

Ye.A. Gayev, B.N. Nesterenko

MATLAB

for Math and Programming

Textbook
2

nd
 edition corrected and improved

Kyiv 2015

 2

ББК 22.19с51

УДК 004.9

Г13

Reviewed by V.N. Podladchickov (Dr. Techn. Sci., Prof., National

university "Kiyv Polytechnic Institute") and V.A. Kalion (PhD, Taras

Shevchenko National University)

Approved by Computer Controlling System Department of National

Aviation University (Kyiv) June 6, 2006.

Gayev Ye.A., Nesterenko B.N. MATLAB for Math and

Programming: Textbook, 2
nd

 eddition.– Kyiv: Nat. Aviation Univ,

2015. – 99 p.

This text book explains MATLAB, recently adopted by Ministry of

Education for Ukrainian universities, both as valuable mathematical

environment and a programming tool. Basic ideas of structured

programming and theory of algorithms are illustrated by means of

keynote and some original problems that allow students to quickly

master developing their own programs with dialogue and graphic

interface. It is intended for younger-year students as introductory

modules to computer science courses.

Гаєв Є.О., Нестeренко Б.М. MATLAB для математики та

програмування: Навч. посібник, друге видання (англійською

мовою). – Київ: Нац. авіа. університет, 2015. – 99 с.

Посібник викладає MATLAB, нещодавно прийнятий

Міністерством освіти в якості базового пакету для українських

університетів, одночасно як математичне середовище, так і засіб

ефективної розробки комп'ютерних програм. Основні засади

структурного програмування і теорії алгоритмів проілюстровані на

ключових та авторських задачах, що дозволяє студентам легко

створювати власні програми з діалоговим та графічним

інтерфейсом. Призначений для студентів молодших курсів для

вступних модулів у курсах комп'ютерних дисциплін.

ББК 22.19с51

ISBN 966-375-062-6 Є.О. Гаєв, Б.М. Нестеренко

 3

Foreword

This is the second issue of our book [19] written in accordance with

curriculums of disciplines "Programming" and "Algorithmic Languages
and Programming" that are taught in National Aviation University for first

year students taking part in English Language Educational Project. It

presents a half of the whole course [20] while another half is devoted to an

other algorithmic language such as Pascal, Java, C or C
++

.

This textbook accounts for main needs of the first year students of

many specialties. Because most of them are not familiar with programming,

they need to get a fast and practical, rather that in-depth and universal,

introduction to computer science, even the latter would be their future

profession. At the same time, this course should be linked with and be

helpful in learning other disciplines especially as difficult as mathematics

and physics. While the students step by step get an ability to create simple

and mediate computer programs, make them to visualize results, their new

knowledge should immediately be applied in their other disciplines.

MATLAB suits best to this aim. The students learn main

constructions of this language, master easily its plotting capabilities,

distinguish numerical and symbolic, one-dimensional and two dimensional,

numeric and text data types, master the structured programming with the

flow control operators, and develop their own programs applicable to

everything what they study. Module 3 of this book demonstrates the later

with respect to mathematics.

It is quite unusual for Ukrainian universities yet to include

MATLAB in courses of programming. However, this corresponds to world

tendencies as this might be seen from textbooks [1,10-15,18]. Following

them, Ministry of Education and Science of Ukraine accepted this software

as the main mathematical tool for our universities.

The book is written in accordance with European Estimation System

of the so called Bologna process. It consists of four Modules, each

providing a logically closed portion of the material. Module 1 gives ABCs

of the MATLAB. Having mastered it, students may immediately apply

computers in any other discipline they study. Note however that this use

will be in a manner as if they used a simple calculator. Module 2 provides

basic ideas of structured programming in MATLAB. The students get

knowledge in Programming Science and, simultaneously, become able to

solve previous and new problems on a higher level of proficiency. A special

attention is paid to technical aspects such as documenting programs,

debugging them, developing "intellectual" programs of a dialogue type.

 4

As already mentioned, Module 3 demonstrates perspectives in

learning and exploring mathematics that otherwise might look too abstract

and tedious to some students. From another hand, a number of useful

programming examples is contained there. Our teaching experience show

that the students are usually impressed and inspired when their boring

object of, say, Analytical Geometry become rotating or pulsating on

computer screen… (see Fig. 4.6)

The book ends with optional Module 4 where the students learn how

to "dress" their programs into a Graphical User Interface, GUI. Again, the

students are usually happy to complete programming in a modern

Windows-like form. The latter may be quite difficult to them in other

languages but is made very easily in the MATLAB. The new programming

skills and knowledge are to be extended in their future programming

courses taught in National Aviation University.

Authors wish to express their gratitude to the Math Works Inc. for their

promotion of this book in a form of granting v. 7.1 of their wonderful software.

We thank Mrs. Courtney Esposito for her constant attention to our work.

Topographical conventions of this book.
To contrast with regular text, MATLAB' commands and programs are

typed in a smaller font in italic (except symbols like (,], : etc.). These, typed

after the prompt symbols >>, mean a command that is issued from Command

Line. Example:

>> sqrt(2+sqrt(3)).

Similar text without the prompt may correspond to MATLAB' reply, for

example Error: Missing operator, comma, or semicolon. If a line of commands

does not fit to page width, its continuation is placed on next line but aligned to

the page' right border.

Navigation through MATLAB' menu is typed in bold and italic such as

ViewCommand Window.

Keyboard keys are framed like Enter. New terms introduced are typed

italic; their meaning is often self evident but students are advised to inquiry

them in dictionaries or in specialized handbooks. The sign

 (glasses) labels

optional materials, or that for advanced students.

Have any questions? Put them to the first author

Ye_Gayev@voliacable.com.

mailto:Ye_Gayev@voliacable.com

 5

"While studying sciences,

examples are more useful than rules"

Isaac Newton

Module 1: MATLAB, the mathematical environment
General module characteristics: The learning material provided here

should introduce you very fast the main problems to be solved by the

MATLAB which are often met in mathematics and physics. MATLAB will not

require any programming skills but become your friendly guide into those

disciplines.

Module structure
Micromodule 1.1. Basics of MATLAB

1.1.1. Getting started

1.1.2. Matrix arithmetic of the MATLAB

Micromodule 1.2. Plotting 2d functions

Micromodule 1.3. Numeric and symbolic calculations

1.3.1. Polynomials

1.3.2. Symbolic mathematics in MATLAB

Problems for Module 1

Micromodule 1.1. Basics of MATLAB

The software MATLAB is a problem oriented
1
 computer system

that allows to user to almost get rid of programming work
2
. There are

the following reasons for learning MATLAB in our course: (i) it

provides a top level standard of a computer software that future IT

engineers are to know; (ii) MATLAB is an integration of several high

level programming languages that comes to substitute the latter in future

artificial intelligence systems; and finally (iii) MATLAB "bridges the

gap" between applied computation and higher mathematics course [9]. It

is so believed that mastering this software should be very profitable to

the students of the first year.

1
 Not obviously oriented to entirely mathematical problems as this might be

seen from its Help.
2
 Clearly, of programming work of a low level; as such, programming in

MATLAB is explained in the next Module.

 6

Yes, MATLAB may easily solve various problems of your

university practice as may do MathCAD
3
 and some other programs like

Mathematica, Origine, Maple etc. We have chosen the MATLAB not

only because it is widely used in our university, as well as in a number

of universities and research laboratories around the world, but rather

because it has became an effective programming system now.

It is quite difficult to start learning MATLAB (or any other

mentioned software). We invite you to follow our informal examples

that bring you to understanding the whole system. Do not hesitate in

applying your MATLAB knowledge to other disciplines, especially to

higher mathematics course, and you get a friendly guide in your every

day learning!

1.1.1. Getting started

Look for the MATLAB' logo on your PC (see Fig. 1.1), and run

the software. All you will learn in this module concerns versions 6.5, 6.*

and, in most instances, v. 7 of the MATLAB. Figure 1.2 presents a

typical appearance of the program on the screen. Several other possible

windows may be evoked via menu View but, for our initial study, all

they are advised to be removed except Command Window and

Command History Window. Laboratory work 1 from [3] will give you a

practice in researching the appearance of the program along with some

simple commands issued from the command line.

We "communicate" with the MATLAB on a written language by

means of composing commands, variables and other objects with Latin

characters a, b, …, y, z, Arabic numbers 1, …, 9, 0, few additional

symbols as _, +, -, *, ^, % like in many other programming

languages. Any name must begin with a Latin character but not from a

figure. Capital and small letters are taken different (MATLAB is thus

case-sensitive). So the names a12 and A12, b2C4 and B2c4 are legal and

different while the names like 2Bc4 (beginning with a figure!) are

forgiven in the MATLAB. Prompt in the form >> in the command line

invites you for entering commands. Examples of the latter have been

given below and illustrated in the Fig. 1.2.

3
 Naming both software originates correspondingly from Matrix Laboratory

(no 'Mathematics' in the abbreviation!) and Mathematical Computer Aided

Design and brings into light the difference in their concepts.

 7

Example 1.1. To calculate "two store expression"
expression

32

32

32

32

,

type it, as usual, in the following "line form":

>> sqrt(2+sqrt(3))/sqrt(2-sqrt(3))+sqrt(2-sqrt(3))/sqrt(2+sqrt(3))

Pressing Enter executes the calculation with the answer ans = 4.0000.

Another way of calculation is also possible if we introduce auxiliary

quantities x and y and separately calculate nominator and denominator:

>> x=2; y=3; Term1=sqrt(x+sqrt(y))/sqrt(x-sqrt(y)); ... (1.1)

Term2=1/ Term1; Result= Term1+ Term2

Result= 4.0000. In the last case, MATLAB assigns the value 2 to

variable x, and value 3 to y and substitutes them into the consequent

expression. The same result will be obtained:

>> Result= 4.0000

but no auxiliary variable ans
4
 will be created.

Example 1.2. Calculate expression

)9.0
5

2
3)(27)

2

1
(3(3

1

21

.

Solution. Type in the command line

y=(3^ (-1)*(1/2)^ (-2) -27^ (-1/3))*(3*2/5 - .9)

press Enter and get the answer y =0.3000. Note that putting

multiplication sign * between (round!) bracket is obligatory. MATLAB

"complains" if expression is written grammatically incorrect: “Error:

Missing operator, comma, or semicolon”

4
 Abbreviation ans (from answer) is used by default if no name is assigned to

variable!

 8

Example 1.3. Calculate expression

)
3

π
cos()

6

π25
sin(.

Solution. Type in the command line

z=sin(25*pi/6) - cos(-pi/3).

Note that the value of ...1415,3 has been automatically prescribed

in MATLAB to the variable pi, as well as the value of 1 , imaginary

unit, to i and to j.

Students are advised to investigate and to master working in the

MATLAB command window themselves using laboratory work 1 [3].

1.1.2. Matrix arithmetic of the MATLAB

Matrix arithmetic, i.e. operations with matrices and vectors, is the

key stone of the MATLAB. Recall its name! The following material is

thus very important.

To enter a matrix into the MATLAB' environment, all its

elements are to be typed in within square brackets. Elements of rows are

to be separated by spaces or by commas. In contrast, semicolons ; are

used to separate each new row. For example, the numeric matrix

142171431

007800811347

120021071

..

...

..

A

may be typed in into the command line as

А=[1.7 .021 120. ; 7.34 11.08 7.8e-3 ; 3.114e+1 17.0 42.1] (1.2)

(look Example 4 in the Fig. 1.2). Pressing Enter results in displaying the

matrix on computer screen. It is clear now how to enter a vector-row or

vector column, for example:

),.,.(row 120 0210 711 ,

1431

347

71

1

.

.

.

col .

 9

It should be typed in by the command line correspondingly:

row1=[1.7 .021 120.], сol1=[1.7; 7.34; 31.14] (1.3)

Fig. 1.1. Logo of the program to run it.

Fig. 1.2. Appearance of the MATLAB with two Windows open: 1 – Command

Window with the "prompt" 2; 3 – Command History Window; 4 – Menu icons.

 10

A special operation has been defined for vectors (row-vectors

actually) with regular numbers. Say, x=pi : 2*pi/1000 : 3*pi assigns to x

1001 elements starting from pi with the increment 2*pi/1000. (Note: use

semicolon ; at the end to prevent output all these numbers to the screen!)

Some special matrices may be obtained in MATLAB:

zeros(2,3)=

0

0

00

00
, ones(3,2)=

11

11

11

,

eye(4)=

1000

0100

0010

0001

The English names zeros, ones and eye provide hints for understanding

these matrices. To get more information, ask Help from the command

line, for example help eye.

Examples given over demonstrate that the language used by

MATLAB is very close to common mathematical writing. However,

what to do if a string of numbers to enter like in (1.2) or (1.3) is too

long? For hyphenation, use three dots . . . like in the example (1.1).

Another work around lies in constructing big matrix from its

parts. Separate rows (or columns) of the matrix A may be entered first:

row2= [7.34 11.08 7.8e-3]; row3=[3.114e+1 17.0 42.1]

(or col2=[.021; 11.08; 17.0], col3=[120.; 7.8e-3; 42.1]);

(putting coma or semicolon at the end depends on you wish to see

results on the screen, or not). Then, the whole matrix is obtained as

A=[row1 ; row2 ; row3] or A=[col1 , col2 , col3]

For accessing an element of the matrix, say in second row but in

third column, use its indexes in round brackets, a=A(2,3)= 0078.0 .

Such a versatile manner allows also extract any sub-matrix from A. Try

for example:

 A1=A(2 : end , 1 : end) (1.4)

Such a key word end allows shifting elements of a vector v in clockwise

direction in the following simple way:

 11

>> FirstElement=v(1); v=v(2 : end);

>> % Getting shifted array:

>> v=[v, FirstElement]

(Row-vector v is assumed to be already introduced into MATLAB

environment, for instance v=[1 2 3 4 5 6 7]. Think how to modify

commands to work with column-vectors!)

Comment: Last problem with shifting array could not be solved by

other programming languages in such a simple way but as a for-loop.

Information technology (IT) specialists are to know that matrices, or,

more commonly in IT, numeric arrays are one of basic structures in any

modern algorithmic language [8,9,16]. Numbers are particular case, an

1x1 array. However, MATLAB solves many IT problems in its own

original way. Particularly, construction (1.4) solves the problem of

dynamical memory [7] by introducing an auxiliary key word end

denoting the size in each dimension.

Students know from linear algebra about adding, subtraction,

multiplication and exponentiation of matrices. Exactly the same

operations are used in MATLAB, A+B, row1-row3, row2*col3,

col3*row2, A^2, A^3 etc. The known restrictions to dimensions of

operands are valid; otherwise one gets the warning message: "??? Error

using ==> * Inner matrix dimensions must agree."

Although division / is not defined in the linear algebra except for

numbers, left division / and right division \ have been defined in the

MATLAB (see explanations for example 1.12). At the same time, the so

called operations with dot, or element-by-element operations

.* .^ . / .\

are defined in the MATLAB for operands of the same dimensions. Their

sense may be explained for multiplication:

nknknnnn

kk

kk

nknn

k

k

nknn

k

k

bababa

bababa

bababa

bbb

bbb

bbb

aaa

aaa

aaa

*...**

............

*...**

*...**

...

............

...

...

*

...

............

...

...

2211

2222222121

1112121111

21

22221

11211

21

22221

11211

.

For more information request help /, or help arith, or help slash. Similar,

any function sin, cosh, atan, sqrt, log10, exp etc. with respect to a

matrix produces a new one with the function applied element-by-

element (request help elfun for the list of all elementary functions).

 12

There is no problem for using complex numbers in MATLAB:

>> (2+3j)+(3+2i)

ans = 5.0000 + 5.0000 i

>> sqrt(j)

ans = 0.7071 + 0.7071 i

(note that there is no multiplication sign between coefficient and the

imaginative unit i=j= 1). Any matrix may be composed by complex

elements.

The sign % (look for it in the Fig. 1.2) is used for providing

comments that are a kind of information that MATLAB does not

account for but which might be helpful to program's author or user.

It is important to pay attention to formats for presentation of real

numbers. For example, the numbers

2,17 0,00217 0,217 10
1

should be typed into the MATLAB environment as

2.17 0.00217 .217е+1

While executing laboratory work № 1 from [3], investigate setting

formats short and long for numbers!

MATLAB has been "equipped" by a number of ready functions to

work with arrays. Stroke behind the matrix symbol, A', transposes the

matrix A, try [1 2 3 4] '. The function length(A) determines the lengthy

dimension of A. An assignment [N , M]=size(A) returns number of rows

to N, and that of columns to M. Operation as A=diag(x), with x a vector,

forms diagonal square matrix with the elements from x on the main

diagonal. One more service function sum(A) finds sums of elements in

each column and returns a vector with them; it follows that sum(sum(A))

returns only one number, a sums of all matrix elements.

Micromodule 1.2. Plotting 1d functions

MATLAB has an excellent set of graphic tools. Color graphics

are very engaging for students and provide wide possibilities for their

work in all areas of student's practice. We begin with two easy-to-use

commands before introducing the most powerful command.

To plot graphic of a function of one variable, say

 13

x

x
y

sin
 , (1.5)

 5)

there is no need to calculate first a table of its values as you did this in

the school. Simply execute the command

>> ezplot('sin(x)/x')

and enjoy the plot of the function in the domain]2,2[x on

default. To extend the domain to, say]7,5[x , try another

command format

>> ezplot('sin(x)/x', [- 5*pi, 7*pi]) , axis([- 5*pi 7*pi -.25 1.1]) (1.6)

Resulting graphic is presented in the Fig. 1.3 but has been slightly

changed by additional tools provided by the Figure menu: coordinate

axes were drawn by pressing icon ("InsertLine"); the title of graph,

the thickness of curve and the color of background were changed by

pressing icon ("Edit Plot") and evoking Figure Property Editor.

Investigate further features of the Editor and the Figure Window! Say,

the icon allows printing figure on paper.

Getting help from the MATLAB lets us to summarize the format

of the ezplot-command in the following form:

ezplot('f ' , [xmin, xmax, ymin, ymax]).

Note also that graphics of implicit functions like hyperbola, and

parametric functions like tx sin2 , tx cos7 (ellipse) touched in

the higher mathematics course may also be plotted by this command:

>> ezplot('.2*x^2 - .7* y^2=1'), or

>> figure, ezplot(' 2*sin(t) ', ' 5*cos(t) ')

Another easy-to-use command fplot may plot several functions in

the same window, each graph labelled by its colour. For instance:

>> fplot(' [sin(x)/x, x*sin(x), cos(x)] ' , [-pi 3*pi -5 6])

5
 Note that this function concerns to what is called the "first remarkable limit"

in the higher mathematics course.

 14

Note that format of the command requires providing the list of functions

within square brackets and inverted commas!

The function to plot not obviously may be given in an analytical

form as before. For example, experiments are a constant source of table

functions. In this case, one has a vector of arguments

],...,.[21 NxxxX and a vector of corresponding function values

],...,.[21 NyyyY . The lengths of both vectors are to be equal. As a

mathematical experiment, we could get both vectors by calculating table

of an analytically given function. For example, for the above function

(1.5) let us get first the ordered vector of arguments in a domain

],[bax

>> a= - pi; b=3*pi; N=1000; X=a : (b-a)/N : b;

and corresponding vector of function values

>> Y=sin(X) ./ X;

(note that MATLAB "complains" Warning: Divide by zero but presents

completely correct results. This is because the singularity in 0x is

removable). Now, plot the graphic by the plot-command:

>> plot(X, Y)

The curve you get may be less or more smooth depending on the

sampling parameter N. The students are advised to make some

experiments by varying N and plotting new graphs
6
.

Using the vectors X and Y you already have, try also the command

>> comet(X ,Y) !

Exercise. Plot a regular polygon of N sides on computer screen.

Solution uses ability of MATLAB to work with complex numbers.

Really, let N=5. In this case N-th root of, say, z0=1 has N values
Nki

k ez /2 where 1i and 1...,,1,0 Nk that are vertices of

a regular polygon on complex plane. So, produce these vertices and plot

their real real and imaginary imag parts:

>>N=5; k=1: N+1; Vertices=cos(2*pi*k/N)+i*sin(2*pi*k/N);

>> plot(real(Vertices), imag(Vertices), 'r'), axis equal

6
 Be careful however: an error may occur if you try an N less than previous one.

To prevent it, you may introduce new variables, say X1, Y1, instead of X, Y.

 15

Polygon will be drawn on the screen. It will be filled in by a colour

specified, like in Fig. 1.4, if command fill is used instead of plot.

Further practice with plotting graphs might be found in laboratory

work № 2 in [3]. About plotting 3-dimensional graphs read [1,7].

Micromodule 1.3. Numeric and symbolic calculations

Some students ask why inverted commas are used in the

ezplot('…') but are not in the plot command? This is because the first

command works with symbolic argument while the second one with

numeric ones. Let us explain this in more details.

Numbers, vectors and matrices were numeric objects. Operations

over them follow to known arithmetic algorithms. Another algorithms

are required when one performs analytical transformations like the

square of a sum
2)(ba into

22 2 baba . Result of such

transformation is valid for arbitrary a and b .

It is worth to remind that algorithms of symbolic calculations

were first developed in Kyiv, in the Institute of Cybernetics Ukrainian

National Academy of Sciences and realized in electronic machine

"MIR-2" in 1970th years. However, Canadian package Maple (late of

the 1990th) turned to be more competitive; its algorithms were also

included into the MATLAB.

Information technology comes thus to another type of data, to text

data, that are any "word" of legal symbols [8,9,17]. It is also natural to

consider vectors and matrices with text (or symbolic) elements. If one

introduces symbolic variables
>> c11=' Name '; c21=' Age '; c31='City from';

(spaces have been inserted within apostrophes(!) (inverted commas) to

make all the "words" of the same length 9), a column-vector may be

created:
>> Student=[c11; c21; a31]

Student =

 Name

 Age

City from

It is our aim now to demonstrate many useful consequences of the

new data type.

 16

1.3.1. Polynomials

Differences between numeric and symbolic objects may easily be

explained by means of polynomials because this class of objects exists

in MATLAB both as numeric and symbolic ones.

In mathematics, polynomial is a function of variable x , a sum of

its powers

nn

nnn axaxaxaxaxp

1

2

2

1

10 ...)((1.7)

where }{ ka are real numbers, and n is an integer. To evaluate value of

)(xp at, say 0xx , the latter number is to be substituted into (1.7),

)(00 xpp .

Polynomials like (1.7) may be represented in the MATLAB

environment by numeric row-vector with the coefficients,

Fig. 1.3. Example of MATLAB's plotting capabilities.

 17

p=[a0, a1, a2, …, an-1, an]

(they are arranged in the order of reducing power). MATLAB's

command
7
 with two numeric entries polyval(p, x0) calculates (1.7) for

0xx . Another command roots(p) looks for all the roots of the

polynomial. How many are them? The main theorem of algebra

manifests that the number of roots is equal to its order n provided (i)

complex roots are accounted for, and (ii) each root is accounted as many

times as is the order of the root [2,4]. Thus, both above commands work

with numeric objects.

Example 1.4. Find roots of the polynomial

5432)(234 xxxxxp and evaluate it for 1x .

Solution. First, introduce the given polynomial as a numeric object into

the MATLAB environment:

>> p=[1 2 3 4 5]

7
 Its name was derived perhaps from polynomial value.

Fig. 1.4. Regular polygon of N sides on computer screen, N=5.

 18

Second, find all the four roots of it. Here is what will be obtained:

>> roots(p)

ans = 0.2878 + 1.4161i

 0.2878 - 1.4161i

 -1.2878 + 0.8579i

 -1.2878 - 0.8579i

All the roots are complex numbers. Now, estimate the polynomial for

1x :

>> polyval(p, 1)

 ans = 15

what could easily be checked from the very beginning:

1554321)1(p . Similar, each root may be confirmed to

make polynomial almost vanish:

>> polyval(p, 0.2878 + 1.4161i)

ans = 1.7186e-004 -1.4064e-004i

Exercise. Prove that (i) if a polynomial has a complex root of the

form biax , the conjugate of the latter biax is its root as

well; (ii) each polynomial of an odd degree has obviously a real root.

Symbolic objects and corresponding commands for them work in

an other way that is similar to known from algebra and trigonometry.

For example, let us declare variable x and coefficients of a second-order

polynomial a, b and c as symbolic objects by means of the command

syms:

>> syms x a b c d

Now, new symbolic objects may be constructed from these ones, for

instance, a symbolic second-order polynomial:

>> P=a*x^2+b*x+c

 P =

 a*x^2+b*x+c

An other command may also introduce symbolic objects:

>> Q=sym(' d1*x^3+a1*x^2+b1*x+c1 ')
 Q = d1*x^3+a1*x^2+b1*x+c1

In contrast to numeric mode, MATLAB does not require the above

variables x, a, b, c, P and Q to have any particular numeric values. Now,

some commands may perform their analytical transformations.

 19

The command expand multiplies two polynomials introduced so

far and gets 5th order polynomial R as the product:

>> R= expand(P*Q)

 R = a*x^5*d1+a*x^4*a1+a*x^3*b1+a*x^2*c1+b*x^4*d1+

b*x^3*a1+b*x^2*b1+b*x*c1+c*d1*x^3+c*a1*x^2+c*b1*x+c*c1

However, this command has not been instructed to collect similar terms

like you did in the school. The command collect can do this:

>> R1=collect(R)

 R1 = a*x^5*d1+(b*d1+a*a1)*x^4+(c*d1+b*a1+a*b1)*x^3+(c*a1

+b*b1+a*c1)*x^2+(c*b1+b*c1)*x+c*c1

The last linear notation form is still difficult to recognize a polynomial.

Try the command

>> pretty(R1)

and get more habitual view for the polynomial R1:

 5 4 3

 a x d1 + (b d1 + a a1) x + (c d1 + b a1 + a b1) x

 2

 + (c a1 + b b1 + a c1) x + (c b1 + b c1) x + c c1

Students should understand that the latter hasn't been any object but

simply a kind of typesetting on the screen.

Some MATLAB commands already introduced understand both

numeric and symbolic objects; some commands may work with data of

only one type.

Example 1.5. By means of symbolic calculation you may recall

formulae for determinant:

>> A=[a b; c d]

>> det(A)

ans = a*d-b*c

Determinants of higher orders might be calculated for symbolic data as

well. Try!

Example 1.6. Imagine you need to recall formulae for solving

quadratic equation P(x)=0. Look:

>> roots=solve(P)

roots = [1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

 20

>> pretty(roots(1))

 2 1/2

 -b + (b - 4 a c)

 1/2 --------------------

 a

Roots for the third order polynomial Q(x) may be also presented by

algebraic formulae. Try!

Results obtained are valid for any coefficients. The user may wish

however to obtain a polynomial for particular values of the coefficients.

Substitution of those values may be realized in the following way:

>> a=1; b=1; c=1; P1=subs(P)

P1 = x^2+x+1

The object P1 still remains symbolic one. Now, other commands that

understand symbolic objects may work. For example, graphics of P1(x)

may be plotted by the command ezplot(P1). (Note that the inverted

commas has not been used because P1 is symbolic with an undefined

meaning of x). If required, any real or complex value of x may be

substituted into the symbolic polynomial so that the latter will get a

corresponded numeric value. For instance:

>> P1i=subs(P1, 1+i) or

>> x=1+i; P1i=subs(P1)

produce the same numeric result

P1i = 2.0000 + 3.0000i

So, polynomials are treated in MATLAB either as numeric or as

symbolic objects what gives a certain freedom to user. Besides, these

objects may be converted to one another. The following command

converts symbolic polynomial P1 to its numeric analogue, i.e. to a

vector of numeric coefficients:

>>P1num= sym2poly(P1)

P1num = 1 1 1

Roots of the former symbolic polynomial may be found now. In turn,

numeric polynomial, i.e. its corresponded vector, may be converted into

a symbolic one. Say, for the 4th order polynomial from the example 1.4

one gets

 21

P4=poly2sym(p)

 P4 = x^4+2*x^3+3*x^2+4*x+5

Some analytical transformations may be performed for it, for example

its derivative may be found but this is the focus of the next section.

1.3.2. Symbolic mathematics in MATLAB
Due to symbolic objects, MATLAB became much clever so that it

mastered the higher mathematic course of Ukrainian universities.

Indeed, it can easily find derivatives or integrals of many functions:

Example 1.7. Find derivative and anti-derivative of
21

1

x
y

 ,

plot their graphics, calculate the derivative at x=2 and the area between

the curve y(x), axis Ox and lines x=1 and x=5.

Solution. First, introduce symbolic variables x and function y,

>> syms x

>> y=1/(1+x^2);

Its graph

>> ezplot(y)

has been shown in the Fig. 1.5,A along with the area ABCD under the

focus. Its derivative is

>> Der=diff(y)

Der = -2/(1+x^2)^2*x

Or, in more convenient form to us

>> pretty(Der)

 x

 -2 -----------
 2 2

 (1 + x)

The value at x=2 and the graph of the derivative are obtained by

>> Der2=subs(Der , 2)

Der2 = -0.1600

The plot see now in the Fig. 1.5,B:

>> ezplot(Der)

Get the primitive function and its graph:

>> Int=int(y)

 22

 Int =atan(x)

>> figure; ezplot(Int)

To find out the area restricted by ABCD one needs, as it is known from

the higher mathematics, to specify limits of the integral:

>> Area=int(y, 1 ,5)

 Area = atan(5)-1/4*pi

The latter expression still remains a symbolic one. Its numeric value

may be either calculated

>> atan(5)-1/4*pi

ans = 0.5880

or evaluated by the command
8

>> eval(Area)

ans = 0.5880

Further examples demonstrate other capabilities of MATLAB

useful in student practice.

Example 1.8. Solve transcendental equation)1(arcsin xpx

for 4p .

Solution. Introduce symbolic variable and the function to find the

root of

>> syms x p

8
 and the name of the command is clear from its role, to evaluate.

Fig. 1.5. The function and its derivative from the example 1.7.

 23

>> F=asin(x) – p*(1-x)

and get particular form of the latter for 4p :

>> p=4; F4=subs(F)

 F4 =asin(x) - 4+4*x

Now, either command solve or fzero may be explored. Learn the first

one:

>>root=solve(F4)

root =-sin(-.89048708074438001001103173059554)

The latter result looks out somewhat strange; indeed, why the value of

sin has not been calculated? To answer, try the command whos: it

returns the list of all variables already defined in current MATLAB

session along with their class. It would be thus discovered that the

variable root is a "sym object". To evaluate its numeric value, try:

>> root=eval(root)

root = 0.7774

Example 1.9. Solve transcendental equation xx 5.cos

Solution. The command fzero (named after 'find zero') may be applied

as well as the previous one:

>> x=fzero('cos(x) - .5*x' , 0)

x = 1.0299

Note, that a second parameter, any real number for the first guess, is

required by this command!

Example 1.10. Expand function
2tey to Tailor series.

Solution. Functional series, particularly the Tailor series, are studied on

the second study year. Despite of it, MATLAB can get the solution:

>> syms t; T=taylor(exp(- t^2), 13)

 T =1-t^2+1/2*t^4-1/6*t^6+1/24*t^8-1/120*t^10+1/720*t^12

>> pretty(T)
 2 4 6 8 10 12

 1 - t + 1/2 t - 1/6 t + 1/24 t - 1/120 t + 1/720 t (1.8)

Expansions like (1.8) will be studied in the Module 3.2.

It is natural that MATLAB contains a lot of commands to help

students work with their higher mathematics. The command det, for

example, servers for numeric evaluation of determinants of any order

 24

(compare with the example 1.5). Command inv finds inverses of

matrices.

It is natural that MATLAB contains ready functions for solving

problems of linear algebra that students learn in their first year

university course. (We would not only provoke students to use them

instead of their "by-hand" solution. However, their use for checking by-

hand solutions, in term papers and especially in diploma works is highly

encouraged).

Example 1.11. Find inverse of matrix

333

222

321

321

321

.

Solution. Use a ready command for inverting matrices

>> A=[1 2 3; 1^2 2^2 3^2; 1^3 2^3 3^3];

>> A1=inv(A)

 A1 = 3.0000 -2.5000 0.5000

 -1.5000 2.0000 -0.5000

 0.3333 -0.5000 0.1667

Despite division of matrices like A/B is forbidden in mathematics,

MATLAB uses slash / and backslash \ signs to denote commands for

solving systems of linear algebraic equations (SLAEs). In fact, A/B

denotes A*inv(B), but A\B denotes inv(A)*B (dimensions of A and B

should be kept correctly!). It means that solves the matrix A\b equation

Ax=b. where x and b are correspondingly column-vectors of unknowns

and of right hand side coefficients.

Example 1.12. Solve SLAE

.3278

294

,132

321

321

321

xxx

xxx

xxx

.

Solution. As the matrix of the system has already been typed in

MATLAB, one needs only the vector of its coefficients b=[1; 2; 3]. The

solution is so

>> x=A\b

x = -0.5000

 1.0000

 -0.1667

 25

Be advised to check the solution:

>> A*x

ans = 1.0000

 2.0000

 3.0000

what is the given vector b. It would be useful for students to apply also

other methods for SLAE, such as the Kramer's method and inverse

matrix method.

More valuable examples solving typical mathematical problems

might be found in [1,2,6].

Problems for Module 1

1.1. What of MATLAB interface windows did you explore? For what

purpose are they useful for? How to call up Help in the MATLAB?

1.2. How to get help for plotting graphs? How to enquire the names of

elementary functions realized in MATLAB?

1.3. For what do comments serve in MATLAB, how are they

introduced?

1.4. What of the formats for real and complex numbers are ther in

MATLAB? How to input vectors and two-dimensional arrays

(matrices)?

1.5.How to construct legal names for variables in MATLAB? Examples

of illegal names? Is it allowed to name variables ans, pi, i, j? How to

assign numeric values to variables?

1.6. What of the numeric operations do you know in MATLAB? Are

there any restrictions to operations +, –, *, / and ^ with regard to

matrices? How do the above operations differ from similar ones

"with the dot, i.e. " .*, ./ and .^?

1.7. Is it possible to apply functions sqrt, sin, exp etc. to matrices? What

would be the result? Is it allowed the complex numbers to be

arguments of the above functions? Could you compare this with

other programming languages?

1.8. How to separate commands in the MATLAB's Command Line?

What is the difference between separators "," (comma) and ";"

(semicolon)? How to repeat a command executed earlier in the

current session?

 26

Fig.1.6. Program MyClock

developed in MATLAB (see

program in Attachment A3)

1.9. What do the commands

length, size, inv, ' and diag? Do

you know other commands that

operate with matrices?

1.10. For a given vector, shift its

elements for one in counter

clockwise direction. (Hint:

remember construction (1.4)).

1.11. What mean the command

like x=-pi : pi/100 : 3*pi ? How is

it used for plotting graphs?

1.12. What of commands for

plotting graphs do you know?

What's the difference between the

commands plot, fplot, ezplot,

comet?

1.13. How may the commands legend, title, grid, xlabel, ylabel, axis,

insert "decorate" your graphs? How could you set or change color

of your plot curves?

1.14. For what do one use the command figure? If you need to plot

several graphics, how could you plot some of then in one window

but other curves in an other?

1.15. Plot the function given parametrically

ttx cos)3sin(, tty sin)3sin(,],0[t (1.9)

1.16.

 How would it be possible to plot a discontinuous function like

in the example 2.2 or continuous piece-wise function in problems

2.12, 2.13?

1.17. How would you explain the difference between numeric, text and

symbolic data in MATLAB?

1.18. For a given matrix A find the mean of its elements.

1.19. How to find roots of a polynomial? How many are them? How to

find derivative and primitive of a given function? How to find a
define integral?

1.20.

 Develop a MATLAB program that displays current time like the

one shown in the Fig. 1.6. (Hint: use commands date and clock).

 27

Module 2: Basics of MATLAB programming
General module characteristics: Programming, i.e. making computer

programs is useful to automate calculations that you would repeat many times

otherwise, or to make calculations without manual intrusion. Commands

suggested by structural programming paradigm will be introduced, examples of

simple but motivating to further work programs will be given. Flow charts are

used to explain programs.

Micromodule 2.1. m-scripts and m-functions

To automate multiple repetitions of the same commands, one

writes programs. Actually, all the commands you learned previously

like fplot are the programs written by somebody. Now, let's become

programmer, too!

2.1.1. Scripts, the simplest programs

Assume, you need to systematically create triplets of functions,

say F1, F2 and F3, and then compare them by means of plotting their

graphs. These functions, each in the form of two arrays x={ x1, x2, … xn}

and F1={ F11, F12, … F1n}, may be created "by hands" like you did in

Module structure
Micromodule 2.1. m-scripts and m-functions

2.1.1. Scripts, the simplest programs

2.1.2. MATLAB' Functions (m-functions)

2.1.3. Difference between Scripts and Functions

Micromodule 2.2. Structured programming

in MATLAB

2.2.1. Loop operator for … end,

2.2.2. logical operator if … else … end
2.2.3. logical arithmetic with and. or, not

Micromodule 2.3. More MATLAB' programs
2.3.1. Periodic Step-function

2.3.2. Least element of an array

2.3.3. Re-ordering of a vector

Micromodule 2.4. Supplementary problems
2.4.1. Dialogue programs

2.4.2. Debugging programs

Problems for Module 2

 28

the Module 1.2. However, it would be a good idea to collect all the

commands required for plotting all three functions, i. e. their

visualization, and make the MATLAB to execute them by a single

command. Well, let us prepare a special file and save it under the name

visualize.m (with extension .m!). The text content of such a program

saved in a file is usually called its listing.

The following listing of the program visualize.m is suggested:

Listing 2.1 of the file "visualize.m":

1 % Example of a simple Script Program

2 % to visualize and compare graphics of three functions

3 % named F1, F2 and F3

4 % of argument x created previously in Workspace

5

6 % Copyright Ye. Gayev

7

8 figure; plot(x1,F1,'r', x2,F2,'b', x3,F3,'g')

9 title('Comparison of three Functions')

10 grid on;

11 xlabel('Independent argument X'); ylabel('Functions F of Х');

12 legend('F1', 'F2', 'F3')

13 % end of the script

Do the following to create this file practically: a) Press the icon

("New m-file") in the MATLAB; "m-File Editor" appears with an

empty window. b) Type above sentences line by line in this window. Do

not type numbers as the numbering will appear automatically. c) Having

typed all the text, press to save the file. Type the name visualize

instead of the name unnamed suggested. The file will be saved with the

extension .m in the subdirectory WORK. Before using it, let us analyze

its content.

Lines 1 to 6 start with the sign per cent % as well as the line 13.

This symbol denotes comments which the program does not account for.

The use of comments is explained below. Empty lines like 5 and 7 may

be used by programmer to better emphasize the structure of the program

and make it easily readable.

 29

Section with MATLAB commands follow the comments.

Commands in the line 8 call new graphical window and plot all three

functions in one window with different colors, red, blue and green. The

command 9 prints the title in the window. Command 10 draws grids,

and the commands 11 label horizontal and vertical axes. Finally, the

command 12 provides legends which mean that the red curve

corresponds to F1, and so on. The line 13 is optional and serves for

denoting the end of the program.

Now, make few preparatory calculations and call the new

progam:
>> % Create argument array

>> x1=-1 : .01 : 3; x2=x1; x3=x1;

>> % Create arrays with three functions

>> F1=x1; F2=F1 .*x1/2; F3=F2 .*x1/3;

>> % Finally, get result and analyze it!

>> visualize

A graph with three curves will appear. Problems 2.1 and 2.2 suggest

some exercises. The program visualize developed becomes a command

of MATLAB now that will be used several times in this book.

2.1.2. MATLAB' Functions (m-functions)

Another kind of MATLAB program is called m-functions. Let us

consider an example of a program that makes numerical differentiation.

Imagine, one has a number of function values y={y1, y2, y3, ….. , yN} that

correspond to arguments x={x1, x2, x3, ….. , xN}. One may interest in

getting knowledge how fast the function changes with the argument. In

the case of analytically given function y(x), its derivative y'(x) would

answer the question. We deal with a table function, so an approximate

formulae should be used
9
:

ii

ii
i

xx

yy
p

1

1 , 1,...,1,0 Ni .

The program we would like to have should get arrays x and y and return

arrays y1 with derivatives and x1 with corresponding arguments (note

9
 This formula uses "Differences Up". See any course of numerical mathematics

such [4] for alternative formulas.

 30

that their lengths are less for 1, i.e. 1N). The following program

MyDiff solves the problem.

Listing 2.2
10

 of "MyDiff.m"
1 function [P,X1]=MyDiff(X,Y)

2 % This program returns Derivative of the function Y=Y(X)

3 % Copyright Ye.Gayev, July 2006

4

5 X1=X(1 : end-1); % Coordinates of the derivative P(x);

6 X2=X(2 : end); dX=X2-X1;

7 Y1=Y(1 : end-1); Y2=Y(2 : end); dY=Y2-Y1;

8 P=dY . / dX; % Formulae "Differences Up" is used

9 % End of differentiation

The program consists of 9 rows to be typed via the m-File Editor

and saved in a file with the name MyDiff.m. As before, lines 2 to 3 form

section with comments. Besides, comments serve for explanation and

providing additional information in lines 5 and 8. Note however that the

first line of any m-function should obligatory be the declaration function

along with definition that output variable OutVariable is linked with

input variable InputVariable through the function name FuncName. It is

declared by means of simple syntax

OutVariable =FuncName(InputVariables) .

In our case OutVariable is an array [P, X1] with variables P and X1, and

InputVariables are given arrays X and Y. The FuncName is MyDiff.

The command 6 creates an auxiliary array X2 with the data from X

but shifted for 1. Then, array dX is created in the line 6 with differences

between neighboring arguments. Similar, differences of function values

are stored in the array dY created on the line 7. Finally, 1N values of

the derivative is obtained by the command 8.

Note that presence of input and output arguments contrasts the m-

function with m-scripts where no arguments are used at all. Below is an

example of using the new program.

1. First, try asking help for the new program:

10

 See the same program in the Attachment A1 in an advanced version that

analyzes "quality" of input and uses switch …end statement. See also program

MyDeriv, listing 2.10.

 31

>> help MyDiff

 This program returns Derivative of the function Y=Y(X)

 Copyright Ye.Gayev, July 2006

It is to conclude: The Comment Section in each program serves for

getting help; it is worth to provide information in it about purpose of

this program, how to use it and other relevant information (copyrighted

person for example). Pay attention that it is very important to document

your program clear and completely! Another example see in Listing 2.4.

2. To work with the new program, let us get "experimental" data

by the following way (any function might be used instead of tsin):

>> t=0 : 2*pi/10 : 4*pi ; y=sin(t) ;

(Note, the function data are rather rough because of a big increment

dt=
10
). Differentiate these data numerically:

>> % Examination of MyDiff program

>> [F1,x1]=MyDiff(t, y);

Now, get "experimental" data 100 times more precisely and differentiate

them again:

>> t=0 : 2*pi/1000 : 4*pi ; y=sin(t) ;

>> [F2, x2]=MyDiff(t, y);

It is worth to compare both results with original function)sin(ty in

the same Figure. First, one needs to rename t and y as x3 and F3, and

then visualize all three curves:

>> x3=t; F3=y;

>> visualize

Results have been shown in the Figure 2.1 and bring the following

conclusion: numeric function F1(x) is rather depart from the function

F2(x) which, in contrast, almost coincides with the exact derivative

ty cos of the given function. Students are advised to make

"computer experiments" by varying increment dt and even with other

functions, as suggested in Problems 2.1.3 to 2.1.6.

2.1.3. Difference between Scripts and Functions

It is important to account for several significant differences

between scripts and m-functions:

 32

(i) Scripts do not have neither input parameter, nor output parameters in

contrast to m-functions that have them by definition.

(ii) Because of this, scripts may use any variables already defined in

MATLAB environment. In contrast, m-functions cannot "see" any

variables from the environment except those listed in InputVariables or

declared as global (see below). Their relation to the MATLAB

environment has graphically been illustrated in Fig. 2.2.

(iii) Similar to this, any variables created within scripts may later be

used in the environment (by a next script or m-function, for example). In

contrast, variables created within m-functions may be used within it but

are not "seen" from outside (unless they declared as global). It is

convenient: if you introduce any identity NewVar within function, you

do not need to check if it was defined somewhere before. From another

hand, when you leave m-function, the program immediately "forgets" all

variables created within it.

(iv) m-functions may contain internal (nested) m-functions that are

called subprograms or sub-functions (an example in Listing 2.7).

Similar to (iii), variable created in a nested function is not seen in the

external one.

Figure 2.1. Results of a "computer experiment" with numerical differentiation

by the program MyDiff: F3 is original, but F1 is its rough and F2 is more

precise derivatives.

F1

F2

F3

 33

The "legal" way to supply variables to m-functions lies through

input variables. Input t,y and output variables F1,x1 in the above example

program MyDiff.m are called formal parameters of the program. They

are substituted by other real parameters when MyDiff is called.

This way may however be insufficient. Another one is declaration

of variables to be global, global NewVar1 NewVar2 . This should be

declared before the variable is created, both within the function and

outside it, or both in nested and external function. Be advised to check

visibility and values of such variables during debugging your complex

programs (see Micromodule 2.4.2)!

Micromodule 2.2. Structured programming in MATLAB

Computer programs given over might be called linear programs

as they are executed line-by-line in a top-down manner. Your programs

will be more "intellectual" if you apply logical operators in them. There

was a command GOTO in first algorithmic languages that could change

flow of program with respect to a logical condition. However, if

programs become sufficiently complex and hierarchical, they are

extremely difficult for reading and understanding them. It was so

suggested by N. Wirt and E.V. Daikstra (pronounce Дейкстра) not to

use the GOTO statement but use specially defined programming blocks,

control-flow statements, instead. Such kind of work was called the

structural programming
11

. MATLAB's programming implements most

decisions of contemporary computer science. Flow charts may

significantly facilitate understanding of a complex program.

11

 For details see http://en.wikipedia.org/wiki/Structured_programming.

MatLab' Environment with previously created data

x

a

b

Function x1, y Script x1, y

Fig. 2.2. Relations of scripts and functions with the whole MATLAB

environment: solid lines denote direct exchange of data while dotted ones

exchange by global variables.

http://en.wikipedia.org/wiki/Structured_programming

 34

2.2.1. Loop operator for … end

This composite operator allows repetition (loop) of several

statements a specified number of times. Its general syntax has the form:

for LoopVariable=Value1 : Increment : Value2

a statement or a command 1;

.

a statement or a command K;

end

This block of commands works in the following way illustrated by the

flow chart in the Fig. 2.3. First, the variable LoopVariable is set to the

initial value Value1. Condition if LoopVariable > Lalue2 is checked,

and statements and commands from 1 to K are executed because the

answer is false (No). Having reached the logical bracket end, the

program repeats execution of all the statements and commands from 1

to K again but with LoopVariable=Value1 + Increment. Next execution

uses LoopVariable=Value1 + 2*Increment, and so on until

LoopVariable becomes more than the value Value2. In this case, the

answer to the above question is true (Yes), and the program block ends

its work.

Comments: 1. The Increment may not be obviously positive; in

the case of negative Increment, the value of LoopVariable each time

reduces. 2. The loop described may be prematurely terminated by the

statement break, see Help break. 3. Each of statements may use the

operator for …end again. Such new loop would be called the nested

loop. Let's learn few examples.

Example 2.1. Rotation of a stick on your PC screen.

You easily can, of course, plot a static stick with coordinates

)sin,(cos tt and)sin,cos(tt on your PC screen for any given

value t . For example:

>> t=pi/4 ;

>> x1=cos(t) ; y1=sin(t) ;

>> x2=-x1; y2=-y1;

>> plot([x1 x2], [y1 y2], 'b', [0], [0], 'or')

The straight line you see on the screen is symmetrical against centre

)0,0(that is emphasized by red circle. The program helicopter uses the

for …end operator to rotate this stick on your screen:

 35

Listing 2.3 of the script "helicopter.m"
%Script HELICOPTER

% produces a stock that revolves N times

% in counter-clockwise direction.

% Copyright Ye.Gayev, May 22, 2005

 Dt=.1*pi; N=10;

for t=0 : Dt : 2*N*pi

 x1=cos(t) ; y1=sin(t) ;

 x2= -x1; y2= -y1;

 Pl=plot([x1, x2], [y1, y2], 'r') ;

 set(Pl, 'linewidth',4) %See Help or Module 4 for explanation of set !

 axis([-1.1 1.1 -1.1 1.1]) % Why do we use this?

 hold on; plot([0], [0],'o'); hold off;

 pause(.1) % See Help for pause

end

% End of helicopter

Comments: 1. Mistakes in program may lead to getting caught in an

endless loop. Use keys <Ctrl + C> to break loop and stop the program.

2. More sophisticated operators while … end and switch … end could

also be very useful in practice; see Help for them. Few more examples

of for-loop have been given in listings 2.7, 2.9 and A1 (MyDiff).

2.2.2. Logical operator if … else … end

This command makes your programs more "clever". Its simplest

syntax looks as

if LogicalExpression

 Statements1

else

 Statements2

end

 36

This command block is self evident, so we may explain it by an

example.

Example 2.2. Make MATLAB to understand the following

mathematical piece-wise Step-function (that is associated with famous

Heaviside and Dirac functions)

Fig. 2.3. Flow chart of the for … end statement

true

false

 37

It means, MATLAB should calculate value of the Step function, i.e. +1

or -1, for each (at least single) argument x and plot its graphics shown

on the right hand-side. The program Step01 solves this problem.

Listing 2.4 of "Step01.m"
function y=step01(x)

% Program-function to plot piece-wise function

% / +1, if x > 0

% y=|

% \ -1, if x <= 0

% Example of use: ezplot('step01(x)', [-3 3]).

% Copyright Ye. Gayev, Nov. 2005

if x<0 % Note: this is a Logical Expression !

 y=1; % Here is Statement1

else

 y=-1; % Here is Statement2

end

% End of Step01

Let us explain now how this program works:

1. If one asks MATLAB for a help,

>> help Step01

the answer is

Program-function to plot piece-wise function

 / +1, if x > 0

 y=|

 \ -1, if x <= 0

Example of use: ezplot('step01(x)', [-3 3]).

So, the program uses the information provided in the Comment Section

to remind to user how this function looks like and how to use it. We

may follow to the last advice.

0,1

0,1

)(

xif

xif

xy

 38

2. Try to calculate this function for several argument values, for

instance:

>> y1=step01(2), y2=step01(-2)

 y1 = 1

 y2 = -1

So the program calculates correct.

3. Now, plot the graph of the Step-function in the way recommended:

>> fplot('step01(x)', [-2 2 -1.2 1.2])

Graphics similar to the above picture is to be displayed. Congratulation:

MATLAB knows now the new mathematical function you've created!

Pay attention however that the function works wrongly for array

arguments. Try for example and get a strange answer:

>> x=[-2 -1 1 2]; y=step01(x)

 y = 1

Our next aim will so be to teach our program to understand arrays. For

this, consider problems 2.11 – 2.13 and learn Micromodule 2.2.3. At the

moment, however, consider a new useful example.

Example 2.3. Develop a program welcome that will greet you

with regard to the day or night time moment and remind you to go

sleeping when it is too late (take control moments 6 a.m. and 1, 6 p.m.

and 0 a.m.). The program should be of course of the script type:

Listing 2.5 of "welcome.m"
% Script WELCOME

% greets the User depended on the part of Day or Night

% divided into 6 hours, 13, 18, 24 and [0, 6] hours

% Copyright of Ye. Gayev, Dec. 2005

T=clock; %Returns the array [Year, Month, Day, Hours, Minutes, Seconds]

if (T(4)>5) & (T(4)<=12)

 disp(' ') % to get an empty string on the screen

 disp('Good morning!')

elseif (T(4)>12) & (T(4)<= 17)

 disp(' ')

 disp('Good afternoon!')

else

 39

 if (T(4)<= 23)

 disp(' ')

 disp('Good night!')

 else

 disp(' ')

 disp('Good night. But I wish you slept this time!')

 end

end

Explanation. First, the program uses two MATLAB commands

unknown to you, clock and disp. Ask Help about them or/and try them

from the Command Line. You will be answered with concern to clock

that it returns a numeric vector with six elements that corresponds to

date and time moment in the format noticed in the comment of the 7th

line. We need to work with the only 4th element T(4).

Secondly, the IF-operator we study is applied in its general form

here,

if LogicalExpression1

 Statements1

elseif LogicalExpression2

 Statements2

else

 Statements3

end

The latter works in the following way. Having reached the if-operator,

computer checks the LogicalExpression1. If it has the value true
12

,

12

 See next section 2.2.3.

P

S1

S2

Fig. 2.4. Flow chart explaining logical operator if … else.

Yes

No

 true

false

Fig. 2.4. Flow chart explaining logical operator if P … else S2.

 40

several Statements1 are executed after which the program leaves the if

… end block at all. However, if the LogicalExpression1 is false, the

portion of if-block between elseif and end becomes working. Again,

LogicalExpression2 is checked. If it is true, Statements2 are executed

and the program goes outside the end. However, if LogicalExpression2

equals false, the Statements2 are skipped and Statements3 are executed

after which the program comes to the line next after end. See also

illustration in the Fig. 2.4.

First two groups of Statements include two commands. It is

important to note that Statements3 contain one operator that is a nested

operator if…else…end. The latter works as explained over. Another

point to draw attention is the manner of writing all the above programs:

they look graphically out like steps. Students are advised to always write

your programs in such a way to emphasise blocks and other structural

elements of the program. MATLAB' m-file Editor makes this

automatically what evidences a "good taste" of this programmer!

2.2.3. Logical arithmetic with and, or, not

In the listing 2.5, we met complex logical expressions like

(T(4)>5) & (T(4)<=12)

that consists of two elementary expressions T(4)>5 ("Element T(4) is

more than 5") and T(4)<=12 ("Element T(4) is less or equal than 12").

What is the logical expression?

It is a sentence that may be estimated in terms of true or false, i.e.

may have values of 1 or 0 only, and depends on the variable argument.

(Sentence itself does not depend on any argument; for instance, sentence

"The sun rises in the West" is always false). Say, in 3 o'clock the

expression T(4)>5 gets the value 0 (false) while in 7 a.m. its value is 1

(true). Elementary logical expressions may include relation signs as

 = = (equal
13

) < (less) > (more)

<= (less or equal) >= (more or equal) ~= (not equal).

Like in every-day-life, we can formulate complex expressions

from elementary ones. Binary logical operations

& (AND) and | (OR)

and unary logical operation

13

 Note that one assignment sign = cannot be used for relations!

 41

~ (NOT)

are used for doing this. Logical value of complex expressions may often

be estimated by intuition; for example, the expression

(T(4)>5) | (T(4)<=12)

equals true both in 3 and in 7 o'clock. However, computers require

rigorous formal rules. The latter, known as logical arithmetic, have been

given in tables below.

 A&B A | B

A=true A=false A=true A=false

B=true 1 0 1 1

B=false 0 0 1 0

 ~ A

A=true false

A=false true

Most of algorithmic languages do not mix logical and arithmetic

operations. In contrast, MATLAB allows mixing of both: a number may

multiply logical expression A, and the result is either the same number if

A=1 (true),or zero if A=0 (false). This MATLAB' feature lead to

simplification of many programs.

Recall the programs Step01 for plotting discontinues function.

Here is its modification.

Example 2.2,A: Step-function programmed with MATLAB'

logical feature.

Listing 2.6 of "step02.m"
function y=step02(x)

% Program-function to plot piece-wise function

% using features of the MATLAB Logic

% / +1, if x > 0

% y=|

% \ -1, if x <= 0

%

% Example of use: ezplot('step01(x)', [-3 3]).

% The command plot may be used as well.

% Copyright Ye. Gayev, Nov. 2005

y1=(x<0);

 42

y2=(x>=0);

y=-y1+y2;

% End of "step02.m"

It is easy to check that all the easy-to-use plotting programs do work

with this command, for instance:

>> fplot('step02(x)' , [-3 3 -1.1 1.1])

Check also that the program is applicable to array data:

>> y=step02([-2 -1 0 1 2])

 y = -1 -1 1 1 1

It is no wonder so that the command plot does work too:

>> x=-4 : 8 / 1000 : 4 ; y=step02(x) ;

>> plot(x , y), axis([-4 4 -1.1 1.1])

We have thus taught MATLAB to understand array arguments what is

in compliance with the MATLAB's "matrix philosophy". Compare this

function step02 with another one step03 suggested by the problem 2.11.

Micromodule 2.3. More MATLAB' programs

Three more programs placed below have to enhance your

programming skills and are thus useful for further applications in other

disciplines.

2.3.1. Periodic Step-function

An important role in mathematics, physics and informatics plays

periodical modification of the Step-function in Example 2.2, with period

2 for example:

]2,2(,1

]2,2(,1

)(

kkxif

kkxif

xy

,...2,1,0k

Its graphics recalls the function xsin but is discontinues. How to define

this function in MATLAB, how to plot its graphics? Program Step_pi

has been suggested here.

The following algorithm is suggested for determining)(xy for

arbitrary x . First of all, check if],[x . If Yes, any previously

developed function Step01, Step02 or Step03 may be used to assign to

 43

y the value either 1 or 1 . We would suggest this to be a nested

subfunction step, see Listing 2.7.

If the answer is No, let us shift along axis Ox periodically for 2

to the right (or to the left) until x will be captured into the interval

]2,2[kk of the length 2 where ,...3,2,1 k (or

,...3,2,1 k). It is not clear in advance how many steps are to be

done (and thus the while –loop is to be used), but it is evident that the

process will be finite. When this happens, the same function step may

be used. Such shifting is equivalent to subtractions 2xx if

0x and to additions 2xx if 0x . This algorithm is

schematized in the flow chart in Fig. 2.5. Listing 2.7 realizes the

algorithm for MATLAB.

Listing 2.7 of step_pi.m
function F=step_pi(x)

% Periodic Step Function,

% i.e. 2*pi-periodical continuation of the Step Function

% / =-1; if x \in [-pi, 0]

% F(x)=|

% \ = 1, if x \in (0, pi]

% Copyright Gayev Ye.A., January 2006

L=length(x); % See HELP for this function

for i=1 : L % Begin of loop № 1 on vector elements

 xx=x(i);

 if (xx >= -pi) & (xx < pi) % If xx \in [-pi, pi]

 % disp('x within [-pi, pi]');

 F(i)=step(x(i));

 elseif xx <= 0 % If xx out of [-pi, pi] and negative

 % disp(' X < 0 ');

 nT=0;

 while ~ ((xx >= -pi) & (xx < pi))

 %Begin of loop № 2 until xx \in [-pi, pi]

 nT=nT+1; xx=xx+2*pi ;

 end

 44

 % End of loop № 2

 F(i)=step(xx);

 else % If xx out of [-pi, pi] and positive

 % disp(' X > 0 ');

 nT=0;

 while ~((xx >= -pi) &(xx < pi))

 %Begin of loop № 3 until xx \in [-pi, pi]

 nT=nT+1; xx=xx-2*pi;

 end

 % End of loop № 3

 F(i)=step(xx);

 end % Закінчення перевірки положення xx відносно [-pi, pi]

end % End of loop № 1

Fig. 2.5. Flow chart of periodical function Step_pi

true true

true

true

true

false

false

false

false

false

 45

% End of the program step_pi

%---

% Example of (nested) SubFunction

%---

function F=step(x)

% Step Function equals -1 if x \in [-pi, 0] but = 1, if x \in (0, pi]

 if x<=0

 % disp(' SubProgram X<0')

 F=-1;

 else

 % disp(' SubProgram X>0')

 F=1;

 end % End of SubFunction

It may be checked that the program step_pi works for array argument.

Comments to program. 1. Program length(x) determines the

number of elements of x. 2. Command disp(' Text ') displays the text

Text on computer screen. Such commands are useful during debugging

of programs and checking if it follows the logic you incorporated. They

may be either deleted or commented by % after tuning the program.

2.3.2. Least element of an array

An one-dimensional array X is given consisted of numeric

numbers. Develop a program MyMin that returns the least element of

them along with its position in the array.

Algorithm of the program is clear from MATLAB program in the

listing below. It is assumed initially that Xmin is the first element of X

and its number is Imin=1.

Listing 2.8 of MyMin.m
function [Xmin, Imin]=MyMin(X)

%Program for determination of smallest element of the vector X

% for teaching purposes

L=length(X);

Xmin=X(1); Imin=1;

for i=2:L

 if X(i) < Xmin

 Xmin=X(i); Imin=i;

 end

end

 46

Similar to this program, a program MyMax may be developed that

looks for greatest element of input array and its position. It is assumed

below, in the next section, that this program exists. In fact, such

programs min and max have already been included as built-in functions

of MATLAB. It would be of interest to compare whose function is

better, see Micromodule 3.4.

2.3.3. Re-ordering of a vector

Reordering elements of vectors is a key problem of computer

science: for given vector X, return vector Y with the same elements

ordered in ascending or descending order. The program MyOrder below

analyzes one of arguments to be either Increase or Decrease, and warns

user to correct the task otherwise. The following algorithm is used for

the case Decrease for example. The problem is solved by L=length(X)

steps. Each time i=1, 2, …, L an auxiliary array X1 with elements from

X is checked, its greatest element by MyMax is found, placed to the i-th

place of another auxiliary array y and new array X1 is created with those

element absent. Try to draw flow chart of the algorithm yourselves

(problem 2.15.). The latter is realized in the following program.

Listing 2.9 of MyOrder.m

function Y=MyOrder(X, Order)

% Return vector Y with the elements of the argument vector X

% / increasing elements if 'Order' is 'Increase'

% but ordered accordingly to |

% \ decreasing elements if 'Order' is 'Decrease'

%

% Example: Y=MyOrder([1 2 3], 'Decrease') returns Y=[3 2 1].

% Uses MyMax and MyMin already developed

% Copyright Ye.Gayev, Dec. 2005

L=length(X); X1=X;

switch Order

 case {'Increase', 'increase'} % Rearrange X in Increasing Order

 for i=1 : L

 [Y1,I]= MyMin (X1);

 y(i)=Y1; X1=[X1(1 : I-1), X1(I+1 : end)];

 end

 Y=y;

 47

 case {'Decrease', 'decrease'} % Rearrange X in Decreasing Order

 for i=1 : L

 [Y1, I]=MyMax(X1);

 y(i)=Y1; X1=[X1(1 : I-1), X1(I+1 : end)];

 end

 Y=y;

 otherwise

 disp(' ')

 disp('It should be either "Increase" or "Decrease" in the second entry.')

 disp('Check your problem and try again, please!')

 disp(' ')

end

% End of the Program

The program in the above example works irrelevantly on letter

case, either 'Decrease' or 'decrease'. Such programs that analyze input

not to include errors and warn user if so, create am impression of being

intellectual. The program works with only row-vectors, then. It could

easily be generalized however for matrices, as in below program:

Listing 2.9A of My1Order.m

function Y=My1Order(X, Order)

% Function returns matrix Y

%with the same dimensions as matrix X

%but elements of each row re-ordered as stated by Order.

% "MyOrder.m" is used as sub-program.

% Copyright Ye. Gayev. October 2006.

[N,M]=size(X); %N=number of rows in X

for i=1:N

 Y(i, :)=MyOrder(X(i, :),Order);

end

Algorithm realized in the programs is one among several known

algorithms of sorting, see [8,9] and problem 2.16. Because of

importance of such algorithms in computer science, similar function sort

was developed in MATLAB. A question will be addressed in

Micromodule 3.4 which of algorithms "is better".

Micromodule 2.4. Supplementary problems

2.4.1. Dialogue programs

 48

It is expected that computers will understand oral commands and

communicate with us by voice in the future. Making computers so

intellectual will also be up to you when you become specialist. Now, we

shall make a first step and teach computer to communicate in a form of

dialogue from the Command Line. Next step, communication with

computer via Graphical User Interface, will be done in the Module 4.

Three ready MATLAB commands are sufficient to us here. The

command disp(x) displays value of variable x, i.e. matrix in general

case, without printing the name of variable; the command disp(' Text ')

displays the text provided in inverted commas. The command

X=input(' PromptText ')

prints the text PromptText on the PC screen, waits for any input from

the Command Line and assigns the latter to the variable X. Finally, the

command pause (in its simplest syntax) stops the program until any key

is touched.

Example 2.4.1. Develop a program MyDeriv that greets you,

introduces itself and asks for which mathematical function would you

like to get derivative function, and finally compares graphics of both

origin and derivative. The following program realizes one of possible

solutions.

Listing 2.10 of MyDeriv.m
% Script of a Dialogue Program

% that plots function provided by User

% and compares it with its derivative

% Copyright Ye.Gayev, June 2005

welcome;

disp(' '); % to make space between lines

disp(' Here is Command Line Dialogue Program '); %Commands to dialogue

disp(' for analytical calculation of derivative ');

disp(' of a function you will be asked for.');

syms Fname x % List of variables to assign symbolic values

disp(' ');

disp('So, please input a Function of x which Derivative')

disp(' you would like to compare with. ')

 49

Fname=input(' '); % Introducing function to differentiate

Deriv=diff(Fname);

disp(' You introduced function y=');

pretty(Fname)

disp(' Its derivative is y=');

pretty(Deriv)

disp(' ');

disp('Press any key and compare them in two graphics!')

pause

figure; ezplot(Fname); title('Plot of your function')

figure; ezplot(Deriv); title(' Plot of your derivative')

disp(' ');

disp('Thanks for using this program!')

% End of MyDeriv

Please analyze yourself how this program works bearing also in

mind comments in it. In developing programs of dialogue types, you are

advised to do all your best for making your program polite and clear, i.e.

sufficiently documented, for users.

2.4.2. Debugging programs
There is a saying among experienced programmers "No program

may appears at first without errors". Errors may be occasional mistypes

or even logical errors in programming. That is why you are

recommended to draw flow charts for each complex program. Anyway,

debugging is required to check each new program in all possible

situations.

If your program contains mistypes or syntax errors, MATLAB

produces a message colored red like

"??? Undefined function or variable '. . .'", or

"??? Error: File: C:\MATLAB6p5\work\MyDeriv.m

Line: 22 Column: 19 ")" expected, ";" found".

Find error in program by m-file Editor and correct it.

The most insidious and hidden are logical errors, however. To

prevent them you are advised to split each complex program to blocks

or sub-programs and check them. Being sure in parts, check your

program as a whole. You shall often come back to program text in m-

file Editor. It may be useful to find critical points of the program and

 50

place control prints like disp('I am at point A') there to check if the

program passes them properly. Having tuned the program, delete those

checking points or, rather, comment them by %.

In fact, this technique realized in the m-file Editor so that you may

do the same through menus Debugging and Stop Points. Try this! This

service found further development in versions 7.1 till 7.3 of the

MATLAB.

It may be thought that MATLAB is an interpreter rather than

compiler what means that it cannot produce autonomous executive files.

In fact, it was true for its versions less than v.5. In later versions, a

possibility was developed to compile exe-files and thus accelerate

execution of MATLAB programs unless the latter does not include

complex structures like graphic windows. It is declared for recent

versions v.7.x that all such restrictions have already been eliminated. So,

welcome for developing applications of your own!

Problems for Module 2.

2.1. Visualize three consequent functions given by recurrence formula

)!2(
)(

2

n

x
xf

n

n for ,...2,1,0n

2.2. Visualize three consequent functions given by recurrence formula

)!12(
)(

12

n

x
xf

n

n for ,...2,1n

2.3. Imagine a process governed by a law
tey . You sample however

separate values of this function for certain time instances. Investigate

how time increment affects accuracy of numerical differentiation by

MyDiff.

2.4. The same question with regard to function xy .

2.5. Try to develop a program for numerical integration using definition

of define integral from your mathematics course. How increment

x influences accuracy of the result?

2.6.

 Investigate problems 2.3 to 2.5 for a case that "experimental

data" contain occasional errors modeled by command
14

 sigma

14

 Look in Micromodule 3.3 or ask Help for this command.

 51

*randn(1,1) that generate random numbers distributed normally with

dispersion sigma=0.1. Analyze if differentiation and integration are

sensitive to such errors.

2.7. In the program helicopter make the stick to rotate in clockwise

direction.

2.8. Develop the program that revolves "the rose" (1.9) of the problem

1.15 in clockwise or anticlockwise direction. Figure 4.6. looks

similar to what you should get.

2.9. Develop a program that plots a pulsating ellipses.

2.10.

 Develop dialogue program that asks for N and revolves polygon

with N vertices in either clockwise or anticlockwise direction. Try

using fill command to fill in polygon with a color of choice.

2.11. Modify the program of the Example 2.2 to make the Step01 to

understand vector argument by means of loop operator for...end; use

plot command. Name the new function Step03.

2.12. Develop program for calculating and plotting graphs of the

following 'Saw-like' mathematical function

]1,0(,1

]0,1[,1
)(

xifx

xifx
xf

.

2.13. Develop program that calculates values and plots graphics of the

following piece-wise "trapezoidal" mathematical function that

consists of 3 branches:

]2,[),2(2

],[,2

],0[,

1

2

2
4

xifx

xif

xifx

y .

(Hints for problems 2.12 – 2.13: students are advised to develop several

programs with gradually increasing difficulty like it was for functions

step01, step02, step02 and step_pi, i.e. (i) program that understands

single arguments but can ezplot and fplot for the domain given; (ii) program

that understands vector arguments and may be used for plot command; and

(iii) that for function periodically continued to the whole domain

 x).

2.14. Develop program MyMax mentioned in section 2.3.2 that looks for

greatest element in arrays; draw flow chart for it. Pay attention to

documenting your programs by comments % to make them clear to

other person, or even for you a year later.

 52

2.15. Draw flow chart of the program MyOrder developed in section

2.3.3. Generalize the program to make it to "understand" two-

dimensional input argument (matrices).

2.16.

 Learn "bubble" method of sorting [7-9] and realize it in a

MATLAB program. Analyze, what of such algorithms already

known to you is better.

2.17. Analogically to MyDeriv, develop dialogue program for

comparing functions and their primitive (define integral) to be found

"analytically", see Micromodule 1.3.2.

2.18. You certainly may solve the problem 1.20 now. Try this!

2.19.

 A number of exciting and useful programs may be developed by

reader now. Some our students made their term papers named

"MATLAB Guide to Analytical Geometry", or "Test your

Knowledge of Functions by MATLAB", etc. You are advised to

follow them!

 53

Module 3: MATLAB for learning and investigation
General module characteristics: Despite you have spent rather few time

for mastering MATLAB yet, you have already been able to get a significant

advantage in learning your university disciplines, especially such difficult ones

as mathematics and physics. It must be confessed that mathematics is often

taught somewhat scholastic. However, you can now check many of its

statements "experimentally". Really, many scientific facts were found by

similar "numeric experiments". Few examples below may help you in doing

this and encourage you for further investigations on your own.

Module structure
Micromodule 3.1. The awful "ε – δ language"!

Micromodule 3.2. Taylor, Fourier… Who else?

Micromodule 3.3. Discovering empirical formulas

Micromodule 3.4. Efficiency of programs

Micromodule 3.5. Your further discoveries with MATLAB

Problems for Module 3

Micromodule 3.1. The awful "ε – δ language"!

It is our experience in teaching that students conceive definition of

the limit with difficulty; introduction of ε and δ in this definition leaves

unclear to them. Well, let us try to investigate "where function or

sequence tends to" by means of self-evident literal calculations by

MATLAB.

1. Consider the famous "Second Famous Limit". It states that the

numeric sequence n
nns 11 tends to a certain border value when

integer number n grows unrestrictedly. The program limit1 presented in

its listing is convenient to plot the sequence ns step by step in a form of

dialogue. Strings in the listing have been numbered for convenience in

explanations.

Listing 3.1 of limit1.m
1 %This script calculates and plots numeric sequence

2 % s(n)=(1+1/n)^n known as the First Famous Limit.

3 % After each N calculations the program stops and asks

4 % if it should stop or go on in calculations. By default, N=10,

5 disp('This program investigates The Second Famous Limit');

6 disp('=========================')

 54

7 N=10; n1=0;

8 Answer=1;

9 while Answer > 0

10 for k=1 : N

11 n(n1+k)=n1+k; s(n1+k)=(1 +1/(n1+k))^(n1+k);

12 end

13 n1=n1+N;

14 plot(n , s ,'-', n , s,'or');

15 title('Investigation if s_n=(1+1/n)^n has a limit.')

16 xlabel('Number n'); ylabel('s_n');

17 text(5, 2.1,'\bf Use the Command Line for further commands...')

18 if n1==N

19 str0='First ';

20 else

21 str0='Next ';

22 end

23

24 disp([str0, num2str(N),' points have been added to the plot.'])

25 disp('Analyze results and deceide if I am to go on.')

26 disp ('Imput any positive number to go on,')

27 Answer=input('or a NEGATIVE NUMBER to complete!');

28 disp('-------------------------');

29 if Answer < 0

30 disp('--');

31 disp('I"ve finished the work on your request. Thanks!')

32 disp('====================================');

33 end

34 end

35 disp('Enjoy your results and draw conclusions!')

36 clear n

Comment to program. The program works in the following way.

Being run, it explains what it serves to ('This program investigates The

Second Famous Limit'). Having plotted fist graph for Nn 1 for the

specified 10N , the program stops and asks user if it should finish or

go on in calculations. Input of any positive number continues

calculations and plotting for next N steps. To finish, input any negative

number, say -1. This logic has been realized by the while … end loop, 9

– 34. Each next N calculations are added by the for-loop, 10 – 12.

 55

"Logical behaviour" of text 24 is managed by the if-block 18 – 22.

Transformation of numbers to characters by procedure num2str(N) and

concatenation of strings was used here, see [1]. In concern of proper

writing sub- and superscripts by the line 15, ask MATLAB for available

TeX characters what is useful also for making text bold (command \bf in

line 17) and writing Greek characters.

Comment to mathematics. Graphical results of calculations

have been shown in Figure 3.1. It is shown for the range 301 n but

may be extended to any length. It may be suggested (and proved by

further calculation) that ns never exceeds certain values, say 8.2ns .

Fig. 3.1. Plotting sequence sn of the Second Famous Limit by the program

limit1. Analysis determines that (i) sn tends to a certain limit (find it

yourself!) and (ii) sequence elements grow monotonically.

 56

Note also that ns grows monotonically, the fact you used in formal

proof.

Numeric value that the ns can never exceed may be defined more

precisely. Do this yourself! With MATLAB, you unlikely require two

hundred years as mathematicians of 16th and 17th centuries did.

However, they discovered that this number is transcendental and gave a

special name e that since has widely been used in logarithms and in

mathematics at all.

Here was the first example how programming converts boring

school tasks into interesting research! MATLAB's command limit may

also be useful in learning function.

2. Let us consider another problem associated with limits and

sequences. The latter is called recurrent sequence if its n
th
 element may

be calculated by means of a previous one, of (n-1)
th
, through a recurrent

formulae. Consider quadratic formulas Css nn

2

1 where 0s and C

are allowed to be complex numbers. Having chosen complex initial

element 0s and complex constant C , get complex elements 1s , 2s ,

…, ns and look where they tend while n . Because they are

complex, each element corresponds to a point on the plane xOy with

coordinates)Re(nn sx and)Im(nn sy 15
.

Does such sequence have always its limit? It depends! Take

different complex 0s and C , and try. The path the sequence ns

converges or diverges16 may be very different but often forms a

strange picture. Two of them obtained for .01i0.150s are

shown in Fig. 3.2. The left one that resembles a spiral galaxy

converges counter-clockwise was obtained with .6i- -.05C . In

the right picture obtained with .35i.36C the current point ns

jumps between five "spots" that behave as a clockwise diverging

15

 Real and imaginary parts of complex number that correspond to MATLAB

functions real(s) and imag(s).
16

 These terms mean 'tends to a limit position' and 'does not tend'

correspondingly.

 57

galaxies on the screen. In the case 0.5651i -0.1238C

"galaxies" tend to complex point 3897i0.225- along linear

trajectories. You are advised to get more funny pictures! It is

worth to examine constants i..C 1080 , i.. 120690 , i.. 1070 ,

i.. 120690 and i.. 5868039050 with 00 s . Despite they are so

strange, the area belongs to very recent science of fractals [7]

where one could get more information.

Micromodule 3.2. Taylor, Fourier… Who else?

These are famous names that mentioned in the title. Theorems of

both are studied in Higher Mathematics course. The theorems sound

similar.

Taylor's theorem: for almost any
17

 function)(xf , a polynomial

n

nn xaxaxaaxT 2

210)(may be found that approximates

it; the more is n the close is proximity of both.

Fourier theorem: almost any periodic function)(xf may be

approached by a trigonometric polynomial

17

 Precise sense of important terms "almost any" and "approximate" (or

"approach") look in handbooks.

Fig. 3.2. Two plots of complex quadratic sequence that resemble one

converging (left) and five diverging (right) spiral "galaxies".

 58

)2cos2(sin)cossin()(22110 xbxaxbxaaxTn

)cos(sin nxbnxa nn ;

proximity becomes "better" for bigger n .

Strict proof of the theorems is given in textbooks. MATLAB is

useful to examine the theorems by example.

Example 3.1. Validate by means of plotting that the below

Fourier polynomial

converges to the Step-function

),0(,1

)0,(,1
)(

x

x
tf .

Solution of the problem gives dialogue program whose listing is

given below.

Listing 3.2 of Script "Fourier1.m"
% This Command Line Dialogue Script

% plots periodical Step Function over area a < x < b provided by user

% and graphically compares it with two approaching Fourier polynomials

% whose orders n1 and n2 are also requested from user.

% Copyright Ye.Gayev, February 2006.

welcome; % to greet user

disp('================================')

disp('This program plots periodical Step Function over area a < x < b')

disp('(you will be asked about values a and b)')

disp('and compares it with two approaching Fourier polynomials of the form')

disp('Fn(x)=4*(sin(x)+sin(3x)/3+sin(5x)/5+ ... +sin((2n-1)x)/(2n-1))/pi.')

disp('You will be asked about orders n1 and n2 of the two polynomials.')

disp('--------------------------------')

disp('Press any key to start.'); pause

% Dialogue start

disp('Please enter in brackets a and b,')

A=input('interval endpoints, to plot the functions: ');

disp('--------------------------------')

disp('Here are endpoints of the interval to plot:'); A

disp('Please provide two integers in brackets, orders of the polynomials: ')

N=input(' orders of the polynomials: ');

disp('================================')

12

)12sin(
...

5

5sin

3

3sin

1

sin4
)(

n

xnxxx
xFn

 59

disp('Thanks! Now, analyze results in Figure.')

% Creating fist polynomial in symbolic form

F1=' ' ;

for i=1:N(1)

 Coefficient=num2str(2*i-1);

 Summand=['4*sin((', Coefficient, ')*x)/pi'];

 F1=[F1, '+', Summand];

end

% Creating second polynomial in symbolic form

F2=' ';

for i=1:N(2)

 Coefficient=num2str(2*i-1);

 Summand=['4*sin((', Coefficient, ')*x)/pi'];

 F2=[F2, '+', Summand];

end

ezplot(F1,[A(1), A(2)]);

hold on; fplot(F2, [A(1), A(2)], 'g');

title('{\bf Step(x)} (red) {\bf compared with F_1(x)} (blue)

{\bf and F_2(x)} (green)')

Comment to program. The dialogue managed by the program

seems to be clear both from programming and user aspects. It begins

with the command welcome that greets user in the way already

described. Both trigonometric polynomials to plot are created in

symbolic form by addition terms step-by-step. Variable Summand

represents regular term in each loop, so that F1 and F2 get the form of

required polynomial at the end. Command fplot was chosen for plotting

second polynomial, as it may control (in contrast to ezplot) colour of

lines. Using TeX commands gives the better featured title.

Comment to mathematics. Try calculations over different

domains [a, b] and, what is more important, for polynomials of different

orders and analyze results. Figure 3.3 presents graphical output for

domain]2,[, i.e. one and half period of the Step-function, where

the Step-function is compared with polynomials)(3 xF and)(7 xF .

Similar, polynomials of elder order may be compared with it. In fact, it

may be concluded that trigonometric polynomials wave over both steps

 60

of the function. The number of waves corresponds to polynomial order

n . It may be thought that none of them "approximate" the function,

even if n . Higher mathematics introduces however another idea

of "proximity of two functions" in terms of integrals (areas). And this

proximity between the Step-function and)(xFn tends to zero while

n , what turned to be very useful in mathematics, signal

processing and informatics at all.

Investigation of the Taylor' theorem is advised to carry out

yourselves. MATLAB's command taylor is useful in finding polynomial

expansions "analytically".

Micromodule 3.3. Discovering empirical formulas

This is a common problem in physics, sociology, economical

science etc. to look for analytical formulas for representing experimental

(or obtained by other means) data. MATLAB suggests a wonderful tool

for solving this problem called "curve fitting".

Fig. 3.3. Graphical output of program Furier1 allows investigation Fourier

polynomials that approximate Step function. Result for 31 n and

72 n (see Problem 3.4, then).

 61

Let an observation was carried out in time moments t=1:.5:6.

Imagine, we know (but nobody else!) the law baty
 with

coefficients, say 2a , 3,0 and 1b , the process)(ty is

governed by. If one would sample values of y in given moments,

results were certainly different from those theoretical values because of

measurement errors. How to get "experimental" data to learn an

example? MATLAB allows a "numerical experiment". The command

rand(1,n) can generate vector 1*n of random numbers uniformly

distributed between 0 and 1. However, use the command

Eps*randn(1,n) that generates normally distributed random numbers

with dispersion Eps as it always happens in any measurement. So, the

following commands produce theoretically "exact values of y" Yexact

along with their "experimental" representatives Yexp with "stochastic

errors":

>> t=1:.5:5; a=2; Alpha=.3; b=1; Yexact=a*t.^Alpha+b;

>> Eps=.1; L=length(t); Yexp=Yexact+Eps*randn(1,L);

Fig. 3.4. Figure Window (middle) with exact "experimental" data and their

linear (B), cubic (C) fits and that of 8th order (A) found via Fitting Interface

(left). Right: two possible straight lines going exactly through two "experimental"

points.

 62

>> plot(t,Yexp,'o', t,Yexact,'--')

The last command results evidently in plotting dashed "theoretical

curve" and "experimental" circles
18

, Fig. 3.4; the more is Eps, the more

the circles are scattered around the curve. The number of "experimental

circles" L has been determined by length(t). The curve fitting problem

sounds: find equation to represent experimental data. Once we have it,

we could interpolate experimental data (i.e. get)(ty between measured

points), or even extrapolate them (i.e. estimate)(ty in the past, or

forecast)(ty for future). Note that problem formulation is not

addressed to finding precise law of the process what should be looked

for in particular scientific discipline; the problem lies in selection among

specified set of functions such as linear 21 ptpy , polynomial

1

1

21 ...)(

 nn

nn

n ptptptptP , exponential or other

functions [3,4].

To start our analysis, choose ToolsBasic Fitting in the Figure

menu. The Basic Fitting Interface that appears is shown in the Fig. 3.4,

left on the Figure window. First, choose data1 in the window 1 as the

data2 relate to "exact" values of the function and will be used for

comparison only. Secondly, we should "experiment" with type of the

approximation: functions from linear to 10th grade have been suggested.

Try polynomial of 8th grade; you'll receive a waving curve

labelled A in the Figure. Despite this curve goes exactly through all L=9

given points, it may unlikely be accepted as being good. It is clear why

it goes exactly through the points: because polynomial of the above

grade contains 9 indefinite coefficients, and thus there are exactly 9

equations for determining them. That is why we receive warning

window "Polynomial is not unique: degree >= number of data points"

if we would choose 9th or 10th degree. Coefficients of the polynomial

found might be read in additional window that appears if we would

press arrow 3. You understand that there are an infinite number of

solutions in the latter cases!
19

18

 "Experimental" points may lay differently in your figure as they include

"random" additions! The same is valid for straight lines in the right figure.
19

 More valuable information may be found in MATLAB HELPMathematics

 Case Study: Curve Fitting, Polynomial Fit, Analyzing Residuals.

 63

Learn polynomials of fewer degree now. Having chosen linear

polynomial, we receive the line B. Straight lines are often chosen for

representing experimental data especially in cases when nothing is

known about real behaviour of the process or accuracy of data is very

poor. We could decide in our case however that polynomials of second

or third degree better represent our "theoretical law" as they are convex

like our process is. Such practical ideas often influence final decision of

the problem.

These were not all questions that may posed by a critical mind. In

fact, how were determined polynomials B and C if the number of

equations, 9, is more than indefinite coefficients in the polynomial

form? Underlying mathematical principles are so important for

mathematics and informatics that we devote a few space to them.

Go on with our criticism. One could choose any two points

(among nine!) to ensure uniqueness of solution while getting straight

lines. However, choosing first and second points, or the last point and

next to last

>> t1=[t(1), t(2)]; Y1=[Yexp(1), Yexp(2)];

>> t2=[t(L-1), t(L)]; Y2=[Yexp(L-1), Yexp(L)];

>> figure; plot(t1,Y1,'*', t2,Y2,'p')

results in completely different straight lines E and D, right picture in the

Fig. 3.4. Which is the best? Note also the "Norm of residuals" in the

window for coefficients – what does it mean?

A very fruitful mathematical approach lies in the following Least

Squares Method that finds straight line "equally good" for all the points

it represents. Take any straight line baty with coefficients a and

b undefined at this stage. This function being calculated at any knot it

produces function value baty ii that, naturally, differs from

correspondent "experimental result" at this point Yi,exp so that the

residual is positive or negative or, seldom, zero. Norm of residuals, i.e.

N

i

ii batYbaN
1

2

exp,),(

may be a good measure of how all the experimental points depart from

the line. The norm is always nonnegative and depends on both

coefficients a and b so that we can choose them to minimize the norm.

 64

 02
1

exp,

N

i

iii tbatY
a

N
,

 02
1

exp,

N

i

ii batY
b

N
.

The latter equalities lied to two linear equations with respect to

coefficients a and b :

N

i

N

i

iii

N

i

i tYtbta
1 1

exp,

1

2
,

N

i

ii

N

i

i tYNbta
1

exp,

1

.

Note that we receive as many equations as there are coefficients

irrespective on how many experimental points we have. It is strictly

proved that the equation set has always unique solution, [4]. The latter is

what is found by Curve Fitting graphical program. You could find it

yourself by one of MATLAB's commands for systems of linear

algebraic equations (SLAE), Examples 1.11, 1.12.

Similar, one gets SLAE with K equations for fitting data by

polynomial of (K-1)th degree, [2,4]. Many useful functions to fit data

such as exponential and logarithmic should easily be previously

transformed to get linear equations for their coefficients. There are also

functions that lead to non-linear problems. For them, MATLAB

contains special program cftool.

You get familiar with curve fitting program and learned its

mathematical background, the Least Square Method. You learned also

programs rand and randn for generating random numbers. It is to

emphasize that the fitting program is the first program in this book with

a graphical interface (GUI). In the Module 4 you shall learn more how

to create your own GUIs.

Micromodule 3.4. Efficiency of programs

Once created, your program becomes an object of exchange with

other programmers, to sell and, what is especially important for the

moment, to investigate. Some programs are "better" or "worth" than

others. In what sense are they? Among many criteria, efficiency of

program, i.e. how fast it works, is one of most significant.

 65

Assume the program of interest works with square matrices of

order n. Let us investigate how much processor time it consumes with

respect to n. MATLAB's commands tic and toc start stopwatch and print

elapsed time (in seconds) correspondingly, and thus may be used in our

problem. Let a script generator generates matrices A, B, C, … of

variable order n, and script to_test contains codes whose effectiveness is

to be examined. The following command from the Command Line

>> n=2, generator; tic; to_test; T(n-1)=toc;

produces matrices 2x2, performs them and assigns the time spent to the

array element T(1). Next command

>> n=n+1, generator; tic; to_test; T(n-1)=toc; (3.1)

does the same for arrays of 3rd order and saves the elapsed time in T(2).

(The number n is printed on screen to observe the process). Repetition

of (3.1) from the Command Line gets T(3) for matrices of fourth order,

and so on. Finally, dependence T versus n may be plotted,

>> plot(T, 'g') (3.2)

Now, let us take the program My1Order, Listing 2.9A, to test as

an example. Few comments before analyzing it. Because modern

computers have already been extremely fast, it is worth to produce ten

matrices rather than a single in generator.m. To generate them

automatically, several structures were programmed. Matrices A, B and C

were of structure:

5

4

3

4

3

2

3

2

1

A ,

3

2

3

2

3

2

3

3

3

2

2

2

1

1

1

B ,

9

6

3

8

5

2

7

4

1

C ,

for which one easily can suggest the rule for any arbitrary order n, and

matrix D was generated to consist of random integer numbers uniformly

distributed between 0 and 10 as D=round(10*rand(n)). Six more

matrices of the same order n were taken as E=B*A, F=C*A, G=D*A,

H=C*B, I=D*B and J=(D+B)*A. Here is the code:

Listing of generator.m

% Generator

% is a Script to produce matrices n*n for a given integer n:

% A=[1 2 3 ...; 2 3 4 ...; 3 4 5 ...; etc.]

 66

% B=[1 2 3 ...; 1^2 2^2 3^3 ...; 1^3 2^3 3^3 ...; etc.]

% C=[1 2 3; 4 5 6; 7 8 9] and so forth for n>3

% D=10*rand(n)

% to test Time Execution of programs working with matrices

clear A B C D E F G H I J

for i=1:n

 A(i, :)=i : n+i-1; B(i, :)=(1: n).^i ;

 C(i, :)=n.*(i-1)+1:n*(i-1)+n;

end

D=round(10*rand(n));

E=B*A; F=C*A; G=D*A; H=C*B; I=D*B; J=(D+B)*A;

% End of generator.m

So, the program to_test.m includes application of the same

program My1Order to perform all the ten matrices:

Listing of to_test.m

% Script to_Test

% to examine for Execution Time programs like My1Order.m

% that work with matrices (produced by Generator.m)

% Analysis of my program

A1=My1Order(A,'Decrease'); B1=My1Order(B,'Decrease');

C1=My1Order(C,'Decrease'); D1=My1Order(D,'Decrease');

E1=My1Order(E,'increase'); F1=My1Order(F,'Increase');

G1=My1Order(G,'increase'); H1=My1Order(H,'Increase');

I1=My1Order(I,'increase'); J1=My1Order(J,'decrease');

% End of to_test.m

Commands (3.1) may easily be issued by hands 100 or even 200 times

so that statistics for execution times will be collected in the array T. Plot

the latter as (3.2) and note that function T(n) grows with n. Using Basic

Fitting Window (see previous Micromodule 3.3 and Fig. 3.4),

interpolate the data T as a second order polynomial
20

; it is for computer

of authors 05,00027,000052.0 2 xxy .

20

 Your own program might be employed as well, see problem 3.9.

 67

Next, let us test intrinsic MATLAB's function sort that works

similar to My1Order but re-orders columns elements rather than that of

rows; to do this, replace words My1Order by sort in the program

to_test.m. Here is an example of replacing:

A1=sort(A')'; B1=sort(B')'; J1=sort(((D+B)*A)')';

(transposed matrices are used in the case of sort). Save results in an

array T1 by commands (3.1). Finally, commands

>> plot(1:200, T(1:200), 'g', 1:200, T(1:100), 'r')

>>title('Efficiency of Sorting Algorithms')

>> legend('Efficiency of My1Order.m ', 'Efficiency of sort.m')

>> xlabel('Matrix order, n'); ylabel('Time ellapsed, sec');

let us compare both programs. The program sort.m turns to be much

faster as seen from Fig. 3.5. It begins to rise at only 140n but its

growth is steeper. In fact, applying Basic Fitting gives equation of its

rising as ...0016.0 2 xy (Fig. 3.5).

These results mean that the program sort.m is significantly more

effective in the domain of n investigated. No wonder: better

mathematicians were employed in developing MATLAB! However,

because its growth is about 3
00052.0

0016,0 times more intensive than

another one, situation may change for especially large matrices.

It is clear that leading coefficient plays a prime role in estimating

function growth, and thus is commonly used in characterizing efficiency

of algorithms. It is quite well, if its number of operations (so, execution

time T) rises as
1n . It is much worth if

2nT or
3nT . Programs

have been almost unacceptable if
neT . Computer science

experienced even a revolution in late 1960th when algorithms of Fourier

Transform with execution time proportional to
2n were changed to

algorithms of Fast Fourier Transform with nnT ln . So the IT

science needs to pay sufficient attention to the properties of programs

discussed. Correspondingly, MATLAB includes a special tool for this,

Profiler.

Micromodule 3.5. Your further discoveries with MATLAB

It is our hope that you enjoyed discoveries or re-discoveries you've done

with MATLAB in this book. But it is the only start to you! What about

 68

playing games of chance with MATLAB or, better, researching

probability problems associated with them? Look into our paper [22]!

Or, would you like to play or even write music with MATLAB? If so,

read our paper [21]. Note that all those beautiful programs were made

by first year students. They are on your forces, too! With MATLAB.

Problems for Module 3

3.1. "Visualize" and investigate the "First Famous Limit"
x

x

x

)sin(
lim

0
.

Hints: (a) consider separately the "left limit" 00x and the

"right limit" 00x ; (b) as x is continuous argument, consider

different "tendencies" of x to 00 , for example nx 1 , or

2
1

n
x with n . Is there any difference?

 69

3.2. Make "experiments" with numeric series

in
i

n
i

i
S

1 13

12
)1(

to discover if it converges to any limit with n , [5].

3.3. Determine "experimentally" whether

56
)1(...

7

2
1

n

n
S n

n converges to any limit while

n , [5].

3.4. Plot of Step-function in the Fig. 3.3 was made manually. Modify

the program Fourier1 to compare consequent functions F1 and F2

with also Step-function (Micromodule 2.3.1). Try using plot instead

of ezplot and fplot.

3.5. Analyze by means of a dialogue program if the following Fourier

series

 00
2 1

)1(2sin

4

1

)12(

)12cos(1

2

1

8
)(

kk k

xk

k

xk
xf

Fig. 3.5. Comparison of execution time for two array sorting algorithms:

dots are "experimental" results; lines are fitting curves.

 70

0

)12sin(
)12(2

12

k

xk
k

converges to discontinuous function

.0,
2

;0,1
)(

x
x

x
xf

3.6. By means of taylor find Taylor's expansion of function)sin(t ,

write down its pretty-representation and investigate if it really

approaches the given function for several n .

3.7. Plot the N
th
 partial sum

!
...

!3!2!1
1)(

32

n

xxxx
xS

n

n and

compare it with the function
xey over domain bxa .

Develop a dialogue program for such investigation of the Tailor's

theorem.

3.8. Generate "experimental" data randomly dispersed over linear

function 2.37. xy . Create your own dialogue program for

curve fitting to these data by Least Squares Method.

3.9.

 Create your own dialogue program for fitting curves of second

order. Compare results with the MATLAB program.

3.10. Investigate how much time is required for calculating elementary

functions like sin, tan, atan etc. in MATLAB. (Hint: for various n

produce table of an argument N=2^n;x=0:.1:N and calculate

functions for it; use Basic Fitting Tool to estimate functional

dependence between the time and the number of arguments

10*N+1; linear grows is expected).

3.11.

 Investigate how much time is required for calculating error

function erf(x) in MATLAB. (Hint: because exponential grows is

expected, it may be worth use of logarithmic coordinates {lg N, lg

Time} to determine the fitting curve).

 71

Module 4: Graphical User Interface in MATLAB

General module characteristics: As you already can develop your own

programs and apply them to disciplines you study in university, you certainly

would be happy if your programs looked as nice and attractive as the Windows,

the Word and other programs of high standard level. It means that the

Graphical User Interface, the GUI, is what you just need.

Module structure

Micromodule 4.1. Graphical User Interface (GUI) standards

Micromodule 4.2. Games with MATLAB GUI elements
4.2.1. menu command

4.2.2. uicontrol commands

Micromodule 4.3. guide, MATLAB GUI developer

Micromodule 4.4. An example: GUI for helicopter

Conclusion

Problems for Module 4

Micromodule 4.1. Graphical User Interface (GUI) standards

Earlier, in the Module 2, we created quite intellectual programs

with a dialogue between them and the user from the command line. In

the future, however, computer programs will communicate with us by a

human voice and supply results in a visual or audio form convenient to

us. At the moment, it is widely used to create GUIs (to pronounce as

['gu:i]) for providing users with aesthetically pleasing communication

interface. So, development of them becomes an important part of

modern engineering education now, [11,13,16]

The most famous examples of GUIs are Microsoft Windows and

Word. They employ various menus, text windows and graphical

windows, buttons, radio buttons, check boxes, taskbars, pop-up menus,

sliders to be affected either by keyboard of by mouse. Many popular

articles about history and types of GUIs may be found in Internet

[16,17]. MATLAB itself provides you a friendly graphical interface; its

elements with explanations have been shown in the Fig. 4.1.

Another good example of GUI is MATLAB's Basic Fitting

Interface, see Micromodule 3.3.

http://en.wikipedia.org/wiki/Radio_button_(computing)
http://en.wikipedia.org/wiki/Check_box

 72

Micromodule 4.2. Games with MATLAB GUI elements

Before starting to learn GUI, it is useful to learn some GUI

elements in a form of a play with them. Students are advised to follow

the plan below and to make experiments of their own.

4.2.1. menu command

First, try the command menu

>> MyChoice=menu('What do I prefer?','MATLAB', 'MathCAD', …

'Matematika','Maple')

and look what happens. You receive a nice menu of gray color like in

Fig. 4.2, left. Note that the Command Line remains busy. Any of four

pushbuttons in the menu just created may be pressed; the variable

MyChoice gets a value 1 to 4 depending on the button chosen, and the

menu What do I prefer? disappears. You need to repeat the command

above to go on our experiment.

Fig. 4.1. Examples of MATLAB 7.1 GUIs: 1 – menus, 2 – text windows,

 3 – buttons, 4 – radio buttons, 5 – check boxes, 6 – taskbars

http://en.wikipedia.org/wiki/Radio_button_(computing)
http://en.wikipedia.org/wiki/Check_box

 73

After <Ctrl - C>, graphical object makes the Command Line free
21

(don't mind error messages) but does not disappear; even several new

such menus may be run in such a way. Try: it is supposed you cannot

change size of them at the moment.

Now, play with the command gcf (Get Current Figure): different

integers will be obtained with regard to the menu to be chosen current.

These integer numbers are handles to particular existed objects. By the

command like

>> set(2, 'color' , 'yellow')

where 2 is handle of a particular Figure, you can set a color you wish to

the menu you wish
22

.

21

 This is true for the version 6.* while MATLAB v.7.* behaves in a different

way.
22

 Function set was already used in listing 2.3.

Fig. 4.2. Two graphical objects created by menu

command. Colors and dimensions may be changed by set.

 74

How could we address a particular object? What properties are we

able to change, and how to do this? As we know handles to each object,

the command
>> get(IntegerNumber)

brings to light a long list of properties and their current values relevant

to the object with the handle=IntegerNumber. You are advised to try

next games with them by the command set:

1. Change color of any menu:
>> set(3,'color',yellow')

2. Change the name of one of your menus, for example
>> set(2, 'Name', 'My discovery')

You cannot see the new title My discovery in full, don't you? Go on!

3. Re-switch the property Resize from off to on:
>> set(2, 'Resize', 'on')

You can change size of your rectangle menu by means of mouse now!

4. And a hocus-pocus at the end: by the commands
>> set(3, 'Visible ', ' off ')

>> set(3, 'Visible ', ' on ')

your graphical object number 3 will disappear and appear again!

That's all for the menu. Feel free to make experiments of your

own with graphical objects! However, how to know values to assign to a

particular property, for instance for Pointer? The command set with no

value shall prompt you:

>> set(1, ' Pointer ')

With only handle, the command displays the whole list of values,

>> set(1)

There is a broad freedom in controlling your graphical properties. Feel

free to make experiments with also properties TooltipString, Pointer,

etc. Only read-only properties cannot be accessed.

4.2.2. uicontrol commands

Many names of commands in our focus start with ui what

abbreviates the words User Interface. Like before, it is also useful to

play with the command uicontrol and investigate its capabilities in such

way.

1. Big number of MATLAB' experiments is possible with the

syntax

 75

figure(FigNo); FigNoControlNo = uicontrol(' Style ', 'ControlStyle ')

that creates an "empty" Figure with the number FigNo and with a

Control that may be one of the styles listed and briefly explained in the

table:

Style of a control Brief explanation

checkbox A rectangle for making choice yes or not by

mouse

edit Provides a field for editable text

frame A rectangle to visually group some items

listbox Control to display a list of items defined by uses

popupmenu To display a list of choices user wishes

pushbutton Button that simulates pressing and depressing

radiobutton Similar to checkbox

slider Provides a sliding bar

text Rectangle with an unchangeable (static) text

toggle Control to execute callback when clicked

For example, create Figure 5 with pushbutton that gets its handle

Fig5Obj1 (it doesn't matter what of the numeric value it gets):

>> figure(5), Fig5Obj1 = uicontrol(' Style ' , ' pushbutton ')

It doesn't matter what of the numeric value the handle gets; it is more

important to be able to get properties of this first object in the Figure 5:

>> get(Fig5Obj1)

Note that controls of different style have different properties!

Particularly, find the way to manage dimensions and position of your

controls.

2. Learn what properties the above controls have, and try to

manage them. For example, the following command sets green color to

the above pushbutton:

>> set(Fig5Obj1 ,' BackgroundColor ', ' green ')

The next command superscribes the word Start by font size defined by

second pair of arguments:

>> set(Fig5Obj1 , ' String ' , ' Start ',' Fontsize ', 10)

No matter how many properties are set by a single command set at once.

 76

3. Having created several Figures, try to distinguish their handles

from that of controls they have. Handles of Figures allow controlling

their properties. Say, the default colour of the Figure 5 may be changed:

>> set(5, ' color ', 'white ')

Try also to change properties of particular control in particular Figure.

4. Students are advised to investigate themselves other MATLAB

commands for creating user interfaces, such as:

uigetfile, uigetdir, helpdlg, uisetcolor, uisetfont,

h=waitbar(.3,'title','CloseRequestFcn','delete(h)'),

questdlg, msgbox, warndlg, errordlg.

Micromodule 4.3. guide, MATLAB GUI developer

The commands you learned over may help you in creating your

own graphical user interfaces to applied programs of your own.

However, you are advised to use the command guide that implements

them to facilitate such your work. MATLAB will thus make your work

easier and much less time consuming than if you would work with C
++

or Java.

Calling this program from the Command Line results first in

appearance of a pilot window Quick Start that allows you to choose

from several pre-formatted GUI templates (with UIcontrols, with Axes

and Menu, and with a ready Modal Question Dialogue), Fig. 4.3.

However, start with a Blank GUI template now.

A GUI Layout Editor appears. It consists of resizable GUI Layout

Area (see Fig. 4.4) with a mesh for aligning objects, horizontal set of

instruments at the top (labelled as A, …, D) and vertical component

palette on the left with all possible GUI components (numbered here

from 1 to 11 and explained in caption below). Note that pointing mouse

cursor to any instrument icon or GUI Component (without pressing

them) results in displaying a hint what the icon serves to.

Press any component 1 to 11 in the Component Palette and drag it

in the Layout Area. In the Fig. 4.4 all kinds of UI controls have been

placed in the Layout Area, one of each kind, to demonstrate how they

look like. The grid is to align controls with respect to each other. If you

find that the Layout Area is too small, resize it by mouse cursor and the

Figure Resize Tab.

 77

Double click any control in the Layout Area (or activate it and

press the Property Editor icon labelled as C in the Fig. 4.4) to call

out Property Inspector. Its particular values like self evident

Background Color, Font Name, Font Size allow to simply change

properties of the correspondent UI control. Esthetical feeling is required

to make this part of the work.

All the controls in the Layout Area are "dead" at this stage. Press

Run Button D, , to activate the GUI. You will be asked first about

the name to save it; the name TestGUI is suggested. A real GUI, an

object TestGUI.fig (with extencion .fig) has been created
23

 with already

"alive" GUI controls that simulate pushing or toggling buttons 1 and 2,

enabling or disabling check box 3 and radio button 4, inputting text or

numerals in the Edit Window 5, sliding in 7 and unfolding the list box 9

and pop-up menu 10, see Fig. 4.5. However, they do not do any useful

work but rather simulate it. Axes 11 do not display any useful

information as well. To do any useful actions, callbacks are to be

associated with the UI controls. They are to be written in m-file.

The m-file TestGUI.m appears when the Run Button D is pressed

for the first time; alternatively, it may be called by pressing icon B, ,

of the m-file Editor. It may be noted that this program has been quite

long, of about 200 lines. Let us analyze its structure.

The program begins with declaration of our function TestGUI that

links an output parameter varargout with input parameter varargin

(abbreviations from "variables of out-argument" and "variables of in-

argument"). It may be a good idea to structure this complex code in the

following way.

(I) First, there is a portion of comments with some explanations.

Look how they have been fitted to the names you introduced!

Programmer is advised to modify comments by providing

required information what his/her program serves to.

(II) Then, there are 18 lines with an initialization code that are

forbidden to edit.

23

 Another way to call out the GUI already created is execution testgui from the

Command Line.

 78

(III) There are also two functions TestGUI_OpeningFcn and

TestGUI_OutputFcn that you are advised not to modify as

well.

(IV) The last and most important portion of the code includes

description of all the dynamic GUI controls
24

 that were

designed by programmer. Some of the latter require one

function to operate with (they are Push Buttons, Toggle

Buttons, Radio Buttons and Check Boxes), another require two

functions (Edit Text, Sliders, List Boxes and Pop-Up Menus).

This is just the code portion where programmer should

provide his/her own commands the program is to execute.

All this is illustrated by an example below.

Micromodule 4.4. An example: GUI for helicopter

Before developing GUI for any application, programmer is to

plan what UI controls the program should have to communicate with

user. Let us illustrate this by creating GUI to the program helicopter,

Example 2.1.

Recall that the program helicopter rotates a stick on PC screen,

and we may control (i) number of rotations N, (ii) direction of rotation

(either clockwise or counter-clockwise), (iii) speed of the rotation (from

slow to fast), and (iv) colour of the rotated stick. One may think the

following UI styles to fit best for providing these data to the program:

Edit Window for (i); radiobutton for (ii); slider for (iii), and pop-up

menu for (iv). Resulting GUIhelicopter program shown in the Figure 4.6

has been made through the following stages.

1. UI control of the Static Text style was located on the Layout

Area to make title of the future program. After doing this, double click

on the newly created control, or press the Property Editor icon C, and

(a) choose Background Color you like; (b) input title you'd like to see

instead of predefined String = Static Text, for example "My first GUI:

Rotation of a stick. Input information required to Start". It is

important to make this title clearly understandable for users

prospected! The programmer is able also to specify (c) FontSize and

FontName (14 for MS Sans Serif were chosen as well as

ForegroundColor= white).

24

 i.e. Static Text controls are not present here.

 79

2. Make Axes Window and align it with the previous control. Call

the Property Editor and note how many properties has this control!

XTickLabel and YTickLabel properties may be set from default values

to empty in our case. Many of them may be set later.

3. Create PushButton and, by calling the Property Editor for it,

specify its color, String ("Start" was used) and FontSize were

specified such as at the stage 1. In contrast to previous steps,

providing name for the Tag (or noting its default name like

pushbuttonN) is required to find it in corresponding m-file later. In our

case, the name PushButtonStart was associated with Tag.

4. It is useful to provide titles for controls introduced on below

stages to explain them. The following Static Text controls were used:

"Number of rotations", "Direction of rotation", "Choose color of the

Stick" and "Speed of rotation".

5. For inputting N, the number of rotations, locate Edit Text

Window on the Layout Area below Axes. As before, specify

properties controlled by Property Editor. Especially important is to

assign a proper name to Tag; we set the Tag to EditN.

6. Place radio button nearby, specify text on its panel and,

especially important, set its Tag to, say, RadioButtonDirection.

7. Copy the last pair of controls (i.e. highlight it, <Ctrl-C> and

<Ctrl-V>), align the new pair on the Layout Area but change their

properties: title the Static Text String as "Choose color of the Stick",

change the Style property of the radio button control to

Style=popupmenu. The Tag was named as PopUpColor. It is

important specifically for pop-up menus: in the String box several

lines were written to list possible colors of the stick: Red, Green,

Yellow, Blue, Black, Magenta.

8. Finally, place Slider and Static Text "Speed of rotation" below

the slider, name its Tag as SliderSpeed. Important specifically for

sliders: Min and Max properties may be set from their default values

(0.0 and 1.0) to another ones. Design of the GUI GUIhelicopter has

been completed. Save all the changes under this name by pressing Run

Button D. Graphical structure of all the components implemented here

may be overviewed by pressing Object Browser D, .

Now, links between all the components chosen for the new

program are to be provided, and callbacks specified. The m-file Editor

 80

with the m-file GUIhelicopter.m appeared when the Run Button E was

pressed for the first time. It may be also called by pressing icon B, .

The IV part of the generated program GUIhelicopter.m see in the

Attachment A2. Go on with the new program!

9. In the IV part of the GUIhelicopter.m code find the function

responsible for the push button. Accounting for the Tag we provided

for it on the stage 3, it has been the function

PushButtonStart_Callback. At the moment, this function contains no

commands except comments. Let us write down and store the

following piece of code taken from the program helicopter but

modified:

N=5; Direction=1; ColorText='red ';

% global N Direction Speed

Dt= Direction*pi/20;

for t=0 : Dt : Direction*2*N*pi

 x1=cos(t); y1=sin(t);

 x2= - x1; y2= - y1;

 Pl=plot([x1, x2], [y1, y2]);

 set(Pl, 'linewidth ',4); set(Pl, 'Color ',ColorText)

 set(Pl, 'linewidth ',4)

 axis([-1.1 1.1 -1.1 1.1]) %Constant Scales!

 set(gca,'XTick', []); set(gca,'yTick ', [])

Fig. 4.3. Pilot window after calling guide.

 81

 hold on; plot([0],[0],'o'); hold off; % Symbol and Color of Center Point

 pause(.1) % Speed of Rotations

% pause(.1/Speed) % Speed of Rotations modified

end

You may examine that our GUI program starts working: pressing

button Start results in appearance of a stick that rotates. At this stage,

however, rotation of the stick and its color do not depend on data in

other UI controls. For example, symbol N in the window "Number of

rotations" may be substituted for, say, 100, but stick will anyway

rotate N=5 times as this has been prescribed by the first command.

10. Find now two functions responsible for the above editable text.

They are the functions EditN_CreateFcn and EditN_Callback in the

code as this determines by the Tag set on the stage 5. The second

function seems to be responsible for the callback. Two ready hints in

its comments suggest to place following commands here
global N

Ntext=get(hObject,'String');

N=str2double(get(hObject,'String'));

The second command accesses the property String of the current

object and assigns to it symbols introduced in the window. The next

command converts these symbols (they are so to be numerals!) into

the number. The first command declares the introduced N to be global.

Finally, declaration global N should be also introduced in the code of

previous stage 9: simply comment its first row and uncomment the

second. An exchange of N between two sub-programs has been

managed in such a way. Now, the stick will make as much revolutions

as user may wish.

11. A hint in the function RadioButtonDirection_Callback

associated with our radio button accordingly stage 6 suggests the

following commands to place there:
global Direction

Direction=(-1)^get(hObject,'Value');

The second command produces a number Direction equal either +1 or -1

depending on the radio button is labeled or not. This number is global both

for the current function and for the code written on stage 9.

12. Similar to the stage 10, there are also two functions

PopUpColor_CreateFcn and PopUpColor_Callback responsible for

choosing color of the stick accordingly to the Tag set on the stage 7.

The last one is suggested to be extended by commands

 82

global ColorText

contents = get(hObject, 'String');

ColorText=contents{get(hObject, 'Value')};

The second command returns to variable all the contents of the

String, but the third one gets the value selected from the pop-up

menu. Again, the latter should be declared global here and in the

code of the stage 9.

13. It is high time now to control speed of the rotation. In the

function SliderSpeed_Callback that provides callback of the slider,

write commands
global Speed

Speed=get(hObject,'Value')+.001;

that account for hints in comments there. The second command gets

numeric value relevant to position of the slider. Note that default

values for Min=0 and Max=1 have been not changed. This value is

Fig. 4.4. GUI Editor with UI controls in the Layout Area:

A – Property Editor icon, B – Run icon; 1 – Push Button and its

icon; 2 – Toggle Button; 3 – radio Button; 4 – Check box; 5 –

Editable Text Box; 6 – Static Text; 7 – Slider; 8 – Frame; 9 – List

box; 10 – Pop-Up Menu; 11 – Axes.

Layout area

Figure

Resize Tab

C
1

2

11

11

7 8

5

3 4

E

D

9 10

B

A

D

 83

passed to the function PushButtonStart_Callback explained on the

stage 9; it is suggested to uncomment the command before last.

At last, the graphical program GUIhelicopter has been completed.

Execute the command GUIhelicopter from the Command Line and type

in data it asks for. The program works fine. Figure 4.6 illustrates how

the program works. Enjoy!

Conclusion

Before shaking hands, few words should be told to conclude. You

learned MATLAB from the two viewpoints, as a mathematical

environment in Modules 1 and 3, and as a programming tool in Modules

2 and 4. These both parts equally constitute this wonderful software and

Fig. 4.5. Activated GUI shown in the Fig. 4.4. Each type of UI

controls has been represented here. However, the UI controls

"simulate" rather than execute a real work yet.

 84

make it indispensable in your study and future profession of information

technology, IT. Because of volume restriction, we touched only few

aspects of this very advanced and powerful program. It is our hope that

you go on in mastering MATLAB and programming with it.

Problems for the Module 4

4.1. Give an example of soft you like and describe what of GUI it has.

4.2. Learn yourselves what perspectives in customizing your MATLAB

GUIs may be provided by commands uigetfile, uigetdir, helpdlg,

uisetcolor, uisetfont, waitbar, questdlg, msgbox, warndlg, errordlg.

4.3. Design a GUI program that creates propeller (1.9), fills it in with a

specified color and rotates in one or opposite direction a specified

number of times. Hints: use plot rather than ezplot and command fill;

a subprogram for converting coordinates (x,y) to ones (x',y') rotated

at an angle might be useful.

Figure 4.6. Graphical program GUIhelicopter that revolves stick of a

chosen color N times in clockwise or opposite direction at a given speed.

 85

4.4. Design a GUI program that creates a polygon with N vertices, fills it

in with a color and rotates at various speeds (GUI shell to problem

2.10).

4.5. Develop a GUI program that asks for a function of one variable,

finds its derivative and compares graphs of both (compare with

problem 2.17).

4.6. Develop a GUI shell for program limit1 (listing 3.1) that asks for a

infinite numeric sequence like in problems 3.1 – 3.3, investigates

existence of its limit and finds the latter if any.

4.7. Develop GUI program to demonstrate how Taylor series (Fourier

series) may approximate their origin function (note the so called

Gibbs phenomenon at discontinuity points in Fourier case), problems

3.4 – 3.7.

References

1. Ануфриев И. Самоучитель MatLab 5.3/6.x. – СПб.: БХВ-

Петербург, 2002. – 736 с.

2. Гаєв Є.О., Нестеренко Б.М. Універсальний математичний пакет

MatLab і типові задачі обчислювальної математики.

Навчальний посібник. К., 2004. – 175 с.

3. Гаєв Є.О., Нестеренко Б.М. Типові задачі обчислювальної

математики з застосуванням пакету MatLab. Методичні

вказівки до виконання лабораторних робіт. К., 2004. – 38 с.

4. Демидович В.П., Марон И.А. Основы вычислительной

математики. – М.: Наука, 1966. – 664 с.

5. Денисюк В.П., Репета В.К., Гаєва К.А., Клешня Н.О. Вища

математика. Навч. посіб., ч. 3. К.: НАУб 2006. – 444с.

6. Кетков Ю., Кетков А. MatLab 6.х: программирование

численных методов. Спб: БХВ, 2004. 672 с.

7. Пайтген Х.-О., Рихтер П.Х. Красота фракталов. – Москва:

Мир, 1993. 176 с.

8. Павловский В.И. Структуры данных. Представление и

использование. – Чернигов: ЧГТУ, 2003. – 233 с.

9. Aho A.V., Hopkroft J.E., Ulman J.D. Data structures and

algorithms. (Russian translation: Ахо А.В., Хопкрофт Д.Э.,

Ульман Д.Д. Структуры данных и алгоритмы. – Москва-Киев:

Изд. дом. "Вильямс", 2003. – 384 с.)

 86

10. Austin M., Chancogne D. Introduction to Engineering

Programming: in C, MATLAB, and Java. John Wiley&Sons, Inc.,

1999.

11. Azemi A., Yaz E. E. Using graphical user interface capabilities of

MATLAB in advanced engineering courses, The 38th IEEE

Conference on Decision and Control (CDC), IEEE, pp 359-363,

Phoenix, December 7-10, 1999.

12. Cooper J. A MATLAB companion for multivariable calculus. – San

Diego: Harcourt, 2001. – 294 pp.

13. Depcik Ch., Assanis D.N. Graphical User Interfaces in an

Engineering Educational Environment. CAEE2005, v13, №1, pp.48-

59.

14. Herniter M. E. Programming in MATLAB. Thomson Engineering,

2001

15. Rojan Yu. Learn Programming and Mathematics with MATLAB.

16. Tuck M. The Real History of the GUI. http://www.sitepoint.com/

article/ real-history-gui

17. Wikipedia, Graphical User Interface. http://en.wikipedia.org/wiki/

Graphical_user_ interface

18. Wirt N. (Вирт Н. Алгоритмы и структуры данных. СпБ..: Изд-во

"Невский диалект", 2001. – 352 с.)

19. Gayev Ye.A., Nesterenko B.N. MATLAB for Math and

Programming: Textbook. – Zaporozhye: Polygraph, 2006 – 102 p.

20. Азарсков В.М., Гаєв Є.О. Сучасне програмування. Модулі 1,2:

“Програмування та математика із другом MATLABом”. К.:

НАУ, 2014. – 256 с.

21. Гаєв Є.О., Рожок О., Овчарчин Н. Звук та музика в курсі

програмування. -- Інженерія програмного забезпечення, 2014,

(у друку).

22. Гаев Е.А., Мартич М., Тарак Г. Программы моделирования

случайных явлений для изучения программирования и

математики. – Інформаційні технології в освіті, 2015, (в печати)

http://www.wiley.com/
http://engineering.thomsonlearning.com/default.aspx
http://www.sitepoint.com/%20article/
http://www.sitepoint.com/%20article/
http://en.wikipedia.org/wiki/Graphical_user_
http://en.wikipedia.org/wiki/Graphical_user_

 87

Attachment A1
Listing of "MyDiff.m"

function [P,X1]=MyDiff(X,Y)

% Return Derivative of the table function Y=Y(X)

% provided length(X)=length(Y).

% Copyright Ye.Gayev

% (example of switch …case… end to compare with listing 2.2).

Nx=length(X); Ny=length(Y);

switch Nx==Ny

case 0

 disp('Error: Lengths of arguments X and Y must be equal!');

case 1

 disp('Differentiation has been completed!');

 disp('Call "plot(X1,P)" to plot the derivative.');

 X1=X(1 : end-1); % Coordinates of the derivative P(x)

 X2=X(2 : end); dX=X2-X1;

 Y1=Y(1 : end-1); Y2=Y(2 : end); dY=Y2-Y1;

 P=dY ./ dX;

otherwise

 % Nothing else except two above cases considered may happen

end

Attachment A2
Listing of "GUIhelicopter.m"

function varargout = GUIhelicopter(varargin)
% Portions I to III of this program generated by MATLAB automatically

% has been skipped as they have been not the objects to edit

% Portion IV of the program:

% strings of code added by authors are written bold

%--- Executes on button press in PushButtonStart.

function PushButtonStart_Callback(hObject, eventdata, handles)

% hObject handle to PushButtonStart (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%N=5; Direction=1; ColorText='red';

global N Direction ColorText Speed

%ColorText

Dt=Direction*pi/20; % Determines speed of Rotations

for t=0:Dt:Direction*2*N*pi

 x1=cos(t); y1=sin(t);

 x2=-x1; y2=-y1;

 88

% Pl=plot([x1, x2], [y1, y2], ColorText); set(Pl, 'linewidth',4)

% Colour of the Helicopter = Red now

 Pl=plot([x1, x2], [y1, y2]); set(Pl, 'linewidth',4); set(Pl, 'Color',ColorText)

 axis([-1.1 1.1 -1.1 1.1]) %Constant Scales!

 set(gca,'XTick', []); set(gca,'yTick', [])

 hold on; plot([0] , [0],'o'); hold off; % Symbol and Colour of Centre Point

 pause(.1/Speed) % Speed of Rotations

end

% --- Executes during object creation, after setting all properties.

function EditN_CreateFcn(hObject, eventdata, handles)

% hObject handle to EditN (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function EditN_Callback(hObject, eventdata, handles)

% hObject handle to EditN (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of EditN as text

% str2double(get(hObject,'String')) returns contents of EditN as a double

global N

Ntext=get(hObject,'String');

N=str2double(get(hObject,'String'));

% --- Executes on button press in RadioButtonDirection.

function RadioButtonDirection_Callback(hObject, eventdata, handles)

% hObject handle to RadioButtonDirection (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of RadioButtonDirection

global Direction

Direction=(-1)^get(hObject,'Value');

 89

% --- Executes on selection change in PopUpColor.

function PopUpColor_Callback(hObject, eventdata, handles)

% hObject handle to PopUpColor (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns PopUpColor contents as cell array

% contents{get(hObject,'Value')} returns selected item from PopUpColor

global ColorText

contents = get(hObject,'String');

ColorText=contents{get(hObject,'Value')};

% --- Executes during object creation, after setting all properties.

function SliderSpeed_CreateFcn(hObject, eventdata, handles)

% hObject handle to SliderSpeed (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background, change

% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

 set(hObject,'BackgroundColor',[.9 .9 .9]);

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on slider movement.

function SliderSpeed_Callback(hObject, eventdata, handles)

% hObject handle to SliderSpeed (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject, 'Min') and get(hObject,'Max') to determine range of slider

global Speed

% Min=get(hObject,'Min'), Max=get(hObject,'Max'),

Speed=get(hObject,'Value')+.001;

% --- Executes during object creation, after setting all properties.

function PopUpColor_CreateFcn(hObject, eventdata, handles)

% hObject handle to PopUpColor (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

 90

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% End of the program GUIhelicopter

Attachment A3
Listing of "MyClock.m"

%Program, that makes arrow-hands of a clock,

% synchronised with your Windows-clock.

% The Clock will run infinitely.

%To stop it, press <Ctrl+C>

%Copyright Kornilov V.I., FCS-110 of NAU, Kyiv, December 2005

for i=1 : inf

 warning off MATLAB:divideByZero;

 time=fix(clock);

 ezplot('x^2+y^2=25'), hold on, axis equal; axis([-6 6 -6 6]), title(datestr(now));

 marksFi=[0 : pi/6 : 2*pi];

 marksRho=[0 : 1 : 12].*0+5;

 marksRho2=[0 : 1 : 60].*0+5;

 marksFi2=[0:pi/30:2*pi];

 plot(marksRho.*cos(marksFi), marksRho.*sin(marksFi), 'kh');

 plot(marksRho2.*cos(marksFi2), marksRho2.*sin(marksFi2), 'm.')

 plot(0, 0, 'ko')

 FiH=[pi/2 pi/2 -pi/20+pi/2 pi/2 pi/20+pi/2 pi/2 pi/2]-((pi/6)*time(4))-

((pi/6)*(time(5)/60));

 RhoH=[0 3 3 4 3 3 0];

 xH=RhoH.*cos(FiH);

 yH=RhoH.*sin(FiH);

 fill(xH,yH,'r'), %pause(.01);

 FiM=[pi/2 pi/2 -pi/32+pi/2 pi/2 pi/32+pi/2 pi/2 pi/2]-((pi/30)*time(5))-

((pi/30)*(time(6)/60));

 RhoM=[0 2 2 5 2 2 0];

 xM=RhoM.*cos(FiM);

 yM=RhoM.*sin(FiM);

 fill(xM,yM,'c'), %pause(.01);

 91

 FiS=[pi/2 pi/2 -pi/64+pi/2 pi/2 pi/64+pi/2 pi/2 pi/2]-(pi/30)*time(6);

 RhoS=[0 1 1 5 1 1 0];

 xS=RhoS.*cos(FiS);

 yS=RhoS.*sin(FiS);

 fill(xS,yS,'b'), hold off, pause(1);

 WatchArr(:,i) = getframe;

end;

 92

Summary of MATLAB commands

Command name

Explanation

Page

asin

atan

axis

\bf

cftool

clear

clock

collect

comet

cos

<Ctrl+C>

<Ctrl+V>

date

det

diag(x)

diff

arcsin(x)

arctg(x)

scaling and appearance of axes

example of LaTeX representation

of a symbolic expression

separate Curve Fitting Tool

Clearing variables from memory

Getting current date and time

Collecting coefficients of symbolic

expression

Plotting comet-like trajectory

cos(x)

COPY hotkey, or breaking

execution if computer hangs

PASTE hotkey

Getting current date

|| A , determinant of square matrix

diagonal square matrix with the

elements from x

differentiation, either numeric

vector of symbolic function

 23

 22

13,14,35,42,81,89

54,55,59

64

54,66

26,38,39

19

14,26

35,73,79,91

79

26

19,23

14

21

 93

disp

else

elseif

end

expand

eval

eye

ezplot

ezsurf

false

figure

fill

for

format

fplot

function

fzero

displays content of argument

key words of if … end statement

condition

key word of array last element

number, or end of a structural for-,

while-, if- etc. blocks

removes brackets of products of

symbolic expressions

evaluates string as MATLAB

expression and executes it

producing Identity matrix

easy-to-use plotting commands in

2 and 3 dimensions

logical zero, 0

create new figure window

creation of 2d polygon filled by a

specified colour

key word of execution loop

setting format of outputting

numeric data

easy-to-use 2d plotting

key word for be adding a new

command to MATLAB's

vocabulary

tries to find a zero of a function if

an initial guess is provided

38,43-50,58-61,88

35,37-40,54,89-91

18,19

22,23

10

13,15,20-22,37,49,59

34,39-41,44

13,22,28,49,63,75

15,51,84

34,35,43,45-47,46

13,26,38,42,51,59

29,31,37,41,43,45-47

23

 94

gcf

get

global

grid

guide

help

i

if

inf

input

int

inv

j

legend

length

max

menu

getting handle to current figure

getting properties of an object

declaration for exchange by

variables between programs

drawing grid lines on a plot

program for designing GUI

enquiring HELP from command

line

1

key word of conditional program

block

MATLAB's notation of

prompting for user input

command for integrating symbolic

function

calculate inverse matrix

1

puts legends of current plotted

curves

determination of vector length

determines largest component of

vector argument, or property of a

Figure object

generates Figure with a menu of

choices

73

73,75,81-83,89,90

32,33,81-83,88-90

26,28

76

10,11,30,34,37

8

34-40,43-45,54,89-91

48,49,54,58

24

8

24,67

12,43,45,46,62,88

46,80,83,90

71-75

 95

min

NaN

ones

pause

pi

plot

plot3

poly

poly2sym

polyval

pretty

rand

randn

roots

round

set

determines smallest component of

vector argument, or property of a

Figure object

Not-a-Number, results of

mathematically undefined

operations

matrix with only 1s

pauses program execution

3.14159...

plots vector versus vector

a three-dimensional analogue of

plot

converts vector of roots to vector

of polynomial coefficients

converts polynomial from numeric

to symbolic representation

evaluates polynomial at given x

prints symbolic expression on

screen in LaTeX form

generates random numbers

distributed uniformly or normally

finds roots of numerically

represented polynomial

rounding data towards nearest

integer

setting properties of Figures

46,80,83,90

10

35,48,49,58,89

14,28,35,42,54,62,63,6

5,67,81,88,89

21

18

19,21,23

61,62,64,66

17,18

66

35,73-76,81,89-91

 96

size

sqrt

solve

subs

sum

switch

sym, syms

sym2poly

taylor

text

tic

toc

title

true

uicontrol

while

returns both dimensions of

matrices

solves algebraic equation sets

symbolically or numerically

substitutes symbols in symbolic

expressions

sums elements of vector

key word of

switch…case…otherwise…end

statement

declarations of symbolic variables

converts polynomial from

symbolic to numeric representation

finds Taylor series expansion of

given symbolic function

annotating a text on Figures

starting and reading stopwatch

timer

printing title text on graphics

logical one, 1

creates user interface controls

key word of while…end statement

looping indefinite number of times

12,47

19,23

20,21,23

12

35,46,88

18,21,23,48

20

23

54

65

34,39-41

74,75

35,43,44,54

 97

xlabel

ylabel

zeros

labelling Ox and Oy axes on

Figures

matrix with only zeros, 0

28,54,67

10

 98

C o n t e n t s

Foreword ………………………………………………..………….3

Module 1: MATLAB, the mathematical environment………….5

Micromodule 1.1. Basics of MATLAB…………………………….5

1.1.1. Getting started……………………………………….6

1.1.2. Matrix arithmetic of the MATLAB …………………8
Micromodule 1.2. Plotting 1d functions……………………………12
Micromodule 1.3. Numeric and symbolic calculations ……………15

1.3.1. Polynomials …………………………………………..16

1.3.2. Symbolic mathematics in MATLAB …………………21

Problems for Module 1 …………………………………………….25

Module 2: Basics of MATLAB programming …………………..27

Micromodule 2.1. m-scripts and m-functions …………………..…27

2.1.1. Scripts, the simplest programs………………………....27

2.1.2. MATLAB' Functions (m-functions) …………………..29

2.1.3. Difference between Scripts and Functions …………….31

Micromodule 2.2. Structured programming in MATLAB ………….33

2.2.1. Loop operator for … end ………………………………34

2.2.2. Logical operator if … else … end ……………………...35

2.2.3. Logical arithmetic with and, or, not …………………...40

Micromodule 2.3. More MATLAB' programs ……………………...42

2.3.1. Periodic Step-function …………………………………42

2.3.2. Least element of an array ………………………………45

2.3.3. Re-ordering of a vector …………………………….…..46

Micromodule 2.4. Supplementary problems ……………………..…48

2.4.1. Dialogue programs ………………………………….…48

2.4.2. Debugging programs ……………………………….…49

Problems for Module 2 ………………………………………….…50

Module 3: MATLAB for learning and investigation …………..53

Micromodule 3.1. The awful "ε – δ language"! ……………………53

Micromodule 3.2. Taylor, Fourier… Who else? ……………………57

Micromodule 3.3. Discovering empirical formulas ………………..60

Micromodule 3.4. Efficiency of programs …………………………65

Micromodule 3.5. Your further discoveries with MATLAB………

Problems for Module 3 ………………………………………….…68

 99

Module 4: Graphical User Interface in MATLAB ………………71

Micromodule 4.1. Graphical User Interface (GUI) standards ………71

Micromodule 4.2. Games with MATLAB GUI elements ………..…72

4.2.1. menu command ………………………………………...72

4.2.2. uicontrol commands ……………………………………74

Micromodule 4.3. guide, MATLAB GUI developer ……………..…76

Micromodule 4.4. An example: GUI for helicopter …………………78

Conclusion ……………………………………………………….…..83

Problems for the Module 4 …………………………………….….…84

References ……………………………………………………….…..86

Attachment A1: Listing of "MyDiff.m" ……………………….…...……88

Attachment A2: Listing of "GUIhelicopter.m" …………………...……88

Attachment A3: Listing of "MyClock.m" ………………………...……91

Summary of MATLAB commands …………………….…….……..93

 100

Навчальне видання

MATLAB for Math and Programming: Textbook

MATLAB для математики та програмування: Навч. посібник

(англійською мовою)

Гаєв Євген Олександрович

Нестеренко Борис Миколайович

Перше видання підписано до друку 15.12.2006.

Друге видання, виправлене та покращене,

публікується авторами у червні 2015 р. з власної ініціативи.

Всі права захищені!

 Є.О. Гаєв, Б.М. Нестеренко

Використання цієї книги вітається,

але автори мають бути повідомлені.

Author’s address

Адрес автора Ye_Gayev@voliacable.com

mailto:Ye_Gayev@voliacable.com

