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CHAPTER 1

Matrix and Vector Variables
(Numeric and Symbolic)

1.1 Variables

The concept of variable, like the concept of function, is essential when working with mathematical software.
Obviously, the theoretical concept of a mathematical variable is fixed and independent of the software package, but
how to implement and manage variables is very characteristic of each particular program. MATLAB allows you to
define and manage variables, and store them in files, in a very simple way.

When extensive calculations are performed, it is convenient to give names to intermediate results. Each
intermediate result is assigned to a variable to make it easier to use. For example, we can define the variable x and
assign the value 5 to it in the following way:

»x=5
X =

5

From now on, whenever the variable x appears it will be replaced by the value 5, and it will not change its value
until it is redefined.

» x "2
ans =
25
The variable x will not change until we explicitly assign another value to it.
»x=7+4
X =
11

From this moment on, the variable x will take the value 11.
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It is very important to stress that the value assigned to a variable will remain fixed until it is expressly changed or
if the current MATLAB session is closed. It is common to forget the definitions given to variables during a MATLAB
session, causing misleading errors when the variables are used later in the session. For this reason, it is convenient to
be able to remove the assignment of a value to a variable. This operation is performed by using the command clear.
It is also useful to recall the variables we have defined in the present session, which is done using the command who:

e The expression x = value assigns the value value to the variable x.

e The command clear removes the value assigned to all variables.

e The command clear x removes the value assigned to the variable x.

e The command clear x y removes the value assigned to the variables x and y.

¢ The command who gives the names of all variables currently in memory (variables in the
workspace).

e The command whos gives the names, sizes, number of items, bytes occupied, and type of
all variables currently in memory.

Here are some examples that use the variable handling commands defined above:

»X=7,y=4+1, z = sqrt (3)

4.0000 + 1.00001

1.7321
> p=X+y+z
p =
12.7321 + 1.00001
»> who
Your variables are:
ans p X y z

»> whos
Name Size Elements Bytes Density Complex

ANS 1 by 1 1 8 Full No
plby1 1 16 Full Yes
x1by1 1 8 Full No
y1by1 1 16 Full Yes
z1by1 1 8 Full No

Grand total is 5 elements using 56 bytes

2
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Now we are going to change the value of the variable y, and delete the variable x.
»y=pi
y =
3.1416

»> clear x;
»> whos

Name Size Elements Bytes Density Complex

ANS 1 by 1 1 8 Full No
p1by1 1 16 Full Yes
y1lby1 1 8 Full No
z1by1 1 8 Full No

Grand total is 4 elements using 40 bytes

We see that the variable x has disappeared and that the variable y has the new value assigned, but the variable p
has not changed, despite having changed two of its components. For an expression that contains a variable whose
value has been changed, to update its value it is necessary to rerun it:

> p=y+z
p =
4.8736
»> whos
Name Size Elements Bytes Density Complex
ANS 1 by 1 1 8 Full No
p1lbyi 1 8 Full No
y1lby1 1 8 Full No
z1by1 1 8 Full No

Grand total is 4 elements using 32 bytes

Now all values are updated, including that of p.

As for the names that can be given to the variables, the only restriction is that they cannot start with a number or
contain punctuation characters that are assigned a special meaning in MATLAB. It is also advisable to name variables
with words that begin with lowercase letters, and in general with words completely in lowercase. This avoids collisions
with MATLAB functions beginning with an uppercase letter. MATLAB is case sensitive. There can be any number of
characters in the name of a variable, but MATLAB will handle only the first 19.
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1.2 Variables and Special Constants

In many kinds of calculations we need to work with variables and special constants that the program has enabled.
Here are some examples:

PI or maple (‘PI’): 3.1415926535897...

ior j or maple(‘i’): imaginary unit (square root of - 1).

inf or maple(‘infinity’) : Infinity, returned for example when presented with 1/0.
NaN (Not a Number): Indeterminate, returned for example when presented with 0/0.
realmin: the smallest usable positive real number.

realmax: the greatest usable positive real number.

finite(x): returns 1 if x is finite and zero otherwise.

isinf(x): returns 1 if x is infinity or - infinity, and zero otherwise.

isNaN(x): returns 1 if x is undetermined and zero otherwise.

isfinite(x): returns 1 if x is finite and zero otherwise.

ana: automatically creates a variable to represent the last unmapped processing result
which has not been assigned to a variable.

eps: returns the distance from 1.0 to the next largest double-precision number. This is
the default tolerance for floating-point operations (floating point relative accuracy).
In current IEEE machines its value is 2 A(-52).

isieee: returns 1 if the machine is IEEE and 0 otherwise.
computer: returns the type of the computer.

flops: returns the number of floating point operations that have been executed in a
session (flops(0) resets the operations counter).

version: returns the current version of MATLAB.
why: returns a concise message.

cputime: returns CPU time in seconds used by MATLAB since the beginning of the
session.

clock: returns a list consisting of the following 6 items: [year month day hour minutes
seconds].

date: returns the current calendar date.

etime: returns the time elapsed between two clock type lists (defined above).

tic: enables a temporary counter in seconds that ends with the use of the variable toc.
toc: returns the elapsed time in seconds since the variable tic was activated.

LastErr: returns the last error message.
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See: gives information about the program and its Toolbox.

Info: provides information about MATLAB.

subscribe to: gives information about the subscription to MATLAB.

whatsnew: provides information about new undocumented MATLAB features.

Here are some examples:
First we check if our computer is an IEEE machine, what type of computer it is, and find the current date and time:

»» isieee

ans =

> computer
ans =
PCWIN
»> clock
ans =

1.0e + 003 *

1.9950 0.0110 0.0140 0.0100 0.0150 0.0079

»> date
ans =
14-mar-99

Now we check the CPU time (in seconds) that has passed since the beginning of the MATLAB session, as well as
the number of floating-point operations that have occurred during that time:

»> cputime
ans =

23.5100
»> flops
ans =

1180
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EXERCISE 1-1

Calculate the time in seconds that the computer takes to return the irrational number 7 to 50 decimal places.
»» tic; vpa 'pi' 50; toc
elapsed time =

0.110000000000001

EXERCISE 1-2

Calculate the number of floating-point operations required to calculate the numerical value of the square root of
the irrational number 7 to default accuracy. Consider the number = first as a numerical constant, and secondly, as
a symbolic constant.

»> flops(0);numeric((pi)~(1/2));Flops
ans =

427
»> flops(0);numeric('(pi)*(2/2)");flops
ans =

6

We see that much fewer floating-point operations are required when we consider  as a symbolic constant. The
calculations are faster when we work in the symbolic field.

1.3 Symbolic and Numeric Variables

MATLAB deems as symbolic any algebraic expression whose variables have previously been defined as symbolic via
the command syms. For example, if we want to treat as symbolic the expression 6ab + 3a* + 2ab in order to simplify it,
we need to declare the two variables a and b as symbolic as shown below:

> syms a b
»> simplify(6*a*b + 3*a"2 + 2*a*b)

ans =

8*a*bhb+3%*a"2
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The command sym can be used to transform a numeric expression into a symbolic expression. For example, if we
want to simplify the numeric expression 2/5 + 6/10 + 8/20, we first need to transform it into a symbolic expression via
sym(2/5+6/10+8/20), making the simplification as follows:

»> simplify (sym(2/5+6/10+8/20))
ans =
7/5
The variables contained in a symbolic expressions must be symbolic. Some commands for working with
symbolic and numerical variables are described below:
syms X y Z... t: makes the variables x, y, z,..., £ symbolic.
Ssyms X y Z... t real: makes the variables x, y, z,...,  symbolic with real values.
Ssyms X y z... t unreal: makes the variables x, y, z,...,  symbolic with non-real values.
syms: lists the symbolic variables in the workspace.
x = sym (‘x’): x becomes a symbolic variable (equivalent to syms x).
x = sym (‘x’, real): x becomes a real symbolic variable.
x = sym(‘x’,unreal): x becomes a symbolic non-real variable.

S = sym(A): creates a symbolic variable S from A, where A can be a string, a scalar, an
array, a numeric expression, etc.

S = sym(A, ‘option’): converts the array, scalar or numeric expression A to a symbolic
variable S according to the specified option. The option can be ‘f’ for floating point, ‘v’
for rational, ‘e’ for error format and ‘d’ for decimal.

numeric(x): makes the variable or expression x numeric with double precision.

sym2poly(poly): converts the symbolic polynomial poly to a vector whose components
are its coefficients.

poly2sym(vector): creates a symbolic polynomial whose coefficients are the
components of the vector.

poly2sym(vector, ‘v’): converts a symbolic polynomial in the variable v whose
coefficients are the components of the vector.

digits(d): gives symbolic variables to an accuracy of d significant figures.
digits: returns the current accuracy for symbolic variables.

vpa(expr): returns the numerical result of the expression to an accuracy determined by
digits.

vpa(expr, n): returns the numerical result of the expression to 7 significant figures.
vpa(‘expr’, n): returns the numerical result of the expression to z significant figures.

pretty(expr): returns the symbolic expression in the form of standard mathematical
script.
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EXERCISE 1-3

Solve the equation ax® + bx + ¢ = 0 assuming that the variable is x. Solve it when the variables are a, b or ¢,
respectively.

Since by default MATLAB considers x to be the only symbolic variable, to solve the equation in x we don’t need to
declare x as symbolic. We simply use the command solve as follows:

»> solve('a*x*2+b*x+c=0")
ans =

[1/72/a*(-b+(b"2-4%a*c)*(1/2))]
[1/2/a*(-b-(b*2-4%*a*c)*(1/2))]

But to solve the equation with respect to the variables a, b or ¢ respectively, it is necessary to first specify them as
symbolic variables:

»> syms a
»> solve('a*x"2+b*x+c=0"',a)

ans =
-(b*x+c)/x"2

»> syms b
»> solve('a*x"2+b*x+c=0",b)

ans =
-(a*x"2+c)/x

»> syms c
»> solve('a*x*2+b*x+c=0",c)

ans =

-a *x " 2-b *x
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EXERCISE 1-4

Find the roots of the polynomial ¥* - 8x* + 16 = 0 obtaining the result to default accuracy, to 20 significant figures
and with double-precision. Also generate the vector of coefficients associated with the polynomial.

> p = solve('x"4-8*x"2-16=0")

p:

[ 2*(27(1/2)+1)*(1/2)]
[-2*%(27(1/2)+1)"(1/2)]
[ 2*(1-27(1/2))"(1/2)]
[-2*%(1-27(1/2))"(1/2)]

>> vpa(p)

ans =

[ 3.1075479480600746146883179061262]
[ -3.1075479480600746146883179061262]
[ 1.2871885058111652494708868748364%*1 ]
[ -1.2871885058111652494708868748364*1 ]

»> numeric(p)

ans =
3.1075
-3.1075

0 + 1.28721

0 - 1.28721

»> vpa(p,20)

ans =

[ 3.1075479480600746146]
[ -3.1075479480600746146]
[ 1.2871885058111652495%1 ]
[-1.2871885058111652495%1 ]

» syms x
»> sym2poly(x"4-8*x"2-16)

ans =

1 0 -8 0 -16
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EXERCISE 1-5

Find the numerical value to default precision of the abscissa of the intersection point in the first quadrant of the
curves y = sin(x) and y = cos(x). Find the symbolic solution. Find the abscissa to 12 significant figures.

»> p = numeric(solve ('sin(x) = cos(x)'))

p =
0.7854

» q = sym(p)

q -

PI/4

»» digits(12);r = numeric(solve('sin(x)=cos(x)'))
T =

.785398163398

EXERCISE 1-6

Simplify the following expressions as much as possible:
1/2m-1/3m+1/4m+1/5m+1/6m
1/2-1/3+1/4+1/5+1/6

>> syms m
»> simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m))

ans =

47/60m

»> pretty(simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m)))
47

60m
»> sym(1/2 - 1/3 + 1/4 + 1/5 + 1/6)

ans =

47/60

10
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1.4 Vector Variables

A variable that represents a vector of length n can be defined in MATLAB in the following ways:

variable = [e1, e2, e3,..., en]
variable = [e1 e2 e3... en]

Therefore, to define a vector variable, simply insert the vector elements between brackets separated by commas
or blank spaces.

When you apply most MATLAB commands and functions to a vector variable, the result obtained is that found by
applying the command or function to each element of the vector:

»» vector1 = [1,3,5,2.3,1/2]
vectorl =

1.0000 3.0000 5.0000 2.3000 0.5000
»> sin(vector1)
ans =

0.8415 0.1411 - 0.9589 0.7457 0.4794
»> exp(vector1)
ans =

2.7183 20.0855 148.4132 9.9742 1.6487
»> log(vectori)
ans =

0 1.0986 1.6094 0.8329 - 0.6931

There are different ways of defining a vector variable without explicitly bracketing all its elements, separated by
commas or blank spaces.

variable = [first_element:last_element]: Defines the vector whose first and last
elements are specified, and the intermediate elements differ by one unit.

variable = [first_element:increase:last_element]: Defines the vector whose first and last
elements are specified, and the intermediate elements differ by the amount specified
by the increase.

variable = linspace (first_element, last_element, n): Defines the vector whose first and
last elements are specified, and which has in total n evenly spaced elements.

variable = logspace (a,b,n): Defines the vector whose first and last elements are 10* and
10%, and which has in total n evenly logarithmically spaced elements.

11
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Here are some examples:
»> vector2 = [0:5:20]
vector2 =
05 10 15 20
We have obtained the numbers between 0 and 20 separated by 5 units.
»> vector3 = [0:20]
vector3 =
Columns 1 through 12
0 1 2 3 4 5 6 7 8 9 10 11
Columns 13 through 21
12 13 14 15 16 17 18 19 20
We have obtained the numbers between 0 and 20 separated by units.
»> vectorq = linspace(0,10,11)
Vectorq =
0 1 2 3 4 5 6 7 8 9 10
We have obtained the numbers between 0 and 10 separated by units.
»» vector5 = linspace (0,20,6)
vectors =
04 8 12 16 20
We have obtained 6 equally spaced numbers between 0 and 20.
»> vector6 = logspace (0,2,6)
vector6 =
1.0000 2.5119 6.3096 15.8489 39.8107 100.0000

We have obtained 6 evenly logarithmically spaced numbers between 10° and 10

12
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We can also consider row and column vectors in MATLAB. A column vector is obtained by separating its
elements by semicolons, or by transposing a row vector using a single apostrophe at the end of its definition.

» a = [1;2;3;4]

a =

AN W N R

»> a = [1:4];b=a’

b =
1
2
3
4
» c=(a")’
Cc =
1234

You can also select an element of a vector or a subset of elements.
x(n): returns the n-th element of the vector x.
x(a:b): returns the a-th through b-th elements of the vector x, both inclusive.

x(a:p:b): returns the a-th through b-th elements of the vector x, both inclusive, each
separated from the next by p units (a <b).

x(b:-p:a): returns the b-th through a-th elements of the vector x, both inclusive, each
separated from the next by p units and starting with the b-th (b > a).

Here are some examples:

» X = (1:10)

X =
1 2 3 4 5 6 7 8 9 10

»> x(6)

ans =

13
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We have obtained the sixth element of the vector x.
»> x(4:7)
ans =
4567
We have obtained the elements of the vector x located between the fourth and the seventh elements, both inclusive.
»> x(2:3:9)
ans =
258

We have obtained the elements of the vector x located between the second and ninth elements, both inclusive,
but separated from each other by three units.

> x(9:-3:2)
ans =
963

We have obtained the elements of the vector x located between the ninth and second elements, both inclusive,
but separated from each other by three units and starting at the ninth.

Simple mathematical operations between scalars and vectors scale each element of the vector according to the
defined operation, and simple operations between vectors are performed elementwise.

Below is a summary of these operations:

a=1{al, a2,...,an}, b = {bl, b2,..., bn}, ¢ = scalar

a+c=[al + ¢, a2 + c,..., an + c]: sum of a scalar and a vector
a*c=[al *c, a2 *c,..., an * c]: product of a scalar and a vector
a+b=[al +bl, a2 + b2,... an + bn]: sum of two vectors

a.*b =[al *bl, a2 * b2,..., an * bn]: product of two vectors
a./b=[al/bl a2/b2... an/bn]: right ratio of two vectors

a.\ b =[al\bl a2\b2... an\bn]: left ratio of two vectors

a. A ¢ =[al A ¢, a2 A c,..., an A c]: scalar power of a vector
c.ANa=[cA/al,cAa2,...,c A an]: vector power of a scalar

a. b =[al A bl, a2 A b2,... ,an A bn]: vector power of a vector

It must be borne in mind that the vectors must be of the same length, and that in the product, quotient, and
power the first operand is followed by a point.

14
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On the other hand, you can also set the vector variables to be symbolic using the command syms.

> syms t
»> A=sym([sin(t),cos(t)])

A =

[sin (t), cos (t)]

EXERCISE 1-7

Given the vector variables a = [, 2%, 3r, 4w, 5] and b = [e, 2e, 3e, 4e, 5€] calculate ¢ = sin (a) + b,
d=cos(@),e=In(), f=c*d,g=c/d,h=dr2,i=d 2-e~2andj=3d " 3-2e A 2.

> a=[pi, 2% pi, 3 *pi, 4 *pi, 5*pi], b =[exp (1), 2 * exp (1), 3 * exp (1), 4 * exp (1),
5 * exp (1)], c=sin(a)+b, d=cos(a), e=log(b), f=c.*d, g=c./d, h=d.*2, i=d.*2-e."2, j = 3 * d.
A3-2%en2

3.1416 6.2832 9.4248 12.5664 15.7080

b =
2.7183 5.4366 8.1548 10.8731 13.5914
c =
2.7183 5.4366 8.1548 10.8731 13.5914
d =
-1 1 -1 1 -1
e =
1.0000 1.6931 2.0986 2.3863 2.6094
f =
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
g =
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
h =

15
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1.8667 - 3.4042 - 4.6944 - 5.8092

-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183

1.5 Matrix Variables

MATLAB defines arrays by inserting in brackets all its row vectors separated by a semicolon. Vectors can be entered by
separating their components by spaces or by commas, as we already know. For example, a 3 x 3 matrix variable can be
entered in the following two ways:

o o
[an a, an’ a, 3, azs’ a;: asz an]

. o
[an’a:z 935,53, 13, ’aza’asz’aaz’asal

Similarly we can define an array of variable dimension (MxN). Once a matrix variable has been defined, MATLAB
enables many ways to insert, extract, renumber, and generally manipulate its elements. The following table shows
different ways to define matrix variables.

A(m,n)
A(a:b,c:d)

A(a:p:b,c:q:d)
A([ab],[cd])

A([abc...],[efg..])
A(:,c:d)

A(slcde...])
A(a:b,:)

A([abec...],:)
A(a,?)

A(:,b)

A(:)

A(:2)
[A, B, C,...]
S, =11

Defines the (m, n)-th element of the matrix A (row m and column n).

Defines the subarray of A formed between the a-th and the b-th rows and between the c-th
and the d-th columns, inclusive.

Defines the subarray of A formed by every p-th row between the a-th and the b-th rows,
inclusive, and every q-th column between the c-th and the d-th columns, inclusive.

Defines the subarray of A formed by the intersection of the a-th through b-th rows and c-th
through d-th columns, inclusive.

Defines the subarray of A formed by the intersection of rows a, b, c,...and columnse, [, g,...

Defines the subarray of A formed by all the rows in A and the c-th through to the d-th
columns.

Defines the subarray of A formed by all the rows in A and columnsc, d, e,...

Defines the subarray of A formed by all the columns in A and the a-th through to the b-th
rows.

Defines the subarray of A formed by all the columns in A and rows a, b, c,...
Defines the a-th row of the matrix A.
Defines the b-th column of the matrix A.

Defines a column vector whose elements are the columns of A placed in order below
each other.

This is equivalent to the entire matrix A.
Defines the matrix formed by the matrices A, B, C,...

Clears the subarray of the matrix A, SA, and returns the remainder.

16
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diag (v)

diag (A)

eye (n)

eye (m, n)
zeros (m, n)
ones (m, n)
rand (m, n)
randn (m, n)
flipud (A)
fliplr (A)

rot90 (A)
reshape(A,m,n)
size (A)

find (cond,)
length (v)

tril (A)

triu (A)

A’

Inv (A)

Creates a diagonal matrix with the vector v in the diagonal.

Extracts the diagonal of the matrix as a column vector.

Creates the identity matrix of order n.

Creates an mxn matrix with ones on the main diagonal and zeros elsewhere.

Creates the zero matrix of order mxn.

Creates the matrix of order mxn with all its elements equal to 1.

Creates a uniform random matrix of order mxn.

Creates a normal random matrix of order mxn.

Returns the matrix whose rows are those of A but placed in reverse order (from top to bottom).

Returns the matrix whose columns are those of A but placed in reverse order (from left to
right).

Rotates the matrix A counterclockwise by 90 degrees.

Returns an mxn matrix formed by taking consecutive entries of A by columns.
Returns the order (size) of the matrix A.

Returns all A items that meet a given condition.

Returns the length of the vector v.

Returns the lower triangular part of the matrix A.

Returns the upper triangular part of the matrix A.

Returns the transpose of the matrix A.

Returns the inverse of the matrix A.

Here are some examples:
We consider first the 2 x 3 matrix whose rows are the first six consecutive odd numbers:

> A=[135;7911]

A =

135
79 11

Now we are going to change the (2,3)-th element, i.e. the last element of 4, to zero:

> A(2,3) =0

A =

17
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We now define the matrix B to be the transpose of A:
>>» B =A'

B =

w
o

We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:

» C = [B eye (3)]

C =
1 7 1 0 0
3 9 0 1 0
5 0 0 0 1

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection
of the first two rows and the last three columns of the matrix C:

» D = C(:,1:2:5)

D =

v
v
m
1]

C([12 2],[3 5])

» F = ¢([1 2],3:5)

18



CHAPTER 1 © MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the
main diagonal of D:

»» G = diag(diag(D))

G =

(o]
(o]

001

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third
and fifth columns:

»» H = ¢([1 3],[2 3 5])
H =

710
001

Now we build an array I formed by the identity matrix of order 5 x 4, appending the zero matrix of the same
order to its right and to the right of that, the unit matrix, again of the same order. Then we extract the first row of I and,
finally, form the matrix J comprising the odd rows and even columns of I and calculate its order (size).

»> I = [eye(5,4) zeros(5,4) ones(5,4)]

ans =

1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
» I(1,:)

ans =

1 0 0 0 0 0 0 0 1 1 1 1
»» J = I(1:2:5,2:2:12)

J =

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

»> size(J)
ans =

36
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We now construct a random matrix K of order 3 x4, reverse the order of the rows of K, reverse the order of the
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 x 3 whose
columns are obtained by taking the elements of K sequentially by columns.

»» K = rand(3,4)
K =
0.5269 0.4160 0.7622 0.7361

0.0920 0.7012 0.2625 .3282
0.6539 0.9103 0.0475 0.6326

o

»> K(3:-1:1,:)
ans =
0.6539 0.9103 0.0475 0.6326

0.0920 0.7012 0.2625 .3282
0.5269 0.4160 0.7622 0.7361

()

»> K(:,4:-1:1)
ans =
0.7361 0.7622 0.4160  0.5269

0.3282 0.2625 0.7012 .0920
0.6326 0.0475 0.9103 0.6539

(]

»> K(3:-1:1,4:-1:1)
ans =
0.6326  0.0475  0.9103  0.6539

0.3282 0.2625 0.7012 .0920
0.7361 0.7622 0.4160 0.5269

()

»» L = reshape(K,4,3)
L =

0.5269 0.7012 0.0475
0.0920 0.9103 0.7361

0.6539 0.7622 0.3282
0.4160 0.2625 0.6326
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EXERCISE 1-8

Given the square matrix of order 3 whose entries are the first nine natural numbers, find its inverse, its transpose
and its diagonal. Transform it into a lower triangular matrix and an upper triangular matrix and rotate it by

90 degrees counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements.
Extract the subarray whose diagonal is formed by the elements at ., and ,, and also remove the subarray whose
diagonal elements are at ,, and ,,.

> M = [1,2,3;4,5,657,8,9]
M =

1 2 3

4 5 6

7 8 9
»> A = inv(M)

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.937385¢-018

A =
1.0e + 016 *
0.3152 - 0.6304 0.3152
-0.6304 1.2609 - 0.6304
0.3152 - 0.6304 0.3152
» B=NM'
B =

w N R
[SNRE, N
O o

»» V = diag(M)

V =
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» TI = tril(M)

TI =
1 0 0
4 5 0
7 8 9

»» TS = triu(M)
TS =
1 2

0 5
0 0 9

o W

»> TR = rot9o(M)

TR =
3 6 9
2 5 8
1 4 7

» s = M(1,1)+M(1,2)+M(1,3)
s =

6
»» sd = M(1,1)+M(2,2)+M(3,3)
sd =

15
» SM = M(1:2,1:2)
SM =

1 2
4 5

>> SM1 = M([1 3],[2 3])

SM1 =
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The most important matrix operations are summarized below:

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)

A + B, A - B, A * B: addition, subtraction and product of matrices
A\B =inv (A) * Bif A it is square.

A\Bis the solution of the system AX = B in the sense of least-squares if A it is not square
B coincides with (4 ‘1 B’)'

A" coincides with A *A *A *... * A" ntimes (n scalar)

p* performs the calculation only if p is a scalar

Here are some examples:

> A = [1, 3, 5; pi exp(pi) sin(1); i 2 * i 1 + i]

A =

1.0000  3.0000
3.1416 2.7183
1.00001 2.00001

5.0000
0.0000
1.0000 + 1.00001

We have defined a complex matrix. Next we will calculate its inverse, its square and its square root:

»> B = inv(A)
B =
0.0711 - 0.2874i
-0.0822 + 0.33221
0.2351 - 0.14181
» C = A*2
C =
10.425 + 51
75.84 + 0.841471
-1 + 8.28321
» A~ (1/2)
ans =
0.7181 + 0.37841

1.2547 - 0.31931
-0.1046 + 0.18521

0.5810 - 0.08061
-0.3036 + 0.09321
0.0659 - 0.03981

72.422 101
544.92 + 1.68291
-2 + 51.2811

+

0.6691 - 0.65831

0.5407 + 0.89631
-0.6249 - 1.03591
0.2668 + 0.44231

12.524 51
36.022 + 0.841471
0 + 8.68291

+

2.0360 - 1.13951

1.6690 + 0.38041 -0.5550 + 0.83111

0.1152 + 0.58701

1.2790 + 0.28691
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Now we check that the product of the matrix A with its inverse is the identity matrix of order 3:
»> A*B
ans =

1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.00001
0.0000 + 0.00001 1.0000 + 0.00001 0.0000 + 0.00001
0.0000 + 0.00001 0.0000 + 0.00001 1.0000 + 0.00001

Now we find the exponential of A with bases 2 and - 2:
> 2°A
ans =

1.0e+07 *

0.0218 + 0.00571  0.1569 + 0.03841 0.0106 + 0.00311
0.1673 + 0.01761  1.2036 + 0.10801 0.0816 + 0.01101
-0.0024 + 0.0157i -0.0156 + 0.1131i -0.0014 + 0.00761

» (-2)"A

ans =

1.0e+06 *
0.0585 - 0.13131  0.4059 - 0.9492i  0.0305 - 0.06341i
0.2852 - 1.03651  1.9345 - 7.4766i  0.1545 - 0.50291

0.0965 + 0.03161 0.6969 + 0.21611 0.0468 + 0.01681

So far, we have always worked with numeric matrices. To work with symbolic matrices, we simply define the
variables to be symbolic using the command syms.

> syms t
»> A=sym([sin(t),cos(t);tan(t),exp(t)])

A =

[sin (t), cos (t)]
[tan (t), exp (t)]

»» b = inv (A)
b =

[-exp (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), cos (t) / (-sin (t) * exp (t) + cos (t)
* tan (t))]

[tan (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), - sin (t) / (-sin (t) * exp (t) + cos
(t) * tan (t))]
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1.6 Character Variables

MATLAB is a powerful numerical calculation program, but it is also a versatile character variable (i.e. text)
manipulator. A character variable (or chain) is simply a string of characters contained within single quotes that
MATLAB interprets as a vector form. For example:

»» ¢ = 'string'
C =

character string

We have thus defined the character variable c. Among the MATLAB commands that handle character variables

we have the following:

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)

abs (‘character_string’)
setstr (numeric_vector)
str2mat (t1,t2,t3,...)
str2num (‘string’)
num2str (number)
int2str (integer)

sprintf (‘format’, a)
sscanf (‘string’, ‘format’)
dec2hex (integer)
hex2dec (‘string_hex’)
hex2num (‘string_hex’)
lower (‘string’)

upper (‘string’)

stremp (s1, s2)

stremp (s1, s2, n)

strrep (c, ‘expl’, ‘exp2’)
findstr (c, ‘exp’)

isstr (expression)
ischar (expression)
strjust (string)

blanks (n)

deblank (string)

eval (expression)

disp (‘string’)

input (‘string’)

Returns the array of ASCII characters equivalent to each character in the string.

Returns the string of ASCII characters that are equivalent to the elements of the vector.

Returns the matrix whose rows are the strings t1, t2, t3,..., respectively.
Converts the string to its exact numeric value used by MATLAB.

Returns the exact number in its equivalent string with fixed precision.
Converts the integer to a string.

Converts a numeric array into a string in the specified format.

Converts a string to a numeric value in the specified format.

Converts a decimal integer into its equivalent string in hexadecimal.

Converts a hexadecimal string into its integer equivalent.

Converts a hexadecimal string into the equivalent IEEE floating point number.
Converts a string to lowercase.

Converts a string to uppercase.

Compares the strings s1 and s2 and returns 1 if they are equal and 0 otherwise.

Compares the strings s1 and s2 and returns 1 if their first n characters are equal
and 0 otherwise.

Replaces expl by exp2in the chain c.

Finds where exp is in the chain c.

Returns 1 if the expression is a string and 0 otherwise.

Returns 1 if the expression is a string and 0 otherwise.

Right justifies the string.

Generates a string of n spaces.

Removes blank spaces from the right of the string.

Executes the expression, even if it is a string.

Displays the string (or array) as written, and continues the MATLAB process.

Displays the string on the screen and waits for a key press to continue.
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Here are some examples:
»> eval('q * atan (1)')
ans =

3.1416

This shows how MATLAB numerically evaluates the contents of a string (according to the program’s standard
interpretation of the syntax).

»> hex2dec('3ffe56e")
ans =
67102062
MATLAB has converted a hexadecimal string to a decimal string.
»> dec2hex(1345679001)
ans =
50356E99
The program has converted a decimal string to a hexadecimal string.
»> sprintf('%f',[1+sqrt(5)/2,pi])
ans =
2.118034 3.141593
The exact numerical components of a vector have been converted to a string (to default precision).
»» sscanf('121.00012"', '%f')
ans =
121.0001

A numeric string has been passed to exact numerical format (with default precision). Later we will see which
alternative formats are possible.

»> num2str(pi)
ans =

3.142
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The exact number 7 has been approximated to default precision and converted to a string.
»» str2num('15/14")
ans =
1.0714
A string representing a rational number has been approximated to default precision and converted to a string.
»> setstr(32:126)
ans =

1"#3% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]
_'abcdefghijklmnopqrstuvwxyz {[}~

The ASCII characters associated with whole numbers between 32 and 126 have been generated.
»> abs('{1}><#jé?°")
ans =

123 93 125 62 60 35 161 191 63 186 170

The integers corresponding to the given ASCII characters have been generated.
»> lower('ABCDefgHIJ')
ans =
abcdefghij

The given string has been converted to lowercase text.
»> upper('abcd eFGHi jK1Mn')
ans =
ABCD EFGHI JKLMN

The given string has been converted to uppercase text.
»» str2mat(' The world ',' The country ',’' Daily 16 ', ' ABC ')
ans =
The world
The country

Daily 16
ABC
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The chains given as arguments of the command str2mat have been converted into rows of an array.
»> disp('This text will appear on the screen')
This text will appear on the screen

The argument of the command disp is displayed on screen.

»» ¢ = "this is a good example';
»> strrep(c, 'good', 'bad’)

ans =
this is a bad example
The string good has been replaced by the string bad in the string c.
»> findstr(c, 'is')
ans =
36

The positions of the first character of the string is in c are given.

1.7 Operators

MATLAB features arithmetic, logical, relational, conditional and structural operators.

1.7.1 Arithmetic Operators

There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved are
presented in the following table. We have already seen these operations earlier.

Operator Role played

+ Sum of scalars, vectors, or matrices

- Subtraction of scalars, vectors, or matrices

* Product of scalars or arrays

* Product of scalars or vectors

\ A\B =inv (A) * B, where A and B are matrices

A A. \B=[B(i,j) /A (i, j)], where A and B are vectors [dim (A) = dim (B)]
/ Quotient, or B/A = B *inv (A), where A and B are matrices

./ A./B=[A(i,j)/B (i, j)], where A and B are vectors [dim (A) = dim (B)]
A Power of a scalar or matrix (M”)

A Power of vectors (A. » B = [A(i,j)? 7], for vectors A and B)
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EXERCISE 1-9

Where X =[12 3] and Y = [4 5 6], calculate X + Y, X-Y, X * Y, XY, X * Y, XXV, X' Y, XX, 2% X, 2.7K, XY, YAX,
XAYNK 2/X, 27X, 2\, 2.\, XA Y, X AY, XA 2, XA 2,2 A Xand 2. A X

» X = [1,2,3]; Y = [4,5,6]; a=X+Y,b=X-Y,c=X*Y,d=2, X, e = 2/X,
f=2.\Y, g=X./Y,h=.\X, i=x"2,j=2. "X, k=x."Y

a =

579
b =

-3 -3 -3
c =

4 10 18
d =

2 4 6
e =

2.0000 1.0000 0.6667
f =

2.0000 2.5000 3,0000
g =

0.2500 0.4000 0.5000
h =

0.2500 0.4000 0.5000

149
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248

132 729

The above operations are all valid since in all cases the variable operands are of the same dimension, so the
operations are successfully carried out element by element. For the sum and the difference there is no distinction
between vectors and matrices, as the operations are identical in both cases.

» X =[1,2,3]; Y =[4,5,6]; 1 =X'*Y, m=X*Y ', n=2*X,0=X/Y, p=Y\X

1=
4 5 6
8 10 12
12 15 18
m =
32
n =
246
0 =
0.4156
p =
0 0 0
0 0 0
0.1667 0.3333 0.5000

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not
element by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the
vector operations X. ' *Yand X.*Y’' make no sense, since they involve vectors of different dimensions. Similarly,
the matrix operations X *Y, 2/X, 2\Y, X 2 2, 2 A Xand X /* Y make no sense, again because of a conflict of
dimensions in the arrays.
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1.7.2 Relational Operators

MATLAB also provides relational operators. Relational operators perform element by element comparisons between
two matrices and return an array of the same size whose elements are one if the corresponding relationship is true, or
zero if the corresponding relation is false. The relational operators can also compare scalars with vectors or matrices,
in which case the scalar is compared to all the elements of the array. Below is a table of these operators.

< Less than (for complex numbers this applies only to the real parts)
<= Less than or equal (only applies to real parts of complex numbers)

> Greater than (only applies to real parts of complex numbers)

>= Greater than or equal (only applies to real parts of complex numbers)

x==y Equality (also applies to complex numbers)

x~=y Inequality (also applies to complex numbers)

Here are some examples:
> X =5 * ones (3,3); X>=[123;456;789]
ans =

111
110
000

The elements of the array X which are greater than or equal to the corresponding element of the matrix
[123;456; 789] are given the value 1 in the response matrix. The rest of the elements are assigned the value 0
(the result of the operation would have been the same if we had compared the scalar 5 to the matrix [1 23;456; 78 9]
using the expression X=5;X>=[123;456; 789]).

Next we see another example that combines an arithmetic operation with a relational operation:

>> A =1:9, B=9-A, Y=AA> 4, Z = B-(A>2)

A=

1 2 3 4 5 6 7 8 9
B =

8 7 6 5 4 3 2 1 0
Y =

0 0 0 0 1 1 1 1 1
7 =
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The values of Y equal to 1 correspond to elements of A larger than 4. The Z values result from subtracting 1 from
the corresponding elements of B if the corresponding element of A is greater than 2, or 0 if the corresponding element
of A is less than or equal to 2.

1.7.3 Logical Operators

MATLAB provides symbols to denote logical operators. The logical operators shown in the following table offer a way
to combine or negate relational expressions.

~A Logical negation (NOT) or the complement of A.
A&B Logical conjunction (AND) or the intersection of A and B.
A|B Logical disjunction (OR) or the union of A and B.

XOR (A, B) Exclusive OR (XOR) or the symmetric difference of A and B (takes the value 1 if A or B,
but not both, are 1).

Here are some examples:
> A = 1:9; P = (A>2) & (A<6)
P =
0 0 1 1 1 0 0 0 0
Returns 1 when A is greater than 2 and less than 6, and returns 0 otherwise.

>»»A=[11223456789],P = (A>=1)&(A<6),x0r(A,P)

A =

1 1 2 2 3 4 5 6 7 8 9
P =

1 1 1 1 1 1 1 0 0 0 0
ans =

0 0 0 0 0 0 0 1 1 1 1

Returns 1 when A or P, but not both, have the value 1.
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1.8 Logic Functions

MATLAB implements logical functions whose output can take the value true (1) or false (0). The following table shows
the most important logical functions.

exist(A)

any(V)

any(A)

all(V)

all(A)

find (V)
isnan (V)
isinf (V)
isfinite (V)
isempty (A)

issparse (A)
isreal (V)
isprime (V)

islogical (V)
isnumeric (V)

ishold

isieee

isstr (S)

ischart (S)
isglobal (A)
isletter (S)
isequal (A, B)
ismember (V, W)

Checks if the variable or function exists (returns 0 if A does not exist and a number
between 1 and 5, depending on the type, if it does exist).

Returns 0 if all elements of the vector V are null and returns 1 if some element of
Vis non-zero.

Returns 0 for each column of the matrix A with all null elements and returns 1 for each
column of the matrix A which has non-null elements.

Returns 1 if all the elements of the vector V are non-null and returns 0 if some element
of Vis null.

Returns 1 for each column of the matrix A with all non-null elements and returns 0 for
each column of the matrix A with at least one null element.

Returns the places (or indices) occupied by the non-null elements of the vector V.

Returns 1 for the elements of V that are indeterminate and returns 0 for those that are not.
Returns 1 for the elements of V that are infinite and returns 0 for those that are not.
Returns 1 for the elements of V that are finite and returns 0 for those that are not.

Returns 1 if A is an empty array and returns 0 otherwise (an empty array is an array such
that one of its dimensions is 0).

Returns 1 if A is a sparse matrix and returns 0 otherwise.
Returns 1 if all the elements of V are real and 0 otherwise.

Returns 1 for all elements of V that are prime and returns 0 for all elements of V that
are not prime.

Returns 1 if Vis a logical vector and 0 otherwise.
Returns 1 if Vis a numeric vector and 0 otherwise.

Returns 1 if the properties of the current graph are retained for the next graph and
only new elements will be added and 0 otherwise.

Returns 1 if the computer is capable of IEEE standard operations.
Returns 1 if S is a string and 0 otherwise.

Returns 1 if S is a string and 0 otherwise.

Returns 1 if A is a global variable and 0 otherwise.

Returns 1 if S is a letter of the alphabet and 0 otherwise.

Returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

Returns 1 for every element of Vwhich is in W and 0 for every element V that is not in W.
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Here are some examples:
»» isinf([pi NaN Inf - Inf])
ans =
0 0 1 1
»> any([pi NaN Inf -Inf])
ans =
1
»> ismember([1,2,3,5],[8,12,1,3,56,5])
ans =
1 0 1 1

» A = [2,0,1]; B = [4,0,2];
»> isequal(2*A,B)

ans =

» V = [-10,5,3,12,0];
»> isprime(V)

ans =
0] 1 1 0 0]
»> isnumeric(V)

ans =

»> all(Vv)

ans =

»> any(V)

ans =
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»» C=[023;012;046],0=[0000;4312;600 4]

CHAPTER 1

»» any(C),all(C),any(D),all(D)

ans =
011
ans =
011
ans =
1111
ans =
0000

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)

1.9 Elementary Functions that Support Complex Matrix Arguments

o Trigonometric
sin (z)
sinh (z)
asin (z)
asinh (z)
cos (z)
cosh (z)
acos (z)
acosh (z)
tan(z)
tanh (z)
atan (z)
atan2 (z)
atanh (z)
sec (z)
sech (z)
asec (z)
asech (z)

csc (z)

Sine function

Hyperbolic sine function

Arcsine function

Hyperbolic arcsine function
Cosine function

Hyperbolic cosine function
Arccosine function

Hyperbolic arccosine function
Tangent function

Hyperbolic tangent function
Arctangent function

Fourth quadrant arctangent function
Hyperbolic arctangent function
Secant function

Hyperbolic secant function
Arccosecant function
Hyperbolic arccosecant function

Cosecant function

(continued)
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csch (z)
acsc (z)
acsch (z)
cot (z)

coth (z)
acot (z)
acoth (z)

o Exponential
exp (z)

log (z)
logl0 (z)
sqrt (z)

e Complex
abs (z)
angle (z)
conj (z)
imag (z)
real (z)

e Numerical
fix (z)

floor (z)
ceil (z)
round (z)
rem (zl, z2)
sign (z)

¢  Matrix
expm (Z)
expml (Z)
expm?2 (Z)
expm3 (Z)
logm (Z)
sqrtm (Z)

funm(Z,function’)

Hyperbolic cosecant function
Arccosecant function
Hyperbolic arccosecant function
Cotangent function

Hyperbolic cotangent function
Arccotangent function

Hyperbolic arccotangent function

Base e exponential function
Natural logarithm function (base e)
Base 10 logarithm function

Square root function

Modulus or absolute value
Argument

Complex conjugate
Imaginary part

Real part

Removes the fractional part
Rounds to the nearest lower integer
Rounds to the nearest greater integer

Performs common rounding

Returns the remainder of the division of z1 by z2

The sign of z

Matrix exponential function by default

Matrix exponential function in M-file

Matrix exponential function via Taylor series

Matrix exponential function via eigenvalues

Logarithmic matrix function
Matrix square root function

Applies the function to the array Z
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Here are some examples:

>> A =[123;456;789]
A =
1 2 3
4 5 6
7 8 9
>> sin(A)
ans =

0.8415 0.9093 0.1411

-0.7568 -0.9589 -0.2794

0.6570 0.9894 0.4121
> B = [1+i 2+i;3+i,4+i]

B =

1.0000 + 1.00001 2.0000 + 1.00001
3.0000 + 1.00001 4.0000 + 1.00001

»> sin(B)
ans =

1.2985 + 0.63501 1.4031 - 0.48911
0.2178 - 1.16341 -1.1678 - 0.76821

»> exp(A)
ans =
1.0e + 003 *
0.0027 0.0074 0.0201

0.0546 0.1484 0.4034
1.0966 2.9810 8.1031

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)
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»> exp(B)
ans =

1.4687 + 2.28741
10.8523 +16.90141

»> log(B)
ans =

0.3466 + 0.78541
1.1513 + 0.32181

»> sqrt(B)
ans =

1.0987 + 0.45511
1.7553 + 0.28481

The exponential functions, square root and logarithm used above apply to the array elementwise and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

»> expm(B)
ans =
1.0e+002 *
-0.3071 + 0.46251
-0.3629 + 1.04311
>> logm(A)
ans =
-5.6588 + 2.78961
12.8139 - 0.79701
-5.0129 - 1.24211
»> abs(B)
ans =
1.4142 2.2361
3.1623 4.1231

38

3.9923 + 6.21771
29.4995 +45.94281

0.8047 + 0.46361
1.4166 + 0.24501

1.4553 + 0.34361
2.0153 + 0.24811

-0.3583 + 0.69391
-0.3207 + 1.5102i

12.5041 -
-23.3307
13.4334 -

0.43251
+ 2.16231
1.52621
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-5.6325 - 0.51291
13.1237 - 1.16161
-4.4196 + 1.33131
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»> imag(B)
ans =

1 1
1 1

»> fix(sin(B))
ans =

1.0000
0 - 1.00001

1.0000
-1.0000

»> ceil(log(A))

ans =
0 1 2
2 2 2
2 3 3

»> sign(B)
ans =

0.8944 + 0.44721
0.9701 + 0.24251

0.7071 + 0.70711
0.9487 + 0.31621

»> rem(A,3*ones(3))

ans =
1 2 0
1 2 0]
1 2 0

»> funm(B, 'sinh")
ans =

-15.8616 +23.23841 -17.6536 +34.70721
-17.7736 +52.12081 -16.2216 +75.47911

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)

The result of the last function is equivalent to sinh(B), but the algorithm used is different.
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1.10 Elementary Functions that Support Complex Vector

Arguments

max (V)

min (V)

mean (V)
median (V)
std (V)

sort (V)

sum (V)
prod (V)
cumsum (V)
cumprod (V)
diff (V)
gradient (V)
del2 (V)

fft (V)

fft2 (V)

ifft (V)

ifft2 (V)

The maximum component of V. (max is calculated for complex vectors as the
complex number with the largest complex modulus (magnitude), computed with
max(abs(V)). Then it computes the largest phase angle with max(angle(x)),

if necessary.)

The minimum component of V. (min is calculated for complex vectors as the
complex number with the smallest complex modulus (magnitude), computed with
min(abs(A)). Then it computes the smallest phase angle with min(angle(x)),

if necessary.)

Average of the components of V.
Median of the components of V.
Standard deviation of the components of V.

Sorts the components of Vin ascending order. For complex entries the order is by
absolute value and argument.

Returns the sum of the components of V.

Returns the product of the components of'V, so, for example, n! = prod(1:n).
Gives the cumulative sums of the components of V.

Gives the cumulative products of the components of V.

Gives the vector of first differences of V(V,- V, ).

Gives the gradient of V.

Gives the Laplacian of V (5-point discrete).

Gives the discrete Fourier transform of V.

Gives the two-dimensional discrete Fourier transform of V.

Gives the inverse discrete Fourier transform of V.

Gives the inverse two-dimensional discrete Fourier transform of V.

These functions also support a complex matrix as an argument, in which case the result is a vector of column
vectors whose components are the results of applying the function to each column of the matrix.
Here are some examples:

> V = 1:5, W= [1-i 2i 2 + 3i]

V=
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W =

1.0000 - 1.00001 0 + 2.0000i 2.0000 + 3.00001
»> diff(V)

ans =

»> diff(W)
ans =
-1.0000 + 3.00001 2.0000 + 1.00001
»> cumprod(V)
ans =
1 2 6 24 120
»> cumsum(l)
ans =
1.0000 - 1.00001 1.0000 + 1.00001 3.0000 + 4.00001
»> mean(W)
ans =
1.0000 + 1.33331
»> std(V)
ans =
1.5811
»> sort(W)
ans =
1.0000 - 1.00001 0 + 2.00001 2.0000 + 3.00001
»> sum(W)

ans =

3.0000 + 4.00001

MATRIX AND VECTOR VARIABLES (NUMERIC AND SYMBOLIC)
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»> prod(V)
ans =
120
»> gradient(W)
ans =
-1.0000 + 3.00001 0.5000 + 2.00001 2.0000 + 1.00001
»> del2(W)
ans =

0 1.5000 - 1.00001 0

»> Fft(W)
ans =

3.0000 + 4.00001 -0.8660 - 1.76791 0.8660 - 5.23211

»> ifft(W)
ans =
1.0000 + 1.33331  0.2887 - 1.74401 -0.2887 - 0.58931
»> fft2(W)
ans =

3.0000 + 4.00001 - 0.8660 - 1.76791  0.8660 - 5.23211

1.11 Vector Functions of Several Variables

Functions of one or several variables are defined via the command maple as follows:
maple (‘f: = x - > f (x)’) or maple f: = x - > f (x) defines the function f(x)
maple (‘f:=(x,y,z...)) (- > f(x,y,z...)’") defines the function f(x,y,z,..)

maple (‘f:=(x,y,z...)) (- > (f1 (x, y...), £2(x,y..),...)") defines the vector function (f1(x,y,..),
L2xy,.)s...)

To find the value of the function (x, y, z) - > f{(x,,z...) at the point (a, b, c,...) the expression
maple ('f(a,b,c,...)’) is used.

We find the value of the vector function f:=(x,y,..)-> (f1(x,y,..), f2(x,,..),...) at the point (a, b,...) by using the
expression maple ('f(a,b,..)’).
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The function f{x,y) = 2x + yis defined in the following way:
>> maple('f:=(x,y) - > 2 * x +y ');
f (2,3) and f(a, b) are calculated as follows:
»> maple('f(2,3)")
ans =
7
»> maple('f(a,b)')
ans =

2*a+b

EXERCISE 1-10

Given the function h defined by: h(x,y) = (cos(x2-y?), sin(x2-y?)), calculate h (1,2), h(-Pi,Pi) and h (cos (a?), cos (1 -a2).

As his a vector function of two variables, we use the command maple:

»> maple ('h:=(x,y) - » (cos(x"2-y*2), sin(x*2-y*2))');

»>> maple (‘A = h (1, 2), B = h(-pi,pi), C = h (cos(a"2), cos(1-a"2))")
ans =
A = (cos (3),-sin(3)), B = (1, 0),

C = (cos (cos(a*2) * 2-cos(-1+a”2) * 2), sin(cos(a”2) * 2-cos(-1+a"2) * 2))

1.11.1 Functions of One Variable

Functions of one variable are a special case of functions of several variables, but they can also be defined in MATLAB

via the command f= "function’.
To find the value of the function fat a point, you use the command subs, whose syntax is as follows:

subs(f, a) applies the function fat the point a

subs (f, a, b) assigns the value of the function at the point a to the variable b

Let's see how to define the function f(x)=x " 2:
» f="'x*2'

f =

x "~ 2
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Now we calculate the values f(4), f (a+1) and f{3x+x72):

> syms a x
»> A = subs(f,4),B = subs(f,a+1),C = subs(f,3*x+x"2)

A =

16

B =

(a+1) ~ 2

C =
(3*x+x72)"2

It should also be borne in mind that if we use the command maple, the special constants 7, e, i, and  are
defined as maple('Pi’), maple (‘exp (1)), maple('i’) and maple('infinity’) respectively.

EXERCISE 1-11

Define the functions f (x) = X2, g(x) = X2 and h(x) = x + sin (x). Calculate f(2), g(4) and h(a-b?).
> f="x*2";g="x"1/2)"'; h = "x¢sin (x)';

> syms a b
»> a = subs(f,2),b = subs(g,4),c = subs(h, 'a-b*2")

a =
4
b =
47(1/2)
C =
a-b » 2 + sin(a-b*2)
We could also have done the following:

»> maple('f:=x->x"2: g:=x-»>sqrt(x):h:=x->x+sin(x)');
>> maple(*£(2),g(4),h(a-b"2)")

ans =

4, 2, a-b * 2 + sin(a-b"2)
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Matrix Algebra

2.1 Vectors and Matrices

We have already seen how vectors and matrices are represented in MATLAB in the chapter dedicated to variables,
however we shall recall here the notation.
Consider the matrix

a] 1 6ll 2 13 1n

a21 a22 23 2n
A:(Aij): Qs A4y Gy 3n |7

aml amZ amli i amn

i=1,2,3,..,m j=1,2,3,...,n.

You can enter this in MATLAB in the following ways:
A=[all,al2,...,aln; a21,a22,...,a2n; ... ; aml,am2,...,amn]|
A=[allal2...aln;a2l a22...a2n;...;aml am2... amn]
A=maple(‘array([[all,..,aln],[a21,..,a2n],..,[am1,..,amn]])’)
A=maple(‘matrix(m,n,[all,..,aln,a21,..,a2n,..,aml,..,amn])’)
A=maple(‘matrix([[all,..,aln],[a21,..,a2n],..,[am],..,amn]])’)

On the other hand, a vector V =(v1,v2,...,un) is introduced as a special case of a matrix with a single row
(i.e. a matrix of dimension 1 x n) in the following form:

V = [v1, v2,..., vn]

V = [vl v2...vn]

V = maple (‘vector([vl, v2,..., vn])’)
V = maple (‘vector(n,[vl, v2,..., vn])’)

V=maple(‘array([vl, v2, ..., vn])’)
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2.2 Operations with Numeric Matrices

MATLAB supports the most common matrix algebra operations (sum, difference, product, scalar product), provided
the dimensionality conditions hold.
The common MATLAB matrix commands are summarized below.

A + B sum of matrices A and B

A — B difference of the matrices A and B (A minus B)

¢ * M product of the scalar ¢ and the matrix M

A * B product of the matrices A and B

A A p matrix A raised to the power of the scalar p

p M A scalar p raised to the power of the matrix A

expml (A) e calculated via Padé approximants

expm?2 (A) e” calculated via Taylor series

expm3 (A) e” calculated via eigenvalues and eigenvectors
logm(A) (Napierian logarithm of the matrix A)

sqrtm (A) square root of the matrix A

funm (A, ‘function’) applies the function to the matrix A
transpose (A) or A' transpose of the matrix A

inv (A) inverse of the square matrix A (A™)

det (A) determinant of the square matrix A

rank (A) range of the matrix A

trace (A) sum of the elements of the diagonal of A

svd (A) gives the vector V of singular values of A. The singular values of A are the square
roots of the eigenvalues of the symmetric matrix A’ A.

[U, S, V] = svd (A) gives the diagonal matrix S of singular values of A (ordered from
largest to smallest), and the matrices U and Vsuch that A= U *S * V.

cond (A) gives the condition number of the matrix A (the ratio between the largest and
the smallest singular values of A)

rcond (A) the reciprocal condition number of the matrix A
norm (A) the standard or 2-norm of A (the largest singular value of A)

norm(A,1) the 1-norm of A (the maximum column magnitude, where the column
magnitude of a column is the sum of the absolute values of its elements)

norm(A,inf) the infinity norm of A (the maximum row magnitude, where the row
magnitude of a row is the sum of the absolute values of its elements)

norm(A,fro’) the Frobenius norm of A, defined by sqrt (sum (diag(A’A)))
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Z = null (A) gives an orthonormal basis for the null space of A obtained from the
singular value decomposition, i.e. AZ has negligible elements, size(Z,2) is the nullity of
A,andZ’Z=1

Q = orth (A) Returns an orthonormal basis for the range of A, Q’Q=I. The columns of Q
are vectors which span the range of A. The number of columns in Q is equal to the rank
of A.

subspace (A, B) finds the angle between two subspaces specified by the columns of A
and B. If A and B are column vectors of unit length, this is the same as acos(abs(A’*B)).

rref (A) produces the reduced row echelon form of A using Gauss-Jordan elimination
with partial pivoting. The number of non-zero rows of rref (A) is the rank of A.

Here are some examples:

We consider the matrix M = [1/3,1/4,1/5;1/4,1/5,1/6; 1/5,1/6,1/7], and find its transpose, its inverse, its
determinant, its range, its trace, its singular values, its condition number, its norm, M?, e, log (M) and sqrt (M):
> M = [1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]

M =

0.3333 0.2500 0.2000

0.2500 0.2000 0.1667

0.2000 0.1667 0.1429
»> transpose = M'
transpose =

0.3333 0.2500 0.2000

0.2500 0.2000 0.1667

0.2000 0.1667 0.1429
»> inverse = inv (M)
inverse =

1. Oe + 003 *
0.3000 -0.9000 0.6300
-0.9000 2.8800 -2.1000
0.6300 -2.1000 1.5750

To verify that the inverse has been calculated, we multiply it by M and check that the result is the identity
matrix of order 3:

» M * inv (M)

ans =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000

0.0000 0.0000 1.0000
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»> determinant = det (M)
determinant =
2. 6455e-006
»> rank=rank(M)
rank =
3
»> trace=trace(M)
trace =
0.6762
»> vsingular = svd (M)
vsingular =
0.6571
0.0189
0.0002
»> condition =cond(M)
condition =
3. 0886e + 003
For the calculation of the norm, we find the standard norm, the 1-norm, the infinity norm and the Frobenius norm:
»> norm(M)
ans =
0.6571
»> noxrm(M,1)
ans =
0.7833
»> norm(M,inf)
ans =

0.7833

48



»> noxm(M, 'fro")

ans =
0.6573

» M3

ans =
0.1403 0.1096
0.1096 0.0856
0.0901 0.0704

»> logm(M)

ans =

-2.4766 2.2200
2.2200 -5.6421
0.5021 2.8954 -

»> sqrtm(M)
ans =
0.4631 0.2832 0.1966

0.2832 0.2654 0.2221
0.1966 0.2221 0.2342

0.0901
0.0704
0.0578

0.5021
2.8954
4.7240
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The variants using eigenvalues, Padé approximants and Taylor series will be used to calculate e™:

»> expm(M)
ans =
1.4679 0.3550
0.3550  1.2821
0.2863 0.2342
»> expm1(M)
ans =
1.4679 0.3550

0.3550 1.2821
0.2863 0.2342

0.2863
0.2342
1.1984

0.2863
0.2342
1.1984
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»> expm2(M)

ans

1.4679 0.3550 0.2863
0.3550 1.2821 0.2342
0.2863 0.2342 1.1984

»> expm3(M)

As we see, the exponential matrix coincides using all methods.

50

EXERCISE 2-1
Given the three matrices
110 i 1-i 2+i 1 1 1
A=|0 1 1| B=|0 -1 3-i| C=|0 sqrt(2)i -sqrt(2)i
0 0 1 0o 0 —i 1 -1 -1

calculate AB - BA, A% + B? + C?, ABC, sqrt (A) + sqrt (B) + sqrt (C), e* (€8+ e°) and find the range, inverse, trace,
determinant, condition number and singular values of A, B and C.

»> A=[1 1 050 1 130 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i];
C=[1 1 1; 0 sqrt(2)*i -sqrt(2)*iz;1 -1 -1];

»> M1=A*B-B*A

M1 =
0 -1.0000 - 1.0000i  2.0000
0 0 1.0000 - 1.00001
0 0 0

>> M2=A"2+B"2+C"2

M2 =
2.0000 2.0000 + 3.4142i  3.0000 - 5.41421
0 - 1.41421 0.0000 + 1.4142i  0.0000 - 0.58581
0 2.0000 - 1.41421i  2.0000 + 1.41421




»> M3=A*B*C
M3 =
5.0000 + 1.00001 -3.5858 + 1.00001
3.0000 - 2.00001 -3.0000 + 0.58581
0 - 1.00001 0 + 1.00001
»> Mg=sqrtm(A)+sqrtm(B)-sqrtm(C)
M4 =
0.6356 + 0.83611 -0.3250 - 0.82041
0.1582 - 0.15211  0.0896 + 0.57021
-0.3740 - 0.2654i 0.7472 + 0.33701
»> M5=expm(A)*(expm(B)+expm(C))
M5 =
14.1906 - 0.08221 5.4400 + 4.27241
4.5854 - 1.49721 0.6830 + 2.15751
3.5528 + 0.35601 0.1008 - 0.74881
»> ranks=[rank(A) rank(B) rank(C)]
ranks =
3 3 3
»> vsingular=[svd(A),svd(B),svd(C)]
vsingular =
1.8019 4.2130 2.0000
1.2470 1.4917 2.0000

0.4450 0.1591 1.4142

»> traces=[trace(A) trace(B) trace(C)]

traces =
3.0000 -1.0000
»> inv(A)
ans =
1 -1 1
0 1 -1
0 0 1

w

&S]

.4142 + 1.00001
.0000 + 3.41421

0 + 1.00001
.0734 + 1.28961
.3029 - 1.80251
.2255 + 0.10481
.9169 - 9.58421
.5597 - 7.65731
.2433 - 1.84061

0 + 1.41421
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»> inv(B)
ans =

0 - 1.00001 -1.0000 - 1.00001 -4.0000 + 3.00001

0 -1.0000 1.0000 + 3.00001
0 0 0 + 1.00001
»> inv(C)
ans =
0.5000 0 0.5000
0.2500 0 - 0.3536i -0.2500
0.2500 0 + 0.35361 -0.2500

»> determinants = [det(A) det (B) det (C)]
determinants =

1.0000 - 1.0000 0 - 5. 65691
»> conditions = [cond(A) cond (B) cond(C)]
conditions =

4.0489 26.4765 1,4142

EXERCISE 2-2

52

Consider the following matrix:

1/3 1/4 1/5
M=/1/4 1/5 1/6
1/5 1/6 1/7

Find its transpose, its inverse, its determinant, its range, its trace, its singular values, its condition number,
its norm and M3, regarded as a symbolic matrix.

> M = sym ('[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]")
M =
[1/3,1/4,1/5]

[1/4,1/5,1/6]
[1/5,1/6,1/7]




»> transpose = transpose (M)
transpose =
[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6]
[1/5, 1/6, 1/7]
»> inverse = inv (M)
inverse =
[ 300, -900, 630]
[-900, 2880, -2100]
[ 630, -2100, 1575]
»> determinant=det (M)
determinant =
1/378000
»> rank=rank(M)
rank =
3
»» trace=trace(M)
trace =
71/105
»> numeric(svd (M))
ans =

0.6571

0.0002 - 0.00001
0.0189 + 0.00001

»> norm = maple ('noxm([[1/3,1/4,1/5],[1/4,1/5,1/6],[1/5,1/6,1/7]])")

norm =

47/60
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»> sympow(M,3)
ans =
[10603/75600, 1227/11200, 26477/294000]

[1227/11200, 10783/126000, 74461/1058400]
[26477/294000, 74461/1058400, 8927/154350]

Now we find the norms and condition number of M as a numeric matrix:

»> [norm(numeric(M)),norm(numeric(M),1),cond(numeric(M),inf),
cond(numeric(M), 'fro'),noxrmest(numeric(M))]

ans =
1.0e+003 *
0.0008 4.6060 3.0900 0.0007 0.8

»> [cond(numeric(M),1),cond(numeric(M),2),cond(numeric(M), 'fro'),
condest(numexric(M))]

ans =
1.0e+003 *

4.6060 3.0886 3.0900 4.6060

EXERCISE 2-3

Define a square matrix A of dimension 5 whose elements are given by A(i,j) = i ° - j 2. Extract the submatrix of A
formed by rows 2 to 4 and columns 3 to 4. Delete rows 2 to 4 of the matrix A, as well as column 5. Exchange the
first and last rows of the matrix A. Exchange the first and last columns of the matrix A. Insert a column of 1s to the
right of the matrix A. Insert a column of 1s to the left of the matrix A. Insert two rows of 1s at the top of the matrix
A. Perform the same operation at the bottom.

First, we generate the matrix A as follows:
»> A=sym(maple('matrix(5,5,(i,j)-> i*3-j*2)'))
A =

[ 0, -3, '81 -15, '24]
[ 7) 4) '11 '8J '17]
[ 26, 23, 18, 11, 2]
[ 63, 60, 55, 48, 39]
[ 124, 121, 116, 109, 100]
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»> maple('A:=matrix(5,5,(i,j)-» i*3-j*2)');
»> sym(maple('submatrix(A,2..4,3..4)"))

ans =

[ -1, '8]
[ 18, 11]
[ 55, 48]
»> sym(maple('delrows(A,2..4)"))

ans =

[ OJ '3) '8) '15) '24]
[ 124, 121, 116, 109, 100]

»> sym(maple('delcols(A,5..5)"))
ans =

[ 0) '3) _8) '15]

[ 7) 4) '11 '8]

[ 26, 23, 18, 11]

[ 63, 60, 55, 48]

[ 124, 121, 116, 109]

»> pretty(sym(maple('swapcol(A,1,5),swaprow(A,1,5)')))

[-24 -3 -8 -15 0] [124 121 116
[ I [
[-17 4 -1 -8 71 [ 7 4 -1
[ I [
[ 2 23 18 11 26], [ 26 23 18
[ I [
[ 39 60 55 48 63] [ 63 60 55
[ I [
[100 121 116 109 124] [ o -3 -8

»> maple('B:=array([1,1,1,1,1])");
»> pretty(sym(maple('augment(A,B),augment(B,A)')));

[ o -3 -8 -15 -24 1] [1 0
[ I [
[ 7 4 -1 -8 -17 1] [1 7
[ I [
[ 26 23 18 11 2 1], [1 26
[ I [
[ 63 60 55 48 39 1] [1 63
[ I [
[124 121 116 109 100 1] [1 124

23

60

121

109

11

48

-15

18

55

116

100]
-17]
2]
39]

-24]

-15

11
48

109

CHAPTER 2 © MATRIX ALGEBRA

-24]
-17]
2]
39]

100]
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>> maple('C:=array([[1,1,1,1,1],[1,1,1,1,1]])");
»> pretty(sym(maple('stack(C,A),stack(A,C)')));

[ 1 1 1 1 1] [ o -3 -8 -15 -24]
[ I 1
[ 1 1 1 1 1] [ 7 4 -1 -8 -17]
[ I 1
[ o -3 -8 -15 -24] [ 26 23 18 11 2]
[ I [ ]
[ 7 4 -1 -8  -17], [ 63 60 55 48 39]
[ I 1
[ 26 23 18 11 2] [124 121 116 109 100]
[ I [ ]
[ 63 60 55 48 39] [ 1 1 1 1 1]
[ I[ ]
[124 121 116 109 100] [ 1 1 1 1 1]

2.3 Eigenvalues and Eigenvectors
2.3.1 Numeric Matrices

MATLAB enables commands that allow you to work with eigenvalues and eigenvectors of a square matrix. For
numeric matrices, we have the following:

eig(A) Finds the eigenvalues of the square matrix A.

[V, D] = eig (A) Returns the diagonal matrix D of eigenvalues of A, and a matrix Vwhose
columns are the corresponding eigenvectors, so that A *V=V*D,

eig(A,B) Returns a vector with the generalized eigenvalues of the square matrices
A and B. The generalized eigenvalues of A and B are the roots of the polynomial in A:
det(A*B-A).

[V, D] = eig (A, B) returns the diagonal matrix D of generalized eigenvalues of A and B and
amatrix Vwhose columns are the corresponding eigenvectors, so that A *V=B*V*D,

[AA,BB,Q,Z, V] = qz (A, B)

Calculates the upper triangular matrices AA and BB and matrices Q and Z such that
Q*A*Z=Qand AA * B *Z = BB, and gives the matrix V of generalized eigenvectors of
A and B, so that A *V *diag (BB) = B *V *diag (AA).

[T, B] = balance (A) Returns a similarity transformation T such that B = T\A*T, and B
has, as closely as possible, approximately equal row and column norms. The matrix B
is called the balanced matrix of A.

balance(A) Computes the balanced matrix B of A. This is used to approximate
the eigenvalues of A when they are difficult to estimate. We have eig (4) =
eig (balance (A)).

[V, D] = cdf2rdf (V, D) If the eigensystem [V,D]= eig(X) has complex eigenvalues
appearing in complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2x2 real blocks along the diagonal replacing the original complex
pairs. The eigenvectors are transformed so that X = V*D/V continues to hold.
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[U, T] = schur (A) Returns a matrix T and a unitary matrix U such that A= U *T * U’ and
U’* U = eye (U). If A is complex, T is an upper triangular matrix with the eigenvalues

of A on its diagonal. If A is real, T has the eigenvalues of A on its diagonal, and the
corresponding complex eigenvalues correspond to the 2 x 2 diagonal blocks of T.

Schur (A) Returns only the matrix T of the above decomposition.
[U, T] = rsf2¢csf (U, T) Converts the real Schur form to the complex form.

[H, P] = hess (A) Returns the unitary matrix P and Hessenberg matrix H such that A = P
*H * P’ and P'* P = eye (size (P)).

hess (A) Returns the Hessenberg matrix of A.
poly (A) Returns the characteristic polynomial of the matrix A.

poly (V) Returns a vector whose components are the coefficients of the polynomial
whose roots are the elements of the vector V.

vander (C) Returns the Vandermonde matrix A such that its j-th column is
A(5j) = CA (n).

EXERCISE 2-4
Consider the matrix:
1 -1 3
M=|-1 i -1-2i
i 1 i-2

Compute its eigenvalues and eigenvectors, the balanced matrix with its eigenvalues, and its characteristic

polynomial.

»> A=[1,-1,3;-1,i,-1-2i;i,1,i-2];
»» [V,D] = eig(A)

4

0.9129 0.1826 + 0.54771 -0.1826 + 0.36511
-0.2739 - 0.09131 0.5477 - 0.1826i 0.3651 - 0.73031
-0.0913 + 0.27391 -0.1826 - 0.54771 0.1826 - 0.36511

1.0000 + 1.00001 0 0
0 -2.0000 + 1.00001 0
0 (0] 0
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We see that the eigenvalues of Aare 1 +j, —2 + iand 0, and the eigenvectors are the columns of the matrix V.
We now calculate the balanced matrix of A and verify that its eigenvalues coincide with those of A:

»> balance(A)

ans =
1.0000 -1.0000 1.5000
-1.0000 0 + 1.00001 -0.5000 - 1.00001
0 + 2.00001 2.0000 -2.0000 + 1.00001

»> eig(balance(A))

ans =

1.0000 + 1.00001

-2.0000 + 1.00001

0

We now calculate the characteristic of polynomial of A:

»> p=poly(A)
p =
1.0000 1.0000 - 2.00001 -3.0000 - 1.00001 0
»> vpa(poly2sym(p))
ans =
X"3+x72-2.%1*x"2-3. *x-1.*%1*x

Thus, the characteristic polynomial is x° + x? —2ix? —3x —ix.

2.3.2 Symbolic Matrices

EXERCISE 2-5

Consider the square matrix A of order 5 whose (i, j)th element is given by 1/(i+j-1/2). Compute the eigenvalues,
eigenvectors, characteristic polynomial, minimum polynomial, characteristic matrix and singular values of A.
Also find the vector of condition numbers of the eigenvalues and analyze whether A is positive definite, negative
definite or positive or negative semidefinite.
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MATLAB enables you to define this type of symbolic matrix in the general form:
»> A=sym(maple('matxix(5,5,(i,j)-> 1/(i+j-1/2))"))

A =

[ 273, 2/5, 2/7, 2/9, 2/11]

[ 275, 2/7, 2/9, 2/11, 2/13]

[ 2/7, 2/9, 2/11, 2/13, 2/15]

[ 279, 2/11, 2/13, 2/15, 2/17]

[2/11, 2/13, 2/15, 2/17, 2/19]

»» [V, E] = eig (A)

V =

[ -.1612e-1, -.6740e-2, .3578, 2.482, -288.7]

[ .2084, . 1400, -2.513, -15.01, 2298.]

[ -.7456, -.6391, 3.482, 20.13, -3755.]

[ 1, 1, 1, 1, 1]

[ -.4499, -.5011, -2.476, -8.914, 1903.]

E =

[ 2/55*.4005e-4, o0, o0, 0, o]
[ 0, 2/55% .3991e-2, o0, 0, o]
[ 0, 0, 2/55% .1629, 0, o]
[ 0, 0, 0,  2/55% 3.420, 0]
[ 0, o0, o0, o0, 2/55% 34.16]

As is well known, the eigenvectors are the columns of the matrix Vand the eigenvalues are the elements of the
diagonal of the matrix E.

»> pretty(simple(poly(A)))
5 10042 4 362807509088 3 268537284608 2
7315 2228304933855 285965799844725
22809860374528 4359738368
169975437532179654375 177624332221127738821875
We can approximate the above output as follows:
»> pretty(simple(vpa(poly(A))))

5 4 3 2 -6 -12
X -1.373 x +.1628 x -.0009391 x +.1342*%10 x -.1934*10

59



CHAPTER 2 © MATRIX ALGEBRA

The singular values are calculated in the following way:

»> pretty (simple (svd (A)))

[ -5]
[.1456*%10 ]
[ )|
[ .0001451 ]
[ ]
[ .005923 ]
[ ]
[ .1244 ]
[ ]
[ 1.242 ]

The minimal polynomial and the characteristic matrix are calculated in the following way:
»> pretty(simple(sym(maple('minpoly(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)"'))))
34359738368 22809860374528 268537284608 2
177624332221127738821875  169975437532179654375 285965799844725
362807509088 3 10042 4 5
2228304933855 7315
»> pretty(simple(sym(vpa(maple('minpoly(matrix(5,5,(i,j)-»1/(i+j-1/2)),x)")))))

-12 -6 2 3 4 5
-.1934 10 + .1342 10 X - .0009391 x + .1628 x - 1.373 X + X

»> pretty(simple(sym(maple('charmat(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)"'))))

[ -2 ]
[x - 2/3 -2/5 -2/7 -2/9 - ]
[ 11 ]
[ )|
[ -2 -2 ]
[ -2/5 X - 2/7 -2/9 -- -- ]
[ 11 13 ]
[ )|
[ -2 -2 ]
[ -2/7 -2/9 X - 2/11 -- -- ]
[ 13 15 ]
[ 1
[ -2 -2 -2 ]
[ -2/9 -- -- X - 2/15 - ]
[ 11 13 17 ]
[ )|
[ -2 -2 -2 -2 ]
[ -- -- -- -- x - 2/19]
[ 11 13 15 17 ]
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The vector of condition numbers of the eigenvalues is calculated by:

»> condeig (numeric (A))

ans

R R R R R

.0000
.0000
.0000
.0000
.0000
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In a more complete way, we can calculate the matrix I/ whose columns are the eigenvectors of A, the diagonal
matrix D whose diagonal elements are the eigenvalues of A, and the vector S of condition numbers of the
eigenvalues of A, by using the command:

»» [V,D,s] = condeig(numeric(A))

V =

Using the command definite, we find that the matrix A is positive definite:

»> maple('definite(matrix(5,5,(i,j)-» 1/(i+j-1/2)),positive_def)"')

ans

true

R R R RR_

.0102
.1430
.5396
.7526
.3490

.0000

o © O

.0000
.0000
.0000
.0000
.0000

0.0697
-0.4815
0.6251
0.2922
-0.5359

0.2756
-0.7052
-0.2064

0.2523

0.5661

-0.6523
0.1593
0.3790
0.4442
0.4563

0.7026
0.4744
0.3629
0.2954
0.2496

S O OO

1.2423
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2.4 Matrix Decomposition

MATLAB enables commands that allow you to decompose a matrix as a product of orthogonal matrices and
diagonal matrices.

We have already seen how the command [U, S, V] = svd (A) returns a diagonal matrix S of singular values of A
(in decreasing order of magnitude), and orthogonal matrices U and Vsuch that=U *S *V".

We have also seen that you can obtain the Jordan decomposition of a square matrix A via the command
[V, J] = jordan (A), which returns the Jordan canonical matrix J of A with the eigenvalues of A on its diagonal and the
similarity transform V whose columns are the eigenvectors of 4, so that V! *A*V=].

On the other hand, we have also seen that you can obtain a decomposition of a square matrix A via the command
Schur, [U, T]=schur(A), which returns an array T and an orthogonal matrix U such that A= U * T * U'and U™ U = eye
(U). If A is complex, T is an upper triangular matrix with the eigenvalues of A on its diagonal. For real A, the matrix
Thas real eigenvalues of A on its diagonal and complex eigenvalues in 2x2 diagonal blocks in T.

We can also find the Hessenberg decomposition of the matrix A via the command [H, P] = hess (A), which gives
the orthogonal matrix P and Hessenberg matrix H such that A= P * H * P'and P™* P = eye (size (P)).

In addition, MATLAB has a number of other commands for the numeric and symbolic decomposition of a matrix.
They include the following:

[L, U] =1u (A) Decomposes the matrix A as the product A =L *U (an LU
decomposition), where U is an upper triangular matrix and L is a permutation of a
lower triangular matrix.

[L, U, P] =1u(A) Returns the lower triangular matrix L, the upper triangular matrix
U and the permutation matrix P such that P *A = L * U.

R = chol(A) Returns the upper triangular matrix R such that R’* R =A (a Cholesky
decomposition), where A is positive. If A is not positive, an error is returned.

[Q, R] =qr (A) Returns the upper triangular matrix R of the same dimension as A, and
the orthogonal matrix Q such that A = Q * R (a QR decomposition). This decomposition
can be applied to non-square matrices.

[Q, R, E] = qr(A) Returns the upper triangular matrix R of the same dimension as A,
the matrix permutation E and the orthogonal matrix Q such that A *E=Q *R.

X = pinv(A) Returns the matrix X (the pseudo-inverse of A), of the same dimension as
A’suchthat A *X*A=Aand X *A *X = X, where A *X and X * A are hermitian.

In addition, the commands listed below allow the decomposition of both numeric and symbolic matrices. All of
these commands must be preceded by the command maple.

LUdecomp(A,P=‘p’,L=1,U="0’,Ul1="‘ul’,R=‘r") decomposes the matrix A into the
product A = evalm(P&*L&*U) (LU decomposition), where U is an upper triangular
matrix, L is a lower triangular matrix and P is a pivot factor. In addition,

U = evalm(U1&*R) with Ul upper triangular and R a row reduced factor, so that
A = evalm(P&*L&*UI*R).

cholesky(A) returns the lower triangular matrix R such that A = evalm(R&*R’)
(Cholesky decomposition of A). A must be positive definite.

QRdecomp(A,Q=‘q") returns the upper triangular matrix R of the same dimension as A,
and the orthonormal matrix Q such that A = evalm(Q&*R) (QR decomposition of A).

companion(poli,var) gives the matrix C associated with the given monic polynomial
in the specified variable. If poly = a0 + alx +...+x", C(i,n)=-coeff(poli,var,i-1), i=1...n,
C(iji-1)=1, i=2...n, and C(i, j) = 0 for the rest of the elements in the matrix.
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frobenius (A) or ratform (A) returns the canonical Frobenius form F of the matrix A.
Fis a block diagonal matrix (F = diag(C1,C2,...,Cn)), where the Ci are the companion
matrices associated to polynomials p1, p2,..., pk such that p, divides p, , i=2... K.

frobenius(A,P') assigns to P the transformation matrix corresponding to the Frobenius
form of the matrix A, so that evalm (P & *A&*P)=F.

smith(A,var) computes the Smith normal form of a matrix with univariate polynomial
entries in var over the integers.

smith(A,var,U,V) in addition returns the matrices U and V such that
S = evalm(U&*A&*V).

ismith(A,var) gives the diagonal matrix corresponding to the Smith normal form S of
the square matrix A of polynomials in the variable var.

ismith(A,var,U,V) in addition returns the matrices U and V such that
S = evalm(U&*A&*V).

hermite(A,var) computes the Hermite normal form (reduced row echelon form) of a
matrix A of univariate polynomials in var.

hermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

ihermite(A,var) computes the Hermite normal form (reduced row echelon form) of
a matrix A of univariate polynomials in var over the integers.

ihermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

gaussjord (A) returns an upper triangular matrix corresponding to the row reduced
(Gauss-Jordan) echelon form of the matrix A. This is used to facilitate the solution of
systems of linear equations whose coefficient matrix is the matrix A.

gaussjord (A, j) returns the j-th column of the above matrix.

gaussjord(A,r,d) gives the row reduced echelon form of the matrix A, assigns to the
variable r the rank of A and to the variable d the determinant of submatrix(A,1..r,1..r).
This subarray is used for solving systems of linear equations whose coefficient matrix
is A.

gausselim (A) performs Gaussian elimination with row pivoting on A, returning the
reduced matrix. This is used to facilitate the solution of systems of linear equations
whose coefficient matrix is the matrix A.

gausselim (A, j) returns the j-th column of the row reduced matrix of A.

gausselim(A,r,d) returns the row reduced matrix of A, assigns the variable r to the rank
of A, and the variable d to the determinant of submatrix(A, 1..r,1..r) . This subarray is
used for solving systems of linear equations whose coefficient matrix is A.

backsub (A) returns the vector x such that A *x = V, where Vs the last column of the
matrix A. If A is the result of applying forward Gaussian elimination to the augmented
matrix of a system of linear equations (via gausselim or gaussjord, for example),
backsub completes the solution by back substitution.

backsub (A, V) returns the vector x such that A *x = V.

backsub(A,V,t) returns the vector x such that A * x =V, where the parameter ¢ is used for
a possible family of parametric solutions of the system.
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forwardsub(A,V) returns the vector x such that A *x = V. If A is the result of applying
Gaussian elimination to the matrix of a system of linear equations (via LUdecomp, for
example), forwardsub completes the solution by forward substitution.

forwardsub(A,V,t) returns the matrix X such that A * X = V, where the parameter ¢ is
used for a possible family of parametric solutions of the system.

forwardsub (A) returns the vector x such that A *x = V, where Vis the last column of A.
forwardsub(A,B) returns the matrix X such that A *X = B.

geneqns(A,[x1,...,xn]) generates a system of linear equations in the given variables,
equating each to zero, where the coefficients are determined by the matrix A.

geneqns(A,[x1,...,xn],V) generates a system of linear equations in the given variables,
where the right-hand sides of the equations are determined by the vector V and the
coefficients are determined by the matrix A.

genmatrix([equationl,...,equationm],[x1,...,xn]) generates the matrix corresponding
to the given linear equations with respect to the specified variables.

genmatrix([equationl,...,equationm],[x1,...,xn],flag) generates the matrix
corresponding to the given linear equations with respect to the specified variables,
including as the last column of the matrix the right-hand sides of the equations.

genmatrix([equationl,...,equationm],[x1,..,xn],name) generates the matrix
corresponding to the given linear equations with respect to the specified variables, and
assigns a name to the vector that contains the right-hand sides of the equations.

EXERCISE 2-6

64

Consider the 3x3 matrix A whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Find the Schur,
LU, QR, Cholesky, Hessenberg and singular value decompositions of A. Verify the results. Also find the
pseudoinverse of A.

First, we find the Schur decomposition, checking that the result is correct:

» A =[1.5, - 25 - 7, 3, 15 2,2, - 2];
»» [U, T] = schur (R)

U=
-0.0530 -0.8892 -0.4544
-0.9910 -0.0093 0.1337

0.1231  -0.4573 0.8807

T =

2.4475 -5.7952  -4.6361
5.7628 0.3689 2.4332
0 0 -0.8163
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Now, we check that U * T *U'=Aand that U * U'= eye (3):

» [U*T*U', U*U']

ans =
1.0000 5.0000 -2.0000 1.0000 0.0000 0.0000
-7.0000 3.0000 1.0000 0.0000 1.0000 0.0000
2.0000 2.0000 -2.0000 0.0000 0.0000 1.0000

Now, we find the LU, QR, Cholesky, Hesenberg and singular value decompositions, checking the results for
each case:

»» [L, U, P] = 1u (R)

L =
1.0000 0 0
-0.1429 1.0000 0 Lower triangular matrix
-0.2857 0.5263 1.0000
U=
-7.0000 3.0000 1.0000
0 5.4286 -1.8571 Upper triangular matrix
0 0 -0.7368
P =
1 0
1 0 0
0 0 1

1 5 -2 1 5 -2 we have that P*A=L*U

»> [0, R, E] = qr (A)

0 =

-0.1361 - 0.8785 - 0.4579
0.9526 - 0.2430 0.1831
-0.2722 - 0.4112  0.8700
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R =
-7.3485 1.6330 1.7691
0 -5.9442 2.3366 Upper triangular matrix
0 0 -0.6410
E =
100
010
001

> [A *E, 0 * R]

ans =
1.0000 5.0000 -2.0000 1.0000 5.0000 -2.0000
-7.0000 3.0000 1.0000 -7.0000 3.0000 1.0000
2.0000 2.0000 -2.0000 2.0000 2.0000 -2.0000

Then,A*E=Q*R

»> R = chol(A)

22?2 Error using ==> chol
Matrix must be positive definite.

We obtain an error message because the matrix is not positive definite.

»> [P,H] = hess(A)

P =
1.0000 0 0
0 -0.9615 0.2747
0 0.2747 0.9615
H =

1.0000 -5.3571 -0.5494
7.2801 1.8302 -2.0943
0 -3.0943 -0.8302

»> [P*H*P', P'*P]

ans =
1.0000 5.0000 -2.0000 1.0000 O 0
-7.0000 3.0000 1.0000 O 1.0000 0
2.0000 2.0000 -2.0000 O 0 1.0000
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Then, PHP’=Aand PP =1.

» [u, S, V] = svd (A)

U=
-0.1034 -0.8623  0.4957
-0.9808 0.0056 -0.1949

0.1653 -0.5064 -0.8463

S =

7.8306 0 0
0 6.2735 0 diagonal matrix
0 0 0.5700
V=
0.9058 -0.3051 0.2940
-0.3996 -0.8460 0.3530
-0.1411 0.4372 0.8882
»U*s*y
ans =

1.0000 5.0000 -2.0000
-7.0000 3.0000 1.0000 therefore USV'= A
2.0000 2.0000 -2.0000

Now, we calculate the pseudoinverse of A:
»» X = pinv (A)

X =
0.2857 -0.2143 -0.3929
0.4286 -0.0714 -0.4643
0.7143 -0.2857 -1.3571
>> [A* X * A, X * A * X]

ans =

1.0000 5.0000 -2.0000 0.2857 -0.2143 -0.3929
-7.0000 3.0000 1.0000 0.4286 -0.0714 -0.4643
2.0000 2.0000 -2.0000 0.7143 -0.2857 -1.3571

Thus, we have AXA =Aand XAX = X.

CHAPTER 2 © MATRIX ALGEBRA

67



CHAPTER 2 © MATRIX ALGEBRA

EXERCISE 2-7

Consider the square matrix of order 5 whose (i, j)th element is defined by Aij = 1/(i+j-1/2). Calculate its Jordan
form (and check the result). Find its LU, QR, Frobenius, Smith and Hermite decompositions, calculating the

matrices involved and verifying that they do indeed yield the original matrix.

»> A=sym(maple('matrix(5,5,(i,j)-» i+j-1/2)"))

A =

[3/72, 5/2, 7/2, 9/2, 11/2]
[5/2, 7/2, 9/2, 11/2, 13/2]
[7/2, 9/2, 11/2, 13/2, 15/2]
[9/2, 11/2, 13/2, 15/2, 17/2]
[11/2, 13/2, 15/2, 17/2, 19/2]

»> [V, 3] = Joxdan (A);
»> pretty(sym(V))

[ 1/2
[8/9, 9/170 17 + 3/10,
[

[

[-71 1/2
[---, - 2/85 17 + 1/5,
[90

[

[-67 1/2
[---, 1/170 17 + 1/10,
[90

[

[ 1/2
[3/10, 3/85 17,

[

[31 1  1/2
[--, ---17
[90 170

»> pretty(sym(J))

[0 0
[

[

[0 55/4 + 15/4 17
[

[

[0 0
[

[o 0

[

[0 0

68

- 1/10 ,

1/2

1/2 22
9/170 3/17 + 3/10, -
45
1/2 -7
2/85 17 + 1/5, ---
18
1/2 -49
-1/170 17 + 1/10, ———
90
1/2
- 3/85 17, 3/10,
1 1/2 -13
- --- 17 - 1/10 , -,
170 90
0 0 o]
]
1
0 0 o]
]
1/2 ]
55/4-15/4 17 0 0]
]
0 0 0]
1
0 0 o]




»> pretty(simple(sym(symmul(symmul(V,3),inv(V)))))

[3/2 5/2  7/2
[5/2 7/2  9/2
[7/72 9/2 11/2
[9/2 11/2 13/2
[13/2 11/2 15/2

9/2

11/2
13/2
15/2
1772

11/2]
13/2]
15/2]
17/2]
19/2]
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We have calculated the transformation matrix Vand the diagonal matrix (the Jordan form) J of A. We have
also proven that I/ * J * V/-71= A. We now calculate the LU decomposition matrix of A and the matrices involved,

checking the result. Since symbolic matrices are involved, we will use the maple command.

»> maple('A:=matrix(5,5,(i,j)-> i+j-1/2)');

»> pretty (sym (maple ('LUdecomp(A,P=p,L=1,U=u,U1=u1,R=r)")))

[3/72 572

[

[o -2/3 -
[

[ o 0

[

[ o 0

[

[ o 0

»> pretty(sym(maple('print(p,1)')))

[10000] [1 0

[ |
[o1000] [5/3 1
[ I [
[oo100], [7/3 2
[ I [
[ooo10] [3 3
[ |

[o0001] [11/3 4

»> pretty(sym(maple('print(u1,r)’)))

[3/72 572 0 o0
[
[o - 2/3 0 0
[
[0 0 1 0
[
[ o 0 0 1
[
[ o 0 0 0

7/2

4/3

0

0

9/2
2
0

0

0]
0]
0]
0]
1]

11/2]

]

- 8/3]

0]

(e}
[y S W Sy Sy S

o

-3]
4]
0]
0]
0]
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»> pretty (sym (maple ('evalm(p&*1&*ui&*r), evalm(p&*1&*u)')))

[372 5/2 7/2 9/2 11/2] [3/2 5/2 7/2 9/2  11/2]
{5/2 7/2 9/2 11/2 13/25 {5/2 7/2 9/2 11/2 13/25
57/2 9/2 11/2 13/2 15/2}, 57/2 9/2 11/2 13/2 15/2}
29/2 11/2 13/2 17/2 15/75 gg/z 11/2 13/2 17/2 15/2%

[13/2 11/2 15/2 17/2

19/2] [13/2 11/2 15/2 17/2 19/2]

We see that p */ *u7 *r=Aand that p */ * u = A We will then calculate the QR decomposition of A and the

matrices involved, checking the result.

»> pretty(sym(maple('print(R)')))

[ 1/2 71 1/2 85 1/2 33 1/2 113 1/2]
[1/2 285, --- 285, --- 285, --- 285, ---285 ]
[ 114 114 38 114 ]
[ 1
[ 1/2 1/2 1/2 1/2]
[o, 2/57 570, 4/57 570, 2/19 570, 8/57 570 ]
[ )|
[o, 0, 0, o, |
[ 1
[0 ) o, o, o, 0]
[ )|
[o, 0, 0, o, 0]
»> pretty(sym(maple('print(q)')))
[ 1/2 1/2 1/2 ]
[1/95 285,  3/95 570, 1/5/10, 0, 0]
[ /2 11 1/2 1/2 1/2 ]
[1/57 285, --- 570, - 1/5 10, 1/10 30, o]
[ 570 ]
[ 1/2 1/2 1/2 1/2 1/2 ]
[7/285 285, 2/285 570, - 1/10, - 2/15 30, 1/6 6 ]
[ 1/2 1/2 1/2 172 ]
[3/95 285, - 1/190 570, 0, - 1/30 30, -1/3 6 ]
[ 11 1/2 1/2 1/2 1/2 1/2]
[--- 285 , - 1/57 570, 1/10/10, 1/15 30, 1/6 6 ]
[285 ]
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»> pretty(sym(maple(’'evalm(q&*R)')))

[3/2
[
[5/2
[
[7/2
[
[9/2
[

5/2 7/2 9/2

7/2 9/2 11/2

9/2 11/2 13/2

11/2 13/2 17/2

11/2]

]
13/2]

)
15/2]

1
15/2]

]

[13/2 11/2 15/2 17/2 19/2]
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We see that g *R = A. Next we find the Smith decomposition of the matrix A and the matrices involved,
checking the result.

»> pretty(sym(maple('smith(A,X,U,V)"')))

[10000]

[ 1

[01000]

[ 1
[00000]

[ ]

[o0000]

[ 1

[0 0000]

»> pretty(sym(maple('print(U,V)’)))

(]

o

(e}

(=)

— — — — — — — — —
1
Y

0 0 0
0 0 11/2
2 -1 0
1-2 1
0 1 -2

[
2/11] [1
I [
-9/72] [
1 [o
o ], [
1 [o
o] [
1 [o
1] [
[o

»> pretty(sym(maple(’evalm(U&*A&*V)')))

[10000]

[ 1

[01000]

[ ]

[00000]

[ ]

[o0000]

[ |

[0 0000]

-13

11
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We see that U *A *V = Smith matrix. Next we calculate the Hermite decomposition of the matrix A and find the
matrices involved.

»> pretty(sym(maple('H:=hermite(A,x,V); V:=evalm(V)')))
»> pretty(sym(maple('print(H,V)')))

[1 0 -1 -2 -3] [-7/2  5/2 o o0 0]

[ I [ ]
[0 1 2 3 4] [5/2 - 3/2 o o 0]
[ I 1
[0 0 0 0 o], [ 2 -4 2 0 o]
[ I [ ]
[o o 0 0 o] [ 4 -6 o 2 0]
[ I [ ]
[0 0 0 0 o] [6 -8 0 0 2]

»> pretty(sym(maple('evalm(V&*A)')))

[1 0 -1 -2 -3]

[ ]
[0 1 2 3 4]
[ 1
[0 0 0 0 o]
[ ]
[o 0 0 0 0]
[ 1

[0 0 0 0 o]

We see that VV *A = H. Finally, we calculate the Frobenius decomposition of A and find the matrices involved,
checking the result.

»> pretty(sym(maple('F:=frobenius(A,P); P:=evalm(P)')))
»> pretty(sym(maple('print(F,P)’)))

[ 67 22 19 ]
[ -- 3/2 285/4 -- --]
[ 45 45 45 ]
[ ]
[0 o 0 o o] [-7 -7 1
[ ][ -- 5/2  355/4 -- -2/9]
[1 0 50 0 o] [ 18 18 ]
[ I [ 1
[o 1 55/2 0 0], [-49 -49 -14 ]
[ ] [--- 72 a25/4 - -]
[o o 0 o o] [90 90 45 ]
[ I )|
[o o 0 o o] [37/720 9/2 495/4  3/10 -2/5]
[ 1
[ 13 13 23 ]
[ -- 11/2 565/4 -- -- ]
[ 90 90 45 ]
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»> pretty(sym(maple('evalm(P*(-1)&*A&*P)"')))

[o 0 0 0 0]
[ ]
[1 0 50 0 o]
[ 1
[55/2 1 0 o 0]
[ ]
[o 0 0 0 0]
[ 1
[0 0 0 0 o]

We have shown that P- 7*A*P=F.

EXERCISE 2-8

Consider the 3 x 3 matrix A whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). If V is the vector
of ones, solve the system L * x =V based on the LU decomposition of A. Solve the system G * x =V, where G is
obtained from A via Gaussian elimination. Solve the system J * x =V where J is the Jordan form of A. Represent
the matrix system in the form of equations, and find the Hermite and Smith decompositions of A.

First, we define the matrix A and the vector V/ using the maple command as follows:
»> maple ('A: = matrix(3,3,[1,5,-2,-7,3,1,2,2,-2]);) V: = array ([1,1,1])');
Then we find the LU decomposition of A, solving the system L* x =V using the command backsub.

»> pretty(sym(maple('L:=LUdecomp(A)')))
»> pretty(sym(maple('backsub(L,V)")))

[253 - 233 - 19]
[--- ---]
[532 532 14]

We have solved the system L * x = I/, which can be expressed in the form of equations with the command
geneqns as follows:

»> pretty(sym(maple(’geneqns(L,[x1,x2,x3],V)")))

14
{x1+5x2-2x3=1,38x2-13x3=1, - -- x 3 =1}
19
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Now we solve the system G * x = Vwhere G is obtained from A by Gaussian elimination.

»> pretty(sym(maple('G:=gausselim(A)')))
»> pretty(sym(maple('backsub(G,V)')))

[79 - 11 ]
[--  ---  -2/7]
[56 56 ]

The system of equations is found as follows:
»> pretty(sym(maple(’geneqns(G,[x1,x2,x3],V)")))
{x1+5x2-2x3=1,8x2+2x3=1, -7/2x3 =1}
Now, we solve the system J *x = I/where Jis the canonical Jordan form of A. We use the command forwardsub.

»> pretty(sym(maple('J:=gaussjord(A)')))
»> pretty(sym(maple(’forwardsub(3,V)')))

[11 1]

Finally, we find the Smith and Hermite matrices associated with A.
»> pretty(sym(maple('ihermite(A,x)')))

[116]

[0 23]

[0 0 14]
»> pretty(sym(maple('ismith(A)')))

[100]

[0 1 0]
[0 0 28]

2.5 Equivalent Matrices and Diagonalization

Two matrices A and B of dimensions (MxN) are equivalent if there exist two invertible matrices U and V such that
A = UBV. The MATLAB command [U, S, V] =svd (A) calculates a diagonal matrix S which is equivalent to A.
Two square matrices A and B of order 7 are said to be congruent if there is an invertible matrix P
such that A = P'BP.
The MATLAB command [U, T] = schur (A) calculates a matrix Twhich is congruent with A.
Congruence implies equivalence, and two congruent matrices must always have the same rank.
Two square matrices of order n, A and B, are similar if there is an invertible matrix P such that A = PBP.
Two similar matrices are equivalent.
A matrix A is diagonalizable if it is similar to a diagonal matrix D, that is, if there is an invertible matrix P
such that A = PDP'.
The process of calculating the diagonal matrix D and the matrix P is called diagonalization of A.
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Given a square matrix of real numbers A of order #, if all the eigenvalues of A are real and distinct, then A is
diagonalizable. The matrix D will have the eigenvalues of A as the diagonal elements. The matrix P has as columns the
eigenvectors of A corresponding to these eigenvalues.

If the matrix A has an eigenvalue with multiplicity r greater than 1, then it is diagonalizable if and only if the
kernel of the matrix A - r *I has dimension equal to the degree of multiplicity of the eigenvalue r.

The MATLAB command [V, J] = jordan (A) diagonalizes the matrix A by calculating the diagonal matrix / and the
matrix Vsuch that A=VjV-.

EXERCISE 2-9

Diagonalize the symmetric matrix whose rows are the vectors:
(3,-1,0), (-1,2-1),(0,-1,3).

Check the result and confirm that the eigenvalues of the initial matrix are the elements of the diagonal
matrix obtained.

We calculate the diagonal matrix J similar to A, which will have the eigenvalues of A on its diagonal, and the
transformation matrix V. To do this, we use the command [V, J] = jordan (A):

> A = [3, -1, 0; -1, 2, -1 0, -1, 3]

A =
3 -1 0
-1 -2 -1
o -1 3

»» [V, 3] = jordan (A)
V =

[1/6, 1/2, 1/3]
[1/3, o0, -1/3]

[1/6, -1/2, 1/3]

J =

[1, 0, 0]
[0, 3, 0]
[0, 0, 4]

We now confirm that the diagonal matrix J has the eigenvalues of A on its diagonal:
»> eigensys (A)
ans =

[1]
[3]
[4]

75



CHAPTER 2 © MATRIX ALGEBRA

The matrices A and J are similar because there a matrix I/ satisfying the equation V-7 *A *V=J:
>> symmul(symmul(inv(V),A),V)

ans =

[1, 0, 0]

[0, 3, 0]
[0, 0, 4]

2.6 Sparse Matrices

A matrix is called sparse if it has sufficiently many zero elements that one can take advantage of. Sparse matrix
algorithms do not store most null elements in memory, so when working on matrix processing with sparse matrices
one gains time and efficiency. There are specialized commands that can be used to deal with sparse matrices. Some of
these commands are listed below.

S = sparse (i, j, s, m, n, nzmax), i = vector, j = vector, s = vector. Creates a sparse matrix
S of dimension mxn with space for nzmax non-zero elements given by s. The vector i
contains the i-input components of the non-null elements and the vector j contains the
corresponding j-input components.

S=sparse(i,j,s,m,n). Creates the sparse matrix S using nzmax=Ilength(s).

S = sparse(i,j,s). Creates a sparse matrix S with m = max (i) and n = max (j).

S = sparse (A) converts the matrix A into sparse form.

A = full (S) converts the sparse matrix S into full matrix form A.

S = spconvert (D) converts an external ASCII file read with name D into a sparse matrix S.

(i, j) = find (A) returns the row and column indices of the non-zero entries of the
matrix A.

B = spdiags (A, d) builds a sparse matrix by extracting the diagonal elements of
A specified by the vector d.

S = speye (m, n) creates the sparse mxn matrix with ones on the main diagonal.
S = speye (n) creates the sparse square identity matrix of order n.

R = sprandn (S) generates a random sparse matrix with non-zero values normally
distributed in (0,1) with the same structure as the sparse matrix S.

R = sprandsym (S) generates a sparse random symmetric matrix with non-zero entries
normally distributed in (0,1) whose lower diagonal triangle has the same structure as S.

r = sprank (S) gives the structural rank of the sparse matrix S.
n = nnz (S) gives the number of non-zero elements in the sparse matrix S.

k = nzmax (S) returns the amount of storage occupied by the non-zero elements in the
sparse matrix S. If S is a full matrix then nzmax (S) = prod (size (S)).

s=spalloc(m,n,nzmax) creates space in memory for a sparse matrix of dimension mxn.
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R = spones (S) replaces the zero entries of the sparse matrix S with ones.

n = condest (S) computes a lower bound for the 1-norm condition number of a square
matrix S.

m = normest (S) returns an estimate of the 2-norm of the matrix S.
issparse (A) returns 1 if the matrix A is sparse, and 0 otherwise.

Here are some examples:

»> sparse([1,1,2,2,3,4],[4,2,3,1,2,3],[-7,12,25,1,-6,8],4,4,10)

ans

(2,1) 1
(1,2) 12
(3,2) -6
(2,3) 25
(4,3) 8
(1,4) -7

Now we convert this sparse matrix into complete form:

»» full (ans)

ans

0o 12 0 -7
1 025 o0
0-6 0 0
oo 8 o

Now we define a sparse matrix whose full form is a diagonal matrix:

»> sparse(1:5,1:5,-6)

ans =
(1)1) -6
(2)2) -6
(3,3) -6
(4,4) -6
(5,5) -6
»> full(ans)
ans =
-6 0 0 0 0
0 -6 0 0 0
0 0 -6 0 0
0 0 0 -6 0
0 0 0 0 -6

MATRIX ALGEBRA
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2.6.1 Special Matrices

MATLAB provides commands to define certain special types of matrices. These include the following:

78

H = hadamard(n): Returns the Hadamard matrix of order n, a matrix with values 1
or - 1 such that H* H = n * eye(n).

hankel(V): Returns the square Hankel matrix whose first column is the vector Vand
whose elements are zero below the first anti-diagonal. The matrix hankel(C,R) has first
column vector C and last row vector R.

hilb(n): Returns the Hilbert matrix of order n, a matrix whose ij-th element is 1 /(i+j-1).
invhilb(n): Returns the inverse of the Hilbert matrix of order n.

magic(n): Returns a magic square of order n. Its elements are integers from 1 to n? with
equal sums of rows and columns.

pascal(n): Returns the Pascal matrix of order n (symmetric, positive definite with
integer entries taken from Pascal’s triangle).

rosser: Returns the Rosser matrix, an 8 x 8 matrix with a double eigenvalue, three
nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.

toeplitz(C,R): Returns a Toeplitz matrix (not symmetric, with the vector C in the first
column and R as the first row vector).

vander(C): Returns a Vandermonde matrix whose penultimate column is the vector C.
In addition, A(:,j) = C A (n-j).

wilkinson(n): Returns the Wilkinson matrix of order n (symmetric tridiagonal with
pairs of eigenvalues close but not the same).

compan(P): Returns the corresponding companion matrix whose first row is
-P(2:n)/P(1), where P is a vector of polynomial coefficients.

maple(‘hadamard (n)’): Returns the Hadamard matrix of order n, a matrix with values
1 or - 1 such that H'* H = n * eye(n).

maple (‘hilbert (n)’): Returns the Hilbert matrix of order n, a matrix whose ij-th
elementis 1 /(i+j-1).

maple (‘hilbert(n,exp)’)Returns the matrix of order n with ij-th entry equal to
1 /(i+j-exp).

maple(‘bezout(polyl,poly2,x)’): Constructs the Bézout matrix of the given
polynomials in x, with dimension max(m,n), where m = degree (poly1) and
n = degree (poly2). The determinant of this matrix is the resultant of the two
polynomials (resultant(polyl,poly2,x)).

maple(‘sylvester(p1,p2,x)’): Constructs the Sylvester matrix of the given polynomials in
x, with dimension n+m, where m = degree(p1) and n =degree(p2). The determinant of
this matrix is the resultant of the two polynomials.

maple (‘fibonacci (n)’): Returns the nth Fibonacci matrix F(n) whose size is the sum of
the dimensions of F (n-1) and F (n-2).

maple(‘toeplitz([exl,...,exn])’): Returns the symmetric Toeplitz matrix whose elements
are the specified expressions.
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maple(‘vandermonde([exprl,..., exprn])’): Returns the Vandermonde matrix whose
ij-th element is expri/.

maple (‘wronskian(V,x)’) Returns the Wronskian matrix of the vector V =(f1,...,fn) with

respect to the variable x. The ij-th element is diff (fj, x$(i-1)).

maple (‘jacobian([exprl,...,exprm],[x1,..., xn])’): Returns the mxn Jacobian matrix with
ij-th element diff(expri,xj).

maple(‘hessian(exp,[x1,...,xn])’): Returns the mxn Hessian matrix with ij-th element
diff(exp, xi,xj).

EXERCISE 2-10

Find the eigenvalues of the Wilkinson matrix of order 8, a magic square of order 8 and the Rosser matrix.

»> [eig(wilkinson(8)), eig(rosser), eig(magic(8))]

ans =

1. Oe + 003 *

.0042
.0043
.0028
0026
.0017

0,0011

0.0002
-0.0010

QO O O OO

1
1
1
1
1
0
0
-1

.0000
.0000
.0200
.0200
.0199
.0001
.0000
.0200

o O

O O O O O

.2600
.0518
.0518

0000

.0000
.0000
.0000

0000

+ 0.00001
- 0.00001
+ 0.00001
- 0.00001

Observe that the Wilkinson matrix has pairs of eigenvalues which are close, but not equal. The Rosser matrix has
a double eigenvalue, three nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.
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EXERCISE 2-11

Find the Smith and Hermite forms of the inverse of the Hilbert matrix of order 2 in the variable x. Also find the
corresponding transformation matrices.

»> maple('with(linalg):H:= inverse(hilbert(2,x))');
»> pretty(simple(sym(maple('H"'))))

[ 2 ]
[ -(3+%) (-2+%) (34 %) (-2+%) (-4 +%)]
[ ]
[ 2 ]
[(3+%) (2+%) (4+%)  ~(3+%) (4+%) ]

»> maple ('B: = smith(H,x,U,V);)U: = eval (U); V: = eval (V)');
»> pretty(simple(sym(maple('B'))))

[ 2
[o (-2+x) (x-7x+12)

]
[ 1
1
]

»> pretty(simple(sym(maple('VU'))))

[ -1 -1 1
[ 1
[ 2 2]
[10 - 13/2 x + x -13/2 x+ 9+ x ]

»> pretty(simple(sym(maple('V'))))

[-7/2 + x -4+ x]
[ ]
[-372 + x -2+ x]

»> maple('HM:=hermite(H,x,0);0:=evalm(0)');
»> pretty(simple(sym(maple('HM'))))

[2 )|
[x -5x+6 0 ]
[ 1
[ 2 1
[ 0 X -7x+12]

»> pretty(simple(sym(maple('0'))))

[- x+3 - x + 2]
[ 1
[- x+4 - x + 3]
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EXERCISE 2-12

Verify that the functions x, x? and x® are linearly independent.

»> maple('v:=[x,x"2,x"3]:w:=wronskian(v,x)");
»> pretty(simple(sym(maple('w'))))

[ 2 3
[x X X

[

[ 2
[1 2x
[

[0 2

W
x
[ N NS N N S

(o)}
x

»> pretty(simple(sym(maple('det(w)'))))

3
2 X

Since the determinant of the Wronskian is non-zero, the functions are linearly independent.

EXERCISE 2-13

Find the Jacobian matrix and the Jacobian determinant of the transformation:
X = e usin (v), y = e u cos (v).
»> pretty (sym (maple ('jacobian (vector ([exp (u) * sin (v), exp (u) * cos (v)]),
[u, v1)')))
[exp (u) sin (u) exp (u) cos (v)]
[ 1
[exp (u) cos (v) - exp (u) sin (v)]
»> pretty(simple(sym(maple('det(")'))))

2
-exp (u)
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EXERCISE 2-14

Find the Bézout and Sylvester matrices B and T for the functions p = a + bx + cx? and q = d + ex + fx2. Verify that
the determinants of B and T coincide with the resultant of p and q.

»> maple('p:=a+b*x+c*x*2; q:= d+e*x+f*x"2; B:=bezout(p, q, x); T:=sylvester(p, q, x)')
»> pretty(sym(maple('B')))

[dc - af db - ae]
[ 1
[ec - bf dc - af]
»> pretty(sym(maple('T')))

[cb a 0]
[0 c b a]

[fedo]
[0 fed]

»> pretty(sym(maple('det(B)'))),pretty(sym(maple(’'det(T)"))),
pretty(sym(maple( ' resultant(p,q,x)')))

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf
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Sequences, Arrays, Tables,
Lists and Sets

This chapter covers such essential mathematical concepts as strings, arrays, and tables, which allow for fluid work in
vector and matrix analysis, and also the treatment of all kinds of sums and products, both finite and infinite. MATLAB
also implements sets and lists. For all of these concepts, we first present the definitions and then give a summary of
the commands that can be used to implement them in MATLAB.

3.1 Sequences

A sequence is simply an ordered list of items separated by commas. As well as presenting a sequence explicitly,
separating the elements with commas, one can also use the $ operator to create sequences. In particular, lists and sets
are represented externally by sequences of elements between square brackets and braces respectively. The string of
length zero is valid in MATLAB and is assigned the special name NULL. Among the commands that enable MATLAB
to handle sequences (all of which must be preceded by the maple command) we have the following:

seq (f (i), i = a...b) creates the sequence f(a), f (a+1),..., f(b-1), f(b). The numbers a and
b must be integers.

seq(expr,var=a..b) creates the sequence of expressions resulting from the substitution
of the variable var into the expression expr where var ranges over the values a, a+1,...,
b-1, b. The numbers a and b must be integers.

seq (f(i), i = expr) creates the sequence corresponding to the values of fapplied to the
expression expr.

seq (f(i), i = list) creates the sequence corresponding to the values obtained by
applying the function fto the elements of the specified list.

seq (f(i), i = set) creates the sequence corresponding to the values obtained by applying
the function fto elements of the specified set.

f (i) $ i = a...b creates the sequence f (a), f (a+1),..., f(b-1), f (b). The numbers a and b
need not be integers.

$ a..b creates the sequence, a+1, a+2,..., b-1, b. The numbers a and b need not be
integers.

f$ n creates the sequence f f,...............f (with n occurrences of f).

s [i] returns the ith element of the sequence s.
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nops ([s]) gives the length of the string s (number of elements).

op (list) returns the sequence formed by the elements of the specified list.
op (set) returns the sequence formed by the elements of the specified set.
[s] creates the list whose elements are those of the sequence s.

{s} creates the set whose elements are those of the sequence s.

s,s creates a sequence formed by the repetition of the sequence s.

$, §,..., 8 (n occurrences of s) creates a sequence formed by the repetition of the
sequence s n times.

sequence: = NULL defines the empty sequence.

add(expr, var=a..b) sums the sequence of expressions obtained by substituting the
values a, a+1,..., b-1, b of the variable var into the expression expr.

add (f (i), i = a...b) sums the sequence f(a), f (a+1),..., f(b-1), f (b). The values a and b
must be numeric.

add (f (i), i = expr) adds the sequence of numerical values obtained by applying fto the
expression expr.

add (f (i), i = list) adds the sequence of values obtained when applying the function fto
the elements from the specified list.

add (f (i), i = set) adds the sequence of values obtained by applying the function fto the
elements of the given set.

mul(expr, var=a..b) finds the product of the sequence of expressions obtained by
substituting the values a, a+1,..., b-1, b of the variable var into the expression expr.

mul(f (i), i = a...b) finds the product of the sequence f(a), f (a+1),..., f(b-1), f (b).
The values a and b must be numeric.

mul(f (i), i = expr) finds the product of the sequence of numerical values obtained by
applying fto the expression expr.

mul(f (i), i = list) finds the product of the sequence of values obtained by applying the
function fto the elements of the given list.

mul(f (i), i = set) finds the product of the sequence of values obtained by applying the
function f'to the elements of the given set.

sum(expr, var=a..b) finds the sum of the sequence of expressions obtained by
substituting the values a, a+1,..., b-1, b of the variable var into the expression expr.
The values a and b can be symbolic.

sum (f (i), i = a...b) finds the sum of the sequence f(a), f(a+1),...,f(b-1), f(b). That is,
it returns the sum Zb: f(i) - The values a and b can be symbolic.

product(expr, var=a..b) finds the product of the sequence of expressions obtained by
substituting the values a, a+1,..., b-1, b of the variable var into the expression expr.

product (f (i), i = a...b) finds the product of the sequence f(a), f(a+1),...,f(b-1), f(b).
That is, it returns the product Zlf, f(i) - The values a and b can be symbolic.

op(a..b, expr) or seq(op(i,expr), i=a..b) extracts the sequence comprising the a-th
through b-th operands of the expression expr.
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Here are some examples:
pretty (sym (maple('mul(k, k=1..5)")))

120
pretty(sym(maple('add( k"2, k=1..5 )')))

55
pretty(sym(maple('L:= [seq(k, k=1..5)] '))),pretty(sym(maple('L")))

[r 2 3 4 5]

pretty(sym(maple('add( k*2, k=L)')))

55
pretty(syn(maple('mul( x-k, k=L ) ')))

(x-1) (x-2) (x-3)(x-4)(x-5)

pretty(sym(maple('add( a[k]*x*k, k=0..5 ) ')))

2 3 4 5
al[o] + a[1] x + a[2] x + a[3] x + a[4] x + a[5] x

pretty(sym(maple('add( k"2, k=0..n ) ')))

Error, unable to execute add

This example failed because 7 is a symbolic value. You will need to use the command sum.

pretty(sym(maple('sum( k"2, k=0..n ) ')))

3 2
1/3 (n +1) -1/2 (n+1) +1/6 n+ 1/6

pretty(sym(maple('product( k*2, k=1..4 ) ')))
576

pretty(sym(maple('mul( k*2, k=1..4 ) ')))
576

pretty(sym(maple('product( k*2, k=1..n ) ')))

2
gamma(n + 1)
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»> pretty(sym(maple(’product( k"2, k ) ')))

2
gamma (k)

»> pretty(sym(maple("product( a[k], k=0..4 ) ')))
afo] a[1] a[2] a[3] a[4]
>> pretty(sym(maple('seq( k"2, k=1..5 ) ')))
1, 4, 9, 16, 25
»> pretty(syn(maple("seq( sin(Pi*k/6), k=0..6 ) ')))

1/2 1/2
o, 1/2, 1/23 , 1, 1/23 , 1/2, 0

»> pretty(sym(maple('seq( x[k], k=1..5 ) ')))
x[1], x[2], x[3], x[4], x[5]

»> pretty(sym(maple('product( a[k], k=0..n ) ')))

alk]

»> pretty(sym(maple('sum(k/(k+1), k=0..n)")))
n+ 1 - Psi(n + 2) - eulergamma
»> pretty(sym(maple(’sum(k/(k+1), k)')))

k - Psi(k + 1)
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»

»

»

»
»

»

»

pretty(sym(maple('$ 2..5')))
2,3, 4,5
pretty(sym(maple('k"2 $ k = 2/3 .. 8/3")))
4/9, 25/9, 64/9
pretty(sym(maple('a[k] $ k = 1..3")))
al1], a[2], a[3]
pretty(sym(maple('x$4')))
X,

X, X, X

pretty(sym(maple('u:= [1,4,9]:")));
pretty(sym(maple( nops(u)’)))

pretty(sym(maple('op(2,u)’)))
4
pretty(sym(maple('op(2..3,u)')))

4, 9
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EXERCISE 3-1

Generate the list containing the sequence of integers from zero to six. Generate the list containing the sequence
of its squares and the set containing the sequence of its squares modulo seven. Also generate the list whose
elements are pairs of values where the first element of the pairs run through the integers from zero to six, and the

second element is the square of the first.
»> maple('X:= [seq( k, k=0..6 )] ')
ans =

X:=1[0, 1, 2, 3, 4, 5, 6]

»> maple('Y:= [seq(k*2, k=X)] ')
ans =

Y: = [o, 1, 4, 9, 16, 25, 36]
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>> maple('{seq(k"2 mod 7, k=X)} ')

ans =

{o, 1, 2, 4}

>> maple ('[seq ([X [k], Y [k]], k = 1.. nops (X))] ')
ans =

[[o, o], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]

EXERCISE 3-2

Generate the sequence of 1%t through 10™ dervivatives of the function In (x). Generate another sequence of
15 random numbers between 5 and 50.

»> pretty (sym (maple ('seq (diff (In (x), x$ n), n = 1.. 10)")))
1 2 6 24 120 720 5040 40320 362880
l/XJ TOTTTT, TTTT, T TTTT, TTTT, T TTT, TTT, T OTTTT, TTTTT P
2 3 4 5 6 7 8 9 10
X X X X X X X X X

»> pretty(sym(maple('f:=rand(5..50):seq(f( ),k=1..15)")))

30, 5, 42, 24, 17, 39, 48) 9, 281 42, 181 8; 50, 29, 7

EXERCISE 3-3

88

Calculate the following sums and product:

0 n (1+0)F 0 ,2"
anne ’ 2k=0(ﬂ+k)5’ andH”:ln ot

»> pretty(sym(maple('sum(n*E*(-n),n=1..infinity) ')))

»> pretty(sym(maple('evalf(sum((2+i)~k/(Pi+k)"*5,k=0..23)) ')))

.003599764471 +.001081437031 I
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This value, with numerical summation limits, can also be found with the command add as follows:
»> pretty(sym(maple(’evalf(add((2+I)"k/(Pi+k)"5,k=0..23))")))
.003599764471 + .001081437031 1
»> pretty(sym(maple('evalf(product(n*2*2*n/exp(n),n=1..10))")))
616565.6460
With numerical limits, this product can also be found using the command mu/ as follows:
»> pretty(sym(maple(’evalf(mul(n*2%*2*n/exp(n),n=1..10)) ')))

616565.6460

EXERCISE 3-4

Calculate the following sums: iki Zn:l& and ikﬁ
k=1

»> pretty (sym (maple('sum(k*3, k=0..n) ')))

4 3 2
1/4 (n+1) -1/2 (n+1) +1/4 (n+ 1)

»> pretty(sym(maple('sum( k*4, k=0..n ) ')))

5 4 3
1/5 (n+1) -1/2 (n+1) +1/3 (n+1) - 1/30 n - 1/30

»> pretty(sym(maple('sum( k*5, k=0..n ) ')))

6 5 4 2
1/6 (n + 1)-1/2 (n + 1) + 5/12 (n + 1)-1/12 (n + 1)

3.2 Arrays

An array is a well-ordered collection of individual elements each of which is associated with a (possible multi-)
index which indicates its position in the array. It is essential that each element is associated with a unique index,
which may also be zero or negative, so that, in order to make changes to any element of the array, one simply refers
to its index.
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Arrays can be of one or more dimensions, so an array may have one or more sets of indices that identify its
elements. The most important commands that enables MATLAB to work with arrays are as follows (all of them must
be preceded by the maple command):

array(1..n, element_list) creates the array with n elements specified in the list and
whose indices vary from 1 to n.

array (n..m, item_list) creates the array with the m-n + 1 elements specified in the list
and whose indices vary from n to m.

array(1..n) creates an array with n unspecified elements whose indices vary from 1 to n.

array (n..m) creates the array with m-n + 1 unspecified elements whose indices vary
from n to m.

array (item_list) creates an array whose elements are taken from the list (of length n)
and whose indices vary from 1 to n.

array(1l..m, 1..n, [listl,... listn]) creates a two-dimensional array of n» rows and m
columns, where the rows of elements are the given lists. The indices are the pairs (i, j)
withi=1..n,j=1...m.

array(l..m, 1..n, 1..p, [[list11,...list1n],...[listm]1,... listmn]],...,

[[listp1,...listpn],...,[list(p+m)1,... list(p+m)n]] creates a three-dimensional array
whose elements are given by the specified lists. The indices are the triples (i, j, k)
withi=1..n,j=1..m,k=1..p.

array(1..n, option) or array(1..n,1..m, option) creates a one-dimensional or
two-dimensional array of the type specified in option. The option values are
symmeltric, antisymmetric, diagonal, identity or sparse.

A [i] returns the element with index i in the one-dimensional array A.
A [i, j] returns the element with index (i, j) in the two-dimensional array A.
A [i]: = element assigns the element to the array element with index i.
A [j, j]: = element assigns the element to the array element with index (i, j).

eval (array) or evalm (array) shows the elements of an array in certain non-trivial
cases.

op (eval (array)) shows the internal structure of the array and allows access to its
elements.

op (n, eval (array)) extracts the nth operand of the array. The first operand is the index
function, the second operand is a sequence of ranges or indices and the third operand
is the table of data representing the elements of the array.

nops(array) or nops(eval(array)) gives the number of elements in the array.
indices(A) shows the indices of the array A.

entries(A) shows the elements of the array A.

copy(A) creates a copy of the array A.

map(function, array) applies the given command or function to all the elements
of the array.
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subs ({old = new}, eval (array)) replaces the old element with the new throughout
the array.

subs ({old1 = newl, old2 = new2,..., oldn = newn}, eval (array)) replaces the old
elements with the new throughout the array.

convert(A,list) creates the one-dimensional array corresponding to the given list with
the same elements.

convert (A, listlist) converts the two-dimensional array A to a list of lists.

convert (A, vector) converts the one-dimensional array A to a vector with the same
elements.

convert(A,matrix) converts the two dimensional array to a matrix.
convert (A set) converts the one-dimensional array A to a set with the same elements.
type(expression, array) determines if the expression is an array.

type(expression, ‘array’ (type)) determines whether the expression is an array with all
the elements of the given type (integer, complex,...).

typematch (expression, array) returns true if the given expression is of type array.

typematch(expr, array, name) in addition, if the match is successful, assigns to name a
list of equations representing the variables and their matched values.

Here are some examples:

»> pretty (sym (maple ('array(1..3, 1..3, [[a,b,c],[d,e,f],[g,h,i]]1)")))

[a b c]
[ ]
[d e f]
[ )
g h 1]

»> pretty(sym(maple('array(3..6,[a,b,c,d]) ')))

array(3 .. 6, [

3=a
4=b
5=c
6=d
D
>> pretty(sym(maple('array(1..2,1..2,identity) ')))
[1 0]
[o 1]
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»> pretty(sym(maple('array(1..2, 1..6, [(1,3)=p, (2,4)=r], sparse) ')))

[0 o p o o 0]

[ ]

[o 0 0 r 0 o]

»> pretty(sym(maple('M:=array(1..2, 1..3,[[2,8,32], [45,-1,0]]) ')));
»> pretty(sym(maple('M')))

[ 2 8 32]
[ 1
[45 -1 0]

»> pretty(sym(maple('M[1,3] ')))
32

»> pretty(sym(maple('M[2,3]:=x-3 ')));
»> pretty(sym(maple('op(M) ')))

[ 2 8 32 ]
[ ]
[45 -1 x-3]

»> pretty(sym(maple(' v:= array(1..4): ')));
»> pretty(sym(maple('for k to 3 do v[k]:= k"2 od: ')))
»> pretty(sym(maple('print(v) ')))

[1, 4, 9, v[4]]
»> pretty(sym(maple('v[2] ')))

»> pretty(sym(maple('v[o] ')))
Error, 1st index, 0, smaller than lower array bound 1

»> pretty(sym(maple('A:= array(1..2,1..2): ')));
»> pretty(sym(maple('A[1,2]:= x ")));
»> pretty(sym(maple('print(a) ')))

[Al1, 1] x ]
[ ]
[Al2, 1] A[2, 2]]

»> pretty(sym(maple('A:= array( symmetric, 1..2,1..2, [ [1,x], [x,x*2] ] ) ')))
»> pretty(sym(maple('A')))

[1 x]
[ ]
[ 2]
[x x]
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pretty(sym(maple(‘op(R)')))

[1 x]
[ ]
[ 2]
[x x]

pretty(sym(maple('op(1,eval(ad)) ')))

symmetric

pretty(sym(maple('op(2,eval(A)) ')))

1..2,1..2

pretty(sym(maple('op(3,eval(A)) ')))

2
[(1, 2)=X, (1, 1)=1, (2, 2)=X]

pretty(sym(maple('map(diff,A,x) ')))

[o 1]
[ 1
[1 2 x]

EXERCISE 3-5

Generate a one-dimensional array with three elements whose indices range from 1 to 3 and fill the array with the
squares of the first three natural numbers. Also generate a two-dimensional array whose two indices vary from

1 1o 3 and fill the array with ones in the first row, the squares of the first three positive integers in the second row
and the cubes of the first three positive integers in the third row. Finally, replace all ones in the two-dimensional
array by fives and check the result. Convert the first array to a set and the second to a list.

»> pretty (sym (maple (' squ: = array(1..3) ')));
»> maple('squ[1]:=172;squ[2]:=2"2;squ[3]:=3"2 ');
»> pretty(sym(maple('print(squ) ')))

[1, 4, 9]

»> pretty(sym(maple(’bidimen:=array(1..3,1..3) ')));
»> maple('bidimen[1,1]:=1;bidimen[1,2]:=1;bidimen[1,3]:=1;

bidimen[2,1]:=1"2;bidimen[2,2] :=2"2;bidimen[2,3] :=3"2;
bidimen[3,1]:=1"3;bidimen[3,2]:=2"3;bidimen[3,3]:=3"3 ');

93



CHAPTER 3 * SEQUENCES, ARRAYS, TABLES, LISTS AND SETS

»> pretty(sym(maple(’print(bidimen)')))

[1 1 1]
[ 1
[1 4 9]
[ 1
[1 8 27]

»> pretty(sym(maple('subs({1=5}, evalm(bidimen)) ')))

[5 5 5]
[ ]
[5 4 9]
[ ]
[5 8 27]

A more elegant way to define the two arrays of this problem is as follows:
»> pretty(sym(maple('squ:=array(1..3,[seq(k*2,k=1..3)]) ')))
[r 4 9]
»> pretty(sym(maple('bidimen:=array(1..3,1..3,[[seq(k"0,k=1..3)],

[seq(k"2,k=1..3)],[seq(k"3,k=1..3)]]) ')))
»> pretty(sym(maple('bidimen')))

[1 1 1]
[ 1
[1 4 9]
[ 1
[1 8 27]

»> pretty(sym(maple(’convert(squ,set) ')))
{1, 4, 9}
»> pretty(sym(maple(’convert(bidimen,listlist) ')))

[[1, 1, 1], [1, 4, 9], [1, 9, 27]]
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EXERCISE 3-6

Generate a three-dimensional array containing the first eight positive natural numbers and whose three indices
vary from 1 to 2. Access its operands and display its internal structure.

»> pretty(sym(maple('tridimen:=array(1..2,1..2,1..2,[[[1,2],[3,4]1]1,[[5,6],[7,8111)')))
»> pretty(sym(maple('tridimen')))

array(1 .. 2, 1 .. 2,1 ..2, [

(1, 1, 1) = 1

(1, 1, 2) = 2
(1, 2, 1) = 3
(1,2,2) =4
(2,1, 1) =5
(2, 1,2) = 6
(2,2, 1) -7
(2,2,2) -8
)

»> pretty(sym(maple('op(eval(tridimen)) ')))
[1..2,1..2,1..2],[(1,1,1)=1, (1, 1, 2)=2, (1, 2, 1)= 3,
(1, 2, 2)=4, (2, 1, 1)=5, (2, 1, 2) =6, (2, 2, 1) =7, (2, 2, 2) = 8]
»> pretty(sym(maple(’op(1,eval(tridimen)) ')))
[1..2 1..2 1..2]
>> pretty(sym(maple('op(2,eval(tridimen)) ')))
[(1, 1, 1) =1 (1, 1,2)=2,(1,2 1) =3, (1, 2, 2) =4,]

(2) 1, 1) =5 (21 1, 2) =6J (21 2, 1) =7 (2) 2, 2) =8]
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3.3 Relationships Between Vectors, Matrices and Arrays

Avector is equivalent to a one-dimensional array whose index begins with 1. Therefore, a vector is a special case of an
array. As we know, MATLAB defines a vector with m row elements in the following ways:

maple(‘array([vl, ..., vin])’)
maple (‘vector(m, item_list)’)
maple (‘vector([vl,..., vim])’)
maple (‘vector (m, k - > f (k))’)

Here are some examples:
»> pretty(sym(maple('vector(4,[1,x,x*2,x*3]) ")))

2 3
[1)X)X)X]

»> pretty(sym(maple('vector([1,x,x*2,x*3]) ')))

2 3
[1) X, X, X ]

»> pretty(sym(maple('array([1,x,x"2,x*3]) ')))

2 3
[1) X, X, X ]

»> pretty(sym(maple('vector(3,k->k*2)")))
[14 9]

A matrix is equivalent to a two-dimensional array whose indices both begin at 1. Therefore, a matrix is also a
special case of a two-dimensional array. As we know, MATLAB allows you to define an array of dimension (mxn) in
the following ways:

maple (‘matrix([listal,..., listam])’) (each list has n elements and is a row of the matrix)
maple (‘array([listal,..., listam])’) (each list has n elements and is a row of the matrix)
maple (‘matrix (m, n, item_list)’)

maple(‘matrix(m, n, (i,j)->£(i,j))’)

Here are some examples:

»> pretty (sym (maple ('matrix ([[sin(x), x*2 + x + 3], [exp (x), cos(x*2)]])')))

[ 2 |
[sin (x) x + x + 3 ]
[ 1
[ 2]

[exp (x) cos (x) ]
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»> pretty(sym(maple('array([[sin(x), x*2+x+3], [exp(x), cos(x*2)]])")))

[

2

]

[sin (x) x + x + 3]

[

[
[exp (x) cos (x) ]

]

2]

»> pretty (sym (maple ('matrix (2,2, [sin (x), x * 2 + x + 3, exp (x), cos(x*2)])')))

[ 2 1
[sin (x) x + x + 3 ]
[ ]
[ 2 ]
[exp(x) cos(x ) ]

>> pretty(syn(naple('matrix(3,4, (p,q)->a*p+h"q)')))

[
[a+b

[

[ 2 2

[a +b a +b

[
[3 3

[a +b a +b

a+b

3 3
a +b

4]
a +b]

]

4]
a +b]

On the other hand, we know that by using the command convert we can transform any one-dimensional array to
avector and any two-dimensional array to a matrix.

3.3.1 Tables

The concept of a table is an extension of the concept of an array. The difference between an array and a table is

that the indices of a table need not vary over integers. For example, you can build a table with algebraic formulas as
indices and their derivatives as values in the table. Therefore, the table structure is much more powerful that the array
structure. Let’s look at the most common MATLAB commands that enable you to work with tables (all of them must

be preceded by the maple command):

table ([(index1) = element]l,..., (indexn) = elementn]) creates a table with the specified

indices and elements (inputs).

table([element]l,...,elementn]) creates a table with the specified elements which have

indices 1, 2,..., n.

table (option, [(index1) = element]l,..., (indexn) = elementn]) creates a table of the type
specified by the option (symmetric, antisymmetric, diagonal, identity or sparse) with

the given indices and elements.

T [i] returns the element of index i of the table T.

T [i]: = element assigns the element to the entry of T with index i.

eval (table) or evalm (table) shows the elements of a table in certain non-trivial cases.
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op (eval (table)) shows the internal structure of the table and allows access to its
elements.

op (n, eval (table)) extracts the nth operand of the table. The first operand is the index
function and the second operand is a list of equations whose left-hand sides are the
indices and whose right-hand sides are the elements of the table.

nops (T) or nops (eval (T)) gives the number of elements in the table T.
indexes(T) shows the indices of the table T.

entries (T) shows the elements of the table T.

copy (T) creates a copy of the table T.

map (function, table) applies the given command or function given to all the elements
of the array.

subs ({old = new}, eval (table)) replaces the old element with the new throughout the
table.

subs ({old1 = newl, old2 = new2,..., oldn = newn}, eval (table)) replaces the old items
for new ones throughout the table.

convert(T,list, ‘=") converts the table T to a list of equations of the form index
T = element.

convert(T,multiset) converts the table T to a list of lists such that the first elements are
the indices of the table T and the second elements are their corresponding values.

convert(T,set) converts the table T to a set containing the elements of the table,
ignoring the indices.

type(expression, table) determines if the expression is a table.

type (expression, ‘table’ (type)) determines whether the expression is a table with
elements of the given type (integer, complex...).

typematch (expression, table) returns true if the given expression is of type table.

typematch (expr, array, name) in addition, if the match is successful, assigns to name a
list of equations representing the variables and their matched values.

Here are some examples:

»> pretty (sym (maple ('table ()')))

table([
1))

»> pretty(sym(maple('table([22,42]) ')))

table([

1=22
2 =42

D
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»> pretty(sym(maple('S:= table([(2)=45,(4)=61]) ')))
»> pretty(sym(maple('s')))

:= table([
2 =45
4 = 61

D

»> pretty(sym(maple('T:= table(symmetric,[(c,b)=x]) ')))
»> pretty(sym(maple('T')))

T:= table(symmetric, [
(c, b) = x
1),

»> pretty(sym(maple('op(T) ')))

table(symmetric, [
(¢, b) = x
1))

»> pretty(sym(maple('F:= table([sin=cos,cos=-sin]): ')))
»> pretty(sym(maple('op(F) ')))

table([)
cos = - sin
sin = cos
D

>> pretty(sym(maple('op(2,eval(F)) ')))

[cos = - sin, sin = cos]
»> pretty (sym (maple (‘op (op (F))')))

[cos = - sin, sin = cos]
>> pretty (sym (maple ('F [cos](Pi/2) ')))

-1
»> pretty(sym(maple('convert(F,set) ')))
{cos, -sin}

»> pretty(sym(maple('convert(F,multiset) ')))

[[cos,-sin], [sin, cos]]
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3.5 Lists

As we know, a list is a collection of objects separated by commas and enclosed within square brackets. It is a sequence
enclosed within square brackets. The order of the elements in a list is important, and elements can be repeated,

i.e. thelists [a, b, c] and [b, ¢, a] are different, and the lists [a, a, b, ¢, c] and [a, b, ] are also different. The following
commands can be used to create and manipulate lists (all must be preceded by the command maple):

[al, a2,..., an]creates a list of the given elements.

[sequence] create a list whose elements are defined in the specified sequence.
list: = [] defines the empty list.

L [i] returns the ith element of the list L.

L[-i] returns the ith element from the end of the list L.

L [a...b] returns the elements of the list that occupy the places a, a+1,...,b-1, b.

L [-a...-b] returns the elements of the list that occupy the places a, a+1,..., b-1, b starting
from the end of the list.

[list, list] create a list of two lists.
[list,..., list] creates a list of n lists.
member (expression, list) determines whether the expression belongs to the list.

member(expr, list, name) assigns the specified name to the first item in the list that
matches expr.

nops (L) gives the number of elements in the list L.

op (L) transforms the list L into a sequence.

op (n, L) gives the nth element in the list L.

op(a..b, L) gives the a-th through b-th elements of the list L, inclusive.
convert (A, list) converts the one-dimensional array A into a list.
convert(V,list) converts the vector V into a list.

convert(M, list, list) converts the matrix M into a list of lists.

convert(expression, list) converts the given expression into a list whose first operands
are its elements.

convert(T, list, ‘=") converts the table T into a list of equations of the form
index = element.

convert({exprl,..., exprn}, list) converts the set of expressions into a list.
convert (A, listlist) converts the two-dimensional array A into a list of lists.

convert([index1=elementl,..., indexn=elementn], listlist) converts the given list of
equations into a list that contains only items properly sorted by index, but not the
indices themselves.

convert(L, set) converts the list L into a set with the same elements, ignoring indices.
convert(T, multiset) converts the table T into a list of lists such that the first elements

are the indices of the table T and the second elements are their corresponding values.
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convert([exprl,..., exprn], option) creates a list with the given expressions converted
according to the specified option (trig, exp, In,...).
convert(L,vector) converts the list L to a vector.

convert([listl,..., listn], matrix) converts the list of lists to a matrix whose rows are the
given lists.

type (expression, list) determines whether the expression is a list.
type(expresion, listlist) determines whether the expression is a list of lists.

type(expression, ‘list’ (type)) determines whether the expression is a list with the
elements of the given type (integer, complex...).

typematch (expression, list) returns true if the given expression is of type list.

typematch (expr, list, name) in addition, if the match is successful, assigns to name a
list of equations representing the variables and their matched values.

Here are some examples:
pretty (sym (maple ('L: = [seq(x[k],k=1..4)] ')))
pretty(sym(maple('L')))

[x[1], x[2], x[3], x[4]]
pretty(sym(maple('L[2]")))

x[2]
pretty(sym(maple(’ L:= [op(L),x[5]] )))
pretty(sym(maple(' L')))

[x[1], x[2], x[3], x[4], x[5]]
pretty(sym(maple('L, L[-3..-2]) ')))
[x[3], x[4]]
pretty (sym (maple ('member(x*y, [x*y, wiu, y])')))
true
pretty(sym(maple('member(w, [x, y, w, ul, k) ')))
true
pretty(sym(maple('convert( [1,2,3,4], "+ ) ')))

10
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»> pretty(sym(maple('u:= [1,4,9] ")))
»> pretty(sym(maple('u')))

[1 4 9]

»> pretty(sym(maple('nops(u) ')))

»> pretty(sym(maple('op(2,u) ')))

4
»> pretty(sym(maple('op(2..3,u) ')))

4, 9
»>> pretty(sym(maple(‘op(u) *)))

1, 4, 9

>> pretty(sym(maple(’op(-1,u) ')))

9
>> pretty(sym(maple(’op(0,u) ')))

list
»>> pretty(sym(maple('[op(u),16] ')))

[1, 4, 9, 16]

>> pretty(sym(maple('X:= [seq( k, k=0..6 )] *)))
>> pretty(sym(maple('Y:= [seq( k"2, k=X )] ')))
»> pretty(sym(maple('X,Y')))

[o 1 2 3 4 5 6]
[o 1 4 9 16 25 36]

»> pretty(sym(maple('[seq( [X[k],Y[k]], k=1..nops(X) )] ')))

[[o, o], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]
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3.5.1 Selecting and Manipulating Elements From Lists

Among the multiple possibilities for structural handling of lists offered by MATLAB, the following group of commands
allows the selection and manipulation of elements from lists:

select(boolean_function, list) creates a list by selecting from the specified list the items
that match the command or given Boolean function.

select(boolean_function, list, exprl,..., exprn) applies the given Boolean function with
parameters exprl,..., exprn to the elements of the given list to determine which ones are
selected.

remove(boolean_function, list) creates a list by removing from the specified list the
items that match the given command or Boolean function.

remove(boolean_function, list, exprl,..., exprn) applies the given Boolean function
with parameters exprl,..., exprn to the elements of the given list to determine which
ones are removed.

zip(function, L1, L2) uses lists or vectors of L1 and L2 to generate a new list whose
elements are the result of applying the specified binary function to each pair of
corresponding elements of the lists. If the two lists do not have the same length, the
process only applies up to the length of the shortest list.

zip(function, L1, L2, expr) as above except the length of the generated list is equal to
the length of the longest of the two lists L1 and L2 and any empty elements at the tail of
the list are filled with the value given by expr.

Here are some examples:

»> pretty (sym (maple ('L: = [8, 2.95, Pi, sin(9)] ')))
»> pretty(sym(maple('L')))

v

[8 2.95 pi  sin(9)]

>> pretty(sym(maple('select(type, L, numeric) ')))

[8, 2.95]
>> pretty(syn(maple(' f:=x->is(x>3) ')))
»> pretty(sym(maple('select(f,L) ')))

[8, pi]
»> pretty(sym(maple('remove(f,L) ')))
[2.95, sin(9)]

>> pretty (sym (maple ('zip ((x,y) - > x +y, [1,2,3], [4,5,6]) ")))

[5, 7, 9]
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»> pretty(sym(maple('zip(gecd,[0,14,8],[2,6,12]) ')))
[2, 2, 4]
»> pretty(sym(maple('zip((x,y)->x+y,[1,2,3],[4,5],0) ')))
[5, 7, 3]
»> pretty(sym(maple('zip((x,y)-»x*2+y*2,[a,b,c,d,e],[1,2,3],k) ')))

2 2 2 2 2 2 2
[a+1, b+4, c+9d+k, e+ k]

EXERCISE 3-7

Generate the list containing the integers between 10 and 30, selecting from it the prime numbers. Obtain a new
list by selecting only the even numbers.

»> pretty(sym(maple('integers:= [$10..30] ')))
»> pretty(sym(maple('integers')))

[10 , 11 , 12, 13 , 14 , 15, 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24
» 25,26, 27, 28,29, 30]
»> pretty(sym(maple('select(isprime,integers) ')))
[11, 13, 17, 19, 23, 29]
»> pretty(sym(maple('select(type,integers, even) ')))

[10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
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EXERCISE 3-8

Let X be the list of the first six primes and let Y be the list of binomial coefficients, 6 choose k, for k from 1 to 6.
Construct a list P consisting of ordered pairs such that the first element of PJi] is X[i] and the second element of
P[i] is Y[i].

»> pretty(sym(maple('X:=[seq(ithprime(k), k=1..6)] ')))
»> pretty(sym(maple('X')))

[2 3 5 7 11  13]

»> pretty(sym(maple('Y:=[seq(binomial(6,k), k=1..6)] ')))
»> pretty(sym(maple('Y')))

[6 15 20 15 6 1]

»> pretty(sym(maple(’pairs:=(x,y)->[x,y] ')))
»> pretty(sym(maple('P:=zip(pairs,X,Y) ')))
»> pretty (sym (maple ('P')))

[[2, 6], [3, 15], [5, 20], [7, 15], [11, 6], [13, 1]]

3.5.2 Ordering and Applying Functions to Lists

MATLAB includes a group of commands whose purpose is the management of elements of lists. One can also apply
functions to items in lists. Commands to this effect are summarized below (all require the prior use of the maple
command):

sort (list) or sort (list, lexorder) or sort (list, string): sorts the elements of the given list
using lexicographical order.

sort (list, numeric) or sort(list, ‘<’) or sort([numl,..., numn]): sorts the elements of the
numerical list in numerical order from least to greatest.

sort (list, boolean_function): sorts the elements of the list according to the values of the
specified Boolean function applied to pairs in the list.

sort (list, address): sorts the elements of the given list by internal address.
map (function, list): applies the specified command or function to each item in the list.

map (function, list, exprl,..., exprn): applies the specified command or function
(with the parameters exprl,..., exprn) to each element from the given list.

map?2 (function, expression, list): applies the specified command or function to each
element of the list, so that the function takes as its first argument a constant given by
the expression and as second argument each item in the list.
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map?2 (function, expression, list, expr3, expr4,..., exprn): applies the command or
function to each element of the list in such a way that the function has as its first
argument a constant given by the expression, as the second argument each element of
the list, and as constant arguments from the third to the nth arguments the expressions
expr3, expr4,..., exprn.

Here are some examples:
»> pretty (sym (maple ('sort ([3,2,1])")))
[1, 2, 3]
»> pretty(sym(maple('sort([c,a,d],lexorder)’)))
[a, ¢, d]
»> pretty(sym(maple('sort([3.12, 1, 1/2], (x,y)->evalb(x>y))')))
[3.12, 1, 1/2]
»> pretty(sym(maple('sort([3.12, 1, 1/2], (x,y)-»is(x<y))')))
[1/2, 1, 3.12]

»> pretty(sym(maple('sort([Jonas,Jeremias,Jose,Roberto,Andres],
(x,y)->evalb(length(x)<length(y))) ')))

[Jose  Jonas  Andres  Roberto  Jeremias]
>> pretty(sym(maple('map(f, [a,b,c])")))
[f(a), f(b), f(c)]
>> pretty(sym(maple('map2(f, g, [a,b,c])')))
[f(9, a), f(9, b), f(9, c)]
»> pretty(sym(maple('map2(op, 1, [a+b,c+d,e+f])")))
[a, ¢, e]

»> pretty (sym (maple ('map2(diff,x"y/z,[x,y,z])’)))

y y y

xy x1n (x) X

TTTT, TTTTTTTT » - _-__]

Xz z 2
z

»> pretty(sym(maple('map(x->x"2,[-1,-2,-3,3,2,1])")))

[1, 4, 9, 9, 4, 1]
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3.5.3 Performing Operations With Elements of Lists

There are MATLAB commands that allow you to perform sums and products on elements of lists. Among them are the
following (all require the prior use of the command maple):

»
»

»

»

»
>

v

add(expression, variable = list) or add (f (i), i = list) gives the sequence of elements
obtained by adding the given expression or function to each element of the list.

mul(expression, variable = list) or add (f (i), i = list) gives the sequence of elements
obtained by multiplying each element of the list by the given expression or function.

seq(expression, variable = list) or add (f (i), i = list) gives the sequence of elements
obtained by applying the specified expression or function to each element of the list.

Here are some examples:

pretty (sym (maple ('L: = [seq(k, k=1..5)] ')))
pretty(sym(maple('L')))

[1 2 3 4 5]
pretty(sym(maple(add( k*2, k=L ) ')))
55
pretty(syn(maple('mul( x-k, k=L ) ')))
(x -1) (x-2) (x-3)(x-4)(x-5)

pretty(sym(maple('A:=x"3+3*x"2+3+x+1 ')))
pretty(sym(maple('seq(degree(k,x),k=A) ')))

3, 2,0, 1

EXERCISE 3-9

Construct Pascal’s triangle of binomial coefficients up to its tenth row.

»> pretty(sym(maple('L:=[seq(k, k=0..9)] ')))
»> pretty(sym(maple('L')))

[o 1 2 3 4 5 6 7 8 9]
»> pretty(sym(maple(’[seq(select(type,[seq(binomial(n,m),m=L)],posint),n=L)] ')))
[[1]) [l) 1]) [l) 2) 1]) [1) 3) 3) l]) [1) 4) 6) 4) 1])
[1) 5) 10) 10) 5) 1]) [1) 6) 15) 20} 15) 6) 1])

[1) 7) 21) 35) 35) 21) 7} 1]) [1) 8) 28} 56) 70} 56) 28} 8) 1])
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]
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»> pretty(sym(maple('map(print,”) ')))
[1]
[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
[1, 8, 28, 56, 70, 56, 28, 8, 1]

[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

3.5.4 Sets

A set is a collection of objects separated by commas and enclosed in braces. It is a sequence enclosed between braces.
The order of the elements in a set is not important and repeating elements will not change the identity of a set, i.e., the
sets {a, b, c} and {b, ¢, a} are equal, and the sets {a, a, b, ¢, ¢} and {a, b, c} are also equal. Among the commands relating
to sets we have the following (all must be preceded by the command maple):

{al, a2,..., an} creates the set with the specified elements.

{string} creates a set whose elements are defined by the specified string.

set: = {} defines the empty set.

C[i] returns the ith element of the set C.

C[-i] returns the ith element from the end of the set C.

C[a...b] returns the ath through bth elements of the set C, inclusive.

Cl[-a...-b] returns the ath through bth elements from the end of the set C.

[setl, set2] creates an ordered pair of two sets.

[setl,..., setn] creates an ordered n-tuple of sets.

member (expression, C) determines whether the expression belongs to the set C.

member (expr, C, name) assigns the specified name to the first item in the set that
matches expr.

nops (C) gives the number of elements of the set C.

op (C) converts the sequence C into a set.
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op (n, C) gives the nth element of the set C.

op (a..b, C) gives the ath through bth elements of the set C.
convert (A,set) converts a one-dimensional array A to a set.
convert (L, set) converts the list L to a set.

convert (expression, set) converts the given expression to a set whose elements are its
first level operands.

convert (T, set) converts the table T to a set containing the elements in the table,
ignoring its indices.
convert ([exprl,..., exprn], set) converts the list of expressions to a set.

convert (C,list) converts the set C to a list with the same elements, ignoring indices.

convert ({exprl,..., exprn}, option) creates a set with the given expressions converted
according to the specified option (trig, exp, In,...).

type (expression, set) determines whether the expression is a set.

type (expression, set (type)) determines whether the expression is a set with elements
of the given type (integer, complex...).

typematch(expression, set) returns true if the given expression is of type set.

typematch (expr, set, name) in addition, if the match is successful, assigns to name a
list of equations representing the variables and their matched values.

select (boolean_function, set) creates a set by selecting the elements of the given set
that match the command or Boolean function.

select (boolean_function, set, exprl,..., exprn) applies the Boolean function with the
given parameters exprl,..., exprn to the elements in the set to determine which ones are
selected.

remove (boolean_function, set) creates a set by deleting from the given set the
elements that match the given command or Boolean function.

remove (boolean_function, set, exprl,..., exprn) applies the Boolean function with the
given parameters exprl,..., exprn to the elements in the set to determine which ones are
removed.

map (function, C) applies the specified command or function to each element of
the set C.

map (function, C, exprl,..., exprn) applies the specified command or function (with the
parameters exprl,..., exprn) to each element of the set C.

map?2 (function, expression, C) applies the specified binary command or function to
the pairs with first argument a constant given by the expression and second element
each element in the set C, collecting all such values together to form a set.

map?2 (function, expression, C, expr3, expr4,..., exprn) applies the specified n-ary
command or function with first argument the constant expression, second argument
each element of the set C and for third to nth arguments the expressions expr3,
expr4,..., exprn, collecting all such values together to form a set.
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»

»

»

»

»

»

»

add (expression, variable = set) or add (f(i), i = set) finds the sum of the sequence of
elements obtained by applying the specified expression or function to each element in
the set.

mul (expression, variable = set) or mul(f(i), i = set) finds the product of the sequence of
elements obtained by applying the specified expression or function to each element in
the set.

seq (expression, variable = set) or seq (fi), i = set) constructs the sequence of elements
obtained by applying the specified expression or function to each element in the set.

C1 union C2 is the set union of the sets C1 and C2.

‘union’ (C1, C2) is the set union of the sets C1 and C2.

Cl intersect C2 is the set intersection of the sets C1 and C2.
‘intersect’(C1, C2) is the set intersection of the sets C1 and C2.
C1 minus C2 is the set difference of the sets C1 and C2.
‘minus’ (C1, C2) is the set difference of the sets C1 and C2.

readlib (symmdiff): symmdiff (C1, C2, ..., Cn) is the symmetric difference of the
specified sets.

Here are some examples:
pretty(sym (maple(' {x,y,y} ')))
X, y}
pretty(sym(maple(’ {y,x,y} ')))
%, y}
pretty(sym (maple(’[x,y,y] ')))
[x, ys yI
pretty(sym (maple('[y,x,y] ')))
[ys x5 yI
pretty(sym(maple(' S:= {a,b,c} '))),pretty(sym(maple('s')))
{a, b, c}

pretty(sym(maple(’ S[1] ')))

pretty(sym(maple(’ S[1..2] ')))

{a, b}
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»> pretty(sym(maple(’' S[-2..-1] ')))
{b, c}
»> pretty(sym(maple(' u:= {1,4,9} '))),pretty(sym(maple(' u')))
{1, 4, 9}
>> pretty(sym(maple(' nops(u) ')))
3
>> pretty(sym(maple(' op(2,u) ')))
4
>> pretty(sym(maple(’ op(2..3,u) ')))
4, 9
»> pretty(sym(maple(’ op(u) )))
1, 4, 9
>> pretty(sym(maple(’ op(-1,u) ')))
9
>> pretty(sym(maple(' op(0,u) ')))
set
»>> pretty(sym(maple(’[op(u),16] ')))
[1, 4, 9, 16]
>> pretty(sym(maple(' member(y, {x, y, z}) ')))
true
>> pretty(sym(maple(' member(y, {x*y, y*z}) ')))
false
>> pretty(sym(maple(' {a,b} union {b,c} ')))
{c, b, a}
>> pretty(sym(maple(’ {a,b} intersect {b,c} ')))

{b}
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>> pretty(sym(maple(' {a,b} minus {b,c} ')))
{a}
»> pretty(sym(maple(' a union b union a ')))
a union b

»> pretty(sym(maple(’ {3,4} union a union {3,7} ')))

a union {3, 4, 7}
»>> pretty(sym(maple(' 'union' ({3,4},a,{3,7}) ")))

a union {3, 4, 7}
»> pretty(sym(maple(' integers:= {$10..20} '))),pretty(sym(maple(’ integers')))

{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

»> pretty(sym(maple(’ select(isprime, integers) ')))

{11, 13, 17, 19}
»> pretty(sym(maple(' remove(isprime, integers) ')))

{10, 12, 14, 15, 16, 18, 20}

»> pretty(sym(maple(’ map(f, {a,b,c}) ')))

{f(a), f(b), f(c)}
»> pretty(sym(maple(' map2(f, g, {a,b,c}) ')))

{f(9, a), f(9, b), (9, )}
»> pretty(sym(maple(’' map(proc(x,y) x“2+y end, {1,2,3,4}, 2) ")))
{3, 6, 11, 18}

>> pretty(sym(maple(' map2(op, 1, {a+b,c+d,e+f}) ')))

{a, e, ¢}
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EXERCISE 3-10

Z1 is the set of integers from 2 to 15. Z2 is the set of primes contained in Z1. Z3 is the set of odd integers
contained in Z2 and Z4 is the set of even integers contained in Z2. Calculate the sets: A =72 N Z3,B =72 " Z4,
C=AUB,E=(AUB)-C,F=AAB,G=AABAC,H=22AKandZ3=71AZ2 AZ3.

»> pretty(sym(maple('Z1:={seq(k,k=2..15)} '))),pretty(sym(maple('Z1')))
{2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15}
»> pretty(sym(maple('Z2:=select(isprime,z1) '))),pretty(sym(maple('z2')))
{2, 3, 5, 7, 11, 13}
>> pretty(sym(maple('Z3:=select(type,Z2,0dd) '))), pretty(sym(maple('Z3')))
{3, 5, 7, 11, 13}
>> pretty(sym(maple('Z4:=select(type,Z2,even)'))),pretty(syn(maple('za')))
{2}
»> pretty(sym(maple(' A:= Z2 intersect Z3 '))),pretty(sym(maple(' A')))
{3, 5, 7, 11, 13}
»> pretty(sym(maple('B:=2Z2 intersect 24 '))),pretty(sym(maple('B')))
{2}
>> pretty(sym(maple('C:=A union B '))),pretty(sym(maple('C')))
{2, 3, 5, 7, 11, 13}
»> pretty(sym(maple('E:=(A union B) minus C '))),pretty(sym(maple('E')))
[]
>> pretty(sym(maple( 'readlib(symmdiff): F:=symmdiff(A,B) '))),pretty(syn(maple( 'F')))
{2, 3, 5, 7, 11, 13}
»> pretty(sym(maple('G:=symndiff(A,B,C) '))),pretty(syn(maple('G')))

[]
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»> pretty(sym(maple('H:=symmdiff(Z2,23) '))),pretty(sym(maple('H')))
{2}
»> pretty(sym(maple('K:=symmdiff(Z1,22,23) '))),pretty(sym(maple('K")))

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

EXERCISE 3-11

Define an average function means(C) which returns the geometric mean, the quadratic mean and the harmonic
mean of a set of elements C. As an application, find the geometric, harmonic and quadratic means of the sets
{1 !5!6!7!9} and {a’ bv C! dv ey f! gv h}

To define means(C), we create the following procedure:

»> maple('means:=proc(C::set) local g,c,h,i,j,k; g:=(mul(i,i=C)"(1/nops(C)));
c:=sqrt(add(j*2,j=C)/nops(C));h:=nops(C)/add(1/k,k=C); 'geomean='.g,
'quadmean=" .c, 'harmean=' .hjend;')"')))

Now we can calculate the quadratic, geometric and harmonic means of the proposed sets.

»> pretty(sym(maple('means({1,5,6,7,9}) ')))

1/5 1/2 3150
geomean =.(1890),  quadmean =.(8/5 15), harmean =. ----
1021
»> pretty (sym (maple ('means({a,b,c,d,e,f,g,h})’)))
1/8
geomean =.((g c h b e f a d)), quadmean =.
2 2 2 2 2 2 2 2 1/2

(174 (2 g+2c+2h+2b+2e+2f+2a+2d) ),

haxXmean =. =----== oo e
1/g + 1/c + 1/h + 1/b + 1/e + 1/f + 1/a + 1/d
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Vector Spaces and Linear Applications.
Equations and Systems

4.1 Matrix Algebra and Vector Spaces

Matrix algebra has a strong field of application in the theory of vector spaces, particularly in the study of types of linear
transformations between vector spaces, linear forms, bilinear forms, quadratic forms, etc. It is also plays a critical role
in the study of systems of linear equations.

The following MATLAB commands are useful when working in the above mentioned fields:

nullspace (A) returns a basis for the kernel of A.

N = null (A) generates an orthonormal basis for the kernel of A. The number of
columns of N is the dimension of the kernel (the nullity) of A.

Q = orth (A) generates an orthonormal basis for the range of 4, i.e., the columns of Q
generate the same space as the columns of 4, and the number of columns in Q is the
rank of A.

colspace(A) returns a basis for the columns of A.
dot (A, B) gives the dot product of vectors A and B.
cross (A, B) gives the vector product of vectors A and B.

subspace (A, B) finds the angle between two subspaces specified by the columns of A
and B. If A and B are column vectors of unit length, this is the same as acos(abs(A’*B)).

maple (‘kernel(A)’) or maple (‘nullspace (A)’) returns a basis for the kernel of A.

maple (‘nullspace(A,n)’) or maple (‘kernel(A,n)’) returns a basis for the kernel of A
and assigns to n the dimension of the kernel.

maple (‘colspace(A)’) returns a basis for the columns of A.

maple (‘colspace(A,n)’) returns a basis for the columns of A and assigns to n the
dimension of the column space.

maple (‘colspan(A)’) returns the generator set of vectors for the column space of the
matrix A, whose elements can be multivariate polynomials over the rational numbers.
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maple (‘colspan(A,n)’) returns the generator set of vectors for the column space of the
matrix A and assigns to n the dimension of the column space.

maple (‘rowspace(A)’) returns a basis for the rows of the matrix A.

maple (‘rowspace(A,n)’) returns a basis for the rows of A and assigns to n the
dimension of the row space.

maple (‘rowspan(A)’) returns a generator set of vectors for the row space of the matrix A,
whose elements can be multivariate polynomials over the rational numbers.

maple (‘rowspan(A,n)’) returns the generator set of vectors for the row space of the
matrix A, and assigns to n the dimension of the row space.

maple (‘dotprod(A, B)’) gives the dot product of vectors A and B.

maple (‘dotprod(A,B,orthogonal’)’) gives the dot product of vectors A and B in an
orthogonal space.

maple (‘crossprod(A, B)’) gives the vector product of vectors A and B.

maple (‘innerprod (V1 A V2)’) computes the inner product of the vectors VI and V2
and the matrix A.

maple(‘innerprod(V1,Al,...,An,V2)’) calculates the inner product of the vectors VI and
V2 and the matrices Al, A2,..., An.

maple (‘angle(A, B)’) gives the angle formed by the vectors A and B.

maple (‘norm (V)’) returns the infinity norm of the vector V (the maximum of its
elements).

maple (‘norm(V, option)’) returns the norm of the vector V where the type of

norm is specified by the option. Possible options are ‘infinity), ‘frobenius’ or any
positive integer. The Frobenius norm is the square root of the sum of squares of the
components, the k-norm (positive integer k) is the kth root of the sum of the kth powers
of the components.

maple (‘normalize (V)’) normalizes the vector V (using the 2-norm of V).

maple (‘basis({vl,v2,...,yn})’) gives a basis of the vector space generated by the set of
vectors {v1, v2,..., vn}.

maple (‘sumbasis({Vs1},{Vs2},...,{Vsn})’) gives a basis for the sum of the vector spaces
generated by the sets of vectors {Vs1}, {Vs2},..., {Vsn}.

maple(‘intbasis({Vs1},{Vs2},...,{Vsn})’) gives a basis for the intersection of the vector
spaces generated by the sets of vectors {Vs1}, {Vs2},..., {Vsn}.

maple(‘GramSchmidt({vl,v2,...,vn})’) uses the Gram-Schmidt process to create an
orthogonal basis from the set of vectors {v1,v2,...,vn}. The basis does not have to be
orthonormal.
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4.2 Linear Independence, Bases, and Base Change

EXERCISE 4-1

Determine which of the following sets of vectors are linearly independent:
{{2,3,-1},{0,0,1},{2,1,0%
{{1,2,-3,4},{3,-1,2,1},{1,-5,8,-7},{2,3,1,-1}}
{{1,2,2,1},{3,4,4,3},{1,0,0,1}}

» A = [2,3,-1; 0,0,1; 2,1,0]

A=
2 3 -1
0 0 1
21 0
»> det(A)
ans =

4

Since the determinant is non-zero, the vectors are linearly independent.

» B = [1,2,-3,4;3,-1,2,1;1,-5,8,-7;2,3,1,-1]

Since the determinant is zero, the vectors are linearly dependent:

» C = [1,2,2,153,4,4,3;1,0,0,1]

C =
1 2 2 1
3 4 4

1 0 0 1
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»> rank(C)
ans =

2

As we have only three vectors in a space of dimension four, we cannot apply the determinant test, but they will be
linearly independent if the rank of the corresponding matrix is 3. Since we see that the rank is 2, the vectors are
linearly dependent.

EXERCISE 4-2

118

Find the dimension and a basis of the space generated by the following set of vectors:
{{213141_1 !1}!{314171_21_1 }!{1 131_1 11 18}1{015151_1 !4}}

The dimension of the space generated by a set of vectors is equal to the rank of the matrix formed by the vectors:

» A = [2,3,4,-1,1;3,4,7,-2,-1;1,3,-1,1,8;0,5,5,-1,4]

A =

2 3 4 -1 1
3 4 7 -2 -1
1 3 -1 1 8
0 5 5 -1 4
»> rank(A)

ans =

3

The rank of the array is 3, so the requested dimension is 3.

To find a basis, we considered any non-singular matrix minor of order 3. The vectors containing components
included in this minor will form a basis.

»> det([2,3,4;3,4,7;0,5,5])
ans =
-15

Then, a basis of the generated linear space is the set of vectors {{2,3,4-1,1},{3,4,7-2,—1},{0,5,5—1,4}}.

A basis can be calculated directly in the following way:

»> pretty(sym(maple('basis({vector([2,3,4,-1,1]),vector([3,4,7,-2,-1]),
(((vector([1,3,-1,1,8]), vector ([o,5,5,-1,4])})")))
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[2 3 4 -1 1]

[ ]
[3 4 7 -2 -1]
[ ]

[0 5 5 -1 4]

EXERCISE 4-3

Determine whether the set of vectors
{{2,3,-11,{0,0,1}, {2,1,0%
forms a basis of R®, and if so, find the components of the vector x = (3,5,1) with respect to this basis.
»> det([2,3,-1;0,0,1;2,1,0])
ans =
4

Since we have three vectors in a space of dimension 3, they will form a basis if the determinant of the
corresponding matrix is non-zero. Thus, we see that they do indeed form a basis.

The components of the vector (3,5,1) with respect to this basis are found as follows:
»» inv([2,0,2;3,0,1;-1,1,0]) * [3,5,1]"

ans =

1.7500

2.7500
-0.2500

EXERCISE 4-4

Consider the bases B and B1 of three-dimensional real vector space R®:
B={1,0,0},{-1,1,0}{0,1,-1}}
B1={{1,0,-1},{2,1,0},{-1,1,1}

Find the matrix for the change of basis Bto B1 and calculate the components of the vector {2,1,3} in base B with
respect to the basis B1.

»> B = [1,0,0;-1,1,0;0,1,-1];
»» B1 = [1,0,-1;2,1,0;-1,1,1];

»> A = inv(B1')*B'
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A =

-0.5000 1.5000 2.5000
0.5000 -0.5000 -0.5000
-0.5000 1.5000 1.5000

>> sym (A)
ans =
[-1/2, 3/2, 5/2]

[ 1/2, -1/2, -1/2]
[-1/2, 3/2, 3/2]

We already have the change of basis matrix. Now we find the components of the B-vector [2,3,1] with respect to
the basis B1.

»> sym(inv(B1')*B'*[2,1,3]")
ans =

[8]
[-1]
[5]

EXERCISE 4-5

Let /be a vector space of dimension 5 with basis B={u1,..., u5}. Let L be the space generated by the vectors
al =u-u2 + 3u3 + 2u4 + 5u5,a2 = ul + 12 + U3 + 2u4 + 3u5, a3 = 1 + U3-u4 + 2u5. Let M be the space
generated by b1 =13u1 + 202 + 3u3 + 8u4 + 8us and b2 = 1711 + 3u2 + 3u3 + 10u4 + 9u5. Find a basis for
L+M and another for LnM.

The linear space L is generated by the vectors with components [1,-1, 3, 2, 5], [1,1,1,2,3] and [1,0,1,-1,2] with
respect to the basis B. The space M is generated by the vectors with components [13,2,3,8,8] and [17,3,3,10,9]
with respect to the basis B. We find a basis for L+M in the following way:

»> pretty(sym(maple('sumbasis({vector([1,-1,3,2,5]), vector([1,1,1,2,3]),
(((vector([1,0,1,-1,2])}, {vector([13,2,3,8,8]), vector([17,3,3,10,9])})")))

ans =

(17, 1, 1, 13]
[3, 0, 1, 2]
[3) 1) 1) 3]
[10 -1, 2, 8]
[9, 2, 3, 8]

Therefore the dimension of L+M is 4.
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The above matrix columns form a basis of L+M. Now we calculate a basis for LM as follows:

»> pretty(sym(maple('intbasis({vector([1,-1,3,2,5]), vector([1,1,1,2,3]),
(((vector([1,0,1,-1,2])}, {vector([13,2,3,8,8]), vector([17,3,3,10,9])})")))

ans =

[-1]
[1]

[-3]
[-2]
[-5]

Therefore the dimension of LnM s 4.

4.3 Vector Geometry in 2 and 3 Dimensions

EXERCISE 4-6

Normalize the vectors x1 = (1,1,-1) and x2 = (1, 1, 1), determine if they are orthogonal and find their
vector product.

»> pretty(sym(maple(’'normalize(vector([1,1,-1]))")))

1/2 1/2 1/2
[1/3 3 1/3 3 -1/33 ]

»> pretty(sym(maple('normalize(vector([1,1,1]))')))

1/2 1/2 1/2
[1/33 1/33 1/33 ]

The vectors are orthogonal if their scalar product is zero:

»> dot([1,1,-1],[1,1,1])

ans =

1

Thus, the vectors are orthogonal. We now calculate their vector product:
»» cross([1,1,-1],[1,1,1])

ans =

2-20

Thus, the vector product is the vector (2,-2, 0).
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EXERCISE 4-7

Find the vector triple product of the vectors (1,1,2), (0,1,0), (0,1,1).
»» dot([1,1,2], cross ([0,1,0], [0,1,1]))

ans = 1

EXERCISE 4-8

Using the Gram-Schmidt process, find an orthogonal basis from the vectors (1,0,0), (1,1,0), (0,1,1).
»> maple('GramSchmidt ([vector([1,0,0]), vector([1,1,0]), vector([0,1,1])])")
ans =

[[1, o, 0], [0, 1, 0], [0, 0, 1]]

EXERCISE 4-9

Find the area of the triangle whose vertices are at (0,0), (5,1) and (3,7).
»» (1/2) * det([0,0,1;5,1,1;3,7,1])

ans =

16

Here we have applied a well-known formula for the area of a triangle based on the coordinates of its vertices.

EXERCISE 4-10

Find the angle formed by the vectors a= (1,2,3) and b= (0,3,1).

»> pretty(sym(maple(’angle([1,2,3],[0,3,1])")))

/2 172
acos(9/140 14 10 )
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Now, we approximate the result:

»> vpa(ans)

ans =

.7064997155064410

4.4 Linear Applications

EXERCISE 4-11

Given the linear transformation whose matrix is given by the set of vectors
{(01_31_1 1_31_1 )!(_3131_31_31_1 )1(2121_1 11 12)}

find a basis for its kernel. Also find the image of the vectors (4,2,0,0,—6) and (1,2, —1,-2, 3) under this linear
transformation.

» A = [0,-3,-1,-3,-15-3,3,-3,-3,-1;2,2,-1,1,2]

A =
0 -3 -1 -3 -1
-3 3 -3 -3 -1
2 2 -1 1 2
»> null(A)

ans =

-0.5540 0

-0.3380 0.2236
-0.1828 0.6708
0.1584 -0.5814
0.7213 0.4025
The two columns of the previous output form a basis of the kernel of T, so the dimension of the kernel will be 2:

»> maple('T:=x-smultiply(array([[0,-3,-1,-3,-1],[-3,3,-3,-3,-1],[2,2,-1,1,2]]),x)")
>> pretty(sym(maple('T([4,2,0,0,-6])")))

[0 0 o]
»> pretty(sym(maple('T([1,2,-1,-2,3])")))

[-2 9 11]
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EXERCISE 4-12

We consider the linear transformation f between two vector subspaces Uand I/ such that f(e1) = v1-v2,
fle2) = v2-v3 and f(e3) = v3-v4, where:

B={el, €2, €3} is a basis of U (a subspace of R°)
B' ={wn, v2, v3, v4} is a basis of V/(a subspace of R*)

Find the matrix associated with the transformation £, Find the image of the vector v=(1,1,2) of U under the linear
transformation f.

The matrix associated with f is evident, we need only examine the definition of f.

»> A = [1,0,0;-1,1,0;0,-1,1;0,0,1]

A =
1 0 0
-1 1 0
0 -1 1
0 0 1

»> maple('Ta:=x-»multiply(array([[1,0,0],[-1,1,0],[0,-1,1],[0,0,1]]),x)");
»> pretty(sym(maple('T1([1,1,2])")))

[1012]

EXERCISE 4-13

Consider the linear transformation f between two vector subspaces U and I/ of three-dimensional real space,
so that f(a,b,c) = (a+b,b+c,a+c), for (a, b, ¢) in U.

Find the matrix associated to the transformations f, f* and ¢

»> maple('T:=(a,b,c)->[a+b,b+c,a+c]’);

To find the matrix of £, we will consider the image of the canonical basis vectors under the transformation f:
»> [maple('T(2,0,0)"'), maple('T(0,1,0)"'),maple('T(0,0,1)")]

ans =

[1, 0, 1] [1, 1, 0] [0, 1, 1]
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The matrix whose columns are the above vectors is the matrix of the linear transformation £, which can be found
directly via:

»> A = sym(maple('transpose(array([T(1,0,0),T(0,1,0),T(0,0,1)]))"))

A =

[1, 1, 0]

[0, 1, 1]

[1, 0, 1]

The matrix associated to f° will be given by A%
> A"5

ans =

11 10 11

11 11 10
10 11 11

The matrix associated to e” will be e*:

»> expm(A)

ans =

3.1751 2.8321 1.3819
1.3819 3.1751 2.8321
2.8321 1.3819 3.1751

EXERCISE 4-14

Consider the linear transformation f between two vector subspaces U (contained in R®) and V (contained in R%),
so that f(a,b,c) = (a,0,c,0) for all (a, b, ¢) in U.

Find the matrix associated to the transformation f, its kernel and the dimensions of the kernel and the image of f.

»> maple('T:=(a,b,c)->[a,0,c,0]");
»> A = sym(maple('transpose(array([T(1,0,0),T(0,1,0),T(0,0,1)]))"))

A =
[1, 0, 0]
[o, 0, 0]

[0, 0, 1]
[0, o, 0]
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The kernel is the set of vectors of U with null image in V:
»> null(A)

ans =

[o]
[1]
[o]

Thus the kernel will be the set of vectors (0,b,0), for b varying in U. In addition, the kernel obviously has
dimension 1, since we have shown that a basis is given by the single vector (0,1,0):

»> maple('rank(matrix(4,3,[1,0,0,0,0,0,0,0,1,0,0,0]))")
ans =
2

The dimension of the image of fis 2, since the sum of the dimensions of the kernel and the image must be the
dimension of U (which is 3). On the other hand, the dimension of the image of f must match the rank of the matrix
of the linear transformation, which is 2. Two column vectors containing the elements of a non-singular minor of
the matrix of fwill form a basis of the image of f:

»> det([1,0;0,1])
ans =

1

Thus, a basis of the image of fwill be {(1,0,0,0),(0,0,1,0)}.

EXERCISE 4-15

Consider the bilinear form f:Ux V- > R, where Uand V/are two vector subspaces of three-dimensional real space
R3, such that:

f{(x1, x2, x3), (y1, ¥y2, y3)}] = x1 y1-2x1 y2 + 4x2 y3 - x3 y1-3 x3 3

Find the matrix associated with the bilinear form fand classify it.

»>> maple('A:=array([[1,-2,0],[0,0,4],[-1,0,-3]])");pretty(sym(maple(‘A')))

[ 1 -2 0]
[ 1
[ o 0 4]
[ |
[-1 0 -3]

»> pretty(expand (sym (maple ('evalm ([[x 1, x 2, x 3]] & * A & * transpose([[y1, y2, y311))')));)

y1 x1-y1x3-2x1y2+ 4y3 x2-3 x3y3
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Then, the fmatrix is {1, -2, 0}, {0,0,4}, {-1, 0, -3}}.
maple('det (A)');
8

As the determinant of the matrix of f is non-zero, the bilinear form is regular non-degenerate.

4.5 Quadratic Forms

EXERCISE 4-16

Consider the quadratic form f: U— R, where Uis a vector subspace of real three-dimensional space R, such that:
flxy,2] = ¥ =2xy + )2 + 6x2— 3yz + 42
Find the matrix associated with fand classify it.

»>> maple('A:=array([[1,-1,3],[-1,1,-3/2],[3,-3/2,4]])") ;pretty(sym(maple(‘A')));

[ 1 -1 3 ]
[ |
[-1 1 -3/2]
[ ]

[3 -3/2 4 ]
»> pretty(simplify(sym(maple('evalm([[x, y, z]] & * A & * transpose ([[x, y, z]1))"))))

2 2 2
X-2Xy+6xz+y-3yz+4z

Thus, Ais the matrix associated with £.

To classify it, we find the corresponding determinants.
»> pretty(sym(maple('det(A)')));

-9/4

»> pretty(sym(maple('det([[1,-1],[-1,1]1)")));
0

The quadratic form is negative semidefinite.
However, we can also obtain the classification via the eigenvalues of the matrix of the quadratic form.

A quadratic form is defined to be positive definite if and only if all its eigenvalues are strictly positive. A quadratic
form is defined to be negative definite if and only if all its eigenvalues are strictly negative.
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A quadratic form is positive semidefinite if and only if all its eigenvalues are non-negative. A quadratic form is
negative semidefinite if and only if all its eigenvalues are not positive.

A quadratic form is indefinite if it has both positive and negative eigenvalues.
»> pretty(sym(maple('evalf(eigenvals(R))')))

-31
6.4498046649069250305217677941300 +.2 10 1,

-31
-.85690615612023945647201856979180 -.1 10 i,

-31
.40710149121331442595025077566180 -.1 10 1

All of the eigenvalues are complex, so the quadratic form is indefinite.

EXERCISE 4-17

Consider the quadratic form f: U— R, where Uis a vector subspace of real three-dimensional space R®,
such that:

flx y, 2] =X+ 2 +4yz+ 22
Find the matrix associated with fand classify it. Find its reduced form, its rank and its signature.

»>> maple('A:=array([[1,0,0],[0,2,2],[0,2,2]])");pretty(sym(maple(‘A")))
[100]

[ ]
[0 2 2]
[ )|

[0 2 2]

»> pretty(simplify(sym(maple('evalm([[x, y, z]] & * A & * transpose ([[x, y, z]]1))'))))

2 2 2
X+2y+4yz+2z

Thus, the matrix of the quadratic form is the matrix A.
»> pretty(sym(maple('det(A)')))

0

»> pretty(sym(maple('det([[1,0],[0,2]]1)")))

2
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The quadratic form is degenerate positive semidefinite.

To find the reduced form, we diagonalize the matrix:

»> pretty(sym(maple('joxdan(A)')))

[0 0 0]

[ ]

[0 1 0]
[ ]
[0 0 4]
»> pretty(sym(maple('evalm([[a, b, c]] & * jordan (A) & * transpose ([[a, b, c]]1))')))

2 2
a+4c

Thus, the reduced form is given by fa,b,c) = & + 4c>.
»> pretty(sym(maple('rank(jordan(matrix(3,3,[1,0,0,0,2,2,0,2,2])))")))
2

The rank of the quadratic form is 2, since the rank of the matrix is 2. The signature is also 2, since the number of
positive terms in the diagonal of the diagonal matrix is 2.

4.6 Equations and Systems

MATLAB offers certain commands that allow you to solve equations and systems. Among them are the following:
solve(‘equation) ‘x’) solves the equation with respect to the variable x.
syms X; solve(equ(x), x) solves the equation equ(x) with respect to the variable x.

solve(‘eql,eq2,...,eqn) ‘x1,x2,...,xn’) solves the simultaneous equations eq1,...,eqn (in
terms of the system variables x1,..., xn).

syms x1 x2... xn ; solve(eql, eq2, ..., eqn, x1, X2, ..., xn) solves the simultaneous
equations eq1,...,eqn (in terms of the system variables x1,..., xn).

X = linsolve(A,B) solves A * X = B for a square matrix A, and matrices B and X.

x =nnls (A, b) solves A * X = b using the method of least squares, where x is a vector
(x=0).

x =Iscov(A,b,V) gives the vector X that minimizes (A *x-b) *inv (V) *(A*x-b).

roots(V) gives the roots of the polynomial whose coefficients are the components of the
vector V.

X =A\B solves the system A *X = B.
X = A/B solves the system X *A = B.
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In addition, equations and systems of equations can be solved using the following commands (all of them must
be preceded by the maple command):
solve(equation, variable) solves the given equation for the given variable.
solve (expression, variable) solves the equation expression = 0 for the given variable.

solve({exprl,..,exprn},{varl,..,varn}) solves the given system of equations for the
specified variables.

solve(equation) solves the equation for all of its variables.

solve(exprl,...,exprn) solves the system specified by the equations for all possible
variables.

solve(inequal, variable) solves the inequality for the specified variable.
solve(s, var) solves the equation in the series s for the specified variable.

subs(solutions, equations) substitutes the given list of solutions into the equations, to
verify solutions.

lhs (equation) returns the left-hand side of the equation.

lhs (inequality) returns the left-hand side of the inequality.
rhs (equation) returns the right-hand side of the equation.
rhs (inequality) returns the right-hand side of the inequality.

readlib (isolate): isolate (equation, expression) isolates the expression in the equation
and attemtps to solve for it.

readlib (isolate): isolate (exprl, expr2) equivalent to isolate (expr1=0, expr2).

reablib (isolate): isolate (equation, expression, n) The integer n controls the maximum
number of transformation steps that isolate performs. The default is 100000.

testeq(exprl=expr2) or testeq (exprl, expr2) tests if the expressions are equivalent.
The purpose may be to eliminate redundant equations in a system.

eliminate (setequ, setvar) eliminates the given set of variables in the set of specified
equations.

isolve (equation) gives the integer solutions of the given equation for all of its variables.

isolve (expression) gives the integer solutions of the equation expression = 0 for all of
its variables.

isolve({equl,..,equn}) gives the integer solutions to the specified system of equations
for all variables.

isolve (equation, variable) gives the integer solutions of the specified equation in the
given variable.

isolve({equl,...,equn},{varl,...,varn}) gives the integer solutions of the specified system
in the given variables.

isolve(equation,{varl,...,varn}) gives the integer solutions of the specified equation in
the given variables.

fsolve (equation, variable) solves the given equation using Newton’s method.
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fsolve (expression, variable) solves the equation expression = 0 in the given variable
using Newton’s method.

fsolve ({equl,...,equn},{varl,...,varn}) solves the system of equations for the given
variables using numerical methods (the number of equations equals the number of
unknowns).

fsolve (expr) or fsolve({equl,...,equn}) solves the equation expr = 0 for the system using
numerical methods.

fsolve (equation,var,a..b) solves the equation in the variable var by numerical methods,
obtaining solutions in the interval [a, b].

fsolve ({equl,...,equn},{varl,...,varn},{varl=al..bl,..., varn = an...bn}) finds real
solutions of the system in the given variables that are in the specified intervals
(by numerical methods).

fsolve (equation, variable, complex) finds the complex solutions of the given equation.
fsolve (equation,variable,maxsols’=m) finds up to m solutions of the given equation.

fsolve (equation, variable, ‘fulldigits’) ensures an optimum value of Digits in order to
compute the largest number of possible solutions of the given equation in the specified
variable.

msolve(equation, m) solves the equation modulo m in all its variables.
msolve(expression, m) solves the equation expression = 0 modulo m in all its variables.
msolve({equl,...,equn},m) solves the given system modulo m in all its variables.

msolve(equation,variable,m) or msolve(equation,{varl,...,varn},m) solves the equation
modulo m in the variable or variables specified.

msolve({equl,...,equn},{varl,...,varn},m) solves the given system modulo m in the
specified variables.

RootOf (equation, variable) represents the roots of the given equation in the specified
variable in the form of RootOf expressions. For certain equations it is only possible to
express the solutions in terms of RootOf expressions.

RootOf (expression, variable) presents the solutions of the equation expression = 0in
terms of RootOf expressions.

RootOf (equation) presents the solutions of the given univariate equation in terms of
RootOf expressions.

allvalues (expr) Expressions involving RootOfs often evaluate to more than one value
or expression. The allvalues command returns all possible values. It uses solve to
calculate the exact roots of the expression, and if this is impossible, it uses fsolve to
calculate the approximate solutions.

allvalues(expr,d) indicates that identical RootOfs in the expression are only to be
evaluated once, thus avoiding redundancy and reducing the calculation time.

convert (ineq, equality) converts the given inequality to an equation by replacing the
symbols < or < = by =.

convert (equ, lessequal) converts the given equation or strict inequality to a non-strict
inequality replacing the symbols < or = by < =.
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convert (equ, lessthan) converts the given equation or non-strict inequality to the
corresponding strict inequality replacing the symbols = or < = by the symbol <.

with(student):equate(list1,list2) creates a set of equations of the form
{list1[1] = list2[1],..., list1[n] = list2[n]}.

equate(list) creates a set of equations of the form {list [1] = 0,..., list [n] = 0}.
equate (arrayl, array2) converts the two arrays to a set of equations.
equate (tablel, table2) converts the two tables to a set of equations.

equate (exprl, expr2) converts the two expressions to the set containing the equation
exprl = expr2.

Here are some examples:
First, we solve an equation in exact and approximate form and check one of the solutions.

»> pretty(sym(maple('eq := x"4-5*x"2+6*x=2: solve(eq,x)')))

1/2 1/2
-1+3 ,-1-3 ,1,1

»> pretty(sym(maple('sols := [solve(eq,x)] : evalf(sols,10)')))
[.732050808 -2.732050808 1. 1.]
»> pretty(simple(sym(maple('subs( x=sols[1], eq )'))))
2 =2
The above equation also can be solved as follows:

»> solve('x"4-5*x"2+6*x=2")

[ +3 *1/2)]
[-1-37(1/2)]
[ 1]
[ 1]

R R

Another way to solve the same equation would be as follows:

»> syms x
»> solve(x"4-5*x"2+6*x-2)

ans =

[- 1+ 3 71/2)]
[-1-3"(1/2)]
[ 1]
[ 1]
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Next we solve a system of equations and check their solutions.

»> maple('eqns:= {u+viw=1, 3*us+v=3, u-2*v-w=0}:sols:= solve(eqns)')

ans =
sols: = {w = -2/5, v = 3/5, u = 4/5}
»> maple('subs( sols, eqns )')

ans =

The previous system also can be solved in the following way:

> Syms u v W
»> [u, v, w] = solve(u+viw-1, 3*u+v-3, u-2*v-w, u,v,w)

-2/5
Alternatively, we can solve the system as follows:

»> [u, v, w] = solve('usv+w=1", '3*u+v=3', 'u-2*v-w=0',

)

v,

)
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Or we can do the following:

»> [u, v, w] = solve('usviw=1, 3*u+v=3, u-2*v-w=0', 'u,v,u’)

-2/5
Next we solve some systems subject to certain conditions.
»> pretty(sym(maple('solve({x*2*y~2=0, x-y=1})"')))
fx=0,y=-1}, {x=0,y=-1}, {x=1,y=0} {x=1, y=0}
»> pretty(sym(maple('solve({x"2*y*2=0, x-y=1, x<>0}) ')))
{x=1, y=0} {x=1, y=0}
»> pretty(sym(maple(’solve({x*2*y~2-b, x"2-y*2-a}, {x,y}) ")))

ly =1/2 %4, x = 1/2 33}, {y = 1/2 %4, x = - 1/2 %3},

- 1/2 %4, x = 1/2 83}, {y = - 1/2 %4, x = - 1/2 %3},

{y
{y=1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = 1/2 %1},

ly=-1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = - 1/2 %1}}
2 1/2 1/2
%1: = (-2a-2(a+4(b)))
2 1/2 1/2

%2: =(2a-2(a+4(b)))

2 1/2 1/2

2 (a+4(b)))

2 1/2 1/2
%4: = (-2a+2 (a+4(b)))

3%: = (2

+

Now we find the integer solutions of an equation.
»> pretty(sym(maple('isolve(3*x-4*y=7) ')))

{y=2+3 N1, x =5+ 4 N1}
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We solve a system and an equation approximately.

maple('f: = sin(x + y) - exp(x) *y=0: "g:=x"2-y=2:");
pretty(sym(maple(' fsolve({f,g},{x,y},{x=-1..1,y=-2..0}) ')))

{y = -1.552838698, x = -.6687012050}
maple('f: = 10-(1n(v+(v~2-1)~(1/2))-1n(3+(3"2-1)"(2/2)))") ;
pretty(sym(maple( ' fsolve(f,v)')))
64189.82535
pretty(sym(maple('fsolve(f,v,1..infinity)')))
64189.82535
In the two following equations, instead of isolating x, we isolate siz (x) in the first equation and x*in the second equation.
pretty(sym(maple('readlib(isolate):isolate(4*x*sin(x)=3,sin(x))')))
sin (x) = 3/4 x
pretty(sym(maple('isolate(x*2-3*x-5,x"2) ')))

2
X=3x+5

We now verify that two expressions are not equal, but are probabilistically equivalent.
maple('a: = (sin (x) * 2 - cos (x) * tan (x)) * (sin (x) * 2 + cos (x) * tan (x)) * 2:)
b: = 1/4 * sin(2*x) * 2 - 1/2 * sin(2*x) * cos (x) - 2 * cos (x) * 2
+ 1/2 * sin(2*x) * cos (x) * 3 +3 * cos (x) * 4 - cos (x) * 6:');
pretty(sym(maple(‘evalb( a = b ) ')))
false
pretty(sym(maple('evalb( expand(a) = expand(b) )')))
false
pretty(sym(maple('testeq( a = b )')))
true
In the following example, we eliminate a variable from a system:
pretty(sym(maple('readlib(eliminate): eliminate({x * 2 +y * 2-1, x *3 -y * 2 * x + x * y-3}, x)')))

3 6 4 5 3 2

[{x = - ----mmmmmm- bh{dy-7y-4y+6y+4y-2y+38}]

2
2y-y-1
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EXERCISE 4-18

Find the solutions to the following equations:
sin(x) cos(x) = 0, sin(x) = acos(x), ax ~ 2 + bx + ¢ = 0 and sin(x) + cos(x) = sqrt(3)/2.

»> solve('sin(x) * cos(x) = 0')

ans =

[ 0]
[1/72 * pi]
[-1/2 * pi]

»> solve('sin(x) = a * cos(x) '," x')
ans =

atan (a)

»> solve('a*x"2+b*x+c=0','x")

ans =

[1/72/a * (-b + (b * 2-4 * a * ¢) *(1/2))]
[1/2/a * (-b-(b"2-4*a*c) ~(1/2))]

»> solve('sin(x)+cos(x)=sqrt(3)/2")
ans =

[1/2 * 3 ~(1/2)]
[1/2 * 3 ~(1/2)]

EXERCISE 4-19

Find at least two solutions of each of the following two trigonometric and exponential equations:
xsin(x):y2 and 2 :4(2“) .

First, we use the command fsolve:

»> maple('fsolve(x * sin (x) = 1/2)")

ans =

-.74084095509549062101093540994313

»> maple('fsolve(2"(x"3)=4*2"(3*x))")
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ans =
2.0000000000000000000000000000000

For both equations we get a single solution. To find more solutions, we graph the functions to find approximate
intervals where possible solutions might fall. See Figure 4-1:

»» fplot('[x * sin(x) - 1/2.0]', [0, 4 * pi])

a8
sl
al
2
0 _w,,/'”'_qﬁ“\
2
al
ik :
8
-0}
=125 2 a &
Figure 4-1.

We observe that there is a solution between 0 and 2, another between 2 and 4, another between 4 and 8, and
so on. We can calculate three of them:

((' s1=maple('fsolve(x*sin(x)=1/2,x,0..2)")

s1 =

. 7408409550954906

»> s2=maple('fsolve(x*sin(x)=1/2,x,2..4)")

s2 =

2.972585490382360

»> s3=maple('fsolve(x*sin(x)=1/2,x,4..8)")

S3 =

6.361859813361645

We repeat this process for the second equation, starting with the graph (see Figure 4-2):
»> subplot(2,1,1)

»> fplot('[2~(x"3),4*2*(3*x)]",[-3,1,-1/4,3/2])

»> subplot(2,1,2)
»> fplot('[2"(x"3),4*2"(3*x)]",[1,3,100,400])
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400 T T T
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200 F .

100 ' : '
1 15 2 25 3

Figure 4-2.

Two parts of the graph are shown where there are intersections. There are possible solutions between —4 and 0,
and between 0 and 3. Given this information we try to calculate these solutions:

»> maple('fsolve(2 ~(x"3) = 4 * 2 ~(3*x), x, - 4.. 0)")
ans =

-1.00000000000

>> maple('fsolve(2"(x"3)=4*2"(3*x),x,0..3)")

ans =

2.00000000000

We see that x=—1 and x = 2 are exact solutions of the equation.
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EXERCISE 4-20

Solve each of the following two logarithmic and surd equations:
Xx¥2log(x) = xlog(x®?), sqri[1-x]+sqrt[1+x] = a.

»> maple('fsolve(x"(3/2)*log(x)=x*1log(x)"(3/2))")
ans =

1.

Next we graph the function (see Figure 4-3) in order to find the intervals in which possible solutions may be
found. This confirms that x = 1 is the only real solution.

»> fplot('[~(3/2) x * log(x), x * log(x) ~(3/2)]', [0.3, -1, 6])

Figure 4-3.

Now, let’s solve the surd equation:
»> pretty(sym(solve('sqrt(1-x)+sqrt(1+x)=a’','x")))

2 1/2
[-1/2 a (-a + 4) ]
[ 1
[ 2 172 ]
[1/2 a (-a + 4) ]
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EXERCISE 4-21

Solve the following two equations:
XS+ 16x*+ 7x%+17x2+11x+5=0and x*-1=0.

In addition, solve the first equation modulo 19 and the second modulo 5.
»> si=solve('x"5 +16*Xx"4+7*x"3+17*x"2+11*x+5=0")

[ -15.61870451719182]
[-.3867059805744952-.3977796861292117*1 |
[-.3867059805744952+.3977796861292117%1 ]
[ .1960582391704047-1.000858165543796*1 ]
[ .1960582391704047+1.000858165543796*1 ]

»> s2=solve('x"4-1=0")
s2 =

[1]

[il]

[1]

[-1]

Now we find the modulo 19 solutions of the first equation:
»> maple('msolve(x"5 +16*x"4+7*x"3+17*x"2+11*x+5=0,19)")
ans =

{X = 1}1 {X = 18}: {X = 3J} {X = 7}1 {X = 12}
We calculate the modulo 5 solution of the second equation:
»> maple('msolve(x"4-1=0,5)")

ans =

{x =1}, {x = 2}, {x = 3,} {x = 4}

Since the two equations are polynomial equations, we also have the option to solve them with the command
roots. We have:

»» roots([5,11,17,7,16,5])
ans =

-1.2183 + 1.31641

-1.2183 - 1.31641
0.2827 + 0.93021
0.2827 - 0.93021
-0.3289
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»» roots([-1,0,0,0,1])
ans =
-1.0000
0.0000 + 1.00001

0.0000 - 1.00001
1.0000

EXERCISE 4-22

Solve the following system of two equations:
cos(x/12)/exp(x?/16) = y
-5/4 + y=sin (x*?)

» [x, y] = solve('cos(x/12) /exp(x*2/16) =y ',' - 5/4 + y = sin(x ~(3/2))")

X =

2.412335896593778

y:

.6810946557469383

EXERCISE 4-23

Find the intersection of the hyperbolas with equations X — y? = r? and a2x* — b?)? = &b with the parabola 2% = 2px.
» [x, y, z] = solve('a*2*x*2-b*2*y~2=a2*b"2', 'x"2-y*2=r"2', 'z 2=2%p*x"', 'x,y,z')
X =

[1/2*RootOf ((a”2-b"2)* Z*4+4*b 2*r 2%*p"2-4*a*2%b"2%p"2)"2/p]
[1/2*RootOf ((a”2-b"2)* Z74+4*b 2*1"2%p"2-4*a*2*b"2*p"2)"2/p]

y =

[1/2%(RootOf ((a"2-b"2)* Z74+4*b"2*1"2%p 2-4*a*2*b"2%p"2) "4-4*1"2%p"2)*(1/2)/p]
[-1/2%(RootOf ((a’2-b"2)* Z4+4*b"2*1r"2%p"2-4*a"2*b"2%p"2) "4-4*1"2*p*2)"(1/2)/p]

Z =

[RootOf((a”2-b"2)* Z74+4*b"2*r"2*p"2-4*a*2*b"2%p"2) |
_ p p
[RootOf ((a”2-b"2)* Z*4+4*b"2*r"2%p*2-4*a*2*b"2%p*2) |
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Now, we simplify the RootOf expression:
»> [simple(allvalues (x)), simple(allvalues (y)), simple(allvalues (z))]
ans =

[b*(-r"2+a*2) ~(1/2) /(a”2-b*2) ~(1/2) b] [a *(b*2-r"2) *(1/2) /(a"2-b"2) *(1/2)]
[2 ~(1/2) * b ~(1/2) * p ~(1/2) *(-r"2+a"2) *(1/4) /(a*2-b*2) *(1/4)]
[b*(-r*2+a”2) ~(1/2) /(a*2-b"2) ~(1/2) b] [a *(b*2-r*2) ~(1/2) /(a*2-b*2) ~(1/2)]
[- 2 ~(1/2) * b *(1/2) * p *(1/2) *(-r"2+a"2) *(1/4) /(a"2-b"2) *(1/4)]

[-b *(-r"2+a*2) *(1/2) /(a*2-b*2) *(1/2)] [a *(b*2-r*2) *(1/2) /(a’*2-b"2) ~(1/2)]
[i*2~(1/2) * b ~(1/2) * p *(1/2) *(-r"2+a*2) *(1/4) /(a*2-b"2) *(1/4)]
[-b*(-r"2+a*2)"(1/2)/(a”2-b"2)*(1/2)] [ a*(b*2-r*2)"(1/2)/(a"2-b*2)*(1/2)]
[-1*27(1/2)*b*(1/2)*p"(1/2)*(-1r"2+a*2)*(1/4)/(a"2-b*2)"(1/4)]

[ b*(-r*2+a*2)~(1/2)/(a"2-b*2)*(1/2)] [-a*(b*2-r*2)*(1/2)/(a”2-b"2)"(1/2)]

[ 27(1/2)*%b*(1/2)*p"(1/2)*(-1"2+a"2)"(1/4)/(a*2-b"2)"(1/4)]

[ b*(-r*2+a*2)*(1/2)/(a*2-b"2)"(1/2)] [-a*(b*2-r*2)*(1/2)/(a*2-b"2)"(1/2)]

[ -22(1/2)*b"(1/2)*p"(1/2)*(-1r"2+a"2)"(1/4)/(a"2-b"2)"(1/4)]
[-b*(-r"2+a*2)"(1/2)/(a"2-b"2)*(1/2)] [-a*(b"2-1*2)"(1/2)/(a"2-b*2)*(1/2)]

[ i*27(1/2)*b*(1/2)*p"(1/2)*(-1r"2+a*2)"(1/4)/(a"2-b*2)"(1/4)]
[-b*(-r*2+a*2)~(1/2)/(a"2-b*2)*(1/2)] [-a*(b*2-r*2)"(1/2)/(a”2-b"2)"(1/2)]
[-1*27(1/2)*b*(1/2)*p"(1/2)*(-1"2+a"2)"(1/4)/(a*2-b"2)"(1/4)]

Each line of this output (triple of values) is a solution of the system, i.e., a point of intersection of the three curves.

EXERCISE 4-24

Solve the inequality X2 + x > 5.
»> maple('solve(x"2+x>5,x)")
ans =

RealRange(-inf,Open(-1/2-1/2%21(1/2))),RealRange(Open(-1/2+1/2*21"(1/2)), inf)

4.7 Systems of Linear Equations

In the previous sections we have studied equations and systems in general. We will now focus on linear systems of
equations. To solve such systems we could simply use the commands we have seen so far, however MATLAB has a
selection of special commands designed especially for linear systems. We summarize these commands below.

linsolve(M,V) solves the system M&*x=V, where M is the matrix of the system and V is
the vector of independent terms (number of elements of V = number of rows in M).

linsolve (M1, M2) finds the matrix X such that M1&*X=M2. The dimensions of M1, M2
and X must be compatible.

linsolve(M,V,name,variable) solves the system M&*x = V and assigns the specified
name to the rank of M. If Maple needs to name variables for solutions it will use the
names variable[1], variable[2], etc.If the variable argument is not specified, Maple
will use values _t[1], _t[2], etc. as variable names, if necessary.
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leastsqrs(M,V) finds the vector x satisfying the equation M&*x=V in the sense of least
squares (x minimizes the 2-norm of M &*x--V).

leastsqrs({equl,...,equm},{varl,...,varn}) gives varl,..., varn that satisfies the given
system of equations equl,..., equm in the least squares sense.

Systems of linear equations can be converted to array form and solved using calculations with matrices.
A system can be written in the form M.X = B, where X is the vector of variables, B the vector of independent terms
and M the matrix of coefficients of the system. If M is a square matrix and the determinant of the matrix M is
non-null, M is invertible, and the unique solution of the system can be written in the form: X= M'B. In this case,
the commands solve, linsolve, Iscov, bicg, pcg, Isqr, gmr, gmres, minres, symmlg or M\B, already described above,
offer the solution.

If the determinant of M is zero, the system has infinitely many solutions, since there are rows or columns in
M that are linearly dependent. In this case, the number of redundant equations can be calculated to find out how
many variables are needed to describe the solutions. If the matrix M is rectangular (not square), the system may
be undetermined (the number of equations is less than the number of variables), overdetermined (the number of
equations is greater than the number of variables) or non-singular (the number of equations is equal to number of
variables and M has non-zero determinant). An indeterminate system can have infinitely many solutions, or none,
and likewise for an overdetermined system. If a system has no solution, it is called inconsistent (incompatible), and
if there is at least one solution, it is called consistent (compatible). The system M . X = B is called homogeneous when
the vector B is the null vector, i.e. the system is of the form M. X= 0. If the determinant of M is non-null, the unique
solution of the system is the null vector (obtained with the command linsolve). If the determinant of M is zero, the
system has infinitely many solutions. The solutions can be found using the commands solve, linsolve, lsqr or other
commands described above for general linear systems.

Below is an example of a system with infinitely many solutions: (x + 3y + 4z = 1, 2x + 3y + 3z =1). In this case,
MATLAB describes a parameterization of these solutions:

»> maple('solve({x+3*y+4*z=1, 2*x+3*y+3*z=1},{x,y,z})")
ans =
y=-5/3%z+1/3, x=2,z=12

Any value of z will yield a solution of the system.

4.8 The Rouche-Frobenius Theorem

A fundamental tool in the analysis and solution of systems of equations is the Rouche-Frobenius theorem. This
theorem says that a system of m equations with » unknowns has a solution if, and only if, the rank of the matrix of
coefficients coincides with the rank of the array extended with the vector column of the system-independent terms.
If the two ranks are equal, and equal to the number of unknowns, the system has a unique solution. If the two ranks
are the same, but less than the number of unknowns, the system has infinitely many solutions. If they are different, the
system has no solution.

In summary: Let A be the matrix of coefficients of the system and B the matrix A augmented by the column vector
of independent terms.

If rank(A)" rank(B), the system is incompatible (without solution).

If rank (A) = rank(B) < n, the system is indefinite (has infinitely many solutions).

If = rank(A) = rank(B) = n, the system has a unique solution.

This theorem allows us to analyze the solutions of a system of equations before solving it.

143



CHAPTER 4 © VECTOR SPACES AND LINEAR APPLICATIONS. EQUATIONS AND SYSTEMS

EXERCISE 4-25

Study and solve the system:
2X1+x2+ x3 + x4 =1
X1 +2x2 + x3+ x4 =1
X1+ x2+2x3+x4=1

X1+ x2+x3+2x4=1

» A = [2,1,1,131,2,1,151,1,2,1;1,1,1,2]

A =
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

»» B = [2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1]

B =
2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1

»> [rank(A), rank(B)]
ans =
4 4

We see that the matrix A and its augmented matrix B have rank 4, which, moreover, coincides with the number
of unknowns. Therefore, the system has a unique solution. To calculate the solution, we use, for example, the
command linsolve:

» b = [1,1,1,1];
»> linsolve(A, b)
ans =
[1/5]
[1/5]

[1/5]
[1/5]
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EXERCISE 4-26

Study and solve the system:
X1—-x2+x3=1

4x1 +5x2-5x3=4
2X1 +x2-x3=2
X1 +2x2-2x3=1

>> A = [1,-1,1;4,5,-552,1,-1;1,2,-2]

A =
1 -1 1
4 5 -5
2 1 -1
1 2 -2

» B = [1,-1,1,1;4,5,-5,4;2,1,-1,251,2,-2,1]

B =
1 -1 1 1
4 5 -5 4
2 1 -1 2
1 2 -2 1

»> [rank(A), rank(B)]
ans =
22

We see that the rank of A and B coincide and its value is 2, which is less than the number of unknowns in the
system (3). Therefore, the system will have infinitely many solutions. We try to solve it with the command solve:

»> maple('solve({x1-x2+x3=1,4*x1+5%x2-5%x3=4,2*x14x2-x3=2,))
X1+2*x2-2%x3=1}, {x1,x2,x3})")

ans =
{x2=x3x1=1, x 3 =x 3}

Infinitely many solutions are obtained using the parameter x3, so that the set of solutions is given
by {(7, x3, x3): x3< R}. Note that the trivial solution (1,0,0) is obtained by setting the parameter equal to zero.

The solution can also be found with the command /eastsqrs as follows:

»> pretty(sym(maple('leastsqrs(array([[1,-1,1],[4,5,-5],[2,1,-1],[1,2,-2]]),
vector([1,4,2,1]))")))

1, _t [1], _t [1]
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EXERCISE 4-27

Study and solve the system:
X+2y+3z=6
X+3y+8z=19
2x+3y+2z=-1

5x+6y+4z=5

> A = [1,2,3;1,3,8;2,3,1;5,6,4]

A =
1 2 3
1 3 8
2 3 1
5 6 4

» B = [1,2,3,651,3,8,19;2,3,1,-1;5,6,4,5]

B =

1 2 3 6
1 3 8 19
2 3 1 -1
5 6 4 5

»> [rank(R), rank(B)]
ans =
33

We see that the ranks of Aand B coincide and its value is 3, which is equal to the number of unknowns in the
system. Therefore the system will have a unique solution. The only solution is obtained with the command /insolve:

»> maple('solve({x+2*y+3*z=6,x+3*y+8%z=19,2*x+3*y+z=-1, 5*x+6*y+4*z=5}, {x,y,z})")
ans =

x=1,y=-2, z=3

The solution also can be found with the command /insolve as follows:

»> pretty(sym(maple('linsolve(array([[1,2,3],[1,3,8],[2,3,1],[5,6,4]1),
(((vector([6,19,-1,5]))")))

[1-2-3]
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EXERCISE 4-28

Study and solve the system:
X+2y+3z+1t=6
x+3y+8z+1t=19

» A = [1,2,3,1;1,3,8,1]

»> [rank(A), rank(B)]
ans =
22

We see that the rank of A and B coincide and its value is 2, which is less than the number of unknowns in the
system (4). Therefore, the system has infinitely many solutions. We try to solve it:

»> maple('solve({x+2*y+3*z+t=6,x+3*y+8%*z+t=19},{x,y,z,t})")
ans =
{y=-5%z+13, t=-x+7 ¥ 2-20, x = X, z = z}

This time the solution depends on two parameters. As zand fvary over the real numbers, all the solutions of the
system are obtained. These solutions form a two-dimensional subspace of four-dimensional real space.

The solution can also be found with the commands /eastsqrs and linsolve as follows:

»> pretty(sym(maple('linsolve(array([[1,2,3,1],[1,3,8,1]]),vector([6,19]))")))
[ t[2], 13 - 5 _t[1], _t[1], - t[2] - 20 + 7 _t[1]]

»> pretty(sym(maple('leastsqrs(array([[1,2,3,1],[1,3,8,1]]),vector([6,19]))')))

[ t[2], 13 -5 t[1], _t[1], - t[2] -20+7 t[1]]
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EXERCISE 4-29

Study and solve the system:
x1+2x2-x3=10
2x1 +4x2-2x3=5

X1+x2+x3=6

> A = [1,2,-152,4,-2;1,1,1]

A =
1 2 -1
2 4 -2
1 1 1

B =
1 2 -1 10
2 4 -2 5
1 1 1 6

»> [rank(A), rank(B)]
ans =
23

The rank of Ais 2 and the rank of Bis 3, therefore the system has no solution.

4.9 Homogeneous Systems

A system A. X = Bis said to be homogeneous if the vector of independent terms B is null, so every homogeneous
system will be of the form A X = 0.

In a homogeneous system, the rank of the matrix of coefficients and the rank of the matrix extended to
include the independent terms in its final column always coincide. If we apply the Rouche-Frobenius theorem, a
homogeneous system will have a unique solution when the determinant of the matrix A is non-zero. This unique
solution is the null vector. A homogeneous system will have infinitely many solutions when the determinant of
the matrix A is zero. In this case, the infinitely many solutions can be calculated as in general systems (using the
command solve), or by using the function nullspace(A).
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EXERCISE 4-30

Study and solve the system:
X1 +2x2-x3=0
2x1-x2+x3=0
3x1+x2=0

> A = [1,2, - 15 2, - 1, 15 3,1,0]

The system is homogeneous and the determinant of the matrix of coefficients is zero, so there are infinitely
many solutions:

»> maple('solve({x1+2*x2-x3=0,2%x1-x2+x3=0,3*x1+x2=0},{x1,x2,x3})")
ans =
X2 = -3 *x1, x3 =-5*x1, x1 = x1

The set of all solutions is obtained by varying the parameter x7 over all real numbers.

If we apply the command nullspace, we obtain a basis of the kernel of the matrix of the system, i.e., a basis for
the set of solutions of the system a. X = 0, which is precisely the homogeneous system that we want to solve.
Therefore, the function nullspace gives a non-trivial solution of the homogeneous system.

»> nullspace(A)

ans =

[1]
[-3]
[-5]

This is the solution that corresponds to the value of the parameter x7 = 7.

The set of solutions is the set of linear combinations of the basis elements. In this case the basis is formed by a
single vector, so the general solution is just a constant multiple of this vector, so the result matches that found by
the general method.
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EXERCISE 4-31

Study and solve the system:
3X1+x2+x3-x4=0
2X1 +x2-3x+4=0x
X1 +2x2 +4x3+2x4=0
2x1 +x2-2x3-x4=0

» det([3,1,1,-152,1,-1,1;1,2,4,2;2,1,-2,-1])

ans =

-30

As the determinant of the matrix of coefficients is non-zero, the system has only the trivial solution:

»> maple('solve({3*x1+x2+x3-x4=0,2%x1+x2-Xx3+x4=0,Xx1+2*x2-4*x3-2%x4=0,
x1-x2-3*x3-5*x4=0}, {x1,x2,x3,x4})")

ans =

EXERCISE 4-32

Study and solve the following system of equations, according to the values of m:
mx+y+z=1
X+my+z=m

X+y+mz=mAN2
>> maple('A: = m - > array([[m,1,1],[1,m,1],[1,2,m]])");

We consider the matrix of coefficients of the system as a function of m and study its rank according
to the values of m:

»> maple('solve (det (A (m)) = 0, m)')
ans =
-2, 1, 1

The values of m which determine the rank of the matrix are =2 and 1.
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We now consider the augmented matrix as a function of m:

»> maple('B:=m-»array([[m,1,1,2],[1,my1,m],[2,2,m,m*2]])");
We will study the case m =-2:

>> maple('rank(A(-2))")

ans =

2

»> maple('rank(B(-2))")

ans =

3

We see that the ranks of the two matrices are different, hence the system has no solution for m =-2.

Now we study the case m = T
»>> maple('rank(A(1))')
ans =

1

»>> maple('rank(B(1))')
ans =

1

Now the rank of the two matrices is 1, which is less than the number of unknowns. Thus, the system has infinitely
many solutions. We find them by substituting m = 1 into the initial system:

»> maple('solve(x+y+z=1,{x,y,z})")
X=-y-z+1, y=y, z=12

The infinite set of solutions is obtained by varying the parameters y and z over the real numbers.

In the case where mis different from —2 and —1, the system has a unique solution, which we find using the
command solve:

»> pretty(sym(maple(’solve({m*x+y+z=1,x+m*y+z=m,x+y+m*z=m*2}, {x,y,z})')))
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EXERCISE 4-33

Study and solve the following system according to the values of m:
my=m
(T+mx—-z=m

y+z=m
»>> maple('A: = m - » array([[o,m,0],[m+1,0,-1],[0,1,1]])");
»> maple('solve(det(A (m)) = 0, m)')

ans =

-1, 0

We see that the values of m which determine the rank of the matrix of coefficients of the system
arem=1and m=0.

We now consider the augmented matrix:

»> maple('B:=m->array([[o,m,0,m],[m+1,0,-1,m],[0,1,1,m]])");
»> maple('rank(A(-1))")

ans =

2

»> maple('rank(B(-1))")

ans =

3

If m=—1, we see that the system has no solution because the rank of the matrix of coefficients of the system
is 2 and the rank of the augmented matrix is 3.

Now, we analyze the case m = 0:

When mis zero the system is homogeneous, since all the independent terms are all zero. We analyze the
determinant of the matrix of coefficients of the system.

»> maple(det (A (0)))
ans =

0
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Since the determinant is zero, the system has infinitely many solutions:
»> maple('solve({x-z=0,y+z=0},{x,y,z})")

ans =

z2=2,)y=-2,X=12

The infinite set of solutions is obtained by varying the parameter z over the real numbers.

If mis neither 0 nor —1, the system has a unique solution since the ranks of the matrix of the system and of the
augmented matrix coincide. The solution can be found using the command /insolve.

»> pretty(sym(maple('solve({m * y= m,(14m) * x-z =m, y + z = m}, {x, y, z})')))

{y=1)2=m-1;x= """" }

EXERCISE 4-34

Study and solve the following system according to the values of m:
3x+3y-2z=0

—Ax-2y+ mz=0

3x+4y+62z=0

It is a homogeneous system, so we analyze the determinant of the matrix of coefficients:
»> maple('A: = m - » array([[3,3,-1],[-4,-2,m],[3,4,6]1])");

»> maple('solve(det(A (m)) = 0, m)')

ans =

46/3

If mis different from 46/3, the system has only the trivial solution.

If m = 46/3, the system has infinitely many solutions:

»> maple('solve({3*x+3*y-z=0,-4*x-2*y+46/3*2=0,3*x+4*y+6*2=0},{x,y,z})")
ans =

{z=-1/7*y, x=-22/21 ¥y, y = y}

The infinite set of solutions is obtained by varying the parameter y over the real numbers.
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Vector and Matrix Functions
of Complex Variables

5.1 Complex Numbers

MATLAB implements a simple way to work with complex numbers in binary form a+bi or a+bj, representing the
imaginary unit by means of the symbol i or j. Note that it is not necessary to include the product symbol (asterisk)
before the imaginary unit, but if it is included, everything still works correctly. It is important, however, that spaces are
not introduced between the imaginary unit i and its coefficient.

Complex numbers can have symbolic or numeric real or imaginary parts. Operations are carried out with a
precision that is set by the command format. Thus, it is possible to work with complex numbers in exact rational
format via the command format rat.

The common arithmetical operations with complex numbers (sum, difference, product, division and
exponentiation) are carried out in the usual way. Examples are shown in Figure 5-1.
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>> (3+21) +(5-61) _
ans =
29.0000 - 6.00001
>» (3+21)-(5-61)
ans =
19.0000 + 6.00001
>> (3+421) *(5-61)
ans =
1.2000e+002 -1.4400e+0021
> (3+21)/(5-61)
ans =
1.9672 + 2.36071
> (3421)*(5-61)
ans =
7.7728e+006 -1.7281e+0061
¥4 v
< >
Figure 5-1.

Obviously, as the real numbers are a subset of the complex numbers, any function of complex variables will also
be valid for real variables.

5.2 General Functions of a Complex Variable

MATLAB has a range of preset general functions of a complex variable, which of course will also be valid for real,
rational and integer variables. The following sections present the most important examples.

5.2.1 Trigonometric Functions of a Complex Variable

Below is a table summarizing the trigonometric functions of a complex variable and their inverses that are
incorporated in MATLAB, illustrated with examples.
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Function

Inverse

sin (z) sine
>> sin(5-61)
ans =

-1 9343e + 002-5 7218e + 001i

cos (z) cosine
>> cos (3 + 41)
ans =

-27.0349 - 3.85121

tan (z) tangent
>> tan(pi/4i)
ans =

0 - 0.65581

csc (z) cosecant
>> csc(1-1)
ans =

0.6215 + 0.30391

asin (z) arc sine
>> asin(1-1)
ans =

0.6662 - 1.06131

acos (z) arc cosine
>> acos (-1)
ans =

1.5708 + 0.8814i

atan(z) and atan2(imag(z),real(z)) arc tangent
>> atan(-pi*i)
ans =

1.5708 - 0.3298i

acsc (z) arc cosecant
>> acsc(2i)
ans =

0 - 0.48121

(continued)
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Function

Inverse

sec (z) secant
>> sec(-1)
ans =

0.6481

cot (z) cotangent
>> cot(-j)
ans =

0 + 1.31301

asec (z) arc secant
>> asec(0.6481+01)
ans =

0 + 0.99991

acot (z) arc cotangent
>> acot(1-67)
ans =

0.0277 + 0.16351

5.2.2 Hyperbolic Functions of a Complex Variable

Below is a table of hyperbolic functions of a complex variable and their inverses that are incorporated in MATLAB,

illustrated with examples.

Function

Inverse

sinh(z) hyperbolic sine

>> sinh(1+i)

ans =

0.6350 + 1.29851

cosh(z) hyperbolic cosine

>> cosh(1-1)

ans =

0.8337 - 0.9889i

asinh(z) arc hyperbolic sine

>> asinh(0.6350 + 1.29851)

ans =

1.0000 + 1.0000i

acosh(z) arc hyperbolic cosine

>> acosh(0.8337 - 0.9889i)

ans =

1.0000 - 1.0000i
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Function

Inverse

tanh(z) hyperbolic tangent

>> tanh(3-51)

ans =

1.0042 + 0.00271

csch(z) hyperbolic cosecant

>> csch(i)

ans =

0 - 1.18841

sech(z) hyperbolic secant

>> sech(iri)

ans =

0.9788
coth(z) hyperbolic cotangent

>> coth(9+i)

ans =

1.0000 - 0.0000i

atanh(z) arc hyperbolic tangent

>> atanh(3-41)

ans =

-0.0263 - 1.57081

acsch(z) arc hyperbolic cosecant

>> acsch(-1.18841)

ans =

0 + 1.0000i

asech(z) arc hyperbolic secant

>> asech(5-01)

ans =

0 + 1.36941

acoth(z) arc hyperbolic cotangent

>> acoth(1-1)

ans =

0.4024 + 0.55361

(continued)
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5.2.3 Exponential and Logarithmic Functions of a Complex Variable

Below is a table summarizing the exponential and logarithmic functions that are incorporated in MATLAB, illustrated
with examples.

Function Meaning

exp (z) Exponential function to base e (e " x)
>> exp(1-1)
ans =

1.4687 - 2.28741
log (x) Base e logarithm of x

>> log(1.4687-2.28741)
ans =

1.0000 - 1.0000i
log10 (x) Base 10 logarithm of x

>> log10(100 + 100i)
ans =

2.1505 + 0.34111
log2 (x) Base 2 logarithm of x

>> log2(4-61)
ans =

2.8502 - 1.41791

(continued)
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Function Meaning

pow2 (x) Base 2 power function (2/x)
>> pow2(2.8502-1.41791)
ans =
3.9998. - 6.0000i

sqrt (x) Square root of x

>> sqrt(1+i)

ans =

1.0987 + 0.45511

5.2.4 Specific Functions of a Complex Variable

VECTOR AND MATRIX FUNCTIONS OF COMPLEX VARIABLES

MATLAB incorporates a specific group of functions of a complex variable which allow you to work with moduli,
arguments, and real and imaginary parts. Among these features are the following:

Function Meaning

abs (z) The modulus (absolute value) of z
>> abs(12.425-8.2631)
ans =
14.9217

angle (z) The argument of z

>> angle(12.425-8.2631)
ans =

-0.5869

(continued)
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Function

Meaning

conj (z)

real (z)

imag (z)

floor (z)

ceil (z)

The complex conjugate of z
>> conj(12.425-8.2631)
ans =

12.4250 + 8.26301

The real part of z
>> real(12.425-8.2631)
ans =

12.4250

The imaginary part of z
>> imag(12.425-8.2631)
ans =

-8.2630
Applies the floor function to real(z) and imag(z)

>> floor(12.425-8.2631)
ans =

12.0000 - 9.0000i

Applies the ceiling function to real(z) and imag(z)
>> ceil(12.425-8.2631)
ans =

13.0000 - 8.00001
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Function Meaning

round (z) Applies the round function to real(z) and imag(z)
>> round(12.425-8.2631)
ans =
12.0000 - 8.0000i

fix (z) Applies the fix function to real(z) and imag(z)

>> fix(12.425-8.2631)

ans =

12.0000 - 8.00001

5.3 Basic Functions with Complex Vector Arguments

MATLAB enables you to work with functions of a complex matrix or vector. Of course, these functions are also valid for
real variables since the real numbers are included in the complex numbers. Below is a table summarizing the functions
of complex vector variables that are incorporated in MATLAB. Later, when the functions of complex matrix variables are
tabulated, we will observe that all of them are also valid for vector variables, a vector being a particular case of a matrix.

max (V)

The maximum component of V. (max is calculated for complex vectors as the complex number
with the largest complex modulus (magnitude), computed with max(abs(V)). Then it computes the
largest phase angle with max(angle(V)), if necessary.)

>> max([1-i 1+i 3-5i 61i])
ans =

0 + 6.00001

>> max ([1, 0, -23, 12, 16])
ans =

16

(continued)
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min (V) The minimum component of V. (min is calculated for complex vectors as the complex number with
the smallest complex modulus (magnitude), computed with min(abs(V)). Then it computes the
smallest phase angle with min(angle(V)), if necessary.)

>> min([1-1 1+i 3-5i 6i])
ans =

1.0 -1.00001

>> min ([1, 0, -23, 12, 16])
ans =

-23

mean (V) Average of the components of V.
>> mean([1-1i 1+i 3-5i 61i])
ans =
1.2500 + 0.2500i
>> mean ([1, 0, -23, 12, 16])
ans =

1.2000
median (V) Median of the components of V.

>> median([1-1 1+i 3-51 6i])
ans =

2.0000 - 2.0000i

>> median ([1, 0, -23, 12, 16])

ans =

(continued)
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std (V)

sort (V)

Standard deviation of the components of V.
>> std([1-1 1+i 3-5i 61i])

ans =

4.7434

>> std ([1, 0, -23, 12, 16])

ans =

15.1888

Sorts the components of V in ascending order. For complex entries the order is by absolute value

and argument.

>> sort([1-1i 1+i 3-5i 6i])

ans =

Columns 1 through 2

1.0000 - 1.0000i 1.0000 + 1.0000i
Columns 3 through 4

3.0000 - 5.0000i 0 + 6 0000i
>> sort ([1, 0, -23, 12, 16])

ans =

-23 0112 16

(continued)
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sum (V) Returns the sum of the components of V.
>> sum([1-i 1+i 3-5i 61i])
ans =
5.0000 + 1.00001
>> sum ([1, 0, -23, 12, 16])
ans =

6
prod (V) Returns the product of the components of V, so, for example, n! = prod(1:n).

>> prod([1-1 1+i 3-51 6i])
ans =

60.0000 + 36 0000i

>> prod ([1, 0, -23, 12, 16])

ans =

(continued)
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cumsum (V)

cumprod (V)

Gives the cumulative sums of the components of V.
>> cumsum([1-1 1+i 3-51 6i])

ans =

Columns 1 through 2

1.0000 - 1.0000i  2.0000

Columns 3 through 4

5.0000 - 5.0000i 5.0000 + 1.0000i

>> cumsum ([1, 0, -23, 12, 16])

ans =

11 -22 -10 -6

Gives the cumulative products of the components of V.
>> cumprod([1-i 1+i 3-5i 61i])

ans =

Columns 1 through 2

1.0000 - 1.0000i 2.0000

Columns 3 through 4

6.0000 - 10.0000i 60.0000 + 36 0000i

>> cumprod ([1, 0, -23, 12, 16])

(continued)
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diff (V) Gives the vector of first differences of V (V,- V- ).
>> diff([1-1 1+i 3-5i 6i])
ans =
0 + 2.0000i 2.0000 - 6.00001 -3.0000 + 11.0000i
>> diff([1, 0, -23, 12, 16])
ans =

-1-23 35 4
gradient (V) Gives the gradient of V.

>> gradient([1-1 1+i 3-51 6i])

ans =

Columns 1 through 3

0 + 2.00001 1.0000 - 2.0000i -0.5000 + 2.5000i
Column 4

-3,0000 + 11 0000i

>> gradient ([1, 0, -23, 12, 16])

ans =

-1.0000 - 12.0000 6.0000 19.5000 4.0000

(continued)
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del2 (V) Gives the Laplacian of V (5-point discrete).
>> del2([1-1 1+1 3-5i 6i])
ans =
Columns 1 through 3
2.2500 - 8.2500i 0.5000 - 2.0000i -1.2500 + 4.25001
Column 4
-3,0000 + 10 5000i
>> del2 ([1, o, -23, 12, 16])
ans =

-25.5000 - 5.5000 14.5000 - 7.7500 - 30.0000
fft (V) Gives the discrete Fourier transform of V.

>> Fft([1-1 1+41 3-5i 61i])

ans =

Columns 1 through 3

5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 - 13.0000i
Column 4

3.0000 + 5.0000i

>> fft([1, o, -23, 12, 16])

ans =

Columns 1 through 3

6.0000 14.8435 +35.78941i -15.3435 -23.88241
Columns 4 through 5

-15.3435 +23.88241 14.8435 -35.78941

(continued)
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fft2 (V) Gives the two-dimensional discrete Fourier transform of V.

>> fft2([1-1 1+1 3-5i 61i])

ans =

Columns 1 through 3

5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 - 13.0000i

Column 4

3.0000 + 5.0000i

>> fft2([1, o0, -23, 12, 16])

ans =

Columns 1 through 3

6.0000 14.8435 +35.78941 -15.3435 -23.88241

Columns 4 through 5

-15.3435 +23.8824i 14.8435 -35.7894i

(continued)
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ifft (V) Gives the inverse discrete Fourier transform of V.

>> ifft([1-1 1+1 3-5i 61i])

ans =

Columns 1 through 3

1.2500 + 0.25001i 0.7500 + 1.2500i 0.7500 - 3.25001

Column 4

-1.7500 + 0.75001

>> ifft([1, o0, -23, 12, 16])

ans =

Columns 1 through 3

1.2000 2.9687 - 7.1579i -3.0687 + 4.77651

Columns 4 through 5

-3.0687 - 4.77651  2.9687 + 7.1579i

(continued)
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ifft2 (V) Gives the inverse two-dimensional discrete Fourier transform of V.

>> ifft2([1-1 1+i 3-51 6i])

ans =

Columns 1 through 3

1.2500 + 0.25001i 0.7500 + 1.2500i 0.7500 - 3.25001

Column 4

-1.7500 + 0.75001

>> ifft2([1, o, -23, 12, 16])

ans =

Columns 1 through 3

1.2000 2.9687 - 7.1579i -3.0687 + 4.77651

Columns 4 through 5

-3.0687 - 4.77651  2.9687 + 7.1579i

5.4 Basic Functions with Complex Matrix Arguments

The functions given in the above table also support complex matrices as arguments, in which case the result is a row
vector whose components are the results of applying the function to each column of the matrix. Let us not forget that
these functions are also valid for real variables, since the set of real numbers is a subset of the set of complex numbers.
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max (Z) Returns a row vector indicating the maximum component of each column of the matrix Z. (max
is calculated for complex vectors V as the complex number with the largest complex modulus
(magnitude), computed with max(abs(V)). Then it computes the largest phase angle with
max(angle(V)), if necessary.)

>> Z = [1-i 31 5;-1+i 0 2i;6-5i 8i -7]

=

1.0000 - 1.0000i 0 + 3.0000i 5.0000
-1.0000 + 1.0000i 0 0 + 2.0000i
6.0000 - 5.00001 0 + 8.0000i -7.0000

>> Z = [1-1 31 5-12i;-1+i 0 2i;6-5i 8i -7+6i]

7 =
1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i
-1.0000 + 1.00001 0 0 + 2.00001
6.0000 - 5.0000i 0 + 8.0000i -7.0000 + 6.0000i
>> max(Z)

ans =

6.0000 - 5.0000i 0 + 8.0000i 5.0000 - 12.0000i

>> 71 = [135;-10 2;6 8 -7]

1 =

-1 0 2

>> max(Z1)

(continued)
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min (Z)

mean (Z)

Returns a row vector indicating the minimum component of each column of the matrix Z. (min
is calculated for complex vectors V as the complex number with the smallest complex modulus
(magnitude), computed with min(abs(V)). Then it computes the smallest phase angle with
min(angle(V)), if necessary.)

>> min(Z)

ans =

1.0000 - 1.0000i 0 0 + 2.00001

>> min(Z1)

-1 0 -7

Returns a row vector indicating the mean of the components of each column of Z.

>> mean(Z)
ans =
2.0000 - 1.6667i 0 + 3.66671 -0.6667 - 1.33331

>> mean(Z1)

ans =

2.0000 3.6667 0
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median (Z)

std (Z)

Returns a row vector indicating the median of the components of each column of Z.

>> median(Z)

ans =

-1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.00001

>> median(Z1)

ans =

1 3 2

Returns a row vector indicating the standard deviation of the components of each column of Z.

>> std(Z)

ans =

4.7258 4.0415 11.2101

>> std(Z1)

ans =

3.6056 4.0415 6.2450

(continued)
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sort (Z)

sum (Z)

Sorts the components of the columns of Z in ascending order. For complex entries the order is by

absolute value and argument.

>> sort(Z)

ans =

1.0000 - 1.0000i 0 0 + 2.0000i
-1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.00001
6.0000 - 5.00001 0 + 8.00001 5.0000 - 12.0000i

>> sort(Z1)

ans =
-1 0 -7
1 3 2
6 8 5

Returns a row vector indicating the sum of the components of each column of Z.

>> sum(Z)

ans =

6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> sum(Z1)

ans =
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prod (Z)

cumsum (Z)

Returns a row vector indicating the product of the components of each column of Z.
>> prod(Z)

ans =

1.0e+002 *

0.1000 + 0.1200i 0 -2.2800 + 0.74001

>> prod(Z1)

-6 0o -70

Returns a matrix indicating the cumulative sums of the elements in the columns of Z.

>> cumsum(Z)

ans =

1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i
0 0 + 3.0000i 5.0000 - 10.0000i
6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> cumsum(Z1)

3 5
3
11 0

(continued)
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cumprod(V)

diff (Z)

Returns a matrix indicating the cumulative products of the elements in the columns of Z.

>> cumprod(Z)
ans =

1.0e+002 *

0.0100 - 0.0100i
0 + 0.02001
0.1000 + 0.12001

>> cumprod(Z1)

ans =
1 3 5
-1 0 10
-6 0o -70

0 + 0.0300i 0.0500 - 0.12001

0.2400 + 0.10001
-2.2800 + 0.74001

Returns the matrix of first differences of the components of the columns of Z.

>> diff(Z)

ans =

-2.0000 + 2.0000i
7.0000 - 6.0000i

>> diff(z1)

ans =
2 -3 -3
7 8 -9

0 - 3.0000i -5.0000 + 14.0000i
0 + 8.0000i -7.0000 + 4.0000i
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gradient (Z)

del2 (Z)

Returns the matrix of gradients for the columns of Z.

>> gradient(Z)

ans =

-1.0000 + 4.0000i 2.0000 - 5.5000i 5.0000 - 15.0000i
1.0000 - 1.0000i 0.5000 + 0.5000i 0 + 2.00001
-6.0000 + 13.0000i -6.5000 + 5.5000i -7.0000 - 2.0000i

>> gradient(Z1)

ans =

2.0000 2.0000 2.0000

1.0000 1.5000 2.0000
2.0000 - 6.5000 - 15.0000

Returns the matrix indicating the Laplacian of the columns of Z (5-point discrete).
>> del2(Z)
ans =
3.7500 - 6.7500i 1.5000 - 2.0000i 1.0000 - 7.2500i
2.0000 - 1.2500i -0.2500 + 3.5000i -0.7500 - 1.75001
2.0000 - 5.7500i -0.2500 - 1.0000i -0.7500 - 6.2500i
>> del2(Z1)
ans =
2.2500 2.7500 -1.5000

2.5000 3.0000 -1.2500
-2.0000 -1.5000 -5.7500
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fft (Z)

ffe2 (2)

Returns the matrix with discrete Fourier transforms of the columns of Z.
>> £ft(2Z)
ans =
6.0000 - 5.0000i 0 + 11.00001 -2.0000 - 4.0000i
3.6962 + 7.0622i -6.9282 - 1.0000i 5.0359 - 22.0622i
-6.6962 - 5.06221 6.9282 - 1.0000i 11.9641 - 9.93781
>> fft(Z1)
ans =
6.0000 11.0000 0

-1.5000 + 6.0622i -1.0000 + 6.9282i  7.5000 - 7.7942i
-1.5000 - 6.06221 -1.0000 - 6.9282i  7.5000 + 7.7942i

Returns the matrix with the two-dimensional discrete Fourier transforms of the columns of the matrix Z.
>> fft2(2)

ans =

4.0000 + 2.00001 19.9904 - 10.23211 -5.9904 - 6.76791

1.8038 - 16.0000i 22.8827 + 28.9545i -13.5981 + 8.2321i

12.1962 - 16.0000i -8.4019 + 4.7679i -23.8827 - 3.9545i

>> fft2(71)

ans =

17.0000 0.5000 - 9.5263i 0.5000 + 9.5263i

5.0000 + 5.1962i  8.0000 + 13.8564i -17.5000 - 0.86601
5.0000 - 5.1962i -17.5000 + 0.8660i 8.0000 - 13.8564i
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ifft (Z)

iffe2 (Z)

Returns the matrix with the inverse inverse discrete Fourier transform of the columns of the matrix Z.
>> ifft(z)
ans =
2.0000 - 1.66671i 0 + 3.66671i -0.6667 - 1.33331
-2.2321 - 1.68741  2.3094 - 0.33331  3.9880 - 3.31261
1.2321 + 2.3541i -2.3094 - 0.33331 1.6786 - 7.3541i
>> ifft(zZ1)
ans =
2.0000 3.6667 0

-0.5000 - 2.0207i -0.3333 - 2.3094i 2.5000 + 2.5981i
-0.5000 + 2.0207i -0.3333 + 2.3094i 2.5000 - 2.5981i

Returns the matrix with the inverse two-dimensional discrete Fourier transform of the columns of Z.
>> ifft2(z)

ans =

0.4444 + 0.22221i -0.6656 - 0.75201  2.2212 - 1.1369i

1.3551 - 1.77781 -2.6536 - 0.43941i -0.9335 + 0.52981

0.2004 - 1.77781i -1.5109 + 0.9147i 2.5425 + 3.21721

>> ifft2(z1)

ans =

1.8889 0.0556 + 1.05851  0.0556 - 1.05851
0.5556 - 0.5774i 0.8889 - 1.53961i -1.9444 + 0.0962i
0.5556 + 0.5774i -1.9444 - 0.0962i 0.8889 + 1.53961

5.5 General Functions with Complex Matrix Arguments

MATLAB incorporates a broad group of hyperbolic, trigonometric, exponential and logarithmic functions that support
a complex matrix as an argument. Obviously, all these functions also accept a complex vector as the argument, since a
vector is a particular case of matrix. All functions are applied elementwise in the matrix.
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5.5.1 Trigonometric Functions of a Complex Matrix Variable

Below is a table summarizing the trigonometric functions of a complex variable and their inverses which are
incorporated in MATLAB, illustrated with examples. All the examples use as arguments the matrices Z and Z1
introduced at the beginning of the table in the description of the sine function.

Direct Trigonometric Functions

sin(Z) sine function

>> Z = [1-1, 1+i, 2i;3-6i, 2+4i, -i;i,21,31]

Z =
1.0000 - 1.0000i  1.0000 + 1.00001 0 + 2.0000i
3.0000 - 6.0000i 2.0000 + 4.0000i 0 - 1.0000i

0 + 1.0000i 0 + 2.00001 0 + 3.00001
>> 71 = [1,1,2;3,2,-1;1,2,3]

71 =

>> sin(Z)
ans =
1.0e+002 *

0.0130 - 0.0063i 0.0130 + 0.00631 0 + 0.03631
0.2847 + 1.99691i  0.2483 - 0.11361 0 - 0.01181
0 + 0.01181 0 + 0.03631 0 + 0.1002i

>> sin(Z1)
ans =

0.8415 0.8415  0.9093
0.1411 0.9093 - 0.8415
0.8415 0.9093 0.1411

(continued)
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Direct Trigonometric Functions

cos (Z) cosine function

>> cos(Z)

ans =

1.0e+002 *

0.0083 + 0.0099i  0.0083 - 0.0099i
-1.9970 + 0.2847i -0.1136 - 0.2481i
0.0154 0.0376

>> cos(Z1)

ans =

0.5403  0.5403 - 0.4161

-0.9900 - 0.4161 0.5403
0.5403 - 0.4161 - 0.9900

tan (Z) tangent function

>> tan(Z)

ans =

0.2718 - 1.0839i  0.2718 + 1.0839i
-0.0000 - 1.00001 -0.0005 + 1.0004i

0 + 0.76161 0 + 0.9640i
>> tan(Z1)
ans =

1.5574  1.5574 - 2.1850
-0.1425 - 2.1850 - 1.5574
1.5574 - 2.1850 - 0.1425

0.0376

0.0154

0.1007
0 + 0.96401
0 - 0.76161
0 + 0.99511

(continued)

VECTOR AND MATRIX FUNCTIONS OF COMPLEX VARIABLES

183



CHAPTER 5 © VECTOR AND MATRIX FUNCTIONS OF COMPLEX VARIABLES

Direct Trigonometric Functions

csc (Z) cosecant function

>> csc(Z)

ans =

0.6215 + 0.3039i  0.6215 - 0.3039i 0 - 0.2757i

0.0007 - 0.0049i 0.0333 + 0.0152i 0 + 0.8509i
0 - 0.85091 0 - 0.2757i 0 - 0.0998i

>> csc(Z1)

ans =

1.1884 1.1884 1.0998
7.0862 1.0998 -1.1884
1.1884 1.0998 7.0862

sec (Z) secant function

>> sec(Z)

ans =

0.4983 - 0.5911i  0.4983 + 0.5911i  0.2658
-0.0049 - 0.0007i -0.0153 + 0.03331 0.6481
0.6481 0.2658 0.0993
>> sec(Z1)

ans =

1.8508 1.8508 -2.4030

-1.0101  -2.4030 1.8508
1.8508 -2.4030 -1.0101

(continued)
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Direct Trigonometric Functions

cot (Z) cotangent function

>> cot(Z)

ans =

0.2176 + 0.8680i 0.2176 - 0.86801 0 - 1.03731
-0.0000 + 1.0000i -0.0005 - 0.9996i 0 + 1.31301
0 - 1.31301 0 - 1.03731 0 - 1.00501

>> cot(Z1)

ans =

0.6421 0.6421  -0.4577

-7.0153  -0.4577 -0.6421

0.6421  -0.4577 -7.0153

Inverse Trigonometric Functions

asin (Z) arc sine function

>> asin(Z)

ans =

0.6662 - 1.0613i 0.6662 + 1.0613i 0 + 1.44361

0.4592 - 2.59981  0.4539 + 2.19861 0 - 0.88141
0 + 0.8814i 0 + 1.44361 0 + 1.8184i

>> asin(Z1)

ans =

1.5708 1.5708 1.5708 - 1.3170i

1.5708 - 1.7627i 1.5708 - 1.3170i -1.5708

1.5708 1.5708 - 1.3170i 1.5708 - 1.7627i

(continued)
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Inverse Trigonometric Functions

acos (Z) arc cosine function

>> acos(Z)

ans =

0.9046 + 1.06131i
1.1115 + 2.59981
1.5708 - 0.8814i
>> acos(Z1)

ans =

0

0+ 1.76271
0

0.9046 - 1.0613i 1.5708 - 1.4436i
1.1169 - 2.1986i 1.5708 + 0.8814i
1.5708 - 1.4436i1 1.5708 - 1.8184i

0 0 + 1.31701
0 + 1.31701 3.1416
0 + 1. 31701 0+ 1. 76271

atan(Z) and atan2 (real(Z),imag(Z)) arc tangent function

>> atan(Z)

ans =

1.0172 - 0.4024i
1.5030 - 0.1335i1
0 + Infi
>> atan(Z1)

ans =

0.7854 0.7854

1.2490 1.1071
0.7854 1.1071

1.0172 + 0.4024i -1.5708 + 0.54931
1.4670 + 0.20061 0 - Infi
-1.5708 + 0.5493i -1.5708 + 0.3466i

1.1071
-0.7854
1.2490
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Inverse Trigonometric Functions

acsc (Z) arc cosecant function

>> acsc(Z)

ans =

0.4523 + 0.53061

0.0661 + 0.1332i
0 - 0.8814i

>> acsc(Z1)

ans =

1.5708 1.5708

0.3398 0.5236
1.5708 0.5236

0.4523 - 0.53061 0 - 0.48121

0.0982 - 0.1996i 0 + 0.88141
0 - 0.48121 0 - 0.32751

0.5236

-1.5708

0.3398

asec (Z) arc secant function

>> asec(Z)

ans =

1.1185 - 0.53061
1.5047 - 0.1332i

1.5708 + 0.88141

>> asec(Z1)

ans =
0 0
1.2310 1.0472
0 1.0472

1.1185 + 0.53061i 1.5708 + 0.4812i
1.4726 + 0.19961i  1.5708 - 0.88141
1.5708 + 0.48121 1.5708 + 0.32751

1.0472
3.1416
1.2310

(continued)
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Inverse Trigonometric Functions

acot (Z) arc cotangent function

>> acot(Z)

ans =

0.5536 + 0.40241i  0.5536 - 0.40241 0 - 0.54931

0.0678 + 0.1335i  0.1037 - 0.2006i 0+ Infi
0 - Infi 0 - 0.54931 0 - 0.34661

>> acot(Z1)
ans =

0.7854 0.7854 0.4636
0.3218 0.4636 -0.7854
0.7854 0.4636 0.3218

5.5.2 Hyperbolic Functions of a Complex Matrix Variable

Below is a table summarizing the hyperbolic functions of complex matrix variables and their inverses which are
incorporated in MATLAB, illustrated with examples.

Direct Hyperbolic Functions

sinh (Z) hyperbolic sine function

>> sinh (Z)

ans =

0.6350 - 1.2985i 0.6350 + 1.2985i 0 + 0.9093i

9.6189 + 2.8131i -2.3707 - 2.84721 0 - 0.8415i
0 + 0.8415i 0 + 0.9093i 0 + 0.1411i

>> sinh(Z1)
ans =

1.1752 1.1752 3.6269
10.0179 3.6269  -1.1752
1.1752 3.6269 10.0179

(continued)
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Direct Hyperbolic Functions

cosh (Z) hyperbolic cosine function

>> cosh(Z)

ans =

0.8337 - 0.98891 0.8337 + 0.98891 -0.4161
9.6667 + 2.7991i -2.4591 - 2.7448i  0.5403
0.5403 -0.4161 -0.9900
>> cosh(Z1)
ans =
1.5431 1.5431 3.7622
10.0677 3.7622 1.5431
1.5431 3.7622 10.0677
tanh (Z) hyperbolic tangent function
>> tanh(Z)
ans =
1.0839 - 0.2718i 1.0839 + 0.2718i 0 - 2.18501
0.9958 + 0.0026i 1.0047 + 0.03641 0 - 1.55741
0 + 1.55741 0 - 2.18501 0 - 0.1425i
>> tanh(Z1)
ans =
0.7616 0.7616 0.9640
0.9951 0.9640 -0.7616
0.7616 0.9640 0.9951

(continued)
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Direct Hyperbolic Functions

csch (z) hyperbolic cosecant function

>> csch (2)

ans =

0.3039 + 0.6215i  0.3039 - 0.6215i 0 - 1.0998i
0.0958 - 0.0280i -0.1727 + 0.2074i 0 + 1.1884i
0 - 1.1884i 0 - 1.0998i 0 - 7.08621

>> csch(z1)
ans =
0.8509 0.8509 0.2757

0.0998 0.2757 -0.8509
0.8509 0.2757 0.0998

sech (Z) hyperbolic secant function

>> sech (2)

ans =

0.4983 + 0.5911i  0.4983 - 0.59111 -2.4030
0.0954 - 0.0276i -0.1811 + 0.2021i 1.8508
1.8508 -2.4030 -1.0101
>> sech(Z1)

ans =

0.6481 0.6481 0.2658

0.0993 0.2658 0.6481
0.6481 0.2658 0.0993
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Direct Hyperbolic Functions

coth (Z) hyperbolic cotangent function

>> coth (Z)

ans =

0.8680 + 0.21761
1.0042 - 0.00271
0 - 0.64211
>> coth(z1)

ans =

1.3130 1.3130

1.0050 1.0373
1.3130 1.0373

0.8680 - 0.21761 0 + 0.45771

0.9940 - 0.0360i 0 + 0.6421i

0 + 0.45771 0 + 7.01531
1.0373
-1.3130
1.0050

Inverse Hyperbolic Functions

asinh (Z) hyperbolic arc sine function

>> asinh(Z)

ans =

1.0613 - 0.66621
2.5932 - 1.1027i
0 + 1.57081
>> asinh(Z1)

ans =

0.8814 0.8814

1.8184 1.4436
0.8814 1.4436

1.0613 + 0.6662i 1.3170 + 1.5708i
2.1836 + 1.0969i 0 - 1.5708i
1.3170 + 1.57081 1.7627 + 1.5708i

1.4436
-0.8814
1.8184

(continued)
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Inverse Hyperbolic Functions

acosh (Z) hyperbolic arc cosine function

>> acosh(Z)
ans =
1.0613 - 0.90461
2.5998 - 1.1115i
0.8814 + 1.57081
>> acosh(Z1)
ans =

0

1.7627
0

1.0613 + 0.90461
2.1986 + 1.11691
1.4436 + 1.57081

0
1.3170
1.3170

atanh (Z) hyperbolic arc tangent function

>> atanh(Z)
ans =
0.4024 - 1.01721
0.0656 - 1.43771
0 + 0.78541
>> atanh(Z1)
ans =

inf

0.3466 + 1.5708i
inf

0.4024 + 1.01721
0.0964 + 1.3715i
0 + 1.10711

inf
0.5493 + 1.5708i
0.5493 + 1.5708i

1.4436 + 1.57081
0.8814 - 1.57081
1.8184 + 1.5708i

1.3170
0 + 3.14161
1.7627

0 + 1.1071i
0 - 0.7854i
0 + 1.2490i

0.5493 + 1.5708i
-inf
0.3466 + 1.5708i

192

(continued)



CHAPTER 5

Inverse Hyperbolic Functions

acsch (Z) hyperbolic arc cosecant function

>> acsch(Z)

ans =

0.5306 + 0.45231i
0.0672 + 0.13341

0 - 1.57081

>> acsch(Z1)

ans =

0.8814 0.8814
0.3275 0.4812
0.8814 0.4812

0.5306 - 0.45231
0.1019 - 0.20031
0 - 0.52361

0.4812
-0.8814
0.3275

asech (Z) hyperbolic arc secant function

>> asech(Z)

ans =

0.5306 + 1.1185i
0.1332 + 1.50471

0.8814 - 1.57081

>> asech(Z1)

0.5306 - 1.1185i1
0.1996 - 1.47261
0.4812 - 1.57081

0 - 0.52361
0 + 1.57081
0 - 0.3398i

0.4812 - 1.57081
0.8814 + 1.57081
0.3275 - 1.57081

ans =

0 0 0 + 1.04721

0 + 1.23101 0 + 1.04721 0 + 3.14161

0 0 + 1.04721 0 + 1.2310i
(continued)
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Inverse Hyperbolic Functions

acoth (Z) hyperbolic arc cotangent function

>> acoth(z)

ans =

0.4024 + 0.55361  0.4024 - 0.55361 0 - 0.46361
0.0656 + 0.13311 0.0964 - 0.19931 0 + 0.78541
0 - 0.78541 0 - 0.46361 0 - 0.3218i

>> acoth(z1)
ans =

Inf Inf 0.5493
0.3466 0.5493 -Inf
Inf 0.5493 0.3466

5.5.3 Exponential and Logarithmic Functions of Complex Matrix Variables

Below is a table summarizing the exponential and logarithmic functions which are incorporated in MATLAB,

illustrated with examples. The matrices Z1 and Z are the same as those in the previous examples.

Function Meaning

exp (Z) Base e exponential function (e  x)
>> exp(Z)

ans =

1.4687 - 2.2874i 1.4687 + 2.2874i -0.4161 + 0.90931
19.2855 + 5.6122i -4.8298 - 5.5921i  0.5403 - 0.8415i
0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i

>> exp(Z1)

ans =

2.7183 2.7183 7.3891
20.0855 7.3891 0.3679
2.7183 7.3891 20.0855
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Function Meaning
log (Z) Base e logarithm of Z.
>> log(Z)
ans =
0.3466 - 0.7854i 0.3466 + 0.7854i 0.6931 + 1.5708i
1.9033 - 1.1071i 1.4979 + 1.1071i 0 - 1.57081
0 + 1.57081  0.6931 + 1.57081  1.0986 + 1.57081
>> log(Z1)
ans =
0 0 0.6931
1.0986 0.6931 0 + 3.14161
0 0.6931 1.0986
logl0 (Z) Base 10 logarithm of Z.

>> log10(Z)

ans =

0.1505 - 0.3411i 0.1505 + 0.3411i
0.8266 - 0.48081 0.6505 + 0.4808i

0 + 0.68221 0.3010 + 0.68221

>> log10(Z1)

ans =

0 0
0.4771 0.3010 0 + 1.36441
0 0.3010

0

.3010 + 0.68221
0 - 0.68221
L4771 + 0.68221

.3010

<4771

(continued)
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Function Meaning
log2 (Z) Base 2 logarithm of Z.
>> log2(Z)
ans =
0.5000 - 1.13311 0.5000 + 1.1331i 1.0000 + 2.2662i
2.7459 - 1.59731 2.1610 + 1.59731i 0 - 2.2662i
0 +2.26621  1.0000 + 2.26621  1.5850 + 2.26621
>> log2(Z1)
ans =
0 0 1.0000
1.5850 1.0000 0 + 4.53241
0 1.0000 1.5850
pow2 (Z) Base 2 exponential function (2/\Z).
>> pow2(Z)
ans =

1.5385 + 1.27791
-3.7307 + 1.44271
0.1835 + 0.98301

1.5385 - 1.2779i
-4.2054 + 6.80551
0.7692 + 0.63901

>> pow2(Z1)
ans =
2.0000 2.0000 4.0000

8.0000 4.0000 0.5000
2.0000 4.0000 8.0000

0.1835 + 0.98301
0.7692 - 0.6390i
-0.4870 + 0.87341
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Function Meaning

sqrt (Z) Square root of Z.
>> sqrt (Z)
ans =
1.0987 - 0.45511 1.0987 + 0.45511i 1.0000 + 1.0000i
2.2032 - 1.36171 1.7989 + 1.1118i 0.7071 - 0.7071i
0.7071 + 0.7071i 1.0000 + 1.0000i 1.2247 + 1.2247i
>> sqrt(z1)
ans =
1.0000 1.0000 1.4142

1.7321 1.4142 0 + 1.00001
1.0000 1.4142 1.7321
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5.5.4 Specific Features of Complex Matrices

MATLAB incorporates a specific group of functions of a complex variable allowing you to work with moduli,
arguments, and real and imaginary parts. Among these functions are the following:

Function Meaning

abs (Z) The complex modulus (absolute value).
>> abs (Z)
ans =

1.4142 1.4142 2.0000
6.7082 4.4721 1.0000
1.0000 2.0000 3.0000
>> abs(Z1)
ans =
112
3-2-1
123

angle (Z) Argument function.
>> angle (Z)
ans =
-0.7854 0.7854 1.5708
-1.1071 1.1071 -1.5708
1.5708 1.5708 1.5708

>> angle(Z1)

ans =

0 0
0 3.1416
0 0

(continued)
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Function

Meaning

conj (Z)

real (Z)

Complex conjugate.

>> conj (Z)

ans =

1.0000 + 1.0000i

3.0000 + 6.0000i
0 - 1.0000i

>> conj(Z1)

ans =

112

2-3-1

123

Real part.

>> real (Z)

>> real(Z1)
ans =
112

2-3-1
123

1.0000 - 1.00001
2.0000 - 4.0000i

0 - 2.0000i

0 - 2.0000i
0 + 1.0000i
0 - 3.00001

(continued)
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Function

Meaning

imag (Z)

floor (Z)

Imaginary part.
>> imag (Z)
ans =

-112

-4 6-1

123

>> imag (Z1)

ans

000
000
000

Floor function applied to real and imaginary parts.

>> floor(12.357*Z)

ans =
12.0000 -13.0000i 12.0000 +12.0000i 0 +24.0000i
37.0000 -75.0000i 24.0000 +49.00001 0 -13.00001

0 +12.00001 0 +24.00001 0 +37.00001
>> floor(12.357*Z1)
ans =
12 12 24

37 24 -13
12 -24 -37
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Function

Meaning

ceil (Z)

round (Z)

Ceiling function applied to real and imaginary parts.

>> ceil(12.357%Z)

ans =

13.0000 - 12.00001 13.0000 + 13.0000i

38.0000 - 74.0000i 25.0000 + 50.0000i
0 + 13.00001 0 + 25.00001

>> ceil(12.357*71)

ans =

13 13 25

38 25 -12
13 25 38

Round function applied to real and imaginary parts.

>> round(12.357*Z)

ans =

12.0000 - 12.0000i 12.0000 + 12.0000i

37.0000 - 74.0000i 25.0000 + 49.00001
0 + 12.00001 0 + 25.00001

>> round(12.357*Z1)

ans =

12 -12 -25

37 25 -12
12 25 37

0 + 25.00001
0 - 12.0000i
0 + 38.00001

0 + 25.0000i
0 - 12.00001
0 + 37.00001

(continued)
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Function Meaning

fix (Z) Fix applied to real and imaginary parts.

>> fix(12.357*%Z)

ans =
12.0000 - 12.0000i 12.0000 + 12.0000i 0 + 24.00001
37.0000 - 74.0000i 24.0000 + 49.00001 0 - 12.0000i

0 + 12.0000i 0 + 24.0000i 0 + 37.0000i
>> fix(12.357%71)
ans =
12 12 24

24 -37 12
12 -24 -37

5.6 Operations with Real and Complex Variables

MATLAB includes the usual matrix operations of sum, difference, product, exponentiation and inversion.
Obviously all these operations will also be valid for real matrices. The following table summarizes those operations
that are valid both for numerical and algebraic real and complex matrices.
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A+B

Sum of matrices.

>> A=[1+i, 1-i, 2i; -i,-31,6-51; 2+3i, 2-31i, i]

A=
1.0000 + 1.00001  1.0000 - 1.0000i 0 + 2.00001

0 - 1.0000i 0 - 3.00001 6.0000 - 5.0000i
2.0000 + 3.0000i  2.0000 - 3.0000i 0 + 1.00001

>> B=[1, -i, 2i; 1-i,7-31,2-5i; 8-6i, 5-i, 1+i]
B =

0 + 1.0000i 0 - 1.0000i 0 + 2.0000i
1.0000 - 1.0000i  7.0000 - 3.0000i  2.0000 - 5.0000i
8.0000 - 6.0000i 5.0000 - 1.0000i 1.0000 + 1.0000i

>> A1=[1 6 2; 3 50; 2 4 -1]

A1

4 -1

> B1=[-3 -6 1; -3 -5 2; 12 14 -10]

Bl =
-3 -6 1
-3 -5 2

>> A+B

ans =

1.0000 + 2.0000i  1.0000 - 2.0000i 0 + 4.00001
1.0000 - 2.0000i 7.0000 - 6.0000i 8.0000 - 10.0000i
10.0000 - 3.00001  7.0000 - 4.0000i  1.0000 + 2.0000i

>> A1+B1

ans =

-2 0 3
0 0 2

14 18 -11

(continued)
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A-B Difference of matrices.
>> A-B
ans =
1.0000 1.0000 0
-1.0000 -7.0000 4.0000

-6.0000 + 9.00001 -3.0000 - 2.0000i -1.0000

>> A1-B1
ans =

4 12 1

6 10 -2
-10 -10 9

A*B Product of matrices.

> A * B
ans =

11.0000 + 15.0000i  7.0000 - 1.0000i - 7.0000 - 3.0000i
16.0000 - 79.0000i 15.0000 - 52.0000i - 2.0000 - 5.0000i
2.0000 + 5.0000i 9.0000 - 24.0000i - 18.0000 - 11.0000i

>> A1*B1
ans =

3 -8 -7
-24  -43 13
-30 -46 20

(continued)
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A7n nth power of the matrix A.
>> A3
ans =
1.0e+002 *
0.1000 - 0.3400i -0.3200 - 0.12001 0.3400 - 0.3600i
0.0900 - 0.0300i -1.0700 + 0.21001 -2.2500 - 0.6700i
0.3700 - 0.79001 -1.0300 - 0.0300i -0.0700 - 0.37001
>> A1”3
ans =
155 358 46

159 347 30
106 232 19

ans =
Columns 1 through 2

1.0000 - 1.0000i  2.0000

Columns 3 through 4

6.0000 - 10. 0000i 60.0000 + 36 00001

>> cumprod ([1, 0, -23, 12, 16])

(continued)
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PAA Scalar p raised to the power of the matrix A.
>> 3%A
ans =
0.0159 - 1.2801i -0.5297 + 2.87791i -1.9855 + 3.07961

-10.3372 + 0.4829i 17.0229 +12.9445i 14.7327 +20.16331
-5.0438 + 0.23881 7.0696 + 6.9611i 5.7189 + 9.5696i

>> 3"MA1

ans =

1.0e+003 *

2.2230 4.9342 0.4889

2.1519 4.7769 0.4728
1.4346 3.1844 0.3156

A Transpose of the matrix A.
> A
ans =
1.0000 - 1.00001 0 + 1.0000i  2.0000 - 3.0000i
1.0000 + 1.0000i 0 + 3.0000i 2.0000 + 3.0000i
0 - 2.0000i 6.0000 + 5.00001 0 - 1.0000i
>> A1’
ans =
3
5 4
-1

(continued)
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AN-1

Inverse of A .

>> AM-1

ans =

-2.5000 + 2.00001
0.5000 + 3.00001
-1.0000 - 1.00001
>> A1™-1

ans =

-0.2941 0.8235
0.1765 -0.2941
0.1176 0.4706
>> A¥AN-1

ans =

1.0000

-0.0000 - 0.00001
0.0000 + 0.00001
>> A1*A17-1

ans =

1.0000 -0.0000

-0.0000 1.0000
-0.0000 -0.0000

-0.0500 + 0.65001 0.8500 - 1.0500i
0.5500 + 0.3500i -0.3500 - 0.95001
-0.2000 + 0.10001  0.4000 + 0.3000i

-0.5882
0.3529
-0.7647

0.0000 - 0.0000i -0.0000 + 0.00001
1.0000 + 0.0000i  0.0000
0.0000 1.0000 + 0.0000i

1.0000

(continued)
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A\B If Ais square A\B= (A-1) * B and if A is not square A\B is the solution in the sense of least-
squares of the system AX = B.

>> A\B
ans =
-0.9000 -15.30001 6.8000 + 1.1000i 1.0500 - 3.6500i
-10.6000 - 5.2000i 5.2000 - 4.1000i -2.5500 - 2.35001
5.9000 0.70001 0.2000 + 3.4000i 2.2000 - 0.1000i
>> A1\B1
ans =
-8.6471 -10.5882 7.2353

4.5882  5.3529 -3.9412
-10.9412 -13.7647 8.7059

(continued)
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B/A

Equivalent to A'\B’'
>> B/A
ans =
3.0000 - 5.0000i -0.5000 - 1.0000i -0.5000 + 2.0000i
5.0000 + 27.0000i 5.6000 + 2.70001 -3.2000 - 8.9000i
-2.5000 + 43.5000i 6.3000 + 6.6000i -2.1000 -17.2000i
>> A'\B'
ans =
3.0000 + 5.0000i 5.0000 -27.0000i -2.5000 -43.5000i
-0.5000 + 1.0000i 5.6000 - 2.7000i 6.3000 - 6.6000i
-0.5000 - 2.0000i -3.2000 + 8.9000i -2.1000 +17.2000i
>> B1/A1
ans =
-0.0588  -0.2353 -1.1176
0.2353 -0.0588 -1.5294
-2.2353 1.0588 5.5294
>> A1'\B1'
ans =
-0.0588 0.2353 -2.2353

-0.2353  -0.0588 1.0588
-1.1176  -1.5294 5.5294
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EXERCISE 5-1

210

Given the complex numbers z,= 7-i, and z,= 5i, calculate: z° 2%z %, z'?, 2,72

>>

71

>>

72

>>

ans

>>

ans

>>

ans

>>

ans

>>

ans

Z1=1-1
1.0000 - 1.
72=51

0 + 5.
7173

2.0000 - 2.

71°2/72"4

0 - 0.

sqrt(Z1)

1.0987 - 0.

sqrt(Z2”3)

7.9057 - 7.

log(z1+22)

1.4166 + 1.

00001

00001

00001

00321

45511

90571

32581

149

Inz,+2,), sin(z,-z,), and tanh (z /z,).




CHAPTER 5
>> sin(Z1-72)
ans =
1.6974e+002 -1.0899e+0021
>> tanh(Z1/22)
ans =

-0.2052 - 0.19451

VECTOR AND MATRIX FUNCTIONS OF COMPLEX VARIABLES

EXERCISE 5-2

Perform the following operations with complex numbers:

L

3-4i

>> (178-i(-8))/(3-4*1) + 1
ans =
1

>> ir(sin(1+1))
ans =

-0.16665202215166 + 0.329041394503071
>> (2+log(i))~(2/1)
ans =

1.15809185259777 - 1.563880539890231
>> (1+i)7i
ans =

0.42882900629437 + 0.154871752464251

>> ir(log(1+1))

+ 1’ isin(1+i) , (2 + ln(l-))lli , (1 + i)i, iln(lﬂ')’ (1 + \/gl)ll
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ans =
0.24911518828716 + 0.150819744847171
>> (14sqrt(3)*i)~(1-1)
ans =

5.34581479196611 + 1.975948834528731

EXERCISE 5-3

Find the real part, imaginary part, modulus and argument of the following expressions:
N (NG
>> Z1=i"3*1; Z2=(1+sqrt(3)*i)~(1-1); Z3=(iri)"i;Z4=i"i;
>> format short
>> real([Z1 Z2 73 74])
ans =
1.0000  5.3458  0.0000  0.2079
>> imag([Z1 72 73 74])
ans =
0  1.9759 -1.0000 0
> abs([Z1 72 73 74])
ans =
1.0000  5.6993  1.0000  0.2079
>> angle([Z1 72 73 Z4])
ans =

0 0.3541  -1.5708 (0]
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EXERCISE 5-4

Consider the 3x3 matrix M whose elements are the squares of the first nine positive integers, multiplied by the
imaginary unit (reading from left to right and top to bottom).

Find the square, the square root and the exponential to base 2 and — 2 of M.
Find the elementwise Naperian logarithm and base e exponential of M.
Find €” and log(M).

>> M=i*[1 2 3;4 5 6;7 8 9]

M =
0 + 1.0000i 0 + 2.0000i 0 + 3.0000i
0 + 4.0000i 0 + 5.0000i 0 + 6.0000i
0 + 7.0000i 0 + 8.0000i 0 + 9.0000i
>> C=M*2
C =
-30 -36 -42
-66 -81 -96

-102 -126 -150

>> D=M"(1/2)

D =
0.8570 - 0.2210i 0.5370 + 0.2445i 0.2169 + 0.71011
0.7797 + 0.66071i 0.9011 + 0.8688i 1.0224 + 1.0769i
0.7024 + 1.5424i  1.2651 + 1.4930i  1.8279 + 1.4437i
>> 2™"M
ans =
0.7020 - 0.6146i -0.1693 - 0.27231i -0.0407 + 0.06991
-0.2320 - 0.3055i 0.7366 - 0.3220i -0.2947 - 0.33861
-0.1661 + 0.0036i -0.3574 - 0.37171i 0.4513 - 0.7471i
> (-2)"™M
ans =

17.3946 - 16.84431  4.3404 - 4.56961 -7.7139 + 7.7050i
1.5685 - 1.85951 1.1826 - 0.5045i -1.2033 + 0.8506i
-13.2575 + 13.1252i -3.9751 + 3.5607i  6.3073 - 6.0038i
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>> log(M)
ans =

0 + 1.57081 0.6931 + 1.57081 1.0986 + 1.57081

1.3863 + 1.57081 1.6094 + 1.57081i  1.7918 + 1.57081
1.9459 + 1.57081 2.0794 + 1.5708i  2.1972 + 1.5708i
>> exp(M)
ans =

0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.14111
-0.6536 .75681  0.2837 - 0.9589i 0.9602 - 0.2794i
0.7539 + 0.6570i -0.1455 + 0.9894i -0.9111 + 0.4121i

1
o
o
o

>> logm(M)
ans =
-5.4033 - 0.8472i 11.9931 - 0.31091 -5.3770 + 0.88461

12.3029 + 0.05371i -22.3087 + 0.89531 12.6127 .41831
-4.7574 + 1.61381 12.9225 + 0.78281 -4.1641 + 0.6112i

o
+
o

>> expm(M)
ans =
0.3802 - 0.6928i -0.3738 - 0.2306i -0.1278 + 0.23161

-0.5312 - 0.1724i 0.3901 - 0.1434i -0.6886 - 0.11431
-0.4426 + 0.34791 -0.8460 - 0.0561i -0.2493 - 0.4602i

o
o

EXERCISE 5-5

Consider the vector sum Zof the complex vector V = (i,-i, i) and the real vector R = (0,1,1). Find the mean,
median, standard deviation, variance, sum, product, maximum and minimum of the elements of , as well as its
gradient, the discrete Fourier transform and its inverse.

> Z=[1i,-1,1i]
7=

0 + 1.0000i 0 - 1.00001 0 + 1.00001i
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R =

0 1 1
>> V=Z4R
V =

0 + 1.00001 1.0000 - 1.0000i 1.0000 + 1.0000i
>> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]"
ans =

0.6667 - 0.33331
1.0000 + 1.0000i

1.2910

1.6667

2.0000 - 1.00001
0 - 2.0000i

1.0000 + 1.0000i
0 - 1.0000i

>> gradient(V)
ans =

1.0000 - 2.0000i 0.5000 0 + 2.0000i
>> (V)
ans =

2.0000 + 1.0000i -2.7321 + 1.0000i 0.7321 + 1.0000i
>> 1fft (V)
ans =

0.6667 + 0.33331  0.2440 + 0.33331 -0.9107 + 0.33331
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EXERCISE 5-6

Given the following matrices:

1 00 010 0 1 2 - i -
Al=|{0 1 0| A2=|0 O0 1| BiI=|0 -1 3| B2=|0 0 i
0 0 1 0 0 0 0 0 O 0 0 i

1 -1 0 0 2 1
Cl=|-1 sqri(2)i -sqri(2)i| C2=[1 0 0
0 0 -1 1 -1 0

First calculate A7 + A2, B1-B2and C1 + C2.

Then calculate AB - BA, A + B? + C?, ABC, sqrt (A) + sqrt (B) - sqrt(C), (€5+ €°), their transposes and
their inverses.

Finally check that any matrix multiplied by its inverse yields the identity matrix
>> Al=eye(3)
Al =

1 0 0

0 1 0

0 0 1

>> A2=[0 1 0; 0 0 1;0 0 0]

A2 =
0 1 0
0 0 1
0 0 0

>> A= A1+A2

A =
1 1 0
0 1 1
0 0 1
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>> B1=[0 1 2;0 -1 3;0 0 0]

B1 =
0 1 2
0 -1 3
0 0 0

>> B2=[-i i -i;0 0 i;0 0 i]

B2 =
0 - 1.0000i 0 + 1.0000i 0 - 1.0000i
0 0 0 + 1.0000i
0 0 0 + 1.0000i

>> B=B1-B2

B =

0 + 1.0000i  1.0000 - 1.0000i  2.0000 + 1.0000i
0 -1.0000 3.0000 - 1.0000i
0 0 0 - 1.0000i
>> C1=[1, -1, 0;-1,sqrt(2)*i,-sqrt(2)*i;0,0,-1]
(1=
1.0000 -1.0000 0
-1.0000 0 + 1.4142i 0 - 1.4142i
0 0 -1.0000

>> C2=[0 2 1;1 0 0;1 -1 0]

2 =
0 2 1
1 0 0
1 -1 0
>> C=C1+C2
C =
1.0000 1.0000 1.0000
0 0 + 1.4142i 0 - 1.4142i
1.0000 -1.0000 -1.0000
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>> M1=A*B-B*A

M1 =
0 -1.0000 - 1
0 0
0 0
>> M2=A"2+B"2+C"2
M2 =
2.0000 2.0000 + 3
0 - 1.4142i -0.0000 + 1
0 2.0000 - 1.
>> M3=A*B*C
M3 =
5.0000 + 1.0000i -3.5858 + 1
3.0000 - 2.0000i -3.0000 + O
0 - 1.00001 0+ 1.

>> M4=sqrtm(A)+sqrtm(B)-sqrtm(C)
M4 =
0.6356 + 0.8361i -0.3250 - 0.
0.1582 - 0.15211 0.0896 + O.
-0.3740 - 0.26541i 0.7472 + 0.
>> M5=expm(A)*(expm(B)+expm(C))
M5 =

14.1906 - 0.0822i  5.4400 + 4.
4.5854 - 1.49721  0.6830 + 2.

3.5528 + 0.35601i 0.1008 - O.
>> inv(A)
ans =
1 -1 1
0 1 -1
0 0 1

.00001

41421
41421

41421

.00001
.58581

00001

82041
57021
33701

27241
15751
74881

o

-6.
.0000

-3

w

[oc]

.0000
.0000

.0000
.0000
.0000

4142

.0734
.3029
.2255

.9169
.5597
.2433

+

o

.00001

41421
.58581
41421

1.00001

I

~

.41421
.00001

.28961
.80251
.10481

.58421
65731
.84061



>> inv(B)
ans =

0 - 1.0000i -1.0000 - 1.00001i

0 -1.0000
0 0
>> inv(C)
ans =
0.5000 0
0.2500 0 - 0.35361
0.2500 0 + 0.35361

>> [A*inv(A) B*inv(B) C*inv(C)]

ans =
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
>> A’
ans =
1 0 0
1 1 0
0 1 1
>> B'
ans =
0 - 1.0000i 0

1.0000 + 1.00001 -1.0000
2.0000 - 1.0000i 3.0000 + 1.0000i

>» C'

ans =
1.0000 0
1.0000 0 - 1.4142i
1.0000 0 + 1.41421
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-4.0000 + 3.00001
1.0000 + 3.0000i

0 + 1.00001
0.5000
-0.2500
-0.2500
1 0 0
0 1 0
0 0 1
0
0
0 + 1.0000i
1.0000
-1.0000
-1.0000
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EXERCISE 5-7

Apply the sine, base e exponential, logarithm, square root, modulus, argument and rounding functions to each of
the following matrices:

S

I
IS -
o O N
o O W

{1+i 2+i}
’ B = "
3+i 4+i
Calculate €% and In(A).

>> A=[123; 456; 789]

A =
1 2 3
4 5 6
7 8 9

>> sin(A)

ans =

0.8415 0.9093 0.1411
-0.7568  -0.9589  -0.2794
0.6570 0.9894 0.4121

>> B=[1+i 2+1;3+1,4+1]

B =
1.0000 + 1.0000i  2.0000 + 1.0000i
3.0000 + 1.0000i  4.0000 + 1.0000i

>> sin(B)

ans =
1.2985 + 0.63501  1.4031 - 0.4891i
0.2178 - 1.16341 -1.1678 - 0.76821

>> exp(A)

ans =

1.0e+003 *

0.0027 0.0074 0.0201
0.0546 0.1484 0.4034
1.0966 2.9810 8.1031
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>> exp(B)
ans =

1.4687 + 2.28741
10.8523 + 16.9014i

>> log(B)
ans =

0.3466 + 0.78541
1.1513 + 0.32181

>> sqrt(B)
ans =

1.0987 + 0.45511
1.7553 + 0.28481

>> abs(B)
ans =

1.4142
3.1623

2.2361
4.1231

>> imag(B)
ans =

1 1
1 1

>> fix(sin(B))
ans =

1.0000
0 - 1.00001 -

>> ceil(log(A))

ans =
0 1 2
2 2 2
2 3 3

CHAPTER 5

3.9923 + 6.21771
29.4995 + 45.9428i

0.8047 + 0.46361
1.4166 + 0.24501

1.4553 + 0.34361
2.0153 + 0.2481i

1.0000
1.0000
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>> sign(B)
ans =

0.7071 + 0.70711
0.9487 + 0.31621

0.8944 + 0.44721
0.9701 + 0.2425i

The exponential functions, square root and logarithm used above apply element to element to the array, and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

>> expm(B)
ans =
1.0e+002 *

-0.3071 + 0.46251
-0.3629 + 1.0431i

>> logm(A)
ans =
-5.6588 + 2.78961

12.8139 - 0.79701
-5.0129 - 1.24211

-0.3583
-0.3207

12.5041
-23.3307
13.4334

+

+

0.69391
1.51021

0.43251
2.16231
1.52621

-5.6325 - 0.5129i
13.1237 - 1.16161
-4.4196 + 1.33131

EXERCISE 5-8

Solve the following equation in the complex field:

sin (z) = 2.

>> vpa (solve ('sin (z) = 2'))

ans =

1.316957896924816708625046347308 * i + 1.5707963267948966192313216916398
1.5707963267948966192313216916398 1.316957896924816708625046347308 * i
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EXERCISE 5-9

Solve the following equations:
a 1+x+x +X +x' +x¢ =0
b. X2 +(6-ix+8-4i =0

c. tan (2) = 3i/5

>> solve( ' 1+x+x 2+x 3+x 4+x"5 = 0')

ans =
-1
-1/2 - (3-"(1/2) * i) / 2
1/2 - (3-"(1/2) * i) / 2
-1/2 + (3 ~(1/2) * i) / 2
1/2 + (3 ~(2/2) * i) / 2

>> solve ('x ~ 2 +(6-1) * x + 8-4 * i = 0")
ans =

-4
i?2

>> vpa (solve ('tan (Z) =3 * i/5 "))
ans =

0.69314718055994530941723212145818 * 1
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EXERCISE 5-10

Find the results of the following operations:
a. the fourth root of - 1 and 1;
b. the fifth roots of 2 + 2iand - 1 + N 3;
c. the real part of tan (iLn ((@+ib) / (a-ib)));
d. the imaginary part of (2 + jJ°s4+
>> solve('x"4+1=0")
ans =

2 ~(1/2) *(-i/2-1/2)

2 M(1/2) *(i/2-1/2)

2 ~(1/2) *(1/2-1/2)

2 M(1/2) *(i/2 + 1/2)
>> pretty (solve('x"4+1=0"))

-+

I

|
\ 2 2/ |
|

1/2 /7 11\ |
2 | - - - -

1/2 /i
2 |-

+_
|
|
|
|
|
|
|
| ]
|
|
|
|
|
|
+_

.
[
~

>> solve('x"4-1=0")
ans =
-1
1
-i

i

>> vpa(solve('x"5-2-2%i=0"))
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ans =

0.19259341768888084906125263406469 * i +
-0.87055056329612413913627001747975 * i -
0.55892786746600970394985946846702 * i -
0.55892786746600970394985946846702

1.2159869826496146992458377919696 * i +

>> vpa(solve('x 5+1-sqrt(3)*i=0"))
ans =

0.46721771281818786757419290603946 * i +
1.1424056652180689506550734259384 * i -
0.76862922680258900220179378744147
-0.99480195671282768870147766609475 * i -
0.23882781722701229856490119703938 * i -

oOr LR O

CHAPTER 5 © VECTOR AND MATRIX FUNCTIONS OF COMPLEX VARIABLES

.2159869826496146992458377919696
.87055056329612413913627001747975
.0969577045083811131206798770216
.0969577045083811131206798770216 * 1
.19259341768888084906125263406469

1.0493881644090691705137652947201
0.1200716738059215411240904754285
0.
0
1

85364923855044142809268986292246 * i

.57434917749851750339931347338896
.1235965399072191281921551333441

>> simplify (vpa (real (tan (i * log ((a+i*b) /(a-i*b))))))

ans =

-0.5 * tanh (conj (log ((a"2 + 2.0*a*b*i-1.0*b"2) /(a2 + b”2))) * i + (0.5 * ((a"2 +

2.0%a*b*i-1.0%b"2) ~ 2 /(a2 + b*2) ~ 2 - 1) * i) / ((a”2 + 2.0%a*b*i-1.0*b™2) » 2 /(a2 +

br2) » 2 + 1))
>> simplify(vpa(imag((2+i)~cos(4-1))))
ans =

-0.62107490808037524310236676683417
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