properties. Table 9.5 gives possible
line specifications. For example, the command

plot(t,v,’–pg’) % LineSpec ¼ ’-pg’

produces a line plot of the elements of v versus the elements of t, where the line is green and
dashed, with a 5-pointed star located at every data pair (t(i),v(i)), i ¼ 1, . . . , length(v). If you
specify a marker (a 5-pointed star in this case), but not a line style, then only the markers are
plotted. Many of the plotting functions given in Table 9.3 also accept linespec specifica-
tions, as given in Table 9.5.

plot(X1,Y1,LineSpec,’Property_Name’,property_value)

With this syntax you can also specify line properties, such as LineWidth. The width of lines
is specified in points, where 1 point ¼ 1/72 inch.

h ¼ plot(X1,Y1,LineSpec,’PropertyName’,PropertyValue)

This syntax assigns the plot to a handle.

plot(axes_handle,X1,Y1,LineSpec,’PropertyName’,PropertyValue)

Table 9.5 Line specifications

Specifier Line style Specifier Marker type Specifier Color

- solid (default) þ Plus sign r Red
-- dashed o Circle g Green
: dotted * Asterisk b Blue
-. dash-dot . Point c Cyan

x Cross m Magenta
s Square y Yellow
d Diamond k Black
^ Upward triangle w White
v Downward triangle
> Rightward triangle
< Leftward triangle
p 5-Pointed star
h 6-Pointed star
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This syntax allows you to place a plot graphic object on an axes other than the current axes,
which enables you to place plots on the axes of any previously created figures or another
axes in the current figure.

Example 9.2

This example demonstrates some of the functions concerned with plotting, while we also
look at the operation of a digital-to-analog converter (DAC).

As has been mentioned before, a music CD stores samples (at the rate fs ¼ 44,100
samples/sec) of music as a sequence of 16-bit binary numbers. When a CD is played, each
channel produces a 16-bit binary number every T ¼ 1/fs seconds ¼ 22.7 msecs. To hear the
music, each number sequence must be used to produce a continuous time signal.

A DAC receives a 16-bit number input, and it produces a constant output voltage that is
proportional to the 16-bit input until T seconds later, when it receives the next 16-bit number
input. This is depicted in Fig. 9.1. The input is x(nT), a discrete time signal, where n ¼ 0, 1,
2, . . . , which is called the discrete time index. At the start, when n ¼ 0, the first 16-bit
number x(0T) is received, and then T seconds later, the second 16-bit number x(1T) is
received, and so on. The output x(t) is a voltage in the range V�

Ref � xðtÞ � Vþ
Ref , and it is a

piecewise constant signal.

A music signal is a multi-frequency signal, typically consisting of a combination of
many sinusoidal signals, where the amplitude and frequency f (20 Hz < f < 20 KHz) of each
sinusoid changes with time. Prog. 9.1 retrieves a stereo music signal and plots a few mil-
liseconds of both channels of the music, as shown in Fig. 9.2.

% Program to plot a segment of music data

clc; clear all;

[song fs] ¼ wavread(’Thriller.wav’); T ¼ 1/fs; % get music WAV file

[npts nch] ¼ size(song); % get number of samples of each channel

while 1 % using a while loop to look at different music segments

nstart ¼ input(’enter start index: ’); % get index of start plot point

DACx(nT) x(t)

−VRef VRef
+

discrete time signal continuous time signal

Figure 9.1 Block diagram of a digital to analog converter.
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if nstart < ¼ 0, break; end % a way to exit the while loop

nend ¼ input(’enter end index: ’); % get index of end plot point

if nend < ¼ nstartþ1, break; end

left_channel_seg ¼ song(nstart:nend,1); % get left channel segment

right_channel_seg ¼ song(nstart:nend,2); % get right channel segment

n ¼ 0:nend-nstart; % plot index range

t ¼ 1e3*n*T; % plot time in milli-seconds

% use increased line width and red color and give plot a handle

left_ch ¼ plot(t,left_channel_seg,’linewidth’,1.5,’color’,’r’)

hold on % place additional graphic objects on the current axes

% use blue color and give plot a handle

right_ch ¼ plot(t,right_channel_seg,’linewidth’,1.5,’color’,’b’)

% add a legend box

legend(’left channel’,’right channel’,’location’,’southeast’)

set(gcf,’color’,’w’) % set figure background to white

% set axis to increased line width and grey background

set(gca,’linewidth’,2.0,’color’,[.8 .8 .8])

xlabel(’time - milliseconds’)

ylabel(’voltage’)

title(’segments of left and right channels of music’)

grid on

end

Program 9.1 Program to plot segments of both channels of music.

Notice that the plot of each channel is assigned to a handle (to be used later), and that
some line properties are set in the plot function argument. To place both channel plots on the
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Figure 9.2 Plot of segments of the left and right channels of music.
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same axes, while also specifying line width and color, the hold function is used. The syntax
options of the hold function are given by

hold on

This retains the current plot and certain axes properties so that subsequent graphing com-
mands add to the existing axes. If no current axes object exists before you call hold on,
MATLAB creates a new axes object and retains the default properties. However, some axes
properties change to accommodate additional graphic objects. For example, the limits of the
axes increase when required by the data. Hold on sets the NextPlot property of the current
figure and axes to add.

hold off

This resets axes properties to their default values before drawing new plots. Hold off
is the default, and it sets the NextPlot property of the current axes to replace.

hold all

This holds the plot and the current line color and line style so that subsequent plotting
commands do not reset these properties.

hold(axes_handle, ...)

This applies the hold to the axes identified by the handle axes_handle.
A legend also has several properties (Use doc legend to find more details about

these properties.). In Prog. 9.1, the default legend location is changed to ‘‘southeast’’. The
function gcf returns the current figure handle, and it is used to set the figure background
color to white. The function gca returns the current axes handle, and it is used to set the line
width of the axes border to 2.0 points and the background color to gray.

In addition to characters and numbers (with the int2str or num2str functions), you can
also include in the xlabel, ylabel, and title character strings other characters such as Greek
letters and relational operators by using escape characters. For example, if the x-axis in
Fig. 9.2 is instead in microseconds, the xlabel statement could be: xlabel(‘time - \mu sec-
onds’), where no space is necessary after the escape characters \mu to delimit them from the
following characters, and the label will appear as: time� mseconds.

If you want to zoom in on a segment of the music signal, for example, from 10 to 15
milliseconds over the entered sample index range, then place the following statement after
the left channel plot statement.

axis([10 15 -0.15 0.15]) % xmin ¼ 10, xmax ¼ 15, ymin ¼ -0.15 and ymax ¼ 0.15

To see all of the properties of the left channel plot graphic object, use

>> get(left_ch) % get all properties of the graphic object with the handle left_ch
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These properties are shown in Table 9.6. The left and right channel line plots are children of
the axes graphic object, which has the handle 173.0112. Some of these properties are
informational, while others can be changed with the set function. For example, you can add
data-point markers to the plot with the set function or by including the property name and
value in the argument list of the plot function. However, in Fig. 9.2 there would be too many
markers to see them as isolated objects.

The axes graphic object also has many properties, which can be obtained with

>> get(gca) % get the properties of the current axes

Some of the properties are given in Table 9.7. To access any particular property, use, for
example

>> get(gca,’FontSize’) % use the property name

ans ¼ 10

You can assign all of the axes properties to a scalar structure, where each axes property
name becomes a field name of the structure, with, for example,

>> axes_prop ¼ get(gca);

To access any property, use, for example,

>> axes_prop.Box

ans ¼ on

Table 9.6 Properties of the left channel plot graphic object

DisplayName: ‘left channel’ DeleteFcn: []
Annotation: [1x1 hg.Annotation] BusyAction: ‘queue’
Color: [1 0 0] HandleVisibility: ‘on’
LineStyle: ‘-’ HitTest: ‘on’
LineWidth: 1.5000 Interruptible: ‘on’
Marker: ‘none’ Selected: ‘off’
MarkerSize: 6 SelectionHighlight: ‘on’
MarkerEdgeColor: ‘auto’ Tag: ‘’
MarkerFaceColor: ‘none’ Type: ‘line’
XData: [1�1301 double] UIContextMenu: []
YData: [1�1301 double] UserData: []
ZData: [1�0 double] Visible: ‘on’
BeingDeleted: ‘off’ Parent: 173.0112
ButtonDownFcn: [] XDataMode: ‘manual’
Children: [0�1 double] XDataSource: ‘’
Clipping: ‘on’ YDataSource: ‘’
CreateFcn: [] ZDataSource: ‘’
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With the set function you can change any axes property. For example, to change the
x-axis tick locations, use the statement: set(gca,‘XTick’,[0 10 20 30]), or, for example,
set(gca,‘XTick’,linspace(0,30,11)).

To illustrate the activity of a DAC, the stairs function is useful. Prog. 9.1 was modified
to plot only the left channel, and the left channel plot statement was replaced by the fol-
lowing statement.

stairs(t,left_channel_seg,’LineWidth’,1.5,’color’,’k’)

The stairs function produces a piecewise constant continuous time plot, like the voltage
output of a DAC. The toolbar of the Figure Window includes a zoom feature, and it was
used to zoom in on a 2 millisecond time segment of the plot, as shown in Fig. 9.3.

In the Command Window, the following statement was executed.

>> gtext(’piece-wise constant continuous time signal’)

The gtext function, which you can also include in a script, causes MATLAB to place cross-
hairs on the Figure Window that can be moved with the mouse to locate where the character
string argument should be placed. Then, left-click the mouse, and the character string
appears at the current cross-hair location, while the cross-hairs disappear.

Table 9.7 Some properties of the axes graphic object

AmbientLightColor ¼ [1 1 1] 12
Box ¼ on 12.5
Color ¼ [0.8 0.8 0.8] 13
DrawMode ¼ normal 13.5
FontName ¼ Helvetica 14
FontSize ¼ [10] 14.5
GridLineStyle ¼ : 15
LineWidth ¼ [2] YLabel ¼ [177.003]
NextPlot ¼ add YAxisLocation ¼ left
TickLength ¼ [0.01 0.025] YLim ¼ [�0.15 0.15]
TickDir ¼ in YScale ¼ linear
Title ¼ [179.011] YTick ¼ [ (1 by 7) double array]
View ¼ [0 90] YTickLabel ¼
XLabel ¼ [176.003] �0.15
XAxisLocation ¼ bottom �0.1
XLim ¼ [10 15] �0.05
XScale ¼ linear 0
XTick ¼ [ (1 by 11) double array] 0.05
XTickLabel ¼ 0.1
10 0.15
10.5 Parent ¼ [1]
11 Type ¼ axes
11.5 Visible ¼ on
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Notice that the signal jumps from one constant value to another as when the next
16-bit binary number is received by the DAC. Discontinuities in the DAC output signal
cause the signal to contain very high frequency sinusoidal components. These components
are removed (almost entirely) with a low-pass filter, such as, for example, the circuit in
Fig. 6.13, to produce an analog signal that is perceived to be substantially identical to the
analog music signal that was sampled to make the CD.

As you may have noticed, each graphic object has a large number of properties,
each with options that are too numerous to describe them all here. At first, this can be
overwhelming. However, you should now be able to use help and doc to better
understand the possibilities for customizing a graphic. Some trial and error may occur.
Once you become accustomed to the intent of some of the graphic functions and their
syntax options, the effort required to utilize the options becomes easier and worthwhile.
Also, you should use Product Help to look up object properties and functions by
category and alphabetical listing. For example, with

Product Help ! Object Properties ! Axes! Core Objects ! Line

you can learn more about the properties of line graphic objects.
If you want a hardcopy of a graphic, then use print in command or function mode. The

syntax options are given by

print % send current figure to your current printer, same as print(gcf)

print(’-fh’) % send figure with handle h to your current printer

print -device -options % print device and options to control some characteristics

function mode: print(’-device’,’-options’)
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Figure 9.3 Illustration of the operation of a digital-to-analog converter.
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print -device -options filename % specify a filename

function mode: print(’-device’,’-options’,’FileName’)

There are many device options and options to control the output. For example,

print(h,’-dpsc’,’figure_2.ps’) % save figure in color as a post script file

% save figure as a 24-bit bit map using 300 dpi resolution

print(h,’-dbmp’,’-r300’,’figure_1.bmp’)

print(gcf,’-dmeta’) % send figure to clipboard in metafile format

% send figure to clipboard in bitmap format using screen resolution

print(gcf,’-dbitmap’,’-r0’)

Use doc print to see the innumerable possibilities for printing and exporting graphic objects.

9.2.2 Multiple 2-D Plots
You can place many axes on a figure or place an axes on another axes to insert a plot within
another plot.

Example 9.3

Prog. 9.2 uses the built-in function axes to place four axes objects on a figure, where each
axes object is assigned a handle for later reference. Fig. 9.4 is the program output.

clear all; clc; clf

fig_1 ¼ figure(1); % create a figure graphic object and assign a handle

% figure(1) is now the current figure

ax_1 ¼ axes(’Position’,[0.55,0.55,0.4,0.4]); % place axes in first quadrant

% position vector format is [left bottom width height]

% ax_1 is now the current axes

angle ¼ linspace(-pi,pi,61); % Xdata used for example plotting

y ¼ sin(angle); % example Ydata

plot_1 ¼ plot(angle,y) % assign this plot to a handle

set(ax_1,’XTick’,-pi:pi/2:pi) % locate tick marks

set(ax_1,’XTickLabel’,{’-pi’,’-pi/2’,’0’,’pi/2’,’pi’}) % annotate tick marks

% notice that a cell array is used here

grid on

xlabel(’-\pi \leq \theta \leq \pi’) % using stream modifiers

% for example, \theta appears as � and \leq appears as �
ylabel(’sin(\theta)’)

title(’Plot of sin(\theta)’)

% locate text that points to the data point (-pi/4, sin(-pi/4))

text(-7*pi/32,sin(-pi/4),’\leftarrow sin(-\pi/4)’,...

’HorizontalAlignment’,’left’)
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% Change the line color to red and set the line width to 2 points

set(plot_1,’Color’,’red’,’LineWidth’,2)

gtext(’first axes’) % place text in the current figure

% with the mouse you can specify the location of the text

ax_2 ¼ axes(’Position’,[0.05,0.55,0.4,0.4]); % second quadrant

% ax_2 is now the current axes

grid on

gtext(’second axes’)

set(ax_1,’LineWidth’,2) % demonstrates referral to a previously created axes

ax_3 ¼ axes(’Position’,[0.1,0.1,0.3,0.3],’LineWidth’,2); % third quadrant

plot(angle,y) % example plot in current axes

grid on

gtext(’third axes’)

ax_4 ¼ axes(’Position’,[0.6,0.1,0.3,0.3]); % fourth quadrant

gtext(’fourth axes’)

Program 9.2 Program to demonstrate placing multiple axes on a figure.

move cross-hairs
with mouse

click to edit graphic objects properties

Figure 9.4 A four axes figure.
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Notice that stream modifiers (also called escape characters) are used extensively in the
character strings of text objects on the first axes to include Greek letters and mathematical
symbols. To customize a plot, you can use stream modifiers in the character sequence of a
string property in a text graphic object and in the string arguments of functions such as title,
xlabel, and ylabel. To see an extensive table of stream modifiers use doc text, and then
click, ‘‘Text Properties’’. Also, see the, ‘‘Annotating Graphics’’, subsection of the, ‘‘Gra-
phics’’ section in the MATLAB Help Product menu.

The subplot function provides another way to place multiple axes on a figure. Its syntax
is given by

subplot(m,n,p)

which creates m rows by n columns of axes in the current figure, where p ¼ 1, . . . , mn
counts the axes starting on the left of and along the top row, then the next row and so on.
If the pth axes already exists, then subplot(m,n,p) makes the pth axes the current axes. Use
help subplot for more syntax options.

Example 9.4

For convenience, the transfer functions from the input vsðtÞ to the output vðtÞ of the circuits
in Fig. 6.11 (a band-pass filter) and Fig. 6.13 (a low-pass filter) are repeated here.

HBPðjwÞ ¼ jwRC
1� LCw2 þ jwRC

ð9:1Þ

HLPðjwÞ ¼ R
R� w2L1RC þ jwðL1 þ L2Þ � jw3L1L2C

ð9:2Þ

Let us study the frequency response (magnitude and phase angle versus frequency) of
these filters from different points of view. Prog. 9.3 uses the function plotyy to plot on
the same axes the magnitude and phase angle, which have different scales, of a transfer
function. The left y-axis is used for the magnitude, and the right y-axis is used for the
phase angle. The subplot function is used to place the frequency response plots of the
band-pass filter and the low-pass filter on the same figure. The program output is shown
in Fig. 9.5. You can use color from black to other colors to distinguish the left and right
axes and one plot from another. You can insert legends by clicking the legend button in
the toolbar of the Figure Window. You can drag the legend box to a preferred location
with the mouse.
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% Program to demonstrate using the subplot function

clear all; clc; close all

f ¼ linspace(0,2e4,501);w ¼ 2*pi*f;f_KHz ¼ f/1000; % frequency range

R ¼ 330;L ¼ 3*11e-3;C ¼ 0.03e-6 % circuit component values from Example 6.9

HBP_num ¼ j*w*R*C;

HBP_den ¼ 1-L*C*w.*w+j*w*R*C;

HBP ¼ HBP_num./HBP_den; % band-pass filter frequency response

HBP1_magnitude ¼ abs(HBP); % transfer function magnitude

HBP1_angle ¼ pi/2 - unwrap(angle(HBP_den)); % transfer function angle

% the unwrap function is used to undo phase jumps by pi/2 and pi

figure(1) % create a figure window

%

subplot(2,1,1) % a two row by one column array of subplots, first subplot

% plot magnitude and phase angle vs frequency

% assign handles to the left and right axes and to the two plots

% ax_BP, a 1x2 matrix, gets the left and right axes handles

[ax_BP h_left h_right] ¼ plotyy(f_KHz,HBP1_magnitude,f_KHz,HBP1_angle);

set(h_left,’LineWidth’,1.5,’Color’,’k’) % set plot line width and color

set(h_right,’LineWidth’,1.5,’Color’,’k’)

% get handle of left axis label, Ylabel, and set character string

set(get(ax_BP(1),’Ylabel’),’String’,’magnitude’,’Color’,’k’);

set(ax_BP(1),’YColor’,’k’) % set left axis color

% get handle of right axis label, Ylabel, and set character string

set(get(ax_BP(2),’Ylabel’),’String’,’phase angle - radians’,’Color’,’k’)

set(ax_BP(2),’YColor’,’k’) % set right axis color

set(ax_BP(2),’YTick’,-pi:pi/2:pi) % locate right axis tick marks

set(ax_BP(2),’YTickLabel’,{’-pi’;’-pi/2’;’0’;’pi/2’;’pi’}) % annotate

title(’BP Filter Magnitude and Phase Angle’)

xlabel(’frequency - K Hz’)

gtext(strcat(’C ¼ ’,num2str(0.03),’ \mu F’)) % use mouse to place text

gtext(’Phase’)

grid on; hold all

C ¼ 0.005e-6; % plot magnitude for a different capacitor value

HBP_num ¼ j*w*R*C;

HBP_den ¼ 1-L*C*w.*w+j*w*R*C;

HBP ¼ HBP_num./HBP_den; % band-pass filter frequency response

HBP2_magnitude ¼ abs(HBP); % transfer function magnitude

plot(f_KHz,HBP2_magnitude,’k’,’LineWidth’,1.5)

gtext(strcat(’C ¼ ’,num2str(0.005),’ \mu F’)) % use mouse to place text

%

subplot(2,1,2) % second subplot

R ¼ 1;L1 ¼ 3/2;L2 ¼ 1/2;C ¼ 4/3; % circuit component values from Example 6.10

fc ¼ 5e3;wc ¼ 2*pi*fc;
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% change component values to increase bandwidth to wc

% this requires a knowledge of analog filter design

L1 ¼ L1/wc;L2 ¼ L2/wc;C ¼ C/wc;

HLP_den ¼ (R-w.*w*L1*R*C+j*w*(L1+L2)-j*w.^3*L1*L2*C);

HLP ¼ R./HLP_den; % low-pass filter frequency response

HLP_magnitude ¼ abs(HLP); HLP_angle ¼ -unwrap(angle(HLP_den));

[ax_LP h_left h_right] ¼ plotyy(f_KHz,HLP_magnitude,f_KHz,HLP_angle);

set(h_left,’LineWidth’,1.5,’Color’,’k’)

set(get(ax_LP(1),’Ylabel’),’String’,’magnitude’,’Color’,’k’);

set(ax_LP(1),’YColor’,’k’)

set(h_right,’LineWidth’,1.5,’Color’,’k’)

set(get(ax_LP(2),’Ylabel’),’string’,’phase angle - radians’,’Color’,’k’)

set(ax_LP(2),’YColor’,’k’)

set(ax_LP(2),’YTick’,-3*pi/2:pi/2:0) % locate tick marks

set(ax_LP(2),’YTickLabel’,{’-3pi/2’;’-pi’;’-pi/2’;’0’}) % annotate

title(’LP Filter Magnitude and Angle’)

xlabel(’frequency - K Hz’)

grid on

gtext(strcat(’Band Width ¼ ’,int2str(5),’ KHz’)) % use mouse to place test

gtext(’Phase’)

Program 9.3 Program to plot the frequency response of a band-pass and a low-pass
filter.

Note that by changing C in the circuit of Fig. 6.11, we can select the frequency at which
the BP filter is most responsive. The pass-band of a filter is defined to be the frequency
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Figure 9.5 Frequency response of a band-pass and a low-pass filter.
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range over which the magnitude frequency response is greater than kHðjwÞk max=
ffiffiffi

2
p

. The
pass-band of HBPðjwÞ (C ¼ 0:03 mF) extends from about 4.3K Hz to 6K Hz, and the pass-
band of HLPðjwÞ extends from 0K Hz to 5K Hz. The frequency range of the pass-band is
called the bandwidth (BW). The bandwidth of the band-pass filter is BW ¼ (6 – 4.3) ¼
2.7K Hz, and the bandwidth of the low-pass filter is BW ¼ 5K Hz.

Ideally, within the pass-band of a filter the magnitude frequency response should be
near 1.0 (0 dB), and then input sinusoids having frequencies within the pass-band will not
have their amplitudes diminished in the output. Also, outside of the pass-band of a filter, the
magnitude frequency response should be near 0.0, and then input sinusoids having fre-
quencies outside of the pass-band will not (almost not) contribute to the output. There are
many methods to design such filters and a variety of electronic components with which to
build them. The circuits we have analyzed are called analog filters, and they are only
simple examples of the many possibilities.

Another perspective about the behavior of a filter can be obtained with a polar plot of its
transfer function. Prog. 9.4, which was appended to Prog. 9.3, uses the function polar to
obtain the polar plots shown in Fig. 9.6.

% Program to demonstrate using a polar plotting function

figure(2) % start a new figure

subplot(1,2,1) % first subplot

polar(HBP1_angle,HBP1_magnitude,’k’) % plot magnitude vs angle

title(’BP Filter Magnitude vs Angle’)

subplot(1,2,2) % second subplot
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Figure 9.6 Polar plots of the frequency response of a band-pass and a low-pass filter.
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polar(HLP_angle,HLP_magnitude,’k’)

title(’LP Filter Magnitude vs Angle’)

Program 9.4 Program to obtain polar plots.

The polar plot of HBPðjwÞ starts at the origin, where w ¼ 0, kHBPðjwÞk ¼ 0, and
ffHBPðjwÞ ¼ p=2. Then, as w increases, kHBPðjwÞk increases until kHBPðjwÞk ¼ 1, where
ffHBPðjwÞ ¼ 0. As w continues to increase, kHBPðjwÞk decreases and ffHBPðjwÞ continues to
decrease until ffHBPðjwÞ ! �p=2. The polar plot of HLPðjwÞ starts at kHLPðjwÞk ¼ 1 and
ffHLPðjwÞ ¼ 0, where w ¼ 0. Then, as w increases, kHLPðjwÞk decreases until
kHLPðjwÞk ! 0, where ffHLPðjwÞ ¼ �3p=2.

Example 9.5 demonstrates how to use the function ginput to acquire the location within
the coordinates of the current axes of cross-hairs that you can position with the mouse. The
syntax for the ginput function is given by

[X Y] ¼ ginput(N)

When MATLAB executes this function, it places cross-hairs on the Figure Window, which
can be moved around with the mouse. When you left-click the mouse, the coordinates of the
cross-hairs are stored in the vectors X and Y until a total of N points have been acquired. X
and Y will be scalars, if N ¼ 1. If instead, the statement is: [X Y] ¼ ginput, then you can
acquire points indefinitely until the enter key is depressed.

Given a set of coordinates (X,Y), X(k), k ¼ 1, . . . , N and Y(k), k ¼ 1, . . . , N, the
function line can be used to draw a line between the points (X(1),Y(1)) and (X(2),Y(2)), and
then between (X(2),Y(2)) and (X(3),Y(3)) and so on, connecting all the points in the set of
coordinates. The syntax for this function is given by

line(X,Y,’Property1_Name’,property1_value, ...)

With the ginput and line functions you can write a script to create a graphic object with a
mouse. If X and Y are N byM matrices, then the function drawsM lines using corresponding
columns of X and Y for each line.

Example 9.5

This example demonstrates the time-domain behavior of a serial adder. Prog. 9.5 uses the
functions ginput and line to enable the program user to enter two 7-bit numbers,
a ¼ a6a5a4a3a2a1a0 and b ¼ b6b5b4b3b2b1b0, with the mouse. Then, seven serially con-
nected full-adders are used to find the 8-bit sum, s ¼ s7s6s5s4s3s2s1s0, of the numbers. The
output of the adder is displayed in time sequence starting with the least significant bit (LSB)
s0 of the sum to demonstrate that an adder designed this way cannot find, for example, the
sum bit s1 until after the carry bit c1 has been generated by the full-adder that produced s0.

9.2 Plots 369



Therefore, the most significant bit (MSB) s7 of the sum cannot be known until logic signals
have propagated serially through all full-adders. Faster adder logic circuits use carry-look-
ahead generators to avoid this long propagation delay.

% Use 7 full-adders connected serially to add two 7-bit numbers

% Bits are entered with the ginput function and the mouse

% The carry and sum bits are found serially and plotted in time sequence

clear all; clc, close all

N_bits ¼ 8; % use 8 bits to account for the sum most significant bit (MSB)

X_labels ¼ {’bits’,’bits’,’time - \mu seconds’,’time - \mu seconds’};

Y_labels ¼ {’a’,’b’,’carry’,’sum’}; % using cell arrays for labels

y ¼ zeros(2,N_bits); % preallocate space

figure(1)

for k ¼ 1:4 % set up four axes

ax_h(k) ¼ subplot(4,1,k); % get a handle for each axes

axis([0 N_bits 0 1.05]) % axes limits

set(gca,’XTick’,0:1:N_bits) % place x-axis tick marks

set(gca,’XTickLabel’,N_bits:-1:0) % place x-axis tick mark labels

set(gca,’YTick’,[0 1])

set(gca,’YTickLabel’,{’0’ ’1’}) % label could be [0 1]

grid on

xlabel(X_labels(k)); ylabel(Y_labels(k)) % label axes

end

for k ¼ 1:2 % get two 7-bit binary numbers

axes(ax_h(k))

y(k,1) ¼ 0; % set MSB to zero

% draw MSB with the line function

line([0 1],[0 0],’LineWidth’,1.5,’Color’,’r’)

for n ¼ 2:N_bits % get 7 bits of each number

[x,y(k,n)] ¼ ginput(1); y(k,n) ¼ round(y(k,n)); % use mouse input

if n>1 && y(k,n) ~= y(k,n-1) % draw 0 to 1 or 1 to 0 transition

line([n-1 n-1],[0 1],’LineWidth’,1.5,’Color’,’r’)

end

% draw line at bit level

line([n-1 n],[y(k,n) y(k,n)],’LineWidth’,1.5,’Color’,’r’)

end

end

y=fliplr(y); % make y(k,1) the LSB and y(k,N_bits) the MSB

s ¼ zeros(1,N_bits);C ¼ zeros(1,N_bits); % preallocate space

for n ¼ 1:N_bits-1 % implement 7 full adders

X ¼ xor(y(1,n),y(2,n));

s(n) ¼ xor(C(n),X); % sum bit

C(n+1) ¼ (y(1,n) && y(2,n)) || (C(n) && X); % carry to next column

end
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s(N_bits) ¼ C(N_bits); % MSB of sum equals the carry out bit

s ¼ fliplr(s); C ¼ fliplr(C); % reverse again

for n ¼ N_bits:-1:1 % start plot with LSB

axes(ax_h(3)); % carry plot

line([n n-1],[C(n) C(n)],’LineWidth’,1.5,’Color’,’b’) % draw bit

pause(1) % pause to simulate serial activity of adder

if n < N_bits && C(n) ~= C(n+1) % if carry bit changed, draw transition

line([n n],[0 1],’LineWidth’,1.5,’Color’,’b’)

end

axes(ax_h(4)); % sum plot

line([n n-1],[s(n) s(n)],’LineWidth’,1.5,’Color’,’b’) % draw bit

if n < N_bits && s(n) ~= s(n+1) % if sum bit changed, draw transition

line([n n],[0 1],’LineWidth’,1.5,’Color’,’b’)

end

end

Program 9.5 Program to simulate the activity of a serial adder.

click mouse to
place logic 1

progress of serial
adder activity

Figure 9.7 Entry of two 7-bit numbers and snapshot of time activity of serial adder.
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Fig. 9.7 shows two screen captures. On the left, the bit b1 is about to be entered. On the
right, a screen shot was taken while the carry and sum bits were being produced in time
sequence. Such diagrams are called timing diagrams.

Within Prog. 9.5 the function pause was used to slow down the display of the adder
output. Notice that sum bit s5 cannot become valid until carry bit c5 becomes valid.

Example 9.6

In this example, the function compass will be used to plot the 2n roots of

x2n ¼ l ð9:3Þ
where l ¼ 1; j;�1, and �j.

Let us start with l ¼ 1, and get

x2n ¼ 1 ¼ e jðk2pÞ; k ¼ 0; 1; . . .

and therefore, the roots xk are given by

xk ¼ e jðk2pÞ=2n ¼ e jðkpÞ=n; k ¼ 0; 1; . . .; 2n� 1 ð9:4Þ
Notice that the magnitude of each root is kxkk ¼ 1. Also, for k ¼ 2n we get the same root as
for k ¼ 0, and therefore, there are a total of 2n roots given by (9.4).

For l ¼ j, we get

x2n ¼ j ¼ e jp=2 ¼ e jðp=2þk2pÞ; k ¼ 0; 1; . . .

xk ¼ e jðp=2þk2pÞ=2n ¼ e jððp=4þkpÞ=nÞ; k ¼ 0; 1; . . .; 2n� 1
ð9:5Þ

For l ¼ �1, we get

x2n ¼ �1 ¼ e jp ¼ e jðpþk2pÞ; k ¼ 0; 1; . . .

xk ¼ e jðpþk2pÞ=2n ¼ e jððp=2þkpÞ=nÞ; k ¼ 0; 1; . . .; 2n� 1
ð9:6Þ

And, for l ¼ �j, we get

x2n ¼ �j ¼ e j3p=2 ¼ e jð3p=2þk2pÞ; k ¼ 0; 1; . . .

xk ¼ e jð3p=2þk2pÞ=2n ¼ e jðð3p=4þkpÞ=nÞ; k ¼ 0; 1; . . .; 2n� 1
ð9:7Þ

Prog. 9.6 uses these formulas for the roots, and plots them with the function compass.
As a check of (9.3), the function poly is used for the case l ¼ �j.
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% Program to find and plot the roots of x^(2n) ¼ lambda,where

% lambda ¼ 1, j, -1 and -j

clear all; clc; close all

n ¼ 6; % there will be 12 roots

k ¼ 0:2*n-1; % index for roots

offset ¼ [0 pi/4 pi/2 3*pi/4]; % rotation for each lambda

lambda ¼ {’ 1 ’ ’ j ’ ’ - 1 ’ ’ - j ’}; % cell array of 4 values of lambda

figure(1)

for m ¼ 1:4 % 4 values of lambda

xk ¼ exp(j*(offset(m)+k*pi)/n); % 2n roots

subplot(2,2,m);

compass(xk) % plot 2n roots, same as compass(real(xk),imag(xk))

Title ¼ strcat(’n ¼ ’,int2str(n),’, \lambda ¼ ’,lambda(m));

title(Title)

end

poly(xk) % check for the case lambda ¼ -j

Program 9.6 Program to find and plot the 2n roots of x2n ¼ l, l ¼ 1, j, �1 and �j.
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Figure 9.8 Demonstration of using the compass plotting function.
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The following coefficients are for the case l ¼ �j.

ans ¼ Columns 1 through 4 1.0000 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i

Columns 5 through 8 -0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 -

0.0000i

Columns 9 through 12 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i

0.0000 - 0.0000i

Column 13 0.0000 + 1.0000i

Fig. 9.8 shows the 2n ¼ 12 roots for each value of l, where the wider arrow gives the
root for k ¼ 0.

Notice that when l is real, the roots are symmetrical about the vertical axis.

9.3 Edit GUI

The functions set and gca and handle are useful to specify figure properties within a pro-
gram and customize a graphic. A particularly convenient way to enhance and customize a
graphic is with the tools that you can access from the Figure Window.

To illustrate the possibilities, let us work with an example figure that was produced with
Prog. 9.7. The output of this program is shown in Fig. 9.9. There are three plots, which were
obtained with the plot, scatter, and stairs plotting functions. This program does not include
any property specifications other than default plot properties. Recall that the plot function
automatically creates figure and axes graphic objects.

% Example figure

clear all; clc; close all

f ¼ 1e3; w ¼ 2*pi*f; T0 ¼ 1/f; % frequency and period

N ¼ 1000; T ¼ T0/N; fs ¼ 1/T; % number of samples, time increment, sampling rate

n ¼ 0:2*N; t ¼ n*T; tmsec ¼ 1e3*t; % time over two cycles, time in milliseconds

x ¼ sin(w*t); % signal sampled at the rate fs

plot(tmsec,x); % plot signal

N1 ¼ 10; T1 ¼ T0/N1; fs1 ¼ 1/T1; % much lower sampling rate

n1 ¼ 0:2*N1; t1 ¼ n1*T1; t1msec ¼ 1e3*t1;

x1 ¼ sin(w*t1); % signal sampled at the rate fs1

hold all

scatter(t1msec,x1) % sampled points

stairs(t1msec,x1) % create a continuous time signal

Program 9.7 Program to produce plots of a signal, sampled signal, and reconstructed
signal.
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Figure 9.9 Plot of a signal, signal samples, and a reconstructed continuous time signal.

Figure 9.10 Edit, View, Insert, and Tools Menus in the Figure Window.
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In Prog. 9.7, the function xðtÞ ¼ sinðw tÞ, w ¼ 2pð1000Þ rad/sec, is sampled at a high
sampling rate, fs ¼ 106 samples/sec, to obtain a plot that looks like a continuous time signal.
Then, xðtÞ is sampled at the rate fs ¼ 104 samples/sec to obtain the sample points plotted
with the function scatter. The stairs function is then used to reconstruct a piecewise con-
stant continuous time signal. The timescale in this figure is in milliseconds.

Also shown in Fig. 9.9 is the File Menu, where you can print the figure or save it
to print, copy and paste or edit later. If you want to print it, then preview the figure to
see what a printed version will look like, and possibly change the size, margins, location,
and more.

Fig. 9.10 shows four menus that you can access from the Figure Window. To paste the
figure into some document, select the Copy Figure option in the Edit Menu. First, let us edit
the figure. Selecting Edit Plot in the Tools Menu opens the window shown in Fig. 9.11,
where more properties, shown in the window on the left (called the Inspector Window), can
be accessed by clicking the More Properties button. Also, from the View Menu other win-
dows are included.

In Fig. 9.11, the axes are selected by clicking on the axes name in the Browser Window.
Then, a corresponding Property Window opens. You can see that the X-axis and Y-axis
grid boxes have already been checked, and that an X-axis label has already been entered.

figure pallate window property edit window

browser window

click to change line width click to enable/disable edit

Figure 9.11 Axes properties and figure edit windows.
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To enter a Y-axis label, click the Y-axis tab, and then type, for example, x(t) ¼ sin(\omegat),
which will set the Y-axis label to: x(t) ¼ sin(wt). You can: enter a title, change the axes line
and background colors, change the tick mark locations and tick labels by clicking the Ticks
button, change the linear scale to, for example, a log scale, select a font and font size, enter a
figure name, and much more. All axes properties are shown in the window on the left,
where, for example, the line width can be changed.

From the Figure Palette Window and the tool bars you can insert: text with arrows, text
boxes, a legend, and more. Use the zoom and pan features to display a portion of a plot. You
can also remove and add back any plot by clicking the check boxes in the Browser Window.
In Fig. 9.12, we will look at changing some plot properties.

Fig. 9.12 shows the result of the axes edit. Notice that the axes name in the Browser
Window is the same as the title. To edit a plot, select it by clicking on its symbol or name in the
Browser Window. You can give a plot a name by typing it into the Display Name box shown in
Fig. 9.12. A graphic object can also be selected by clicking on it. Properties of the line (line
width and color were changed to 1.5 and black, respectively) and scatter (marker color was
changed to red) plots have already been changed. In Fig. 9.12, edit of the stairs plot, which is
highlighted in the Browser Window, is in progress. The line width will be changed to 1.5.

Fig. 9.13 shows the final result, where a legend (click icon on the toolbar) has been
inserted, and the data cursor (click icon on the tool bar) was used to show the coordinates
of a point. Also, the axes background color was changed to off-white for better contrast
against white paper.

Figure 9.12 Edit of plots.
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Figure 9.13 Example of customizing a figure.
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Figure 9.14 Creating a figure from the Workspace Window.
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If you are not certain about how you want to display data, then start with the data in the
Workspace Window. Let us work with data generated by the following script. After this
script has executed, the Command Window will be empty, and the Workspace Window will
show the vectors defined by the script.

clear all; clc;

t ¼ 0:0.001:1; % time points

x ¼ sin(10*pi*t); % signal

noise ¼ randn(1,length(x)); % additive Gaussian noise

y ¼ x + noise; % signal plus noise

In the Workspace Window, highlight a data vector, for example, x. Then, click the
plotting function menu, and scroll to find the kind of plot you want to create. Click the
function plot, and MATLAB will draw a plot, and generate a MATLAB plotting statement
in the Command Window. This activity is shown in Fig. 9.14.

Now, you can edit the plot using all of the tools shown in Figs. 9.10–9.12. Or, you can
also edit the plot with commands from the Command Window. First, the plot statement
produced by MATLAB is reused and edited to plot x versus t. Some commands are shown in
Fig. 9.15. As each statement is entered, the plot changes.

From the Workspace Window you can also create a figure with multiple line plots
versus a designated variable. For example, let us create a figure that contains both x and y

Figure 9.15 MATLAB commands used to edit a figure.
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versus t. To do this, first highlight the t vector in the Workspace Window. While depressing
the Control Key of the keyboard, use the mouse to highlight one or more (x and y data
vectors in this case) other data vectors. Then, open the plot options menu in the Workspace
Window, click on the, ‘‘all plots’’, tab (see Fig. 9.14.), scroll down to the, ‘‘plot as
multiple series versus first input’’, option and click it. MATLAB will then produce a
figure like the one shown in Fig. 9.15, except for the labels, which you can then edit in as
before. Notice all of the other possible plot types that can be generated from the Workspace
Window.

9.4 Color Map

An important property of a graphic object is the color of its parts, not only to make the
graphic object more interesting, but also to better communicate the meaning of its parts and
make the object easier to understand.

The function colormap is concerned with the colors used by filled parts of a
figure graphic object. You cannot apply color maps to line plots. The syntax options are
given by

colormap(map)

colormap(’default’)

cmap ¼ colormap

colormap(ax,...) % uses the figure corresponding to axes ax

For example, if the statement: C ¼ colormap is executed after a figure object has been
created, then C is assigned a 64� 3 matrix, where each row C(k,:), k ¼ 1, . . . , 64, is a color
vector of RGB intensity weights, each ranging from 0 to 1. For the default colormap, the
color vectors range from C(1,:) ¼ [0 0 0.5625] to C(32,:) ¼ [0.5000 1.0000 0.5000], and to
C(64,:) ¼ [0.5000 0 0]. A row index of C corresponds to a particular color.

Generally, a color map C is an m� 3 matrix of color vectors. By defining a color map
matrix C, you can design your own color scheme with the statement: colormap(C). Or, you
can use the default color scheme with: colormap(‘default’). MATLAB includes a folder of
color maps described by:

● autumn varies smoothly from red, through orange, to yellow.
● bone is a grayscale color map with a higher value for the blue component.
● colorcube contains as many regularly spaced colors in RGB color space as possible,

while attempting to provide more steps of gray, pure red, pure green, and pure blue.
● cool consists of colors that vary smoothly from shades of cyan and to shades of

magenta.
● copper varies smoothly from black to bright copper.
● flag consists of the colors: red, white, blue, and black.
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● gray returns a linear grayscale color map.
● hot varies smoothly from black through shades of red, orange, and yellow, to white.
● hsv varies the hue component of the hue-saturation-value color model.
● jet ranges from blue to red, and passes through the colors: cyan, yellow, and orange.
● lines produces a color map of colors specified by the axes ColorOrder property.
● pink contains pastel shades of pink.
● prism repeats the six colors red, orange, yellow, green, blue, and violet.
● spring consists of colors that are shades of magenta and yellow.
● summer consists of colors that are shades of green and yellow.
● white is an all white monochrome color map.
● winter consists of colors that are shades of blue and green.

You can apply any of these standard color maps with the statement, for example, colormap
(cool(128)), which applies a color matrix of 128 color vectors of the cool type. To see the
colors of a color map, use the function colorbar. For example, the following statements
produce the plots shown in Fig. 9.16.

>> x ¼ rand(1,1e6); % get random numbers

>> n_bins ¼ 10; bin_count ¼ hist(x,n_bins); % count points in n_bins bins

>> pie(bin_count); colorbar; % plot pie chart and display default colorbar

>> colormap(’summer’); % change colormap

Although you can select the color of a graphic object with the function colormap,
MATLAB automatically uses the default color map. Another way to select a color map
is with

Edit ! Colormap

right click to adjust hue

Figure 9.16 Pie chart with default colormap (left) and summer colormap (right).
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in the Figure Window. This will open the Colormap Editor Window, where you can specify
one of the many standard color maps and adjust color hue.

Sometimes color can show a data or operation property better than any other way. For
example, the following statements produce the plots shown in Fig. 9.17. The left image
shows that the elements in the matrix x are randomly distributed numbers and neighboring
elements seem to be unrelated, and the right image shows that neighboring elements in the
matrix inverse of x are related.

>> clear all; clc; rng(’default’); % reset random number generator

>> figure(1)

>> N ¼ 10; x ¼ rand(N); % N by N random matrix

>> imagesc(x); axis square; create image of colored points

>> xlabel(’matrix row index’); ylabel(’matrix column index’);

>> figure(2)

>> y ¼ inv(x);

>> imagesc(y); axis square; % image of random matrix inverse

>> xlabel(’matrix row index’); ylabel(’matrix column index’);

9.5 3-D Plots

With the 3-D plotting functions provided by MATLAB you can produce line objects, solid
objects, contour maps, and more, using a variety of coloration methods. You can control the
viewpoint, rotate, zoom out or in on objects and place multiple objects on a figure.

9.5.1 3-D Line Plots
The plot3 function plots lines in a three-dimensional (3-D) space with coordinates along the
x, y and z axes. Its syntax options are given by
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Figure 9.17 Images of a random matrix (left) and its matrix inverse (right).
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plot3(X1,Y1,Z1, ..., XN,YN,ZN)

plot3(X1,Y1,Z1,LineSpec, ... , XN,YN,ZN,LineSpec)

plot3(...,’PropertyName’,PropertyValue,...)

h ¼ plot3(...)

where, Xk, Yk and Zk, k ¼ 1, . . . , N, are vectors or matrices, and all other arguments are
used in the same way as with the two-dimensional plot functions.

Example 9.7

Let us plot again the frequency response of the band-pass filter that was studied in Example
9.4, where the transfer function is given in (9.1). The following statement was appended to
Prog. 9.3 to save the frequency response calculations.

save(’BandPass.mat’,’HBP’,’w’)

The frequency response shown in Fig. 9.5 consists of two plots, the magnitude and the
phase angle versus frequency. Fig. 9.6 shows the magnitude and phase angle, but not
explicitly the frequency. Prog. 9.8 uses the function plot3 to plot the frequency response,
where the real and imaginary parts of HBPðjwÞ are plotted along the x-axis and y-axis,
respectively, versus frequency along the z-axis. The functions xlim, ylim, and zlim are used
to get the limits of each axis. The function view is used to rotate the figure to see the plot
from a preferred viewpoint. You can also rotate the figure by clicking on the rotate icon in
the Figure Window toolbar. Then, drag the figure with the mouse to a preferred orientation.
The result is shown in Fig. 9.18.

% plot real and imaginary parts of the frequency response versus frequency

clear all; clc; close all

% get band-pass filter frequency response calculations from Example 9.4

load(’BandPass.mat’); % get data: HBP and w

f ¼ w/(2*pi*1000); % convert to KHz

X ¼ real(HBP); % plot real part along x-axis

Y ¼ imag(HBP); % plot imaginary part along y-axis

plot3(X,Y,f,’linewidth’,1.5) % plot frequency along z-axis

hold on

origin ¼ zeros(2,1); % used to make axes lines stand out

plot3(xlim’,origin,origin,’k’,’Linewidth’,2) % x-axis

plot3(origin,ylim’,origin,’k’,’Linewidth’,2) % y-axis

plot3(origin,origin,zlim’,’k’,’Linewidth’,2) % z-axis

[max_value index_max] ¼ max(abs(HBP)); % locate maximum magnitude point

% plot a line with length equal to maximum magnitude of HBP

plot3([0 X(index_max)]’,[0 Y(index_max)]’,[f(index_max) f(index_max)]’,...

’LineWidth’,2,’Color’,’r’,’Marker’,’o’,’MarkerEdgeColor’,’g’)
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grid on;

% view at 60 degrees azimuth (counter clockwise rotation about the z-axis

% starting at the x-axis) and 15 degrees elevation (up from the x-y plane)

view(60,15)

xlabel(’x-axis, real part’)

ylabel(’y-axis, imaginary part’)

zlabel(’z-axis, f - KHz’)

title(’Frequency Response of Band-Pass Filter’)

Program 9.8 Program to plot the frequency response of a band-pass filter.

The frequency response HBPðjwÞ starts at the origin, where w ¼ 0, and moves into the first
quadrant of the x–y plane, where the phase angle is positive, until it reaches the maximum
value of its magnitude, which is the length of the red line. Then, as w ! 1, x! 0 and
y! 0.
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Figure 9.18 Snapshot of tracing the frequency response of a band-pass filter.
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Notice that editing plots with built-in functions and tools within the Figure Window is
done in the same way as editing 2-D plots. In fact, MATLAB actually creates 2-D plots as
3-D plots using view(0, 90).

9.5.2 3-D Surface Plots
A single-valued surface in a 3-D Cartesian space is defined by

z ¼ f ðx; yÞ ð9:8Þ
where z, the height, depends on x and y in the plane of points ðx; yÞ. Several MATLAB
functions concerned with surface plotting are given in Table 9.8.

A basic surface plotting function is the function mesh with syntax options given by

mesh(X,Y,Z)

mesh(Z)

mesh(...,C)

mesh(...,’PropertyName’,PropertyValue,...)

mesh(axes_handle,...)

meshc(...)

meshz(...)

h ¼ mesh(...)

Table 9.8 Some Built-in functions concerned with plotting

Function Brief description

hidden on Sets hidden line removal on for meshes in the current axes; sets hidden line
removal off so you can see through meshes in the current axeshidden off

mesh(Z) Creates a wire mesh from the elements of the N by M matrix Z, where x ¼ 1:N
and y ¼ 1:M; Z specifies the surface height and color, which is proportional to
the surface height

mesh(X,Y,Z)

meshc( . . . ) Combination of mesh/contour plot
[X Y] ¼ meshgrid(x,y) Generate X and Y arrays for 3-D plots from the elements of the vectors x and y;

the rows of X are copies of x and the columns of Y are copies of y
meshz 3-D mesh with a curtain
pan Pan view of figure interactively
surf(X,Y,Z,C) Plots a colored parametric surface; the color scaling is determined by C, where

the elements of C are used as indices into the current color map; surf(X,Y,Z)
uses C ¼ Z, making color proportional to surface height

surf(X,Y,Z)

surface(X,Y,Z,C) Adds the surface into the current axes
surfc(X,Y,Z,C, . . . ) Combination of surf/contour plot
surfl(X,Y,Z,C, . . . ) Shaded surface with lighting
surfnorm(X, Y, Z) Plots a surface and its normals from the surface with components (X,Y,Z)
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where X, Y, and Z are each N by M matrices. The elements Z(n,m), n ¼ 1, . . . , N and
m ¼ 1, . . . ,M of Z are each determined in (9.8) evaluated for the corresponding elements X(n,
m) of X and Y(n,m) of Y. The function mesh creates a wire mesh connecting the elements of Z.

For example, to plot a wire mesh as x and y in (9.8) vary over the ranges [�1,2] and
[0,3], respectively, where x and y are incremented by 0.5 and 1.0, respectively, we must find
z for the (x,y) points: (�1, 0), (�1, 1), (�1, 2), (�1, 3), (�0.5, 0), (�0.5, 1), (�0.5, 2),
(�0.5, 3), . . . , (2, 0), (2, 1), (2, 2), (2, 3), for a total of 28 points. For all of these points, the
matrices X and Y are given by

X ¼
�1 �0:5 0 0:5 1 1:5 2
�1 �0:5 0 0:5 1 1:5 2
�1 �0:5 0 0:5 1 1:5 2
�1 �0:5 0 0:5 1 1:5 2
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7
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; Y ¼
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
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where the corresponding elements of X and Y are the points. The function meshgrid is
useful to set up X and Y with the statements

>> x ¼ [-1:0.5:2]; y ¼ [0:1:3];

>> [X Y] ¼ meshgrid(x,y);

For information about the other mesh syntax options, use doc mesh.

Example 9.8

Let us see how to represent with a mesh plot the behavior of the function GðsÞ, a ratio of two
polynomials given by

GðsÞ ¼ ðs� z1Þ: : :ðs� zmÞ
ðs� p1Þ: : :ðs� pnÞ ¼

Qm
k¼1ðs� zkÞ

Qn
k¼1ðs� pkÞ ¼

PðsÞ
QðsÞ ; m � n ð9:9Þ

where s is a complex variable, PðsÞ is an mth order polynomial with real coefficients and QðsÞ
is an nth order polynomial with real coefficients. Write the complex variable s as s ¼ sþ jw,
where s denotes the real part of s and w denotes the imaginary part of s. Generally, for a
complex value of s, GðsÞ will be a complex number with magnitude kGðsÞk and angle ffGðsÞ.

Since Gðs ¼ zkÞ ¼ 0, the zk ; k ¼ 1; . . .; m , which are the roots of PðsÞ, are called the
zeros of GðsÞ. Furthermore, since Gðs ¼ pkÞ ¼ 1, the pk ; k ¼ 1; . . .; n, which are the
roots of QðsÞ, are called the poles of GðsÞ.

Let us associate s with the x-axis, w with the y-axis, and kGðsÞk with the z-axis. Let us
call the x–y plane, the s-plane instead. Here, the points ðs;wÞ in the s-plane are the real and
imaginary parts of the complex variable s. Therefore, we can write z ¼ kGðs;wÞk, with
which we will obtain a wire mesh plot using the function mesh.
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Let us try the zeros of GðsÞ given by z1 ¼ �0:2, z2 ¼ �0:3, and z3 ¼ �0:4, and the
poles of GðsÞ given by p1;2 ¼ �0:05� j0:4, p3;4 ¼ �0:05� j0:5, and p5;6 ¼ �0:05� j0:6.
With these poles and zeros, PðsÞ and QðsÞ are given by

PðsÞ ¼ ðsþ 0:2Þðsþ 0:3Þðsþ 0:4Þ ¼ s3 þ 0:9s2 þ 0:26sþ 0:024
QðsÞ ¼ ðsþ 0:05� j0:4Þðsþ 0:05þ j0:4Þðsþ 0:05� j0:5Þðsþ 0:05þ j0:5Þ

ðsþ 0:05� j0:6Þðsþ 0:05þ j0:6Þ
¼ s6 þ 0:3s5 þ 0:8075s4 þ 0:1565s3 þ 0:1992s2 þ 0:0191sþ 0:0149

It is informative to see the poles and zeros located in the s-plane, as shown in Fig. 9.19,
which is an equivalent description of GðsÞ.

Prog. 9.9 produces the mesh plot shown in Fig 9.20. Notice that the peaks of
z ¼ kGðs;wÞk occur above the poles of GðsÞ, and the troughs of z ¼ kGðs;wÞk occur above
the zeros of GðsÞ.

% Program to produce a mesh plot of the magnitude of G(s)

clear all; clc; close all

Zeros ¼ [-0.2 -0.3 -0.4]; % zeros of G(s)

P ¼ poly(Zeros); N_P ¼ length(P); % polynomial coefficients

p1 ¼ -0.05+j*0.4; p3 ¼ -0.05+j*0.5; p5 ¼ -0.05+j*0.6

Poles ¼ [p1 conj(p1) p3 conj(p3) p5 conj(p5)]; % poles of G(s)

Q ¼ poly(Poles); N_Q ¼ length(Q); % polynomial coefficients

Real (s)

Imag (s)

s-plane

+0.4

–0.4

–0.05–0.4

zeros

poles

Figure 9.19 Pole-zero plot of G(s).
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sigma ¼ [-0.3:0.02:0.2]; N_s ¼ length(sigma); % real part of s

omega ¼ [-1:0.01:1]; N_o ¼ length(omega); % imaginary part of s

[Sigma Omega] ¼ meshgrid(sigma,omega); % s-plane grid

S ¼ Sigma + j*Omega; % all values of s

Num_G ¼ zeros(N_o,N_s); % initialize G(s) numerator for all s-plane values

Den_G ¼ zeros(N_o,N_s); % initialize G(s) denominator for all s-plane values

S_pow ¼ ones(N_o,N_s); % s^0 at all s-plane values

for k ¼ 1:N_Q % evaluate P(s) and Q(s) for all s-plane values

if k < ¼ N_P

Num_G ¼ Num_G + P(N_P-(k-1))*S_pow;

end

Den_G ¼ Den_G + Q(N_Q-(k-1))*S_pow;

S_pow ¼ S_pow.*S; % get next power of s at all s-plane values

end

Mag_G ¼ abs(Num_G./Den_G); % magnitude of G(s) at all s-plane values

max_Mag_G ¼ max(max(Mag_G)); % get maximum value

Mag_G ¼ Mag_G/max_Mag_G; % normalize G(s) magnitude

Mag_G_dB ¼ 20*log(Mag_G); % convert to deci-Bells

% find indices of all elements in Mag_G_dB less than -200 dB

[row_G,col_G] ¼ find(Mag_G_dB < -200);

for k ¼ 1:length(row_G) % clamp elements less than -200 dB to -200 dB

Mag_G_dB(row_G(k),col_G(k)) ¼ -200;

end

mesh(Sigma,Omega,Mag_G_dB) % plot surface

xlabel(’\sigma’);ylabel(’\omega’);zlabel(’magnitude of G(s) - dB’)

[s_col] ¼ find(sigma ¼ ¼ 0); % find elements in sigma that are zero

mag_G_dB ¼ Mag_G_dB(:,s_col); % get elements of Mag_G_dB where s ¼ jw

z_row ¼ zeros(1,N_o); % sigma ¼ 0

hold on

% plot black line in surface where sigma ¼ 0

plot3(z_row,omega,mag_G_dB,’LineWidth’,1.5,’Color’,’k’)

Program 9.9 Program to produce a mesh plot of G(s).

The black line in Fig. 9.20 follows the mesh plot for s ¼ 0, where GðsÞ becomes GðjwÞ
given by

Gð jwÞ ¼ ð jw� z1Þ ð jw� z2Þ ð jw� z3Þ
ð jw� p1Þ: : :ð jw� p6Þ ¼ Pð jwÞ

Qð jwÞ ð9:10Þ

This is a function similar to the transfer functions given in (9.1) and (9.2). In fact, it is
possible to design a circuit that has a transfer function given in (9.10), and the black line in
Fig. 9.20 is the magnitude frequency response of the circuit. From the shape of the
magnitude frequency response for w � 0 we see that GðjwÞ is the transfer function of a
band-pass filter, which peaks around w ¼ 0:5 rad/sec.
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Another basic plotting function is the function surf with syntax options given by
surf(X,Y,Z)

surf(Z)

surf(...,C)

surf(...,’PropertyName’,PropertyValue,...)

surf(axes_handle,...)

surfc(...)

h ¼ surf(...)

The function surf creates a surface of connected colored patches, and uses inputs in the same
way as the function mesh. With the matrix C, having the same dimension as the matrices X,
Y, and Z, you can specify the patch colors. With the colormap function, you can create your
own color scheme, or use one of the standard color schemes provided by MATLAB. Use
doc surf for details about this.

Associated with the surf function is the function shading, which has the arguments:
faceted (the default), flat (no grid lines), and interp (smooth color transitions). You can also
control the opaqueness of the surface by using the function set to assign a value (0 to 1) to
the surface graphic object property FaceAlpha.

Example 9.9

While the function meshgrid is convenient to set up a region in the x–y plane over which
z-axis values are obtained, you can locate points in the x–y plane to form a region that has
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Figure 9.20 Mesh plot of the magnitude of G(s).
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any shape. In this example a circular region is formed to illustrate shading a 3-D graphic
object. Prog. 9.10 produces the objects shown in Fig. 9.21.

% Program to produce a surface plot

clear all; clc; close all

N_r ¼ 21; radius ¼ linspace(0.25,1.0,N_r); % specify radial distance

N_theta ¼ 30; d_theta ¼ 2*pi/(N_theta-1); % specify angular increments

n ¼ 0:N_theta-1; theta ¼ n*d_theta; % angles

X ¼ zeros(N_r,N_theta); Y ¼ X; Z ¼ X; % preallocate space

c_theta ¼ cos(theta); s_theta ¼ sin(theta); % x and y values

z ¼ (exp(-radius)-exp(-4*radius)).*sin((pi/2)*radius); % variation with radius

for m ¼ 1:N_r % set up x-y plane grid

X(m,:) ¼ radius(m)*c_theta;

Y(m,:) ¼ radius(m)*s_theta;

end

for n ¼ 1:N_theta % z-axis value at every grid point

Z(:,n) ¼ z’;

end

figure

subplot(1,4,1); % use 4 subplots in a row

surf(X,Y,Z); title(’faceted’); % faceted

grid off; axis off

subplot(1,4,2);

h ¼ surf(X,Y,Z); set(h,’FaceAlpha’,0.5); title(’faceted, transparent’)

grid off; axis off

subplot(1,4,3);

faceted faceted, transparent flat interp

Figure 9.21 Illustration of shading.
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surf(X,Y,Z); shading flat; title(’flat’); % flat

grid off; axis off

subplot(1,4,4);

surf(X,Y,Z); shading interp; title(’interp’); % interp

grid off; axis off

Program 9.10 Illustration of shading options.

The positioning and rotation were done in the Figure Window, using the pan and rotate
icons.

9.5.3 3-D Rotation
When you use the pan, zoom, and rotate operations in the Figure Window, MATLAB does a
translation and rotation. Recall the 2-D rotation matrix R that was obtained in Chapter 3,
which rotated a vector defined by the coordinates ðx; yÞ in the x–y plane. From a 3-D
perspective, a rotation in the x–y plane is a rotation by an angle q about the z-axis.

Let p denote a point with coordinates ðx; y; zÞ in 3-D space. We can consider p to be
a vector in a Cartesian space, where p ¼ ½x y z�0. Let f, y, and q denote rotations about
the x, y, and z axes, respectively. Like in 2-D space, in 3-D space the vector p is
multiplied by a rotation matrix R, which can be written as: R ¼ Rx Ry Rz, where Rx, Ry, and
Rz are rotation matrices about the x, y, and z axes, respectively. The rotation matrices are
given by

RxðfÞ ¼
1 0 0

0 cðfÞ �sðfÞ
0 sðfÞ cðfÞ

2

6

6

4

3

7

7

5

; RyðyÞ ¼
cðyÞ 0 �sðyÞ
0 1 0

sðyÞ 0 cðyÞ

2

6

6

4

3

7

7

5

;

RzðqÞ ¼
cðqÞ �sðqÞ 0

sðqÞ cðqÞ 0

0 0 1

2

6

6

4

3

7

7

5

ð9:11Þ

where c denotes the cosine function and s denotes the sine function. A rotation of the vector
p results in the vector P given by

P ¼ R p ð9:12Þ
To also translate the vector p, we add to (9.12) a vector T ¼ ½Tx Ty Tz�0, and the transfor-
mation becomes

P ¼ R pþ T ð9:13Þ
where Tx, Ty, and Tz are translations along the x, y, and z axes, respectively.
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Example 9.10

Let us rotate and translate the object shown in Fig. 9.22, which was produced by Prog. 9.11.
The eight vertices of the object are specified by the vectors p 1; . . .; p 8. These vectors are
used to specify the end points of each line in the object. For reference after a rotation, the
function fill3 is used to fill one plane with the color red.

% Program to draw and rotate an object in 3-D space

clear all; clc; close all

p ¼ [0 0 0;2 0 0;2 1 0;0 1 0;0 0 1;2 0 1;2 1 1;0 1 1]; % vectors

% specify line end points with vector indices

lines ¼ [1 2;2 3;3 4;4 1;1 5;2 6;3 7;4 8;5 6;6 7;7 8;8 5];

[N_lines, N_vectors] ¼ size(lines); % get number of lines

figure(1); hold on

for k ¼ 1:N_lines

x ¼ [p(lines(k,1),1) p(lines(k,2),1)]; % get end points along x-axis

y ¼ [p(lines(k,1),2) p(lines(k,2),2)]; % get end points along y-axis

z ¼ [p(lines(k,1),3) p(lines(k,2),3)]; % get end points along z-axis

plot3(x,y,z,’b’,’LineWidth’,2) % plot lines in 3-D space

end

x ¼ p(1:4,1);y ¼ p(1:4,2);z ¼ p(1:4,3); % get vertex points of a plane

% color one plane in object as a reference plane after rotation
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0
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z
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0.2

0.4
0.6

0.8
1

y

p6

p7

Figure 9.22 An object used to illustrate rotation in 3-D space.
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fill3(x,y,z,’r’) % fill plane in 3-D space with a color

% saveas(gcf,’block’,’fig’)% saves figure in file block.fig

grid on

xlabel(’x’); ylabel(’y’); zlabel(’z’)

figure(2)

% specify four rotations in degrees

x_angle ¼ [30 0 0 45];y_angle ¼ [0 30 0 45];z_angle ¼ [0 0 30 45]; % angles

titles ¼ {’x-axis rotation’,’y-axis rotation’,’z-axis rotation’,...

’3-D rotation and translation’}; % cell array of four titles

for K ¼ 1:4 % do four rotations

R ¼ rotate_3D(x_angle(K),y_angle(K),z_angle(K)); % rotation matrix

P ¼ (R*p’)’; % do rotation of all vectors

if K ¼¼ 4, P ¼ P+1; end % include translation in 4th rotation

subplot(2,2,K); hold on

for k ¼ 1:N_lines % plot lines defined by rotated vectors

X ¼ [P(lines(k,1),1) P(lines(k,2),1)];

Y ¼ [P(lines(k,1),2) P(lines(k,2),2)];

Z ¼ [P(lines(k,1),3) P(lines(k,2),3)];

plot3(X,Y,Z,’b’,’LineWidth’,2)

end

% control the axes limits

axis tight % limit axes to data limits

x_lim ¼ xlim; % get x-axis limits

x_min ¼ floor(10*x_lim(1))/10; x_max ¼ ceil(10*x_lim(2))/10; % 0.1

set(gca,’XTick’,x_min:0.5:x_max) % set x-axis tick marks

y_lim ¼ ylim;

y_min ¼ floor(10*y_lim(1))/10; y_max ¼ ceil(10*y_lim(2))/10;

set(gca,’YTick’,y_min:0.5:y_max)

z_lim ¼ zlim;

z_min ¼ floor(10*z_lim(1))/10; z_max ¼ ceil(10*z_lim(2))/10;

set(gca,’ZTick’,0.0:0.5:z_max)

grid on

title(titles(K)); xlabel(’x’);ylabel(’y’);zlabel(’z’)

% color same plane of rotated object

X ¼ P(1:4,1);Y ¼ P(1:4,2);Z ¼ P(1:4,3);

fill3(X,Y,Z,’r’) % fill plane in 3-D space with a color

end

Program 9.11 Program to rotate an object in 3-D space.

Prog. 9.11 uses the function, rotate_3D, given by Prog. 9.12.

function R ¼ rotate_3D(x_angle,y_angle,z_angle)

% function to find the rotation matrix

% convert angles in degrees to angles in radians
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xr ¼ 2*pi*x_angle/360; yr ¼ 2*pi*y_angle/360; zr ¼ 2*pi*z_angle/360;

sx ¼ sin(xr); cx ¼ cos(xr);

sy ¼ sin(yr); cy ¼ cos(yr);

sz ¼ sin(zr); cz ¼ cos(zr);

% assign the x, y, and z rotation matrices

Rx ¼ eye(3);Ry ¼ eye(3);Rz ¼ eye(3); % initialize with 3 by 3 identity matrix

Rx(2,2) ¼ cx;Rx(2,3) ¼ -sx;Rx(3,2) ¼ sx;Rx(3,3) ¼ cx; % x-axis rotation

Ry(1,1) ¼ cy;Ry(1,3) ¼ -sy;Ry(3,1) ¼ sy;Ry(3,3) ¼ cy; % y-axis rotation

Rz(1,1) ¼ cz;Rz(1,2) ¼ -sz;Rz(2,1) ¼ sz;Rz(2,2) ¼ cz; % z-axis rotation

R ¼ Rx*Ry*Rz; % rotation in 3-D space

end

Program 9.12 Function to compute a 3-D rotation matrix.

Prog. 9.11 produces the rotations shown in Fig. 9.23. The rotate icon in the Figure Window
was used to give a clear view of each rotation.

9.6 Movies

There are several ways to create an animation. Basically, these methods have in common the
following steps: (0) create a graphic, (1) display the graphic, (2) create a modified or new
graphic, and (3) go back to step (1). A variation of this method is to first create all of the
graphics, which requires much storage space, and then display one graphic after another.
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Figure 9.23 Four rotations of the object shown in Fig. 9.22.
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Recall that axes graphic objects are children of figure graphic objects and line graphic
objects are children of axes graphic objects. Each graphic object has a set of properties.
When the plot function is invoked, it erases axes tick marks, labels, line plots, legends, and
more to accommodate the new data, if these graphic objects exist, before it places a new
line plot. This will not occur if previously the hold function was invoked, in which case,
the new line graphic object is added to previously placed line plots. However, in an ani-
mation we want some previously placed graphic objects to be erased, for example, a line
graphic object, while keeping other graphic objects in place. A way to do this is to update
only those properties that we want to change from one graphic to another. Among the prop-
erties of a line graphic object are the XData and YData properties, which hold the line x–y
data, respectively. The function drawnow updates the current figure graphic object and all of
its children. If a figure graphic object exists and some properties have been changed, then
invoking drawnow will update only the graphic objects with changed properties without
replacing (erasing and redrawing) the unchanged graphic objects. This way, a graphic can be
revised more quickly than invoking, for example, the plot function to revise a line graphic
object.

Another property of a line graphic object is the erasemode property. It has the
argument options: normal, none, xor, and background. This property controls the
method MATLAB uses to erase and redraw objects and their children. In the normal
(default) mode MATLAB erases and redraws objects based on an analysis to ensure that
all objects are redrawn exactly. With the none option MATLAB does not erase objects.
The xor option causes MATLAB to add the new line graphic object. Then, the new
graphic will contain both the new line object and the previous line object, while the
previous graphic only contains the previous line object. An exclusive or (xor) of corre-
sponding pixels of the line objects in the new and previous graphic will then clear (erase)
the previous line object in the new graphic. With the background option, the part of the
previous graphic that is different from the new graphic disappears by redrawing it using
the axes background color. For animation, where, depending on computer speed and the
complexity of the object to be erased, erase time can be critical, and therefore, the xor
option is used, because it is faster than the normal option.

Example 9.11

Let us work with the band-pass filter of Example 9.4, and investigate its time-domain
behavior. The frequency response is given in Fig. 9.5, where the peak frequency response
occurs for an input sinusoidal signal that has a frequency of about 5K Hz. To see the band-
pass characteristic in the time-domain, we will apply an input sinusoidal signal, and sweep
its frequency over a frequency range, while keeping a constant input amplitude. As the
frequency of the input is changing, we will observe the input and output signals. To compute
the amplitude and phase angle of the output, the transfer function given in (9.1) will be used.
Prog. 9.13 produces an animation of the input and output as the input frequency is swept
over the frequency range [500, 10,000] Hz.
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% Program to animate the response to a swept frequency input

clear all; clc; close all

f_first ¼ 500; f_last ¼ 1.5e4; N_f ¼ 501; % frequency range

f ¼ linspace(f_first,f_last,N_f); w ¼ 2*pi*f; % frequencies

T0 ¼ 1/f_first; % period of sinusoid at frequency f_first

fs ¼ 176400; T ¼ 1/fs; N ¼ ceil((T0/2)/T); % sampling frequency

% using a high sampling frequency to make plots look smooth

n ¼ 0:N-1; t ¼ n*T; t_msecs ¼ 1e3*t; t_total ¼ 1e3*T0/2; % time points

figure(1) % create a figure graphic object

% create first input and output plots and assign handles

v_in ¼ cos(w(1)*t); % input at frequency f_first, with a 1 volt amplitude

subplot(1,2,1); h_in ¼ plot(t_msecs,v_in); % plot input

axis([0 t_total -1 1]); grid on; % input axes limits

xlabel(’t - msecs’); ylabel(’volts’); title(’Input’);

set(h_in,’EraseMode’,’xor’) % method to erase previous line plot

R ¼ 330;L ¼ 3*11e-3;C ¼ 3*0.01e-6; % band-pass filter circuit from Example 6.9

% band-pass filter frequency response

H ¼ (1j*w(1)*R*C)/(1-L*C*w(1)^2+1j*w(1)*R*C);

v_out ¼ abs(H)*cos(w(1)*t+angle(H)); % output at frequency f_first

subplot(1,2,2); h_out ¼ plot(t_msecs,v_out); % plot output

axis([0 t_total -1 1]); grid on; % output axes limits

xlabel(’t - msecs’); ylabel(’volts’); title(’Output’);

set(h_out,’EraseMode’,’xor’) % method to erase previous line plot

for k ¼ 2:N_f % sweep the frequency and plot

pause(0.02); % slow down sweep

v_in ¼ cos(w(k)*t); % input has amplitude equal to 1 volt

subplot(1,2,1); set(h_in,’XData’,t_msecs,’YData’,v_in)

% XData and YData are the data properties of the plot graphic object

H ¼ (1j*w(k)*R*C)/(1-L*C*w(k)^2+1j*w(k)*R*C);

v_out ¼ abs(H)*cos(w(k)*t+angle(H)); % output at frequency w(k)

subplot(1,2,2); set(h_out,’XData’,t_msecs,’YData’,v_out)

drawnow % update figure(1)

end

Program 9.13 Animation to show a sweep frequency response.

During a sweep of the input frequency, three snapshots of the animation are shown in
Fig. 9.24. When the frequency of the input is much less than 5K Hz and much greater than
5K Hz, we see that the output amplitude is much less than the input amplitude. Since
kHðj 2pð5000ÞÞk ’ 1, the output amplitude, when the frequency of the input is 5K Hz, is
the same as the input amplitude.

A simple way to show an object in rotational motion is to change the viewing angles.
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Example 9.12

Let us work with the object shown in Fig. 9.22. To retrieve the object, the following
statement was inserted just after invoking the fill3 function in Prog. 9.11.

saveas(gcf,’block’,’fig’) % save figure in file block.fig

Prog. 9.14 causes the rectangular block to seem to rotate by incrementing the azimuth
and elevation angles of the point of view with the function view.

% Program to rotate an object

clear all; clc; close all

open(’block.fig’); % get object

% remove tick labels

set(gca,’XTickLabel’,’ ’,’YTickLabel’,’ ’,’ZTickLabel’,’ ’)

set(gca,’TickLength’,[0 0]) % remove tick marks

for k ¼ 1:120

view(k,k) % incrementing the azimuth and elevation viewing angles

pause(0.05) % slow down rotation

end

Program 9.14 Example of using the function view to rotate an object.

The camera series of functions given in Table 9.9 provide more options to specify the
viewing location. The following statements were appended to Prog. 9.14.

Table 9.9 Some built-in functions concerned with camera viewpoints

Function Brief description

camdolly(dx,dy,dz) Moves the camera position and camera target of the current axes by the amounts
specified in dx, dy, and dz

camlookat Views the objects that are children of the current axes
camorbit(dh,dv) Rotates the camera position around the camera target by the amounts specified in

dh, horizontal rotation, and dv, vertical rotation (both in degrees)
campan(dh,dv) Pans (rotates) the camera target of the current axes around the camera position

by the amounts specified in dh and dv (both in degrees)
camroll(da) Rolls the camera of the current axes da degrees clockwise around the line which

passes through the camera position and camera target
cva ¼ camva Gets the camera view angle of the current axes; sets the camera view angle
camva(va)
camzoom(zf) Zooms the camera of the current axes in (zf > 1) or out (0 < zf < 1)
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camzoom(0.75) % object appears to be smaller

steps ¼ 100; % specify number of translations

dstep ¼ 2/steps; % specify translation increments

for k ¼ 1:steps

dx ¼ dstep*sin(k*2*pi/steps); % circular translation

dy ¼ dstep*cos(k*2*pi/steps);

camdolly(dx,dy,0); hold on

pause(0.05) % slow down translation

end

camlookat % display the children of the current axes

After the object has completed its rotational movement, the camera zooms out and then
the object moves in a circular pattern once.

A movie is a sequence of frames, where each frame contains a figure that is different
from the figure in the previous frame. In MATLAB, each frame is stored as a column vector
of a matrix M or any valid MATLAB variable name. Some built-in functions for creating
and showing a movie are given in Table 9.10.

Table 9.10 Some built-in functions concerned with movies

Function Brief description

[X,map] ¼ frame2im(F) Returns the indexed image X and associated ColorMap map from the
single movie frame F

M(k) ¼ getframe Returns a movie frame, a snapshot of the current axes; gets a frame from
object h, where h is a handle of a figure or axesM(k) ¼ getframe(h)

F ¼ im2frame(X) Converts the indexed image X into a movie frame F using the current
ColorMap

movie(M) Play the movie stored in the matrix M; plays the movie N times, where if N
is a vector, the first element is the number of times to play the movie and
the remaining elements are a list of the frames to play in the movie;
plays the movie at fps frames per second; plays the movie in object h,
where h is a handle of a figure or axes

movie(M,N)
movie(M,N,fps)
movie(h, . . . )

M ¼ moviein(N) Preallocates space for a movie having N frames
image(C) Displays matrix C as an image, where each element of C specifies the color

of a rectilinear patch in the image; C can be a matrix of dimension M�N
or M�N� 3, and can contain double, uint8, or uint16 data. When C is a
2-dimensional M�N matrix, the elements of C are used as indices into
the current ColorMap to determine the color. When C is a 3-dimensional
M�N� 3 matrix, the elements in C(:,:,1) are interpreted as red

(Continues)
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Example 9.13

Let us make a movie that shows all of the standard color maps provided by MATLAB. Prog.
9.15 first creates a movie, and then shows it.

% Program to illustrate some standard color maps with a movie

clc; clear all; close all

% use a cell array to name the 17 standard color maps

C ¼ {’autumn’,’bone’,’colorcube’,’cool’,’copper’,’flag’,’gray’,’hot’,...

’hsv’,’jet’,’lines’,’pink’,’prism’,’spring’,’summer’,’white’,’winter’};

N_maps ¼ 17; N_titles ¼ 2; N_ends ¼ 1;

N_frames ¼ N_maps + N_titles + N_ends;

M ¼ moviein(N_frames); % preallocate space for N_frames frames

h ¼ figure(1); % assign a handle to figure(1)

text(0.5,0.7,’Color Maps’,’fontsize’,18,...

’HorizontalAlignment’,’center’,...

’BackgroundColor’,[.7 .9 .7]); % locate and specify a movie title

text(0.5,0.5,’Produced and Directed by’,’fontsize’,12,...

’HorizontalAlignment’,’center’,...

’BackgroundColor’,[.7 .3 .7]); % credits

text(0.5,0.3,’Roland Priemer’,’fontsize’,14,...

’HorizontalAlignment’,’center’,...

’BackgroundColor’,[.9 .3 .7]);

grid off; axis off

M(1) ¼ getframe(h); % first movie frame, title frame

M(2) ¼ M(1); % repeat first frame

clf; % clear figure(1)

Table 9.10 (Continued)

Function Brief description

intensities, in C(:,:,2) as green intensities, and in C(:,:,3) as blue
intensities. Use doc image for details.

[X,map] ¼ imread
(‘FileName’)

Reads the indexed image in FileName into X and its associated colormap
into map, where ColorMap values in the image file are automatically
rescaled into the range [0,1]; file extensions can be, for example, jpg, gif
and more. Use doc imread for details

imwrite(X,‘FileName’,‘fmt’) Writes the image X to the file specified by FileName in the format
specified by fmt. Use doc imwrite for the many possibilities
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for k ¼ 1:N_maps

x ¼ 0.25+0.2*sin(2*pi*(k-1)/17); % specify axes location

y ¼ 0.20+0.2*cos(2*pi*(k-1)/17);

axes(’position’,[x,y,0.5,0.5]); % position and size axes

colormap(char(C(k))); % specify a standard color map

sphere; % using the function sphere to draw a sphere

axis equal; % correct aspect ratio to make sphere look circular

title(C(k),’fontsize’,14); % make color map name the title

grid off; axis off

M(N_titles+k) ¼ getframe(h); % add frames to movie

clf

end

text(0.5,0.5,’The End’,’fontsize’,24,...

’HorizontalAlignment’,’center’,...

’BackgroundColor’,[.9 .1 .5]);

grid off; axis off

M(N_frames) ¼ getframe(h); % last movie frame, end frame

clf; % prepare to show movie

dt_frame ¼ 2; fps ¼ 1/dt_frame; % show movie at 1 frame every 2 seconds

movie(h,M,1,fps);

pause(3); close(h); % wait and then close figure(1)

save(’Color_Maps’,’M’); % save movie to a mat file

% for example, to show the movie, use: load Color_Maps, and: movie(M,1,0.5)

Program 9.15 Demonstration of creating a movie.

Any of the examples and animations in Figs. 9.6, 7, 8, 18, 20, 21, 22 and 24 can be made
into a movie. Furthermore, you can also insert bmp, jpeg, and other image files into frames
of a movie. Needless to say, creating a movie can be a lengthy process. However, through
graphics and animation much information can be efficiently communicated.

Example 9.14

In Example 9.13, the entire figure content is replaced in the next frame. Usually, we only
want to modify some part of a figure to create the next movie frame. Let us again work
with the frequency response of Example 9.7, and make a movie of it. Prog. 9.16 retains all
of the figure content in each movie frame except the magnitude of the frequency response
as it changes with frequency. Fig. 9.25 shows three snapshots of the frequency response
movie.
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% Movie of the frequency response

clear all; clc; close all

% get band-pass filter frequency response calculations from Example 9.4

load(’BandPass.mat’); % get data: HBP and w

f ¼ w/(2*pi*1000); % convert to KHz

X ¼ real(HBP); % plot real part along x-axis

Y ¼ imag(HBP); % plot imaginary part along y-axis

N_w ¼ length(w); FRM ¼ moviein(N_w); % preallocate space for movie frames

h ¼ figure(1); % create figure with a handle

plot3(X,Y,f,’linewidth’,1.5); % frequency along z-axis

hold on; % add to figure

grid on;

xlabel(’x-axis, real part’)

ylabel(’y-axis, imaginary part’)

zlabel(’z-axis, f - KHz’)

title(’Frequency Response of Band-Pass Filter’)

origin ¼ zeros(2,1); % make axes lines stand out

plot3(xlim’,origin,origin,’k’,’Linewidth’,2);

plot3(origin,ylim’,origin,’k’,’Linewidth’,2);

plot3(origin,origin,zlim’,’k’,’Linewidth’,2);

% view at 60 degrees rotation about z-axis and up by 15 degrees

view(60,15)

% assign handle to magnitude line and set erasemode to xor

h1 ¼ plot3([0 X(1)],[0 Y(1)],[0 0],...

’lineWidth’,2,’Color’,’r’,’Marker’,’o’,’MarkerEdgeColor’,’g’,...

’erasemode’,’xor’);

FRM(1) ¼ getframe(h); % get first frame of frequency response movie (FRM)

for k ¼ 2:N_w % get remaining frames, changing the magnitude

xd ¼ [0 X(k)]; yd ¼ [0 Y(k)]; zd ¼ [f(k) f(k)];

set(h1,’XData’,xd,’YData’,yd,’ZData’,zd);

FRM(k) ¼ getframe(h); % update figure and get a movie frame

end

save(’freq_response_movie’,’FRM’)

clear all; close all; % clear and close everything

load(’freq_response_movie’,’FRM’) % get movie

h ¼ figure(1); % create a figure in which to show movie

movie(h,FRM)

Program 9.16 Demonstration of modifying a part of a figure in each movie frame.

9.7 Conclusion

In this chapter we have explored many ways to visualize data with 2-D and 3-D graphics. It
seems that there are endless creative possibilities for using MATLAB to generate graphic
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objects, especially those kinds of objects that help to understand technical problems and
their solutions. You should now know how to

● create a figure graphic object and access and specify its properties
● create an axes graphic object and access and specify its properties
● use many of the 2-D plot functions and specify properties
● incorporate a color map
● place multiple 2-D and 3-D plots on a figure
● investigate the frequency response of a circuit
● make an animation
● rotate and translate objects in 3-D space
● create line plots in 2-D and 3-D space
● use various methods (command line, toolbars, program) to edit a graphic
● add a variety of annotations to a graphic
● create interactive programs
● make a MATLAB movie
● customize a graphic to meet your technical needs
● print and export graphics

All of the built-in MATLAB functions introduced in this chapter are briefly described in
tables. Use the help, doc, and product help facilities for more details. Also, the demos in
product help are very informative.

Problems

Section 9.1
1) Assume that the following MATLAB statements have been executed.

>> fig_2 ¼ figure(’Name’,’Input’);

>> fig_1 ¼ figure(’Color’,[0.2 0.5 0.8],’Name’,’Output’);

Give MATLAB statements to
(a) assign the color vector of figure 1 to the variable c_1
(b) get the value of fig_2
(c) delete figure 2
(d) make the figure with the handle fig_2 the current figure
(e) create a structure, name it Fig_1, of the properties of figure 1
(f) close all figure windows

2) Assume that the MATLAB statements given in Prob. P9.1 have been executed. Then,
the following statements are executed.

>> t ¼ 0:0.01:1; plot(t,sin(4*pi*t)); grid on

>> propedit(2)
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(a) In which figure window is the plot graphic object placed?
(b) Which figure window goes into the figure edit mode?

Give MATLAB statements to

(c) set the background color of the current figure window to red
(d) save the plot graphic object as an enhanced metafile named Signal
(e) place the text, ‘‘signal’’, in the bottom half and middle of the plot.

Section 9.2
3) Explain the outcome of executing the following MATLAB statements.

>> t ¼ 0:0.001:2; x1 ¼ sin(2*pi*t); x2 ¼ -2*x1;

>> Y ¼ [x1’,x2’];

>> area(t,Y,’Facecolor’,[0 0 0.9]); grid on;

Hint: Look at the outcome of executing bar(t,Y); grid on.
4) Assume that the following MATLAB statement has been executed.

>> t ¼ 0:0.001:2; x ¼ exp(-2*t).*sin(10*pi*t);

Explain the difference between the outcomes of executing the following two MATLAB
statements.

>> comet(t,x,0.01)

>> comet(t,x,0.99)

5) A MATLAB script starts as follows.

>> clear all; close all; clc;

>> axis([-2 2 -2 2]); % automatically creates a figure object

Using the function fill in a for loop, continue the script to draw a checkerboard pattern
of 1 by 1 squares alternating in blue and red colors. Set the figure background color to
light green. Print the result.

6) Write a MATLAB script that sets up the same axis as in Prob. P9.5, uses the function
ginput to obtain the coordinates of the corners of a five-sided polygon, then fills the
polygon with a very light shade of blue, and then enables the user to place the text,
‘‘5-sided polygon’’, somewhere on the polygon. Print the resulting figure.

7) Write a MATLAB script that simulates an experiment that produces one of three pos-
sible outcomes, call them apple, orange, and banana that must occur with probabilities
of 0.20, 0.35, and 0.45, respectively. To do an experiment, obtain y given by: y ¼ ceil
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(a*x), where x¼rand and a¼1e5. Then, if 1 � y � 20,000, the experiment outcome is
apple, or if 20,001 � y � 55,000, the experiment outcome is orange or if 55,001 � y �
100,000, the experiment outcome is banana. Do the experiment N times, and count the
number of times each possible experiment outcome occurs. Finally, your script must
produce a pie chart with the pie slice areas determined by the count of each possible
experiment outcome. Use a cell array to label the pie slices apple, orange and banana.
Run your program for N ¼ 1e6 and N ¼ 1e7, and print each pie chart. If you do the
experiment three times, what is the probability that the three outcomes will each be
orange, orange, and apple?

8) Write a MATLAB function script, named capacitor, that draws the circuit symbol of
a capacitor. The function inputs are a two-element vector that gives the capacitor
center location within a figure object and a character string that is either ‘‘vertical’’ or
‘‘horizontal’’ for the desired orientation of the capacitor.

9) Fig. P9.9 shows a voltage source vðtÞ ¼ 150 sin ð120pt þ p=4Þ connected serially to
an ideal diode and a resistor with R ¼ 3; 000 W.

Write a MATLAB script that uses the subplot function to show four cycles of the
voltage produced by the voltage source in the top plot and the current through
the resistor in the bottom plot. Include grids, titles and x-axis, and y-axis labels, with the
current scaled in mA.

10) The transfer function of a circuit is given by: HðjwÞ ¼ 1=ððjwÞ3 þ 2ðjwÞ2þ
2ðjwÞ þ 1Þ. Write a MATLAB script to find the magnitude and angle of HðjwÞ for 101
values of w over the range: 0 � w � 5 radians/sec.
(a) Use the function polar to obtain a polar plot. Include in your script a statement that

uses the print function to obtain a hardcopy of your polar plot. What kind of a filter
has this kind of a frequency response?

(b) Continue your script, and use the function plotyy to plot the magnitude of HðjwÞ
with the left vertical axis and the phase angle of HðjwÞ with the right vertical axis.

11) For the transfer function given in Prob. P9.10, write a MATLAB script that uses the
function semilogy to obtain a plot of the magnitude of HðjwÞ in dB versus frequency.
Include axes labels and a title. Use a line specification to obtain a blue dashed line.
Then, save the plot into a jpeg file named MagFreqResp.

v(t)

i(t)

R

Figure P9.9 Serially connected voltage source, ideal diode, and resistor.
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12) Write a MATLAB script that places four axes on a figure, each with a handle, say
axes1, axes2, axes3, and axes4. Make the dimension of each axes 0.3 by 0.3. Data
is obtained with: t¼0.0:delta_t:1.0, x¼sin(2*pi*t) and y¼xþ0.1*rand(1,length(t)),
where delta_t¼0.05. The data y is processed to obtain the data u, where u(1)¼y(1)/4,
u(2)¼(y(2)þ2*y(1))/4 and u(n)¼(y(n)þ2*y(n-1)þy(n-2))/4, for n¼3, . . . , length(t).
Like y, the data u is processed to obtain the data v. Plot the data x, y, u and v on axes1,
axes2, axes3, and axes4, respectively, where each plot has a different color, and assign
each plot to a handle, say xData, yData, uData, and vData. On each axes locate t tick
marks at t¼0.0:0.25:1.0, and annotate the tick marks. Set the axes border line widths to
2. Print the figure of four plots.

The data y is a noisy version of the data x. Discuss how the data u is different from
the data y, and similarly compare the data v to the data u. Which data, u or v is more like
the original data x?

13) Data is given by: t ¼ 0.0:0.05:1.0 and x ¼ sin(2*pi*t)þ1.5*sin(4*pi*tþpi/4) volts.
Write a MATLAB script that produces a stem plot with red circular markers at the
data points. Then, use the function stairs to obtain a piecewise constant plot, and
finally use the function plot to obtain a line plot. Use the subplot function to obtain
these three plots in one column with three rows. Include a title, x-axis label, and a
t-axis label.

14) A digital system has two input logic signals and one output logic signal as shown in
Fig. P9.14. Also shown in the figure is a table that gives inputs, starting on the left,
and the output as they change every msec. Write a MATLAB script that uses the
function line to produce timing diagrams of the two inputs and output as given in the
table. Use the subplot function to obtain three plots in one column and three rows.

Section 9.3
15) Fig. 9.9 shows a Figure Window that was created with Prog. 9.7. Fig. 9.9 also shows the

File Menu. Enter the given MATLAB script into the Edit Window, and execute the
script.

x1(t)

x2(t)

y(t)Digital
System

logic signals

x1

x2
y

0
0
1

1
0
0

0
1
0

1
1
1

0
0
0

1
0
1

0
1
1

1
1
0

1
0
1

0
0
1

0
0
1

time

Figure P9.14 Digital system with two inputs and one output.
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(a) Explain what can be accomplished with the Generate Code option in the File Menu
of the Figure Window. Provide a copy of the script obtained from using this option.

(b) Pull down the Edit Menu, and select the appropriate menu option to introduce x and
y grid lines.

(c) From the Edit Menu select the appropriate menu option to change the circular
markers of the scatter plot to square markers.

(d) Enter x- and y-axis labels and a title. Print the resulting figure.
16) Execute the following statements in the Command Window.

>> clear all; clc

>> t ¼ 0:0.01:10; x ¼ exp(-t);

Highlight x in the Workspace. Pull down the plot options list, and select
the semilogy plot. In the Figure Window, click the data cursor icon in the tool bar,
and place a data marker at the smallest y-axis value of the plot. Give and explain the
value given by Y of the data marker. Why is the plot a straight line with a negative
slope?

Section 9.4
17) The built-in function sphere automatically creates a figure and an axes object. Then, it

uses a default colormap to draw a sphere on the axes.

(a) In the Command Window, enter the following MATLAB statements.

>> sphere

>> colorbar

Explain what happened, and from the File Menu in the Figure Window print the figure.
(b) Execute the following statements.

>> binary_map ¼ [0 0 0 0 1 1 1 1;0 0 1 1 0 0 1 1;0 1 0 1 0 1 0 1]’

>> colormap(binary_map)

For each binary number in the color map give the color.
(c) Give MATLAB statements and execute them to create a color map with no green

or blue and red that varies from 0.1 to 1.0 in increments of 0.1. Explain what
happened. In the Figure Window, click the rotate icon, and select a viewpoint from
which to print the resulting sphere.

Section 9.5
18) The following MATLAB statements are the beginning of a script.
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clear all; clc; close all

figure; axis([-5 5 -5 5 -5 5]);

hold on; grid on

origin ¼ zeros(1,2);

plot3(xlim,origin,origin,’k’,’Linewidth’,2);

plot3(origin,ylim,origin,’k’,’Linewidth’,2);

plot3(origin,origin,zlim,’k’,’Linewidth’,2);

(a) What are the limits of the x-axis?
(b) What does the function zlim return?
(c) What does this script do?
(d) Continue the script to plot a dashed red line from the point (x, y, z) ¼ (�4,�3,�5) to

the point (x, y, z) ¼ (4, 3, 4). Include x, y, and z axis labels. Print the figure.
19) Write a MATLAB script that draws a red filled triangle in a 3-D space with corners

given by (�2, �3, 4), (�2, 3, �4), and (2, �3, �4). Include x, y, and z axis labels.
(a) In the Figure Window, click the data cursor icon in the tool bar to place a marker at

one of the triangle corners. Print the figure.
(b) In the Figure Window, click on the rotate icon in the tool bar to obtain an x–y plane

projection of the triangle. Print the figure.
20) Write a MATLAB script that draws in a 3-D space the frequency response of a circuit

with transfer function HðjwÞ given in Prob. P9.10, where the x and y axes give the real
and imaginary parts, respectively, of HðjwÞ, and the z-axis gives the frequency for
�5 � w � 5 rad/sec. Include x, y, and z axis labels. Plot enough points to see a smooth
curve. Does the plot show that H	ðjwÞ ¼ Hð�jwÞ? Use the data cursor icon in the
Figure Window to mark the curve where w ¼ 1 rad/sec, and give the value of
kHðj1Þk 2. Provide a program listing and a copy of the figure.

21) A MATLAB script begins with

clear all; clc;

x ¼ -1:0.01:1; y ¼ -1:0.01:1;

[X Y] ¼ meshgrid(x,y);

(a) Give the dimensions of X and Y.
(b) Use the function imagesc to obtain imagesc(X) and imagesc(Y). Explain the dif-

ference between the results.
(c) The variable z is given by z ¼ f(x,y) ¼ x2y3. Continue the MATLAB script to

evaluate z over the grid obtained with the function meshgrid, and use the function
mesh to plot z ¼ f(x,y). Specify a MATLAB colormap other than the default col-
ormap. Include a grid and x, y, and z axis labels. Provide a program listing and a
copy of the figure.

(d) Explain the differences between the results from using mesh, meshc, and meshz.
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22) A MATLAB script begins in the same way as in Prob. P9.21.
(a) Repeat part(c) of Prob. P9.21, but use the MATLAB statement

h ¼ surf(X,Y,Z);

to plot z ¼ f (x,y). Specify interp for shading. Print the figure.
(b) Execute your script again with the MATLAB statements

axis([-0.5 0.5 -0.5 0.5 -1 1])

h ¼ surf(X,Y,Z);

and

axis([-0.5 0.5 -0.5 0.5 -1 1])

h ¼ surface(X,Y,Z);

Explain the difference between the resulting figures. Print both figures.
23) A ratio of two polynomials is given by

GðsÞ ¼ s2 þ s=2þ 257=16
ðsþ 1=2Þðs2 þ s=2þ 17=16Þ ¼

ðs� z1Þðs� z2Þ
ðs� p1Þðs� p2Þðs� p3Þ

where s is a complex variable denoted by s ¼ sþ jw.
(a) What are the poles, p1; p2, and p3 and zeros z1 and z2 of GðsÞ?
(b) Write a MATLAB script that uses the surf function to plot the dB values of

kGðs;wÞk, for �1:5 � s � 1:0 and �10 � w � 10. Use enough points to obtain a
smooth surface. Use grid points for s and w that do not exactly occur at any pole of
GðsÞ. Also, normalize kGðs;wÞk by its maximum value over your grid to make the
maximum normalized value 0 dB. See Prog. 9.9.

(c) If GðjwÞ, which means s ¼ 0, gives the frequency response of some circuit, then
what kind of filtering activity does the circuit perform?

24) In a 3-D space, a 1� 2 plane is located in the first quadrant of the x–y plane with a
corner at the origin.
(a) Write a MATLAB script to draw and fill with blue the plane. Use the subplot

function to place the initial plane in the first position of a 2� 2 arrangement of four
plots. Use axis tight to specify the limits of the axes. Continue the script to rotate
the plane through rotations about the x, y, and z axes by 30, 45, and 60 degrees,
respectively, where each rotation starts with the initial plane. Show each rotation in
the remaining subplot positions. Include axis labels and a title in each subplot. In
the Figure Window click the rotate icon and rotate each subplot to clearly show that
the desired rotation of the initial plane has been achieved. Print the figure.
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(b) Continue the MATLAB script to combine the three rotations of part (a) into a
single rotation matrix. Plot the plane, include axis labels, and print the figure.

25) The following MATLAB statements calculate the current through a p–n junction diode
given the diode voltage v and the temperature t_C in degrees Centigrade.

I_sat ¼ 1e-12; % saturation current

k ¼ 1.3806503*10e-23; % Boltzmann constant

q ¼ 1.602176646*10e-19; % magnitude of the charge of an electron

t_K ¼ t_C + 273.15; % temperature in degrees Kelvin

V_T ¼ k*t_K/q; % thermal voltage

DiodeCurrent ¼ I_sat*(exp(v/V_T) -1);

Write a MATLAB script that includes these statements to the plot in a 3-D space
the diode current as it varies with voltage and temperature. The voltage should
vary as v ¼ 0.0:0.01:0.8, and the temperature should vary as t_C ¼ �40:5:85,
which is the standard industrial grade temperature range for electronic devices.
Include axis labels and a title. Use the function view to see the plot from a
viewpoint that clearly shows how current varies with voltage and temperature. Print
the figure.

Section 9.6
26) Prog. 8.4 is a MATLAB script that displays the animation of the second hand of a

clock. Modify this program to include the animation of a minute hand. This will require
placing the for loop that displays the second hand into another for loop that displays the
minute hand. Use a shorter red line for the minute hand. For testing, use a short pause to
speed up clock activity.

27) Write a MATLAB script to animate rotation of a four cornered plane that starts by
drawing a green filled plane centered at the origin of a 3-D space. A plane is defined by
two vectors, call them p1 and p2. To center the plane, let the other two corners be
defined by p3 ¼ �p1 and p4 ¼ �p2. The following MATLAB script should help you
get started.

% Program to draw and rotate a plane in 3-D space

clear all; clc; clf

p ¼ [3 -2 3;-1 2 -3;-3 2 -3;1 -2 3]; % DEFINE YOUR OWN VECTORS

lines ¼ [1 2;2 3;3 4;4 1]; % specify line end points with vector indices

figure(1); hold on

for k ¼ 1:4

9.7 Conclusion 411



x ¼ [p(lines(k,1),1) p(lines(k,2),1)]; % get end points along x-axis

y ¼ [p(lines(k,1),2) p(lines(k,2),2)]; % get end points along y-axis

z ¼ [p(lines(k,1),3) p(lines(k,2),3)]; % get end points along z-axis

plot3(x,y,z) % plot lines in 3-D space

end

x ¼ p(1:4,1);y ¼ p(1:4,2);z ¼ p(1:4,3); % get vertices of the plane

fill3(x,y,z,’g’) % fill plane in 3-D space with a color

axis([-5 5 -5 5 -5 5]); grid off; axis off

Continue the script.
(a) Use the view function in a loop with pauses to simulate a smooth 3-D rotation.

Print two snapshots of the green plane.
(b) Repeat part (a), but use instead an appropriate camera function.

28) Write a MATLAB script that achieves the animation produced by Prob. P9.27, but uses
instead the function movie by first creating a sequence of frames.

29) The transfer function of a circuit is given by

HðjwÞ ¼ ðjwÞ2 þ jw=2þ 257=16
ðjwþ 1=2ÞððjwÞ2 þ jw=2þ 17=16Þ

Let the input to the circuit be xðtÞ ¼ cos ðwtÞ. The sinusoidal output of the circuit is
given by yðtÞ ¼ kHðjwÞk cos ðw t þ ffHðjwÞÞ. Write a MATLAB script that creates a
movie that shows in each frame a figure consisting of two subplots. The top subplot
shows the input xðtÞ, and the bottom subplot shows the output yðtÞ. For each frame, let
0 � t � T0, and use enough points to see a smooth looking sinusoid. From frame to
frame, let w vary as w ¼ 0:0:2:10:0. See how your movie shows the frequency
response of the circuit with T0 ¼ 20 secs. What kind of filtering activity does the circuit
perform?
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CHAPTER 10

Debugging

When a program does not work, or seems to work, but does not produce results as intended,
it is said to have bugs. A bug is a program error. Basically, there are two kinds of bugs:
syntax errors and run-time errors. Syntax errors are, for example, incorrect or inconsistent
spelling of reserved words, key words and variables, punctuation errors, unbalanced par-
entheses, and others. A run-time error may be an error in the logic of a program that
implements some algorithm, and causes the program to produce incorrect results. Another
kind of run-time error occurs when, for example, a variable value becomes Inf or NaN,
which can prevent further acceptable computation. In this chapter, you will learn how to use
MATLAB� facilities that can make the process of eliminating bugs more efficient, which is
called debugging, including

● detection and correction of syntax errors
● use of built-in functions to locate and report errors and suggest improvements
● interruption of program execution to trace run-time and algorithm errors

10.1 Syntax Error Debugging

MATLAB includes several features that help to avoid syntax errors. Some of these features
are enabled by selecting editor/debugger preferences with

File ! Preferences ! Editor=Debugger !
display
language
code folding

8

<

:

Use display to, for example, enable highlighting the current line, language to, for example,
select syntax colors, and code folding to, for example, enable coalescing statements within



various code blocks. By folding code blocks it becomes easier to gain a perspective about
the flow of a script.

A particularly helpful MATLAB feature is the code analyzer programM-Lint that runs
automatically in the background as you write a script in the Editor Window. This is
demonstrated in Fig. 2.16, where the vertical bar on the right side of the Editor Window
shows not only syntax warnings and errors, but also how to fix some errors. Also, brief
documentation is automatically provided as you write code.

Example 10.1

Given a nonnegative real number x, design an algorithm that finds y0 ¼
ffiffiffi

x
p

, the positive
square root of x. Let us apply the method of steepest descent, and minimize the cost function
f ðyÞ ¼ ðy2 � xÞ2, where y > 0 and f ðy0Þ < f ðyÞ for all positive y 6¼ y0. This cost function
comes from the given problem, where for a given x, we have y20 � x ¼ 0. At first, we do not
know y0, and must search for that y ¼ y0 that makes y2 � x ¼ 0. For any y, y2 � x can be
positive or negative. However, ðy2 � xÞ2 is always nonnegative, and when y ¼ y0 we have
ðy2 � xÞ2 ¼ 0. According to the method of steepest descent (see (4.9)), where
ynew ¼ yold � mf 0ðyoldÞ.) we need df =dy ¼ 2ðy2 � xÞð2yÞ. The overall algorithm is imple-
mented in Prog. 10.1, and a function and subfunction are given in Prog. 10.2. Some results
are shown after the programs.

click to fold
while-end block

click to fold
if-end block

Program 10.1 Script of file sqrt_finder.m with code folding enabled, but not utilized.
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while-end loop has been folded position mouse to see statements within folded loop

click to fold function

Program 10.2 Function m-file that implements method of steepest descent.

Square root finder

Enter a negative number to terminate program

Enter a real number: 4

The square root of: 4 is: 1.9999

Enter a real number: 100

The square root of: 100 is: 10

Enter a real number: 0.09

The square root of: 0.09 is: 0.30042

Enter a real number: -1

Not a nonnegative number, terminating program.

Suppose that Prog. 10.1 has been partially written as shown in Fig. 10.1. Notice that as
you enter the argument(s) of almost any built-in function, the input function in this case, a
window will pop up that shows you the argument syntax options. If you need more help,
then click More Help, which causes another window to pop up that contains the help pro-
duced by using the doc facility, doc input in this case. Also, the right side of Fig. 10.1
automatically shows the execution status (green, orange, or red) of the code, with details
about lines that can be improved.
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With the built-in function checkcode (replacement of the function mlint) you can
apply the code analyzer to an m-file and obtain M-Lint messages about syntax errors and
possible program improvements. For m-files within the Current Folder, a syntax option
is given by

checkcode(’file_name’)

For example, several syntax errors were introduced (but not shown) in Prog. 10.1. The result
of using the function checkcode is shown below.

>> checkcode(’sqrt_finder’) % equivalent to: checkcode sqrt_finder

L 8 (C 15-53): A quoted string is unterminated.

L 12 (C 14): Parse error at ’ ¼ ’: usage might be invalid MATLAB syntax.

L 17 (C 54-67): A quoted string is unterminated.

L 20 (C 0): Program might end prematurely (or an earlier error confused M-Lint).

An alternative to the function checkcode is the built-in function mlintrpt, with which
you can save the M-lint messages in a file. A syntax option is

mlintrpt(’file_name’)

For example, the statement: mlintrpt(‘sqrt_finder’) generates the report shown in Fig. 10.2.
Click on Learn More in the Code Analyzer Report to find much information about the
meaning of the report.

asterisk indicates that script changes have not been saved

click to run script

execution status

use mouse to select and see
potential errors and problems

syntax pop-up window

Figure 10.1 Editor Window showing potential problems detected by M-Lint.
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To obtain a code analyzer report about all of the m-files in the Current Folder use

Action Button! Reports! Code Analyzer Report

This generates the reports shown in Fig. 10.3.
Not all syntax errors can be detected by the code analyzer. For example, a misspelled

function name may not change a statement into an invalid MATLAB statement, but may
cause errors in the program output. This depends on whether or not the misspelled function
name is in the search path, and if it is in the search path, then it may still be a syntax error
that will not be detected until run time.

10.2 Run-Time Error Debugging

Run-time error debugging can be very challenging. For some run-time errors, MATLAB
stops program execution and displays a message about the kind of error that occurred and
the file name and line number where the error was detected. It can be difficult to locate and
correct the cause of such errors. Sometimes, a variable value becomes infinite (inf) or not a
number (nan), which can produce incorrect results and may not cause an error message to be
displayed. There may not be a unique correspondence between a script error and the

Figure 10.2 Code analyzer report.
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meaning of an error message. Without experience, some error messages may not be easily
understood.

The source of a run-time error can be input data, syntax (a misspelled variable name, for
example), script logic, or insufficient accounting for all problematic outcomes. When a
MATLAB error message is clear or program output clearly points to an error in the script,
there is no debugging problem. However, for complicated scripts, the efficiency of the
debugging process depends on the skills of the programmer and the debugging facilities
provided by the programming environment. MATLAB includes a variety of provisions for
debugging.

An easy way to see the value of a variable from within the Editor Window is to position
the mouse over the variable, as shown in Fig. 10.4. This causes a window to pop up that
gives the class of a variable, the value of a scalar, and the size of a matrix. This way you can

place mouse over variable

Figure 10.4 Example of finding properties of a variable with the mouse.

action button

Figure 10.3 A part of the M-Lint message reports of all m-files in the Current Folder.
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quickly check to see if some variables have values in expected ranges. Or, you can remove
the semicolon at the end of lines that assign values to variables to stop suppressing their
display when you run the program again.

Another way to check variables is to activate the Command Window, and enter the
names of variables to display their values. Consider using functions such as disp, who, whos,
size, isempty, isinf, isnan, iskeyword, all, any, find, and others to find out more about the
condition of variables. Or, you can double click on the variable name in the Workspace
Window to open the Variable Editor Window.

To trace statement execution in a file, use the function echo. Somewhere within a script
or function, insert the statement: echo on, to display in the Command Window statements as
they are executed. To stop echoing statements, use: echo off. You can specify the function
file in which statements should be echoed with

echo ’file_name’ on

Example 10.2

The beginning of the script of sqrt_finder.m, which is given in Prog. 10.1, is modified to

% Find the square root of a number by the method of steepest descent

clear all; clc

echo ’my_sqrt’ on % echo statements in the function file my_sqrt.m

disp(’Square root finder’);
..
.

Executing the file sqrt_finder.m produces the following output in the Command Window.

Square root finder

Enter a negative number to terminate program

Enter a real number: 1

global precision mu % parameters used in method of steepest descent

y_old ¼ 1/x; % initial guess of square root

slope ¼ f_prime(y_old,x); % initial slope of cost function

dfdy ¼ 4*(y^2 - x)*y; % slope of cost function f(y)

y_new ¼ y_old - mu*slope; % new guess of square root

while abs(y_new - y_old) > ¼ precision*abs(y_old); % check for convergence

end

sqrt_x ¼ y_new; % return square root

end % end of function implementing steepest descent

The square root of: 1 is: 1

10.2 Run-Time Error Debugging 419



Enter a real number: -1

Not a nonnegative number, terminating program.

Here, we can check the sequence of statements that are executed in the function and its
subfunction. The test case of x ¼ 1 was used to ensure that the while-loop in my_sqrt.m is
executed only once.

To investigate the state of variables before an error condition is reached, insert into the
script wherever you want to stop program execution, the statement: keyboard. The function
keyboard stops execution of an m-file and gives control to the keyboard. The MATLAB
environment is said to be in the keyboard mode. This special status is indicated in the
Command Window by the K before the prompt, K>>. In the Command Window you can
examine or change variables, and all valid MATLAB statements and functions can be used.

Example 10.3

Suppose that the statement: keyboard, is inserted just after line 5 in the function script given
in Prog. 10.2. After saving this function script as the m-file my_sqrt.m, the m-file
sqrt_finder.m, which is given in Prog. 10.1, is opened and executed by clicking on the run
button in the Editor Window toolbar. Fig. 10.5 shows the resulting keyboard mode. Notice
that the Workspace Window shows the function my_sqrt.m work space, which is separate
from the sqrt_finder.m work space, and that the value of a variable can be changed. To exit
the keyboard mode, the function return must be used. In this case, execution of the file
my_sqrt.m continues.

keyboard mode

modify parameter function work space

Figure 10.5 MATLAB keyboard mode.
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10.2.1 Error and Warning Messages
MATLAB issues error messages and terminates program execution when a program
includes code that it cannot execute. For example, an algorithm requires the inner product of
two column vectors a and b, and a MATLAB program contains the statement: c ¼ a*b,
which produces the following result

>> c ¼ a * b

Error using *

Inner matrix dimensions must agree.

A programmer may not have known the dimensions of a and b when the script was written.
After debugging with size(a) and size(b), the MATLAB statement is changed to: c ¼ a0 � b.

With the built-in function error, you can also include in a script MATLAB statements
that issue error messages in response to computing conditions that violate algorithm
requirements. A syntax option of the built-in function error is given by

error(’message’, var1, var2, ...)

where the message character string can include conversion specifiers, such as %d for a
decimal number. See section 8.1.1 for format possibilities.

Example 10.4

Let us reconsider Prog. 10.2 by understanding the given problem a little better. To find the
square root of, for example, x ¼ 4, the function f ðyÞ to be minimized is plotted in Fig. 10.6,
which shows two minima. The behavior of the algorithm depends on three parameters:
initial guess, step size, and precision.
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x 
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4

Cost function

Figure 10.6 Cost function f(y) for x ¼ 4.
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Given x, the initial guess is obtained with y ¼ 1/x, because if x > 1, then the initial
guess will be less than x, and if x < 1, then the initial guess will be greater than x, which is
expected of the square root of x. There may be good rationale for using another way to
specify an initial guess, for example y ¼ x. For x ¼ 4, the initial guess is y ¼ 0.25, where the
slope of the cost function f (y) is negative, and the next guess of the square root of x will be
greater than y ¼ 0.25. If the step size is too large, then the next guess could be much larger
than y0 ¼ 2, and the cost function f (y > y0) may be larger than f (y ¼ 0.25). We want the
cost function to decrease to zero, where y ¼ y0. However, when the next guess y is much
larger than y0 ¼ 2, the slope of f(y) is positive and big, which, with a large step size, may
cause the following guess y to become negative. This understanding of what can go wrong in
this process suggests that with each pass through the while loop to find the next guess of the
square root of x, the cost function must not increase and the next guess must be positive.
These constraints apply, regardless of the value of x. If the step size is too large, then the
algorithm cannot converge. If the step size is too small, then the algorithm may take a long
time to converge.

To make this application of the method of steepest descent more robust, it is modified to
include checking the sign of the next guess of the square root of x and the change in the cost
function through every iteration of the algorithm. In Prog. 10.3 the constraints are checked,
and if a constraint is violated, an error message is issued and program execution is termi-
nated. It would be useful to instead introduce a remedy for this problem, by, for example,
automatically increasing and decreasing the step size.

function sqrt_x ¼ my_sqrt(x)

global precision mu % parameters used in method of steepest descent

y_old ¼ 1/x; % initial guess of square root

slope ¼ f_prime(y_old,x); % initial slope of cost function

y_new ¼ y_old - mu*slope; % new guess of square root

if y_new < ¼ 0 % only positive values allowed

error(’new root: %f is not positive’,y_new)

elseif f_of_y(y_new,x) > f_of_y(y_old,x) % cost function must not increase

error(’new cost: %f is greater than old cost: %f’,y_new,y_old)

end

while abs(y_new - y_old) > ¼ precision*abs(y_old); % check for convergence

y_old ¼ y_new; % update recursion

slope ¼ f_prime(y_old,x); % get slope

y_new ¼ y_old - mu*slope; % update square root

if y_new < ¼ 0

error(’new root: %f is not positive’,y_new)

elseif f_of_y(y_new,x) > f_of_y(y_old,x)

error(’new cost: %f is greater than old cost: %f’,y_new,y_old)

end

end
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sqrt_x ¼ y_new; % return square root

end % end of function implementing steepest descent

% define a sub function

function dfdy ¼ f_prime(y,x)

dfdy ¼ 4*(y^2 - x)*y; % slope of cost function f(y)

end

% define a sub function

function cost_func ¼ f_of_y(y,x) % cost function f(y)

cost_func ¼ (y^2 - x)^2;

end

Program 10.3 Modification of Prog. 10.2 to include issuing error messages.

With the intention of speeding up convergence, set the step size to mu ¼ 1.e-2 in line 6
of Prog. 10.1, which gives the following results.

Square root finder

Enter a negative number to terminate program

Enter a real number: 4

The square root of: 4 is: 2

Enter a real number: 100

Error using my_sqrt (line 18)

new cost: 21.454051 is greater than old cost: 6.168742

Error in sqrt_finder (line 15)

y ¼ my_sqrt(x); % invoke steepest descent algorithm

Square root finder

Enter a negative number to terminate program

Enter a real number: 0.81

The square root of: 0.81 is: 0.9

Enter a real number: 0.01

Error using my_sqrt (line 7)

new root: -39899.960000 is not positive

Error in sqrt_finder (line 15)

y = my_sqrt(x); % invoke steepest descent algorithm

Notice that the output given by MATLAB includes the line number where the error
occurred and the sequence of invoked m-files, which is called a stack. You can see the stack
change in the Stack Window on the Editor Window toolbar. This enables you to trace the
sequence of invoked functions.
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A lesson given in Example 10.4 is that an important part of the debugging process is to
understand the method of solution of a problem, and include in the program that implements
a solution method checks in anticipation of problematic conditions.

Sometimes a condition may occur that is not acceptable, but does not warrant termi-
nation of program execution. To be made aware of this condition the MATLAB function
warning can be used. One of its syntax options is

warning(’message’, var1, var2, ...)

Like the function error, the message, which can include conversion specifiers, is displayed,
but program execution continues.

There will be occasions when a script has become very complicated, and program
output is not what was expected. A thorough trace of selected parts of script flow and
computation is necessary. This can be done with breakpoints.

10.2.2 Breakpoints
A breakpoint is a place in a script or function where the executing program or function has
paused executing code. There are three types of breakpoints that you can set in a MATLAB
script, which are

● standard breakpoint, that pauses file execution at a specified line in a file
● conditional breakpoint, that pauses file execution at a specified line in a file only

under specified conditions
● error breakpoint, that pauses file execution of any file when it causes a specified type

of warning, error, NaN or infinite value

In MATLAB, each executable statement in a script can be set to be a standard
breakpoint location. If a particular statement is set as a standard breakpoint location, then
just before this statement is about to be executed

● file execution is paused
● the paused file is opened in the Editor Window, if it was not already open
● the Workspace Window shows the work space of the paused file
● MATLAB goes into the debug mode as indicated by the K before the prompt, K>>

In the Command Window you can examine or change variables, and all valid MATLAB
statements and functions can be used. You can edit all variables in the Workspace
Window.

You can only set valid standard and conditional breakpoints at executable lines in saved
files that are in the current folder or in folders on the search path. An executable line is
preceded by a dash (-) located just to the right of the line number. To set a standard
breakpoint in the Editor Window, click the dash that is just to right of the line number where
you want file execution to pause. If the script has no syntax errors that can prevent file
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execution and it has been saved, then the dash will change to a red dot, indicating that a
valid breakpoint has been set. You can see the saved status of a script by the presence of an
asterisk after its file name (see Fig. 10.1). If a script has syntax errors that prevent file
execution (Check execution status as shown in Fig. 10.1.), then the dot color will be gray
instead of red, and the breakpoint is called an invalid breakpoint.

Example 10.5

To see the condition of variables and trace the activity of the function file my_sqrt.m, as
given in Prog. 10.3, open the file and set a breakpoint at line 3, which is shown in Fig. 10.7.

Be sure to save script modifications before setting any breakpoints. To preserve
breakpoint settings, you need not save the script again. Saving this function script will clear
breakpoints. Instead, close the Editor Window shown in Fig. 10.7.

The function my_sqrt.m is invoked in the file sqrt_finder.m. Before running the file
sqrt_finder.m, open it in the Editor Window, and change the statement: clear all, in line 2
(see Fig. 10.1) to: clear x y x_sqrt, because the statement: clear all, also clears all break-
points. Save sqrt_finder.m, and to run it, for example, name it in the Command Window.
Instead, let us set another breakpoint at line 15, as shown in Fig. 10.8, and run the file
sqrt_finder.m by clicking on the run button in the toolbar of the Editor Window.

clicked here orange or green indicates file is executable

set/clear breakpoint clear breakpoints in all files

Figure 10.7 Set a valid breakpoint in my_sqrt.m.

Figure 10.8 Breakpoint set in file sqrt_finder.m.
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When the breakpoint at line 15 is reached, the Command Window and Workspace
Window appear as shown in Fig. 10.9. MATLAB is in the debug mode, and sqrt_finder.m is
paused as shown in Fig. 10.10.

At line 15, you can single step to line 16 by clicking the single step button on the
toolbar. During this step my_sqrt.m is executed, and since there is a breakpoint at line 3 of
my_sqrt.m, my_sqrt.m is paused, as shown in Fig. 10.11. If instead you click the step in
button, execution is continued in my_sqrt.m at line 2, the first line in the file. You can
continue to single step through my_sqrt.m, and when another function is reached, you can
step into it to single step through it. At any line you can click the step out button to step out

Figure 10.9 Command window showing line 15.

green arrow indicates paused line

single step step in exit debug mode

step out continue

Figure 10.10 File sqrt_finder.m paused.

Figure 10.11 File my_sqrt.m paused.
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of a function, or continue execution until the next breakpoint is reached by clicking the
continue button.

If you want to execute several lines of code without single stepping through them, place
the cursor anywhere on a line to which you want to execute code, and use

Debug! Go Until Cursor

It is particularly useful that when you step into a function, the Workspace Window
shows the work space of the function, and you can see function variable values as they
change from one line to the next line by single stepping through the function.

Other ways to set a breakpoint are (1) position the cursor in an executable line and then
click the set/clear breakpoint button on the toolbar and (2) from the Debug menu, select Set/
Clear Breakpoint.

The debugging possibilities demonstrated in Example 10.5 can also be achieved from
the Command Window with debugging functions given in Table 10.1. For example,
K>> dbtype sqrt_finder

1 % Find the square root of a number by the method of steepest descent

2 clc; clear x y x_sqrt; % clear selected variables

3 disp(’Square root finder’);
..
.

18 disp(x_sqrt) % display square root of input

19 end

K>> dbstatus

Breakpoint for my_sqrt is on line 3.

Breakpoint for sqrt_finder is on line 15.

K>> dbclear in sqrt_finder at 15 % clear breakpoint

K>> dbquit

Table 10.1 Debugging mode functions

Function Brief description

dbstop Set breakpoint
dbclear Remove breakpoint
dbcont Resume execution
dbdown Change local work space context
dbstatus List all breakpoints
dbstep Execute one or more lines from present breakpoint
dbtype List m-file with line numbers
dbup Change local work space context
dbquit Quit debug mode
dbmex Enable mex-file debugging; use doc dbmex for details
dbstack List who called whom
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Another useful kind of breakpoint is the conditional breakpoint, which pauses
execution of a script at a specified line only if a specified condition is satisfied. You can
elect to set a standard or conditional breakpoint by right-clicking the dash next to a line
number. In response to selecting a conditional breakpoint, a dialog box will open, where you
can enter an expression that evaluates to a logical value. Or, you can change a standard
breakpoint into a conditional breakpoint by right-clicking the standard breakpoint. After you
have entered an expression into the dialog box, click OK in the dialog box, and the break-
point dot color changes to yellow, indicating that it is a conditional breakpoint.

Example 10.6

To keep track of the number of iterations through the loop of my_sqrt.m, let us add a counter
and conditional breakpoint as shown in Fig. 10.12.

After 101 loop iterations, execution will pause at line 16. You can then look at the function
work space to see the progress of the algorithm to gain more insight about its behavior.

MATLAB issues error/warning messages when an illegal operation is encountered in a
script. For some illegal operations, for example, division by zero, it assigns the result inf and
continues file execution. This may cause incorrect program output. For almost all other
illegal operations file execution is stopped after the error message has been issued. Instead,
it may be useful to enable error breakpoints. When MATLAB detects an error, it pauses
file execution, enters the debug mode, opens the file in which the error occurred and posi-
tions, the pause indicator (green arrow) in the line after the line in which the error was
detected. To enable a file to be opened in the debug mode, from the Desktop or any other
menu bar use

right click and select set/modify condition enter condition

Figure 10.12 Setting a conditional breakpoint.
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Debug! Open Files when Debugging

To enable debugging in response to MATLAB detected errors/warnings, you must
enable error breakpoints with

Debug! Stop if Errors=Warnings

which opens the dialog box shown in Fig. 10.13, where in the Nan or Inf tab the Always
Stop option was selected. Repeat the selected option in the Errors and Warnings tabs. The
default settings are automatically reinstated when you end the MATLAB session. Click on
help in each of the tabs for a description of the type of breakpoint. Use the help facility, and
do a search for breakpoints to see extensive documentation.

Example 10.7

To see the effect of a NaN or Inf error breakpoint as enabled with the dialog box shown in
Fig. 10.13, suppose the statements

elseif x ¼¼ 0

y ¼ 0;

default setting click for description

selected setting

Figure 10.13 Dialog box to set error/warning breakpoints.
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are removed from the m-file sqrt_finder.m. Then, an input of x ¼ 0 will cause an Inf error
in my_sqrt.m, which results in the response shown in Fig. 10.14.

After you have resolved the cause of errors you can disable breakpoints with

Debug! Clear Breakpoints in All Files

10.3 Conclusion

MATLAB provides numerous ways to track down bugs. Debugging success depends on
your ingenuity, not only to find bugs, but also on the way you build scripts to make it easier
to find bugs. For example, it is useful to

● understand the problem and method of solution as thoroughly as possible
● modularize scripts that implement the method of solution
● anticipate computing issues and exercise each module
● provide input test cases and expected results
● document scripts

You should now know how to

● fold program blocks
● utilize M-Lint to find, report, and fix syntax errors
● use the function keyboard to track computation
● apply the function echo to track code

step to check
further computing

Input

Figure 10.14 Handling of a NaN or Inf breakpoint.

430 Debugging



● issue error and warning messages
● set up and work with standard and conditional breakpoints
● step through a script and function
● use debug functions
● set and reset error breakpoints

There is much more to be learned about the MATLAB debugging facilities. Since we
are all prone to make programming mistakes, debugging experience will help to make
debugging easier. Table 10.2 gives a list of the built-in functions that were introduced in the
chapter.

Problems

Section 10.1
1) Describe the meaning of the three colors of the execution status button in the Editor

Window.
2) Describe the difference between the two colors (red and orange) of the dashes in

execution status column.
3) (a) Describe how to enable code folding.

(b) Key in Progs. 10.1 and 10.2, and save them in your Current Folder. Enable code
folding, and fold every possible structure. Provide copies of the programs before
and after code folding. The folded while-loop in Prog. 10.2, shown in the high-
lighted window, is given below.

while abs(y_new - y_old) > ¼ precision*abs(y_old); % convergence check

y_old ¼ y_new; % update recursion

slope ¼ f_prime(y_old,x); % get slope

y_new ¼ y_old - mu*slope; % update square root

end

Table 10.2 Built-In MATLAB functions introduced in this chapter

Function Brief explanation

checkcode Apply M-Lint code analyzer
mlint Replaced by checkcode
mlintrpt Apply M-Lint code analyzer to all files in a folder
echo Display statements as they are executed
keyboard Switch to keyboard mode
error Display an error message and terminate program execution
warning Display a warning message
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These programs will be used in many of the following problems.
4) (a) Change line 12 of Prog. 10.1 to: elseif x ¼ 0. What happened to the status execu-

tion button?
(b) Position the mouse on the red dash in the status execution column. What appears?

Is this useful for fixing the syntax error? Fix the syntax error. What happened to the
status execution button?

5) (a) Change line 9 of Prog. 10.1 to: if x> 0. Does this cause a syntax error or a run-time
error? What happened in the execution status column? Fix line 9.

(b) Change line 6 of Prog. 10.2 to: while (y_new - y_old)> ¼ precision*abs(y_old).
Does this cause a syntax error or a run-time error?

6) Implement the changes described in Probs. P10.4 and P10.5. Use the function check-
code to get a report. Does the report show all errors introduced in Probs. P10.4 and
P10.5. Provide a copy of the report. Undo the errors.

Section 10.2
7) (a) Describe four different ways that you can see the value or properties of a variable

after a program has executed and you suspect a run-time error.
(b) Insert: echo on, between lines 6 and 7 of Prog. 10.1, and insert: echo off, after the

last statement of the program. Execute the program with an input of 2 and then �1.
Describe what happens in the Command Window as the program executes. Then,
remove the echo statements.

8) Edit Prog. 10.2 to enter the statement: keyboard, between lines 4 and 5. Save the
program.

Open and execute Prog. 10.1 with an input of 2. When MATLAB goes into the
keyboard mode, find and give the value of the variable slope. Does the variable slope
appear in the function work space? Then, in the Command Window, enter the statement:
return, to exit the keyboard mode. Remove the statement: keyboard, from your program.

9) To make Prog. 10.2 more robust (less prone to initiate undesirable activities) several
checks were inserted into it, as shown in Prog. 10.3. The first error check occurs after
line 5 in Prog. 10.2 (see Prog. 10.3). The kinds of error checks and their messages
depend on an understanding of the problem, the solution method, and program imple-
mentation of the solution method.
(a) Describe the purpose of the first error check.
(b) In your Prog. 10.2, enter between lines 5 and 6 the statement: maxiter ¼ 1e4; iter

¼ 0;. Then, just before the while-loop end statement, enter the statement: iter ¼
iter þ1; % counting iterations. Follow this with an if-end structure to check iter
equals maxiter, and a statement to issue a warning message if this is true. Execute
Prog. 10.1 with an input of 2. Does your program issue a warning message? If not,
reduce mu in Prog. 10.1, and try again.

(c) Modify your programs to make maxiter a global variable. Provide a copy of your
programs.
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10) (a) What is a standard breakpoint?
(b) There are six buttons in the Editor Window toolbar that are concerned with

breakpoints. The left most button is named: Set/clear breakpoint. Describe how this
button is used to set a standard breakpoint.

(c) From left to right, name and describe the activity of the remaining five buttons
concerned with breakpoints.

11) Open your Prog. 10.1. Click the dash just to the right of the number 7 of line 7, which
has the while statement. The dash should change to a red dot, which indicates that a
regular breakpoint has been set.
(a) Run the program. Notice the green arrow in line 7, which indicates that line 7 will

be executed next. What kind of prompt is shown in the Command Window? This
shows that MATLAB is in the debug mode.

(b) Click the Step button. Notice that the green arrow has moved to line 8. Click the
step button again, and in the Command Window enter the number 2. Click the step
button repeatedly until the green arrow reaches line 15. Instead of clicking the Step
button, click the Step in button. Describe what happened.

(c) Instead of clicking the Step button, click the Step out button. Describe what
happened.

(d) Click the Continue button. Describe what happened. Is MATLAB still in the debug
mode?

(e) Run the program again. When the program pauses at line 7, click the Exit debug
mode button. Describe what happened.

12) Repeat Prob. P10.11, parts (a) and (b), and open the Stack Window. Give its content.
Explain what is meant by a stack.

13) What is an invalid breakpoint?
14) While in debug mode, give statements that you can enter in the Command Window to

(a) type a copy with line numbers of your Prog. 10.1.
(b) get a status of breakpoints
(c) see the stack content
(d) set a breakpoint at line 17

15) In line 5 of your Prog. 10.2, the variable y_new is assigned a value. Set a standard
breakpoint on line 6, the while statement. Describe how this breakpoint
can be changed to a conditional breakpoint that causes the program to pause at line 6
only if y_new is negative. After you have done this, what is the color of the break-
point dot?

16) In the Editor Window menu bar, open the Debug menu.
(a) Name and describe the purpose of every menu item.
(b) Clear all breakpoints. In Prog. 10.1, place the cursor anywhere on line 7,

and do

Debug! Set=Clear Breakpoint

10.3 Conclusion 433



Run the program. After the program has paused at line 7, place the cursor anywhere
on line 17, and do

Debug! Go Until Cursor

Describe what happened.
17) Describe how to enable an error breakpoint.
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CHAPTER 11

Symbolic Math

InMATLAB�, all numeric computation involves the application of arithmetic operations and
functions to array variables (also called objects) of the class double (double precision floating
point), where even a scalar is treated like an array. With the functions in the MATLAB
Symbolic Math Toolbox you can perform symbolic computations. For example, suppose a, b,
c, and d are symbolic variables, which means that they do not have a numeric value. Then, the
MATLAB statement d ¼ a*b*c/b, which is a symbolic computation, produces: d ¼ a*c.
Symbolic objects can be symbolic variables, numbers, expressions, and matrices.

At the core of the toolbox is the MAPLE system of programs for symbolic computation.
Symbolic MATLAB statements are passed to MAPLE, which performs the symbolic
computations and returns the results to MATLAB.

In this chapter, you will learn how to symbolically:

● solve systems of algebraic equations
● perform matrix operations
● differentiate a function given in symbolic function form
● evaluate both definite and indefinite integrals of symbolic integrands
● find the Fourier series coefficients of a periodic signal

and do variable precision arithmetic (VPA).

11.1 Symbolic Objects and Expressions

To distinguish between symbolic computation and arithmetic computation, objects to be
used for symbolic computation must be declared to be of the class symbolic. Table 11.1
gives several MATLAB functions concerned with the symbolic data type. Unless otherwise
specified, all symbolic variables are complex symbolic objects, having a real part and an
imaginary part.



The function syms is used to declare that a variable is a symbolic object. All symbolic
object names must be valid MATLAB names. The syntax is given by

syms name1 name2 … property

where property can be real (objects are real), positive (objects are real and positive), clear
(used to restore objects to complex), or omitted. For example:

>> syms a b % command format to declare that a and b are symbolic objects

>> % MATLAB enters the names in the Workspace Window, and

>> % note that MATLAB does not echo the result

>> syms(’c’,’d’) % function format to declare that c and d are symbolic objects

>> % get a symbolic expression for the real part of the symbolic variable a

>> real(a)

ans ¼ a/2 + conj(a)/2

>> imag(b) % get a symbolic expression for the imaginary part of b

ans ¼ -(b*i)/2 + (conj(b)*i)/2

>> e ¼ real(c) % assign the real part of c to another symbolic object

e ¼ c/2 + conj(c)/2

>> who % show all objects in the Workspace Window

Your variables are:

a b c d ans e

Table 11.1 Functions concerned with symbolic variables

Function Brief description

y ¼ ceil(x) Round symbolic x toward plus infinity
y ¼ char(x) Convert symbolic scalar or array to a string
y ¼ conj(x) Take complex conjugate of symbolic x
y ¼ double(x) Assigns to y a numeric value represented by the symbolic object x
y ¼ fix(x) Round symbolic x toward zero
y ¼ floor(x) Round symbolic x toward minus infinity
y ¼ frac(x) Get symbolic fractional part of x
y ¼ imag(x) Get symbolic imaginary part of x
y ¼ intn(x) Convert symbolic matrix(scalar) to signed n-bit integer matrix(scalar),

where n ¼ 8, 16, 32, or 64
y ¼ real(x) Get symbolic real part of x
y ¼ round(x) Round symbolic x toward nearest integer
d ¼ size(X) Returns the size of a symbolic array
y ¼ sym x property
y ¼ sym(0x0,0property0)

Declare a variable to be of the sym class, where property can be: real,
positive, a flag and clear; see the following text

syms x1 x2 . . . property Declare variables to be of the sym class
y ¼ symvar(f) See the following text
y ¼ uintn(x) Convert symbolic matrix(scalar) to unsigned n-bit integer matrix(sclar),

where n ¼ 8, 16, 32 or 64
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The function sym is used to construct a symbolic object. There are several syntax options.

1) y ¼ sym(x)

where x can be a character string, numeric scalar or matrix, or a function handle. If the input
argument x is a string, the result is a symbolic number or variable. If the input argument is a
numeric scalar or matrix, the result is a symbolic representation of the given number(s). For
example:

>> clear all % clear workspace

>> a ¼ sym(b) % argument is not numeric and not a character string

??? Undefined function or variable ’b’.

>> a ¼ sym(’b’) % argument is a character string, which is assigned to a

a ¼
b

>> whos

Name Size Bytes Class Attributes

a 1x1 112 sym

>> c ¼ a/b

??? Undefined function or variable ’b’.

>> c ¼ a/sym(b)

??? Undefined function or variable ’b’.

>> c ¼ a/sym(’b’) % symbolic character string divided by a symbolic character string

c ¼
1

d ¼ a/’b’ % symbolic character string divided by a character string

d ¼
1

>> e ¼ sym(’2’) % argument is a character string, which is assigned to e

e ¼
2

>> f ¼ sym(2) % argument is numeric, which is assigned to f

f ¼
2

>> whos

Name Size Bytes Class Attributes

a 1x1 112 sym

c 1x1 112 sym

d 1x1 112 sym

e 1x1 112 sym

f 1x1 112 sym

>> g ¼ e/2 % same as e/’2’

g ¼
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1

>> h ¼ f/2 % same as f/’2’

h ¼
1

Note that MATLAB does not indent a symbolic response, as it does a numeric response, for
example:

>> n ¼ 3 % numeric assignment

n ¼
3

In this text, a numeric response will be shown as n ¼ 3 to conserve space. Space will also
be conserved for symbolic responses.

To construct a symbolic object that represents a numeric matrix, use, for example:

>> b ¼ sym([-5.3 3])

b ¼ [ -53/10, 3]

When a number with a fractional part is assigned to a symbolic object, MATLAB converts
the number to the closest rational number. For example, computing with 1/3 is not an
approximation, while computing with 0.3333333 . . . is an approximation because a finite
number of digits must be used. The sym function is used to create a variety of symbolic
objects. For example:

>> c = sym(1/3) % note that this does not produce an arithmetic result

c ¼ 1/3

>> d ¼ sym(’x’) % define a symbolic object

d ¼ x

>> y ¼ c*d + 0.43 % define a symbolic expression

y ¼ x/3 + 43/100

>> % form symbolic representation of the square root of -1, named e

>> e = sym(sqrt(-1))

e ¼ i

>> f ¼ 3*e - 2 % define a symbolic object that represents a complex number

f ¼ 3*i - 2

>> f ¼ e*f

f ¼ -2*i -3

>> g ¼ @(a) a^2+3 % g is the handle of an anonymous function, and echo result

g ¼ @(a) a^2+3

>> h ¼ sym(g) % create a symbolic version of the function g, named h

h ¼ a^2 + 3
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When you use numeric data in a symbolic expression, MATLAB attempts to preserve
accuracy by retaining the details of the computation. Symbolic computation is done with
rational arithmetic. For example:

>> clear all

>> syms a b

>> c ¼ a + b^2 + 2/3 % 2/3 is not replaced by 0.666666666 ....

c ¼ b^2 + a + 2/3

>> d ¼ c + 0.47 % this is computed with rational arithmetic

d ¼ b^2 + a + 341/300

% here, MATLAB converted 0.47 to a rational number and combined it with 2/3

With the function symvar you can find the variables in an expression that are of the sym
class. For example:

>> symvar(d)

ans ¼ [a, b]

Sometimes it is better to prevent floating point arithmetic computation within an
expression by declaring a number to be of the sym class. For example, the arithmetic
computation given by

>> clear all

>> a ¼ sqrt(2), b ¼ sqrt(3) % causes floating point arithmetic computations

a ¼ 1.4142

b ¼ 1.7321

>> c ¼ a*b

c ¼ 2.4495

may not be preferred because a, b, and c are approximations and the details of the compu-
tation are lost. Instead, use

>> d ¼ sym(sqrt(2)), e ¼ sym(sqrt(3))

d ¼ 2^(1/2)

e ¼ 3^(1/2)

>> f ¼ d*e % get a symbolic representation of d*e

f ¼ 2^(1/2)*3^(1/2)

Here, f is not an approximation. With the function double you can convert a symbolic
number to a floating point number. For example:

>> g ¼ double(f) % will produce the value of f using floating point arithmetic

g ¼ 2.4495
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Remember that all floating point computation is done in double precision. The number of
digits displayed is controlled by the format function. Since g is an approximation, in further
computation f should be used instead, which will preserve accuracy.

2a) y ¼ sym(’x’,’real’)

where real(y) ¼ x and imag(y) ¼ 0.

2b) y ¼ sym(’x’,’positive’)

where real(y) is positive and imag(y) ¼ 0.

2c) y ¼ sym(’x’,’flag’)

where flag is one of r (rational), which is the default, d (decimal), e (estimate error), or
f (floating point). For example:

>> clear all

>> % convert the number 1/3 to a symbolic object

>> r ¼ sym(1/3), d ¼ sym(1/3, ’d’), e ¼ sym(1/3, ’e’), f ¼ sym(1/3, ’f’)

r ¼ 1/3

d ¼ 0.333333333333333

e ¼ 1/3 - eps/12

f ¼ 6004799503160661/18014398509481984

>> % f is the binary to decimal conversion of the floating point number N*2^E

>> % for example

>> log2(18014398509481984) % this gives -E

ans ¼ 54

2d) y ¼ sym(’y’,’clear’)

where y is restored to be a complex symbolic object with flag ¼ r (the default).
Notice that, for example, the statements syms x property and x ¼ sym(0x0,0property0) are

equivalent. The function syms is useful to conveniently declare multiple variables of the
sym class, while the function sym provides more options, but allows for declaring only one
variable at a time.

3) A ¼ sym(’A’,[M N]) or A ¼ sym(’A%d%d’,[M N])

which creates an M by N matrix of scalar symbolic objects. The names of the elements of A
have the form Am_n or Amn. If A is a vector, then the names of the elements have the form
An or Am. For example:

>> A ¼ sym(’A’,[2 3]) % create a 2 by 3 symbolic matrix

A ¼
[A1_1, A1_2, A1_3]
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[A2_1, A2_2, A2_3]

>> A(2,1) % get the object in row 2 and column 1

ans ¼ A2_1

You can work with symbolic matrices like you can work with numeric matrices. For
example:

>> clear all

>> A ¼ sym(’A%d%d’,[2 2]) % create a 2 by 2 symbolic matrix

A ¼
[ A11, A12]

[ A21, A22]

>> B ¼ sym(’B%d%d’,[2 3]) % create a 2 by 3 symbolic matrix

B ¼
[ B11, B12, B13]

[ B21, B22, B23]

>> C ¼ A*B % symbolic multiplication

C ¼
[ A11*B11 + A12*B21, A11*B12 + A12*B22, A11*B13 + A12*B23]

[ A21*B11 + A22*B21, A21*B12 + A22*B22, A21*B13 + A22*B23]

>> D ¼ B(2,:) % retrieve some part of a symbolic matrix using colon notation

D ¼
[ B21, B22, B23]

>> E ¼ inv(A) % find the symbolic inverse of A

E ¼
[ A22/(A11*A22-A12*A21), -A12/(A11*A22-A12*A21)]

[ -A21/(A11*A22-A12*A21), A11/(A11*A22-A12*A21)]

>> F ¼ A*E % check if inverse

F ¼
[ (A11*A22)/(A11*A22-A12*A21) - (A12*A21)/(A11*A22-A12*A21), 0]

[ 0, (A11*A22)/(A11*A22-A12*A21) - (A12*A21)/(A11*A22-A12*A21)]

>> simplify(F) % use the function simplify to simplify the elements of F

ans ¼
[1, 0]

[0, 1]

Example 11.1

This example demonstrates the difference between floating point arithmetic and rational
arithmetic. For example:

>> clear all; format long

>> rng(’default’) % initialize random number generator

>> % create a 3 by 3 matrix with elements selected randomly from

>> % among (0, 1/6, ... , 5/6)
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>> A ¼ (randi(6,3) - 1)/6

A ¼
0.833333333333333 0.166666666666667 0.166666666666667

0.333333333333333 0.333333333333333 0.500000000000000

0 0.500000000000000 0.666666666666667

>> B ¼ inv(A)

B ¼
0.857142857142858 0.857142857142856 -0.857142857142856

6.857142857142851 -17.142857142857128 11.142857142857135

-5.142857142857139 12.857142857142847 -6.857142857142851

>> C ¼ A - inv(B) % ideally the result should be zero

C ¼
1.0e-015 *

-0.333066907387547 -0.083266726846887 -0.138777878078145

-0.610622663543836 0 0

-0.789491928622333 0 0

>> D ¼ sym(A)

D ¼
[ 5/6, 1/6, 1/6]

[ 1/3, 1/3, 1/2]

[ 0, 1/2, 2/3]

>> E ¼ inv(D) % get the exact inverse of A

E ¼
[ 6/7, 6/7, -6/7]

[ 48/7, -120/7, 78/7]

[ -36/7, 90/7, -48/7]

>> F ¼ D - inv(E)

F ¼
[ 0, 0, 0]

[ 0, 0, 0]

[ 0, 0, 0]

Note the difference between C and F. This shows that if B is used to solve AX ¼ Y, the
solution is an approximation, while if E is used to solve DX ¼ Y, the solution is exact. This
difference can become significant, depending on the dimension of A, its elements, and
condition number.

Sometimes there is a need to use a function name or operator acronym for more than
one purpose. In this case, the function name or operation acronym is said to be overloaded.
For example, the acronym eq (or ¼¼ ) compares, by default, two objects of the class
double (and other numeric classes), and gives a logical result. This acronym is overloaded,
because it also refers to a valid operation, which is defined within the Symbolic Math
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Toolbox, among two objects of the sym class. When you get help with: help eq, the response
concerns the default version of eq. To obtain help within the Symbolic Math Toolbox
context, you must use help sym/eq. Many function names, for example, inv, are overloaded
to reuse them in a context other than a numeric context.

Table 11.1 includes several functions that are usually applied to numeric data. For
example, the functions ceil, fix, floor, and round are concerned with rounding a number.
When the argument of the function is of the class double, then the usual rounding operation
is applied. However, when the argument is a symbolic object, a symbolic rounding opera-
tion is utilized. For example:

>> clear all

>> a ¼ sym(-1.6) % assign a symbolic number to a

a ¼ -8/5

>> % examples of symbolic rounding

>> b = [ceil(a), fix(a), floor(a), frac(a), round(a)]

b ¼ [ -1, -1, -2, -3/5, -2]

The function frac returns the fractional part(s) of a symbolic scalar(matrix).

Table 11.2 Functions concerned with symbolic expressions

Function Brief description

f ¼ collect(f,x) Regards each element of the symbolic matrix f as a polynomial in x and
rewrites f in terms of the powers of x; uses the default variable
determined by symvar

f ¼ collect(f)

c ¼ eq(a,b) The result is true if the elements of a and b are symbolically equal; and
since eq does not expand or simplify the expressions before making
the comparison, use c ¼ simplify(a�b) ¼¼ 0 for a mathematically
equal test

f ¼ expand(f) Writes each element of a symbolic matrix f as a product of its factors;
expands polynomials, trigonometric, exponential, and logarithmic
functions

ezplot(f,[xmin,xmax]) Plots the symbolic expression f(x) over xmin < x < xmax; plots
ezplot(f,[xmin,xmax,ymin,
ymax])

f(x,y) ¼ 0 over xmin < x < xmax and ymin < y < ymax; see doc sym/
ezplot for more details

y ¼ factor(f) Factors a symbolic scalar polynomial or matrix of polynomials f; if f is an
integer, then f is factored into a product of prime numbers

pretty(f) Manipulates a symbolic expression f to look more like a mathematical
expression

y ¼ simple(f) Tries several different algebraic simplifications and returns the shortest;
use doc sym/simple for more details

y ¼ simplify(f) Returns a simplified version, if possible, of an expression; searches for a
simplification in N steps, default value is N ¼ 50y ¼ simplify(f,N)

subs(f,{a,b…},{sym(0x0),2,…}) Replaces symbolic variables in the expression f with values; see the
following text

[g,r] ¼ subexpr(f,r) Rewrites f in terms of a common subexpression r
y ¼ symvar(f) Finds all symbolic objects in f, where f can be an expression or a matrix

11.1 Symbolic Objects and Expressions 443



You can formulate symbolic expressions with symbolic scalars and matrices according
to the conventional rules of arithmetic with numeric variables. Table 11.2 gives some
functions concerned with symbolic expressions. For example:

>> clear all; syms a b % declare two symbolic objects

>> c ¼ a + b % assign an expression to c

c ¼ a + b

>> d ¼ c^2 % assign to d an expression in terms of another expression

d ¼ (a + b)^2

>> d ¼ expand(d) % multiply out

d ¼ a^2 + 2*a*b + b^2

>> e ¼ c*d

e ¼ (a + b)*(a^2 + 2*a*b + b^2)

>> e ¼ collect(e,a) % reorganize e as a polynomial in powers of a

e ¼ a^3 + (3*b)*a^2 + (3*b^2)*a + b^3

>> syms s

>> [f,s] ¼ subexpr(e,s) % find a common subexpression and replace it with s

f ¼ a^3 + 3*b*a^2 + 3*s*a + b*s

s ¼ b^2

>> syms r

>> [g,r] ¼ subexpr(f,r) % do it again

g ¼ a*r + 3*a*s + 3*b*r + b*s

r ¼ a^2

>> pretty(e) % make e look like a mathematical expression

3 2 2 3

a + (3 b) a + (3 b ) a + b

>> h ¼ expand(sin(a+b))

h ¼ cos(a)*sin(b) + cos(b)*sin(a)

Once a symbolic expression has been defined, we must be able to replace symbolic
objects within the expression with other symbolic objects or numeric objects to evaluate the
expression. This is done with the function subs, which has the syntax given by

new_expression ¼ subs(old_expression, old, new)

where old is a string or cell array of strings of one or more of the objects in old_expression
that are to be replaced, and new is a corresponding string or cell array of strings of
the replacement objects. If all symbolic objects in an expression are replaced by numeric
data, then the expression is evaluated. Use doc sym/subs for more syntax options.
For example:

>> clear all; syms w t b % declare three symbolic objects

>> s ¼ sin(w*t + b); % assign an expression to s

>> d ¼ s^2 % assign to d an expression in terms of another expression
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d ¼ sin(b + t*w)^2

>> d ¼ subs(d,{w},{10*pi}) % replace w with a numeric value

d ¼ sin(b + 10*pi*t)^2

>> e ¼ subs(d,{b,t},{pi/4, 0.25}) % evaluate d for b ¼ pi/4 and t ¼ 0.25

e ¼ 0.5000

A ¼ sym(’A%d%d’,[2 2]); % create a symbolic matrix

A ¼ subs(A,{A},{[1 2;3 4]}) % replace the elements with numeric values

A ¼
[ 1, 2]

[ 3, 4]

Table 11.3 gives some functions that are especially useful within the context of sym-
bolic expressions.

Example 11.2

Recall that in Example 6.9, Parseval’s relation was applied to prove that

X

1

k¼1

1
k2

¼ p2

6

This result can also be found with the function symsum as follows:

>> syms k

>> S ¼ symsum(1/k^2,1,inf)

S ¼ pi^2/6

Table 11.3 Functions of symbolic variables

Function Brief description

f ¼ poly2sym(C,x) Converts polynomial coefficients in a vector C to a symbolic polynomial
f of x

C ¼ sym2poly(f) Returns a vector C of polynomial coefficients of a symbolic polynomial f
C ¼ mod(A,B) Returns in a symbolic matrix C the result of A-N.*B, where N ¼

floor(A./B)
y ¼ limit(f,x,a) Returns the limit of f as x ? a; from direction left or right
y ¼ limit(f,x,a,‘direction’)
y ¼ symsum(f,x) Returns the indefinite summation of terms given by f with respect to x;

returns the definite summation from a to by ¼ symsum(f,x,a,b)
y ¼ taylor(f,n,a) Returns the (n�1)th order Taylor series expansion about the point a of the

expression f
C ¼ coeffs(f,x) Returns in the vector C the symbolic coefficient expressions in the sym-

bolic expression f with respect to an object x
[num,den] ¼ numden(f) Converts each element of f to a rational form where the numerator and

denominator are relatively prime polynomials with integer coefficients
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A geometric series is given by

S ¼
X

N�1

n¼0
rn ð11:1Þ

This summation can be found with

>> syms r n N

>> S ¼ symsum(r^n,n,0,N-1)

S ¼ piecewise([r ¼ 1, N], [r <> 1, (r^N - 1)/(r - 1)])

This result means that S is given by

S ¼
N ; r ¼ 1

1� rN

1� r
; r 6¼ 1

(

ð11:2Þ

The Taylor series expansion of a function f ðxÞ about a point x ¼ x0 is given by

f ðxÞ ¼
X

1

n¼0
ðx� x0Þn f

ðnÞðx0Þ
n!

ð11:3Þ

where

f ðnÞðx0Þ ¼ dnf ðxÞ
dxn

�

�

�

x¼x0

Equation (11.3) is called a Maclaurin series if x0 ¼ 0. The function taylor can be used to
find a Taylor series expansion of a given function. For example:

>> syms x

>> f ¼ cos(x);

>> cx ¼ taylor(f,20) % returns the first 20 terms of the Maclaurin series

cx ¼ - x^18/6402373705728000 + x^16/20922789888000 - x^14/87178291200 +

x^12/479001600 - x^10/3628800 + x^8/40320 - x^6/720 + x^4/24 - x^2/2 + 1

>> ezplot(cx); grid on % plot the symbolic function cx for -2pi < x < 2pi

>> subs(cx,x,pi/4) % evaluate the series for pi/4

ans ¼ 0.7071

>> subs(cx,x,pi)

ans ¼ -1.0000

>> format long % display enough digits to see nonzero coefficients

>> sym2poly(cx) % gather coefficients into a vector

ans ¼
Columns 1 through 6

-0.000000000000000 0 0.000000000000048 0 -0.000000000011471 0

Columns 7 through 12

0.000000002087676 0 -0.000000275573192 0 0.000024801587302 0
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Columns 13 through 18

-0.001388888888889 0 0.041666666666667 0 -0.500000000000000 0

Column 19

1.000000000000000

The complex symbolic data type is well suited for AC circuit analysis, where we would
like to find a transfer function of a circuit in terms of component symbols to better under-
stand how component values affect responses to sinusoidal inputs. First, let us see how we
can work symbolically with Euler’s identity. For example:

>> clear all

>> j ¼ sym(sqrt(-1)) % declare j to be a symbolic object

j ¼ i

>> syms w t real % declare real symbolic objects

>> % define a symbolic complex exponential function

>> X = exp(j*w*t)

X ¼ exp(t*w*i)

>> f ¼ X + conj(X) % see if Euler’s identity occurs

f ¼ 1/exp(t*w*i) + exp(t*w*i)

>> % use the function simplify to obtain a simplified version

>> % of the expression f

>> g ¼ simplify(f)

g ¼ 2*cos(t*w)

>> % check for Euler’s identity

>> h = simplify((X - conj(X))/(j*2))

h ¼ sin(t*w)

This shows that we can work symbolically with Euler’s identity, and use it to symbolically
obtain a sinusoidal function given its symbolic phasor.

Some functions in the Symbolic Math Toolbox do not work with j and i inter-
changeably. Instead, while, for example, i2 becomes �1, j2 is retained as j2, which means
that terms containing a power of j are not simplified to participate in further simplification.
We will replace j with i to take advantage of simplification possibilities.

Example 11.3

Let us work again with the circuit given in Fig. 6.11, which is a band-pass filter. In Sec-
tion 6.6 the concept of an impedance is introduced, which is useful to find the sinusoidal
response of a circuit when the input is a sinusoidal signal. By replacing each circuit com-
ponent by its impedance, we can transform the problem of solving integral-differential
equations that result from applying Kirchhoff’s laws to an algebraic problem to find
the phasor of a desired response. The impedance of a resistor R is ZR ¼ R, the impedance
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of a capacitor C is ZC ¼ 1/(jwC) and the impedance of an inductor L is ZL ¼ jwL .
Let us employ the MATLAB Symbolic Math Toolbox to find the transfer function given
by (6.51).

>> clear all

>> % i (sqrt(-1)) is of class double, which is assigned to a symbolic object

>> j = sym(i)

j ¼ i

>> syms w t real; syms L C R positive; syms VS % phasor of the input

>> % by specifying a property, we avoid unnecessary complex computations

>> ZR = R, ZC = 1/(j*w*C), ZL = j*w*L % define each symbolic impedance

ZR ¼ R

ZC ¼ -i/(C*w)

ZL ¼ L*w*i

>> % obtain the phasor of the response by voltage division

>> V = (VS/(ZR+ZC+ZL))*ZR

V ¼ (R*VS)/(R + L*w*i - i/(C*w))

>> H ¼ V/VS % get the symbolic transfer function

H ¼ R/(R + L*w*i - i/(C*w))

>> H ¼ simplify(H) % see if MATLAB can simplify H

H ¼ (C*R*w*i)/(- C*L*w^2 + C*R*w*i + 1)

>> % this gives the same transfer function given by (6.51)

In Example 6.10 the circuit component values were given to beC ¼ 0.01 mF,L ¼ 11mH,
and R ¼ 33 W. Recall that the magnitude of H peaks at w � 2pð15000Þ. For example:
>> % evaluate the transfer function

>> H_value = subs(H,{R,C,L,w},{33,1e-08,0.011,2*pi*15175})

H_value = 1.0000 - 0.0007i

where H_value is of the class double. If the input is vsðtÞ ¼ Acosð2pð15175Þt þ qÞ, then the
output is vðtÞ ¼ jjH jjAcosð2pð15175Þt þ ffHþ qÞ ffi Acosð2pð15175Þt þ qÞ, as predicted by
the frequency response plot of jjHðjwÞjj versus w, where jjHðj2pð15175ÞÞjj ffi 1 and
ffHðj2pð15175ÞÞ ffi 0. To obtain the function HðjwÞ, use, for example:
>> H_jw ¼ subs(H,{R,C,L},{33,1e-08,0.011}) % substitute only the component

values

H_jw ¼ (1558380939346983*w*i)/(4722366482869645213696*(-(8510837770086989*w^2)/

77371252455336267181195264+(1558380939346983*w*i)/4722366482869645213696 + 1))

>> H_jw ¼ simplify(H_jw) % see if MATLAB can simplify H_jw

H_jw ¼ (25532513310260969472*w*i)/

(-8510837770086989*w^2+25532513310260969472*w*i + 77371252455336267181195264)
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It may be tempting to define symbolic objects that are a combination of variables, for
example:

>> jw ¼ sym(’jw’) % combine variables that often occur in combination

jw ¼ jw

>> jw*jw

ans ¼ jw^2

This does not permit further simplification, while, for example:

>> j ¼ sym(i) ; syms w real

>> j*w*j*w % or (j*w)^2

ans ¼ -w^2

does simplify. While j^2 evaluated to �1, this does not occur in all Symbolic Math Toolbox
functions.

11.2 Variable Precision Arithmetic

In floating point arithmetic, round off errors can occur with every division, multiplication,
and addition (subtraction), and conversion from binary to decimal may cause an additional
round off error. Floating point arithmetic provides an accuracy of about 16 digits that may
get worse, as round off errors accumulate in extensive computations.

Symbolic computation is done with rational arithmetic, which means that for rational
numbers round off errors cannot occur. For example:

>> clear all

>> a ¼ sym(sqrt(pi)) % since pi is irrational, the result, a, cannot be exact

a ¼ 3991211251234741/2251799813685248

>> % this is the closest rational number to pi^1/2 using two 16 digit integers

>> b ¼ a^2 % given a, b is exact

b ¼ 15929767251982786841597085337081/5070602400912917605986812821504

>> c ¼ sym(.44444) % just another example number

c ¼ 11111/25000

>> d ¼ b + c % example of rational arithmetic

d ¼ 56822955572014137320005826335844493/15845632502852867518708790067200000

>> % d requires even more digits in the numerator and denominator

>> e ¼ double(d) % while d is exact, e is an approximation

e ¼ 3.5860

As you can see, to preserve accuracy, the number of digits required in the numerator and
denominator of each rational number is not limited, except by memory space. Therefore,
symbolic computation can require increasing computing time and memory space.
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Variable precision arithmetic (vpa) is a compromise between floating point arithmetic
and rational arithmetic. The two functions digits and vpa are concerned with variable pre-
cision arithmetic. With the function digits you can specify the minimum number of sig-
nificant digits to be used in variable precision arithmetic. The syntax is given by

digits(d) % specify the minimum number d of digits to be used, 1 < d < 229 + 1

% get the number of digits in current use, default value is d = 32

d ¼ digits

The syntax of the function vpa is given by

x ¼ vpa(expression) % evaluate the expression using the current value of d

x ¼ vpa(expression, d) % evaluate the expression using d significant digits

For example:

>> clear all

>> syms w real

>> H_jw ¼ (25532513310260969472*w*i)/ ...

(-8510837770086989*w^2+25532513310260969472*w*i + 77371252455336267181195264);

>> % evaluate the transfer function using a minimum of 40 digits

>> % replace w with 2*pi*15175 rad/sec

>> H_value ¼ vpa(subs(H_jw,w,2*pi*15175),40)

H_value ¼ 0.9999994834171082036533562131808139383793 -

0.0007187368258941159932309816760209741914878*i

>> H_mag ¼ vpa(abs(H_value),40)

H_mag ¼ 0.9999997417085207235256741927690262002331

Note that H_value from the function vpa is of class sym, which then becomes the input
to the overloaded function abs to produce the 40-digit result for H_mag. With floating point
arithmetic we get

>> format long

>> abs(double(H_value))

ans ¼ 0.999999741708521

which is a rounded version of H_mag. This difference is not consequential in this application.
However, for analysis and design procedures that involve an extensive amount of arithmetic,
the possibility of round off error build-up should be investigated. See Example 3.21.
By applying vpa over a range of d, you can find how the accuracy of a result depends on
computation precision.

11.3 Algebra

All of the arithmetic work with matrices that is described in Tables 3.1 (basic operations),
3.2 (arithmetic), 3.3 (vectorization), 3.5 (manipulation), and 3.6 (construction) can also be
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done with symbolic matrix objects. Also, many high-level matrix operations are included in
the Symbolic Math Toolbox. Some of these functions are given in Table 11.4.

Before going into details, let us solve a nonlinear algebraic equation.

Example 11.4

Consider again the i-v characteristic of a diode, which is repeated here for convenience.

i ¼ Isðev=VT � 1Þ ð11:4Þ
Let us solve for v in terms of i. The function solve will be used to do this. The solution is
found with

>> syms i Is v VT;

>> v ¼ solve(’i ¼ Is*(exp(v/VT) – 1)’, ’v’) % place equation in quotes

v ¼ VT*log(i/Is + 1)

The first argument of the function solve is the equation we want to solve, and the last
argument declares that we want to solve for v, the dependent object. Here, the result is also
assigned to v. To avoid manipulating complex objects, the declaration statement should
have been: syms Is VT positive; syms i v real. To have i again equal sqrtð�1Þ, use clear i.

The function solve has a few syntax options, and it can be used to solve a single
equation and a system of equations. For a single equation, syntax options are given by

y ¼ solve(f(object))

y ¼ solve(f(object1, object2, ..., objectN),’solution_object’)

where the solution, which is assigned to y, of the equation f ¼ 0 is found. The function
symvar is used to find all symbolic objects in f. If there is more than one solution, y becomes
a vector. For example:

Table 11.4 Some functions concerned with matrix algebra

Function Brief description

[Q,R] ¼ quorem(A,B) Returns the element by element division of A by B and the remainder
det(A) Compute determinant of a symbolic matrix
eig(A) Compute symbolic eigenvalues of a matrix
expm(A) Compute symbolic matrix exponential
inv(A) Compute symbolic matrix inverse
poly(A) Find characteristic polynomial of a symbolic matrix
rref(A) Compute row-reduced echelon form of a symbolic matrix
svd(A) Find singular value decomposition of a symbolic matrix

11.3 Algebra 451



>> clear all

>> syms a b c x

>> f ¼ a*x^2 + b*x + c; % solve the equation f(x) ¼ 0

>> % the function symvar is automatically used to find

>> % symbolic objects in f

>> X = solve(f,’x’)

-(b + (b^2 - 4*a*c)^(1/2))/(2*a)

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

>> % X becomes a symbolic vector with 2 elements

>> X(1)

ans ¼ -(b + (b^2 - 4*a*c)^(1/2))/(2*a)

>> % get a value for some specific coefficients

>> x1 = subs(X(1),{a,b,c},{1 1 1})

x1 = -0.5000 - 0.8660i

>> % get a more accurate value

>> x1 = vpa(subs(X(1),{a,b,c},{1 1 1}), 40)

When a function involves more than one symbolic object, you must specify the object to be
found. For example:

>> X ¼ solve(f,’x’) % or X ¼ solve(f,x)

Another syntax option is required when an equation is given instead of a function expres-
sion. To solve an equation, the syntax becomes

y ¼ solve(’f(object) ¼ g(object)’)

y ¼ solve(’f(object1, ...,objectN) ¼ g(object1, ...,objectM)’,

’solution_object’)

where f and g must be expressions. The entire equation must be placed in single quotes. See
Example 11.4, where the statement to find v could also have been

>> v ¼ solve(i - Is*(exp(v/VT) - 1), ’v’) % this sets the expression to zero

And, for example:

>> % find where the quadratic and straight line intersect

>> X = solve(’x^2 + x + 1 = 5*x +10’)

X ¼
13^(1/2) + 2

2 - 13^(1/2)

In this case there is only one solution object that is assigned to X, and the two solutions are
elements of X.
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To solve several equations in as many unknowns, make each equation an argument of
the function solve separated by commas. Either of two syntax options can be used. These are
given by

[Y1, ...,YK] = solve(’f1(object1,..., objectN)=g1(object1, ..., objectM)’, ...

’f2(object1,..., objectN)=g2(object1, ..., objectM)’, ...

’f3(object1,..., objectN)=g3(object1, ..., objectM)’, ...

...

...

...

’fK(object1,...,objectN)=gK(object1, ..., objectM)’, ...

’solution_object1, ..., solution_objectK’)

where there are K equations in K unknowns. The alternative to this syntax is to replace the left
side of the statement with a single object that is returned as a structure, where the field names
are the solution object names, which are the solutions of the equations. See Example 11.5.

Example 11.5

Let us analyze the circuit given in Fig. 11.1 to find the output Vo in terms of the two inputs
V1 and V2.

In this circuit there are seven unknown node voltages, which are V3, V4, V5, V6, V7, V8, and
Vo. Applying KCL gives

(V4 - V3)/R1 + (V4 - V5)/R ¼ 0

(V5 - V6)/R1 + (V5 - V4)/R ¼ 0

(V8 - V3)/R2 + V8/R3 ¼ 0

(V7 - V6)/R2 + (V7 - Vo)/R3 ¼ 0

R

V1 V6 V7

V5

V4

R1

R2 R3

R1

V2 V3 V8R2 R3

Vo

Figure 11.1 Instrumentation amplifier.
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where the currents into the operational amplifiers (op-amps) are set to zero. For each op-
amp, which was introduced in Chapter 6, we have

V6 ¼ A(V1 - V5)

V3 ¼ A(V2 - V4)

Vo ¼ A(V8 - V7)

where A, which is very large, is the gain of each op-amp. We have a total of seven equations
in seven unknowns, which can be solved to find Vo with Prog. 11.1

clear all; clc

syms R R1 R2 R3 A positive % declare symbolic circuit components

syms V1 V2 V3 V4 V5 V6 V7 V8 Vo real % declare symbolic voltages

% enter equations and specify the dependent variables

V ¼ solve(’(V4-V3)/R1 + (V4-V5)/R ¼ 0’, ...

’(V5-V6)/R1 + (V5-V4)/R ¼ 0’, ...

’(V8-V3)/R2 + V8/R3 ¼ 0’, ...

’(V7-V6)/R2 + (V7-Vo)/R3 ¼ 0’, ...

’V6 ¼ A*(V1 - V5) ¼ 0’, ...

’V3 ¼ A*(V2 - V4)’, ...

’Vo ¼ A*(V8 - V7)’, ...

’Vo,V3,V4,V5,V6,V7,V8’);

% V is a scalar structure, with field names Vo, V3, V4, ..., V8

Vo ¼ V.Vo % get Vo from the structure V

Vo ¼ limit(Vo,A,inf) % get Vo for large A

Vo ¼ simplify(Vo) % see if MATLAB can simplify the expression for Vo

pretty(Vo) % display a more conventional looking expression

Program 11.1 Program to analyze the circuit of a differential amplifier.

and the program output is given by

Vo ¼ -(A^2*R3*(R*V1 - R*V2 + 2*R1*V1 - 2*R1*V2))/((R + 2*R1 + A*R)*(R2 + R3 +

A*R2))

Vo ¼ -(R3*(R*V1 - R*V2 + 2*R1*V1 - 2*R1*V2))/(R*R2)

Vo ¼ -(R3*(R + 2*R1)*(V1 - V2))/(R*R2)

R3 (R + 2 R1) (V1 - V2)

- ——————————————————————————————

R R2

The function pretty does not produce an expression form as we might prefer. A mod-
ified expression for Vo is given by

Vo ¼ R3
R2

1þ 2
R1
R

� �

ðV2 � V1Þ
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This expression shows that with the single resistor R we can control the gain of the differ-
ential amplifier. This analysis could also have been performed by setting up a symbolic
matrix equation, followed by a symbolic matrix inversion.

A differential amplifier is useful, because if each input contains the same electrical
noise, for example, 60 Hz noise, then this noise is canceled in the output. This common
noise is called the common mode, and the amplifier does common mode rejection.
A differential amplifier is used in medical and audio instrumentation and other electronic
systems, where there is concern about environmental electrical noise.

To keep the problem relatively simple, idealized assumptions about each op-amp were
used. A more in-depth knowledge about the electrical properties of op-amps will produce a
more realistic input to output relationship. For example, the input to output relationship obtained
here implies that the inputs can be signals at any frequency, where in fact, as the frequency of
the inputs increases, say to 1 MHz, the op-amps start to exhibit frequency selective behavior,
where their outputs begin to decrease, sort of like the action of a low-pass filter. Special addi-
tional circuitry is employed to compensate for such effects to make it possible to process signals
at even higher frequencies. Such issues can make electronic circuit design challenging.

AC circuit analysis can be tedious, especially when we want a symbolic expression of a
transfer function. However, with the Symbolic Math Toolbox, we must only specify the
equations to solve.

Example 11.6

Consider again the circuit given in Example 6.10, where in terms of impedances the circuit
is shown in Fig. 6.15, which is repeated in Fig. 11.2 for convenience. Applying KVL to the
two meshes gives

�Vs þ jwL1I1 þ 1
jwC

ðI1 � I2Þ ¼ 0

1
jwC

ðI2 � I1Þ þ jwL2I2 þ RI2 ¼ 0

Vs I1 I2 VRjwC
1

jwL1 jwL2

Figure 11.2 Frequency domain circuit.
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Prog. 11.2 uses the function solve to solve these two equations in two unknowns to find
the phasors of the two mesh currents. Then, the phasor V of the output and the transfer
function from the input Vs to the output V are found. The program continues by substituting
component values into the transfer function, and then the function solve is used again to find
the bandwidth of the filter. Finally, the function ezplot is used to plot a symbolic function
versus a specified symbolic object, the frequency.

clear all; clc

syms Vs I1 I2 V % declare complex symbolic objects

syms R L1 L2 C positive % declare positive component symbolic objects

syms w f real % declare real frequency symbolic objects

% solve loop equations for the current phasors

I ¼ solve(’i*w*L1*I1 + (I1 - I2)/(i*w*C) ¼ Vs’, ...

’(I2 - I1)/(i*w*C) + i*w*L2*I2 + R*I2 ¼ 0’,’I1’,’I2’);

V ¼ R*I.I2; % get the phasor for the output voltage

H ¼ V/Vs; % get the transfer function

H ¼ simplify(H) % let MATLAB try to simplify the transfer function

pretty(H) % display an expression more like a mathematical expression

% specify component values

R ¼ sym(1e4);

L1 ¼ sym(0.1492);L2 ¼ sym(0.0497);

C ¼ sym(0.001326e-6);

f ¼ sym(’f*(2*pi)’); % replace the frequency in rad/sec with frequency in Hz

% substitute the component values into the transfer function

% and replace the frequency

H ¼ subs(H,{’R’ ’L1’ ’L2’ ’C’ ’w’},{R,L1,L2,C,f}) % H becomes a function of f

H2 ¼ H*conj(H); % get the magnitude squared of the transfer function

H2 ¼ expand(H2); % multiply out all terms

f ¼ solve(H2-1/2,’f’); % solve for the bandwidth (in Hz) of the circuit

f ¼ double(f); % convert bandwidth solution to floating point

BW ¼ [’The bandwidth of the filter is: ’,num2str(f(1)),’ Hz’];

disp(BW);

ezplot(H2,[-5e4 5e4]);grid on % plot the magnitude squared versus f

xlabel(’frequency - Hz’);ylabel(’magnitude-squared’);

title(’Frequency Response’);

Program 11.2 AC analysis of the low-pass filter given in Example 6.10.

The program output is given by

H ¼ -(R*i)/(L1*(- C*L2*w^3 + C*R*w^2*i + w) + L2*w - R*i)

R i

� ————————————————————————————————————————

3 2

L1 (- C L2 w + C R w i + w) + L2 w - R i
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H ¼
-(10000*i)/(- (1188689397549155618333*pi^3*f^3)/15111572745182864683827200000000 +

(2391729170119025389*pi^2*f^2*i)/302231454903657293676544+(1989*pi*f)/5000

-10000*i)

The bandwidth of the filter is 15999.9378 Hz

The frequency response magnitude squared is shown in Fig. 11.3. The bandwidth (BW)
of the circuit is the frequency where the magnitude squared, which is given by
HðjwÞH�ðjwÞ, has the value 1/2. This means that at w ¼ BW, the magnitude is down by a
factor of

ffiffiffi

2
p

from its peak value. The magnitude squared is an even function of frequency,
which makes f(2) in Prog. 11.2 equal to -f(1).

Notice that the preferred symbol j for
ffiffiffiffiffiffiffi�1p

is not used in Prog. 11.2, because presently
the function solve in the Symbolic Math Toolbox is not set up to do symbolic complex
arithmetic with j. Instead, the conventional mathematics symbol i is used. It is significant
that after component values were substituted into the symbolic transfer function, the
expression for the transfer function is exact. From the program output we can write

HðjwÞ ¼ R
ðR� w2L1RCÞ þ jwððL1 þ L2Þ � w2L1L2CÞ

which is the same result found manually in Example 6.10.

11.4 Differentiation

The function diff is used to obtain the derivative of a symbolic expression. The syntax is
given by

y ¼ diff(f(object))

1

0.8

0.6

0.4

0.2

0
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× 104

Frequency Response

1 2 3 4 5

Figure 11.3 Magnitude squared frequency response of a low-pass filter.
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y ¼ diff(f(object1, object2, ..., objectN,’deriv_object’)

y ¼ diff(f(object1, object2, ..., objectN,’deriv_object’,n)

If the function expression f is a function of only one symbolic object, then the first syntax
can be used. With the second syntax, you can specify the object with respect to which diff
takes a derivative. With the third syntax you can specify the number of times diff should
take a derivative. For example:

>> syms b c t w x real; syms a positive

>> f ¼ exp(-a*t) % decaying exponential for a > 0

f ¼ 1/exp(a*t)

>> g ¼ diff(f,t)

g ¼ -a/exp(a*t) % f has a negative slope

>> h ¼ sin(w*t)*f % exponentially decaying sinusoid

h ¼ sin(t*w)/exp(a*t)

>> p ¼ diff(h,t)

p ¼ (w*cos(t*w))/exp(a*t) - (a*sin(t*w))/exp(a*t)

>> q ¼ diff(1/t)

q ¼ -1/t^2

>> r ¼ diff(log(x))

r ¼ 1/x

>> s ¼ diff(sin(t)/t) % derivative of the sinc function

s ¼ cos(t)/t - sin(t)/t^2

>> diff(a*t^4 + b*t^3 + c*t^2,t,3) % take third derivative with respect to t

ans ¼ 6*b + 24*a*t

The function limit can be used to find the derivative of a function. Let us use the
following definition of a derivative:

df ðxÞ
dx

¼ lim
h!0

f ðxþ h=2Þ � f ðx� h=2Þ
h

ð11:5Þ

This is called a two-sided derivative. For any particular point x ¼ x0, it gives the slope of
the tangent at that point. Other possible derivative definitions can be

df ðxÞ
dx

¼ lim
h!0

f ðxÞ � f ðx� hÞ
h

and
df ðxÞ
dx

¼ lim
h!0

f ðxþ hÞ � f ðxÞ
h

ð11:6Þ

which are called left-sided and right-sided derivatives, respectively. A two-sided derivative
of a function at a point x ¼ x0 exists (meaning defined and finite) if and only if the function
is continuous in the neighborhood of x ¼ x0 and the left-sided and right-sided derivatives
exist and are equal at x ¼ x0.

Let f ðxÞ ¼ axþ b, and we get

>> clear all

>> syms a x b h
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>> f ¼ a*x+b; % define a function

>> f_plus ¼ subs(f,x,x+h/2) % function to the left of x

f_plus ¼ b + a*(h/2 + x)

>> f_minus ¼ subs(f,x,x-h/2) % function to the right of x

f_minus ¼ b - a*(h/2 - x)

>> limit((f_plus - f_minus)/h,h,0) % apply derivative definition

ans ¼ a

Let f ðxÞ ¼ expð�axÞ, and we get

>> f ¼ exp(-a*x);

>> f_plus ¼ subs(f,x,x+h/2)

f_plus ¼ 1/exp(a*(h/2 + x))

>> f_minus ¼ subs(f,x,x-h/2)

f_minus ¼ exp(a*(h/2 - x))

>> limit((f_plus - f_minus)/h,h,0)

ans ¼ -a/exp(a*x)

Consider the function uðxÞ defined by

uðxÞ ¼ 1
2
ð1þ x=jxjÞ ¼ 1; x > 0

0; x < 0

�

ð11:7Þ

This function is called the unit step function. If the argument x of uðxÞ is positive, then the
function value is 1, and if the argument of uðxÞ is negative, then the function value is 0. The
unit step function is commonly used to turn other functions on and off.

If the unit step function is shifted, as with yðxÞ ¼ uðx� x0Þ, then yðxÞ ¼ 0 for x < x0,
and yðxÞ ¼ 1 for x > x0. The unit step function can be reversed with yðxÞ ¼ uð�xÞ, and then
yðxÞ ¼ 1 for x < 0 and yðxÞ ¼ 0 for x > 0.

Example 11.7

Let us use the unit step function to define a function of time that is just one cycle of a
sinusoidal function of time. Given is the sinusoidal function xðtÞ ¼ sinðw0tÞ. Its period is
T0 ¼ 2p=w0 seconds. Let the function gðtÞ be defined by

gðtÞ ¼ uðtÞ � uðt � T0Þ ¼ 1; 0 < t < T0
0; t < 0 and t > T0

�

ð11:8Þ

Therefore, yðtÞ ¼ xðtÞ gðtÞ is zero for t < 0 and t > T0. The function gðtÞ is called a gate
function. For 0 < t < T0, yðtÞ ¼ xðtÞ. Prog. 11.3 evaluates and plots, using ezplot, the
symbolic function yðtÞ. The program output is shown in Fig. 11.4.
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clear all; clc

syms w0 t T0 real % declare symbolic objects

w0 ¼ sym(2*pi); % symbolic frequency

T0 ¼ sym(w0/(2*pi)) % symbolic period

u ¼ 1/2*(1+t./abs(t)) % unit step function

uT0 ¼ 1/2*(1+(t-T0)./abs(t-T0)) % time shifted unit step function

g ¼ u - uT0 % gate function

x ¼ sin(w0*t)

y ¼ x.*g % gated sinusoidal signal

ezplot(y,[-1 2]) % using ezplot to plot a symbolic function

xlabel(’time - secs’)

ylabel(’x(t)g(t)’)

title(’Gated sinusoid’)

grid on

Program 11.3 Demonstration of using the unit step function to gate a signal.

The unit step function uðtÞ is discontinuous at t ¼ 0. Let us apply the function limit to
see what it produces as t goes to zero. For example:

>> syms t real

>> limit((1/2)*(1+t/abs(t)),t,0)

ans ¼ NaN

>> % NaN means not a number
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Figure. 11.4 A gated sinusoidal signal.
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>> limit((1/2)*(1+t/abs(t)),t,0,’left’) % find the limit from the left

ans ¼ 0

>> limit((1/2)*(1+t/abs(t)),t,0,’right’) % find the limit from the right

ans ¼ 1

>> % at t ¼ 0, u(t) is not defined

Since the left and right limits are different, the derivative at t ¼ 0 does not exist. If (11.5) is
applied, we get

duðtÞ
dt

t¼0
¼ lim

h!0

1� 0
h

! 1
�

�

�

�

�

To work with this dilemma, a special function is defined based on the function yðtÞ
described in Fig. 11.5, where

ð

þ1

�1
yðtÞdt ¼ 1; 8h ð11:9Þ

and

lim
h!0

yðtÞ ¼ 1

When h! 0, we have

yðtÞ ¼ dðtÞ ¼ 1; t ¼ 0
0; t 6¼ 0

�

ð11:10Þ

and with (11.9) we get

ð

t

�1
dðtÞdt ¼ 0; t < 0

1; t > 0 ¼ uðtÞ
�

ð11:11Þ
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Figure 11.5 Limiting process to define the impulse function dðtÞ.
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The function dðtÞ is called the impulse function (also called the Dirac delta function), and
with (11.11) we have

duðtÞ
dt

¼ dðtÞ ð11:12Þ

signifying that at t ¼ 0 the slope of uðtÞ is infinite. The function dðtÞ is located at t ¼ 0. It
can be located anywhere on the timescale by shifting it, as with dðt � t0Þ, which is an
impulse function located at t ¼ t0.

The impulse function dðtÞ occurs for zero time, and when it occurs it is infinite. Physical
phenomena cannot behave this way. However, the integral of the impulse function is finite,
and its properties are widely utilized in engineering.

Example 11.8

Consider the i-v relationship of a capacitor, shown in Fig. 6.10, where

iðtÞ ¼ C
dvðtÞ
dt

Suppose that the voltage across a capacitor changes suddenly. For example, this can
happen when a switch is closed at some time, say t ¼ t0, to connect an electrical power
source, which, for example, produces V volts, to a circuit. It is common practice to
model this with

vðtÞ ¼ Vuðt � t0Þ

where vðtÞ ¼ 0 before the switch is closed and vðtÞ ¼ V after the switch is closed.
According to the i-v relationship of a capacitor, the current is given by

iðtÞ ¼ CVdðt � t0Þ

This means that at the time t ¼ t0 an infinite current will occur for zero time. Physically,
the voltage cannot change instantaneously, and the current cannot become infinite for
zero time. However, the voltage may change in a small amount of time, and the current,
depending on the capabilities of the electrical power source, can be large for a small
amount of time. Such a current surge could cause some device in the circuit to fail.

Now consider the i-v relationship of an inductor, shown in Fig. 6.10, where

vðtÞ ¼ L
diðtÞ
dt
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If at some time t ¼ t0, the current changes suddenly, from iðtÞ ¼ I to iðtÞ ¼ 0, then this can
be modeled with

iðtÞ ¼ Iuð�t þ t0Þ ¼ I ; t < t0
0; t > t0

�

According to the i-v relationship of an inductor, the voltage across the inductor is given by

vðtÞ ¼ �LIdð�t þ t0Þ

This means that an infinite reverse voltage will occur for zero time. Physically, the current
cannot change instantaneously, and the voltage cannot become infinite for zero time.
However, the current may change in a very small amount of time, and the voltage can be
large for a small amount of time. Such a voltage surge could cause some device in the circuit
to fail.

Preventing current and voltage surges in electrical machines, appliances, medical
instrumentation, digital circuits, and other electrical systems can make electronic circuit
design challenging.

11.5 Integration

Given a function f ðxÞ, let FðxÞ denote the indefinite integral of f ðxÞ given by

FðxÞ ¼
ð

f ðxÞdx ð11:13Þ

Then, f ðxÞ ¼ dFðxÞ=dx, and FðxÞ is also called the antiderivative of f ðxÞ. The MATLAB
function int can be used to try to find FðxÞ. The syntax is given by

F ¼ int(f(object))

F ¼ int(f(object1, object2, ..., objectN),int_object)

The function int may not be able to find FðxÞ of some f ðxÞ because
● FðxÞ does not exist in closed form
● FðxÞ is an unfamiliar function
● the int function program cannot find FðxÞ
● there is not enough computing time or memory space to find FðxÞ.
When this occurs, the function int returns, ‘‘int(f)’’. The syntax for a definite integral of f ðxÞ
from x ¼ a to x ¼ b is given by
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F ¼ int(f(object),a,b)

F ¼ int(f(object1, object2, ..., objectN),int_object,a,b)

For example:

>> syms x t w a b n

>> j ¼ sym(i);

>> f ¼ x^n;

>> f ¼ subs(f,n,-1)

f ¼ 1/x

>> F ¼ int(f)

F ¼ log(x)

>> f ¼ x^n; F ¼ int(f,x)

F ¼ piecewise([n ¼ -1, log(x)], [n <> -1, x^(n + 1)/(n + 1)])

>> f ¼ subs(f,n,2); F ¼ int(f)

F ¼ x^3/3

>> f ¼ sin(w*t); F ¼ int(f,t)

F ¼ -cos(t*w)/w

f ¼ exp(j*w*t); F ¼ int(f,t)

F ¼ -(exp(t*w*i)*i)/w

>> % integral of cos(wt) using Euler’s identity

>> f = (exp(j*w*t) + exp(-j*w*t))/2; F = int(f,t)

F ¼ sin(t*w)/w

>> % definite integral of the sinc function

>> f = sin(t)/t; F = int(f,-inf,inf)

F ¼ pi

>> % Gaussian probability density function

>> f ¼ exp(-x^2/2)/sqrt(2*pi)

f ¼ 2251799813685248/(5644425081792261*exp(x^2/2))

% definite integral of the Gaussian probability density function

>> F = int(f,-inf,inf)

F ¼ (2251799813685248*2^(1/2)*pi^(1/2))/5644425081792261

>> double(F) % probability of any outcome

ans ¼ 1

>> a ¼ sym(0); b ¼ sym(inf);

>> f ¼ exp(-2*t); int(f,a,b)

ans ¼ 1/2

>> u ¼ (1+t/abs(t))/2; % unit step function

>> % unit step function shifted to the right by 1 second

>> uT1 = subs(u,’t’,’t-1’)

uT1 ¼ (t - 1)/(2*abs(t - 1)) + 1/2
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>> % unit step function time shifted to the right by 3 seconds

>> uT3 = subs(u,t,t-3)

uT3 ¼ (t - 3)/(2*abs(t - 3)) + 1/2

>> g ¼ uT1 - uT3 % gate function from t ¼ 1 to t ¼ 3

>> int(g,0,4) % integral from t ¼ 0 to t ¼ 4 of the gate function

ans ¼ 2

Example 11.9

Depending on the given periodic signal xðtÞ, manually finding the Fourier series coefficients
with

Xk ¼ 1
T0

ð

t0 þ T0

t0

xðtÞe� jkw0tdt ð11:14Þ

can be a challenging task. Let us use the function int to find the Xk .
First, we will find the Xk of a signal, where we can easily find them. Let xðtÞ be given by
xðtÞ ¼ 3cosð2w0t þ p=4Þ � 7sinð5w0t � p=3Þ

for some fundamental frequency w0. This signal is periodic with period T0 ¼ 2p=w0.
Applying Euler’s identity gives

xðtÞ ¼ 3
e jð2w0t þ p=4Þ þ e�jð2w0t þ p=4Þ

2
� 7

e jð5w0t �p=3Þ � e�jð5w0t � p=3Þ

j2
¼ 7
j2
e jp=3e�j5w0t þ 3

2
e�jp=4e�j2 w0t þ 3

2
e jp=4e j5w0t � 7

j2
e�jp=3e j5w0t

and by inspection we have: X�5 ¼ 7e jp=3=j2, X�2 ¼ 3e�jp=4=2, X2 ¼ X �
�2 and X5 ¼ X �

�5. In
rectangular form, the coefficients are given by

>> X_2 ¼ conj(3*exp(-j*pi/4)/2)

X_2 ¼ 1.0607 + 1.0607i

>> X_5 ¼ conj(7*exp(j*pi/3)/(j*2))

X_5 ¼ 3.0311 + 1.7500i

These coefficients are also found with Prog. 11.4, and the program output follows.

% Program to find the Fourier series coefficients of a periodic signal

clear all; clc

syms t k real; % declare symbolic objects

j ¼ sym(i);

w0 ¼ sym(10*pi); % declare some fundamental frequency
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T0 ¼ sym(2*pi/w0); % period

x ¼ 3*cos(2*w0*t + pi/4) - 7*sin(5*w0*t - pi/3); % specify signal

e ¼ exp(-j*k*w0*t); % exponential part of X_k integral

Xk ¼ int(x*e,t,0,T0)/T0; % integral for Fourier series coefficients

Xk ¼ simple(Xk) % simplify as best as possible and display result

N ¼ 10; % get coefficients for k ¼ -N to k ¼ +N

K ¼ -N:N; % vector of index values

X_k ¼ zeros(1,2*N+1); % preallocate space

X ¼ sym(’X%d%d’,[1 2*N+1]); % preallocate symbolic space

for n ¼ 1:2*N+1 % loop to get values of Fourier series coefficients

X(n) ¼ limit(Xk,k,K(n)); % get value for k ¼ K(n)

X_k(n) ¼ double(X(n)); % convert symbolic value to floating point

end

Coeffs ¼ [K;real(X_k);imag(X_k)]; % set up output for display

disp(’The Fourier series coefficients are:’)

disp(’k real part imaginary part’)

fprintf(’%i %f %f \n’,Coeffs)

Program 11.4 Program to find Fourier series coefficients with (11.14).

Xk ¼ (7*(- 5 + 3^(1/2)*k*i)*(1/exp(2*pi*k*i) - 1))/(4*pi*(k - 5)*(k +
5)) + (3*2^(1/2)*(- 2 + k*i)*(1/exp(2*pi*k*i) - 1))/(4*pi*(k - 2)*(k
+ 2))

The Fourier series coefficients are as follows:

k real part imaginary part

-10 0.000000 0.000000

-9 0.000000 0.000000

-8 0.000000 0.000000

-7 0.000000 0.000000

-6 0.000000 0.000000

-5 3.031089 -1.750000

-4 0.000000 0.000000

-3 0.000000 0.000000

-2 1.060660 -1.060660

-1 0.000000 0.000000

0 0.000000 0.000000

1 0.000000 0.000000

2 1.060660 1.060660

3 0.000000 0.000000
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4 0.000000 0.000000

5 3.031089 1.750000

6 0.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 0.000000 0.000000

10 0.000000 0.000000

Prog. 11.4 becomes more useful for periodic signals with Fourier series coefficients that
are not easy to obtain manually with (11.14). Consider again the sawtooth signal shown in
Fig. 6.5. One period of this signal is given by

xðtÞ ¼ t þ 1=4; � 1=4 � t < 3=4

Using this xðtÞ in Prog. 11.4, where T0 ¼ 1, results in

Xk ¼ ((1/exp((3*pi*k*i)/2))*(1 - exp(2*i*k*pi) + 2*pi*k*i))/
(4*pi^2*k^2)

The Fourier series coefficients are as follows:

k real part imaginary part

-10 0.000000 0.015915

-9 -0.017684 0.000000

-8 0.000000 -0.019894

-7 0.022736 0.000000

-6 0.000000 0.026526

-5 -0.031831 0.000000

-4 0.000000 -0.039789

-3 0.053052 0.000000

-2 0.000000 0.079577

-1 -0.159155 0.000000

0 0.500000 0.000000

1 -0.159155 0.000000

2 0.000000 -0.079577

3 0.053052 0.000000

4 0.000000 0.039789

5 -0.031831 0.000000

6 0.000000 -0.026526

7 0.022736 0.000000

8 0.000000 0.019894
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9 -0.017684 0.000000

10 0.000000 -0.015915

>>

The expression for Xk can be simplified further to become

Xk ¼ j
2pk

e�j3pk=2 ¼ j
2pk

e�jð2p�p=2Þk ¼ j
2pk

e�j2pke jpk=2 ¼ j
2pk

e jpk=2

which agrees with the results given in Example 6.8.

11.6 Conclusion

The Symbolic Math Toolbox contains a wide variety of functions that can be applied to
problems where we would like to retain parameter symbols to better see their effect in
problem solutions. This is especially useful to see how a design procedure can be for-
mulated. Now that you have completed this chapter, you should know how to symbolically

● declare the class of a scalar or matrix object
● create expressions
● work with rational arithmetic
● use many of the special symbolic functions, for example, simplify, limit, subs, and

many more
● do variable precision arithmetic
● solve systems of algebraic equations
● do DC and AC circuit analysis
● differentiate
● plot a function
● integrate
● find the Fourier series coefficients of a periodic signal, and
● know how to work with the unit step and impulse functions.

In the next chapter, we will apply some of the material from this and previous chapters
to more advanced problem areas, including continuous and discrete time signal analysis and
continuous and discrete time system analysis.

Problems

Section 11.1
1) (a) Using the command format, give a MATLAB statement that declares the variables

var1 and xdot to be symbolic objects.
(b) Repeat part (a) using the function format.
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2) For each of the following MATLAB statements, assume the workspace is clear. Give or
explain the result. If there is an error, explain what is wrong. If possible, give a cor-
rected statement.
(a) syms a, b, c
(b) syms (0a0, 0b0)
(c) syms a; b ¼ real(a); c ¼ conj(a)
(d) a ¼ 2.36; syms a
(e) a ¼ sym(3.1/0.43); b ¼ ceil(a); c ¼ char(a); d ¼ double(a); e ¼ double(c);

size(e)
(f) a ¼ sym(�3.13/5.77); b ¼ fix(a); c ¼ frac(a)
(g) a ¼ sym(2.6^0.45)
(h) A ¼ sym(A,3)

3) Repeat Prob. 11.2.
(a) r ¼ sym(s)
(b) t ¼ sym(0x0); u ¼ t/sym(v); w ¼ t/x; y ¼ t/0x0
(c) a ¼ sym(2^8 - 1); a/2; b ¼ a/2; c ¼ a/ 020; d ¼ char(a); e ¼ d/2; e ¼ d/ 020
(d) a ¼ sqrt(3); b ¼ sym(sqrt(3)); c ¼ a/double(sqrt(b)); d ¼ a/sqrt(b)

4) Give a MATLAB statement that creates a
(a) real symbolic variable x.
(b) 5 by 2 matrix A of scalar symbolic objects.
(c) For the result of part (b), give a MATLAB statement that assigns the second

column of A to b.
5) What is the result of the following MATLAB statements?

(a) y ¼ sym(0x0 + 1); char(y)
(b) syms w; x ¼ sym(w + 1); y ¼ sym(x^2); z ¼ x^2
(c) syms a b; c ¼ sym(a + 3*b^2); d ¼ a + 3*b^2; e ¼ d^2 - c; symvar(e)
(d) syms A a t; x ¼ sym(A*exp(a*t)); w ¼ A*exp(a*t); y ¼ x^�2
(e) W ¼ sym(exp(i*pi/3)); double(W^2) % in symbolic math, i is used for sqrt(�1)

6) Give MATLAB statements to create a symbolic function for
(a) y ¼ at2 þ 2t þ 3
(b) y ¼ eatsinðwt þ bÞ
(c) y ¼ ðaþ bÞ3 þ cðaþ bÞ2 þ dðaþ bÞ þ e

7) (a) Create symbolic functions for (1) z ¼ ðat þ bÞ, (2) w ¼ eiz þ e�iz, and (3)
y ¼ sinðzÞ þ cosðzÞ.

(b) Apply the function collect to obtain f ¼ z3 þ 2zþ 3 as a polynomial in t. Then, use
the function pretty.

(c) In y, use the function subs to set a ¼ p and b ¼ p=3, and then apply the function
ezplot to plot y2 over 0 � t � 2.

(d) Get the function g ¼ w3, and apply the function simplify to g.
(e) Apply the function expand to g of part (d), and then apply the function

simplify.
(f) Let r ¼ a*t, and apply the function subexpr to the result of part (e).
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8) Write a MATLAB script to create a symbolic chirp signal xðtÞ ¼ sinðztÞ, where
z ¼ at þ b. Use ezplot to display xðtÞ over 0:1 � t � 2 sec, where the frequency
changes over 0:1 � f � 3 Hz. Use the function subs to replace the symbolic objects a
and b with values. Provide a copy of the program and the plot.

9) (a) Give MATLAB statements to define the symbolic function y ¼ 1/x. Apply the
function limit to find y(x!0), y(x!0) from the left, y(x!0) from the right,
y(x!�1) and y(x!1).

(b) Given is the vector of coefficients a ¼ [2 �3 0 5]. Using the function poly2sym,
give MATLAB statements to obtain a symbolic polynomial function f of the
variable x.

(c) Given are A ¼ sym(0A%d%d0,[2 2]) and B ¼ sym(0B%d%d0,[2 2]). Use the subs
function to assign [14 7;2 43] to A and [2 3;4 5] to B. Explain each element in the
result C ¼ mod(A,B).

10) Manually, prove that the sum of a geometric series is given by (11.2).
11) Write a MATLAB script that creates a symbolic expression for W ¼ e�i2p=N . Continue

the script to use the function symsum to find

hðnÞ ¼
X

N�1

k¼0
Wnk

Clarify the piecewise result.
12) Write a MATLAB script that declares x, k, and N to be symbolic objects and uses a for

loop to find x(N) given by

xðNÞ ¼
X

N

k¼1

1
k2

for N ¼ 10, 100, and 1000. Compare each x with p2=6. Provide copies of your program
and results.

13) Using the function symsum, write a MATLAB script that finds a symbolic expression
for HðzÞ, where

HðzÞ ¼
X

1

n¼0
nzn

If z can be a complex number, then what restriction must be imposed on z for the series
to converge?

14) Write a MATLAB script to find a symbolic expression for the Taylor series expansion
of y ¼ f ðxÞ ¼ 1=ðx3 þ 1Þ for
(a) n ¼ 9 and x0 ¼ 0, and name the result w, and
(b) n ¼ 9 and x0 ¼ 1, and name the result z.

470 Symbolic Math



(c) Compare y; w, and z for x ¼ 0 : 0:1 : 2. Use the function sym2poly to obtain
numeric coefficients for w and z. Provide plots of yðxÞ � wðxÞ and yðxÞ � zðxÞ. Are
the results of parts (a) and (b) useful for all x? Will the series approximation
improve if n is increased, for example, n ¼ 51?

Section 11.2
15) (a) Give MATLAB statements that (1) specify that 20 digits must be used, (2) con-

struct the symbolic object x ¼ 5cosðwt � p=8Þ, where w (use w) is declared to be a
positive symbolic object and t is declared to be a real object, and (3) use the
function vpa to evaluate x for w ¼ 4p rad/sec and t ¼ 1/16 sec.

(b) Repeat part (a) for x ¼ ðX=2Þe jwt þ ðX �=2Þe�jwt, where X ¼ 5e�jp=8.
16) Rational arithmetic can give more accurate results than floating point numeric arith-

metic. To demonstrate this, find the inverse matrix of a matrix. With d ¼ 1e-8, let A be
given by

A ¼
1þ d 1� d 1þ d
1 1þ d 1� d
1 1 1þ d

2

4

3

5

This matrix is ill-conditioned. Write a MATLAB script that starts as follows:

clear all; clc

format long

d ¼ 1e-8; % used for single precision error

A ¼ [1+d 1-d 1+d;1 1+d 1-d;1 1 1+d]

AI ¼ inv(A)

B ¼ AI*A % ideally, B should be the identity matrix

(a) Continue the script by constructing a symbolic object of A, name it C. Then obtain
CI , the inverse of C, and get D ¼ CI � C. Compare B and D. What is the most
number of digits used to express an element of CI? Use the function whos to find
the memory space occupied by AI and CI .

(b) Rational arithmetic can take up much memory space. To see how memory
requirements can be controlled, continue the script by constructing a symbolic
object of A through the function vpa using 20 digits, name it E. Then, continue
to use the function vpa to find EI , the inverse of E and F ¼ EI � E. Compare
B and F.

(c) Repeat part(b) using 30 digits.
Provide copies of your program, all matrices, and discussion concerned with results.
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Section 11.3
17) Declare a matrix A to be A ¼ sym(0A%d%d0,[2 2]). Give statements to find

(a) d ¼ determinant of A
(b) B ¼ inverse matrix of A
(c) p ¼ characteristic polynomial of A
(d) L ¼ eigenvalues of A. Use the function subs to replace A in L with

A ¼ [1 �1;2 1].
(e) A./C and remainder, where C ¼ sym(´C%d%d´,[2 2])

18) Given is the op-amp circuit shown in Fig. P11.18. KCL gives

Va
R1

þ Va � Vo
R2

¼ 0

The op-amp gain equation is

Vo ¼ �AðVa � ViÞ

(a) Write a MATLAB script that uses the function solve to solve the two equations for
Va and V0. Write the KCL equation as Va=R1 ¼ ðV0 � VaÞ=R2. Place the solution in
a structure V .

(b) Then, let Vo ¼ V :V0, and use the function limit to find V0 as A! 1.
19) Write a MATLAB script that uses the function solve to solve the two equations in two

unknowns given by 2a� 1=b ¼ 0 and a� 3b ¼ 1, for a and b.
20) Given is the RLC circuit shown in Fig. P11.20.

(a) The input vsðtÞ is a sinusoid with phasor Vs. Using impedances of the components,
and phasors VR and VC for the node voltages, write two node equations.

(b) Write a MATLAB script that uses the function solve to solve the two equations in
two unknowns for the node voltage phasors VR and VC, and place the result in a
structure V. Let VC ¼ V.VC, and find the transfer function HðjwÞ.

vo(t)
+

–

vi(t)

R2
R1

va

Figure P11.18 Non-inverting amplifier.
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(c) Substitute in the component values RL ¼ 10 W, L ¼ 10 mH, C ¼ 0.1 mF, RC ¼
1 MW, and RS ¼ 500 W into HðjwÞ, and use the function ezplot to plot the transfer
function magnitude squared over �20 KHz � f � 20 KHz. What kind of filtering
activity does this circuit do?

Provide copies of your script, output (transfer function expressions), and the frequency
response plot.

Section 11.4
21) (a) Write a MATLAB script that starts by defining the symbolic object y ¼ tan(x).

Use the function diff to obtain dy_dx ¼ dy/dx. Use ezplot to plot y and dy_dx.
(b) Continue the script to apply the two-sided derivate definition, and use the function

limit to find dy_dx as h!0.
22) Over one period T0 ¼ 4, a period xpðtÞ of a periodic signal xðtÞ is given by

xpðtÞ ¼

0; t < 0
1; 0 < t < 1
�2; 1 < t < 2
3; 2 < t < 4
0; t > 4

8

>

>

>

>

<

>

>

>

>

:

(a) Over �4 < t < 8, give a sketch of xðtÞ.
(b) Using unit step functions, give an expression for xpðtÞ.
(c) In terms of the impulse functions, give an expression for the derivative of xpðtÞ.

23) (a) If the voltage across a capacitor changes significantly (going up or going down) in
a very short amount of time, then describe what the current through the capacitor
must be like in each case.

RL

L

vC(t)C

RS

RCvR(t)vs(t)

Figure P11.20 RLC circuit.
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(b) If the current through an inductor changes significantly (going up or going down)
in a very short amount of time, then describe what the voltage across the inductor
must be like in each case.

24) Consider the definition of the unit step function given by (11.7). Declare x to be a real
symbolic object. Use ezplot to plot u(x). Use the function diff to obtain d(x),
the derivative of u(x). Use the function subs to obtain values of u(x) and d(x) for
x ¼ �0.1, 0, and 0.1. Explain the results.

Section 11.5
25) Write a MATLAB script that uses the function int to find the Fourier series coefficients

Xk of the periodic function xðtÞ described in Prob. 11.22. Use the function simplify to
see if the results can be simplified. Hint: Use the sum of three integral operations.
Provide copies of your program and the Fourier series coefficients.

26) Consider the integral

Y ðjwÞ ¼
ð

1

�1
yðtÞe�jwtdt

This is called the Fourier transform of the time function yðtÞ. It plays a very important
and fundamental role in signal and system analysis. Write a MATLAB script that uses
the function int to find the Fourier transform of
(a) yðtÞ ¼ e�atuðtÞ; a > 0. Hint: You can omit the unit step function by changing the

lower limit to zero. Explain the result.
(b) yðtÞ ¼ uðt þ T=2Þ � uðt � T=2Þ. Use subs to replace T with T ¼ 2, and use ezplot

to plot Y ðjwÞ for �4p � w � 4p.
27) (a) Write a MATLAB script that produces x(t), which is four cycles of a sinusoidal

pulse train. Each cycle is one cycle of either sin(wt) or sin(wt+p/2). The sinusoid to
be used in each cycle is determined by four bits B ¼ [b0, b1, b2, b3]. Therefore,
each cycle of x(t) can be given by sin(wt + bkp /2). The period T0 of each cycle is
given by T0 ¼ 1/f sec. For B ¼ [1 0 0 1], create x(t). Use w ¼ 2pf, where f ¼
1K Hz. Use ezplot to plot x(t) over 0 � t � 4 msec.

(b) Given x(t), let y(t) ¼ x(t)sin(wt), and use the function int to integrate y(t) over one
cycle at a time, and get

c0 ¼
ð

T

0

yðtÞdt; c1 ¼
ð

2T

T

yðtÞdt; : : :; c3 ¼
ð

4T

3T

yðtÞdt; T ¼ T0

Given C ¼ [c0, c1, c2, c3], can you determine B?
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28) Consider the integral

Y ðsÞ ¼
ð

1

�1
yðtÞe�stdt

This is called the Laplace transform of the time function yðtÞ. It plays a very important
and fundamental role in system analysis. Write a MATLAB script that uses the function
int to find the Laplace transform of
(a) yðtÞ ¼ cosðwtÞuðtÞ. Hint: You can omit the unit step function by changing the

lower limit to zero.
(b) yðtÞ ¼ e�atcosðwtÞuðtÞ, where a > 0.
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CHAPTER 12

Signals and Systems

In the previous chapters, many built-in functions were introduced that are concerned with
fundamental mathematics used to solve practical problems. MATLAB� also includes many
more built-in functions that are concerned with solving higher level mathematical problems
that occur in a variety of fields of science and engineering. Some of these functions and the
mathematical background to understand the meaning of results returned by these functions
are presented in this chapter.

In this chapter, you will learn how to use MATLAB to:

● do spectral analysis of stationary and non-stationary signals
● find the transient and steady-state response of linear and time invariant continuous and

discrete time systems
● obtain a state variable description of a system
● apply ordinary differential equation solvers
● find the frequency response of linear and time invariant systems
● operate discrete time systems

12.1 Signal Analysis

An important class of signals is periodic signals, for which

xðtÞ ¼ xðt þ T0Þ
for some period T0 and all t. In Chapter 6 we found that xðtÞ can be written as a complex
exponential Fourier series given by

xðtÞ ¼
X

1

k¼�1
Xke jkw0t ð12:1Þ



where w0 ¼ 2p=T0 rad=sec is called the fundamental frequency. The Xk , called the
complex Fourier series coefficients, are found with

Xk ¼ 1
T0

ðT0

0
xðtÞ e�jkw0tdt ð12:2Þ

for k ¼ �1; . . . ;�1; 0; 1; . . . ;1. Equation (12.2) is called the analysis equation.With Xk ,
xðtÞ can be reconstructed using (12.1), which is called the reconstruction equation, and it is
said that the Xk are a frequency domain description of the signal. The idea of writing a
periodic time function or signal in terms of a sum of complex exponential functions is a
fundamental concept that is widely applied in engineering and physics. If xðtÞ satisfies the
Dirichlet conditions, which are that xðtÞ must
1) have a finite number of extrema in any given time interval
2) have a finite number of discontinuities in any given time interval
3) be absolutely integrable over a period

then we make no distinction between a given periodic signal xðtÞ and its Fourier series
representation. All practical (can be physically synthesized or occur naturally) periodic
signals satisfy these conditions.

If xðtÞ is discontinuous at a time point t ¼ td , then for t ¼ td the Fourier series converges
to the average value of xðtÞ about t ¼ td , which is ðxðt�d Þ þ xðtþd ÞÞ=2. For example, see
Fig. 6.6.

The Xk are in general complex numbers, which can be written in polar form to get

Xk ¼ kXkke jffXk

Recall that X�k ¼ X �
k , and then kX�kk ¼ kXkk, which makes kXkk an even function of k,

and ffX�k ¼ �ffXk , which makes ffXk is an odd function of k. Using Euler’s identity, we
found in Chapter 6 that (12.1) becomes

xðtÞ ¼ kX0k þ 2
X

1

k¼1
kXkkcos ðkw0t þ ffXkÞ ð12:3Þ

This shows that 2kXkk gives the amplitude and ffXk gives the phase of the sinusoidal com-
ponent of xðtÞ at the frequency w ¼ kw0 rad=sec. To conveniently assess the nature of a
signal xðtÞ, the magnitude and angle of Xk are plotted versus k. The number sequence Xk is
also called the spectrum of xðtÞ. See Example 6.9.
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Recall that in Chapter 6, it was found that the average power of a periodic signal is
given by

P ¼ 1
T0

ðT0

0
x2ðtÞ dt ¼

X

1

k¼�1
XkX�k ¼

X

1

k¼�1
kXkk2 ð12:4Þ

Therefore, kXkk2 gives the average power of each sinusoidal component of xðtÞ. A plot of
kXkk2 versus k (frequency) shows the power spectrum of xðtÞ.

To be practical, we cannot use an infinite number of terms in (12.1) or (12.3) to
reconstruct xðtÞ. We must truncate the series to use a finite number terms, and write

xðtÞ ffi
X

þM

k¼�M
Xke jkw0t ¼ kX0k þ 2

X

M

k¼1
kXkkcosðkw0t þ ffXkÞ ð12:5Þ

for some positive integer M. This makes the approximation of xðtÞ a bandlimited signal,
where the sinusoidal component with the highest frequency has the frequency given by
Mw0 rad=sec, which is called the bandwidth (BW) of the approximation of xðtÞ.

Example 12.1

Find the complex Fourier series coefficients of

xðtÞ ¼ 6cos ðwat þ p=4Þ þ 4sin ðwbt � p=3Þ
If xðtÞ is periodic, then the frequency of each sinusoidal component of xðtÞ must be an
integer multiple of a fundamental frequency w0, which requires that for some integers r1
and r2

wa ¼ r1w0
wb ¼ r2w0

! wa
r1

¼ wb
r2

! r2 ¼ wb
wa
r1

Case 1. If wa ¼ 10p rad=sec and wb ¼ 30p rad=sec, then r2 ¼ 3r1. Therefore, let r1 ¼ 1
and r2 ¼ 3, and w0 ¼ 10p rad=sec, which gives T0 ¼ 2p=w0 ¼ 0:2 sec. Select the integers
r1 and r2 to give the smallest period T0. This signal is bandlimited, with
BW ¼ 3 w0 rad=sec.

Case 2. If wa ¼ 20p rad=sec and wb ¼ 35p rad=sec, then r2 ¼ 7r1=4. Therefore, let r1 ¼ 4
and r2 ¼ 7, and w0 ¼ 5p rad=sec, which gives T0 ¼ 2p=w0 ¼ 0:4 sec. This signal is ban-
dlimited, with BW ¼ 7 w0 rad=sec.

Case 3. If wa ¼ 10 rad=sec and wb ¼ 30p rad=sec, then r2 ¼ 3pr1. Therefore, r1 and r2
cannot both be integers, which means that for these frequencies, xðtÞ is not periodic.
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For cases (1) and (2), the Fourier series coefficients can be found with (12.2). However,
since xðtÞ is given in terms of sinusoids, the coefficients can be identified by using Euler’s
identity, and the given signal becomes

xðtÞ ¼ 6
e jðwatþp=4Þ þ e�jðwatþp=4Þ

2
þ 4

e jðwbt�p=3Þ þ e�jðwbt�p=3Þ

j2

¼ 3 e jp=4e jwat þ 3 e�jp=4e�jwat þ 2 e�jp=3e�jp=2e jwbt þ 2e jpe jp=3e�jp=2e�jwbt

Case 1. Since wa ¼ w0 and wb ¼ 3w0, then in view of (12.1), we get X1 ¼ 3e jp=4,
X�1 ¼ 3e�jp=4, X3 ¼ 2e�j5p=6, X�3 ¼ 2e j5p=6, and all other Fourier series coefficients are
zero.

The magnitude spectrum of xðtÞ is shown in Fig. 12.1, which contains spectral lines at
k ¼ �3;�1; 1; and 3. From Fig. 12.1, we see that the amplitude of the sinusoid at the fre-
quency w ¼ w0 (k ¼ �1 and 1) is 6, and that xðtÞ contains only one other sinusoidal com-
ponent with frequency w ¼ 3 w0 and amplitude equal to 4. For real-world signals we may
not have an expression for xðtÞ. However, if we can find a signal’s spectrum, then we can
come to some conclusions about its behavior.

Case 2. Since wa ¼ 4 w0 and wb ¼ 7 w0, then in view of (12.1), we get X4 ¼ 3e jp=4,
X�4 ¼ 3e�jp=4, X7 ¼ 2e�j5p=6, X�7 ¼ 2e j5p=6, and all other Fourier series coefficients are
zero. The magnitude spectrum contains spectral lines at k ¼ �7;�4; 4; and 7.

To dissect real-world signals with (12.2) requires that we have an expression for xðtÞ,
and generally this is not available. Real-world signals come from, for example, (1) a medical
instrument that produces an electrocardiogram, (2) a gas sensor in the exhaust manifold of
an engine, (3) a microphone in a cell phone that receives not only speech sounds but also
background noise, and innumerable other situations where we study the spectrum of a signal
to better understand the physical phenomenon from which the signal originated.

k

3

0 1 2 M–M –2 –1

Xk

Figure 12.1 Magnitude spectrum of a bandlimited signal, M ¼ 3 and f0 ¼ 5 Hz.
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To process real-world signals a data acquisition system, as depicted in Fig. 12.2, is
used, where the discrete time signal xdðnTÞ is processed by digital means to gain insight
about the nature of the analog signal xðtÞ. A discrete time signal is obtained by uniformly
sampling a continuous time signal, which is expressed by

xðnTÞ ¼ xðtÞ t¼nT ð12:6Þj
where n , an integer, is called the discrete time index and T is the sample time increment.
The sampling rate is called the sampling frequency fs ¼ 1=T Hz (samples/sec). IfT is known
and fixed, then, for convenience, we write the discrete time signal as xðnÞ instead of xðnTÞ.

This method of processing analog signals is utilized in innumerable applications of
Electrical and Computer Engineering, because of the extensive kinds of computing that can
be done, which is difficult, if not impossible, to achieve with analog circuitry. See Sec-
tion 5.5 for a discussion about the components in Fig. 12.2. Here, we will not make a
distinction between the discrete time signal xðnÞ and its binary representation xdðnÞ.

Processing of continuous time signals by digital means (digital signal processing,
DSP) has become a viable processing mode over analog means for several reasons, some of
which are digital signal processors, microcontrollers and microprocessors are inexpensive,
programmable, reproducible, consume low power, have computing speeds suitable for sig-
nals with bandwidths beyond base band video (6 MHz), and can operate in extreme envir-
onments. Some broad application areas of DSP are automotive industry, consumer
electronics, communication systems and medical systems. Since real-world signals are
continuous in time, the technologist must properly interpret results of processing signals by
digital means. This requires an understanding of the basic tools used for DSP. MATLAB
provides an extensive set of tools for DSP.

12.1.1 Discrete Fourier Transform
Let us evaluate (12.2) numerically using Euler’s method of integration (see Section 4.7.1).
To do this, split one period of xðtÞ into an integer N number of time segments, where

T ¼ T0
N

! T0 ¼ NT ð12:7Þ

Sampler
t = nT

x(nT) Analog to
Digital Converter

(ADC)

xd (nT)
x(t)

binary number sequence
(digital signal)

Computer

Display

Storagediscrete time signal

analog and continuous
time signal

Figure 12.2 A data acquisition system.
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and T is the time width of each segment. Then, xðnÞ; n ¼ 0; 1; . . . ;N � 1, makes up N
samples of xðtÞ over one period. In fact, we can think of xðnÞ for �1 < n < þ1 as a
periodic discrete time signal with period N. Recall that Euler’s integration method approx-
imates the integral with a summation of rectangular areas, and we get

Xk ffi 1
T0

X

N�1

n¼0
xðnÞe�jkw0nT T

¼ T
T0

X

N�1

n¼0
xðnÞe�jk 2pT0nT ¼ T

NT
X

N�1

n¼0
xðnÞe�jk 2pNTnT ¼ 1

N
X

N�1

n¼0
xðnÞe�j 2pN kn

ð12:8Þ

where xðnÞ e�jkw0nT is the integrand of (12.2) evaluated at the beginning of each time seg-
ment and T is the segment width. As N is increased, making T smaller, the approximation
given by (12.8) gets better. Let

X ðkÞ ¼
X

N�1

n¼0
xðnÞe�j 2pN kn; k ¼ 0; 1; . . . ; N � 1 ð12:9Þ

and then Xk ffi 1
N X ðkÞ. The algorithm given by (12.9) is called the discrete Fourier

transform (DFT) of xðnÞ; n ¼ 0; 1; . . . ;N � 1. It is the analysis equation of the periodic
discrete time signal xðnÞ. Equation (12.9) is also called an N-point DFT.

The DFT, X ðkÞ, has an unexpected property. Let us evaluate (12.9) for k ¼ m and
k ¼ mþ r N for any positive or negative integers m and r. This gives

X ðmþ rNÞ ¼
X

N�1

n¼0
xðnÞe�j 2pN ðmþrNÞn ¼

X

N�1

n¼0
xðnÞe�j 2pN mne�j 2pN rN n ¼

X

N�1

n¼0
xðnÞe�j 2pN mne�j2prn

¼
X

N�1

n¼0
xðnÞe�j 2pN mn ¼ X ðmÞ; e�j2prn ¼ 1

This shows that X ðkÞ is a periodic function of k, with period N. Therefore, it is conventional
to evaluate (12.9) only for one period with k ¼ 0; 1; . . . ;N � 1. Recall that w ¼ kw0, or
f ¼ k f0 ¼ kð1=T0Þ is the frequency scale of X ðkÞ. The time duration T0, over which xðtÞ is
sampled, determines the frequency resolution f0 ¼ 1=T0 Hz. Therefore, X ðkÞ versus fre-
quency is periodic with period f ¼ N f0 ¼ N=T0 ¼ 1=T ¼ fs. For any integers m and r,
where f ¼ m f0, we have

X ðf Þ ¼ X ðf þ r fsÞ ð12:10Þ

Furthermore, since X �
k ¼ X�k , X �ðkÞ ¼ X ð�kÞ, and since X ðkÞ is periodic, then

X �ðkÞ ¼ X ðN � kÞ; k ¼ 0; 1; . . . ð12:11Þ
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Example 12.2

Let us apply (12.9) to

xðtÞ ¼ 6 cosð10pt þ p=4Þ þ 4 sinð30pt � p=3Þ

This is the signal given in case (1) of Example 12.1, where T0 ¼ 0:2 sec. Let us try N ¼ 20,
and then T ¼ T0=N ¼ 10 msec, giving fs ¼ 1=T ¼ 100 Hz (samples/sec). Prog. 12.1 uses
(12.9) to find and plot the magnitude and angle of X ðkÞ for �20 � k � 39, a range of three
periods of X ðkÞ. Notice that in the program the summation over n for each k in (12.9) was
obtained with a dot product of the two vectors x and argk.

% Application of the DFT

clear all; clc

wa = 10*pi; wb = 30*pi; T0 = 0.2; % specify signal frequencies and period

N = 20; T = T0/N; % obtain N samples over one period of x(t)

n = 0:N-1; t = n*T; % time points

x = 6*cos(wa*t+pi/4)+4*sin(wb*t-pi/3); % sample signal for one period

Nk = -N:2*N-1; Nks = length(Nk); % DFT index range for three periods of X(k)

arg = exp(-j*2*pi*n’/N); % compute exponential terms over time only once

argk = ones(N,1); % initialize exponential terms to start at k = -N

for k = 1:Nks % loop for all frequencies f from -fs to 2fs-f0

Xk = x*argk; % sum of terms over time

magX(k) = abs(Xk); % magnitude of DFT

% get angle only if magnitude is greater than numerical noise

if magX(k) > 1e-7

angleX(k) = angle(Xk);

else

angleX(k) = 0;

end

argk = argk.*arg; % update all frequency terms

end

subplot(2,1,1); stem(Nk,magX); grid on

xlabel(’frequency index’); ylabel(’magnitude’)

title(’Magnitude Spectrum of x(t)’)

subplot(2,1,2); stem(Nk,angleX); grid on

xlabel(’frequency index’); ylabel(’angle - radians’)

title(’Phase Spectrum of x(t)’)

Program 12.1 Program to compute the DFT of x(n), n = 0, 1, . . . , N-1.
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The DFT of xðnÞ is shown in Fig. 12.3. Notice that kX ðkÞk (ffX ðkÞ) is an even (odd)
function of k. One period of X ðkÞ extends from k ¼ �10 to k ¼ 9, or �fs=2 � f < fs=2. If
kX ðkÞk is multiplied by 1=N , then this period of X ðkÞ gives exactly the Fourier series
coefficients, where the magnitudes are shown in Fig. 12.1. The next period of X ðkÞ shown in
Fig. 12.3 extends from k ¼ 10 to k ¼ 29, which is a translation of the previous period of X ðkÞ
centered about k ¼ 0 (or f ¼ 0) to the period centered about k ¼ N ¼ 20 (or f ¼ fs). Since it
is conventional to compute X ðkÞ for k ¼ 0; 1; . . . ;N � 1 ¼ 19, which is also one period of
X ðkÞ, the first half ðk ¼ 0; . . . ; 9Þ of X ðkÞ gives X ðkÞ for positive k, and the second half
ðk ¼ 10; . . . ; 19Þ gives X ðkÞ for negative k. Here, X ð�1Þ ¼ X �ð1Þ ¼ X ðN � 1Þ ¼ X ð19Þ
and X ð�3Þ ¼ X �ð3Þ ¼ X ðN � 3Þ ¼ X ð17Þ.

We can obtain the Fourier series coefficients of a periodic signal xðtÞ exactly with the
DFT, but only under special circumstances. The conditions are as follows:

1) xðtÞ must be sampled over its period, or any integer multiple of its period, such that
T0 ¼ N T .

2) xðtÞ must be bandlimited, which means that BW = Mw0 must be finite.
3) referring to Fig. 12.3, for example, N must be large enough to satisfy N �M > M ,

which means that translations of Xk ; k ¼ �M ; . . . ;M , to integer multiples of N must
not overlap.
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Figure 12.3 Magnitude and angle of the DFT output.
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Then, one period of X ðkÞ=N gives exactly the Fourier series coefficients. Condition (3)
becomes

N > 2M ! N
T0

> 2
M
T0

! 1
T
> 2M f0 ! fs > 2fc ð12:12Þ

where fc ¼ Mf0 is the BW of xðtÞ. The condition, fs > 2fc, is called the Sampling Theorem,
a very important result in signal and image processing by digital means. Given a sampling
frequency fs, we presume that a signal xðtÞ consists of sinusoidal components with fre-
quencies in the range 0 � f < fs=2.

To gain another perspective about the restriction, fc < fs=2, suppose xðtÞ ¼ cosð2pf0tÞ is
sampled at the rate fs ¼ 8000 Hz, where f0 ¼ 1000 Hz. This signal has spectral lines at �f0
and þf0 Hz. The signal and its samples are shown in Fig. 12.4(a). If we do not know
the spectrum of xðtÞ, then this fs ¼ 8000 Hz implies that we expect xðtÞ to consist of
sinusoids with frequencies in the range 0 � f < 4000 Hz. Now, let us sample
xðtÞ ¼ cosð2pðfs � f0ÞtÞ ¼ cosð14000ptÞ and xðtÞ ¼ cosð2pðfs þ f0ÞtÞ ¼ cosð18000ptÞ at
the same sampling rate fs ¼ 8000 Hz. The results are shown in Fig. 12.4(b,c).

The plots in Fig. 12.4(b,c) show the same data obtained from one period of the sinusoid with
frequency f0. According to (12.10), the DFT will produce the same result for each set of data
points. From the data alone, we cannot determine the frequency of the sinusoid that was
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Figure 12.4 Data obtained from sinusoids with frequencies f0, fs � f0, and fs þ f0.
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sampled to obtain the data. To avoid this ambiguity, we must satisfy the sampling theorem,
which will enable us to conclude that the data samples were obtained from the signal shown
in Fig. 12.4(a), where f0 < fs=2. Prog. 12.2 was used to produce Fig. 12.4.

% Demonstration of signal frequency ambiguity introduced by sampling

clear all; clc

f0 = 1000; w0 = 2*pi*f0; T0 = 1/f0; % specify signal frequency and period

Np = 1000; Tx = T0/Np; % obtain a smooth looking plot of x(t)

Nx = 0:Np-1; tx = Nx*Tx; % time points

x = cos(w0*tx); % signal

subplot(3,1,1); plot(1e3*tx,x,’k’); grid on % time in milli seconds

N = 8; T = T0/N; fs = 1/T; % sample time increment and sampling frequency

Ns = 0:N-1; t = Ns*T; % sample time points

xs = cos(w0*t); % signal samples

hold on; stem(1e3*t,xs,’r’) % plot samples versus time in milli seconds

fx = -f0+fs; wx = 2*pi*fx; % translating -f0 by fs

Np = 7000; Tx = T0/Np; % obtain a smooth looking plot of x(t)

Nx = 0:Np-1; tx = Nx*Tx; % time points

x = cos(wx*tx); % signal

subplot(3,1,2); plot(1e3*tx,x,’k’); grid on

xs = cos(wx*t); % signal samples

hold on; stem(1e3*t,xs,’r’)

fx = +f0+fs; wx = 2*pi*fx; % translating +f0 by fs

Np = 9000; Tx = T0/Np; % obtain a smooth looking plot of x(t)

Nx = 0:Np-1; tx = Nx*Tx; % time points

x = cos(wx*tx); % signal

subplot(3,1,3); plot(1e3*tx,x,’k’); grid on

xs = cos(wx*t); % signal samples

hold on; stem(1e3*t,xs,’r’)

Program 12.2 Program to demonstrate signal frequency ambiguity.

While Prog. 12.1 shows the details of implementing (12.9) to compute a DFT, the
algorithm of (12.9) is not an efficient way to compute the DFT. The built-in MATLAB
function fft (fast Fourier transform) computes a DFT, but much more efficiently than the
algorithm described by (12.9). Its syntax is given by

X = fft(x,N)

where the vector x contains N samples of a signal xðtÞ, and the complex vector X contains
one period of X ðkÞ for k ¼ 0; 1; . . . ;N � 1. The DFT algorithm does not require that the
N samples of xðtÞ come from one period of a periodic signal or from a periodic signal.
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The meaning of X ðkÞ must be properly interpreted based on the circumstances in which the
N samples of xðtÞ were obtained.

Example 12.3

Let us apply the FFT to analyze the signal given by

xðtÞ ¼ 6 cosð20pt þ p=4Þ þ 4 sinð35pt � p=3Þ
This is the signal given in case (2) of Example 12.1, where T0 ¼ 0:4 sec, and its BW is
fc ¼ 17:5 Hz. Let us try N ¼ 20, and then T ¼ T0=N ¼ 20 msec, giving
fs ¼ 1=T ¼ 50 Hz. With this fs, we presume that xðtÞ can have sinusoidal components with
frequencies anywhere in the range 0 � f < 25 Hz. Since fs > 2fc ¼ 35 Hz, this fs satisfies
the sampling theorem. Prog. 12.3 obtains and plots the magnitude of X ðkÞ=N , which is
shown in Fig. 12.5.

% Application of the fast Fourier transform (FFT)

clear all; clc

wa = 20*pi; wb = 35*pi; T0 = 0.4; % specify signal frequencies and period

N = 20; T = T0/N; % obtain N samples over one period of x(t)

Nn = 0:N-1; t = Nn*T; % time points

x = 6*cos(wa*t+pi/4)+4*sin(wb*t-pi/3); % sample signal for one period

X = fft(x,N)/N; % get DFT with FFT and convert to Fourier series coefficients

Xk_mag = abs(Xk); f = Nn/T0; % magnitude and frequency points

stem(f,Xk_mag); grid on

xlabel(’frequency - Hz’); ylabel(’magnitude’)

title(’Magnitude Spectrum of x(t)’)

Program 12.3 Application of the fft algorithm.
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Figure 12.5 The magnitude spectrum versus frequency.
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The magnitude spectrum over the frequency range 0 � f < fs=2 ¼ 25 Hz is exactly the
magnitude spectrum of xðtÞ. Given this magnitude spectrum, we conclude that xðtÞ consists
of two sinusoids with frequencies of 10 and 17.5 Hz. The spectral lines at f ¼ 40 Hz and
f ¼ 32:5 Hz come from the spectral lines of xðtÞ at f ¼ 40� fs ¼ �10 Hz and
f ¼ 32:5� fs ¼ �17:5, respectively.

Now, let us see what can happen when we do not satisfy the sampling theorem. Let
N ¼ 12, and then fs ¼ N=T0 ¼ 30 Hz, which does not satisfy the sampling theorem. With
this fs, we presume that xðtÞ can have sinusoidal components with frequencies anywhere in
the range 0 � f < 15 Hz. If the BW of xðtÞ is not known, which is likely in a practical
situation, then this choice for fs implies that we believe that xðtÞ contains sinusoids with
frequencies in the range 0 � f < 15. In Prog. 12.3, N was set to N ¼ 12, and the resulting
magnitude spectrum is shown in Fig. 12.6.

The magnitude spectrum over the frequency range 0 � f < fs=2 ¼ 15 shows two
spectral lines. The spectral line at the frequency f ¼ 10 Hz comes from a sinusoid in xðtÞ.
However, the second spectral line occurs at f ¼ 12:5 Hz, and xðtÞ does not contain a
sinusoid at this frequency. If we believe that fs ¼ 30 Hz does satisfy the sampling theorem,
then we conclude that xðtÞ does contain a sinusoid with f ¼ 12:5 Hz. In fact, if we use the
resulting Xk to reconstruct a continuous time function, then it would appear to consist of two
sinusoids with frequencies 10 and 12.5 Hz. The sinusoid with the frequency 12.5 Hz is
incorrect, and it is called an alias.

When the sampling theorem is not satisfied, aliasing error will occur.
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Figure. 12.6 A magnitude spectrum versus frequency that includes aliasing error.
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Example 12.4

The signal shown in Fig. 12.7 is not bandlimited, and it also has discontinuities. Its period is
T0 ¼ 3 sec, and w0 ¼ 2p=3 rad=sec.

The complex Fourier series coefficients of this signal are given by

Xk ¼ 1
3

ð

3

0

xðtÞe�jk2p3 tdt ¼ 1
3

ð

2:0

0:5

4e�jk
2p
3 tdt ¼ 4

kp
e�jk

5p
6 sinðk p

2
Þ; k 6¼ 0 ð12:13Þ

and X0 ¼ 2. Prog. 12.4 plots the magnitude spectrum of xðtÞ using (12.13) and by taking the
FFT of N ¼ 48 samples of xðtÞ over one period. With this N, fs ¼ 16 Hz. The result is
shown in Fig. 12.8.

% Plot Fourier series coefficients and FFT of a rectangular wave

clear all; clc

ks = -24:47; Nks = length(ks); % frequency index range

for k = 1:24 % loop for negative frequency indeces

X(k) = (4/(ks(k)*pi))*exp(-j*ks(k)*5*pi/6)*sin(ks(k)*pi/2);

end

X(25) = 2; % X0

for k = 26:Nks % loop for positive frequency indeces

X(k) = (4/(ks(k)*pi))*exp(-j*ks(k)*5*pi/6)*sin(ks(k)*pi/2);

end

X_mag = abs(X);

stem(ks,X_mag,’k’); grid on; axis([-24 48 0 2])

T0 = 3; N = 48; T = T0/N; % parameters for sampling x(t)

for n = 1:N % loop to sample x(t)

t = (n-1)*T;

x(t)

t – sec–2 –1 1 2 3 4

4

5 60

Figure 12.7 A periodic signal with discontinuities.
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if t < 0.5, x(n) = 0;

elseif t > = 0.5 & t < 2, x(n) = 4;

else, x(n) = 0;

end

end

X = fft(x,N); % get DFT with FFT algorithm

X_mag = abs(X)/N; % approximate Fourier series coefficients

ks = 0:47; % frequency index range for DFT

hold on

stem(ks,X_mag,’r’)

Program 12.4 Program to compare a DFT computation to actual Fourier series
coefficients.

The index range that corresponds to 0 � f < fs=2 is 0 � k < N=2 ¼ 24. The plot of
kX ðkÞk=N shows that while the DFT (FFT) incurs aliasing error in every spectral line, it
becomes more significant as k ! 24. This aliasing error can be reduced by increasing N,
which increases the sampling frequency.

A useful application of the DFT is to determine if a signal contains any sinusoidal
components given data that includes a substantial amount of noise.

Example 12.5

Prog. 12.3 was modified to become Prog. 12.5, which obtains noisy samples of the xðtÞ
given in Example 12.3. Fig. 12.9 shows xðtÞ and samples of xðtÞ plus noise over one period.
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Figure 12.8 Magnitude spectrum of a signal that is not bandlimited.
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The magnitude spectrum, given in Fig. 12.10, was obtained using data obtained over one
and two periods of xðtÞ.
% Application of the fast Fourier transform (FFT)

clear all; clc

wa = 20*pi; wb = 35*pi; T0 = 0.4; % specify signal frequencies and period

N = 1000; T = T0/N; % obtain a smooth looking plot of x(t)

Np = 0:N-1; t = Np*T; % time points

x = 6*cos(wa*t+pi/4)+4*sin(wb*t-pi/3); % signal

figure(1); plot(t,x,’k’); grid on

N = 20; T = T0/N; % sample time increment

Nn = 0:N-1; t = Nn*T;

x = 6*cos(wa*t+pi/4)+4*sin(wb*t-pi/3); % signal samples

rng(’default’); % initialize random number generator to default seed

xpn = x+2*randn(1,N); % signal samples plus Gaussian noise

hold on; stem(t,xpn,’r’)

X = fft(xpn,N); % get the DFT with the FFT

Xk_mag = abs(X)/N;

f0 = 1/T0; f = f0*Nn; % frequency resolution and frequency points

figure(2); stem(f,Xk_mag); grid on

xpn = [xpn,x+randn(1,N)]; % add noisy samples over a second period

X = fft(xpn,2*N); % get the DFT with the FFT

Xk_mag = abs(X)/(2*N);

f0 = 1/(2*T0); Nn = 0:2*N-1; f = f0*Nn; % freq resolution and freq points

hold on; stem(f,Xk_mag,’r’)

Program 12.5 Application of the DFT to noisy data.
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Figure 12.9 One period of signal samples plus noise, fs ¼ 50 HZ.
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If only the sampled data shown in Fig. 12.9 is available, then it would be difficult to
conclude that the signal xðtÞ contains two sinusoidal components at the frequencies 10 and
17.5 Hz, as Fig. 12.10 shows. Fig. 12.10 also shows that increasing the time duration over
which samples of a signal are obtained improves the frequency resolution and decreases the
degree to which additive noise degrades DFT results.

12.1.2 Inverse Discrete Fourier Transform
The number sequence xðnÞ; n ¼ 0; 1; . . . ;N � 1 that produced X ðkÞ; k ¼ 0; 1; . . . ; N � 1
can be retrieved from X ðkÞ with the inverse DFT (IDFT). The IDFT of X ðkÞ is
given by

xðnÞ ¼ 1
N
X

N�1

k¼0
X ðkÞ e j 2pN nk ; n ¼ 0; 1; . . . ; N � 1 ð12:14Þ

It is the reconstruction equation of the discrete time periodic number sequence xðnÞ that
can be derived by sampling (12.1).

The MATLAB function ifft efficiently computes the IDFT. Its syntax is given by

x = ifft(X, N)

where X, which must satisfy (12.11), contains an N-point DFT and x contains the number
sequence xðnÞ; n ¼ 0; 1; . . . ;N � 1.
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Figure 12.10 Magnitude spectrum using data obtained over one and two periods
of xðtÞ.
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Example 12.6

Consider again the signal xðtÞ ¼ 6 cosð10pt þ p=4Þ þ 4 sinð30pt � p=3Þ, for which
w0 ¼ 10p rad=sec and T0 ¼ 0:2 sec. Let N ¼ 15, making fs ¼ 75 Hz. Recall that the
Fourier series coefficients are given by X1 ¼ 3e jp=4, X�1 ¼ 3e�jp=4, X3 ¼ 2e�j5p=6,
X�3 ¼ 2e j5p=6, and all other Fourier series coefficients are zero. Prog. 12.6 reconstructs the
number sequence xðnÞ; n ¼ 0; 1; . . . ;N � 1, shown in Fig. 12.11.

% Application of the inverse fast Fourier transform (IFFT)

clear all; clc

wa = 10*pi; wb = 30*pi; T0 = 0.2; % specify signal frequencies and period

N = 1000; T = T0/N; % obtain a smooth looking plot of x(t)

Np = 0:N-1; t = Np*T; % time points

x = 6*cos(wa*t+pi/4)+4*sin(wb*t-pi/3); % signal

figure(1); plot(t,x,’k’); grid on

N = 15; T = T0/N; % number of sample time points

X = complex(zeros(1,N),zeros(1,N)); % most of the elements of X are zero

% X(2) holds the k = 1 element and X(N) holds the k = N-1 element

X(2) = 3*exp(j*pi/4); X(N) = conj(X(2)); % applying (12.12)

% X(4) holds the k = 3 element and X(N-2) holds the k = N-3 element

X(4) = 2*exp(-j*5*pi/6); X(N-2) = conj(X(4)); % applying (12.12)

X = N*X; % scale to DFT result

x = ifft(X,N); % get the inverse DFT

Nn = 0:N-1; t = Nn*T; % using t for x(n) to compare results to x(t)

hold on; stem(t,real(x),’r’); % plot the number sequence

Program 12.6 Demonstration of using the function ifft.
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Figure 12.11 Reconstruction of samples of a signal with the IDFT.
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Notice that any N can be used that satisfies the sampling theorem. We consider xðnÞ (a
representation in the time domain) and X ðkÞ (a representation in the frequency domain) to
be equivalent information about xðtÞ.

MATLAB includes many built-in functions for signal analysis. Only a few of them have
been used in examples. Table 12.1 gives a few more functions. You should use the doc help
facility to see examples of the application of these and other functions useful for signal
analysis.

12.1.3 Windows
Now, let Tx denote the actual period of xðtÞ. In a practical situation, the actual period Tx of a
periodic signal xðtÞ may not be known. Using xðtÞ over a time duration T0 6¼ Tx can cause
DFT results to be very different from results obtained with T0 ¼ Tx. If T0 6¼ Tx, the fre-
quency f0 ¼ 1=T0 Hz is not the correct fundamental frequency 1=Tx Hz, and the DFT will
produce spectral lines at frequencies that are not integer multiples of 1=Tx Hz. Whatever T0
may be, xðtÞ over this time duration is considered to be one period xpðtÞ of a periodic
function x̂ðtÞ. A period T0 6¼ Tx is likely to introduce discontinuities at the period boundaries
of x̂ðtÞ, regardless of the duration T0. This means that even though xðtÞ may be bandlimited,
x̂ðtÞ will not be bandlimited.

The unit step function (11.7) was introduced in Chapter 11, and its definition, repeated
here for convenience, is given by

uðt � t0Þ ¼ 1; t > t0
0; t < t0

�

where t0 is an arbitrary time point. Notice that the unit step function is one when its argu-
ment is positive, and it is zero when its argument is negative.

Table 12.1 Some MATLAB functions for signal analysis

Function Brief description

detrend Removes the mean value or linear trend from a signal; useful before applying the fft
algorithm

goertzel Returns the DFT at a specified frequency
dct Discrete cosine transform
idct Inverse discrete cosine transform
hilbert Returns the input signal with a 90 degree phase shift
cceps Complex cepstral analysis
icceps Inverse complex cepstrum
rceps Returns the real cepstrum of a real data sequence
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Let us model xpðtÞ with

xpðtÞ ¼ xðtÞ ðuðtÞ � uðt � T0ÞÞ ¼ xðtÞ wRðtÞ

where xðtÞ is truncated by the gate function wRðtÞ, called a rectangular window. If T0 ¼ Tx,
then any time segment of xðtÞ that has a duration of T0 sec can be one period of xðtÞ.
However, if T0 6¼ Tx, then xpðtÞ depends on where the window is positioned, and x̂ðtÞ will
not be unique.

Example 12.7

Consider the signal

xðtÞ ¼ 1:5 cosð10pt þ p=4Þ þ sinð30pt � p=3Þ

where Tx ¼ 0:2 sec. The period determines the fundamental frequency fx ¼ 1=Tx ¼ 5 Hz.
This signal has spectral lines at f ¼ 5 and 15 Hz. The following statements plot xðtÞ over
three periods as shown in Fig. 12.12.

>> clear all;

>> fs = 44100; T = 1/fs; t = -0.1:T:0.5;

>> x = 1.5*cos(10*pi*t+pi/4)+sin(30*pi*t-pi/3);

>> plot(t,x); grid on; axis([-0.1 0.5 -2.5 2.5]);

>> xlabel(’time - sec’); ylabel(’x(t)’)

Suppose we do not know the period of xðtÞ, and assume the period is some T0 6¼ Tx. Let
T0 ¼ 0:25 sec, and then, the fundamental frequency of x̂ðtÞ becomes f0 ¼ 1=T0 ¼ 4 Hz.
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Figure 12.12 Plot of xðtÞ over three periods.
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The periodic function x̂ðtÞ is shown in Fig. 12.13, where one period occurs for
0 � t < 0:25 sec. Notice that discontinuities occur at period boundaries, for example, at
t ¼ 0:0 and t ¼ 0:25. This means that even though xðtÞ is bandlimited (see Fig. 12.1.), x̂ðtÞ is
not bandlimited

Let us try N ¼ 40, and then T ¼ T0=N ¼ 6:25 msec, giving fs ¼ 1=T ¼ 160 Hz.
Prog. 12.7 applies the FFT to x̂ðtÞ, and plots the magnitude and phase spectra shown in
Fig. 12.14.

% Application of the DFT

clear all; clc

wa = 10*pi; wb = 30*pi; T0 = 0.25; % specify total sample time

N = 40; T = T0/N; % obtain N samples of x(t)

Nn = 0:N-1; Nk = Nn; t = Nn*T; f = Nk/T0; % time and frequency points

x = 1.5*cos(wa*t+pi/4)+sin(wb*t-pi/3); % sample signal

%

X = fft(x,N); % use FFT to get DFT

magX = 20*log10(abs(X)); % magnitude of DFT in dB

angleX = angle(X); % angle of DFT

subplot(2,1,1); stem(f,magX); axis([0 160 -40 40]); grid on

ylabel(’magnitude - dB’)

title(’Estimate of Magnitude Spectrum’)

subplot(2,1,2); stem(f,angleX); grid on

xlabel(’frequency - Hz’); ylabel(’angle - radians’)

title(’Estimate of Phase Spectrum’)

Program 12.7 Application of the FFT algorithm.

Since x̂ðtÞ is not bandlimited, Fig. 12.14 shows that there is substantial aliasing error.
Also, the magnitude spectrum peaks occur at f ¼ 4 and f ¼ 16 Hz, indicating that xðtÞ may
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Figure 12.13 Periodic signal x̂ðtÞ with T0 ¼ 0:25 sec.
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contain sinusoidal components at or close to these frequencies. However, there are also
comparable spectral lines at f ¼ 8 and f ¼ 12 Hz, and xðtÞ does not have sinusoidal com-
ponents at these frequencies. The actual two spectral lines of xðtÞ at f ¼ 5 and f ¼ 15 Hz in
Fig. 12.1 have spread into neighboring frequencies, because xðtÞ was truncated over a time
range other than Tx. This is called leakage error, which can be reduced if T0 ! r Tx for a
positive integer r.

Truncating xðtÞ with a rectangular window introduces discontinuities at period bound-
aries of x̂ðtÞ. Such discontinuities can be reduced if not eliminated by using one of the
window functions included in the MATLAB Signal Processing Toolbox, some of which are
listed in Table 12.2.
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Figure 12.14 Estimate of the magnitude and phase spectra of xðtÞ.

Table 12.2 Some MATLAB window functions

Function Brief description

bartlett Triangular shaped window
blackman Blackman window
chebwin Chebyshev window
gausswin Gaussian window
hamming Raised cosine window
hann Hann window
kaiser Kaiser window
rectwin Rectangular window
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The Hann window function is given by

wHðtÞ ¼ ð1� cos ð2pt=T0ÞÞ=2; 0 � t � T0
0; otherwise

�

The syntax for the built-in function hann is

H = hann(N,’periodic’)

The elements of the vector H are N samples of wHðtÞ for t ¼ nT ; n ¼ 0; 1; . . . ; N � 1,
where T ¼ T0=N . If instead of ‘periodic’, ‘symmetric’ is used, then T ¼ T0=ðN � 1Þ,
making the last element of H equal to wHðt ¼ T0Þ.
Example 12.7 (continued)

With the Hann window, xpðtÞ ¼ xðtÞ wHðtÞ becomes the signal shown in Fig. 12.15, which
was obtained by inserting into Prog. 12.7, just before the fft statement, the following
statements:

figure(1)

plot(t,x,’r’); grid on; % plot x using rectangular window

xlabel(’time - secs’); hold on

H = hann(N,’periodic’)’; % get samples of the Hann window

plot(t,H,’b’) % plot Hann window

x = x.*H; % windowed data

plot(t,x,’k’); hold off; % plot windowed data

figure(2)
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Figure 12.15 Given data (red), Hann window (blue), and windowed data.
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Comparing Figs. 12.14 and 12.16 shows that using a window other than a rectangular
window can significantly reduce aliasing error. The leakage error has been reduced only
slightly. However, if T0 is increased, say to T0 ¼ 3ð0:25Þ sec, while keeping the sampling
frequency at fs ¼ 160 Hz ðN ¼ 120Þ, then leakage error can be reduced significantly, as
seen in Fig. 12.17. By increasing T0 from T0 ¼ 0:25 sec to T0 ¼ 0:75 sec, the frequency
resolution has been increased from a spectral line every f0 ¼ 4 Hz to every f0 ¼ 4=3 Hz,
which shows two distinct spectral peaks in Fig. 12.17.

12.1.4 Non-Stationary Signals
The signals that we have studied have a fundamental property in common. They are sta-
tionary signals. This means that their spectral content does not change with time. As we
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Figure 12.16 Estimates of the magnitude and phase spectra of xðtÞ with the
Hann window.
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Figure 12.17 Estimate of the magnitude spectrum of xðtÞ with the Hann window.
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applied concepts of Fourier analysis to a signal, it was presumed that the signal is stationary.
Stationary signals are distinguished from signals with a spectral content that changes with
time, called non-stationary signals. A commonly used expression to model a non-stationary
signal xðtÞ is given by

xðtÞ ¼
X

KðtÞ

k¼1
AkðtÞ cosðwkðtÞ t þ qkðtÞÞ ð12:15Þ

where the number of sinusoidal components and amplitude, frequency, and phase of each
component can change with time.

Given are N samples of xðtÞ that were obtained at the rate fs ¼ 1=T Hz. To utilize the
DFT for the spectral analysis of a non-stationary signal it is assumed that over each short
time interval of a set of short time intervals the signal is substantially stationary. For some
integer M, let each short time interval have a time duration given by T0 ¼ MT sec. This
segmentation is depicted in Fig. 12.18. The first time interval starts at n ¼ m1, usually
m1 ¼ 0. Then, each following short time interval overlaps the previous time interval. For
example, the second time interval starts at n ¼ m2, and it overlaps the first time interval.
This continues until there is not enough data for another complete short time interval. Over
N samples, the number of time intervals, denoted by N0, depends on M and the amount of
time interval overlap.

The signal over each time interval is windowed and sampled to obtain M samples of
xpðtÞ ¼ xðtÞ wðtÞ, where wðtÞ is some window function of duration T0. After incorporating a
window function into (12.9), the DFT becomes an algorithm called the short time Fourier
transform (STFT) given by

X ðk;mÞ ¼
X

M�1

n¼0
wðnÞ xðnþ mÞ e�j 2pM nk ; k ¼ 0; 1; . . . ; M � 1 ð12:16Þ

m1 m2 m4m3 mN0

n

N

n = m2 + M – 1n = m2

Figure 12.18 Segmentation of N samples into N0 segments.
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where k is the frequency index such that f ¼ k f0 ¼ k=T0 Hz and m, where
m ¼ mi; i ¼ 1; . . . ;N0, is the time index that specifies the beginning of a short time
interval. For each m, (12.16) is an M-point DFT.

The STFT is a function of two variables. As a function of frequency it gives the same
information about a periodic continuous time signal as does (12.9) applied to samples of
xpðtÞ. The time duration of the window function determines the frequency resolution. As a
function of time, the STFT gives the spectral content of a signal as its spectral content
changes from one time interval to the next time interval. If, for example, m ¼ 0; 1; 2; . . . ,
then an M-point DFT is computed at each discrete time point, which can require much
computing time and provides the highest time resolution of X ðk;mÞ. This also incurs the
greatest amount of overlap between successive time intervals. Commonly used values of m
are mi ¼ ði� 1Þ ðM=2Þ; i ¼ 1; 2; . . . ;N0, which means that there is a 50% data overlap from
a time interval to the next time interval. An appropriate set of values of m depends on how
rapidly the spectral content of a signal changes with time.

The built-in MATLAB function spectrogram, which is contained in the Signal Pro-
cessing Toolbox, computes the STFT. A syntax option is given by

[S,Freq,Time,P] = spectrogram(x,window,noverlap,nfft,fs)

where x is a vector of N samples of xðtÞ, window is a vector of M samples of some window
function, noverlap is the number of samples that successive intervals overlap, nfft is the number
of windowed data samples used by the fft function that computes the DFT and fs is the
sampling rate. For each mi the elements of a column of S, which has N0 columns, are given by
(12.16) for k ¼ 0; 1; . . . ; ðM þ 2Þ=2 if M is even and k ¼ 0; 1; . . . ; ðM þ 1Þ=2 if M is odd,
Freq is a column vector of frequencies k=T0, Time is a row vector of the midpoints of the N0
time intervals and P, which has the same dimension as S, has elements given by

Pðk;mÞ ¼ wp Sðk;mÞ S�ðk;mÞ; wp ¼ 2

fs
P

M

n¼1
w2ðnÞ

For k ¼ 0, the numerator of the normalizing factor wp must be 1 instead of 2. Each column
of P is the power spectral density of the windowed data over the corresponding time
interval.

Example 12.8

Let us asses the spectral content of the signal shown in Fig. 12.19. Prog. 12.8 produced the
magnitude spectrum, which is shown in Fig. 12.20, using all of the sampled data. Since
Tx ¼ 0:5, there is a spectral line at integer multiples of 2 Hz in Fig. 12.20.
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% Spectral analysis of a sinusoidal pulse

clc; clear all

f0 = 100; w0 = 2*pi*f0; a = -10; b = -20; % signal parameters

fs = 8e3; T = 1/fs; % sampling rate and time increment

Tx = 0.5; N = floor(Tx/T); Tx = N*T; t = 0:T:Tx-T; % sample times

x = (exp(a*t)-exp(b*t)).*sin(w0*t); % get signal samples

figure(1)

plot(t,x); grid on; xlabel(’time - secs’); ylabel(’volts’);

title(’Sinusoidal Pulse’)

X = fft(x); mag_X_dB = 20*log10(abs(X)/N); % apply fast Fourier transform

f0 = 1/Tx; k = 0:N-1; f = k*f0; % prepare frequency scale

figure(2)

N_max = floor(N/16); f_max = f(N_max);

plot(f(1:N_max),mag_X_dB(1:N_max)); grid on; % plot portion of spectrum

xlabel(’frequency - Hz’); ylabel(’magnitude - dB’)

title(’Magnitude Spectrum’)

% specify parameters for a spectrogram with high time and freq resolution

window_pts = 1024; noverlap = window_pts - 128; nfft = window_pts;

window = bartlett(window_pts); % using the Bartlett window

[S,freq,time,P] = spectrogram(x,window,noverlap,nfft,fs);

f_index = find(freq < f_max); Freq = freq(f_index); % frequency axis range

p_dB = 10*log10(P); P_dB = p_dB(f_index,:); % convert to dB

figure(3)

surf(time,Freq,P_dB); axis([0 0.5 0 f_max -120 -20]);

xlabel(’time - sec’); ylabel(’frequency - Hz’);

Program 12.8 Program to plot the spectrogram of a sinusoidal pulse.
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Figure 12.19 A sinusoidal (100 Hz) pulse.
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Prog. 12.8 also obtained the spectrogram shown in Fig. 12.21. Since the overlap
from a time interval of M ¼ 1024 samples to the next time interval is
100 ð1024� 128Þ=1024 ¼ 87:5%, the spectrogram shows a power spectral density over
1024 samples every 128T ¼ 16:0 msec. The plot shows that the spectral content of the
signal does not change with time, which means that the signal shown in Fig. 12.19 is
substantially a stationary signal.
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Figure 12.20 Magnitude spectrum of a sinusoidal pulse.
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Figure 12.21 Spectrogram using the Bartlett window.
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The spectral content of speech signals, which are non-stationary signals, is of particular
interest for speech recognition, speaker identification and reduction of background noise.
The ability to verbally interact with machines, particularly in the automotive industry, is an
intensively studied problem.

Example 12.9

Prog. 12.9 finds and plots the spectrogram of the one word speech sound shown in
Fig. 12.22. This sound was recorded with Prog. 8.5, using fs ¼ 44100 Hz.

% Program to graph the spectrogram of a one word speech signal

clear all; clc;

File_name = ’hello.bin’; % specify binary file name

ID1 = fopen(File_name); % open file

word = fread(ID1,’double’); fs = 44100; % get binary recording

x = word(44500:72500); % extract word sound part

n = 0:length(x)-1; t = 1000*n/fs; % time in milli seconds

figure(1);

plot(t,x); grid on; axis([0 600 -1 0.6])

xlabel(’time - msecs’); ylabel(’volts’); title(’Hello’)

figure(2) % new figure

% specify spectrogram parameters

window_length = 2048; noverlap = window_length - 64; nfft = window_length;

window = hann(window_length,’periodic’); % get Hann window values

x = sqrt(window_length)*x; % normalize sound

[S,Freq,Time,P] = spectrogram(x,window,noverlap,nfft,fs);

dB_P = 10*log10(P); % convert to dB
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Figure 12.22 Recording of the one word speech sound, ‘‘hello’’.
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% for plotting, clamp dB_P at min_dB

min_dB = -100; dB_index = find(dB_P < min_dB); dB_P(dB_index) = min_dB;

% for plotting, limit maximum frequency

max_f = 5000; f_index = find(Freq > max_f); max_f_index = f_index(1);

freq = Freq(1:max_f_index); max_f = Freq(max_f_index);

dB_p = dB_P(1:max_f_index,:);

surf(Time,freq,dB_p); % surface plot of spectrogram

axis([-0.05 0.65 0 max_f min_dB 10]); shading interp % axis limit

Program 12.9 Program to obtain the spectrogram of a signal.

Fig. 12.23 shows the spectrogram versus time and frequency. In this figure, color, which
changes from blue to red with the z-axis, was changed to a gray scale in the Figure Windowwith

edit ! colormaps ! tools ! standard colormaps ! gray

Since the shift from one time interval to the next is 64 samples, Fig. 12.23 shows a power
spectral density every 64T ¼ 1:4512 msec of 2048 samples of xpðtÞ with a frequency
resolution of f0 ¼ 1=ð2048TÞ ¼ 21:5 Hz.

Many kinds of signals, for example, music signals, biological signals, and video signals
are processed by continuous and discrete time systems to modify their spectral content. In
the next section we will investigate how such systems work.
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Figure 12.23 Spectrogram of the one word sound of hello.
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12.2 Continuous Time Systems

A linear and time invariant (LTI) continuous time system (CTS) is modeled by

yðNÞðtÞ þ aN�1yðN�1ÞðtÞ þ � � � þ a0yð0ÞðtÞ ¼ bMrðMÞðtÞ þ � � � þ b1rð1ÞðtÞ þ b0rð0ÞðtÞ
ð12:17Þ

where rðtÞ is called the system input, yðtÞ is called the system output (also
called response). This is an N th order differential equation, where rðmÞðtÞ; m ¼ 0; 1; . . . ; M ,
denotes the mth derivative of rðtÞ, rð0ÞðtÞ ¼ rðtÞ, yðnÞðtÞ; n ¼ 0; 1; . . . ;N , denotes the nth
derivative of yðtÞ, and yð0ÞðtÞ ¼ yðtÞ. Unless stated otherwise, assume that M � N . It is also
conventional to use the notation _yðtÞ and €yðtÞ to mean yð1ÞðtÞ and yð2ÞðtÞ, respectively.
However, for higher order derivatives, the dot notation is not convenient.

While an input can be applied at any time, it is conventional to apply inputs starting at a
reference time given by t ¼ 0. Unless stated otherwise, assume that rðt < 0Þ ¼ 0. Given an
input rðtÞ, then all of the terms in the right side of (12.17) can be combined into one function
of time gðtÞ, called the forcing function. If gðtÞ ¼ 0, then (12.17) is called a homogeneous
equation.

To find the complete response (solution of (12.17)) requires N initial conditions (ICs).
Usually, these conditions are given by

yðN�1Þð0�Þ ¼ SN�1; yðN�2Þð0�Þ ¼ SN�2; . . . ; yð1Þð0�Þ ¼ S1; yð0Þð0�Þ ¼ S0 ð12:18Þ

for some constants Sn; n ¼ 0; 1; . . . ; N � 1, where t ¼ 0� is the time just prior to the time
when the input is applied. The set of ICs is called the state of the system just prior to
applying an input.

Equation (12.17) is a time invariant model of a system, because the coefficients,
an; n ¼ 0; 1; . . . ;N � 1, and bm;m ¼ 0; 1; . . . ;M , are constants (do not vary with time). This
means that if yðtÞ is the response to rðtÞ, then the response to rðt � t0Þ is yðt � t0Þ, for any
positive or negative time shift t0. If any coefficient varies with time, then (12.17) is a time
varying model.

Equation (12.17) is a linear model of a system, because if, for zero ICs, yðtÞ ¼ y1ðtÞ is
the response (solution of (12.17)) when rðtÞ ¼ r1ðtÞ and if, for zero ICs, yðtÞ ¼ y2ðtÞ is
the response when rðtÞ ¼ r2ðtÞ, then, for zero ICs, yðtÞ ¼ c1y1ðtÞ þ c2y2ðtÞ is the
response when rðtÞ ¼ c1r1ðtÞ þ c2r2ðtÞ for any constants c1 and c2. This is the linearity
property.

Equation (12.17) is a causal model of a system, because the response yðtÞ at any time
t ¼ t0 only depends on the input rðtÞ for t � t0. If a system is causal, then the present output
depends only on the present and past behavior of the input. All physical systems are causal
systems. Consider, for example, a system model given by _yðtÞ þ a0yðtÞ ¼ b0 rðt þ 1Þ.
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At any time t, the response yðtÞ depends on the input one second into the future, and this
system is said to be an acausal (or noncausal) system.

Example 12.10

Here are some examples of causal LTI CTS. Recall the band-pass filter shown in Fig. 6.11.
If (6.49) is differentiated once, then we get the filter input vsðtÞ to output vðtÞ relationship
given by

d2vðtÞ
dt2

þ R
L
d vðtÞ
dt

þ 1
LC

vðtÞ ¼ R
L
d vsðtÞ
dt

ð12:19Þ

which is a second-order differential equation. With the application of an input voltage vsðtÞ,
the circuit operates according to the properties of its components and their interconnection
to produce the voltage vðtÞ across the resistor. If the circuit model given by (12.19) is
accurate, then the solution of (12.19) anticipates the behavior of the physical circuit.

The low-pass filter shown in Fig. 6.13 has the input–output relationship given by

d3vðtÞ
dt3

þ R
L2
d2vðtÞ
dt2

þ 1
C

1
L1

þ 1
L2

� �

dvðtÞ
dt

þ R
L1L2C

v ðtÞ ¼ R
L1L2C

vsðtÞ ð12:20Þ

which is a third-order differential equation.
Let us find the input–output relationship of the circuit given in Fig. 12.24.

Summing the currents leaving the negative terminal of the op-amp gives

vbðtÞ � viðtÞ
R1

þ vbðtÞ � voðtÞ
R2

þ C
d
dt
ðvbðtÞ � voðtÞÞ ¼ 0 ð12:21Þ

vo(t)

R1

R2

C

vb(t)
vi(t)

Figure 12.24 An active RC low-pass filter.
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Since voðtÞ ¼ Að0� vbðtÞÞ, then, for very large A, vbðtÞ ¼ �voðtÞ=A is negligible compared
to viðtÞ and voðtÞ, and (12.21) becomes

C
dvoðtÞ
dt

þ voðtÞ
R2

¼ � viðtÞ
R1

ð12:22Þ

This is a first-order differential equation that models the behavior of the LTI analog circuit
(CTS) shown in Fig. 12.24.

If a causal differential equation, time invariant or not, does not have the structure of
(12.17), where each term in a sum of terms is a coefficient multiplied by one
of yðNÞðtÞ; yðN�1ÞðtÞ; . . . ; yð0ÞðtÞ or one of rðMÞðtÞ; . . . ; rð1ÞðtÞ; rð0ÞðtÞ, then it cannot
satisfy the linearity property, and it is called a nonlinear differential equation.

Example 12.11

The circuit shown in Fig. 12.25 converts an AC voltage, for example,
vsðtÞ ¼ A cos ðw t þ qÞ into a DC voltage vðtÞ. The resistor is intended to represent
a device that is powered by the AC to DC converter. Depending on the degree to
which the capacitor discharges through the resistor while the diode is not conducting,
vðtÞ can be a nearly constant voltage. To describe the behavior of this circuit, apply KVL
ðvdðtÞ ¼ vsðtÞ � vðtÞÞ; KCL ðidðtÞ ¼ iCðtÞ þ iRðtÞÞ, and the diode characteristic to get

C
dv
dt

þ vðtÞ
R

¼ IsðeðvsðtÞ�vðtÞÞ=VT � 1Þ ð12:23Þ

which is a first-order nonlinear and time invariant differential equation.

The differential equations given in Examples 12.10 and 12.11 are ordinary
differential equations (ODEs). An ODE is a differential equation that contains functions of

id(t)
vd(t)

vs(t) v(t)RC

Figure 12.25 AC to DC converter.
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only one independent variable, denoted by t in our discussion, and derivatives of
these functions with respect to the one independent variable. Most generally, an ODE is
written as

FðyðNÞðtÞ; yðN�1ÞðtÞ; . . . ; yð1ÞðtÞ; yð0ÞðtÞ; tÞ ¼ 0

which is in implicit form. In explicit form, an ODE is written as

yðNÞðtÞ þ FðyðN�1ÞðtÞ; . . . ; yð1ÞðtÞ; yð0ÞðtÞ; tÞ ¼ 0 ð12:24Þ

where yðNÞðtÞ is written as a function of gðtÞ and lower order derivatives of yðtÞ. The ODEs
given in Examples 12.10 and 12.11 are in explicit form.

Ordinary differential equations are distinguished from equations that involve functions
of more than one independent variable and their derivatives, called partial derivatives, with
respect to anyone of the independent variables.

Given a system model, such as (12.17) or (12.24), we are interested to solve the equa-
tions of the model to gain insight into the behavior of the physical system, and thereby learn
how to design a system to achieve desired system behavior.

12.3 Response of LTI Continuous Time Systems

The solution of (12.17) (complete response) can be written as

yðtÞ ¼ yziðtÞ þ yzsðtÞ
where the function yziðtÞ, called the zero-input response (also called the natural
response), is the response when the input rðtÞ is zero. It is the response due to the ICs given
by (12.18), and it is the solution of

yðNÞzi ðtÞ þ aN�1y
ðN�1Þ
zi ðtÞ þ � � � þ a0 y

ð0Þ
zi ðtÞ ¼ 0 ð12:25Þ

which is a homogeneous equation. If the ICs are all zero, then yziðtÞ ¼ 0. The function yzsðtÞ,
called the zero-state response (also called the forced response), is the response to the input
rðtÞ under zero ICs, and it is the solution of

yðNÞzs ðtÞ þ aN�1 yðN�1Þzs ðtÞ þ � � � þ a0 yð0Þzs ðtÞ ¼ bMrðMÞðtÞ þ � � � þ b1 rð1ÞðtÞ þ b0 rð0ÞðtÞ
ð12:26Þ

If the input rðtÞ is zero, then yzsðtÞ ¼ 0. The difference between yðtÞ in (12.17) and yzsðtÞ in
(12.26) is due to the ICs.
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12.3.1 Zero-Input Response
We can gain an important insight into the behavior of LTI CTS by solving (12.25). The
solution yziðtÞ must be a function such that a linear combination of it and its derivatives
equals zero for all t. Let us try yziðtÞ ¼ K e lt for some constants K and l, because the
derivative of an exponential function is the exponential function, and to achieve the equality
of (12.25) for all t, every term in the sum of terms on the left side must be the same kind of
function. Substituting this yziðtÞ into (12.25) gives
K lNe lt þ aN�1K lN�1elt þ aN�2K lN�2elt þ � � � þ a1K l1elt þ a0K l0elt ¼ 0 ð12:27Þ
Since K cannot be zero, because then yziðtÞ ¼ 0, and elt 6¼ 0, (12.27) reduces to

QðlÞ ¼ lN þ aN�1 lN�1 þ aN�2 lN�2 þ � � � þ a1 l1 þ a0 ¼ 0 ð12:28Þ
where QðlÞ is called the characteristic polynomial. Equation (12.28) is called the char-
acteristic equation, which has N roots, ln; n ¼ 1; 2; . . . ;N . Notice that (12.28) can be
found by inspection of (12.17). Let us assume that the roots are distinct. The ln can be real
numbers or complex numbers that occur in complex conjugate pairs, because the coeffi-
cients an; n ¼ 0; 1; . . . ;N � 1 are real numbers.

For each ln there is a solution of (12.25) given by Kn elnt, where we must still find Kn.
Therefore, since (12.25) is a linear equation, then

yziðtÞ ¼
X

N

n¼1
K nelnt ð12:29Þ

is also a solution of (12.25). To find the values of the Kn; n ¼ 1; 2; . . . ;N we can apply the
N ICs at t ¼ 0� to get

yð0Þð0�Þ ! K1 þ K2 þ � � � þ KN ¼ S0
yð1Þð0�Þ ! l1K1 þ l2K2 þ � � � þ lNKN ¼ S1

..

.

yðN�1Þð0�Þ ! lN�11 K1 þ lN�12 K2 þ � � � þ lN�1N KN ¼ SN�1

ð12:30Þ

which are N equations in the N unknowns Kn; n ¼ 1; 2; . . . ;N that can be written as
L K ¼ S, where

L ¼
1 1 � � � 1
l1 l2 � � � lN
..
. ..

. ..
. ..

.

lN�11 lN�12 � � � lN�1N

2

6

6

6

4

3

7

7

7

5

; K ¼
K1
K2

..

.

KN

2

6

6

6

4

3

7

7

7

5

; S ¼
S0
S1
..
.

SN�1

2

6

6

6

4

3

7

7

7

5

ð12:31Þ

510 Signals and Systems



Then, K ¼ L�1S.
The time domain behavior of the response to ICs depends on the ln; n ¼ 1; 2; . . . ;N ,

and each elnt is called a characteristic mode of the system. If a natural frequency ln
occurs with multiplicity k, then the corresponding k characteristic modes are
tm elnt;m ¼ 0; 1; . . . ; k � 1. For all possible kinds of values of l, Table 12.3 gives the kinds
of characteristic modes that contribute to yziðtÞ.

For example, suppose two values of l are l ¼ s� jw, and, since yziðtÞ is a real time
function, the contribution to yziðtÞ is

K eðsþjwÞt þ K �e ðs�jwÞt ¼ kKke jffK eðsþjwÞt þ kKke�jffKeðs�jwÞt
¼ kKkestðe jðwt þ ffKÞ þ e�jðwt þffKÞ Þ
¼ 2kKkestcosðwt þ ffKÞ

Notice that l is multiplied by t, and therefore, the unit of l must be sec�1. The roots of the
characteristic equation are called the natural frequencies of the system, which are an
intrinsic property of the system and do not depend on the input or ICs. The imaginary part of
l is the frequency of characteristic mode oscillation. Furthermore, limt! 1 yziðtÞ ¼ 0, if and
only if all of the natural frequencies have negative real parts.

Example 12.12

Find the zero-input response of the low-pass filter described by (12.20). Let the component
values be L1 ¼ 3=2 H , L2 ¼ 1=2 H , C ¼ 4=3 F, and R ¼ 1 W, and suppose the ICs are
vð2Þð0�Þ ¼ 0, vð1Þð0�Þ ¼ 1, and vð0�Þ ¼ 1. Equation (12.20) becomes

vð3ÞðtÞ þ 2vð2ÞðtÞ þ 2vð1ÞðtÞ þ v ðtÞ ¼ vsðtÞ ð12:32Þ
and we must solve

vð3Þzi ðtÞ þ 2vð2Þzi ðtÞ þ 2vð1Þzi ðtÞ þ vziðtÞ ¼ 0

Table 12.3 Characteristic modes

Distinct root of (12.28) Contributions to response
l ¼ 0 K, a constant
l ¼ s , a real number K est, increasing, s > 0, or decreasing, s < 0 exponential function
l ¼ �jw 2kKkcosðwt þ ffKÞ, a sinusoidal function
l ¼ s� jw 2kKkestcosðwt þ ffKÞ, an exponentially increasing, s > 0, or exponen-

tially decreasing, s < 0, sinusoidal function
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Prog. 12.10 finds the natural frequencies and plots the zero-input response, which is shown
in Fig. 12.26.

% Example of finding the zero-input response

clear all; clc

a = [1 2 2 1]; % specify coefficients of characteristic polynomial

disp(’The natural frequencies are:’)

lambda = roots(a) % get natural frequencies

lambda = lambda.’; % transpose without conjugating

S = [1; 1; 0]; % specify initial conditions (the initial state)

Lambda = zeros(3,3); % preallocate space

Lambda(1,:) = ones(1,3); % first row

for n = 2:3 % remaining rows of Lambda

Lambda(n,:) = Lambda(n-1,:).*lambda;

end

K = inv(Lambda)*S; % get coefficients of exponential terms

t = 0:0.05:15; % specify time points

v_zi = zeros(1,length(t)); % initialize sum

for n = 1:3 % sum exponential terms

v_zi = v_zi + K(n)*exp(lambda(n)*t);

end

plot(t,real(v_zi)); % imaginary parts can be very small nonzero numbers

grid on; xlabel(’time - seconds’); ylabel(’volts’)

title(’Zero-Input Response’)

Program 12.10 Program to find the natural frequencies and the zero-input response.

0 5 10 15
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Figure 12.26 Zero-input response.
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The natural frequencies are as follows:

lambda =

-1.0000

-0.5000 + 0.8660i

-0.5000 - 0.8660i

Since the natural frequencies all have negative real parts, vziðtÞ goes to zero as t
increases.

12.3.2 Zero-State Response
Assume that M ¼ N , and to find the solution yzsðtÞ of (12.26), let us first consider a simpler
problem given by

wðNÞðtÞ þ aN�1wðN�1ÞðtÞ þ � � � þ a0wð0ÞðtÞ ¼ rðtÞ ð12:33Þ

where the ICs are zero and the forcing function is gðtÞ ¼ rðtÞ. For a given rðtÞ, suppose we
can solve (12.33) for wðtÞ. If both sides of (12.33) are multiplied by b0 to obtain

b0wðNÞðtÞ þ aN�1 b0 wðN�1ÞðtÞ þ � � � þ a0b0 wð0ÞðtÞ ¼ b0 rðtÞ ð12:34Þ

then, if the forcing function is gðtÞ ¼ b0 rðtÞ, the solution of (12.34) is b0 wðtÞ. If we dif-
ferentiate both sides of (12.33) and multiply by b1 to obtain

b1
dw
dt

� �ðNÞ
þ aN�1 b1

dw
dt

� �ðN�1Þ
þ � � � þ a0 b1

dw
dt

� �ð0Þ
¼ b1

dr
dt

ð12:35Þ

then, if the forcing function is gðtÞ ¼ b1 rð1ÞðtÞ, the solution of (12.35) is b1 wð1ÞðtÞ. Since
(12.33) is a linear equation, then if the forcing function is

gðtÞ ¼ bNrðNÞðtÞ þ � � � þ b1rð1ÞðtÞ þ b0rð0ÞðtÞ
which is the right side of (12.26), the solution is

yzsðtÞ ¼ bNwðNÞðtÞ þ � � � þ b1wð1ÞðtÞ þ b0wð0ÞðtÞ ð12:36Þ
Thus, if we can find wðtÞ, then with (12.36) we can find yzsðtÞ. Soon, this method will be
applied to find yzsðtÞ for a particular rðtÞ.
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12.3.3 State Variables
The ODE solvers provided by MATLAB solve systems of first order differential equations.
Any Nth order ODE can be converted into a system of N first order differential equations.
If the ODE is given by (12.17), which describes an LTI system, then we can convert
(12.17) into

_xðtÞ ¼ A xðtÞ þ B rðtÞ ð12:37Þ
yðtÞ ¼ C xðtÞ þ D rðtÞ ð12:38Þ

where xðtÞ ¼ ½x1ðtÞ x2ðtÞ � � � xN ðtÞ	0 is an N 
 1 column vector, called the state vector, _xðtÞ
means dx=dt ¼ ½ _x1ðtÞ _x2ðtÞ � � � _xN ðtÞ	0, and the dimensions of the constant matrices
A; B; C and D are N 
 N ; N 
 1; 1 
 N , and 1
 1, respectively. Equation (12.37) is
called the state equation, and (12.38) is called the output equation. Together, (12.37) and
(12.38) are called a state variable description of an LTI system.

To solve (12.37) for xðtÞ and find yðtÞ with (12.38), which is the solution of (12.17),
requires the initial state xð0�Þ, which we can find given the ICs of (12.18). Using (12.38)
gives

yðtÞ ¼ C xðtÞ þ D rðtÞ; ! yð0�Þ ¼ S0 ¼ C xð0�Þ þ D rð0�Þ; ! C xð0�Þ ¼ S0

where rðt < 0Þ ¼ 0 was used. Again using (12.38) gives

yð1ÞðtÞ ¼ C xð1ÞðtÞ þ D rð1ÞðtÞ ¼ CðA xðtÞ þ B rðtÞÞ þ D rð1ÞðtÞ; ! C A xð0�Þ ¼ S1

Continue with derivatives of yðtÞ until we get

C AN�1xð0�Þ ¼ SN�1

Using matrix notation gives

C
C A
..
.

C AN�1

2

6

6

4

3

7

7

5

xð0�Þ ¼ S; S ¼
S0
S1
..
.

SN�1

2

6

6

6

4

3

7

7

7

5

! O xð0�Þ ¼ S

where O, which is called the observability matrix, is an N 
 N matrix. If O is non-
singular, then xð0�Þ ¼ O�1 S. With S ¼ 0 or xð0�Þ ¼ 0 (a vector of zeros), we get
xðtÞ¼ xzsðtÞ with (12.37) and yðtÞ¼ yzsðtÞ with (12.38).
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The matrices A, B, C, and D must be found such that the state variable description
gives the same input rðtÞ to output yðtÞ relationship as (12.17). There are an infinite
number of possibilities. A commonly used conversion method starts with (12.33) by
defining

xN ðtÞ ¼ wð0ÞðtÞ; ! _xN ðtÞ ¼ xN�1ðtÞ
xN�1ðtÞ ¼ wð1ÞðtÞ; ! _xN�1ðtÞ ¼ xN�2ðtÞ
xN�2ðtÞ ¼ wð2ÞðtÞ; ! _xN�2ðtÞ ¼ xN�3ðtÞ
..
.

x2ðtÞ ¼ wðN�2ÞðtÞ; ! _x2ðtÞ ¼ x1ðtÞ
x1ðtÞ ¼ wðN�1ÞðtÞ; ! _x1ðtÞ ¼ wðNÞðtÞ ¼ rðtÞ � ðaN�1 wðN�1ÞðtÞ þ � � � þ a0wð0ÞðtÞÞ

¼ rðtÞ � ðaN�1x1ðtÞ þ � � � þ a0xN ðtÞÞ
ð12:39Þ

Using matrix notation, the equations of (12.39) become

_xðtÞ ¼

�aN�1 �aN�2 � � � � � � �a1 �a0
1 0 � � � 0 0 0
0 1 0 0 0 0
..
.

0 . .
. . .

. ..
. ..

.

0 ..
.

0 1 0 0
0 0 � � � 0 1 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

xðtÞ þ

1
0
0
..
.

0
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

rðtÞ ð12:40Þ

which defines the matrices A and B in (12.37). Equation (12.40) is a set of coupled N first-
order LTI differential equations.

Like (12.36), we can find yzsðtÞ with

yzsðtÞ¼ bNwðNÞðtÞ þ bN�1wðN�1Þ þ � � � þ b1wð1ÞðtÞ þ b0wð0ÞðtÞ
¼ bNwðNÞðtÞ þ bN�1x1ðtÞ þ � � � þ b1xN�1ðtÞ þ b0xN ðtÞ
¼ bN ðrðtÞ � ðaN�1x1ðtÞ þ � � � þ a0xN ðtÞÞÞ þ bN�1x1ðtÞ þ � � � þ b1xN�1ðtÞ þ b0xN ðtÞ

ð12:41Þ

Gathering terms and using matrix notation, (12.41) becomes

yzsðtÞ ¼ bN�1 � bNaN�1 bN�2 � bNaN�2 � � � b1 � bNa1 b0 � bNa0½ 	xðtÞ þ bN½ 	rðtÞ
ð12:42Þ
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which defines the matrices C and D in (12.38). If M < N , in which case bN ¼ 0, (12.42)
becomes

yzsðtÞ ¼ 0 � � � 0 bM bM�1 � � � b0½ 	xðtÞ þ 0½ 	rðtÞ ð12:43Þ
If we set xð0�Þ ¼ O�1S, then (12.42) or (12.43) gives yðtÞ, the complete solution of
(12.17).

Recall from (3.55) that the eigenvalues of a matrix, such as the matrix A in (12.37), are
the roots of

QðlÞ ¼ ðl I � AÞj j ¼ 0 ð12:44Þ
To be specific, consider the case N ¼ 3, and let us find QðlÞ using functions in the Symbolic
Math Toolbox. The following statements give QðlÞ.
>> A = sym(’A%d%d’,[3 3]) % create a symbolic 3x3 matrix

A =

[ A11, A12, A13]

[ A21, A22, A23]

[ A31, A32, A33]

>> syms a2 a1 a0 L % L denotes lambda

>> A = [-a2 -a1 -a0; 1 0 0; 0 1 0] % define A

A =

[ -a2, -a1, -a0]

[ 1, 0, 0]

[ 0, 1, 0]

>> I = sym(’I%d%d’,[3 3]) % create a symbolic identity matrix

>> I = [1 0 0;0 1 0;0 0 1];

>> Q = det(L*I - A) % get characteristic polynomial

Q = L^3 + a2*L^2 + a1*L + a0

This QðlÞ is the same polynomial as in (12.28), for the case N ¼ 3. This is an example of
the fact that the eigenvalues of the A matrix in (12.37) are the natural frequencies of the LTI
CTS, and (12.44) is also the characteristic equation.

The MATLAB Control System Toolbox contains the function tf2ss that receives the
coefficients of (12.17) and returns the matrices A; B; C, and D. Its syntax is given by

[A, B, C, D] = tf2ss(b,a)

For example, let a ¼ ½aN � � � a1 a0	 ¼ ½1 2 4 6 8	 and b ¼
½bN � � � b1 b0	 ¼ ½0 0 1 3 5	, then we get
>> a = [1 2 4 6 8]; % N = 4 order LTI differential equation

>> b = [0 0 1 3 5]; % M = 2
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>> % convert LTI differential equation to state variable form

>> [A, B, C, D] = tf2ss(b,a);

>> B_transpose = B’; % will display B’ to save space

>> % the state variable description is

>> A,B_transpose,C,D

A =

-2 -4 -6 -8

1 0 0 0

0 1 0 0

0 0 1 0

B_transpose = 1 0 0 0

C = 0 1 3 5

D = 0

The built-in function ss2tf converts a state variable model of an LTI system into the model
given by (12.17). Its syntax is

[b a] = ss2tf(A,B,C,D)

Another useful function in the Control System Toolbox is the function obsv, which
receives the matrices A and C, and returns the observability matrix O. Its syntax is given by

O = obsv(A,C)

For example, with the matrices A and C, as obtained above, we get

>> O = obsv(A,C) % get observability matrix

O =

0 1 3 5

1 3 5 0

1 1 -6 -8

-1 -10 -14 -8

>> det_O = det(O) % check if the observability matrix is nonsingular

det_O = 159

With the observability matrix we can convert the ICs given by (12.18) into the initial state
required by (12.37).

The matrices A; B; C, and D can be combined into an object with the built-in function
ss, which has the syntax given by

LTI_sys = ss(A,B,C,D)
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For example, with the matrices A; B; C, and D, as obtained above, we get
>> LTI_sys = ss(A,B,C,D);

>> % the matrices A, B, C and D are contained in the fields of LTI_sys

>> A = LTI_sys.A

A =

-2 -4 -6 -8

1 0 0 0

0 1 0 0

0 0 1 0

The object LTI_sys can be used in another syntax of obsv, given by
O = obsv(LTI_sys)

which is equivalent to obsv(LTI_sys.A,LTI_sys.C). You should browse through the Control
System Toolbox to see the many built-in functions concerned with control system analysis
and design.

Analytical methods that find the solution of (12.17), an LTI CTS, are well developed for
rðtÞ that can be expressed in terms of functions like those given in Table 12.3, while other
than for special cases, there are no analytical methods that find the solution of nonlinear
differential equations. Numerical approximation methods are applied to solve nonlinear
differential equations. A large amount of literature reports a great variety of numerical ODE
solvers. Numerical methods can give very accurate results.

Table 12.4 gives explicit ODE solvers provided by MATLAB. The success of a
numerical ODE solver depends on whether or not the ODE is a stiff ODE. A stiff ODE is an
ODE that has a solution that can change drastically over a small change in the independent
variable. Like Euler’s integration method, all numerical integration methods segment a time
range into small segments, called the step size. In Euler’s integration method, the step size is
fixed. However, to solve stiff ODEs a numerical integration method must include a means
with which to assess how rapidly the solution is changing, and adaptively reduce the step
size to maintain accurate results. Then, when the solution tends to change less rapidly, the
step size must be automatically increased to reduce computing time. Stiff ODE solvers can
require much more computing time than nonstiff solvers.

Table 12.4 MATLAB ODE solvers

Solver Problem type Accuray Usage

ode45 nonstiff medium Should be the first solver you try
ode23 nonstiff low Problems with low error tolerances or for solving

moderately stiff problems
ode113 nonstiff low to high Problems with stringent error tolerances or for

solving computationally intensive problems
ode15s stiff low to medium If ode45 is slow because the problem is stiff
ode23s stiff low Low error tolerances to solve stiff systems
ode23t moderately stiff low Moderately stiff problems
ode23tb stiff low Low error tolerances to solve stiff systems
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The ODE solvers provided by MATLAB solve the system of first-order differential
equations written as

dx
dt

¼ Fðt; xÞ ð12:45Þ

where xðtÞ is an N 
 1 vector, dx=dt means ½ dx1=dt dx2=dt � � � dxN=dt 	
0
, and Fðt; xÞ

is a vector function. The syntax is given by

[Tout,Xout] = ode_solver(@odefun,tspan,x0)

[Tout,Xout] = ode_solver(@odefun,tspan,x0,options)

where @odefun is the handle of a function that evaluates Fðt; xÞ, tspan is ½tinitial tfinal	, x0 is a
vector that holds the initial state xðt�initialÞ. For a scalar t and a vector x, odefun(t,x) must
return a column vector given by Fðt; xÞ. Each row in the solution matrix Xout is the state
vector at a time given in the corresponding row of the column vector Tout. To obtain
solutions at specific times, set the vector tspan to a time point sequence. With the second
syntax, you can use the function odeset to set parameter values concerned with the inte-
gration method. Use doc ode45 for details.

To assess the behavior of an LTI CTS described by (12.17) or (12.37) and (12.38), it is
useful to see its unit step or impulse response. The impulse (11.10) (also called the Dirac
delta function) function was introduced in Chapter 11, and its definition, repeated here for
convenience, is given by

dðt � t0Þ ¼ 1; t ¼ t0
0; t 6¼ t0

�

where t0 is an arbitrary time point. It was also shown in Chapter 11 that
ðt

�1
dðt� t0Þ dt ¼ uðt � t0Þ; ! d uðt � t0Þ

d t
¼ dðt � t0Þ

The impulse function is nonzero only when the argument is zero. Therefore
ðþ1

�1
vðtÞ dðt � t0Þ dt ¼

ðt0þe

t0�e
vðtÞ dðt � t0Þ dt ¼

ðt0þe

t0�e
vðt0Þ dðt � t0Þ dt

¼ vðt0Þ
ðt0þe

t0�e
dðt � t0Þ dt ¼ vðt0Þ

where e is an arbitrarily small positive number and vðtÞ is a function of t that is continuous at
t0. This is called the sifting property of the impulse function. For example, a sample of the
time function vðtÞ ¼ e�2tuðtÞ at the time t ¼ 5 can be obtained with

ð1

�1
e�2tuðtÞ dðt � 5Þ dt ¼

ð1

0
e�2t dðt � 5Þ dt ¼ e�10
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Example 12.12 (continued)

Let us apply a MATLAB ODE solver to find the zero-input, zero-state, and complete
responses of the low-pass filter shown in Fig. 6.13, which is described by (12.32). Prog.
12.11 gives the ODE function. It receives the matrices A and B and the input r as global
variables.

function x_dot = state_function(t,x)

% function to compute: Ax+Br, where r is a constant

global A B r

x_dot = A*x + B*r;

end

Program 12.11 Function to compute the vector state function.

The statement to find x_dot looks simple. However, since most of the elements in the matrix
A are zero, it is more efficient to find x_dot with

x_dot = [A(1,:)*x + r; x(1); x(2)];

Prog. 12.12 converts the N ¼ 3 order differential equation (12.32) into a state variable
model. Then, it finds the observability matrix to convert the given ICs into the initial state,
which is used by ode45 to find vziðtÞ. The input is rðtÞ ¼ uðtÞ, which is used by ode45 to find
vzsðtÞ.

clear all; clc

global A B r

a = [1 2 2 1]; b = [0 0 0 1]; % specify coefficients

[A B C D] = tf2ss(b,a); % get state variable description

O = obsv(A,C); % get observability matrix

tspan = 0:0.05:15; % specify time points

r = 0; % set input to zero for zero-input response

S = [1; 1; 0] % specify initial conditions

x0 = inv(O)*S % get initial state

[tx] = ode45(@state_function,tspan,x0)%getstatevectorversustime

% each column of x’ is the state vector at the corresponding time in t

v_zi = C*x’ + D*r; % get zero-input response

plot(t,v_zi,’b’); grid on; hold on

xlabel(’time - seconds’); ylabel(’volts’)

r = 1; % specify input, a unit step
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x0 = [0; 0; 0] % specify initial state

[t x] = ode45(@state_function,tspan,x0);

v_zs = C*x’ + D*r; % get zero-state response

plot(t,v_zs,’r’)

v = v_zi + v_zs;

plot(t,v,’k’)

title(’Zero-Input, Zero-State and Complete Response’)

Program 12.12 Program to find the complete response of a low-pass filter.

The zero-input response has been found in two different ways. Fig. 12.26 shows the
analytical solution obtained with (12.29), and Fig. 12.27 shows the numerical solution
obtained with the ODE solver ode45. The results are substantially the same.

Let us examine Fig. 12.27 a little more. Notice that vziðtÞ goes to zero because the
natural frequencies have negative real parts. Until vziðtÞ is nearly zero, it goes through
transient behavior (exponential or oscillatory), which is determined by the natural fre-
quencies. The input is a constant, and as t ! 1, vzsðtÞ becomes a constant. This part of
vzsðtÞ is called the steady-state response. The steady-state response is a function like the
input. Until vzsðtÞ is nearly the same kind of function as the input, it goes through a transient
behavior, which is also determined by the natural frequencies. The complete response vðtÞ
goes through transient behavior due to ICs and the input, and in steady state it behaves like
the input. All LTI CTS, which have natural frequencies with negative real parts, behave in
this manner.

2

1.5
zero-input response

Zero-Input, Zero-State, and Complete Response

zero-state response
complete response

1

0.5vo
lts

0

–0.5
0 5

time - seconds
10 15

Figure 12.27 Complete unit step response.
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If any natural frequency has a positive real part, then vðtÞ will grow without bound, in
which case, a physical system that behaves like this model will self-destruct. If any distinct
natural frequency has a zero real part and a nonzero imaginary part, then (see Table 12.3)
vðtÞ will undergo a sustained oscillation, regardless of the input or the ICs. This can be
useful if we want to build an oscillator. However, it would not be useful if, for example, the
LTI CTS is involved in the control of the front wheels of your car, as they react to action by
the steering mechanism.

The state variable description used in Example 12.12 is not unique. There are many
other useful possibilities.

Example 12.13

Let us again apply a MATLAB ODE solver to find the unit pulse and unit step responses of
the low-pass filter shown in Fig. 6.13, which is repeated for convenience in Fig. 12.28.

While we can work with (12.20), a third-order ODE, which can be converted into three
first order differential equations, let us use a state variable description where the inductor

currents and capacitor voltage become the elements of the state vector. Let
x1ðtÞ ¼ iL 1ðtÞ ¼ i1ðtÞ, x2ðtÞ ¼ iL 2ðtÞ ¼ i2ðtÞ, and x3ðtÞ ¼ vCðtÞ. Applying KVL to the two
meshes and using the notation _xðtÞ ¼ dx=dt give

�vsðtÞ þ L1
diL1
dt

þ vCðtÞ ¼ 0 ! _x1ðtÞ ¼ � 1
L1
x3ðtÞ þ 1

L1
vsðtÞ

�vCðtÞ þ L2
diL2
dt

þ RiL2ðtÞ ¼ 0 ! _x2ðtÞ ¼ � R
L2
x2ðtÞ þ 1

L2
x3ðtÞ

ð12:46Þ

Applying KCL to the middle node gives

�iL1ðtÞ þ C
dvC
dt

þ iL2ðtÞ ¼ 0 ! _x3ðtÞ ¼ 1
C
x1ðtÞ � 1

C
x2ðtÞ ð12:47Þ

vs (t) v(t)R

L1 L2

Ci1(t) i2(t)

Figure 12.28 Circuit of a third-order Butterworth low-pass filter.
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Equations (12.46) and (12.47) are N ¼ 3 first-order differential equations that model the
behavior of the circuit. For linear systems these equations can be written using matrix
notation, and become

_xðtÞ ¼
0 0 �1=L1
0 �R=L2 1=L2

1=C �1=C 0

2

4

3

5xðtÞ þ
1=L1
0
0

2

4

3

5vsðtÞ ð12:48Þ

where xðtÞ ¼ x1ðtÞ x2ðtÞ x3ðtÞ½ 	 0, a column vector, is the state vector, and (12.48) is the
state equation of the circuit. To obtain the output, we have vðtÞ ¼ R x2ðtÞ, or

vðtÞ ¼ 0 R 0½ 	xðtÞ þ 0½ 	vsðtÞ ð12:49Þ
which is the output equation. Together, (12.48) and (12.49) are a state variable descrip-
tion of the circuit.

Let us apply the MATLAB ODE solver ode45 to (12.48). Using the same component
values as in Example 12.12, Prog. 12.13 gives the ODE function, where the input is a unit
pulse, and Prog. 12.14 obtains the zero-state response. The unit pulse response is shown in
Fig. 12.29. Notice that even though the input is nonzero for a very small time duration, the
output does not become very small until around t ¼ 10 sec. This is transient behavior.
Fig. 12.29 also shows the unit step response, for which vs = 1 for t � 0 was used.

function dxdt = low_pass_pulse(t,x)

% evaluate the state equation of a low-pass filter

global A13 A22 A23 A31 A32 B1

% specify a unit pulse

vs = 0; if t == 0, vs = 1; end; % input is one for one time step

% for the unit step response, replace the line above with: vs = 1;

% evaluate the derivative of each component of the state vector

x1dot = A13*x(3)+B1*vs;

x2dot = A22*x(2)+A23*x(3);

x3dot = A31*x(1)+A32*x(2);

dxdt = [x1dot; x2dot; x3dot]; % state vector derivative

end

Program 12.13 ODE function for the low-pass filter.

% Program to solve the ODE of a Butterworth third order low-pass filter

clear all; clc

global A13 A22 A23 A31 A32 B1

L1 = 3/2; L2 = 1/2; C = 4/3; R = 1; % circuit component values

A13 = -1/L1; A22 = -R/L2; A23 = 1/L2; A31 = 1/C; A32 = -1/C; B1 = 1/L1;
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tspan = linspace(0,20,1001); % time points

x0 = [0; 0; 0]; % use zero initial state for the unit pulse response

[t x] = ode45(@low_pass_pulse,tspan,x0); % x is the state vector

v_zs = R*x(:,2); v_zs = v_zs/max(abs(v_zs)); % get output and normalize it

plot(t,v_zs); grid on

xlabel(’time - seconds’); ylabel(’output - volts’)

title(’Low-Pass Filter Unit Pulse and Unit Step Response’)

[t x] = ode45(@low_pass_step,tspan,x0); % x is the state vector

v_zs = R*x(:,2); % get output

hold on; plot(t,v_zs)

Program 12.14 Program to find the unit pulse and unit step responses.

Regardless of which state variable description you use, the input to output relationship is
preserved. The state variables used here have physical meaning. The eigenvalues of the A
matrix in (12.48) are given by

>> L1 = 3/2; L2 = 1/2; C = 4/3; R = 1; % circuit component values

>> A = [0 0 -1/L1; 0 -R/L2 1/L2; 1/C -1/C 0];

>> E = eig(A)

E =

-0.5000 + 0.8660i

-0.5000 - 0.8660i

-1.0000

which are the natural frequencies found in Example 12.12.
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Figure 12.29 Unit step response and normalized unit pulse response.
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To better understand the impact of transient behavior on the complete response, let us
apply a sinusoidal input given by vsðtÞ ¼ sinðw0tÞ uðtÞ, where w0 ¼ 1:0 rad=sec. For this
vsðtÞ, the line in Prog. 12.13 that defines vs was replaced by vs = sin(t). The response is
shown in Fig. 12.30, which was obtained by replacing the plotting statements in Prog. 12.14
with the following statements:

subplot(1,2,1); plot(t,v_zs); grid on

xlabel(’time - seconds’); ylabel(’output’)

title(’Low-Pass Filter Response’)

subplot(1,2,2); plot3(x(:,1),x(:,2),x(:,3)); grid on

xlabel(’L1 current’),ylabel(’L2 current’),zlabel(’C voltage’)

title(’State Vector Phase Diagram’)

Since the bandwidth of the filter is BW = 1 rad/sec and the input frequency is 1 rad/sec,
the amplitude of the steady-state sinusoidal response is 1=

ffiffiffi

2
p ¼ 0:707. We see in Fig. 12.30

that this amplitude is not reached until around 10 sec, where the transient behavior has
become negligible. The plot on the right of Fig. 12.30 shows the trajectory of the state
vector, called a phase diagram, in a 3-D space from its initial state, through its transient and
then steady-state oscillatory behavior.

To demonstrate the need of a stiff ODE solver, let us work with a nonlinear system.
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Figure 12.30 Sinusoidal response and phase diagram of the state vector.
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Example 12.14

Solve the ODE that describes the AC to DC converter shown in Fig. 12.25. First, we must
write the ODE in the form required by MATLAB ODE solvers, which is the first-order
ðN ¼ 1Þ equation given by

dv
dt

¼ Fðt; vÞ ¼ Is
C
ðeðvsðtÞ�vðtÞÞ=VT � 1Þ � vðtÞ

RC

A MATLAB function of the ODE function Fðt; vÞ is given in Prog. 12.15. Prog. 12.16 uses
the ODE solver ode15s, which is specifically designed to solve stiff problems. The function
odeset is used to set ODE solver parameters to values that achieve more accurate results
than with default parameter values.

function dvdt = AC_DC(t,v)

% function of the ODE for the AC to DC converter

global R C w A % parameters from user program

Is = 1e-12; VT = 25.85e-3; % specify diode parameters

vs = A*sin(w*t); % input sinusoid

dvdt = (Is/C)*(exp((vs-v)/VT)-1)-v/(R*C); % ODE function

end

Program 12.15 ODE function.

% Program to solve the ODE of an AC to DC converter

clear all; clc

global R C w A

f = 60; w = 2*pi*f; A = 6.3; % sinusoid frequency is 60 Hz

R = 100; C = 1000e-6; % load resistance (Ohms), capacitor (Farads)

T0 = 1/f; tspan = linspace(0,4*T0,1001); % time points

v0 = 0; % initial condition

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-12); % stiff ODE parameter values

[tout vout] = ode15s(@AC_DC,tspan,v0,options);

vin = A*sin(w*tout);

plot(tout,vin,’k’); hold on; plot(tout,vout,’r’); grid on

xlabel(’time - seconds’); ylabel(’volts’)

title(’Input and Output of an AC to DC Converter’)

R = 33; % smaller load resistance

[tout vout] = ode15s(@AC_DC,tspan,v0,options);

plot(tout,vout,’b’);

Program 12.16 Program to find the AC to DC converter output.
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The input and output of the AC to DC converter are shown in Fig. 12.31. Starting at the
IC vðt ¼ 0�Þ ¼ 0 volts, the input charges the capacitor until the input decreases below
the capacitor voltage. Then, the diode stops conducting and the capacitor starts to discharge
through the resistor (called the load) until the input again becomes large enough to recharge
the capacitor. The output voltage is not perfectly constant, and ripples more when the
resistance of the load is decreased. We can increase the capacitor value to decrease the
ripple in the output voltage. A better converter design is needed to achieve a more constant
output voltage and tolerate load resistance variations. This depends on the needs of an
application that is powered by an AC to DC converter.

Here, with an AC input amplitude of 6.3 volts, we get a DC output voltage of about
5 volts.

12.3.4 Impulse Response
A very useful function to know about an LTI CTS is its impulse response. The impulse
response is found with rðtÞ ¼ dðtÞ and with all ICs set to zero. Then, the solution yðtÞ of
(12.17) or (12.37) and (12.38) is given the special notation hðtÞ ¼ yzsðtÞ. The function hðtÞ is
called the impulse response, and it is the solution of

hðNÞðtÞ þ aN�1 hðN�1ÞðtÞ þ � � � þ a0 hð0ÞðtÞ ¼ bNdðNÞðtÞ þ � � � þ b1 dð1ÞðtÞ þ b0 dð0ÞðtÞ
ð12:50Þ

where for now, let M ¼ N . By its definition, we have hðnÞð0�Þ ¼ 0; n ¼ 0; 1; . . . ;N � 1.
Soon, we will see that with the impulse response hðtÞ, the response yzsðtÞ to any input rðtÞ can
be found.
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Figure 12.31 Input and output of the AC to DC converter.
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The right side of (12.50) is nonzero only at t ¼ 0. At t ¼ 0, the right side of (12.50)
includes bNdðNÞðtÞ. Therefore, to maintain equality, the left side of (12.50) must also include
bNdðNÞðtÞ. This can only happen if at t ¼ 0, hðtÞ ¼ bNdðtÞ, which then gives
hðNÞðtÞ ¼ bNdðNÞðtÞ, as required. However, if M < N (bN ¼ 0), then the highest derivative
of dðtÞ in the right of (12.50) is due to the term bMdðMÞðtÞ, and to maintain equality, the
highest derivative of dðtÞ that can appear in the left side of (12.50) is dðMÞðtÞ. Therefore, if
M < N , then hðtÞ cannot include an impulse t ¼ 0.

Like we did with (12.33), let us solve the simpler problem given by

wðNÞðtÞ þ aN�1 wðN�1ÞðtÞ þ aN�2 wðN�2ÞðtÞ þ � � � þ a1 wð1ÞðtÞ þ a0 wð0ÞðtÞ ¼ d ðtÞ
ð12:51Þ

and then, as with (12.36), for t � 0

hðtÞ ¼ bNdðtÞ þ bNwðNÞðtÞ þ � � � þ b1 wð1ÞðtÞ þ b0 wð0ÞðtÞ; M ¼ N
bMwðMÞðtÞ þ � � � þ b1 wð1ÞðtÞ þ b0 wð0ÞðtÞ; M < N

(

ð12:52Þ

The N ICs of (12.51) are wðnÞð0�Þ ¼ 0; n ¼ 0; 1; � � � ; N � 1. To maintain the equality of
(12.51) at t ¼ 0, wðN�1ÞðtÞ must go through a step change at t ¼ 0 to make wðNÞðtÞ ¼ dðtÞ at
t ¼ 0, which matches the right side of (12.51). The derivatives
wðnÞðtÞ; n ¼ 0; 1; . . . ; N � 2 cannot go through a change at t ¼ 0, because if, for example,
wðN�2ÞðtÞ goes through a step change at t ¼ 0, then at t ¼ 0, wðN�1ÞðtÞ ¼ dðtÞ
and wðNÞðtÞ ¼ ddðtÞ=dt, and there is no ddðtÞ=dt on the right side of (12.51) at t ¼ 0.

For t > 0, (12.51) becomes

wðNÞðtÞ þ aN�1 wðN�1ÞðtÞ þ � � � þ a0 wð0ÞðtÞ ¼ 0; t > 0 ð12:53Þ

with ICs given by wðnÞð0þÞ ¼ wðnÞð0�Þ ¼ 0; n ¼ 0; 1; . . . ; N � 2 and, since wðN�1ÞðtÞ
must go through a step change at t ¼ 0, wðN�1Þð0þÞ ¼ 1. Since (12.53) is a homogeneous
equation, its solution can be found in the same way that was used to solve (12.25), and
therefore

wðtÞ ¼
X

N

n¼1
K n e lnt; t > 0 ð12:54Þ

To find the constants Kn; n ¼ 0; 1; . . . ; N � 1, apply the ICs at t ¼ 0þ to get LK ¼ S,
where L and K are defined in (12.31), and S ¼ ½0 0 � � � 0 1	0. With this wðtÞ, we can
find the impulse response of (12.17) using (12.52). Notice that for t > 0, wðtÞ is a linear
combination of the characteristic modes of the system, and in view of (12.52), for t > 0,
the impulse response of an LTI system is also a linear combination of its characteristic
modes.
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Example 12.15

Find the impulse response of the LTI CTS described by

yð2ÞðtÞ þ 7yð1ÞðtÞ þ 12yðtÞ ¼ 2rð2ÞðtÞ þ 6rð1ÞðtÞ þ 4rðtÞ

Here, M ¼ N ¼ 2. To find hðtÞ, let rðtÞ ¼ dðtÞ, and set yð1Þð0�Þ ¼ 0 and yð0�Þ ¼ 0. First,
according to (12.53), we must solve

wð2ÞðtÞ þ 7wð1ÞðtÞ þ 12wðtÞ ¼ 0; t > 0; wð1Þð0þÞ ¼ 1; wð0þÞ ¼ 0

The characteristic equation is

l2 þ 7lþ 12 ¼ 0 ! ðlþ 3Þðlþ 4Þ ¼ 0

and the natural frequencies are l1 ¼ �3 and l2 ¼ �4. The function wðtÞ is given by
wðtÞ ¼ K1 e�3t þ K2 e�4t; t > 0

The constants K1 and K2 are the solution of

1 1
�3 �4

� �

K1
K2

� �

¼ 0
1

� �

! K1
K2

� �

¼ 1
�1

�4 �1
3 1

� �

0
1

� �

¼ 1
�1

� �

and wðtÞ ¼ e�3t � e�4t. For t � 0, the impulse response is given by

hðtÞ ¼ 2dðtÞ þ 2wð2ÞðtÞ þ 6wð1ÞðtÞ þ 4wðtÞ
¼ 2dðtÞ þ 2

d
dt
ð�3e�3t þ 4e�4tÞ þ 6 ð�3e�3t þ 4e�4tÞ þ 4ðe�3t � e�4tÞ

¼ 2dðtÞ þ 2ð9e�3t � 16e�4tÞ � 14e�3t þ 20e�4t ¼ 2dðtÞ þ 4e�3t � 12e�4t; t � 0

and, since the CTS is causal, we write

hðtÞ ¼ 2dðtÞ þ ð4e�3t � 12e�4tÞuðtÞ

For N > 3 or complex natural frequencies it can be challenging to manually find the
impulse response. Then, we must use computing methods. Example 12.13 demonstrates one
possible numerical method by finding the unit pulse response.

For an impulse response, the input rðtÞ ¼ dðtÞ is applied at t ¼ 0. Therefore, if a CTS is
a causal system, then

hðtÞ t<0 ¼ 0j
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MATLAB has the built-in function called impulse that finds, starting at t ¼ 0, the
impulse response hðtÞ of an LTI CTS given its state variable model. If D in the state variable
model is not zero (M ¼ N in (12.17)), then the impulse function (see (12.52).) in hðtÞ is
ignored. To obtain a plot of hðtÞ, use one of the following syntax options.

impulse(LTI_sys)

where LTI_sys is the object returned by the function ss. The time range and number of
plotted points are chosen automatically.

impulse(LTI_sys,t_final)

where hðtÞ is plotted over the range 0 � t � tfinal.

impulse(LTI_sys,t)

where the time range t is specified with t = t_start:dt:t_end.
You can specify line color, line style, and marker type with, for example

impulse(LTI_sys1, ’r’,LTI_sys2,’y–’,LTI_sys3,’gx’)

To obtain a vector of impulse response values and no plot, the syntax options are

[h,t] = impulse(LTI_sys)

[h,t,x] = impulse(LTI_sys)

where the elements of h correspond to the time points given in t. The second syntax option
also returns the state vector x versus time. Use doc impulse for more details.

Two related functions are the built-in function step, which finds the step response of an
LTI CTS under zero ICs, and the built-in function initial, which finds the response due to
ICs. The functions step and impulse have the same syntax. The syntax for the function initial
is similar to the function impulse syntax, but must include an initial state in the argument
list. Some syntax options are

initial(LTI_sys,x0)

initial(LTI_sys,x0,t)

[yzi,t,x] = initial(LTI_sys,x0)
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Example 12.16

Obtain the impulse and step responses of the low-pass filter given in Example 12.12. Prog.
12.17 uses the functions impulse and step to plot hðtÞ and the step response, which are
shown in Fig. 12.32.

clear all; clc

a = [1 2 2 1]; b = [0 0 0 1]; % specify coefficients of differential eq.

[A B C D] = tf2ss(b,a); % convert to state variable description

LTI_sys = ss(A,B,C,D); % create an object

save(’state_space_model.mat’,’LTI_sys’); % to be used later

subplot(1,2,1); impulse(LTI_sys,’k’); grid on

subplot(1,2,2); step(LTI_sys,’k’); grid on

Program 12.17 Program to find the impulse and step responses of an LTI system.

12.3.5 Convolution
Given the impulse response hðtÞ of an LTI CTS, we can find the zero-state response of the
system to an arbitrary input rðtÞ. To see how this can be done, we approximate the input
with a sum of weighted pulses as shown in Fig. 12.33. The single pulse shown on the left of
Fig. 12.33 has the property that limT!0 pðtÞ ¼ dðtÞ. The height of the pulse T pðtÞ is one.
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Figure 12.32 Impulse and step responses.

12.3 Response of LTI Continuous Time Systems 531



On the right of Fig. 12.33, the pulse over 0 � t < T is rð0ÞpðtÞT . Over T � t < 2T the pulse
is rðTÞpðt � TÞT , where pðt � TÞ is pðtÞ shifted to the right by T sec. If rðtÞ is not zero for
t < 0, then the pulse over �T � t < 0 is rð�TÞpðt þ TÞ T . In terms of weighted pulses,
an approximation r̂ðtÞ of rðtÞ is given by

r̂ðtÞ ¼
X

k¼1

k¼�1
rðkTÞ pðt � kTÞ T ð12:55Þ

As T goes to zero, the summation in (12.55) becomes an integral, where rðkTÞ becomes a
function of a continuous variable, which will be denoted by t, and we get

r̂ðtÞ ¼
X

k¼1

k¼�1
rðkTÞ pðt � kTÞ T !

ð1

�1
rðtÞdðt � tÞ dt ¼ rðtÞ ð12:56Þ

Let us consider the response of an LTI CTS to any one of the pulses in the sum of pulses

in (12.55). Assume that for small T , the response to pðtÞ is approximately hðtÞ. Since the
system is time invariant, the response to pðt � kTÞ is approximately hðt � kTÞ. Since the
system is also linear, the response ŷzsðtÞ to r̂ðtÞ given by (12.55) is

ŷzsðtÞ ¼
X

1

k¼�1
rðkTÞ hðt � kTÞ T ð12:57Þ

and as T ! 0, the summation in (12.57) becomes an integral given by

ŷzsðtÞ ¼
X

1

k¼�1
rðkTÞ hðt � kTÞT !

ð1

�1
hðt � tÞ rðtÞ dt ¼ yzsðtÞ ð12:58Þ

T 2T 3T–T–2Tt t

p(t)

1/T

T

ˆr(t), r(t)

Figure 12.33 Approximation of rðtÞ with a sum of weighted pulses.
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The integral in (12.58) is called the convolution integral. If we assume that the ICs
of an LTI CTS are zero, then the complete response to an input rðtÞ is yðtÞ ¼ yzsðtÞ
given by

yðtÞ ¼ hðtÞ � rðtÞ ¼
ð1

�1
hðt � tÞ rðtÞ dt ð12:59Þ

where the asterisk between hðtÞ and rðtÞ denotes the convolution operation. The con-
volution of any two signals s1ðtÞ and s2ðtÞ is commutative, that is,
s1ðtÞ � s2ðtÞ ¼ s2ðtÞ � s1ðtÞ, which means that

ð1

�1
s1ðt � tÞ s2ðtÞ dt ¼

ð1

�1
s1ðtÞ s2ðt � tÞdt

Example 12.17

The impulse response of an LTI CTS is hðtÞ ¼ b e�atuðtÞ. Manually, find the response yðtÞ
to a unit step input, rðtÞ ¼ uðtÞ. The response is yðtÞ ¼ hðtÞ � rðtÞ given by

yðtÞ ¼
ð1

�1
hðt � tÞrðtÞdt ¼

ð1

�1
b e�aðt�tÞuðt � tÞ uðtÞ dt ¼ b

ð1

0
e�aðt�tÞuðt � tÞdt

where uðtÞ t<0 ¼ 0j . Since t in the rightmost integral is now nonnegative, then for t < 0,
uðt � tÞ ¼ 0, and therefore, yðtÞ t<0 ¼ 0j . For t > 0, uðt � tÞ ¼ 0 for t > t, and the integral
for yðtÞ becomes

yðtÞjt > 0 ¼ b
ðt

0
e�aðt�tÞdt ¼ b e�at

ðt

0
eatdt ¼ e�at

b
a
ðeatÞ

�

�

�

�

t

0

¼ e�at
b
a
ðeat � 1Þ ¼ b

a
ð1� e�atÞ

and for all t, yðtÞ is given by

yðtÞ ¼ b
a
ð1� e�atÞuðtÞ

In practical situations an expression for the input of an LTI CTS can be complicated, in
which case, the convolution integral can be challenging to evaluate. Or, only samples of an
input are available. Assume the input is zero for t < 0, and suppose we need to know yðtÞ
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only for t ¼ nT ; n ¼ 0; 1; . . ., where T is some time increment. Then, (12.57) can be used to
approximate yðnTÞ with

yðnTÞ ¼
X

n

k¼0
hðnT � kTÞ rðkTÞT ; n ¼ 0; 1; 2; . . .

To simplify the notation, write

yðnÞ ¼ T
X

n

k¼0
hðn� kÞ rðkÞ; n ¼ 0; 1; 2; . . . ð12:60Þ

The built-in function conv computes the summation in (12.60), which is called discrete
convolution. The syntax of the function conv is

c = conv(s1, s2)

where s1 is a vector that contains N1 samples of some signal s1ðtÞ, which could be the impulse
response of some LTI CTS, and s2 is a vector that contains N2 samples of another signal s2ðtÞ,
which could be the input of the LTI CTS. The length of the returned vector c is N1+N2�1.

Example 12.18

Find the response of the RC circuit to the pulse shown in Fig. 12.34. Summing the currents
leaving the node at the output plus terminal gives

vðtÞ � vsðtÞ
R

þ C
dv
dt

¼ 0 ! dv
dt

þ 1
RC

vðtÞ ¼ 1
RC

vsðtÞ ! dv
dt

þ a0vðtÞ ¼ b0vsðtÞ

Let RC ¼ 0:1 sec. With (12.53), the impulse response is given by hðtÞ ¼ b0 e�a0t uðtÞ. Let
fs ¼ 2000 samples/sec, and obtain samples of vsðtÞ over 2 sec and samples of hðtÞ over 1 sec.
Prog. 12.18 uses the function conv to find vðtÞ.

% Pulse response of an RC circuit

clear all; clc

fs = 2000; % sampling rate

T = 1/fs; % time increment

vs(t)

vs(t)
1

1 t

R
C v(t)

Figure 12.34 Pulse applied to an RC circuit.
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RC = 0.1; a0 = 1/RC; b0 = 1/RC; % time constant and coefficients

T2 = 1; N2 = floor(T2/T)-1; % impulse response time range

t = [0:N2]*T; h = b0*exp(-a0*t); % impulse response samples

T1 = 2; N1 = floor(T1/T)-1; % input time range and number of samples

Nv = N1 + N2 -1; t = [0:Nv]*T; % convolution result time range

T_pulse = 1; N_pulse = floor(T_pulse/T)-1; % pulse duration is 1 sec

vs = [ones(1,N_pulse),zeros(1,N1-N_pulse)]; % input samples

v = T*conv(vs,h); % obtain convolution approximation

subplot(1,3,1); plot(t,v,’k’); grid on; axis([0 3 -0.2 1.2])

xlabel(’time - secs’); ylabel(’volts’); title(’Pulse Response’)

v = v + 0.05*randn(1,length(v)); % introduce additive noise

subplot(1,3,2); plot(t,v,’k’); grid on; axis([0 3 -0.2 1.2])

xlabel(’time - secs’); ylabel(’volts’); title(’Pulse Response’)

T_pulse = 0.1; N_pulse = floor(T_pulse/T)-1; % pulse duration is 0.1 secs

vs = [ones(1,N_pulse),zeros(1,N1-N_pulse)]; % input samples

v = T*conv(vs,h); % obtain convolution approximation

v = v + 0.05*randn(1,length(v)); % introduce additive noise

subplot(1,3,3); plot(t,v,’k’); grid on; axis([0 3 -0.2 1.2])

xlabel(’time - secs’); ylabel(’volts’); title(’Pulse Response’)

Program 12.18 Application of discrete convolution to approximate continuous
convolution.

The plot on the left in Fig. 12.35 shows the RC circuit output when the input is a pulse
of duration 1 sec. Suppose this input pulse is applied to a long pair of wires. The RC circuit
can be a model of the long pair of wires, where R is the series resistance of the wires and C
accounts for the effect of two wires in close proximity. If over a long distance noise is
introduced, then the plot in the center is the output at the other end of the pair of wires. The
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Figure 12.35 RC circuit pulse response.
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presence of a pulse is apparent. If the pulse duration is reduced, where, for example, it is
0.1 sec in the plot on the right, the presence of a pulse may not be so easily detected. If the
objective is to communicate binary data over a long pair of wires, then Fig. 12.35 illustrates
that the time duration of a bit cannot be arbitrarily small, which means that the bit rate is
limited by the RC effect of the transmission wires.

12.3.6 Stability
From a practical viewpoint, the stability of a CTS is extremely important. Stability is
defined in terms of the system’s response to a bounded input, which means that for some
positive and finite constant B, the input satisfies rðtÞj j � B for all t. A CTS is said to be
BIBO (bounded-input-bounded-output) stable if and only if for a bounded input, the
output is bounded.

For an LTI CTS, the output is given by (12.59), and to be bounded we consider

yðtÞj j ¼
ð1

�1
hðt � tÞ rðtÞ dt

�

�

�

�

�

�

�

�

¼
ð1

�1
hðtÞ rðt � tÞ dt

�

�

�
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�
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�
ð1

�1
hðtÞ B dt

�
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¼ B
ð1

�1
hðtÞ dt
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�

�
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�

�

� B
ð1

�1
hðtÞj jdt

Therefore, an LTI CTS is BIBO stable if the integral of the absolute value of the impulse
response is finite. For an LTI CTS, the impulse response is a linear combination of the
characteristic modes of the system (and possibly an impulse function). A characteristic
mode is absolutely integrable if the real part of the corresponding natural frequency is
negative. An LTI CTS is BIBO stable if and only if the real parts of all of its natural
frequencies are negative.

12.3.7 Steady-State Response
Suppose an input, which is given by

rðtÞ ¼ R est ð12:61Þ

where R and s are any real or complex numbers, has been applied to a BIBO stable LTI CTS
described by (12.17) for a very long time. This means that all transient behavior incurred due
to applying an input and due to ICs has become negligible. Substituting rðtÞ into (12.17) gives

yðNÞðtÞ þ aN�1 yðN�1ÞðtÞ þ � � � þ a1 yð1ÞðtÞ þ a0 yð0ÞðtÞ
¼ bM sMR est þ � � � þ b1 s R est þ b0 R est ¼ ðbM sM þ � � � þ b1 s þ b0 ÞR est

ð12:62Þ

536 Signals and Systems



Since the right side of (12.62) is an exponential function with frequency s, the left side must
also be an exponential function with frequency s. Let us try yðtÞ ¼ Y est, and (12.62) becomes

ðsN þ aN�1 sN�1 þ � � � þ a1 sþ a0 ÞY est ¼ ðbM sM þ � � � þ b1 sþ b0 ÞR est

and therefore

Y ¼ bM sM þ � � � þ b1 sþ b0
s N þ aN�1 sN�1 þ � � � þ a1 sþ a0

R ¼ PðsÞ
QðsÞR ¼

bM
Q

M

k¼1
ðs� zkÞ

Q

N

k¼1
ðs� pkÞ

R ¼ HðsÞ R

ð12:63Þ
where HðsÞ ¼ PðsÞ=QðsÞ is called the transfer function of the LTI CTS. Note that HðsÞ can
be found by inspection of (12.17). IfM < N , then HðsÞ is called a strictly proper function.
If M ¼ NðM > NÞ, then HðsÞ is called a proper (improper) function.

Recall from Example 9.8 that the roots of QðsÞ, pk ; k ¼ 1; . . . ; N , and of PðsÞ,
zk ; k ¼ 1; . . . ; M , are called the poles and zeros, respectively, of HðsÞ. Notice too that QðsÞ
is the characteristic polynomial, which means that the poles of the transfer function are the
natural frequencies of the LTI CTS. The relationship between BIBO stability and the poles
of the transfer function can be depicted with a pole-zero plot in a complex plane, called the
s-plane. The built-in function pzplot produces a pole-zero plot given an object of a state
variable description of an LTI CTS. A syntax option is given by

pzplot(LTI_sys)

Example 12.19

Prog. 12.19 uses the function pzplot to plot in the s-plane the poles and zeros of the LTI CTS
given in the program. The plot is shown in Fig. 12.36.

% pole-zero plot of an LTI CTS

clc; clear all;

% specify transfer function numerator and denominator coefficients

b = [1.0000 0.3000 1.0281 0.0508];

a = [1.0 0.4 74.1 14.8 1225.7];

[A,B,C,D] = tf2ss(b,a) % convert to state variable description

LTI_sys = ss(A,B,C,D); % create object of LTI CTS

pzplot(LTI_sys); axis([-0.3 0.1 -10 10]); % plot poles and zeros

Program 12.19 Program to obtain a pole-zero plot.
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The pole-zero plot shows that all of the poles are located in the left-half (LH) of the
s-plane, which means that the poles have negative real parts, and therefore the LTI CTS is
BIBO stable.

Suppose the input to output relationship of a CTS is simply

_yðtÞ ¼ rðtÞ; ! yðtÞ ¼
ð

rðtÞ dt

If rðtÞ ¼ R est, then

yðtÞ ¼ 1
s
R est; ! Y ¼ 1

s
R

and the transfer function of an integrator is HðsÞ ¼ 1=s. If the input to output relationship is
yðtÞ ¼ _rðtÞ, then yðtÞ ¼ sRest, and the transfer function of a differentiator is HðsÞ ¼ s.

In Section 6.7 the concept of the frequency response of a LTI circuit was introduced.
Here, this concept will be extended to LTI systems described by (12.17). Let us write s as
s ¼ sþ j w. Depending on the values of s ¼ ReðsÞ and w ¼ ImðsÞ, rðtÞ ¼ est can be anyone
of several different kinds of signals. Suppose the input rðtÞ is given by

rðtÞ ¼ A cos ðw t þ qÞ ¼ A
2
e jqe jwt þ A

2
e�jqe�jwt ¼ 1

2
R e jwt þ 1

2
R �e �jwt ð12:64Þ
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Figure 12.36 Pole-zero plot.

538 Signals and Systems



where R ¼ A e jq is the phasor of rðtÞ. With s ¼ jw, the response to R e jwt ðR �e�jwtÞ is
Y e jwt ðY �e�jwtÞ, and with (12.63) we get Y ¼ HðjwÞR, the phasor of yðtÞ. Since (12.17)
describes a linear system, the steady-state response yðtÞ to rðtÞ, given in (12.64), is

yðtÞ ¼ 1
2
Hðj wÞ R e jwt þ 1

2
ðHðj wÞ RÞ �e�jwt ð12:65Þ

Here, the transfer function HðjwÞ is a complex function of the real variable w, the frequency
of the input. Writing HðjwÞ in polar form changes (12.65) into

yðtÞ ¼ 1
2
kHðj wÞke jffHðjwÞ A e jq e jwt þ 1

2
kHðj wÞke�jffHðjwÞ A e�jq e�jwt

¼ AkHðj wÞk e jðwtþqþffHðjwÞÞ þ e�jðwtþqþffHðjwÞÞ

2

� �

¼ AkHðj wÞkcos ðw t þ qþ ff HðjwÞÞ ð12:66Þ

which shows how the output amplitude and phase depend on the transfer function HðjwÞ, a
function of the frequency of the input.

For example, suppose the input of an integrator is rðtÞ given by (12.64), where
R ¼ A e jq and s ¼ j w. The integrator transfer function gives Hðs ¼ jwÞ ¼ 1=jw, and the
phasor of the output of the integrator is Y ¼ HðjwÞR ¼ Ae jq=jw ¼ ðA=wÞe jðq � p=2Þ.
Therefore, according to (12.66), yðtÞ is given by yðtÞ ¼ ðA=wÞ cos ðw t þ q� p=2Þ.

For a frequency response of an LTI CTS, the transfer function HðsÞ is evaluated for
values of s along the jw-axis ðs ¼ 0Þ in the s-plane. See Fig. 9.5 in Example 9.4 for an
example of plotting the frequency response of an LTI CTS. Also, Fig. 9.18 in Example 9.8
shows that a frequency response plot is a line over the jw-axis on the surface of HðsÞ plotted

Table 12.5 Functions concerned with the frequency response of an LTI CTS

Function Brief description

bode Plots magnitude and phase of HðjwÞ versus w
bodemag(LTI_sys) Plots the magnitude of HðjwÞ versus w
bodeplot(LTI_sys) Same as bode, but allows for more plot customizing
H ¼ freqresp(LTI_sys,w,
units)

Returns the frequency response using the specified units, where the string units can
be any of the following:‘rad/sec’,‘cycles/sec’,‘Hz’,‘kHz’,‘MHz’,‘GHz’, or‘rpm’

ltiview(LTI_sys) Graphical user interface (GUI) to obtain a variety of plots, including frequency
response and impulse response; use doc ltiview for details

nichols(LTI_sys) Plots magnitude versus phase of HðjwÞ, where w is a parameter along the curve
nyquist(LTI_sys) Plots imaginary part versus real part of HðjwÞ, where w is a parameter along the

curve
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over the s-plane. Plots of kHðjwÞk and ffHðjwÞ versus w, which together are called a Bode
plot, show the frequency selective behavior of an LTI CTS.

MATLAB provides several built-in functions, listed in Table 12.5, that are concerned
with the frequency response of an LTI CTS. These frequency response plotting functions
have the same syntax options as the function bode. To obtain a Bode plot, use one of the
following syntax options.

bode(LTI_sys)

where LTI_sys is the object returned by the function ss. The frequency range and number of
plotted points are chosen automatically.

bode(LTI_sys,{wmin,wmax})

where wmin and wmax specify the plot frequency range in rad/sec.

bode(LTI_sys,w)

where w is a vector of frequencies to be used in the plots.
You can specify line color, line style, and marker type with, for example

bode(LTI_sys1, ’r’,LTI_sys2,’y--’,LTI_sys3,’gx’,w)

To obtain vectors of magnitude and phase and no plots, the syntax options are

[mag,phase] = bode(LTI_sys,w)

[mag,phase,w] = bode(LTI_sys)

The second syntax option also returns a vector of frequencies. Use doc bode for more
details.

Example 12.20

% Obtain frequency response plots of system used in Example 12.16

clear all; clc

load(’state_space_model.mat’,’LTI_sys’) % get model

bode(LTI_sys); grid on; % Bode plot

figure;

nyquist(LTI_sys); grid on; % Nyquist plot

Program 12.20 Demonstration of using the functions bode and nyquist.
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Fig. 12.37 shows that in a Bode plot, a log frequency scale is used, and the magnitude is
given in decibels.

Fig. 12.38 shows that in a Nyquist plot, the frequency is a parameter along the curve.
Here, the plot starts at w ¼ 0, where the real part of HðjwÞ is one, and the imaginary part is
zero. The downward arrow goes in the direction of an increasing frequency until w ! þ1
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Figure 12.37 Bode plot of the frequency response.
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at the origin. As the curve leaves the origin, w ¼ �1, and increases until w ¼ 0 again.
Execute Prog. 9.8 in Example 9.7 to see a 3-D animation of a Nyquist plot.

12.4 Discrete Time Systems

A discrete time system (DTS) is an algorithm that operates on a number sequence rðnÞ, the
input, and produces a number sequence yðnÞ, the output. In many practical applications, the
number sequence rðnÞ comes from a data acquisition system, as shown in Fig. 12.2, where
the input is a continuous time signal rðtÞ. Recall that n is the discrete time index, and rðnÞ
and yðnÞ are only defined at the sample time points given by t ¼ nT , where fs ¼ 1=T Hz is
the sampling rate.

A DTS is modeled by a difference equation, for example

yðnÞ þ a1yðn� 1Þ þ � � � þ aN�1yðn� ðN � 1ÞÞ þ aNyðn� NÞ
¼ b0 rðnÞ þ b1 rðn� 1Þ þ � � � þ bM�1 rðn� ðM � 1ÞÞ þ bM rðn�MÞ ð12:67Þ

where the ak ; k ¼ 1; . . . ; N and bk ; k ¼ 0; 1; . . . ; M are constants, yðnÞ is the present
output, yðn� kÞ; k ¼ 1; 2; . . . ; N are past outputs, rðnÞ is the present input and
rðn� kÞ; k ¼ 1; 2; . . . ; M are past inputs. Equation (12.67) is an N th order difference
equation. To operate (run) this DTS, reorganize (12.67) to express the present output in
terms of past outputs and present and past inputs, and we get

yðnÞ ¼
X

M

k¼0
b k rðn� kÞ �

X

N

k¼1
a k yðn� kÞ ð12:68Þ

While an input can be applied at any time, it is conventional to apply inputs starting at a
reference time given by n ¼ 0. Unless stated otherwise, assume that rðn < 0Þ ¼ 0. Given an
input rðnÞ, then all of the terms in the right side of (12.67) can be combined into one
function of time gðnÞ, called the forcing function. If gðnÞ ¼ 0, then (12.67) is called a
homogeneous difference equation.

At n ¼ 0 the present input is rð0Þ, and to find the present output yð0Þ with (12.68)
requires the initial conditions given by

yð�1Þ ¼ S1; yð�2Þ ¼ S2; . . . ; yð�NÞ ¼ S N ð12:69Þ
for some given constants Sk ; k ¼ 1; 2; . . . ; N . Given the ICs and the present input rð0Þ, the
present output yð0Þ can be computed with (12.68). Then, when n ¼ 1 and the present input is
rð1Þ, the present output yð1Þ can be computed. This can be continued for as long as we want
to operate the DTS. The DTS described by (12.67) is a causal system, because a present
output does not depend on future inputs. To operate a DTS in real-time (also called online),
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it must be possible, given an input rðnÞ, to compute an output yðnÞ in an amount of time less
than T sec. This requires that the DTS is a causal system.

If in (12.68) the right side includes terms such as b�1 rðnþ 1Þ; b�2 rðnþ 2Þ; . . . ; then
to compute a present output yðnÞ, knowledge of future inputs is required, and the DTS
cannot be operated in real time. Such a system is said to be acausal. However, when the
entire history of an input is known (prerecorded), then at any time within this history, future
values of the input are known, and an acausal system can be operated. Both a causal and an
acausal system can be operated this way, which is referred to as offline processing. If the
coefficients ak and bk and the ICs are real numbers, then a real input number sequence rðnÞ
causes a real output number sequence yðnÞ.

Suppose all ICs given in (12.69) are zero. Let yðnÞ ¼ y1ðnÞ denote the response when
the input is rðnÞ ¼ r1ðnÞ, and similarly for y2ðnÞ and r2ðnÞ. Then the DTS is a linear system
if when the input is rðnÞ ¼ c1 r1ðnÞ þ c2 r2ðnÞ, then the response is given by
yðnÞ ¼ c1 y1ðnÞ þ c2 y2ðnÞ for any constants c1 and c2. A DTS is a time invariant system if
when yðnÞ ¼ y1ðnÞ is the response to rðnÞ ¼ r1ðnÞ, then yðnÞ ¼ y2ðnÞ ¼ y1ðn� kÞ is the
response to rðnÞ ¼ r2ðnÞ ¼ r1ðn� kÞ, for any time shift k. The DTS described by (12.67) is
a linear and time invariant (LTI) DTS.

We have already studied several discrete time systems. For example, Euler’s method
and the trapezoidal rule for numerical integration, which are described by (4.17) and (4.19),
respectively, are LTI discrete time systems. The median filter presented in Section 4.4.2 and
applied in Example 4.12 is a nonlinear discrete time system.

12.5 Response of LTI Discrete Time Systems

The complete response of the LTI DTS described by (12.67) can be written as

yðnÞ ¼ yziðnÞ þ yzsðnÞ
where yziðnÞ is the response to ICs, called the zero-input response, and yzsðnÞ is the
response to the input rðnÞ under zero ICs, called the zero-state response.

A special yzsðnÞ is the response when the input rðnÞ is the unit pulse function dðnÞ,
where dðn < 0Þ ¼ 0, dð0Þ ¼ 1, and dðn > 0Þ ¼ 0. The unit pulse function is the Kronecker
delta function defined by

dðn� kÞ ¼ 1; n� k ¼ 0
0; n� k 6¼ 0

�

where k is an arbitrary time point. The response yzsðnÞ to rðnÞ ¼ dðnÞ is called the impulse
response, and it is denoted by hðnÞ. The impulse response hðnÞ is the response of (12.67)
under zero ICs when rðnÞ ¼ dðnÞ. Soon you will see how the response to any input rðnÞ can
be found with hðnÞ.
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The built-in function filter finds the offline response yðnÞ to any input rðnÞ given the
difference equation coefficients. For zero ICs, a syntax option is given by

y = filter(b,a,r)

where r is a vector that holds all input samples, b = [b0 b1 . . . bM ], a = [1 a1 a2 . . . aN ] and
the vector y holds the output samples.

To obtain a complete response by running the DTS, let

b ¼
b 0
b 1

..

.

b M

2

6

6

6

4

3

7

7

7

5

; R ¼
rðnÞ

rðn� 1Þ
..
.

rðn�MÞ

2

6

6

6

4

3

7

7

7

5

; a ¼
a 1
a 2

..

.

a N

2

6

6

6

4

3

7

7

7

5

; Y ¼
yðn� 1Þ
yðn� 2Þ

..

.

yðn� NÞ

2

6

6

6

4

3

7

7

7

5

Then, execute the following steps.

1) R = zeros(M+1,1); n = 0; Y = initial conditions;
2) get r; R(1) = r; % input r(nT)
3) y = b’ R - a’ Y; % output y(nT)
4) R = [0; R(1:M)]; Y = [y; Y(1:N-1)]; % shift down and

prepare for next input sample
5) n = n+1; loop to step (2);

Discrete time systems are separated into two very different categories. Suppose that in
(12.67) the ak ¼ 0; k ¼ 1; 2; . . . ;N , which means that the present output does not depend
on past outputs. Then, (12.68) becomes

yðnÞ ¼
X

M

k¼0
bk rðn� kÞ ð12:70Þ

and the present output depends only on present and past inputs. If the input has a finite time
duration, then the response will have a finite time duration. For example, if rðnÞ ¼ dðnÞ,
which is nonzero only for one sample time, then the response is given by

yðnÞ ¼
X

M

k¼0
bk dðn� kÞ ð12:71Þ

and yðnÞ is nonzero over a finite time range (has a finite time duration). An LTI DTS
described by (12.70) is called a finite impulse response (FIR) DTS, because its unit pulse
response, given by (12.71), has a finite time duration. For an FIR DTS, (12.71) gives the
impulse response hðnÞ ¼ yðnÞ.
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Example 12.21

By running the DTS, obtain the response of the FIR DTS described by

yðnÞ¼ 1
21

�2 rðnÞþ3 rðn�1Þþ6 rðn�2Þþ7 rðn�3Þþ6 rðn�4Þþ3 rðn�5Þ�2 rðn�6Þ½ 	

Let the input rðnÞ be the result of sampling rðtÞ ¼ sin ð2 pf1tÞ þ sin ð2 pf2tÞ at the rate
fs ¼ 8000 Hz. To avoid aliasing error, for the given fs, rðtÞ can have sinusoidal components
with frequencies restricted to the range 0 � f < 4000 Hz. Let f1 ¼ 200 Hz and
f2 ¼ 2400 Hz.

To operate the DTS, let

R 0 ¼ ½rðnÞ rðn� 1Þ rðn� 2Þ rðn� 3Þ rðn� 4Þ rðn� 5Þ rðn� 6Þ	
b 0 ¼ ½�2 3 6 7 6 3� 2	=21

Then, when n ¼ 0, R 0 ¼ ½rð0Þ 0 0 0 0 0 0	, and yð0Þ ¼ b 0 R. When n ¼ 1,
R 0 ¼ ½rð1Þ rð0Þ 0 0 0 0 0	, and yð1Þ ¼ b 0 R, and so on. Prog. 12.21 samples and plots the
input, shown in Fig. 12.39, runs the DTS for 2=f1 sec, and plots the output, also shown in
Fig. 12.39.

% Example of running an FIR digital filter

clear all; clc

fs = 8000; % specify sampling frequency

T = 1.0/fs; % sampling time increment

f1 = 200.0; w1 = 2*pi*f1; f2 = 2400; w2 = 2*pi*f2; % specify frequencies

N_samples = floor((2/f1)/T); % number of input samples to be processed

b = [-2; 3; 6; 7; 6; 3; -2]/21.0; % FIR filter coefficients

M = length(b)-1; % number of past inputs

R = zeros(M+1,1); % initialize vector of inputs

% for loop to go from one time point to the next time point

for n = 1:N_samples

t = (n-1)*T; time(n) = t; % storing t in the vector time

r(n) = cos(w1*t)+cos(w2*t); % get present input sample

R(1) = r(n); % store present input as element R(1)

y(n) = b’*R; % inner product of b and R

R = [0; R(1:M)]; % shift down input samples

end

subplot(2,1,1); plot(time,r,’-o’,’MarkerSize’,4); grid on; % plot input

title(’FIR filter input’); ylabel(’input’);
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subplot(2,1,2); plot(time,y,’-o’,’MarkerSize’,4); grid on; % plot output

title(’FIR filter output’); ylabel(’output’); xlabel(’time - seconds’);

save(’filter_input.mat’,’fs’,’r’); % used in another example

Program 12.21 Program to run an FIR discrete time system.

From the input and output plots, we see that the high-frequency component in the input
has been reduced in the output. This FIR DTS is a digital low-pass filter.

If at least one ak in (12.68) is not zero, then the present output will depend on past
outputs, which means that there is feedback in the system. In this case, the response to any
input can never become and remain zero indefinitely. The response to rðnÞ ¼ dðnÞ will have
an infinite time duration, in which case the DTS is called an infinite impulse response
(IIR) DTS.

Example 12.22

Some IIR DTS is described by

yðnÞ � 2:8135 yðn� 1Þ þ 2:6728 yðn� 2Þ � 0:8574yðn� 3Þ

¼ rðnÞ þ 2:8135 rðn� 1Þ þ 2:6728 rðn� 2Þ þ 0:8574rðn� 3Þ
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Figure 12.39 FIR DTS input and output.

546 Signals and Systems



By running the DTS, obtain its impulse response hðnÞ and its response to the input used in
Example 12.21. To operate the DTS, let

R 0 ¼ ½rðnÞ rðn� 1Þ rðn� 2Þ rðn� 3Þ	; b 0 ¼ ½1 2:8135 2:6728 0:8574	
Y 0 ¼ ½yðn� 1Þ yðn� 2Þ yðn� 3Þ	; a 0 ¼ ½�2:8135 2:6728� 0:8574	

Then, when n ¼ 0, Y holds the ICs, R0 ¼ ½rð0Þ 0 0 0	 and yð0Þ ¼ b0R� a0Y .
Prog. 12.22 uses the input that was used in Example 12.21, and the output is shown in

Fig. 12.40. Then, the impulse response is obtained, which is also shown in Fig. 12.40.

% Example of running an IIR digital filter

clear all; clc

load(’filter_input.mat’,’fs’,’r’); % input used in another example

N_samples = length(r); T = 1/fs;

% specify IIR filter

b = [1; 2.8135; 2.6728; 0.8574]; a = [-2.8135; 2.6728; -0.8574];

R = [1; 0; 0; 0]; Y = [0; 0; 0]; % initialize for impulse response

M = length(b)-1; N = length(a);

% run DTS to get the impulse response

for n = 1:N_samples;

h(n) = b’*R - a’*Y; % present output

R = [0; R(1:M)]; % shift elements of R

Y = [h(n); Y(1:N-1)]; % shift elements of Y and store present output

end

R = [0; 0; 0; 0]; Y = [0; 0; 0]; % using zero initial conditions

% run DTS to get response to sinusoidal input

for n = 1:N_samples;

time(n) = (n-1)*T;

R(1) = r(n); % store present input as element R(1)

y(n) = b’*R - a’*Y;

R = [0; R(1:M)]; % shift elements of R

Y = [y(n); Y(1:N-1)]; % shift elements of Y and store present output

end

subplot(2,1,1); plot(time,h,’-o’,’MarkerSize’,4); grid on; % plot input

title(’IIR Filter Impulse Response’); ylabel(’output’);

subplot(2,1,2); plot(time,y,’-o’,’MarkerSize’,4); grid on; % plot output

title(’IIR Filter Response to Sinusoidal Input’);

ylabel(’output’); xlabel(’time - seconds’);

Program 12.22 Program to run an IIR discrete time system.

While the impulse response becomes very small, it never becomes and then remains
exactly zero. Here, the impulse response starts to become negligible around t ¼ 0:01 sec.
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By the time t ¼ 0:01 sec, the sinusoidal response has almost completed its transient beha-
vior. A comparison of the sinusoidal outputs of Figs. 12.39 and 12.40 shows that the IIR
DTS does a much better job of removing the high-frequency component of the input than the
FIR DTS. Nevertheless, each kind of DTS can be designed to have a near ideal low-pass
filter frequency response.

In addition to the impulse response, it is also useful to assess the transient behavior of
an LTI DTS based on its unit step response. The discrete time unit step function is defined
by

uðn� kÞ ¼ 1; n� k � 0
0; n� k < 0

�

where k is an arbitrary time point. Notice that the unit step function is one when the argu-
ment is nonnegative. The unit step function is commonly used to start (or stop) a given
signal. For example, a sinusoidal pulse can be expressed as sin np=4ð ÞðuðnÞ � uðn� 8ÞÞ,
which is one cycle of the sinusoid.
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Figure 12.40 Impulse and sinusoidal response of an IIR low-pass filter.
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The exponential function zn, where z is some real or complex number, also plays an
important role in the study of LTI discrete time systems. For example, if we sample
rðtÞ ¼ Aestcosðwt þ qÞ we get

rðnTÞ ¼ Ae snT e
jðwnTþqÞ þ e�jðwnTþqÞ

2
¼ A
2
e jqðeðsþjwÞT Þn þ A

2
e�jqðeðs�jwÞT Þn

¼ K
2
ðzÞn þ K�

2
ðz�Þn; K ¼ A e jq; z ¼ e ðsþjwÞT ¼ esTe jwT

ð12:72Þ

With (12.72) and the value of the complex number z we can represent a variety of discrete
time signals that occur in the study of LTI discrete time systems.

12.5.1 Zero-Input Response
The zero-input response is caused by ICs, and it is the solution of the homogeneous
equation given by

yziðnÞ þ a1yziðn� 1Þ þ � � � þ aN�1yziðn� ðN � 1ÞÞ þ aNyziðn� NÞ ¼ 0 ð12:73Þ

The solution yziðnÞ must be a function such that it and a linear combination of delayed yziðnÞ
can be zero for all n. Let us try yziðnÞ ¼ K g n, and we get

K gn þ a1K gn�1 þ � � � þ aN�1K gn � ðN�1Þ þ aNK gn � N ¼ 0

Since K and gn cannot be zero, we can divide by K and gn to get

Qðg�1Þ ¼ 1þ a1g�1 þ a2g�2 þ � � � þ aN�1g�ðN�1Þ þ aNg�N ¼
Y

N

k¼1
ð1� gk g

�1Þ ¼ 0

ð12:74Þ

which is called the characteristic equation of the LTI DTS, and Qðg�1Þ is called the
characteristic polynomial. Notice that the characteristic polynomial can be found by
inspection of (12.67). The characteristic equation has N roots, gk ; k ¼ 1; 2; . . . ; N , which
can be real or complex. Assume the roots are distinct.

For each distinct root gk there is a solution of (12.73) given by Kkg nk , where we must
still find Kk . Since (12.73) is a linear equation, then

yziðnÞ ¼
X

N

k¼1
Kkgnk ð12:75Þ
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is also a solution of (12.73). The application of the N ICs gives

yð�1Þ ! g�11 K1 þ g�12 K2 þ � � � þ g�1N KN ¼ S1
yð�2Þ ! g�21 K1 þ g�22 K2 þ � � � þ g�2N KN ¼ S2

..

.

yð�NÞ ! g�N1 K1 þ g�N2 K2 þ � � � þ g�NN KN ¼ SN

which are N equations in the N unknowns Kk ; k ¼ 1; 2; . . . ; N that can be written as
L K ¼ S, where

L ¼
g�11 g�12 � � � g�1N
g�21 g�22 � � � g�2N
..
. ..

. ..
. ..

.

g�N1 g�N2 � � � g�NN

2

6

6

6

4

3

7

7

7

5

; K ¼
K1
K2

..

.

KN

2

6

6

6

4

3

7

7

7

5

; S ¼
S1
S2
..
.

SN

2

6

6

6

4

3

7

7

7

5

and K ¼ L�1 S.
The time domain behavior of the response to ICs depends on the gk ; k ¼ 1; 2; . . . ; N ,

and each function gnk is called a characteristic mode of the LTI DTS. If a root gk occurs
with multiplicity m, then m of the characteristic modes are given by nignk ; i ¼ 0; . . . ; m� 1.
For all possible kinds of distinct values of g, Table 12.6 gives the kind of characteristic
mode that contributes to yziðnÞ.

For example, suppose two values of g are g ¼ kgke�jffg, and, since yziðnÞ is a real discrete
time function, the contribution to yziðnÞ is
K gn þ K �ðg�Þn ¼ kKke jffKkgkne j nffg þ kKke�jffKkgkne�j nffg

¼ kKk kgknðe jðnffgþffKÞ þ e �jðnffgþffKÞ Þ ¼ 2kKk kgkncosðffgn þ ffKÞ

Table 12.6 shows that limn ! 1 yziðnÞ ¼ 0, if and only if all of the roots of the characteristic
equation have magnitudes less than one. The angle ffg is called the angular frequency. The
frequency of oscillation w is found with wT ¼ ffg.

Table 12.6 Characteristic modes

Distinct root of (12.74) Contributions to the response

g ¼ 1 K, a constant
g ¼ a real number Kgn, increasing, gj j > 1, or decreasing, gj j < 1 exponential

function
g ¼ complex conjugate pair 2kKkkgkncosðffg nþ ffKÞ, exponentially increasing, kgk > 1, or

decreasing, kgk < 1, sinusoidal function
g ¼ complex conjugate pair,
kgk ¼ 1

2kKkcos ðffg nþ ffKÞ, sinusoidal function
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12.5.2 Zero-State Response
To find the zero-state response yzsðnÞ of (12.67), let us first consider a simpler problem
given by

wðnÞ þ a1 wðn� 1Þ þ � � � þ aNwðn� NÞ ¼ r ðnÞ ð12:76Þ

where the ICs are zero. Assume that for a given rðnÞ, we can solve (12.76) for wðnÞ. If
gðnÞ ¼ b0rðnÞ, the response is b0wðnÞ. Time shifting each term in (12.76) gives

wðn� 1Þ þ a1wðn� 2Þ þ � � � þ aNwðn� N � 1Þ ¼ rðn� 1Þ ð12:77Þ

Therefore, if gðnÞ ¼ b1rðn� 1Þ, the response is b1wðn� 1Þ. Since (12.67) is a linear
equation, then if the forcing function is

gðnÞ ¼ b0rðnÞ þ b1rðn� 1Þ þ � � � þ bM�1rðn� ðM � 1ÞÞ þ bMrðn�MÞ

which is the right side of (12.67), the zero-state solution of (12.67) is

yzsðnÞ ¼ b0wðnÞ þ � � � þ bM�1wðn� ðM � 1ÞÞ þ bMwðn�MÞ; n � 0 ð12:78Þ

Thus, if we can find wðnÞ, then with (12.78) we can find yzsðnÞ. Soon, this method will be
applied to obtain yzsðnÞ for a particular rðnÞ.

12.5.3 State Variables
Any IIR N th order difference equation can be converted into a system of N first-order
difference equations, and an LTI DTS can be described by

yðnÞ ¼ CxðnÞ þ DrðnÞ ð12:79Þ
xðnþ 1Þ ¼ AxðnÞ þ BrðnÞ ð12:80Þ

where xðnÞ ¼ ½x1ðnÞ x2ðnÞ . . . xN ðnÞ	0 is an N 
1 column vector, called the state vector,
xðnþ 1Þmeans xðnþ 1Þ ¼ ½x 1ðnþ 1Þ x 2ðnþ 1Þ . . . xN ðnþ 1Þ	0, and the dimensions of the
constant matrices A; B; C, and D are N 
N ; N 
 1; 1
 N , and 1
1, respectively. Equa-
tion (12.80) is called the state equation, and (12.79) is called the output equation. Together,
(12.80) and (12.79) are called a state variable description of an LTI DTS.

To solve (12.80) for xðnÞ and obtain yðnÞ with (12.79) requires the initial state xð0Þ,
which we can find given the ICs of (12.69). Using (12.79) gives

yðnÞ ¼ CxðnÞ þDrðnÞ; ! yð�1Þ ¼ S1 ¼ Cxð�1Þ þDrð�1Þ; ! Cxð�1Þ ¼ S1

where rðn < 0Þ ¼ 0 was used. Using (12.79) again gives

yð�2Þ ¼ Cxð�2Þ þ Drð�2Þ ¼ CA�1xð�1Þ; ! CA�1xð�1Þ ¼ S2
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Continue with delays of yðnÞ until we get

CA�ðN�1Þxð�1Þ ¼ SN

Using matrix notation gives

C
C A�1

..

.

C A�ðN�1Þ

2

6

6

4

3

7

7

5

xð�1Þ ¼ S; S ¼
S1
S2
..
.

SN

2

6

6

6

4

3

7

7

7

5

! O xð�1Þ ¼ S

where O, which is called the observability matrix, is an N 
 N matrix. Use the built-in
function obsv to get O with

O = obsv(inv(A),C)

If O is nonsingular, then xð0Þ ¼ Axð�1Þ ¼ AO�1S. With S ¼ 0 or xð0Þ ¼ 0 (a vector of
zeros), we get yzsðnÞ with (12.79).

The matrices A; B; C, and D must be found such that the state variable description
gives the same input rðnÞ to output yðnÞ relationship as (12.67). There are an infinite number
of possibilities. A commonly used conversion method starts with (12.76) by defining

xN ðnÞ¼wðn�NÞ; ! xN ðnþ1Þ ¼ xN�1ðnÞ
xN�1ðnÞ¼wðn�ðN�1ÞÞ; ! xN�1ðnþ1Þ¼ xN�2ðnÞ
xN�2ðnÞ¼wðn�ðN�2ÞÞ; ! xN�2ðnþ1Þ¼ xN�3ðnÞ
..
.

x2ðnÞ¼wðn�2Þ; ! x2ðnþ1Þ ¼ x1ðnÞ
x1ðnÞ¼wðn�1Þ; ! x1ðnþ1Þ ¼wðnÞ¼ rðnÞ�ða1wðn�1Þþ ��� þaN wðn�NÞÞ

¼ rðnÞ�ða1 x1ðnÞþ ��� þaN xN ðnÞÞ
ð12:81Þ

Using matrix notation, the equations of (12.81) become

xðnþ 1Þ ¼

�a1 �a2 � � � � � � �aN�1 �aN
1 0 � � � 0 0 0
0 1 0 0 0 0
..
.

0 . .
. . .

. ..
. ..

.

0 ..
.

0 1 0 0
0 0 � � � 0 1 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

xðnÞ þ

1
0
0
..
.

0
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

rðnÞ ð12:82Þ
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which defines the matrices A and B in (12.80). Using (12.76) in (12.78) gives

yzsðnÞ ¼ b0ðrðnÞ� ða1wðn� 1Þþ � � � þ aNwðn�NÞÞÞ
þ b1wðn� 1Þþ � � � þ bM�1wðn�ðM � 1ÞÞþ bMwðn�MÞ

¼ b0rðnÞþ ðb1� b0a1Þx1ðnÞþ � � � þ ðbM � b0aMÞxMðnÞ
� b0aMþ1xMþ1ðnÞ� � � � � b0aNxN ðnÞ

¼ ½ðb1� b0a1Þ � � � ðbM � b0aMÞ �b0aMþ1 � � �
� b0aN 	xðnÞþ ½b0	rðnÞ; M <N ð12:83Þ

which defines the matrices C and D in (12.79). If we set xð0Þ ¼ AO�1S, then (12.83) and
(12.82) give yðnÞ, the complete solution of (12.67). For an LTI DTS, the matrices A; B; C,
and D can be found with

[A, B, C, D] = dtf2ss(b,a)

where b ¼ ½b0 b1 . . . bM 	 and a ¼ ½1 a1 a2 . . . aN 	.

Example 12.23

Convert the DTS description given in Example 12.22 into a state variable description. Let
the ICs be yð�1Þ ¼ 500, yð�2Þ ¼ 0, and yð�3Þ ¼ 0. Then, with each description obtain the
complete response to a unit step function input. Prog. 12.23 operates the two descriptions of
the DTS, and plots the unit step responses shown in Fig. 12.41. The state variable descrip-
tion is given after the program.

% Step response of a DTS

clear all; clc;

% specify IIR filter difference equation

b = [1; 2.8135; 2.6728; 0.8574]; a = [-2.8135; 2.6728; -0.8574];

M = length(b)-1; N = length(a);

R = zeros(M+1,1); y_init = [500; 0; 0]; % output initial conditions

R(1) = 1; Y = y_init; N_samples = 101; t = 0:N_samples-1; % time index

% run DTS to get response to a step input

for n = 1:N_samples;

y(n) = b’*R - a’*Y;

R = [1; R(1:M)]; % shift elements of R and get next input

Y = [y(n); Y(1:N-1)]; % shift elements of Y and store present output

end

subplot(2,1,1); plot(t,y); grid on

ylabel(’step response’);title(’Complete Response of Difference Equation’)

a = [1; a]’; b = b’; % convert to row vectors

[A B C D] = dtf2ss(b,a) % obtain state variable description

O = obsv(inv(A),C); % obtain observability matrix
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x_init = A*inv(O)*y_init; % get initial state

r = 1; x = x_init; % input is a unit step

for n = 1:N_samples

y(n) = C*x+D*r; % get output

x = A*x+B*r; % update state

end

subplot(2,1,2); plot(t,y); grid on

xlabel(’discrete time index’); ylabel(’step response’);

title(’Complete Response of State Variable Description’)

Program 12.23 Program to operate a DTS using two different descriptions.

A =

2.8135 -2.6728 0.8574

1.0000 0 0

0 1.0000 0

B =

1

0

0

C = 5.6270 0 1.7148

D = 1

x_init =

250.0000

100.2923
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Figure 12.41 Unit step response.
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Since the steady-state response is a constant, denote it by K, which must satisfy the differ-
ence equation in steady state. In steady state, the difference equation becomes

K � 2:8135 K þ 2:6728 K � 0:8574 K ¼ 1þ 2:8135þ 2:6728þ 0:8574

giving K ¼ 3865:1, which appears to be in agreement with the responses shown in
Fig. 12.41.

12.5.4 Impulse Response
A very useful function to know about an LTI DTS is its unit pulse response hðnÞ (also
called the impulse response). Recall that hðnÞ is the solution of (12.67) under zero ICs,
when rðnÞ ¼ dðnÞ. If the system is causal, then we must have hðn < 0Þ ¼ 0. To find a
function expression for hðnÞ, we first solve a simpler problem given by

wðnÞ þ a1wðn� 1Þ þ � � � þ aNwðn� NÞ ¼ dðnÞ ð12:84Þ
Since ICs are zero, setting n ¼ 0 in (12.84) gives wð0Þ ¼ 1. If we can determine the solution
wðnÞ of (12.84), then, since the DTS is LTI and in view of the right side of (12.67), hðnÞ is
given by

hðnÞ ¼ b0wðnÞ þ b1wðn� 1Þ þ � � � þ bMwðn�MÞ; n � 0 ð12:85Þ
For n > 0, (12.84) becomes

wðnÞ þ a1wðn� 1Þ þ � � � þ aNwðn� NÞ ¼ 0; n > 0 ð12:86Þ
which is a homogeneous equation. Therefore, we can instead solve (12.86) for wðnÞ with N
ICs given by wð0Þ ¼ 1; wð�1Þ ¼ 0; ::: ; wð�ðN � 1ÞÞ ¼ 0. We want to find a function that
can satisfy (12.86). Let us try wðnÞ ¼ Kgn, for some nonzero constants K and g. Substituting
this wðnÞ into (12.86) gives

Kgn þ a1Kgn�1 þ a2Kgn�2 þ � � � þ aNKgn�N ¼ 0

and after multiplying by K�1 and g�n we get

Qðg�1Þ ¼ 1þ a1g�1 þ a2g�2 þ � � � þ aN�1g�ðN�1Þ þ aNg�N ¼
Y

N

k¼1
ð1� gkg

�1Þ ¼ 0

ð12:87Þ
which is the characteristic equation of the DTS, and Qðg�1Þ is the characteristic poly-
nomial. Let us assume that the roots are distinct. Since each function gnk can satisfy (12.86),
the linear combination given by

wðnÞ ¼
X

N

k¼1
Kkgnk ð12:88Þ
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is also a solution of (12.86). To find the N constants Kk ; k ¼ 1; . . . ; N , set up N equations in
N unknowns by applying the ICs wð0Þ ¼ 1; wð�1Þ ¼ 0; . . . ; wð�ðN � 1ÞÞ ¼ 0. With wðnÞ
and (12.85) we can obtain the unit pulse response hðnÞ, which is a linear combination of the
characteristic modes of the DTS.

Note that limn!1 hðnÞ ¼ 0, if and only if all roots of the characteristic equation satisfy

kgkk < 1; k ¼ 1; 2; . . . ; N

As a special case, consider the second-order difference equation given by

yðnÞ þ a1yðn� 1Þ � yðn� 2Þ ¼ dðnÞ; yð�1Þ ¼ 0; yð�2Þ ¼ 0 ð12:89Þ

Here, yðnÞ ¼ hðnÞ, which can be found by running hðnÞ ¼ dðnÞ � a1hðn� 1Þ � hðn� 2Þ.
The characteristic ploynomial is given by

1þa1 g�1þ g�2¼ð1�g1 g
�1Þð1�g�1 g

�1Þ¼ 1�ðg1þg�1Þg�1þkg1k 2g�2; ! kg1k 2¼ 1

Therefore, a 1 ¼ �2 Re ðg1Þ ¼ �2 cos ðffg1Þ. The solution of (12.89) is given by
hðnÞ ¼ kKke jffKe j nffg1uðnÞ þ kKke�jffKe�j nffg1uðnÞ ¼ 2kKkcos ðnffg1 þ ffKÞ uðnÞ

where the unit step function was introduced to ensure that hðn < 0Þ ¼ 0. The constant K can
be found by applying the ICs hð0Þ ¼ 1 and hð�1Þ ¼ 0. The solution shows that running
(12.89) produces a sinusoidal signal with frequency determined by ffg1 ¼ wT . Equation
(12.89) is a digital oscillator that we can operate at any frequency in the range
0 < w < ws=2 by setting the value of a1. For example, assume fs ¼ 8K Hz, and we want to
generate a 1K Hz digital sinusoid. Then, ffg1 ¼ 2000 p=8000 ¼ p=4 rad, and a1 ¼ � ffiffiffi

2
p

.

12.5.5 Convolution
The unit pulse function can be used to position a given value of a signal at a particular
discrete time point. For example, rðnÞ ¼ �5 dðn� 2Þ positions the value �5 of rðnÞ to
occur at the time n ¼ 2, while for all other n, r has zero value. We can write any discrete
time signal rðnÞ as a linear combination of unit pulse functions given by

rðnÞ ¼
X

þ1

k¼�1
rðkÞ dðn� kÞ ð12:90Þ

The zero-state response of an LTI DTS to any input can be found by writing the input as
in (12.90). Since the DTS is LTI, the response to rðkÞ dðn� kÞ is rðkÞ hðn� kÞ, and
therefore, the response to rðnÞ is given by

yðnÞ ¼
X

þ1

k¼�1
hðn� kÞ rðkÞ ¼ hðnÞ � rðnÞ ¼

X

þ1

i¼�1
hðkÞ rðn� kÞ ð12:91Þ
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which is called the discrete linear convolution operation. Since the DTS is time invariant,
the response to rðn� n0Þ is yðn� n0Þ ¼ hðnÞ � rðn� n0Þ. If the DTS is causal, and
rðn < 0Þ ¼ 0, then (12.91) becomes

yðnÞ ¼
X

n

k¼0
hðn� kÞrðkÞ; n ¼ 0; 1; . . . ð12:92Þ

which can be found with the built-in function conv (see (12.60)).

12.5.6 Stability
A DTS is said to be BIBO stable if for a bounded input the output is bounded. If the input is
bounded, then for some real and positive number B, we have rðnÞj j � B for all n. For a
bounded output, (12.91) becomes

yðnÞj j ¼
X

þ1

k¼�1
hðkÞ rðn� kÞ

�

�

�

�

�

�

�

�

�

�

�
X

þ1

k¼�1
hðkÞ rðn� kÞj j

¼
X

þ1

k¼�1
hðkÞj j rðn� kÞj j � B

X

þ1

k¼�1
hðkÞj j < 1

A sufficient condition for BIBO stability of an LTI DTS is that the unit pulse response must
be absolutely summable.

Recall that the nature of the unit pulse response is determined by the roots of the char-
acteristic equation. If all roots satisfy the condition kgik < 1, then hðnÞ is absolutely sum-
mable. Moreover, we then have limn!1 hðnÞ ¼ 0. This means that if we apply a finite
duration input to a DTS, then eventually, the system output will approach zero. An important
distinction between FIR and IIR systems is that an FIR system is unconditionally stable, while
an IIR system can be stable or unstable, depending on the roots of the characteristic equation.

For example, to determine the stability of the DTS of Example 12.22, use the statements

Q = [1 -2.8135 2.6728 -0.8574]; % coefficients of characteristic polynomial

% check magnitudes of roots of characteristic polynomial

if isempty(find(abs(roots(Q)) >= 1))

disp(’LTI DTS is stable’)

else

disp(’LTI DTS is not stable’)

end

LTI DTS is stable

12.5.7 Steady-State Response
To assess the frequency selective behavior of a DTS, we investigate its response to an input
given by rðnÞ ¼ Acosðw n T þ fÞ. If the LTI DTS is stable, then, in steady state, the
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response will be a sinusoid. Of interest is the dependence of the response amplitude and
phase on the frequency w of the input (see Examples 12.21 and 12.22). It will be more
convenient to determine the steady-state response if we work with an input rðnÞ that comes
from sampling the signal given by (12.61) to get

rðnÞ ¼ R esnT ¼ R esT
	 
n ¼ R zn; z ¼ esT ¼ eðsþjwÞT ¼ esTe jwT ð12:93Þ

Like in (12.72), depending on the value of z (or s), (12.93) can be used to represent a variety
of signals.

Substituting rðnÞ into (12.67) gives
yðnÞ þ a1yðn� 1Þ þ � � � þ aN�1 yðn� ðN � 1ÞÞ þ aNyðn� NÞ

¼ ðb0 þ b1 z�1 þ � � � þ bM�1 z�ðM�1Þ þ bM z�MÞ R zn
ð12:94Þ

Since the right side of (12.94) is an exponential function, the left side must also be an
exponential function. Let us try yðnÞ ¼ Y zn, and (12.94) becomes

Y zn þ a1Y zn�1 þ � � � þ aN�1Y zn�ðN�1Þ þ aNY zn�N

¼ ð1þ a1 z�1 þ � � � þ aN�1 z�ðN�1Þ þ aN z�N ÞY zn

¼ ðb0 þ b1 z�1 þ � � � þ bM�1 z�ðM�1Þ þ bM z�MÞ R zn

and therefore

Y ¼ b0 þ b1 z�1 þ � � � þ bM�1 z�ðM�1Þ þ bM z�M

1þ a1 z�1 þ � � � þ aN�1 z�ðN�1Þ þ aN z�N
R ¼ Pðz�1Þ

Qðz�1Þ R

¼
b0

Q

M

k¼1
ð1� zk z�1Þ

Q

N

k¼1
ð1� pk z�1Þ

R ¼ Hðz�1Þ R ð12:95Þ

where Hðz�1Þ ¼ Pðz�1Þ=Qðz�1Þ is called the transfer function of the LTI DTS. The roots
of Qðz�1Þ and Pðz�1Þ are called the poles and zeros, respectively, of Hðz�1Þ. Note that
Hðz�1Þ can be found by inspection of (12.67).

Notice that Qðz�1Þ is the characteristic polynomial, which means that an LTI DTS is
BIBO stable if and only if the poles of the transfer function all have magnitudes less than
one. The relationship between BIBO stability and the poles of the transfer function can be
depicted with a pole-zero plot in a complex plane, called the z-plane. The built-in function
zplane produces a pole-zero plot given vectors b and a of the coefficients of Pðz�1Þ and
Qðz�1Þ, respectively. A syntax option is

zplane(b,a)
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Example 12.24

Prog. 12.24 specifies an LTI DTS to have 2 zeros and 6 poles. With the coefficients in the
vectors a and b, we can write the difference equation that relates the input rðnÞ to the output
yðnÞ. The function zplane produces the pole-zero plot shown in Fig. 12.42.

% Pole-zero description of an LTI IIR DTS

z(1) = 1; z(2) = -1; % specify zeros

p(1) = 0.9*exp(j*0.7*pi/2); p(2) = conj(p(1)); % specify poles

p(3) = 0.81*exp(j*0.9*pi/2); p(4) = conj(p(3));

p(5) = 0.9*exp(j*1.1*pi/2); p(6) = conj(p(5));

b = poly(z); % numerator polynomial of the transfer function

a = poly(p); % denominator polynomial of the transfer function

figure(’Color’,[1 1 1]) % make figure background white

zplane(b,a); grid on % get pole-zero plot in the z-plane

Program 12.24 Program to obtain a pole-zero plot given the transfer function.

The function zplane also draws a circle with a radius equal to one, called the unit circle,
in the z-plane, and then it places the poles (x mark) and zeros (o mark). In Fig. 12.42 we see
that all of the poles of the transfer function are inside the unit circle in the z-plane, and
therefore the LTI DTS is BIBO stable. The transfer function has 6 poles with magnitudes
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Figure 12.42 Pole-zero plot in the z-plane.
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less than one, 2 zeros on the unit circle, and 4 zeros located at the origin in the z-plane. This
stems from writing Hðz�1Þ as

Hðz�1Þ ¼
Q

2

k¼1
ð1� zkz�1Þ

Q

6

k¼1
ð1� pkz�1Þ

¼
z4

Q

2

k¼1
ðz� zkÞ

Q

6

k¼1
ðz� pkÞ

Suppose the input to output relationship of an LTI DTS is simply

yðnÞ ¼ rðn� 1Þ

This means that the present output yðnÞ is the signal rðnÞ at the previous sample time. For
example, yð0Þ ¼ rð�1Þ, yð1Þ ¼ rð0Þ, and so on. Such an activity is achieved with a device
called a delayor. If rðnÞ ¼ R zn, then yðnÞ ¼ Y zn ¼ R zn�1 ¼ z�1 R zn, and Y ¼ z�1R. The
transfer function of a delayor is Hðz�1Þ ¼ z�1. A computer memory register can be a
delayor, where at a time n the register content is the data that was placed in the register at the
previous sample time n� 1.

Examples 12.21 and 12.22 demonstrate that with three basic operations: addition,
multiplication, and delay, digital filters (discrete time systems) can be implemented with a
computer.

We know how to assess the frequency response of an LTI CTS. Here, this concept will
be developed for discrete time systems. Recall (12.72), which shows that with Euler’s
identity we can write

rðnÞ ¼ A cos ðw nT þ qÞ ¼ R
2
ðzÞn þ R �

2
ðz�Þn; R ¼ A e jq; z ¼ zðsþjwÞT s¼0 ¼ e jwT

�

�

ð12:96Þ

where R is the phasor of rðnÞ. As the frequency w of rðnÞ varies, z ¼ e jwT , of which the
magnitude is one, takes on values along the unit circle in the z-plane. With z ¼ e jwT , the
response to R zn ðR�z�nÞ is Y zn ðY �z�nÞ, and with (12.95) we get Y ¼ Hðe�jwTÞ R. Since
(12.67) describes a linear system, the steady-state response yðnÞ to rðnÞ, given in (12.96), is

yðnÞ ¼ 1
2
Hðe�jwTÞ R zn þ 1

2
ðHðe�jwT Þ RÞ� z�n ð12:97Þ

Here, the transfer function Hðe �jwT Þ is a complex function of the real variable w, the
frequency of the input. Writing Hðe�jwTÞ in polar form and applying Euler’s identity
changes (12.97) into
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yðnÞ ¼ 1
2
kHðe�jwTÞke jffHðe�jwT Þ A ejq e jwnT þ 1

2
kHðe�jwTÞke�jffHðe�jwT Þ A e�jq e�jwnT

¼ AkHðe�jwT Þkcos ðw nT þqþffHðe�jwT ÞÞ
ð12:98Þ

which shows how the output amplitude and phase depend on the transfer function Hðe�jwT Þ,
a complex function of the input frequency w.

The frequency w appears in the argument of z ¼ e jwT ¼ cosðwTÞ þ j sinðwTÞ. When
w ¼ 0, then z ¼ 1, and when w ¼ ws=2, wT ¼ wsT=2 ¼ ð2p=TÞðT=2Þ ¼ p , and z ¼ �1.
Therefore, as w varies from w ¼ 0 to w ¼ ws=2, z varies along the unit circle from z ¼ 1 to
z ¼ �1, with an angle given by ff z ¼ wT . As w is increased further from w ¼ ws=2 to ws, z
continues to follow the unit circle from z ¼ �1 back to z ¼ 1. Therefore, for w þ k ws, for
any integer k, we get the same value of z. This means that Hðe�jwT Þ is a periodic function
of w, with period ws. To avoid aliasing error when an analog signal rðtÞ is processed by
digital means, a digital filter, the signal rðtÞ is restricted to have a bandwidth (BW) less than
ws=2.

Example 12.25

Let us obtain a plot of the magnitude squared of Hðe�jwTÞ of the LTI DTS with the poles and
zeros given in Example 12.24. Prog. 12.25 uses 3-D plot functions to show how
the magnitude squared of Hðe�jwT Þ varies as z follows the unit circle. Fig. 12.43 shows
the plot.

% Program to plot the magnitude squared of a transfer function H(z^-1)

% for values of z along the unit circle in the z-plane

clear all; clc;

N_pts = 1000; k = [0:N_pts-1];

wT = k*2*pi/N_pts; % angles around unit circle

Z = exp(j*wT); Zm1 = 1./Z; % z^-1 on the unit circle

z(1) = 1; z(2) = -1; % specify zeros

num = (1-z(1)*Zm1).*(1-z(2)*Zm1); % frequency response numerator

p(1) = 0.9*exp(j*0.8*pi/2); p(2) = conj(p(1)); % specify poles

p(3) = 0.81*exp(j*pi/2); p(4) = conj(p(3));

p(5) = 0.9*exp(j*1.2*pi/2); p(6) = conj(p(5));

den = ones(1,N_pts); % initialize the denominator

for i = 1:6

den = den.*(1-p(i)*Zm1); % frequency response denominator

end

H = num./den; % frequency response

H_mag_2 = H.*conj(H); % magnitude squared

12.5 Response of LTI Discrete Time Systems 561



H_mag_2 = H_mag_2/max(H_mag_2); % normalize

x = real(Z); y = imag(Z); % rectangular coordinates of the unit circle

zero = zeros(1,N_pts); % values for drawing unit circle

figure(1)

plot3(x,y,zero,’LineWidth’,2.0); hold on; % plot unit circle

plot3(x,y,H_mag_2); grid on; % plot magnitude squared

xlabel(’real axis’); ylabel(’imaginary axis’); zlabel(’magnitude squared’)

Program 12.25 Program to obtain the frequency response of a digital filter.

Notice how the magnitude squared frequency response peaks in the vicinity of the poles
of Hðz�1Þ (see Fig. 12.42) and becomes zero for w ¼ 0 and w ¼ ws=2 due to the zeros of
Hðz�1Þ located on the unit circle at z ¼ 1 and z ¼ �1.

While a plot of Hðz�1Þ versus z as z varies along the unit circle reveals how Hðe�jwT Þ is
a periodic function of w, to assess the frequency selective behavior of an LTI DTS, it is
conventional to plot kHðe�jwT Þk2 versus wT for 0 � wT � 2 p, which is shown in
Fig. 12.44. The following MATLAB statements were appended to Prog. 12.25 to produce
this plot.

figure(2)

plot(wT,H_mag_2); grid on; title(’Frequency Response of an LTI DTS’)

set(gca,’XTick’,linspace(0,2*pi,5))

set(gca,’XTickLabel’,{’0’,’pi/2’,’pi’,’3pi/2’,’2pi’})

axis([0 2*pi 0 1.1])

xlabel(’\omegaT - radians’); ylabel(’magnitude squared’)
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Figure 12.43 Magnitude squared frequency response of a digital band-pass filter.
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The Signal Processing Toolbox contains many functions concerned with the time and
frequency domain analysis of discrete time systems. Some of these functions are given in
Table 12.7.

12.6 Ideal Digital Filters

We can design the coefficients of the digital filter described by (12.67) to achieve filter
performance that comes arbitrarily close to the frequency response of an ideal filter.
Fig. 12.45 shows the ideal performance of several standard digital filter types. The fre-
quency response for each filter is specified over the frequency range, �ws=2 � w � ws=2,
which is the frequency range of the filter input. Then, this frequency response is extended
periodically to integer multiples of ws.

Table 12.7 Built-in functions for the analysis of discrete time systems

Function Brief description

freqz Plots a frequency response given the transfer function
impz Finds the impulse response given the transfer function
stepz Finds the step response given the transfer function
dstep Finds the step response given a state variable description
dimpulse Finds the impulse response given a state variable description
dinitial Finds the response to ICs given a state variable description
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Figure 12.44 Magnitude squared frequency response of a digital band-pass filter.
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To justify an ideal linear phase characteristic, let us consider an input
xðtÞ ¼ A1cosðw1t þ f1Þ þ A2cosðw2t þ f2Þ of an analog filter, where w1 and w2 are within
the filter passband. To preserve the input wave shape, the output yðtÞ can only be a delayed
version of the input. Now we have

yðtÞ ¼ xðt � t0Þ ¼ A1cos ðw1ðt � t0Þ þ f1Þ þ A2cos ðw2ðt � t0Þ þ f2Þ
¼ A1cos ðw1t þ f1 � t0w1Þ þ A2cos ðw2t þ f2 � t0w2Þ

ωs

ωs

ωs/2–ωs/2 ω

LP

BP

HP

BS

Phase

Figure 12.45 Ideal frequency response of a low-pass (LP), band-pass (BP), high-pass
(HP), and band-stop (BS) digital filter.

Table 12.8 Built-in functions for digital filter design

Function Brief description

fir1 Design of a linear phase FIR filter using the window method
fir2 Design of a linear phase FIR filter that has an arbitrary shaped magnitude

frequency response using the frequency sampling method
firls Design of a linear phase FIR filter by minimizing the error squared
fircls Design of a linear phase FIR filter by constrained least squares
firpm Design of a Parks–McClellan optimal equiripple FIR filter
butter Design of Butterworth analog and IIR digital filters
cheby1 Chebyshev type I IIR digital and analog filter design
chevy2 Chebyshev type II IIR digital and analog filter design
ellip Design of elliptic or Cauer IIR digital and analog filters
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and to preserve the input wave shape, the input to output phase change must be proportional
to frequency.

The MATLAB Signal Processing Toolbox includes many functions for the design of
digital filters. Some of these are listed in Table 12.8. Use the doc help facility to learn how
to use these functions to design a digital filter.

12.7 Conclusion

In the previous chapters we focused mainly on the features of the MATLAB programming
language. MATLAB evolves continuously to incorporate new functions that implement
algorithms to solve fundamental problems and apply methods for contemporary system
design. In this chapter we investigated some of the fundamental mathematics of the many
fields in which MATLAB has been applied. You should now know

● about the DFT and some of its properties
● how to apply the function fft for spectral analysis of stationary and nonstationary signals
● the importance of the sampling theorem
● about the kinds of errors that occur in Fourier-based spectral analysis by digital means
● that window functions can be used to reduce certain errors incurred in spectral analysis
● how to use MATLAB to analyze LTI continuous time and discrete time systems to find

* the natural frequencies
* characteristic modes
* the response to ICs
* impulse and step responses
* the response to any input by convolution
* the transfer function
* pole-zero plots
* stability condition
* a state variable description
* steady-state response
* frequency response

● how to apply MATLAB ODE solvers
● how to operate a discrete time system both online and offline

Table 12.9 gives the additional built-in functions that were introduced in this chapter. Use
the MATLAB help facility to learn more about these built-in functions.

With MATLAB tools to solve for the dynamic behavior of models of devices and
systems, the next chapter introduces a GUI environment to conveniently build complex
models of systems and simulate them.
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Problems

Section 12.1
1) Manually, find the bandwidth, period, and complex Fourier series coefficients, and

sketch versus frequency in hertz a stem plot of the magnitude spectrum of

Table 12.9 Built-in functions introduced in this chapter

Function Brief description

fft Returns the DFT using a fft algorithm
ifft Returns the inverse DFT using a fft algorithm
tf2ss Converts a transfer function of a CTS into a state variable description
dtf2ss Converts a transfer function of a DTS into a state variable description
ss2tf Converts a state variable description of a CTS into a transfer funstion
obsv Returns the observability matrix
conv Computes discrete convolution
ss Creates an object of a CTS or DTS state variable description
pzplot Plots a pole-zero plot of an LTI CTS given a transfer function
odeset Sets parameters of ODE solvers
impulse Returns the impulse response of an LTI CTS or DTS
filter Performs offline operation of an LTI DTS
step Returns the step response of a CTS
initial Returns the response of a CTS to ICs
dtf2ss Converts a DTS transfer function into a state variables description
zplane Plots a pole-zero plot of an LTI DTS given H(z)
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(a) xðtÞ ¼ 6sinð120pt þ p=4Þ � 4cosð30pt � p=3Þ
(b) yðtÞ ¼ 3cosð28pt � p=4Þ þ 5sinð112ptÞ � 2cosð42ptÞ

2) (a) Starting at t ¼ 0, sketch xðtÞ over three periods, where one period is given by

xðtÞ ¼ 2;�1 � t < 1
�1; 1 < t < 4

�

(b) Manually, find the Fourier series coefficients Xk . Write a MATLAB script to
reconstruct xðtÞ. Use a program like Prog. 6.5. Does the reconstruction exhibit
Gibbs’ oscillation?

(c) Starting at t ¼ 0, sketch xðtÞ over three periods, where one period is given by

xðtÞ ¼ sinð120 ptÞj j; 0 � t < 1=120 sec

(d) Repeat part (b) for the signal given in part (c).
3) One period of a discrete time signal xðnÞ is given by

xðnÞ ¼ fxð�1Þ ¼ 1; xð0Þ ¼ 0; xð1Þ ¼ �1; xð2Þ ¼ 0g

(a) What is N? Starting at n ¼ 0, give a sketch of xðnÞ versus n over three periods.
(b) Manually, find the DFT X ðkÞ of xðnÞ. Show details.

4) (a) Write a MATLAB script that obtains over one period N ¼ 20 samples of the signal
xðtÞ given in part (a) of Prob. 12.1. What is the sampling frequency? Does the
sampling frequency satisfy the sampling theorem? Use the fft function to obtain
X ðkÞ; k ¼ 0; 1; . . . ;N � 1. Obtain a stem plot of the magnitude kX ðkÞk versus k.
What are the frequencies corresponding to k ¼ 0; 1; . . . ;N � 1? How is X ðkÞ
related to Xk?

(b) Repeat part (a), using N ¼ 6 samples of xðtÞ over one period. Is there aliasing
error? If there is aliasing error, then what is(are) the frequency(ies) of the alias?

5) Repeat Prob. 12.4 for the signal given in part (b) of Prob. 12.1.
6) (a) Write a MATLAB script that samples the periodic signal given in Prob. 12.2, part

(a) over one period at the rate fs ¼ 10 Hz (samples/sec). What is N? Use the fft
function to find and stem plot kX ðkÞk versus k. What is the frequency resolution?
Is there aliasing error?

(b) Repeat part (a), but sample the signal over four periods. What is the frequency
resolution? Is there aliasing error? Discuss the difference between the results and
the results of part (a).

(c) Repeat part (a), but use fs ¼ 100 Hz. Discuss the difference between the results
and those of part (a).

7) Given is xðtÞ ¼ sinðtÞ=t. Is this time function bandlimited? If you are not sure, then
consider the following investigation.
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(a) Write a MATLAB script that samples (use fs ¼ 20 Hz) and plots xðtÞ over
�5 � t � 5. Then, use the fft function to find and line plot kX ðkÞk versus k.

(b) Repeat part (a), but sample xðtÞ over �20 � t � 20.
(c) In view of the trend from the results of parts (a) and (b), is xðtÞ bandlimited? If it is

bandlimited, then what is the bandwidth?
8) (a) Given is xðtÞ ¼ 4 sinð8ptÞ. Write a MATLAB script that samples the signal over one

period Tx. Use a sampling frequency fs ¼ 1=T that satisfies the sampling theorem.
Make sure that Tx=T (Tx is the period of xðtÞ.) is an integer N. Use the fft function to
find and plot kX ðkÞk=N versus k. Also, output a table of X ðkÞ versus k.

(b) Instead of the samples xðnÞ of xðtÞ, you have available yðnÞ ¼ xðnÞ þ eðnÞ, where
eðnÞ is additive noise found with the function randn. Apply your MATLAB script
to yðnÞ. Give plots of yðnÞ and kY ðkÞk=N . From the spectrum plot, is it possible to
estimate the frequency of xðtÞ?

(c) Repeat part (a), but sample the signal over a time range given by 1.25Tx. What is
N? Discuss the difference between the results and those of part (a).

(d) Repeat part (c), but apply the Hann window to the data before applying the fft
function. Discuss the difference between the results and those of part (c).

9) One period of the DFT X ðkÞ of a periodic discrete time signal xðnÞ is given by
X ð�5Þ ¼ 2e�j3p=4;X ð�4Þ ¼ X ð�3Þ ¼ 0;X ð�2Þ ¼ 4e j2p=5;X ð�1Þ ¼ 3;
X ð0Þ ¼ 1;X ðkÞ ¼ X �ð�kÞ; k ¼ 1; 2; . . . ; 5

(a) What is N? Starting at k ¼ 0, sketch a stem plot of two periods of kX ðkÞk.
(b) Write a MATLAB script that sets up an appropriate X ðkÞ, and uses the ifft function

to find xðnÞ. Then, give a stem plot of it.
(c) If xðnÞ comes from sampling a continuous time signal xðtÞ over one period, then

what additional information must be known to know the bandwidth of xðtÞ? Ass-
sume that the period Tx is given.

10) In the DFT algorithm, letW ¼ e�j2p=N , and consider the expansion of the DFT given by

X ð0Þ ¼ xð0Þ þ xð1Þ þ . . .þ xðN � 1Þ
X ð1Þ ¼ xð0Þ þ xð1ÞW þ . . .þ xðN � 1ÞWN�1

X ð2Þ ¼ xð0Þ þ xð1ÞW 2 þ . . .þ xðN � 1ÞW 2ðN�1Þ

..

.

X ðN � 1Þ ¼ xð0Þ þ xð1ÞWN�1 þ . . .þ xðN � 1ÞW ðN�1Þ ðN�1Þ

Let x 0 ¼ ½xð0Þ xð1Þ xð2Þ . . . xðN � 1Þ	, and let X 0 ¼ ½X ð0Þ X ð1Þ . . . X ðN � 1Þ	.
(a) Write a MATLAB script that finds the matrix DN such that X ¼ DNx, for N ¼ 32.
(b) Continue the script to obtain N ¼ 32 samples of xðtÞ ¼ 4cosð20 p t þ p=3Þ sam-

pled at the rate fs ¼ 1=T Hz, where T ¼ 2Tx=N . Use X ¼ DNx to find the DFT of
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xðnÞ; n ¼ 0; 1; . . . ; N � 1. Plot the magnitude spectrum. Are the results as
expected?

11) Denote the DFT algorithm with X ¼ DFTðxÞ, where the input is the vector
x 0 ¼ ½xð0Þ xð1Þ xð2Þ . . . xðN � 1Þ	 and the output is the vector
X 0 ¼ ½X ð0Þ X ð1Þ . . . X ðN � 1Þ	. Or, let C ¼ x, and then X ¼ DFTðCÞ. The IDFT of
X gives x. The IDFT of X can also be found with the DFT algorithm.
(a) Prove that x ¼ ð1=NÞ realðDFTðC�ÞÞ, where C ¼ X . Therefore, only one program

is needed to do signal analysis and signal reconstruction. Hint: take the conjugate
of (12.14), and then, since xðnÞ is real, use x�ðnÞ ¼ xðnÞ.

(b) Write a MATLAB script that uses the function fft to test part(a). Sample
xðtÞ ¼ 4cosð20 p t þ p=3Þ at the rate fs ¼ 1=T Hz, where T ¼ Tx=N and N ¼ 32.
Plot x and realðDFTðX �=NÞÞ, and compare them.

12) Given is xðtÞ ¼ e�4tsinð16 ptÞ uðtÞ. Write a MATLAB script that samples the signal at
a rate fs ¼ 1K Hz to obtain xðnÞ; n ¼ 0; 1; . . . ; N � 1, where N ¼ 213. Use xðt ¼ 0þÞ
for xðn ¼ 0Þ.
(a) If the xðnÞ are considered to be the result of sampling a periodic signal over one

period, then what is the period Tx?
(b) Use the function spectrogram to find an estimate of the power spectral density P

of xðtÞ. Use a Bartlett window. Use NW ¼ 27 window points. Make the segment to
segment overlap No ¼ NW � 25, and use NW points for the fft. Use the function
surf to obtain a 3-D plot of P using a decibel scale. You may have to rotate the plot
for a good viewpoint. Does the plot show whether or not xðtÞ is a stationary signal?
Explain.

(c) Repeat part (b) for NW ¼ 26 and NW ¼ 29. Do these results change your opinion
about the stationarity of xðtÞ?

13) The MATLAB statements

t = 0:0.001:6; f_start = 0; f_end = 100; t_cross = 1.5;

x = chirp(t, f_start, t_cross, f_end, ’linear’);

use the function chirp to sample at a rate fs ¼ 1K Hz a sweep frequency signal
over 6 sec. Write a MATLAB script that uses the function spectrogram to find and
plot the STFT power spectral density of the chirp signal. Try various values of NW
and No.

Sections 12.2 and 12.3
14) Find the differential equation that relates the current iðtÞ to the voltage vsðtÞ

of the circuit shown in P12.14. In terms of the initial voltage on the capacitor,
give ið0�Þ.
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15) Find the differential equation that relates the voltage vðtÞ to the voltage vsðtÞ of the
circuit shown in P12.15. In terms of the initial voltage of the capacitor and the initial
current in the inductor, give vð0�Þ and _vð0�Þ. Assume that vsð0�Þ ¼ 0.

16) An LTI CTS is described by

y4ðtÞ þ 6y3ðtÞ þ 138y2ðtÞ þ 462y1ðtÞ þ 2929y0ðtÞ ¼ 573rðtÞ
with initial conditions: y3ð0�Þ ¼ 0; y2ð0�Þ ¼ 1; yð1Þð0�Þ ¼ 0; yð0Þð0�Þ ¼ 0.
(a) Give the characteristic equation.
(b) Write a MATLAB script that finds and line plots the zero-input response.

17) An LTI CTS is described by

y3ðtÞ þ 5y2ðtÞ þ 33y1ðtÞ þ 29y0ðtÞ ¼ 2r2ðtÞ þ 4r1ðtÞ þ 202r0ðtÞ
with initial conditions: y2ð0�Þ ¼ 0; yð1Þð0�Þ ¼ 1; yð0Þð0�Þ ¼ 0. If wðtÞ is the zero-
state solution of w3ðtÞ þ 5w2ðtÞ þ 33w1ðtÞ þ 29w0ðtÞ ¼ rðtÞ
then in terms of wðtÞ write yzsðtÞ.

18) (a) Manually, find the matrices A; B; C, and D of a state variable description of the
LTI CTS given in Prob. 12.17. Write a MATLAB script that sets up the observa-
bility matrix and finds the initial state.

(b) Check your results by also using the function tf2ss to find A; B; C, and D.
19) (a) Write a MATLAB script that finds a state variable description of the LTI CTS

given in Prob. 12.16.
(b) Find the eigenvalues of A and the roots of the characteristic equation.
(c) Create an object of the state variable description with the function ss. Using the

object description, find the observability matrix and then the initial state.

vs(t)

R

L v(t)C

Figure P12.15 RLC circuit.

R

RL

i(t)

Cvs(t)

Figure P12.14 RCR circuit.
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20) For the LTI CTS given in Prob. 12.15, write a MATLAB function script and a script
that applies an ODE solver to find and plot:
(a) yziðtÞ. What happens to this response as t increases?
(b) yzsðtÞ, where rðtÞ ¼ uðtÞ.
(c) yðtÞ. Compare yðtÞ to a plot of the sum of yziðtÞ and yzsðtÞ.
(d) The steady-state response yssðtÞ is a constant, and it is given by yssðtÞ ¼ 202=29.

Subtract the steady-state response from yðtÞ to find and line plot the transient
response. What happens to the transient response as t increases?

21) Repeat Prob. 12.20, parts (a), (b), and (c) for rðtÞ ¼ sinð4ptÞ uðtÞ. What is the ampli-
tude of the steady-state response?

22) Repeat Prob. 12.20 for the LTI CTS given in Prob. 12.16.
23) Manually, find the impulse response hðtÞ of the LTI CTS described by

_yðtÞ þ 2yðtÞ ¼ 3rðtÞ; yð0�Þ ¼ 1

24) Manually, find the impulse response hðtÞ of the LTI CTS described by

€yðtÞ þ 2 _yðtÞ þ 2yðtÞ ¼ _rðtÞ þ rðtÞ; _yð0�Þ ¼ 1; yð0�Þ ¼ 1

25) (a) Write a MATLAB script that uses the function impulse to find and plot the impulse
response hðtÞ of the LTI CTS given in Prob. 12.17. What happens to hðtÞ as t
increases, and give an explanation?

(b) Continue the script to use the function step to find and plot the step response.
Describe how you can find the step response knowing the impulse response hðtÞ.
Consider how the impulse function dðtÞ and the unit step function uðtÞ are related.

(c) Continue the script to use the function initial to find and plot yziðtÞ.
26) Repeat Prob. 12.25 for the LTI CTS given in Prob. 12.16.
27) The impulse response of an LTI CTS is given by hðtÞ ¼ 2 e�tuðtÞ.

(a) Manually, find yzsðtÞ for the input rðtÞ ¼ 3e�2tuðtÞ by convolving hðtÞ and rðtÞ.
(b) Repeat part (a) if the input is rðt � 1Þ.
(c) Repeat part (a) if the input is rðt þ 1Þ.

28) Given are two signals s1ðtÞ and s2ðtÞ. Write a MATLAB script that uses the function
conv to find and line plot s3ðtÞ ¼ s1ðtÞ � s2ðtÞ. Obtain N1 samples of s1ðtÞ and N2
samples of s2ðtÞ. Use s1ðtÞ ¼ uðtÞ; N1 ¼ 100, s2ðtÞ ¼ e�tuðtÞ; N2 ¼ 150 and
fs ¼ 50 Hz. How many samples N3 of s3ðtÞ are produced by the conv function? How is
N3 related to N1 and N2?

29) Repeat Prob. 12.28 for s2ðtÞ ¼ ðe�10t � e�20tÞ sin ð100ptÞ. Here, you must pick
appropriate values for N1, N2 and fs to obtain a good approximation of s3ðtÞ over
0 � t � 0:5.

30) Let A1 and A2 denote the areas under the functions x1ðtÞ and x2ðtÞ, respectively. Prove
that A3 ¼ A1 A2, where A3 is the area under the function x3ðtÞ ¼ x1ðtÞ � x2ðtÞ.
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Hint: The area A3 ¼
Ðþ1
�1 x3ðtÞ dt. Substitute in the convolution integral for x3ðtÞ, and

proceed from there.
31) (a) For the LTI CTS given in Prob. 12.17 give the transfer function HðsÞ.

(b) Write a MATLAB script that uses the function pzplot to obtain a pole-zero plot. Is
the LTI system BIBO stable? Explain.

(c) Using the transfer function HðjwÞ, continue the script to find the steady-state
response yssðtÞ to rðtÞ ¼ sinð2ptÞ. Plot yssðtÞ and rðtÞ on the same figure.

(d) Obtain a Bode plot.

Sections 12.4 and 12.5
32) A DTS is described by

yðnÞ þ 0:5 yðn� 1Þ þ 0:25 yðn� 3Þ þ 0:125 yðn� 5Þ ¼ rðnÞ þ 0:25 rðn� 1Þ

(a) What order is this difference equation?
(b) What initial conditions must be known to solve for yðnÞ; n ¼ 0; 1; . . .?
(c) State whether or not this DTS is causal, time invariant and linear.
(d) Give the homogeneous equation of this DTS.
(e) If yð�2Þ ¼ 3, and all other initial conditions are zero, manually find yðn ¼ 2Þ for

rðn < 0Þ ¼ 0 and rðn � 0Þ ¼ K ¼ 1.
(f) Now assume that all initial conditions are zero. Find yðn ¼ 2Þ for rðn < 0Þ ¼ 0,

rðn � 0Þ ¼ K and K ¼ 1; 2 and 3. Denote each result by y1ð2Þ; y2ð2Þ and y3ð2Þ,
respectively. What is the relationship between y1ð2Þ; y2ð2Þ and y3ð2Þ? Explain. Do
you expect this relationship to apply for all n? Does this relationship apply if some
initial condition is not zero?

33) For the DTS given in Prob. 12.32 assume that all initial conditions are zero.
(a) Manually find yðnÞ; n ¼ 0; 1; 2, and 3 for rðnÞ ¼ dðnÞ, and denote the result by

y1ðnÞ, which is the unit pulse response.
(b) Repeat part (a) for rðnÞ ¼ dðn� 2Þ, and denote the result by y2ðnÞ. What is the

relationship between y1ðnÞ and y2ðnÞ?
34) Let yðtÞ be the integral of rðtÞ, and write

yðtÞ ¼
ðt

0
rðtÞ dtþ yð0�Þ

Assume that rðtÞ is finite, and that it has a finite number of discontinuities.
Recall from Section 4.7.2 that the trapezoidal rule gives an approximation of this
integral with

yðnþ 1Þ ¼ T
2
ðrðnþ 1Þ þ rðnÞÞ þ yðnÞ; t ¼ nT ; n ¼ 0; 1; . . .
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where yðn ¼ 0Þ ¼ S0 is the initial condition given by S0 ¼ yðt ¼ 0�Þ, T is the time
increment, and fs ¼ 1=T Hz is the sampling rate. This is a first order difference
equation. Write a MATLAB script that runs this difference equation to find
yðnÞ; n ¼ 0; 1; . . . ; 99 for rðtÞ ¼ uðtÞ. Use rð0Þ ¼ rðt ¼ 0þÞ, and let fs ¼ 100 Hz.
Assume that S0 ¼ 0. Use a for loop to find yðnÞ recursively. Provide a line plot of yðnÞ
versus t. Knowing that yðtÞ ¼ t uðtÞ, discuss the error between yðt ¼ nTÞ and yðnÞ.

35) Repeat Prob. 12.34 for rðtÞ ¼ sinð2pf tÞ and f ¼ 5 and 40 Hz. Provide line plots for
each case. For each f , assess the approximation error by computing
eðnÞ ¼ yðt ¼ nTÞ � yðnÞ, eðnÞ, which is the average error, eðnÞ ¼ eðnÞ � eðnÞ and s2,
which is the average of e2ðnÞ. What happens to s2 as f is increased?

36) Given is the LTI DTS

X

8

i¼0
ai yðn� iÞ ¼

X

8

i¼0
bi rðn� iÞ

where ai and bi; i ¼ 0; 1; � � � ; 8 are given by
a = [1 �2.1878931e-1 �2.4620748 3.0601433e-1 2.6490803 �1.7792892e-1 . . .

�1.3579514 9.3413671e-3 3.2604906e-1]
b = [4.5347167e-1 �9.4249009e-3 �1.7473316 9.0243936e-3 2.5892471 . . .

9.0243936e-3 �1.7473316 �9.4249009e-3 4.5347167e-1]

The input rðnÞ comes from sampling rðtÞ ¼ sinðw1tÞ þ sinðw2tÞ þ sinðw3tÞ at the
rate fs ¼ 8K Hz, where w1 ¼ 2pð100Þ; w2 ¼ 2pð1500Þ and w3 ¼ 2pð3800Þ. Assume
rðn < 0Þ ¼ 0, and that initial conditions are zero. Write a MATLAB script that uses the
built in function filter to obtain the response yðnÞ to rðnÞ. Process enough samples to
see the response over 0 � t � 0:01 sec. Provide line plots of yðnÞ and rðnÞ versus t.
What kind of a filter do you think this DTS is? Try other input frequencies to support
your opinion.

37) Write a MATLAB script to run the filter given in Prob. 12.36, and find and line plot the
unit pulse and unit step responses over 0 � t � 0:01 sec.

38) (a) Write a MATLAB script that uses the function dtf2ss to obtain a state variable
description of the DTS described in Prob. 12.36.

(b) Continue the script by using a state variable description to obtain and line plot the
unit step response over 0 � t � 0:01 sec.

39) The coefficients of an FIR LTI DTS are given by

bk ¼ 1
ðk � 128Þp ðsinððk � 128Þ3p=4Þ � sinððk � 128Þp=4ÞÞ; k ¼ 0; 1; . . . ; 256

where b128 ¼ 1=2. Using the same sampling frequency and input as described in Prob.
12.36, write a MATLAB script that runs this FIR filter over 0 � t � 0:01 sec. Provide
line plots of yðnÞ and rðnÞ versus t. What kind of a filter do you think this DTS is?
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40) An LTI DTS is described by

yðnÞ þ 0:81 yðn� 2Þ ¼ rðnÞ � rðn� 2Þ; yð�1Þ ¼ 1; yð�2Þ ¼ 0

(a) Give the characteristic equation.
(b) What are the characteristic modes?
(c) Manually, find yziðnÞ.

41) Manually, find the unit pulse response hðnÞ of the DTS given in Prob. 12.40.
42) (a) Give the transfer function Hðz�1Þ of the DTS described in Prob. 12.36.

(b) Write a MATLAB script that uses the function zplane to obtain a pole-zero plot. Is
the DTS stable? Explain.

(c) Continue the script to plot the magnitude frequency response for 0 � wT � p,
which corresponds to 0 � w � ws=2.

43) Give the transfer function Hðz�1Þ of the LTI DTS described in Prob. 12.40.
(a) Write a MATLAB script that produces a 3-D plot of the magnitude frequency

response over the unit circle.
(b) If fs ¼ 1K Hz, and rðnÞ comes from sampling rðtÞ ¼ cosð250ptÞ, then what is the

steady-state response yssðnÞ? Provide a plot of rðnÞ and yssðnÞ.

Section 12.6
44) The sampling frequency is fs ¼ 8K Hz. Consider the design of a low-pass filter with a

bandwidth of fc ¼ 500 Hz.
(a) Sketch the ideal magnitude frequency response of such a filter over 0 � f � 2fs.
(b) Write a MATLAB script that uses the function fir1 to design the coefficients

bk ; k ¼ 0; 1; . . . ; 256 of an FIR filter. Use doc fir1 to find out how to use the
function fir1.

(c) Continue the script to find and plot the magnitude frequency response of the
designed filter over 0 � f � fs. Provide a copy of the plot.

(d) Continue the script to use the function filter to obtain the response yðnÞ to samples
of rðtÞ ¼ sinð300ptÞ þ cosð2000ptÞ over 0 � t � 20 msec. Provide plots of yðnÞ
and rðnÞ versus t. Discuss the performance of the filter.
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CHAPTER 13

Introduction to Simulink‡

Simulink� is a facility for modeling and analyzing dynamic systems. With its graphical user
interface (GUI), you can build a block diagram model of a dynamic system and then run the
model. Simulink includes many libraries of ready to use blocks that represent both linear
and nonlinear continuous and discrete time operations. There are libraries of blocks for
synthesizing signals and for observing signals. You can also design your own blocks. A
Simulink simulation can access MATLAB data files and functions, and output results to
MATLAB for further analysis and visualization. While a simulation executes, you can view
any part of model behavior as it changes with time.

In this chapter, you will learn how to

● build a model of a dynamic system using Simulink blocks
● design a block
● simulate a system and observe its behavior
● use MATLAB functions in a Simulink simulation

13.1 Simulink� Environment

To start Simulink, you must have already started MATLAB. While in MATLAB, specify a
Current Folder, from which Simulink files, called model files, can be retrieved and in
which model files can be saved. Then, click the Simulink icon in the MATLAB desktop
toolbar, or you can use the menu sequence

start ? Simulink ? Library Browser

Or, in the MATLAB Command Window, enter the command simulink to open the Simulink
Library Browser shown in Fig. 13.1. Here, Simulink is highlighted, and you can see all of



the standard Simulink libraries, each of which contains blocks that you can use to build
dynamic system models. If you only want to open a window of the standard Simulink
libraries, then in the Command Window enter

open_system(’simulink.mdl’)

Clicking on the Commonly Used Blocks Library opens a window that shows all of the
blocks that it contains, as shown in Fig. 13.2.

From the Simulink Library Browser, you can create a new Simulink model with

File ? New ? Model

or you can click on the new model icon in the toolbar of the Library Browser Window. You
can open an existing model with

File ? Open

or you can click on the open model icon in the toolbar.

open modelnew model

simulink block libraries

DSP block libraries

click to see blocks
in the Sources Library

Figure 13.1 Simulink Library Browser.
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All Simulink model files end with the file extension .mdl. In the MATLAB desktop set
a Current Folder for all of your Simulink model files, and use the Current Folder in
Simulink in the same way as it is used in MATLAB. Then, from the MATLAB Command
Window you need only enter the model name to open it.

Example 13.1

This example demonstrates building a model. We begin by clicking the new model icon in
the Library Browser Window toolbar. Fig. 13.3 shows the Model Editor Window, where
Simulink models are created. The Model Browser Window was anchored in the Model
Editor Window with

View ? Model Bowser Options ? Model Browser

which shows all of the model files in the Current Folder.
Some blocks have already been dragged into the Model Editor Window. The Sine

Wave blocks and the Clock block came from the Sources Library, the Summation block
(converted to a Subtraction block) came from the Commonly Used Blocks Library and
the XY Graph and To Workspace blocks came from the Sinks Library. The Clock
block output is time. With the To Workspace block, we can make data obtained with
Simulink available to programs in MATLAB. In this case, the data will be placed in a
variable named sine_sum. It is also possible to write data to a .mat file (Use the To File
block in the Sinks Library.). You should click on each of the libraries to see the great

see Section 12.3.7 see Section 12.5.7

Figure 13.2 Window of blocks in the Commonly Used Blocks Library.
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variety of blocks available to build dynamic systems. Right click a block to access
information about it.

Generally, each block has one or more input ports, and/or one or more output ports. In
Fig. 13.3, the output ports of the sine wave generators are already connected to the two input
ports of the Subtraction block. See Summation block help for information about increasing
the number of input ports and converting it to do subtraction. To connect an output port of
one block to an input port of another block, start by clicking the output port, and then drag
the mouse pointer to an input port. To go around a corner, release and depress the mouse
button as you create the path you prefer. Or, you can click on a block icon, which makes it
active and a source, and while depressing the keyboard Control key click on another block
icon, which makes it active and a sink (destination). Simulink takes care of drawing the
connection, which depends on how you place block icons. You can always move block
icons around for another arrangement. As you do this, all connections are retained.

Fig. 13.3 does not show all desired connections. The Subtraction block output port must
be connected to the Y input port of the XY Graph block and to the input port of the To
Workspace block. To do this, first connect the Subtraction block output port to the Y input
port. To also connect to the To Workspace block input port, we must add a branch line by

click and drag into
Model Editor Window

click to see blocks
in Sources Library

dragged from
Sinks Library

list of models in
Current Folder

click to start simulation

*

modified model
not saved

empty MATLAB workspace

Figure 13.3 Desktop containing the Library Browser and Model Editor.
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first left clicking the connection to the Y input port, which makes it active. Then, with the
mouse pointer anywhere on the active connection, right click the mouse and drag the mouse
pointer to the input port of the To Workspace block. Simulink will draw a pick-off point and
a connection (branch line), as shown in Fig. 13.4. Or, you can start at the input port of the To
Workspace block, and drag the mouse pointer to a desired location on the other connection.

Each block has parameters (left click icon twice) and properties (right click icon once),
as shown in Fig. 13.5 for a Sine Wave block. In the Block Parameters Window you can set
parameters such as frequency, phase, amplitude, sampling frequency, and more. You can
also access this window from the Property Menu.

After any modification in a model, it must be saved for the change to be effective in a
simulation invoked from the Command Window. However, you can run a model from the
Model Editor Window without first saving the model. A summary of a model can be
obtained with

View ? Model Explorer

as shown in Fig. 13.6, where block parameters of the To Workspace block are given.
Before we can run the model, simulation options must be set by opening the Config-

uration Parameters dialog box with

Simulation ? Configuration Parameters

A part of the dialog box is shown in Fig. 13.7, where all parameters have default values. The
finish time was set to 10 sec, and the max step size was set to 0.01 sec.

To run the model, click the play button on the toolbar of the Model Editor Window. Or,
you can use

pick-off point

Clock
XY Graph

To Workspace

sine_sum

0

Sine Wave1

Sine Wave

+–

Figure 13.4 Completed model.
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Figure 13.5 Block Parameters Window (left) and Property Menu (right) of a Sine Wave
block.

variable name

click for block details

Figure 13.6 Model Explorer Window.
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Simulation ? Start

The output of interest is displayed by the XY Graph block, which is shown in Fig. 13.8.
Notice that the simulation output is also in the MATLAB workspace, to which the graphics
capabilities of MATLAB can be applied. In the Command Window, use the function whos to
see more detail about the workspace.

For reference, it is useful to label signal lines (the connections between blocks). To do
this, double click a signal line, which causes a blinking cursor to appear. You can then type
in text to associate with the signal line. This text can be dragged to a preferred position along
the signal line. To place information about the model, double click anywhere in the Model
Editor Window, which also causes a blinking cursor to appear. You can then type in text,
and drag it anywhere within the window. See Fig. 13.8, for example.

start time end time

step size

Figure 13.7 Simulation Configuration Parameters dialog box.

play data in workspace

add signal name

Figure 13.8 Simulation of model with graph and workspace output.
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Example 13.2

This example demonstrates the utility of the Fcn block. In Fig. 13.9, two Fcn blocks are
used. The input of one block (Fcn) is time. The input to output function expression is
defined in the Block Parameters dialog box. The input of the other Fcn block (Fcn1) is the
output of a block (the Fcn block in this case). The Scope block input consists of two signals
that are displayed on the scope screen. These signals are combined into a signal vector with
a Mux (multiplexer) block, which can be set to have any number of inputs.

13.2 Dynamic Systems

A continuous time dynamic system is described by a differential equation. In Chapter 12 we
solved both linear and nonlinear differential equations by writing programs in MATLAB.
With Simulink, a GUI is used to build with blocks a model of a dynamic system. The model
is converted by Simulink into a set of equations, which are converted into a program, the
output of which is the solution of the set of equations.

Example 13.3

Let us build a model of a dynamic system described by

y::ðtÞ þ a1 _yðtÞ þ a0 yðtÞ ¼ b2 r
::ðtÞ þ b1 _rðtÞ þ b0 rðtÞ

y_ð0�Þ ¼ S1; yð0�Þ ¼ S0
ð13:1Þ

active block

Figure 13.9 Demonstration of using Fcn blocks.
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Equation (13.1) is a special case of (12.17), with N ¼ 2, M ¼ 2, and M � N . The transfer
function is given by

HðsÞ ¼ b2s2 þ b1s1 þ b0s0

s2 þ a1s1 þ a0s0

which is a proper function. Depending on the meaning of rðtÞ and yðtÞ, (13.1) can describe
the behavior of a wide variety of physical systems, the band-pass filter in Fig. 6.11, for
example.

To build a Simulink model of (13.1), integrate it N times to get

yðtÞ ¼ b2rðtÞ þ b1
ð

rðtÞdt þ b0
ðð

rðtÞdt dt
� �

� a1
ð

yðtÞdt þ a0
ðð

yðtÞdt dt
� �

ð13:2Þ

In (13.2), yðtÞ is equal to the difference between two main terms. The first term involves rðtÞ
and integrals of rðtÞ, and the second term involves integrals of yðtÞ. We can now draw a
Simulink model of (13.2) using blocks given in the Simulink standard libraries.

Fig. 13.10 uses two Integrator blocks, three Gain blocks (gains set to 0, 2, and 2)
and a Sum block that are interconnected to duplicate the combination of parts in the
first term of (13.2). The first term literally is a template to build this section of the
model. Similarly, the second term of (13.2) is a template to complete the model, which
is shown in Fig. 13.11, where the format block option was used to flip the gain
feedback blocks.

The Integrator2 and Integrator3 blocks can be double clicked to open their parameter
dialog boxes to set the initial conditions. If the output of Integrator2 is denoted by x1ðtÞ, then
the input, which is yðtÞ, is also _x1ðtÞ ¼ yðtÞ. Similarly, _x2ðtÞ ¼ x1ðtÞ. Since rðt < 0Þ ¼ 0,

+
+
+Integrator1

1
s

b0

b1

Integrator

b2

0

1 2

2

s
r(t) first term

Figure 13.10 The first term of (13.2).
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then gðt < 0Þ ¼ 0. With yðtÞ ¼ gðtÞ � a1 x1ðtÞ � a0 x2ðtÞ, we can find the initial condition
x1ð0�Þ of Integrator2 and x2ð0�Þ of Integrator3 using

yð0�Þ ¼ S0 ¼ gð0�Þ � a1x1ð0�Þ � a0x2ð0�Þ ! �a1x1ð0�Þ � a0x2ð0�Þ ¼ S0
_yð0�Þ ¼ S1 ¼ _gð0�Þ � a1 _x1ð0�Þ � a0 _x2ð0�Þ ! �a1S0 � a0x1ð0�Þ ¼ S1

This model structure is called a direct realization of (13.1). Notice how this realization
method can be extended to realize higher order LTI differential equations. There are many
other possible kinds of model structures.

The input in Fig. 13.11 is a unit step function, where in its parameter dialog box, the
sample time was set to 0.01 sec. A Scope (oscilloscope) block is used to see the input and
output. The signals rðtÞ and yðtÞ are combined into a signal vector with a Mux (multiplexer)
block. In this case, the Scope block will display two signals. Fig. 13.12 shows the unit step
response under zero initial conditions, where a1 ¼ 0.9 and a0 ¼ 1.0. Like the XY Graph
block, the data displayed by the Scope block can also be made available to MATLAB by
setting parameters in the Scope Parameters dialog box, as shown in Fig. 13.12. The array
step_response contains the input, output, and time data.

With Simulink it is convenient to study the behavior of a dynamic system under various
conditions, possibly followed by further analysis using MATLAB. For example, in
Fig. 13.13 the unit step input in Fig. 13.11 was replaced by a sinusoidal input plus additive
noise. The Scope block displays the input and output, which is also placed in the MATLAB
workspace.

There are many other input possibilities. For example, the input could be the output of a
(1) From File block, a .mat file of a recorded speech signal, for example, (2) From Work-
space block, (3) user defined Fcn block, and many more. The Fcn block is particularly

array name

three column matrix

click to open scope parameters dialog box

unit step input

Figure 13.12 Unit step response of a second-order dynamic system.
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useful because its output can be the result of evaluating any valid MATLAB expression that
operates on a scalar or vector input of the block.

A major challenge in building a Simulink model is the conversion of a physical system
into a set of equations that will guide us in building the model.

Example 13.4

Let us build a Simulink model of the circuit shown in Fig. 13.14. We have studied this
circuit in Examples 6.11, 11.4, 12.12, and 12.13. Each time, the method and objective of the
analysis was different.

Generally, the order of a differential equation that relates some input (current or voltage
source) to some output (current through or voltage across a component) in an RLC circuit is
the sum of the number of dynamic components (inductors and capacitors) in the circuit.

Figure 13.13 Low-pass filter response to signal plus noise input.

vs(t) 

i1(t) L1

RvC(t) 

L2i2(t)  

vR(t)

v2(t)v1(t)

C

Figure 13.14 An RLC circuit.
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For example, a third-order differential equation relates the voltage vRðtÞ to the voltage
source vsðtÞ (see Example 12.10). Starting with the third-order differential equation, the
method followed in Example 13.3 can be applied to build a Simulink model. However, to
find the initial conditions requires some intermediate calculations, and the given initial state
of the inductors and capacitor is lost in the arithmetic. An alternative is to use the Transfer
Fcn block in which case initial conditions must be zero.

Instead, we could apply KVL to obtain two mesh equations in terms of mesh currents,
which are

L1
di1
dt

þ 1
C

ð

ði1ðtÞ � i2ðtÞÞdt ¼ vsðtÞ

� 1
C

ð

ði1ðtÞ � i2ðtÞÞdt þ L2
di2
dt

þ Ri2ðtÞ ¼ 0
ð13:3Þ

If the equations in (13.3) are each integrated once, then we can express i1ðtÞ and i2ðtÞ in
terms of integrals of i1ðtÞ and i2ðtÞ. Like (13.2), the expressions for i1ðtÞ and i2ðtÞ are
templates for building a Simulink model. However, the initial state of the inductors and
capacitor are not directly involved.

Another possibility is to apply KCL to obtain two node equations in terms of node
voltages, which are

1
L1

ð

ðv1ðtÞ � vsðtÞÞdt þ C
dv1
dt

þ 1
L2

ð

ðv1ðtÞ � v2ðtÞÞdt ¼ 0

1
L2

ð

ðv2ðtÞ � v1ðtÞÞdt þ v1ðtÞ
R

¼ 0
ð13:4Þ

If the equations in (13.4) are each integrated once, then we can express v1ðtÞ and v2ðtÞ in
terms of integrals of v1ðtÞ and v2ðtÞ. Like (13.2), the expressions for v1ðtÞ and v2ðtÞ are
templates for building a Simulink model. Again, the initial state of the inductors and
capacitor are not directly involved.

Another possibility is to apply KCL and KVL to obtain equations in terms of inductor
currents and capacitor voltage, which are

� vsðtÞ þ L1
di1
dt

þ vCðtÞ ¼ 0 ! i1ðtÞ ¼ 1
L1

ð

ðvsðtÞ � vCðtÞÞdt

�vCðtÞ þ L2
di2
dt

þ Ri2ðtÞ ¼ 0 ! i2ðtÞ ¼ 1
L2

ð

ðvCðtÞ � Ri2ðtÞÞdt

� i1ðtÞ þ C
dvC
dt

þ i2ðtÞ ¼ 0 ! vCðtÞ ¼ 1
C

ð

ði1ðtÞ � i2ðtÞÞdt

ð13:5Þ

where each equation is integrated once, as shown in (13.5), to obtain expressions for the
inductor currents and capacitor voltage in terms of their integrals.

The three equations in (13.5) are templates for the three subsystems shown in
Fig. 13.15. If a variable is not available within a subsystem, then a place holder is used.
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Once all subsystems have been designed, they can be connected to obtain the RLC
circuit Simulink model shown in Fig. 13.16. With this model a variety of circuit behavior
can be investigated. All circuit components are represented explicitly by Constant blocks.
Also, the initial currents in inductors and initial voltage of the capacitor are the initial
conditions of the integrators. Notice that Goto and From blocks are used to keep the con-
nections uncluttered.

Recall that the transfer function of an N th order differential equation is given by

HðsÞ ¼ bMsM þ � � � þ b1sþ b0
sN þ aN�1sN�1 þ � � � þ a1sþ a0

¼ PðsÞ
QðsÞ ¼

bM
QM
k¼1ðs� zkÞ

QN
k¼1ðs� pkÞ

ð13:6Þ

This transfer function can be modeled with the Transfer Fcn block in the Continuous
Library. However, it is useful for you to see the details of another method, because the
methodology of breaking a big problem into a set of smaller problems can be applied to
other kinds of problems. Let P ¼ [bM bM�1 � � � b1 b0] and Q ¼ [1 aN�1 � � � a1 a0]. With
the MATLAB function roots, the poles (roots(Q)) and zeros (roots(P)) of HðsÞ can be
found. Recombine into quadratics all complex conjugate pairs of poles and zeros. Then,
HðsÞ can be written as the product of functions given by

HðsÞ ¼ H1ðsÞH2ðsÞ � � �HLðsÞ ð13:7Þ

where each HiðsÞ; i ¼ 1; . . . ; L is like one of the following proper or strictly proper transfer
functions, all with real coefficients.

HiðsÞ ¼ c2s2 þ c1s1 þ c0
s2 þ d1s1 þ d0

;
c1s1 þ c0

s2 þ d1s1 þ d0
;

c0
s2 þ d1s1 þ d0

;
c1s1 þ c0
s1 þ d0

; or
c0

s1 þ d0

The differential equation (12.17), of which (13.6) is the transfer function, can be
modeled with the block diagram shown in Fig. 13.17.

Each of the L subsystems in Fig. 13.17 is a special case of the model given in Fig. 13.11,
as depicted in Fig. 13.18, where the input and output are Input Port and Output Port blocks,
respectively. By a cascade connection of L models like the model shown in Fig. 13.18, a
Simulink model of an N th order LTI system can be created. Another method to model
(12.17) is to use the State-Space block in the Continuous Library.

A Simulink model constructed with basic operations can easily become complicated. To
reduce model complexity, it is useful to combine a set of basic operations that together do a
particular activity into a subsystem block.
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13.3 Custom Blocks

With Simulink you can create your own library of custom blocks.

Example 13.5

Let us make a subsystem block out of the model shown in Fig. 13.18. To do this, use the
mouse to select and make active all elements (blocks and connections) in the model. You
can also select multiple elements by depressing the Shift key as you click on each element.
Or, click select all in the edit menu. Then, in the Model Editor Window use

Edit ? create subsystem

to obtain the model shown in Fig. 13.19. You can click on the text below the 2nd Order
Diff Eq block to change it. You can also add a title by double clicking anywhere in the
window.

Figure 13.18 Simulink model of a proper or strictly proper second-order LTI system.

r(t) H1 (s) H2 (s) HL (s) y(t)
y1 (t) y2 (t) yL–1 (t)

Figure 13.17 Cascade connection of L subsystems.
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To associate a label, icon, parameter values, and more with the subsystem, open the
Mask Editor Window with

Edit ? Mask Editor

Scroll through the Command list in the Mask Editor Window to see options for making a
subsystem mask. For more details, see the Simulink help facility.

code to make icon and label

click to apply code

Figure 13.19 Subsystem block and mask editor.

click and drag

double click to see inside

save library

Figure 13.20 Addition of a subsystem to a custom library.
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To create a custom library of custom blocks, use

File ? New ? Library

Then, drag the subsystem block into the library as shown in Fig. 13.20. Once you have
created a custom library, you can open it to add more custom blocks.

Use the blow-up of the subsystem block to set the gains.

With the generic block that was made in Example 13.5, we can solve LTI differential
equations, as suggested by Fig. 13.17, without the model becoming too complicated. It is
also useful to create subsystem blocks of physical components that are often used.

Example 13.6

Fig. 13.21 shows an electro-mechanical model of a permanent magnet direct current (DC)
motor. It converts electrical power provided by the voltage source vðtÞ to mechanical power
of the torque TðtÞ applied to the armature and load with rotational moment of inertia J . Let
us create a Simulink model of this motor, where the input is the voltage vðtÞ and the output is
the angular velocity wðtÞ.

On the rotor (armature) of the motor is wound a coil of wire with a resistance of R ohms
and an inductance of L henrys. The stator of the motor is a permanent magnet. A current iðtÞ
in the armature coil causes an electromagnetic field. Magnetic repulsion and attraction
between the magnetic poles of the electromagnetic field of the armature and the magnetic
field of the stator force the armature to rotate. As the armature windings move through the
magnetic field of the stator, an induced voltage viðtÞ, called the back electromotive force
(emf), is generated across the terminals of the armature coil. Applying Kirchhoff’s voltage
law to the armature circuit gives

vðtÞ ¼ RiðtÞ þ L
di
dt

þ viðtÞ ð13:8Þ

v(t)

i(t) LR

vi(t)

J

ω

Τ

Figure 13.21 Electro-mechanical model of a permanent magnet DC motor.
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The back emf is proportional to the angular velocity of the armature, and we write
viðtÞ ¼ Ki wðtÞ, where Ki is a proportionality constant.

The motor exerts a torque TðtÞ (electromagnetic torque) that is proportional to the
armature current, and we write TðtÞ ¼ Ka iðtÞ, where Ka is a proportionality constant.
Applying Newton’s second law gives

TðtÞ ¼ J
dw
dt

þ Bw ð13:9Þ

where J _w is the torque due to accelerating the rotor and load, Bw is torque due to friction,
and B is the angular coefficient of friction.

Integrating (13.8) gives

iðtÞ ¼ 1
L

ð

ðvðtÞ � RiðtÞ � KiwðtÞÞdt ð13:10Þ

and integrating (13.9) gives

wðtÞ ¼ 1
J

ð

ðKaiðtÞ � BwðtÞÞdt ð13:11Þ

Like (13.2), equations (13.10) and (13.11) are templates for building the Simulink model of
(13.8) and (13.9), which is shown in Fig. 13.22, where parameter values are made visible by
sizing the blocks.

The Step and Scope blocks in Fig. 13.22 were replaced by Input and Output Port blocks
to create a subsystem block that was added to the library of custom subsystem blocks shown
in Fig. 13.23. Fig. 13.23 also shows the unit step response of the DC motor using its sub-
system block.

Figure 13.23 Demonstration of using a custom block in a Simulink model.
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With the blocks in the standard Simulink libraries and blocks in a custom library, it
becomes feasible to investigate interactively the behavior of many kinds of systems modeled
with these blocks.

Example 13.7

Suppose the motor given in Example 13.6 must be used in some application. The input
voltage controls the motor speed. This is called open-loop control because there is no
provision to monitor the output (speed) and adjust the input (voltage) to achieve a par-
ticular output speed. There are some issues to consider. For example, a sudden input
change causes the motor speed to oscillate (see Fig. 13.24) before it settles to a constant
speed. Also, if the load changes, the motor speed can go through undesirable transients,
as shown in Fig. 13.25 for a load increase, where (see left scope screen) the motor
almost stalls for a while, and a load decrease, where (see right scope screen) the motor
speed oscillates substantially.

To compensate for the kind of behavior shown in Figs. 13.23–13.25, let us introduce
feedback, and use a controller, as shown in Fig. 13.26.

In Fig. 13.26, the input is no longer applied directly to the motor. Instead, the input
(desired speed) is compared to the output (actual speed) as obtained with a sensor (tach-
ometer, where the output voltage is proportional to the motor speed) to produce an error

motor input is switched when t >= 0.03 sec

switch block

switch time

Figure 13.24 Oscillatory response when input (u(t)þ u(t� 0.003)) changes suddenly.
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signal. If the actual speed is less than (greater than) the desired speed, the error signal is
positive (negative), which increases (decreases) the controller output (power output of the
amplifier) to increase (decrease) the motor speed. This is called closed-loop control. The
objective of the controller is to make the motor speed track the desired speed. This is
analogous to the cruise control of an automobile. It would be very undesirable if a cruise
control system of an automobile behaved as shown in Figs. 13.24 or 13.25. Fig. 13.27 shows
the behavior of the closed-loop motor speed control system for the range of loads:
(a) J ¼ 5.0e-4, (b) J ¼ 1.0e-4, and (c) J ¼ 0.2e-4, as used in Figs. 13.24 and 13.25.
Each figure in Fig. 13.27 shows the error signal (eðtÞ), motor input (vðtÞ), and motor
output (wðtÞ).

J1 = 5e-4 J1 = 0.2e-4

Figure 13.25 Motor speed response under load changes.

actual speed

desired speed

error signal

controller

feedback

sensor

Step
e(t)

Integrator

+–
Gain

50 v(t) w(t)
1

Motor
Tachometer

Scope

DC
motor

1
s

Figure 13.26 Closed-loop speed control system of a DC motor.
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Comparing Fig. 13.27(b) with Fig. 13.23, we see that the closed-loop controller has
almost eliminated motor speed oscillation under its nominal load. The error signal smoothly
becomes zero, as the motor speed matches the desired speed. We also see that when the load
is decreased or increased from its nominal load by a factor of five, the motor speed is also
well controlled without substantial oscillations. However, as is often the case, an advantage
gained comes at a cost. Here we see that a smoother response requires more time to reach
steady state. Such a trade-off and others can be a challenging problem for control system
designers.

Examples 13.4, 13.6, and 13.7 demonstrate the utility of Simulink. Sometimes a model
of a system can be readily constructed. Parameters can be changed to investigate various
kinds of system behavior. By making a model that resembles how a physical system is put
together, it can help to gain insight about system behavior. Included in the many Simulink
demos is a model that illustrates this very well. In the MATLAB Command Window, enter at
the prompt >> sldemo_househeat to see a demonstration of some of the possibilities.

13.4 Conclusion

Simulink has three functionalities that make it useful for problem solving. First, it is a GUI
with which it is convenient to build a model of a dynamic system. Second, Simulink has a
large set of standard and specialized libraries that contain a wide variety of blocks for
building models, and you can create your own library of custom blocks. Third, Simulink,
along with MATLAB, provides extensive computing and visualization capabilities to solve
models of complex linear and nonlinear dynamic systems. You should now know how to

e(t), error signal v(t), motor input w(t), motor output

(a)  J = 5.0e-4 (b)  J = 1.0e-4 (c)  J = 0.2e-4

Figure 13.27 Closed-loop system motor speed transient response.
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● use the Simulink GUI
● create a Simulink model with Simulink blocks
● set block and simulation parameters
● use Simulink to solve a differential equation
● export to and import from MATLAB data
● create custom blocks and a custom library of blocks

We looked at only a few of the many standard Simulink blocks. There is much more to learn
about Simulink. There are many audio/video tutorials available both online and in the
Simulink help facility. The demos are very helpful to learn more about how to use Simulink.

Problems

Section 13.1
1) In the MATLAB Command Window, enter the command to start Simulink, which opens

the Simulink Library Browser Window. Open the Commonly Used Blocks Library by
clicking its name in the libraries list.
(a) Right click the Gain block, and select Help for the Gain block. Give a brief

description of the purpose of the Gain block.
(b) Repeat part (a) for the In1 block. What does it mean when the Sample Time is

assigned a value of �1?
(c) Repeat part (a) for the Saturation block. Explain how to set the lower and upper

limits.
(d) Repeat part (a) for Scope block. Explain the difference between a Scope block and

a Floating Scope block. Explain how you can make the data displayed by a Scope
block available to a MATLAB program.

2) Open the Continuous Library.
(a) Give a brief description of the Transfer Fcn block.
(b) Repeat part (a) for the State-Space block.

3) Open the Lookup Tables Library.
(a) Give a brief description of the 1-D Lookup Table block. Explain how the number

of independent variables is specified.
(b) How is the number of data points in the Cosine block specified?

4) Open the Math Operations Library.
(a) With a model sketch, explain the operation of the Divide block.
(b) Manually, explain and give an example of the operation of the Polynomial block.

5) Open the Signal Routing Library. Explain the operation of the following blocks:
(a) Mux, (b) Demux, (c) Switch, (d) Bus Creator, (e) Bus Selector, (f) Goto, (g) From.

6) Open the Discrete Library. Explain the operation of the following blocks:
(a) Integer Delay. If the input is x(n)=sin(n p=4), then what is the output if the delay is

set for two sample times?

13.4 Conclusion 599



(b) Discrete Transfer Fcn. If the transfer function is HðzÞ ¼ ðz2�1Þ=ðz2 þ 0:5zþ 0:75Þ,
then what is the difference equation that relates the output and input of the
block?

(c) Discrete FIR Filter. What coefficients must be entered into the block if the input to
output relationship must be y(n) ¼ (x(n) þ 2x(n�1) þx(n�2))/4?

7) Open the Sinks Library. Explain the operation of the following blocks: (a) Terminator,
(b) To File, (c) To Workspace.

8) Open the Sources Library. Explain the operation of the following blocks:
(a) Signal Generator. What is the difference between the time-based and sample-based

settings?
(b) What is the difference between the Random Number and Uniform Random Num-

ber blocks?
(c) Signal Builder. Explain how to build a signal.

9) Open the New Model Window, and make a Simulink model that includes a Sine
Wave block, a Slider Gain block and a Scope block. In the sine wave parameters
dialog box, set the frequency of the sine wave to 2 Hz, set the amplitude to 1 and set
the sample time to 0.001 sec. In the simulation configuration parameters dialog box,
set the stop time to two cycles of the sine wave. Save your model in the Current
Folder.
(a) Run the simulation. In the scope display, click the autoscale icon. Provide a display

of the scope screen.
(b) In the scope display, click the parameters button. The sampling decimation para-

meter should be set to 1. Set this parameter to 50, and repeat part (a). Explain the
difference between this result and the result of part (a).

(c) Repeat part (a) for another setting of the slider gain.
10) Make a Simulink model that uses two Constant blocks, a Divide block and a Display

block. Connect the blocks such that the Display block shows the result of dividing the
Constant block by the Constant1 block. (a) Display 7/3, (b) Display 5/0.

11) Build a model that uses a Signal Builder block, a Product block, and an XY Graph
block. The Signal Builder block must produce two signals. One signal is a square wave
with a frequency of 1 Hz that oscillates between zero and one. Use the Product block to
multiply the two outputs of the Signal Builder block and display the product. Set the
stop time to 2 sec. Provide a display of the scope screen.
(a) The other signal is a sine wave with a frequency of 2 Hz using 20 samples per

cycle.
(b) Repeat part (a) for a sine wave with frequency 100 Hz using 1000 samples per

cycle.
12) Use a Fcn block, a Clock block, and a Scope block to generate and display the signal

x(t) ¼ exp(�t)sin(5t) over a time range of 5 sec. Set the sample time to 0.01 sec.
Provide a display of the scope screen.
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13) Make a Simulink model that uses two Sine Wave blocks and a XY Graph block. For one
of the Sine Wave blocks use a phase that converts the block to generating a cosine
wave. Connect the Sine (Cosine) Wave block outputs to the X(Y) inputs of the
XY Graph block. What does the XY Graph block display show? Provide a display of
the graph.

14) Use Sine Wave, Integrator, Mux, and Scope blocks, and connect the Sine Wave block
output to the Integrator block input. Use the Mux block to display on the scope the input
and output of the Integrator block. Set the sine wave frequency to 0.25 Hz (pi/2 rad/
sec), and use a sample time of 0.001 sec.
(a) Run a simulation for 10 sec. Provide a display of the scope screen. Over what time

range does the scope display signals?
(b) In the Scope Display Window, click the parameters icon, set the decimation para-

meter to 2, and repeat part (a). What happened?
(c) Click the Autoscale icon. Explain why the output is a raised cosine wave.
(d) Set the decimation parameter back to 1, as in part(a). In the Scope Display Window,

click the parameters icon. Click the History tab, and uncheck the limit data points
to last check box. Run the simulation, and provide a display of the scope screen.
How is this result different from the result of part (a)?

15) In a computer, all signals are number sequences, for example, a signal denoted by x(n),
where n is the discrete time index. Suppose y(n) is a signal that is the result of deci-
mating x(n) by a factor of N. How is y(n) related to x(n)?

16) Use Constant, Mux, and Integrator blocks to integrate a constant, and display the input
and output of the integrator with a Scope block. Autoscale the display.
(a) Set the Constant block to 0.5. Provide a display of the scope screen. What was the

integrator initial condition?
(b) Set the integrator initial condition to �2, and repeat part (a). Provide a display of

the scope screen.
17) If the gain A of the op-amp is very large, then the gain of the circuit shown in

Fig. P13.17 is approximately �R2/R1.

R1

R2

vo(t)
vi(t)

vb

Figure P13.17 Op-amp used to make an inverting amplifier.
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The equations that describe this circuit are

vb � vi
R1

þ vb � v0
R2

¼ 0 ! v0 ¼ R2
R1

ðvb � viÞ þ vb

v0 ¼ �Avb ! vb ¼ 1
�A v0

Use Product, Divide, Constant, Subtract, Display, and vi ¼ 3 uðtÞ blocks to make a
model of the two equations. With R1 ¼ 10K W and R2 ¼ 20K W, run a simulation to
display the circuit gain v0=vi for (a) A ¼ 1e2, (b) A ¼ 1e4, and (c) A ¼ 1e6. Provide a
copy of the model, where the display shows the circuit gain using a long format. What
happens to the circuit gain as A is increased?

Section 13.2
18) Make a Simulink model of the circuit shown in Fig. P13.18.

Equation (12.22) gives the relationship between the input and output, which is

C
dvoðtÞ
dt

þ voðtÞ
R2

¼ � viðtÞ
R1

Hint: This is an N ¼ 1 order differential equation. To obtain a version of this equation
that will serve as a template for designing the model, integrate the equation N times to get

voðtÞ ¼ 1
C

ð

� voðtÞ
R2

� viðtÞ
R1

� �

dt

Design the model using C ¼ 0.1 mF, R1 ¼ 10K W and R2 ¼ 30K W. Use a Scope
block to display the response to (a) a unit step, u(t), (b) sin(100pt), (c) sin(2000pt), and
(d) what kind of filtering activity does this circuit do?

19) Make a Simulink model for the half-wave rectifier circuit in Fig. P13.19. The diode
parameters are Is ¼ 1e-12, VT ¼ 25.85e-3. The input is vs(t) ¼ 6.3 sin(120pt) volts.
The equation that relates the output to the input is given by

vo(t)
vi(t)

R1

R2

C

vb(t)

Figure P13.18 An op-amp circuit (active RC circuit).
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dv
dt

¼ Is
C
ðeðvsðtÞ�vðtÞÞ=VT � 1Þ � vðtÞ

RC

Integrate this equation once to obtain an equation that will serve as a template for your
model. Use a Fcn block to obtain evdðtÞ=VT , where vdðtÞ ¼ vsðtÞ � vðtÞ. Use C ¼ 1000 mF
and R ¼ 100W. Run your model for 10 cycles of the input, and use Mux and Scope blocks
to display the input and output. Set the sample time in the Sine Wave block parameter
dialog box. Try a sample time of 0.0001 sec. You may have to adjust this.

To find the average value of the output, include in your model Clock, Switch,
Integrator, and Divide blocks. One input to the switch is zero, and the other input is v(t).
The switch should connect v(t) to the integrator after one cycle time, 1/60 sec,
has elapsed. Divide the integrator output by the time duration of nine cycles, the value
9/60 sec in a Constant block, and use a Display block to show this result. After the
simulation has finished, the Display block should show the average value of the output
over nine cycles. Provide a copy of your model and the scope display.

20) By the direct realization method, build a Simulink model to find i(t) and then v(t) of the
RLC circuit shown in Fig. P13.20.

The application of KVL results in

�vsðtÞ þ 1
C

ð

iðtÞdt þ L
diðtÞ
dt

þ RiðtÞ ¼ 0

vs(t) R

LC

i(t) v(t)

Figure P13.20 A series RLC circuit.

id(t)   

vd(t)  

vs(t)  v(t) RC

Figure P13.19 Half-wave rectifier circuit (AC/DC converter).
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Let R ¼ 33 W, L ¼ 11 mH and C ¼ 0:01 mF. Include Mux and Scope blocks to
display the input and output.
(a) Let the input be vsðtÞ ¼ sinð2pf tÞ. Use a Constant block to set the value of the

frequency f . Use Clock and Product blocks to find u ¼ ft, and use a Fcn block to
get vsðtÞ ¼ sin ð2puÞ. By trial and error, find the frequency fmax for which the
output has a maximum amplitude. You will have to adjust the total run time to see
several cycles on the scope display. Provide a copy of your model and the scope
display.

(b) Add Integrator, Derivative, Mux, and Scope blocks to your model and obtain a
display of the capacitor and inductor voltages for f ¼ fmax. Provide a copy of
the scope display. When the capacitor (inductor) voltage is at a maximum, what
is the inductor (capacitor) voltage? Does this happen at other frequencies?

21) Take the derivative of the KVL equation given in Prob. 13.20 to obtain a second-order
differential equation. Use the component values given in Prob. 13.20, and obtain
the transfer function HðsÞ from the input vsðtÞ to the output vðtÞ. Use a Transfer Fcn
block to make a Simulink model, and add a Scope block to display vðtÞ. Assuming zero
initial conditions, find (a) the unit step response, (b) the response to
vsðtÞ ¼ sinð2pf tÞ uðtÞ, where uðtÞ is the unit step function and f ¼ 10K Hz. Provide
copies of the model and scope displays.

22) The transfer function of an LTI CTS is given by

HðsÞ ¼ s2 þ 3sþ 2
s4 þ 6s3 þ 138s2 þ 462sþ 2929

where the input is rðtÞ and the output is yðtÞ. Assume zero initial conditions.
(a) Give the differential equation that relates yðtÞ and rðtÞ.
(b) Build a Simulink model of this system using a Transfer Fcn block. Find and

display with Scope block the step response. Use a run time long enough to see
the step response settle. Provide copies of the model and the scope display.

(c) Use a Chirp Signal block for the input, and two Scope blocks, one to see the input
and the other to see the output. Let the chirp signal vary in frequency from 0.1 to
50 Hz over a 10 sec time range. Run the simulation for 10 sec. Approximately,
what is the frequency at which the output has a maximum amplitude? Provide
copies of your model and scope displays.

(d) Repeat part (c), but let the chirp signal frequency vary from 20% below to 20%
above your estimate of the peak output amplitude frequency found in part (c).
Can you give a refined estimate of the output peak amplitude frequency?

23) The numerator and denominator of the transfer function given in Prob. 13.22 can be
factored into
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HðsÞ ¼ ðsþ 1Þðsþ 2Þ
ðsþ 1þ j10Þðsþ 1� j10Þðsþ 2þ j5Þðsþ 2� j5Þ

¼ ðsþ 1Þðsþ 2Þ
ðs2 þ 4sþ 29Þðs2 þ 2sþ 101Þ

where complex conjugate pole pairs were recombined into quadratics with real coeffi-
cients. The transfer function can be regrouped into several different products of strictly
proper and proper second-order transfer functions. For example
(a)

HðsÞ ¼ ðsþ 1Þ
ðs2 þ 4sþ 29Þ

ðsþ 2Þ
ðs2 þ 2sþ 101Þ ¼ H1ðsÞH2ðsÞ

where both H1ðsÞ and H2ðsÞ are strictly proper functions.
(b)

HðsÞ ¼ ðs2 þ 2sþ 3Þ
ðs2 þ 4sþ 29Þ

1
ðs2 þ 2sþ 101Þ ¼ H1ðsÞH2ðsÞ

where H1ðsÞ is a proper function and H2ðsÞ is a strictly proper function.
(c) Give another possible break up of HðsÞ into a product of two second order proper

or strictly proper functions.
(d) For each case in parts (a), (b), and (c), use two Transfer Fcn blocks to build a

Simulink model of a cascade connection of H1ðsÞ and H2ðsÞ, and find the step
response. Use XY Graph and Clock blocks to see the responses. Provide copies of
the model and the displays. Are the responses in these three cases different?
Discuss what will happen if in the cascade connection H1ðsÞ and H2ðsÞ are
reversed.

Section 13.3
24) For the DC motor introduced in Example 13.6, find the transfer function from vðtÞ to wðtÞ.

You can do this by first finding the transfer functions of (13.8) and (13.9), which are

V ¼ ðLsþ RÞI þ KiW ! I ¼ V
ðLsþ RÞ �

Ki
ðLsþ RÞW

KaI ¼ ðJsþ BÞW ! W ¼ Ka
ðJsþ BÞ I

\ HmotorðsÞ ¼ Ka
ðJsþ BÞðLsþ RÞ þ KaKi

¼ Ka=JL
s2 þ ððJRþ LBÞ=JLÞsþ KaKi=JL
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Using the parameter values given in Fig. 13.22, make a Simulink model of the DC
motor. You can use the model given in Fig. 13.22, or use a Transfer Fcn block. Create a
subsystem of the model. Create a custom library, and add the subsystem of the motor to
it. Name this subsystem block Motor.

A DC motor can also be used to control the position of a load by integrating its output
speed to obtain angular position. Make a Simulink model as shown in Fig. P13.24.

The scope shows the motor speed and angular position of the armature. The output
of the position sensor is a voltage proportional to input angular position. Assume that
this device has been calibrated to produce a voltage in the range 0–10 volts as the
angular position of the motor armature varies from 0 to 2p rad. This sensor could be
variable resistor.

If this system works as it should, the motor speed should become zero, once the motor
armature reaches a constant position. Try running this system for 0.2 sec with a sample
time of 0.00001 sec. This system must be tuned, meaning that the controller gain must be
adjusted for desired performance (a relatively smooth but quick change in position). Start
with a controller gain of 10, and see what happens. Add a Scope block to monitor the error
signal, the subtractor output. You may also want to introduce a scaling gain between the
motor output and the scope to make the position and speed signals compatible on the
display. Discuss what happens if the controller gain is too big. Provide copies of your
model and scope displays, and a controller gain that you have found to work well.

25) A pair of wires can be surprisingly ineffective in the transmission of a binary data
stream over a long distance. Suppose a binary voltage must be communicated over a
pair of wires, as shown in Fig. P13.25(a). The resistance Rs is the source resistance, and
RL is the input resistance of the device that receives the signal. Every T sec, the data can
be logic zero or logic one. Of interest is to communicate data at the highest possible bit
rate that the destination device can detect without loss of data. Ideally, if RL ¼ RS, then
v(t) ¼ vs(t)/2, and there would be no data loss.

motor

Scope

Integrator

Mux

Step

Position Sensor

Controller

feedback

Figure P13.24 Closed-loop position control system.
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The problem is that the wires have an equivalent resistance, say R ¼ 0.05 W/m and
an equivalent capacitance, say C ¼ 10 pF/m. There may also be an equivalent induc-
tance, which will be ignored to keep the problem simple.

To study this problem a circuit model of the transmission line will be used.
A commonly used model is shown in Fig. P13.25(b), which includes four RC stages.
A more realistic model contains many more RC stages. Because of RS, the first stage is
different from the other stages.

To analyze this circuit, let us start with the first stage, and write

v1 ¼ RSi1 þ v2 ! i1 ¼ 1
RS

ðv1 � v2Þ

i2 ¼ i1 � C
dv2
dt

! v2 ¼ 1
C

ð

ði1 � i2Þdt

v2 ¼ Ri2 þ v3 ! i2 ¼ 1
R
ðv2 � v3Þ

i3 ¼ i2 � C
dv3
dt

! v3 ¼ 1
C

ð

ði2 � i3Þdt
..
.

v4 ¼ Ri4 þ v5 ! i4 ¼ 1
R
ðv4 � v5Þ

i5 ¼ i4 � C
dv5
dt

! v5 ¼ 1
C

ð

ði4 � i5Þdt
i5 ¼ v5

RL

RL

Rs

vs(t)

transmission line

time001 0011 001

binary voltage

v(t)

Figure P13.25(a) Transmission line between a source and a load.

RS R R R

RL

i1 i2 i3 i4 i5

C C CCvs(t) v(t)

v1 v2 v3 v4 v5

Figure P13.25(b) Lumped component transmission line model.
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The first two equations, where v1 is the input and v2 is the output, describe the first
RC stage. The next two equations, where v2 is the input and v3 is the output, describe
the second stage, and so on. A Simulink model of this circuit can become complicated.
Let us make a subsystem block of one RC stage. Notice that for each stage, for
example, the k th stage, vk is the input, and vkþ1 is the output. To find ik we must
feedback the output vkþ1, and to find the output vkþ1, we must feedback the current ikþ1.
Fig. P13.25(c) gives a Simulink model of the kth RC stage. Check it for k ¼ 1, where
R ¼ RS , for k ¼ 2, and for k ¼ 5, where there is no next stage and i5 ¼ v5=RL is used to
feedback to the previous stage.

(a) Make a Simulink model, as shown in Fig. P13.25(c). Select all model elements,
and make a subsystem of it. Add the subsystem to your library of subsystem
blocks. Name the subsystem block RC Stage. Provide a copy of the subsystem
model.

(b) To test your subsystem block, build a transmission line model using just one
RC stage, where v1 ¼ uðtÞ, R ¼ RS ¼ 100 W, RL ¼ 100 W, C ¼ 0:01 mF,
and i2 ¼ v2=RL. To do this, add Divide and Constant blocks to obtain i2. Attach
a Scope block to display v2. In the Simulation Configuration dialog box set
the max step size to 1e-7 and the min step size to 1e-10. Run a simulation for
5e-2 msec. Autoscale the display. In view of the circuit you are simulating,
does the response make sense? Provide a copy of your model and the scope
display.

(c) Repeat part (b), but replace Step block input with a Pulse Generator block. Set the
pulse generator to produce pulses with a period of 1e-2 msec and a duty cycle of
50%. Add a Mux block to display the input and output on the scope. Autoscale the
display. Provide a copy of the scope display. What is the output like if the input
data rate is increased by a factor of 10?

input to previous stage

1
v_k

i_k

i_k+1

v_k+1 v_k+1

C

i_k
+

+
–

–
Subtract

Subtract1 Integrator1

2

2 1

1

×

×÷

÷

R

Divide

Divide1

output from next stage

1
s

Figure P13.25(c) Simulink model of the kth RC stage.
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(d) Add three RC Stage blocks to the model of part (c), and connect them to simulate
the transmission line model given in Fig. P13.25(b). Use R ¼ 10 W. In this case, the
Divide and Constant blocks must be used to find i5. Use a Mux block to see
the input and v5. Run the simulation, and discuss the degree to which the input
signal has been degraded by the transmission line. While realistic circuit parameter
values were not used in this transmission line model, this simulation demonstrates
the challenge of designing transmission lines for high bit rate data transfer.
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Appendix A

Suggestions for Reporting Solutions
to End of Chapter Problems

Many problems at the end of chapters require you to provide program and function listings
and copies of alphanumeric and graphic output. This can be done in several ways, depending
on your knowledge of your computer system and MATLAB�.

First, it is assumed that you have read Chapter 1. You can obtain a copy of the screen by
depressing the Print Screen key on the keyboard. Whatever appeared on the screen at the
time you depressed the Print Screen key is now stored on the Clipboard. If MATLAB is
running, and you maximize the screen before depressing the Print Screen key, then you will
get a copy of the entire MATLAB desktop. To obtain a copy of the Command Window or
any other window, close the windows that you do not want to copy. The content of the
Clipboard can be pasted directly into files of various other applications, including Microsoft
Word�, Paint�, and Visio� (or other graphic applications).

By pasting a screen image, which is stored on the Clipboard, into Paint, you can edit
colors and size, introduce various shapes and captions, and more. You can crop and cut out
any portion of the image and paste the cut out into a Word doc file or into another open Paint
screen for further editing. You can save the Paint image using a bmp, jpeg, or other file
format and insert the saved file into a Word doc file as a picture.

You can paste an image on the Clipboard or cut out from Paint into an open file of a
graphics application such as Visio. Within Visio, you can create and introduce a lot of other
graphic and text material. From Visio, you can save the entire graphic in a variety of file
formats, including an enhanced metafile (emf), which can be inserted into a Word doc file.
You can also print a Paint or Visio image.

Now, it is assumed that you have read Chapter 2. If you have written a MATLAB script
that produces a figure, then you can minimize all windows except the Figure Window and
maximize it. From this point, you can work with the figure as described above.



If instead, you simply want a printed copy of a figure, then from within the
Figure Window open the file menu and select print. From the file menu, you can also save
the figure as a MATLAB fig file, and then open and print or edit the fig file at some other
time. You can also get a print copy of the current figure by using the built-in function print
from the Command Window or by invoking the print function in a program. Or, open the edit
menu in the Figure Window to copy the figure and paste it into an open Word doc file or
some other application. From the edit menu you can also elect to edit the figure or axes by
selecting Figure Properties or Axes Properties. See Chapter 9 for details about using the
figure property editor GUI.

To obtain a print copy of a script, open the file menu in the Editor Window and select
print. To place a script into an open Word doc file, open the edit menu in the Editor Window,
select all to highlight the entire script, right click the mouse, and copy and paste the script
elsewhere. To print the contents of the Command Window, open the file menu and select print.
You can also highlight any part of the text in the Command Window, and copy and paste the
highlighted text into an open Word doc file or other application such as WordPad�.

To obtain a listing of any m-file, use the function type in the Command Window. For
example, to list in the Command Window an m-file named DFT.m, which is in the current
folder, enter type ‘DFT.m’ in the Command Window. Then, print the contents of the Com-
mand Window. Sometimes it is useful to include line numbers in an m-file listing. To do
this, use the built-in function dbtype. For example, enter dbtype ‘DFT.m’ in the Command
Window, and then print the contents of the Command Window.
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Appendix B

Table of ASCII Codes

Table of ASCII (American Standard Code for Information Interchange) Codes
(7-bit codes (eighth bit ¼ 0): 0–31, nonprintable; 32–127, printable)

Decimal Octal Hexadecimal Binary Symbol Description

0 000 00 00000000 NUL Null char
1 001 01 00000001 SOH Start of Heading
2 002 02 00000010 STX Start of Text
3 003 03 00000011 ETX End of Text
4 004 04 00000100 EOT End of Transmission
5 005 05 00000101 ENQ Enquiry
6 006 06 00000110 ACK Acknowledgment
7 007 07 00000111 BEL Bell
8 010 08 00001000 BS Back Space
9 011 09 00001001 HT Horizontal Tab
10 012 0A 00001010 LF Line Feed
11 013 0B 00001011 VT Vertical Tab
12 014 0C 00001100 FF Form Feed
13 015 0D 00001101 CR Carriage Return
14 016 0E 00001110 SO Shift Out/X-On
15 017 0F 00001111 SI Shift In/X-Off
16 020 10 00010000 DLE Data Line Escape
17 021 11 00010001 DC1 Device Control 1 (oft. XON)
18 022 12 00010010 DC2 Device Control 2
19 023 13 00010011 DC3 Device Control 3 (oft. XOFF)
20 024 14 00010100 DC4 Device Control 4
21 025 15 00010101 NAK Negative Acknowledgment
22 026 16 00010110 SYN Synchronous Idle
23 027 17 00010111 ETB End of Transmit Block
24 030 18 00011000 CAN Cancel

(Continues)



(Continued)

Decimal Octal Hexadecimal Binary Symbol Description

25 031 19 00011001 EM End of Medium
26 032 1A 00011010 SUB Substitute
27 033 1B 00011011 ESC Escape
28 034 1C 00011100 FS File Separator
29 035 1D 00011101 GS Group Separator
30 036 1E 00011110 RS Record Separator
31 037 1F 00011111 US Unit Separator
32 040 20 00100000 Space
33 041 21 00100001 ! Exclamation mark
34 042 22 00100010 ‘‘ Double quotes (or speech marks)
35 043 23 00100011 # Number
36 044 24 00100100 $ Dollar
37 045 25 00100101 % Procenttecken
38 046 26 00100110 & Ampersand
39 047 27 00100111 ’ Single quote
40 050 28 00101000 ( Open parenthesis (or open bracket)
41 051 29 00101001 ) Close parenthesis (or close bracket)
42 052 2A 00101010 * Asterisk
43 053 2B 00101011 þ Plus
44 054 2C 00101100 , Comma
45 055 2D 00101101 - Hyphen
46 056 2E 00101110 . Period, dot or full stop
47 057 2F 00101111 / Slash or divide
48 060 30 00110000 0 Zero
49 061 31 00110001 1 One
50 062 32 00110010 2 Two
51 063 33 00110011 3 Three
52 064 34 00110100 4 Four
53 065 35 00110101 5 Five
54 066 36 00110110 6 Six
55 067 37 00110111 7 Seven
56 070 38 00111000 8 Eight
57 071 39 00111001 9 Nine
58 072 3A 00111010 : Colon
59 073 3B 00111011 ; Semicolon
60 074 3C 00111100 < Less than (or open angled bracket)
61 075 3D 00111101 ¼ Equals
62 076 3E 00111110 > Greater than (or close angled bracket)
63 077 3F 00111111 ? Question mark
64 100 40 01000000 @ At symbol
65 101 41 01000001 A Uppercase A
66 102 42 01000010 B Uppercase B
67 103 43 01000011 C Uppercase C
68 104 44 01000100 D Uppercase D
69 105 45 01000101 E Uppercase E

(Continues)
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(Continued)

Decimal Octal Hexadecimal Binary Symbol Description

70 106 46 01000110 F Uppercase F
71 107 47 01000111 G Uppercase G
72 110 48 01001000 H Uppercase H
73 111 49 01001001 I Uppercase I
74 112 4A 01001010 J Uppercase J
75 113 4B 01001011 K Uppercase K
76 114 4C 01001100 L Uppercase L
77 115 4D 01001101 M Uppercase M
78 116 4E 01001110 N Uppercase N
79 117 4F 01001111 O Uppercase O
80 120 50 01010000 P Uppercase P
81 121 51 01010001 Q Uppercase Q
82 122 52 01010010 R Uppercase R
83 123 53 01010011 S Uppercase S
84 124 54 01010100 T Uppercase T
85 125 55 01010101 U Uppercase U
86 126 56 01010110 V Uppercase V
87 127 57 01010111 W Uppercase W
88 130 58 01011000 X Uppercase X
89 131 59 01011001 Y Uppercase Y
90 132 5A 01011010 Z Uppercase Z
91 133 5B 01011011 [ Opening bracket
92 134 5C 01011100 \ Backslash
93 135 5D 01011101 ] Closing bracket
94 136 5E 01011110 ^ Caret - circumflex
95 137 5F 01011111 _ Underscore
96 140 60 01100000 ‘ Grave accent
97 141 61 01100001 a Lowercase a
98 142 62 01100010 b Lowercase b
99 143 63 01100011 c Lowercase c
100 144 64 01100100 d Lowercase d
101 145 65 01100101 e Lowercase e
102 146 66 01100110 f Lowercase f
103 147 67 01100111 g Lowercase g
104 150 68 01101000 h Lowercase h
105 151 69 01101001 i Lowercase i
106 152 6A 01101010 j Lowercase j
107 153 6B 01101011 k Lowercase k
108 154 6C 01101100 l Lowercase l
109 155 6D 01101101 m Lowercase m
110 156 6E 01101110 n Lowercase n
111 157 6F 01101111 o Lowercase o
112 160 70 01110000 p Lowercase p
113 161 71 01110001 q Lowercase q
114 162 72 01110010 r Lowercase r

(Continues)
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(Continued)

Decimal Octal Hexadecimal Binary Symbol Description

115 163 73 01110011 s Lowercase s
116 164 74 01110100 t Lowercase t
117 165 75 01110101 u Lowercase u
118 166 76 01110110 v Lowercase v
119 167 77 01110111 w Lowercase w
120 170 78 01111000 x Lowercase x
121 171 79 01111001 y Lowercase y
122 172 7A 01111010 z Lowercase z
123 173 7B 01111011 { Opening brace
124 174 7C 01111100 | Vertical bar
125 175 7D 01111101 } Closing brace
126 176 7E 01111110 ~ Equivalency sign–tilde
127 177 7F 01111111 Delete

There is also an extended 8-bit ASCII code (eighth bit ¼ 1) ranging from 128 to 255,
called ISO Latin-1, which includes codes of symbols, for example, �, 1/2, m and more.
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Appendix C

Answers to Selected Problems

Many problems at the end of chapters require you to provide answers that are
MATLAB� statements, where you can refer to the chapter or the MATLAB help
facilities and check your answer with MATLAB. To encourage you to develop pro-
gramming and self-help skills, answers to these kinds of problems will not be given
here. Instead, the answer given here will be: see MATLAB (SM), and for Simulink
problems, the answer will be see Simulink (SS). Many problems require you to write a
MATLAB script. Writing scripts is an essential part of learning MATLAB, and you can
check your script with MATLAB. With some exceptions, the answer given here will be:
your MATLAB script (YMS).

Chapter 1

1–14) SM; 15) f¼ 440, w¼ 2*pi*f, T0¼ 1/f, t¼T0/4, x¼ sin(w*t); 16–21) SM; 22d)
mod(�7,�3)¼ x � n*y¼�7 � n*(�3)¼�1, n¼ floor((�7/�3)¼ 2; 23b) y¼ exp(�t/2)
� exp(�2*t), x¼ y . * sin(w*t); 24–25) SM.

Chapter 2

1–4) SM; 5–6) YMS; 7a) One coulomb of charge moving through a 1 tesla magnetic field at
the speed of 1 meter/sec and perpendicular to the magnetic field experiences a force of 1
newton; b) F (repulsive)¼ 0.020 newtons/meter; 8) 1.1234e9 newtons; 9) Energy required
is: 1.348e-7 joules, and the voltage rise is: 134.813 volts; 10a) 12 mA, b) 144 mW; 10c)
518.4 joules; 11) 20 W, 7.2e4 joules; 12a) 3.6e6 joules; 12b) 1e-3 kWh; 13–18) SM; 19)
Use: power¼@(R,I) R*I^2, 20–22), and YMS; 23) Use: x_of_t¼ ’A*exp(-a*t).*
cos(w*tþp)’; 24) Start your function as follows. Complete the function, save it and test it.



function sinusoid_plot(A,w,p,N)

% Function to plot a sinusoid over N cycles

T0¼2*pi/w; T¼T0/100; T_total¼N*T0; t¼0:T:T_total;

25–26) YMS; 27a) Since R_power is stored in a private folder, the m-file find_R_power
cannot find the function R_power. MATLAB gives an error message. 27b) YMS; 28) SM;
29) The function evaluate is a function function. 30) SM; 31) YMS; 32) SM.

Chapter 3

1) A, 3� 3; B, 3� 2; C, 2� 3; x, 3� 1; 2) A¼ [2 �1 2; �2 1 0; �1 1 �2]; 3–4) SM; 5)
I¼ eye(4), Z¼ zeros(3,2), T¼ 2*ones(100,1), R¼ rand(4,3), E¼ [], 6) z¼�1.5:0.1:4.3,
w¼ linspace(�1.5, 4.3, ceil((4.3�(�1.5))/0.1)þ1); 7) SM; 8) Matrix multiplication is
not commutative. 9) x0x is a scalar and xx0 is a 3� 3 matrix. Dimension of CAB is
(2� 3)(3� 3)(3� 2)¼ 2� 2. 10) SM; 11) Use given hint. 12) G¼ identity matrix; 13a)
sqrt(1þq.^2); 13c) cos(2*q - pi/2); 14–19) YMS; 20) SM; 21) Dj j ¼ 4, Ej j ¼ 1:4; 22b)
Let X¼ [z a], a row vector, and then A¼ [�4 2; 2 �3] and Y¼ [2 �3]. 23) Using row
one, the three cofactors are a11 ¼ �2, a12 ¼ 4 and a13 ¼ �1. 24) Use given hint. 25)
Start by forming the augmented matrix g. Apply elementary row operations to g. Do: 2
(row 1)þrow 2 ! row 2, row 1þrow 3 ! row 3 and 2(row 2)þrow 3 ! row 3. Now
you can apply repeated backward substitution to find the solution. 26) After performing
the elementary row operations given in the answer to Prob. 3.25, do: �1(row 2)þrow 1
! row 1, �0.5(row 3)þrow 2 ! row 2 and 0.25(row 3)þrow 1 ! row 1. For X,
element X(3)¼ 1.5. 27) SM; 28) SM; 29d) Do a search for sort in the Product Help
Window. 29e) E¼ reshape(A0,10,2); 30) See Example 3.15. 31) I4¼�0.33258 mA; 32)
i1¼ 53.2 mA; 33) Power delivered to all components is zero. 34) V4¼ 8.4615 volts; 35)
left circuit, V4¼ 4.6154 volts, right circuit, V4¼ 3.8462 volts; 36) same as for Prob.
3.35; 37) inconsistent; 38a) 0; 38b)

ffiffiffi

3
p

; 38c) 1; 39) Use the p-norm definition, and pull
out the common term k from the summation terms. 40) For example, see Fig. 3.5, and
YMS; 41–44) YMS; 45) See Examples 3.20 and 3.21, and YMS. 46) See hint given in
problem. 47) See Examples 3.22 and 3.23, and YMS. 48) YMS.

Chapter 4

1–5) SM; 6) One possible B is B¼ [0 0; 1 0]; 7–8) SM; 9–11) YMS; 12) To check if
a number x is an integer, compare x to floor(x). To check if it is even, let y¼ x/2,
and compare y to floor(y). 13) SM; 14) YMS; 15) Use suggestions given in problem.
16) P¼RV/(RsþR)2, and YMS; 17�18) YMS; 19) The algorithm is an example of a digital
low-pass filter. Use the suggested script given in the problem. 20–21) Use the suggested
script given in the problem, and YMS. 22) You will need the derivative dP=dR ¼
ðR2s � R2Þ=ðR s þ RÞ4. 23–24) YMS; 25a) A¼ 0.5 � e�5(1� 0.5e�5) ffi 4.9328475e� 01;
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26) YMS; 27) Use x_of_t¼@(t) exp(� t)� exp(�2*t), and then get the area with quad
(x_of_t,0,5). 28� 29) YMS.

Chapter 5

1–2) YMS; 3a) 1100011, 11111010; 3b) 255; 4a) 0.2 ! 0.00110011, 0.21 ! 0.00110101;
4b) 0.00390625; 5) SM; 6) YMS, and P¼ 1 to check even parity; 7) X¼ int16(X), SM; 8a)
2000 ! 7d0; 8b) ab ! 10101011 ! 171, 7ff ! 011111111111! 2047; 9) SM; 10a) In
hexadecimal, the number is: c18b0000. 10b) SM; 10c) SM; 10d) In hexadecimal, the rounded
fraction is: 0.b2f0. 11) Use truth table for an AND gate. 12) Use truth table for an XOR gate.
13) See circuits. 14b) Yes, since a¼ b. 15) NOR gates can be used to make the basic gates,
NOT,ANDandOR. 16)YMS; 17) The additional term checks if a2¼ b2, a1¼ b1 and a0¼ 1 and
b0¼ 0, and YMS. 18) See function in Prob 5.17, and realize it in a sum of products form. 19)
See problem description. 20) See the MATLAB script in Example 5.6, as an example for
making up a table of BCD codes for w, x, y and z, and then use an index to the table given by
Dþ1 to get the BCD codes. 21) AþB¼ 1001111.010011101¼ 4f.4e8 in hexadecimal, and
YMS; 22–24) YMS; 25) K¼ 19, voltage resolution is: 3.815 uV; 26) Use Table 5.11.

Chapter 6

1a) (x� 5)(xþ3); 1b)�(x� 2)(xþ3); 1c) (xþ3)(xþ1� j)(xþ1þj); 2a)min at x¼ 1; 2b)max at
x¼ �1/2, 2c) max at x¼�2 and min at x¼�4/3; 3a) �1þj5; 3b) 1þj4; 3c) �9� j7; 3d)
(3� j*2)/13; 3e) (� 3� j11)/10; 3f) (9-j6)/13; 4) SM; 5) See Fig. 6.3, for example. 6a) 2/13; 6b)
�13; 6c) �6/13; 7–8) SM; 9) YMS; 10) Let x3¼ x1þx2. The three complex numbers x1, x2,
and x3 can be drawn as three vectors in a complex plane to form a triangle, where kx1k, kx2k
and kx3k are the lengths of the triangle sides. Now invoke the triangle inequality. 11) c1 ¼
ejp=2, c2 ¼

ffiffiffiffiffi

13
p

e jtan�1ð3=2Þ, c3 ¼
ffiffiffiffiffi

10
p

e jðp=2 þ tan�1ð3=1ÞÞ ¼ ffiffiffiffiffi

10
p

e jðp� tan�1ð1=3ÞÞ, c4 ¼
ffiffiffiffiffi

25
p

e jðpþ tan�1ð3=4ÞÞ ¼ ffiffiffiffiffi

25
p

e jð3p=2 � tan�1ð4=3ÞÞ, c5 ¼ 3 e j3p=2, c6 ¼
ffiffiffiffiffi

13
p

e jð3p=2þ tan�1ð2=3ÞÞ ¼
ffiffiffiffiffi

13
p

e jð2p � tan�1ð3=2ÞÞ; 12) SM; 13) c7 ¼
ffiffiffi

2
p þ j

ffiffiffi

2
p

, c8 ¼ j3, c9 ¼ �3 ffiffiffi

2
p

=2� j 3
ffiffiffi

2
p

=2,
c10 ¼ �3=2� j 3

ffiffiffi

3
p

=2. 14) c7c8 ¼ 6e j3p=4, c8 þ c9 ¼ �3 ffiffiffi

2
p

=2þ jð3� 3
ffiffiffi

2
p

=2Þ, c�10 ¼
3e�j7p=3, c7=c9 ¼ �j 2=3; 15) SM; 16) Use polar forms. 17) Let f ðxÞ ¼ anxnþ
an�1xn�1 þ � � � þ a1xþ a0, where the coefficients are real numbers. Use the property that
the conjugate of a sum of complex numbers equals the sum of the conjugates, a property
from Prob. 6.17. 18) Apply Euler’s identity to each sinusoid on the right side of the equal sign,
multiply out, cancel some terms and again apply Euler’s identity to match the left side of the
equal sign. 19) First, convert to a cosine function with a positive amplitude. 20) YMS; 21a)
X ¼ 3e j7p=6; 21b) X ¼ 5e �jp=4; 21c) X ¼ 7e jp=3; 21d) X ¼ 2e�jp=2; 22a) xðtÞ ¼
3cos ð10 p t þ p=3Þ; 23) YMS; 24a) f0 ¼ 0:25 Hz; 24b) a0 ¼ 1, ak ¼ ð�4sin ðkw0Þ
þ2sinð3kw0Þ Þ=ðkw0Þ, bk ¼ ð2 cos ðkw0Þ � 2cosð3kw0ÞÞ=ðkw0Þ ¼ 0; 25) Xk ¼
ð2e�j2kw0 � 1Þ sin ðkw0Þ=ðkw0Þ, X0 ¼ 1; 26–28) YMS; 29a) ZLðwÞ ¼ jwL; ZLð0Þ ¼ 0;
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ZLð1Þ ¼ 1; 29b) ZCðwÞ ¼ 1=jwC; ZCð0Þ ¼ 1; ZCð1Þ ¼ 0; 30) See, for example,
Example 6.11. 31a)� Vs þ 1

jw ð0:25� 10�6Þ I þ jw ð10 � 10�3Þ I þ 100 I ¼ 0, Vs ¼ 5 e�jp=2,

V ¼ 100 I , w ¼ 104 rad=sec , and YMS; 31b) YMS; 31c) We can write V ¼ HðjwÞ Vs. The
denominator of kHðjwÞk has its smallest value when �1

w ð0:25� 10�6Þ þ w ð10 � 10�3Þ ¼ 0,

which gives �1þ w2LC ¼ 0 ! w ¼ 20000 rad/sec. 32a) HðjwÞ ¼ 1=jwC
Rþ1=jwC; 32b) YMS, a

low-pass filter and the BW is the frequency at which kHðjwÞk2 has a value that is 1/2 its peak
value. 33) YMS; 34a)HðjwÞ ¼ R=ðRþ 1=jwCÞ; 34b) YMS and an inspection of the plot of the
magnitude squared gives a BW of approximately 3600 Hz. 35a) Consider (6.27), which can be
written as bk ¼ 2

T0

Ð T0=2
�T0=2 xðtÞ sinðkw0 tÞ dt. Since the periodic function is given to be an even

function, and the sine function is an odd function, then the integrand is an odd function. The
integral of an odd function over a symmetric range is zero, which makes bk ¼ 0. According to
(6.28), Xk is real. 35b) Start with (6.26). 36) Use R2/R1¼ 10 for each amplifier. 37) The gain
must be less than 45. 38) Start by applying KCL at the negative terminal of the op-amp.

Chapter 7

1–2) SM; 3) After making the assignments, use the function whos. 4) Use braces to define a
cell array. 5) SM; 6) Use the function isletter, and also try isstrprop. 7) In part(b), use the
function findstr. 8) In part (b), initialize digits with digits ¼ ’’, using two single quotes, and
with each new digit name concatenate digits with the name to obtain an updated digits.
9) YMS; 10) SM; 11) See Example 7.3, and YMS. 12) See Example 7.4. 13–14) SM.

Chapter 8

1–3) SM; 4b) See Example 8.2, or try using the function which. 5–10) YMS; 11) See
Example 8.4. 12�13) SM; 14) See Example 8.4. 15) Use suggestion given in problem.
16–17) SM; 18) YMS; 19) SM; 20�21) Script is given in problem.

Chapter 9

1–4) SM; 5–6) YMS; 7) Script is described in the problem. 8) YMS; 9) Since f¼ 60 Hz, time
for four cycles is total_time¼ 4/60 sec. 10–11) Define a vector of frequency values, and use a
vectorized expression to obtain HðjwÞ. See Prog. 9.3. The filter is a low-pass filter. 12) The
algorithm to obtain u from y can be implemented with a for loop. Before the for loop compute
u(1) and u(2) as described in the problem. The for loop is: for n¼ 3:length(t); u(n)¼ (y(n)þ
2*y(n�1)þy(n�2))/4; end. To find v, compute v(1)¼ u(1)/4; v(2)¼ (u(2)þ2*u(1))/4; for
n¼ 3:length(t); v(n)¼ (u(n)þ2*u(n�1)þu(n�2))/4; end. Like x and y, u and v are time
functions versus t. Once plotted, see Prog. 9.3 for examples of customizing the plots. 13)
YMS; 14) Define three vectors, x1, x2, and y, for example, x1¼ [0 1 0 1 0 1 0 1 1 0 0].
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To better see the logic signals, use axis([0 length(n) 0 1.1]), and turn the grid on. See Prog.
9.5. 15–18) SM; 19) YMS; 20) See Example 9.8. 21–22) YMS; 23c) low-pass filter; 24) See
Example 9.10. 25–27) YMS; 28) See Examples 9.13 and 9.14. 29) See Example 9.11.

Chapter 10

1–8) SM; 9) YMS; 10–17) SM.

Chapter 11

1) SM; 2) SM, and also, use the function whos; 3–9) SM; 10) Start with (11.1), and multiply
both sides by r to get r S ¼ PN�1

n¼0 rnþ1 ¼
PN

n¼1 rn ¼ rN þPN�1
n¼0 rn � 1 ¼ rN þ S � 1, and

solve for S. 11–12) SM; 13) The series converges if kzk < 1. 14–19) SM; 20a) The KCL
equations are

VR � VS
RS

þ VR � VC
jwL

¼ 0

VC � VS
RS

þ VC � VR
jwL

þ VC
RC

þ VC
1=jwC

¼ 0

20b�c) See Example 11.4. 21) SM; 22b) xpðtÞ ¼ uðtÞ � 3uðt � 1Þ þ 5uðt � 2Þ � 3uðt � 4Þ;
22c) _xpðtÞ ¼ dðtÞ � 3 dðt � 1Þ þ 5 dðt � 2Þ � 3 dðt � 4Þ; 23a) Since iðtÞ ¼ C dv=dt, a sud-
den increase (decrease) in vðtÞ will cause a large positive (negative) capacitor current. 23b)
Since vðtÞ ¼ L di=dt, a sudden increase (decrease) in iðtÞ will cause a large positive
(negative) inductor voltage. 24–25) SM; 26a) Y ðjwÞ ¼ 1=ðjwþ aÞ; 26b)
Y ðjwÞ ¼ T sin ðwT=2Þ=ðwT=2Þ; 27a) YMS; 27b) C¼B; 28a) Y ðsÞ ¼ s=ðs2 þ w2Þ; 28b)
Y ðsÞ ¼ ðsþ aÞ=ððsþ aÞ2 þ w2Þ.

Chapter 12

1a) BW¼ 60 Hz, T0 ¼ 1=15 sec, X4 ¼ 3 e�jp=4, X� 4 ¼ X �
4 , X1 ¼ 2 e j2p=3, X�1 ¼ X �

1 ;
1b) BW¼ 56 Hz, T0 ¼ 1=7 sec, X8 ¼ ð5=2Þ e�jp=2, X� 8 ¼ X �

8 , X3 ¼ e jp, X�3 ¼ X �
3 ,

X2 ¼ ð3=2Þ e�jp=4, X�2 ¼ X �
2 ; 2a) T0 ¼ 6 sec; 2b) X0 ¼ 1=2, Xk ¼ ðe j kp=6 � 0:5

e�j5 kp=6Þsin ðkp=2Þ=ðkp=2Þ. The reconstruction does exhibit Gibbs’ oscillation.
2d) X0 ¼ 2=p, Xk ¼ 2=ðpð1� 4k2ÞÞ. The reconstruction does not exhibit Gibbs’ oscillation.
3a) N ¼ 4; 3b) X ð0Þ ¼ 0, X ð1Þ ¼ j 2, X ð2Þ ¼ 0, X ð3Þ ¼ �j 2; 4a) See Example 12.3. The
sampling frequency is fs ¼ 300 Hz (samples/sec), and it satisfies the sampling theorem. The
frequencies are f ¼ k f0, where f0 ¼ 15 Hz. Xk ¼ X ðkÞ=N ; 4b) fs ¼ 80 Hz, which does
not satisfy the sampling theorem, and there will be aliasing error. 5) See Example 12.3.
6) YMS; 7) The given signal is bandlimited. 8a) The results give Xk without error. 8b) Yes, it
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should be possible to estimate the frequency of xðtÞ. 8c) In this case, the spectral lines
occur at frequencies other than the frequency of xðtÞ. 8d) See Example 12.7. 9a) N ¼ 11,
where X ðN � 1 ¼ 10Þ ¼ X ð�1Þ, . . . ; 9b) See Prog. 12.6, and YMS. 9c) If the sampling
frequency satisfies the sampling theorem, then BW¼ 5=Tx Hz. 10a) Your script should
start by assigning to N an integer, and W¼ exp(�j*2*pi/N). Then, initialize DN with
DN¼ ones(N,N). Now, the first column of DN holds the coefficients of x(0) in each of the
DFT equations. Then, define a column vector w with: for k¼ 1:N; w(k)¼W^(k�1); end;
w¼w’. To obtain DN, use: for k¼ 2: N; DN(:, k)¼DN(:, k-1).*w; end. 10b) YMS;
11a) Apply suggestion given in problem. 11b) YMS; 12) YMS; 12a) Tx ¼ 8:192 sec.
See Examples 12.8 and 12.9. 13) YMS; 14) didt þ 1

RC

� �

þ 1
RLC

� �� �

iðtÞ ¼ 1
RRLCvsðtÞ. Since

vCðtÞ ¼ RLiðtÞ, ið0 �Þ ¼ vCð0 �Þ=R. 15) d2vdt2 þ 1
RC
dv
dt þ 1

LC vðtÞ ¼ 1
RC
dvs
dt . Since vðtÞ ¼ vCðtÞ,

vð0�Þ ¼ vCð0�Þ. Since vðtÞ�vsðtÞ
R þ Cdvdt þ iLðtÞ ¼ 0, _vð0�Þ ¼ ð� iLð0�Þ � vCð0�Þ=RÞ=C.

16a) l4 þ 6l3 þ 138l2 þ 462lþ 2929 ¼ 0; 16b) See Prog. 12.10, and YMS.
17) yzsðtÞ ¼ 2€wðtÞ þ 4 _wðtÞ þ 202wðtÞ; 18a) Apply (12.40) and (12.42), and YMS to find the
initial state. 18b) SM; 19–22) YMS; 23) hðtÞ ¼ 3e�2t uðtÞ; 24) To find hðtÞ, follow the pro-
cedure given in Example 12.15 to get hðtÞ ¼ ðK1eð�1þjÞt þ K2eð�1�jÞtÞuðtÞ, where K1 ¼ 1=2
and K2 ¼ 1=2. Using Euler’s identity gives hðtÞ ¼ e�tcos ðtÞuðtÞ. 25�26) YMS; 27a)
yz sðtÞ ¼ 6 ðe�t � e�2tÞ uðtÞ; 27b) yzsðtÞ ¼ hðtÞ � rðt � 1Þ ¼ 6 ðe�ðt�1Þ � e�2ðt�1ÞÞ uðt � 1Þ;
27c) yzsðtÞ ¼ hðtÞ � rðt þ 1Þ ¼ 6 ðe�ðtþ1Þ � e�2ðtþ1ÞÞ uðt þ 1Þ; 28) YMS, and N3 ¼
N1 þ N2 � 1 ¼ 249; 29) YMS; 30) Use suggestion given in problem. 31a)
HðsÞ ¼ ð2s2 þ 4sþ 202Þ=ðs3 þ 5s2 þ 33sþ 29Þ; 31b) YMS; 31c) rðtÞ ¼ cos ð2 p t
�p=2Þ, HðjwÞ ¼ ð2ðjwÞ2 þ 4ðjwÞ þ 202Þ=ððjwÞ3 þ 5ðjwÞ2 þ 33ðjwÞ þ 29Þ, w ¼ 2 p
rad=sec, Hðj2pÞ ¼ �0:7244 þ 0:0259i ¼ 0:7249 e j3:1059, yssðtÞ ¼ 0:7249cos ð2 p t�
p=2þ 3:1059Þ; 32a) 5th order difference equation; 32b) yð�1Þ; yð�2Þ; yð�3Þ; yð�4Þ and
yð�5Þ; 32c) causal, time invariant and linear DTS; 32d) yðnÞ þ 0:5 yðn� 1Þ
þ0:25 yðn� 3Þ þ 0:125 yðn� 5Þ ¼ 0; 32e) yð2Þ ¼ 1:25; 32f) The DTS is a linear system.
Thus, if initial conditions are zero, then if yðnÞ ¼ y1ðnÞ is the response to rðnÞ ¼ r1ðnÞ, then if
rðnÞ ¼ r2ðnÞ ¼ a r1ðnÞ, for any constant a, the response is yðnÞ ¼ y2ðnÞ ¼ a y1ðnÞ. This is
called the homogeneity property. Here, rðnÞ ¼ r1ðnÞ ¼ 1 gives yð2Þ ¼ y1ð2Þ ¼ 0:875,
rðnÞ ¼ r2ðnÞ ¼ 2 r1ðnÞ gives yð2Þ ¼ y2ð2Þ ¼ 2y1ð2Þ ¼ 1:75 and rðnÞ ¼ r3ðnÞ ¼ 3 r1ðnÞ
gives yð2Þ ¼ y3ð2Þ ¼ 3y1ð2Þ ¼ 2:625. The homogeneity property is not satisfied if
initial conditions are not zero. 33a) y1ð0Þ ¼ 1:0; y1ð1Þ ¼ �0:25; y1ð2Þ ¼ 0:125 and
y1ð3Þ ¼ �0:3125; 33b) y2ð0Þ ¼ 0; y2ð1Þ ¼ 0; y2ð2Þ ¼ 1:0 and y2ð3Þ ¼ �0:25. Since the
DTS is a time invariant system, time shifting the input, time shifts the output, and
y2ðnÞ ¼ y1ðn� 2Þ. 34) YMS; 35) YMS, and as f is increased, s2 increases. 36) YMS; 37) See
Examples 12.21 and 12.22 and YMS. 38-39) YMS; 40a) 1þ 0:81 g�2 ¼ 0; 40b) ð0:9e jp=2Þn
and ð0:9e �jp=2Þn; 40c) yziðnÞ ¼ ð0:9Þnþ1cos ððnþ 1Þ p=2Þ; 41) hðnÞ ¼ ð0:9Þncosðn p=2Þ
uðnÞ � ð0:9Þn�2cos ððn� 2Þ p=2Þ uðn� 2Þ; 42a) Hðz�1Þ ¼ ðb0 þ b1 z�1 þ � � � þ b8 z�8Þ=
ða0 þ a1 z�1 þ � � � þ a8 z�8Þ; 42b-42c) YMS;
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43) Hðz�1Þ ¼ ð1� z�2Þ=ð1þ z�2Þ; 43a) See Example 12.25, and YMS;
43b) w ¼ 250 p rad=sec and wT ¼ p=4; Evaluate Hðz�1Þ for z ¼ e jp=4, and apply (12.98).
44) YMS.

Chapter 13

1–5) SS; 6a) output is y(n)¼ sin((n�2)p/2); 6b) y(n)þ 0.5y(n-1)þ 0.75y(n�2)¼ x(n) �
x(n�2); 6c) SS; 7–12) SS; 13) a circle; 14a-b) SS; 14c) The scope output is a raised cosine,
because the area under a sine wave is positive over the first half of its cycle, and becomes zero
when the cycle is completed. 14d) SS; 15) y(n) is every Nth value of x(n). 16-17) SS; 18) See
problem suggestion. 19) SS, and the average value should be approximately 5 volts. 20) SS;
21) H(s)¼RCs/(LCs2þRCsþ 1); 22a) y(4)(t)þ 6 y(3)(t)þ138 y(2)(t)þ 462 y(1)(t)þ 2929 y(t)
¼ r(2)(t)þ 3 r(1)(t)þ 2 r(t); 22b�d) SS; 23c) HðsÞ ¼ ðsþ2Þ

ðs2þ4sþ29Þ
ðsþ1Þ

ðs2þ2sþ101Þ ¼ H1ðsÞ H2ðsÞ;
23d) Ideally, the results should be the same. 24) Transfer function is given in problem. 24) SS,
25) Use Simulink model of an RC stage given in the problem.
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2-D plots, 352–63
multiple, 363–74

2n roots, program to find and plot, 373
2-tuple, 120
3-bit binary numbers, 205, 206
3-D line plots, 382–5
3-D rotation matrix, 391–4
function to compute, 394

3-D space, program to rotate an object in, 393
3-D surface plots, 385–91
4-bit serial adder logic circuit, 225

@, 49, 67
‘‘k’’ function, 153, 191
‘‘&&’’ function, 153, 191
‘‘[]’’ empty matrix, 80

A ¼ fread(file_ID,size,‘precision’), 330
A ¼ fscanf(file_ID,‘format’,size), 330
[a,b, . . . ] ¼ strread(s), 296
[a,b,c, . . . ] ¼ deal(C{:}), 310
[a,b,c, . . . ] ¼ deal(S.field), 302
abs, 140
acausal, 507, 543
AC circuit analysis, 270, 273–80
program for, 279–80

accuracy of the solution of AX ¼ Y, 129
active device, 270
AC to DC converter output, program to

find, 526
addition, 81, 560
additivity property, 114
addpath, 66

algebra, 450–7
alias, 488
aliasing error, 488, 496
all, 80, 151
Ampere (A), 36
Ampere’s Force Law, 37, 38
amplifier, instrumentation, 284
amplitude, 258
analog (analogous) signal, 226
analog filters, 368
analog to digital converter (ADC),

227, 229
analysis equation, 478, 482
AND gate, 152, 201, 216
symbol for, 217

angle, 255
angular frequency, 550
animation of second hand of clock, 337
anonymous function, 49–50, 62–3
ans, 17
antiderivative, 463
any, 80, 151
aortic valve, 333–4
area(x,y), 352
arg, 11, 12
arithmetic, rational, 439
arithmetic operations
elementary, 15
functions, 84

array, 76, 291, 435
ASCII codes, 207–8, 291, 613–16
assignment operator, 5, 16
assignment statement, 5–6, 16



atan2, 25
audio input recording from microphone,

program for, 339, 340
augmented matrix, 100
axes, 352, 363
axes graphic object, properties of, 361
axes objects, 351
axes properties and figure edit windows, 376
axis, 42, 67, 140, 355
axis action, 355
axis graphic objects, built-in functions

concerned with, 355

B ¼ double(A), 292
back electromotive force, 593
background option, 395
bandlimited signal, 479
band-pass filter, 276, 384
frequency response of, 368
program to plot frequency response of, 384

bandwidth (BW), 280, 368, 457, 479
bar, 161, 191, 347, 352
barh, 352
bartlett, 497
base ten to binary conversion, 205–7
battery, 40–1
BCD (binary coded decimal), 240
beep on beep off, 336
bias, 215
BIBO (bounded-input-bounded-output), 536
bin2dec, 212
binary addition, 223, 226
binary arithmetic, 211–14
binary character strings, MATLAB functions

concerned with, 212
binary coded decimal (BCD), 240
binary data
binary numbers, 205
ASCII codes, 207–8
base ten to binary conversion, 205–7
binary arithmetic, 211–14
floating point notation, 214
storage allocation, 209–11

Boolean algebra, 201–5
Boolean functions, 218–26
logic gates, 216–18
quantization error, 226–36

binary digits, 205
binary numbers, 205
addition of two binary numbers, 222
ASCII codes, 207–8
base ten to binary conversion, 205–7
binary arithmetic, 211–14
floating point notation, 214
double precision, 216
single precision, 214–16

storage allocation, 209–11
binary operations, demonstration of, 213
binary output, 326–8
bitand, 212
bitcmp, 212
bitget, 212
bitmax, 212
bitn, 326
bitor, 212
bits, 205
bitset, 212
bitshift, 212
bitxor, 212
blackman, 497
blanks(n), 292
Block Parameters Window, 579
bode, 539, 540
demonstration of using, 540

bodemag(LTI_sys), 539
bodeplot(LTI_sys), 539
bode plot, 540
Boltzmann constant, 45
Boolean algebra, 201–5
application of, 204
axioms of, 202
basic operations of, 202, 204

Boolean functions, 218–26
box on, 355
branch line, 578
break, 163, 164, 177, 191
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breakpoint, 424
bubble, 218
buffer, 282, 283
bugs, 67
built-in functions, 12, 186–8, 311, 320–1
concerned with axis graphic objects, 355
concerned with camera viewpoints, 398
concerned with character data, 292
concerned with checking character data,

294
concerned with figure graphic objects, 348
concerned with movies, 399
concerned with numeric data, 209
concerned with plotting, 385

butter, 564
byte, 207

C ¼ cell(N,M), 310
C ¼ cellstr(s), 310
C ¼ coeffs(f,x), 445
c ¼ eq(a,b), 443
C ¼ fieldnames(S), 302, 310
C ¼ mod(A,B), 445
C ¼ num2cell(A), 310
C ¼ struct2cell(S), 310
C ¼ sym2poly(f), 445
C ¼ {s1 s2 . . . }, 292, 310
[C{:}] ¼ deal(S.field), 310
camdolly(dx,dy,dz), 398
camera series, 398
camera viewpoints, built-in functions

concerned with, 398
camlookat, 398
camorbit(dh,dv), 398
campan(dh,dv), 398
camroll(da), 398
camva(va), 398
camzoom(zf), 398
capacitance, 272
capacitor, 270, 271
Cartesian space, 120
cat(dim,A1,A2, . . . ), 106
causal model, 506

causal system, 542
cceps, 494
cd(‘new_folder’), 335
ceil, 156, 443
cell, 309
cell2struct, 302
cell arrays, 292, 308–11
MATLAB functions concerned with, 310

celldisp(C), 310
cellplot(C), 311
cellplot, 310
cellstr(s), 292
char*1, 326
character strings, 295–6
character data, 291
built-in MATLAB functions concerned

with, 292
cell arrays, 308–10
character strings
creating, 291–5
manipulating and searching, 295–7

structure arrays, 297–308
characteristic equation, 123, 510, 549
of DTS, 555

characteristic mode, 511
of LTI DTS, 550

characteristic polynomial, 123, 510, 549, 555
character strings, MATLAB functions for

creating, 292
charge, electron, 35
char built-in MATLAB function, 207
chebwin, 497
cheby1, 564
checkcode, 416, 431
chevy2, 564
children of figure, 351
circshift(A,[N M]), 92
circuit analysis, 109–18
cla, 355
class (built-in function), 210
class double, 435
clc, 10, 19, 27
clear, 13, 436
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clear all, 14, 19, 27
clear variable_name, 13, 27
clf, 349
clock, 27
close, 349
closed-loop control, 597
closed-loop system motor speed transient

response, 598
code analyzer, 63–4
code analyzer report, 417
code folding, 413
code for sub-interval, 229
cofactor matrix, 97
colon operator, 6
colorbar, 381
color map, 380–2, 389
Colormap Editor Window, 382
column index, 76
column vector, 77
comet(Y), 353
command format, 19
Command History Window, 2, 9–10
Command Line mode, see immediate mode
command prompt, 8
Command Window, 2, 8, 16
comment statement, 17
common mode, 455
rejection, 455

compass, 353, 372, 373
complement, 201
completing the square, 244
complex conjugate, 245
complex exponential Fourier series, 265, 477
complex Fourier series coefficients, 265, 478
complex numbers, 243, 244
AC circuit analysis, 273–80
energy, 267–70
Euler’s identity, 257–61
Fourier series, 261–7
impedance, 270–3
located in the complex plane, 254
operational amplifier (Op-Amp), 280–4
origin of, 243–7

polar form and complex arithmetic, 254–7
rectangular form and complex arithmetic,

247–54
complex plane, 254
component circuit analysis, 110–14
cond, 133, 140
condition number of a matrix, 132
conditional breakpoint, 424, 428
setting, 428

condition number, 130
conductance, 41
conformable to addition, 81
conformable to multiplication, 81
conjunction, 201
continue, 163, 164, 177, 191, 427
continuous time systems (CTS), 506–9
Control Key, 380
conv, 534, 557, 566
conversion character, 319
convolution
LTI continuous time systems, 531–6
LTI discrete time systems, 556–7

convolution integral, 533
convolution operation, 533
copyfile(‘source’,‘destination’), 335
corrcoef, 91
correlation coefficient, 91
Coulomb’s Law, 38
current, 35–8
Current Folder, 33–4
Current Folder Window, 2–3, 8–9
current source, 41
custom blocks, creating, 591–8
customizing a figure, 378
custom library, creating, 593
cva ¼ camva, 398

d ¼ size(X), 80, 436
D ¼ sort(C), 310
data acquisition (DAQ) system, 227, 233, 332,

481
data cursor, 377
data reconstruction, 233
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data types, MATLAB, 17
dbclear, 427
dbcont, 427
dbdown, 427
dbmex, 427
dbquit, 427
dbstack, 427
dbstatus, 427
dbstep, 427
dbstop, 427
dbtype, 427, 612
dbup, 427
dct, 494
deblank(s), 295
debugging, 413
run-time error debugging, 417
error and warning messages, 421–30

syntax error, 413–17
dec2base, 212
dec2bin, 212
dec2hex, 212
decoder, 240
default MATLAB desktop, 1–4, 8–12
delay, 560
delayor, 560
delete(h), 349
delete built-in, 337
delete filename, 335
demo, 23, 27
deMorgan’s theorem, 204
truth table for proof of, 204

derivative, two-sided, 458
det, 95, 140, 451
determinant, 95, 97
detrend, 494
DFT to noisy data, application of, 491
diag, 77, 80, 140
diagonal matrix, 77
diff, 457
difference equation, 542
differential amplifier circuit, analyzing, 453
differential equation, solving, 582
differentiation, 457–63

differentiator, 538
digital circuit, 201
digital filter, frequency response of, 561
digital filter design, built-in functions for, 564
digital signal processing, 481
digital to analog converter (DAC), 233, 357,

362
digits, 450
diode (pn junction) characteristic, 44, 45, 137
dimension, 75
dimpulse, 563
dinitial, 563
dir(‘path name’), 304, 311
Dirac delta function, 462
directive statement, 19
direct realization, 585
Dirichlet conditions, 478
discrete convolution, 534
discrete Fourier transform (DFT), 481–92
inverse IDFT, 492–4

discrete linear convolution, 557
discrete time index, 357, 481
discrete time system (DTS), 108, 542–3
discriminant factor, 244
disjunction, 201
disp, 19, 27, 113, 317, 320
displacement current, 272
display, 413
distributive property, program to prove, 203
dlmread, 332, 333
import data with, 333

dlmwrite, 321, 322, 323
doc, 140, 362, 465
doc bode, 540
doc figure, 348
doc function_name, 26
doc impulse, 530
doc input, 415
doc legend, 359
doc mesh, 386
doc print, 363
doc surf, 389
doc sym/subs, 444
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doc text, 365
dot, 140
dot product, 80
double, 326, 439
double precision, 14, 214
drawnow, 353, 395
dstep, 563
dtf2ss, 566
DTS, program to operate, 554
dynamic range (DR), 232, 235
of ADC, 232

dynamic systems, 582–91

echo, 419, 431
edit GUI, 374–80
Editor Window, 4, 34
eig, 125, 140, 451
eigenvalues and eigenvectors, 123–6
electric current, 35
electric field, 38
electric permittivity, 38
electrostatic force, 38
elementary arithmetic operations, 15
elementary math functions, 21–3
elementary row operations, 100
element index, 6
element of the matrix, 76
ellip, 564
ellipsis, 17
empty matrix, 103
end statement, 59
energy, 267–70
enhanced metafile (.emf), 7
eps, 134
erasemode property, 395
error, 421, 431
breakpoints, 424, 428, 429
and warning messages, 421–30

escape characters, 318, 319, 359
Euclidian norm, 121
Euler’s identity, 256, 257–61
Euler’s method, 182–4
eval, 51–2, 67, 296

even parity, 238
execution status button, 63
exp, 47, 49
explicit form, 509
expm(A), 451
exponential Fourier series, 477
exponential function, 549
eye, 80, 82, 140
ezplot, 443, 456

f ¼ collect(f), 443
f ¼ collect(f,x), 443
f ¼ expand(f), 443
f ¼ fullfile(‘disk_name’, ‘folder1_name’,

‘folder2_name’, . . . ,‘file_name’), 320
F ¼ im2frame(X), 399
F ¼ ls, 335
f ¼ poly2sym(C,x), 445
FaceAlpha, 389
false, 151
in Boolean algebra, 201

farad, 272
fast Fourier transform (fft algorithm), 487,

496, 566
fclose(file_ID), 321
feather(U,V), 353
feedback, 546, 596
field width, 320
figure, 347–52
modifying a part of, 403

figure graphic objects
built-in functions concerned with, 348

file management, 334–6
fileread, 331
file_ID, 320
file_ID ¼ fopen(‘file_name’), 321
fill(X,Y,c), 353
fill3, 392, 398
filter, 544, 566
find, 80, 153
findstr(s1,s2), 295
finite impulse response (FIR) DTS, 544
finite word length effects, 207
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fir1, 564
fir2, 564
Fircls, 564
FIR discrete time system, 545–6
program to run, 546

Firls, 564
Firpm, 564
fix, 140, 443
flags, 320, 440
fliplr(A), 92
flipud(A), 92
floating point arithmetic, 449
versus rational arithmetic, 441–2

floating point notation, 214
double precision, 216
single precision, 214–16

floor, 443
fminsearch, 63, 67, 89, 180
fopen, 320, 322
forced response, 509
forcing function, 506, 542
for loop structure, 157
median filtering, 171–5
probability, 164–71

format, 14, 27, 318
forward biased, 44–5
Fourier series, 261–7
program to construct a signal with, 263

Fourier series coefficients, 465
Fourier transform, 474
fplot, 353
fprintf, 113, 192, 317, 321, 323
frac, 443
frames, 399
frequency, 258
frequency domain, 478, 494
frequency resolution, 482
frequency response of digital filter, program

to obtain, 562
frequency response of band-pass and

low-pass filter, program to plot, 367
freqz, 563
frewind, 327, 330

Frobenius norm, 131
fsolve, 135, 140
full-adder, 224
fullfile, 323
function expression, 49, 50
function format, 19
function handle, 49
functions, 48, 59–63
anonymous function, 49–50
concerned with matrix algebra, 451
concerned with symbolic expressions,

443
concerned with symbolic variables, 436
concerned with the frequency response of

an LTI CTS, 539
Current Folder, 33–4
eval function, 51–2
function function, 59–63
inline function, 49, 50–1
of matrix, 92
nested function, 58–9
primary function, 52–6
private function, 57–8
and programs, 33
sub-function, 57
of symbolic variables, 445

function_name, 49, 53
fundamental frequency, 262, 478
fwrite(file_ID, A, ‘precision’), 321
fwrite, 326
fzero, 63, 67
f_check ¼ exist(‘A’), 321
f_path ¼ which(‘filename’), 330

[g,r] ¼ subexpr(f,r), 443
gate function, 459
Gaussian distributed random number

sequence, 170
Gauss–Jordan elimination, 100–3
gausswin, 497
gca, 355, 374
gcf, 349, 359
gco, 349
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geometric series, 446
get(0) statement, 351
get(h), 349
getfield(S,‘field’), 302
Gibbs’ oscillation, 264
ginput, 369
global, 55, 67
global minimum, 178
global variables, 55
goertzel, 494
graphical user interface (GUI), 2, 575, 582
graphic objects placed on figure and axes,

352–4
graphics
2-D plots, 352–63
3-D line plots, 382–5
3-D rotation, 391–4
3-D surface plots, 385–91
color map, 380–2
edit GUI, 374–80
figure, 347–52
movies, 394–403
multiple 2-D plots, 363–74

grid(ax_h, ‘on’), 355
grid on, 27
grid on; grid off, 355
gtext, 353, 361

H1 (first help line), 55
H¼freqresp(LTI_sys,w,units), 539
half-adder (HA), 223
hamming, 497
handle, 338, 374
of figure, 348

hann, 497, 498
Hann window function, 498
help, 26, 27, 35, 55, 362
help sym/eq, 443
henry, 270
hexadecimal (base 16) digits, 211
hidden bit, 214
hidden off, 385
hidden on, 385

high input impedance, 280
hilbert, 494
hist, 169
histogram, 160–1
hold function, 359
homogeneity property, 114
homogeneous difference equation, 542
homogeneous equation, 97, 506
horzcat(A1,A2, . . . ), 106

I ¼ find(A), 191
I ¼ hist(X,N), 192
I ¼ randi(N,M,imax), 191
icceps, 494
idct, 494
ideal digital filters, 563–5
identifier, 319
identity matrix, 81
if–elseif–else–end structures, 154–7
ifft, 492, 493, 566
demonstration of using, 493

IIR discrete time system, program to run, 547
image, 353, 399
imaginary axis, 254
imaginary number, 245
imaginary part, 245
immediate mode, of MATLAB operation, 3
impedance, 270–3
of capacitor, 273
of inductor, 271
of resistor, 273

implicit form, 509
importdata, 334
impulse function, 461, 462, 530, 566
impulse response, 543
LTI continuous time systems, 527–31
LTI discrete time systems, 555–6

impz, 563
imwrite(X,‘FileName’,‘fmt’), 400
inductance, 270
inductor, 270
inf, 413
infimum of R, 130
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infinite impulse response (IIR) DTS,
546

initial, 530, 566
initial conditions (ICs), 506, 542
inline function, 49, 50–1
inner product, 80
input function, 42, 67, 328–34
arguments, 53
finding and plotting, 277

instrumentation amplifier, 284
int, 326, 463
int2str, 212, 292
integral of the circuit input, 282
integration, 463–8
integration constant, 181
integrator, 282, 538
interp2, 91
intn, 326
inv, 95, 102, 140, 451
invalid breakpoint, 425
inverse discrete Fourier transform (IDFT),

492–4
inverse matrix, 95, 97
inverting amplifier, 281
isa(x,‘classname’), 294
iscell(C), 310
iscellstr(C), 294, 310
ischar(s), 294
isdir(fullfile(‘C:’,‘My_MATLAB_Programs’

¼ isdir(‘Music’), 334
isempty, 151
isequal, 151, 191, 302
isfloat, 151
isinteger, 151
iskeyword, 13, 27
isletter(s), 294
islogical, 151
isscalar(s), 294
isspace(s), 294
isstrprop(s,‘type’), 294
isstruct(S), 302
isvarname, 13, 27
isvector(v), 294

kaiser, 497
keyboard, 191, 420, 431
keyboard mode, 420
key words, 13
Kirchhoff’s Current Law (KCL), 109
Kirchhoff’s Voltage Law (KVL), 109, 278
Kronecker delta function, 543

L ¼ and(A,B), 191
L ¼ feof(file_ID), 330
L ¼ not(A), 191
L ¼ or(A,B), 191
L ¼ sign(A), 191
L ¼ xor(A,B), 191
Laplace transform, 475
leakage error, 497
least mean error squared sense model, 89–90
least significant bit (LSB), 207, 369
least squares, method of, 86–91
left channel plot graphic object, 360
left-sided derivative, 458
legend, 353, 359, 377
length, 140
limit, 458
line(X,Y), 353
linear and time invariant (LTI), 506, 543
linear coding methods, 229
linear equations
accuracy of the solution of system of, 139
solution of set of, 93–103

linearity property, 114, 506
linearly dependent, 119
linearly independent, 119
linear model, 506
linear regression, 90
linear transformations
eigenvalues and eigenvectors, 123–6
rotation, 121–3
vector space, 118–21

linear vector space, 118
line function, 369
line objects, 351
linspace, 79, 140
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loading down the voltage source, 286
local minima, 178
local variables, 33, 55
log10, 140
logical, 151
logical operators, 152–4
logical vectors, 220–1
logic gates, 216–18
circuit diagram for connection to, 216

loglog( . . . ), 353
lookfor, 26, 27
loop analysis, 116–18
Lorentz Force Law, 38
lower(S), 295
low output impedance, 280
low-pass filter, 279, 281, 282
frequency response of, 368
ODE function for, 523
program to find the complete response of,

521
LTI continuous time systems (LTI CTS),

response of, 509
convolution, 531–6
impulse response, 527–31
stability, 536
state variables, 514–27
steady-state response, 536–42
zero-input response, 510–13
zero-state response, 513

LTI discrete time systems, response of, 543–9
convolution, 556–7
impulse response, 555–6
stability, 557
state variables, 551–5
steady-state response, 557–63
zero-input response, 549–50
zero-state response, 551

LTI system, program to find the impulse and
step responses of, 531

ltiview(LTI_sys), 539

M(k) ¼ getframe, 399
M ¼ dlmread(‘filename’), 330

M ¼ load(‘filename’), 330
M ¼ moviein(N), 399
machine code, 64
magnetic field, 37
magnetic permeability, 37
magnetostatic force, 38
magnitude, 121, 255
magnitude frequency response, 276
finding and plotting, 276

magnitude spectrum, 266
plotting, 267

major diagonal, 77, 82
MAPLE system of programs, 435
mat-file, 324–5
MATLAB
arithmetic operations, 84
binary operations, 213–14
built-in functions, 12
commands, 379
data classes, 210
data types, 17
default desktop, 1–4, 8–12
dock and undock window, 9
elementary math functions, 21–3
help facility, 23–6
meaning of, 1
modes, 3–4
purpose of windows, 2–12
Quick Start, 4–8
quitting, 3
scripts, 4
statements, 16–21
Symbolic Math Toolbox, 435
variables, 12–16

matrix, building, 105–9
matrix arithmetic, 80–6
matrix definition, 75–80
matrix manipulations
matrix, building, 105–9
sub-matrix, extracting, 103

max, 43, 67, 80
maximum quantization error, 231
mean, 91, 140, 169
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median, 171–5
median filtering, 171
menu, 328
mesh, 109, 385
mesh plot, 389
program to produce, 388

meshz, 385
method of least squares, 86–91
method of steepest descent, 178–81
m-file, 4, 33
microphone, 227
min(X), 80
minterm, 223
mitral valve, 333
mkdir(‘folder_name’), 335
mldivide, 102, 140
mlint, 416, 431
mlint, 67
M-Lint program, 63, 414
mlintrpt, 416, 431
modal matrix, 125
mode, 91
Model Explorer Window, 580
model files, 575
more on (off), 321
most significant bit (MSB), 207, 230, 370
motor speed response under load changes, 597
movefile(‘source’), 335
movie(M), 394–403, 399
built-in functions concerned with, 399
demonstration of creating, 401

mrdivide, 140
multiple 2-D plots, 363–74
multiple axes placement on a figure
program to demonstrate, 364

multiplication, 560
murmurs, 334
music, left and right channels of
program to plot segments of, 358

music signal, 357

N ¼ hist(Y,M), 353
N ¼ length(X), 80

namelengthmax, 13, 27
NaN, 413
natural frequencies, 511
program to find, 512

natural response, 509
negation, 201
nested function, 58–9
new, 444
nibble, 207
nichols(LTI_sys), 539
nodal analysis, 115–16
none option, 395
noninverting amplifier, 283
nonlinear differential equation, 508
nonlinear equations, system of, 135–9
nonsingular matrix, 96
non-stationary signals, 499–505
norm, 119, 120, 140
normally distributed random number

sequence, 170
normal option, 395
normed vector space, 119
norm of A, 131
NOT gate, 152, 201
symbol for, 217

[num,den] ¼ numden(f), 445
num2str, 212, 292
numerical integration, 181
built-in integration functions, 186–8
Euler’s method, 182–4
trapezoidal rule, 185

nyquist, 539, 540
demonstration of using, 540

object, 210
object properties, 362
observability matrix, 552
obsv, 566
odd parity, 238
ODE function, 536
for low-pass filter, 523

odeset, 566
offline processing, 543
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Ohm’s Law, 41
old, 444
ones, 80, 140
open(‘file_name’), 321
open-loop control, 596
operational amplifier (Op-Amp),

280–4
operator, 140
optimizer, see global minimum
OR gate, 152, 201, 217
symbol for, 217

origin, 120
orthogonal, 120, 127
outliers, 171
output, 317
arguments, 52, 53
binary output, 326–8
equation, 551
text output, 317–26

overloaded, 442

pan, 385
parent of figure, 351
parity bit, 238
Parseval’s relation, 269
parsing, 64
pass-band of a filter, 367
passive devices, 270
path, 66
path2rc, 66
pathdef, 65
pathtool, 66
pause(t), 191
pause, 160, 372
pause built-in function, 337
p-Code, 64–5
pcode, 67
percent sign, 319
period, 258
periodic function of w, 561
permanent magnet DC motor, Simulink

model of, 593–5
phase angle, 258
phasor, 260

phonocardiogram, 332
pie(X), 353
plot, 6, 27, 43
plot3, 382, 383
plotedit on, 353
plot function, 347, 355
plotmatrix(X,Y), 354
plots, 352, 374
2-D plots, 352–63
edit of, 377
multiple 2-D plots, 363–74

plotting, built-in functions concerned with,
385

plotyy, 192, 354, 365
polar(theta,r), 354
polar form and complex arithmetic,

254–7
polar function, 368
polar plots, program to obtain, 369
poles, 386, 537, 558
pole-zero plot, 387, 559
program to obtain, 537, 559

poly, 252, 451
polyfit, 89, 90, 91
polynomial, roots of
program to find, 253

position ¼ ftell(file_ID), 330
positive, 436
positive gain amplifier, 282
positive logic, 201
postmultiply, 81
power, 41
power spectral density, 501
power spectrum, 479
precision, 320
premultiply, 81
pretty(f), 443
primary function, 49, 52–6
print, 362, 612
print copy of script, obtaining, 612
private function, 57–8
probability, 164
Product Help, 362
product term, 223
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program
for AC circuit analysis, 279
application of discrete convolution to

approximate continuous convolution,
535

application of the DFT to noisy data, 491
application of the fft algorithm, 487
application of the FFT algorithm, 496
for audio input recording from microphone,

339, 340
to building continuous piecewise linear

function of time, 108
code analyzer, 63–4
to compare a DFT computation to actual

Fourier series coefficients, 490
for component analysis of circuit, 112
to compute the DFT of x(n), n ¼ 0, 1, . . . ,

N-1, 483
to construct signal with Fourier series, 263
creating plot of function of time, 4–5
for creating scalar structure variable CKT_3

and reports, 298–9
Current Folder, 33–4
to demonstrate multiple axes placement on

a figure, 364
to demonstrate signal frequency ambiguity,

486
to demonstrate various MATLAB binary

operations, 213
demonstrating using of subplot, 259
demonstration of text input, 296–7
demonstration of using the function ifft, 493
demonstration of using the functions bode

and nyquist, 540
development, 34, 41–8
DiodeCharacteristic_v1.m, 54–5
diode_characteristic.m, 45
evaluating quadratic function of 2(2 matrix,

136
evaluating sine function using its Taylor

series, 162–3
to find and plot the 2n roots, 373
to find roots of a quadratic polynomial, 251
to find SNR and DR

to find the AC to DC converter output, 526
to find the complete response of a low-pass

filter, 521
to find the impulse and step responses of an

LTI system, 531
to find the natural frequencies and the zero-

input response, 512
to find the roots of a polynomial, 253
to find the unit pulse and unit step

responses, 524
to finding amount of charge, passed through

diode, 188
to finding bin number of x in the range [a,

b], 156–7
to finding diode voltage, 137–8
to finding histogram of sine wave,

160–1
to finding integral of sinc(t) using Euler’s

method, 183–4
to finding linear regression of data set,

89–90
to finding mean, variance, and histogram of

set of numbers, 169–70
function defines the function to be plotted,

60–1
function to compute the vector state

function, 520
function to find and play a WAV file, 306
and functions, see functions
general purpose plotting function, 60
method of steepest descent, 179–80
for mesh analysis of circuit, 117–18
for nodal analysis of circuit, 116
nonlinear KVL function, 138
to obtain a pole-zero plot, 537
to obtain a pole-zero plot given the transfer

function, 559
to obtain the frequency response of a digital

filter, 562
to obtain the spectrogram of a signal, 505
ODE function, 536
for the low-pass filter, 523

to operate a DTS using two different
descriptions, 554
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p-code, 64–5
to passing anonymous function handle to

function function, 63
piano key sound, 172–5
piecewise linear plot, 36
to plot a quadratic function, 246
to plot frequency response of a band-pass

filter, 384
to plot frequency response of band-pass and

low-pass filter, 367
to plot segments of left and right channels

of music, 358
to plot the spectrogram of a sinusoidal

pulse, 502
to produce a mesh plot, 388
to produce plots of a signal, sampled signal,

and reconstructed signal
to produce plots of signal, sampled signal,

and reconstructed signal, 374
to prove distributive property, 203
to report inventory of circuit given in mat-

file, 325
to rotate an object in 3-D space, 393
to run an FIR discrete time system, 546
to run an IIR discrete time system, 547
saved as rotate.m to rotate a vector, 122
setting up problem, 136
to simulate the activity of a serial adder, 371
to suggesting action when approaching

intersection with traffic lights,
189–90

test the function function f_plot, 61–2
toolboxes, creating, 65–6
use of for loops to multiplying two matrices,

158–9
using random number generator to simulate

tossing a coin, 166
program flow control
for loop structure, 157
median filtering, 171–5
probability, 164–71

if–elseif–else–end structures, 154–7
logical operators, 152–4

method of steepest descent, 178–81
numerical integration, 181
built-in integration functions, 186–8
Euler’s method, 182–4
trapezoidal rule, 185

relational operators, 149–52
switch–case–otherwise structure, 188–90
while loop structure, 176–7

program mode, of MATLAB operation, 4
propagation delay, 217
propedit(h), 349
proper (improper) function, 537
pseudorandom number generator, 165, 170
pulmonary valve, 333
pzplot, 537, 566

[Q,R]¼quorem(A,B), 451
quad, 186, 188, 192, 269
quad1, 67
quad2d, 188, 192
quadl, 63, 188, 192
quadratic function, program to plot, 246–7
quadratic polynomial, roots of, 251–2
program to find, 251

quantization error, 226–36
query statement, 17
quit, 3, 12, 19, 27

R ¼ rand(N,M), 191
R ¼ randn(N,M), 192
rand(N,M), 80
rand, 165
randi, 168
randn, 168–9, 170
rank, 119, 140
rceps, 494
real, 436
realization of the Boolean function, 221
real part, 245
reconstruction equation, 478, 492
record, 300
record ¼ audiorecorder(fs,nBits, nChannels),

336
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rectangle(‘Position’, [x y w h]), 355
rectangle objects, 351
rectangular form, 245
and complex arithmetic, 247–54

rectangular matrix, 77
rectangular window, 495
rectwin, 497
regexp(s1,pat), 295
regexpi(s1,pat), 296
regexprep(s1,pat,s2), 296
relational operators, 149–52
repmat, 106, 299, 311
reserved words, 13, 16
reshape, 106, 136
resistance, 41
resistive circuit analysis, 109
component circuit analysis, 110–14
loop analysis, 116–18
nodal analysis, 115–16

resistor, 40–1, 270
resolution of ADC, 232
response, 506
restoredefaultpath, 66
return, 164, 191, 420
reverse biased, 45
right-sided derivative, 458
rmdir(‘folder_name’), 334
rmfield(S,‘field’), 302
rmpath, 66
rng(‘default’) statement, 166
robust, making program, 156
root mean square (RMS) value, 268
root object, 351
roots, 252, 589
of a polynomial, 252

roots of a polynomial, MATLAB program to
find, 253–4

rot90(A,K), 106
rotate an object, function view to, 398
rotation, 121–3
round, 443
rounding, 214
round off errors, 449

row index, 76
row reduced echelon form, 101
row vector, 77
rref, 101, 140, 451
run-time error debugging, 417
error and warning messages, 421–30

S1 (sound), 333
S2 ¼ orderfields(S1), 302
[S.fields] ¼ deal(v), 302
S ¼ cell2struct(C,fields,M), 310
s ¼ char(A), 292
s ¼ char(C), 292
s ¼ char(s1, s2, . . . ), 292
S ¼ dir(‘folder_name’), 334
S ¼ ferror(file_ID), 330
S ¼ fgetl(file_ID), 330
S ¼ fgets(file_ID), 330
S ¼ fileread(‘filename’), 330
s ¼ solve(‘f(x1,x2,x3, . . . ) ¼

g(x1,x2,x3, . . . )’,‘x1,x2’.), 311
s ¼ strcat(s1, s2, . . . ), 292
s ¼ strvcat(s1, s2, . . . ), 292
s ¼ [s1 s2 . . . ], 292
sample time increment, 481
sampling frequency, 108, 481
Sampling Theorem, 485
saturation current, 45
save, 321, 323, 324
saveas, 7, 27, 349
savepath, 66
sawtooth wave, 263
scalar, 77
scalar structure variable, 297–302
scatter, 354, 376
scatter diagram, 86–7
scatter plotting, 374
scope (oscilloscope) block, 585
screen image, editing, 611
script, 4
second-order dynamic system, unit step

response of, 585
semilogx, 354
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semilogy, 354
serial adder
program to simulate the activity of, 371

set, 349, 351, 374
setfield(S,‘field’,v), 302
shading, 389
illustration of, 390, 391

short time Fourier transform (STFT), 500–1
siemens, 41
signal, sampled signal, and reconstructed

signal
program to produce plots of, 374

signal analysis, 477–80
discrete Fourier transform, 481–92
inverse discrete Fourier transform,

492–4
non-stationary signals, 499–505
Windows, 494–9

signal frequency ambiguity, program to
demonstrate, 486

signals and systems, 477
signal variance to noise variance ratio (SNR),

232, 235
sign bit, 214
significand, 214
sign magnitude notation, 215
simulation of model with graph and

workspace output., 581
Simulink simulation, 575
custom blocks, 591–8
dynamic systems, 582–91
environment, 575–82
Fcn block, utility of, 582
graphical user interface (GUI), 575
Library Browser, 576

sinc, 183
single, 326
single precision, 214
single step button, 426
singular matrix, 96
singular values, 127
decomposition, 126–8

size, 140

solve, 306, 451
sort(A,dim,mode), 106
sortrows(A), 106
sound, 172, 192, 336–41
functions concerned with, 336

sound built-in function, 337
soundsc, 172, 192, 336
source code, 64
sparse matrix, 112
spectrogram, 501
spectrogram of a signal, program to obtain,

505
spectrogram of a sinusoidal pulse, program to

plot, 502
spectrum, 478
sphere, 354
s-plane, 386, 537
spline, 91
sqrt_finder.m, script of, 414
square matrix, 77
ss2tf, 566
sscanf(s,‘format’), 296
ss function, 566
stairs, 354, 361, 376
stairs plotting function, 374
standard breakpoint, 424
standard breakpoint location, 424
standard deviation, 169
state equation, 551
state of the system, 506
State-Space block, 589
state variables
LTI continuous time systems, 514–27
LTI discrete time systems, 551–5
of LTI DTS, 551

state vector, 551
stationary signals, 499–500
status ¼ fseek(file_ID,offset,origin), 330
std, 91
steady-state response
LTI continuous time systems, 536–42
LTI discrete time systems, 557–63

stem, 140, 347, 354
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step, 530, 566
step in button, 426
step out button, 426
step size, 178
stepz, 563
storage allocation, 209–11
str2num, 212
strcmp, 19, 27, 212, 296
strcmpi, 212, 296
stream modifiers, 365
strfind(s1,s2), 296
strictly proper function, 537
strjust(s,format), 295
strncmp(s1,s2,N), 296
strncmpi(s1,s2,N), 296
strrep(s1,s2,s3), 295
strtrim(s), strtrim(C), 295
struct, 302
struct2cell, 302
structure arrays, 297–308
sub-function, 57
sub-matrix, extracting, 103–5
subplot, 259, 354, 365
program demonstrating using of,

259
subs, 443, 444
sum, 140
summation block, 578
sum-of-products form, 224
superposition principle, 113–14
supremum of R, 130
surf(X,Y,Z,C), 385
surface(X,Y,Z,C), 385
surface objects, 351
surfc(X,Y,Z,C, . . . ), 385
surfl(X,Y,Z,C, . . . ), 385
surfnorm(X, Y, Z), 385
svd, 128, 140, 451
sweep frequency response, animation to

show, 397
switch–case–otherwise structure, 188–90
sym, 440
symbolic computation, 449

symbolic math, 435
algebra, 450–7
differentiation, 457–63
integration, 463–8
symbolic objects and expressions, 435
variable precision arithmetic, 449–50

symbolic Math Toolbox, 435
symbolic MATLAB statements, 435
symbolic objects and expressions, 435
syms, 436, 437, 440
symsum, 445
symvar, 439
syntax error, 413–17
system input, 506
system of nonlinear equations, 135–9
system output, 506

T ¼ toc, 191
taylor, 446
text(x,y,‘string’), 354
text objects, 352
text output, 317–26
tf2ss, 566
thermal voltage, 45
tic, 160, 191
time domain, 494
time invariant model, 506
time varying model, 506
timing diagrams, 372
title, 7, 27, 354
title character string, 359
toc, 160
Toolbars Preferences Window, 10
tool box, 65–6
transducer, 227
transfer Fcn block, 589
transfer function, 275, 537
of LTI DTS, 558

transmission line, 607
transpose, 81
trapezoidal rule, 185
tricuspid valve, 333
trigonometric Fourier series, 262
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tril(A), 92
triu(A), 92
trivial solution, 97
true, 151
in Boolean algebra, 201

truncating the fraction, 214
truth table, 203
two-sided derivative, 458
type, 44, 67, 612
type m-file, 320

ubitn, 326
uint, 326
uint8, 214
uintn, 326
unitary matrix, 127
unit pulse, program to find, 524
unit pulse response, 555
unit step function, 459, 460, 494, 548
unit step responses, program to find, 524
universal gate, 239
unzip(‘zip_file_name’), 335
upper(s), 295
userpath, 66

validatestring, 294
var, 91, 169, 234
variable precision arithmetic (VPA), 435–50
variables, MATLAB, 12–16
variance, 169
vector, 6
vectorizing, 85, 186
vector space, 118–21
vector state function, function to compute, 520
vertcat(A1,A2, . . . ), 106
view, 383, 385, 398
visio, 611
volt, 39
voltage, 38–9
voltage resolution of ADC, 231
vpa, 450

warning, 424, 431
watt, 41

WAV file, 304
function to find and play, 306

wavplay, 304, 311, 336
wavread, 304, 311
wavwrite, 172, 192, 336
which, 43
while loop structure, 176–7
who, 47–8, 67, 581
Windows, 171–2, 494–9
workspace, 3

[X Y] ¼ ginput, 353
[X Y] ¼ meshgrid(x,y), 385
XData property, 395
[X,map] ¼ frame2im(F), 399
[X,map] ¼ imread (‘FileName’), 400
xlabel, 7, 27, 354, 359
xlim, 383
xor operator, 152
xor option, 395
X_lim¼xlim, 355

y ¼ ceil(x), 436
y ¼ char(x), 436
y ¼ conj(x), 436
y ¼ double(x), 436
y ¼ factor(f), 443
y ¼ fix(x), 436
y ¼ floor(x), 436
y ¼ frac(x), 436
y ¼ imag(x), 436
y ¼ intn(x), 436
y ¼ limit(f,x,a), 445
y ¼ limit(f,x,a,‘direction’), 445
Y ¼ mean(X), 192
y ¼ median(X), 192
y ¼ real(x), 436
y ¼ round(x), 436
y ¼ simple(f), 443
y ¼ simplify(f), 443
y ¼ simplify(f,N), 443
Y ¼ sinc(X), 192
y ¼ sym(0x0, 0property0), 436
y ¼ symsum(f,x), 445
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y ¼ symsum(f,x,a,b), 445
y ¼ symvar(f), 436, 443
y ¼ sym x property, 436
y ¼ taylor(f,n,a), 445
y ¼ uintn(x), 436
Y ¼ var(X), 192
Y ¼ wavrecord(N,fs), 336
YData property, 395
ylabel, 7, 27, 354, 359
ylim, 383
Y_lim¼ylim, 355

zero-input response, 509, 543
LTI continuous time systems, 510–13

LTI discrete time systems,
549–50

program to find, 512
zeros, 80, 140, 245, 386, 537, 558
zero-state response, 509, 543
LTI continuous time systems, 513
LTI discrete time systems, 551

zip(‘zip_file_name’, ‘name1’, . . . , ‘nameN’),
335

zlim, 383
zoom feature, 333
zplan, 558
z-plane, 558
Z_lim¼zlim, 355
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