MATLAB
APIESS | soiurions
SERIES

César Pérez Lopez

HANDS-ON|MATLAB TRA.INWG AND EXERCISES

&) Springer APIESS”

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOrccmimmimmr e ——————————————— Xi
INtroductionccvvsrie s ——————————————————=——— XV
Chapter 1: Introduction t0 MATLABcccummmmmemmmmmmmmmmmsssssssssssssssssssssssssssssssssssssnssssssssnns 1
Chapter 2: Integers, Divisibility and Number Systems..........cccuseemmmnssssnnmmssssssssmsssssssnnnans 11
Chapter 3: Real and Complex NUMDEIS.......ccuuceemmmmsssnnnmmssssnsnssssssnssnsssssnssssssssnsnssssssnnnnsssss 43
Chapter 4: Numerical Variables, Vectors and Matrices........cccovummmmsmssssnmnmmmsmmssssssssssnnnns 95
Chapter 5: Vectors and Matrices.......ccuscemmmisssmmmmmssssnnmmmssssssnssssssssnsssssssssssssssssssssssnnnsnssns 139
Chapter 6: FUNCHIONScuccerrissmmmssssmmssssssssssssssssssssssnssssansessansesssnsesssnsessansessansesssnnessnnness 179
Chapter 7: Programming and Numerical Analysisccucccmmmmssemmnmmssssssnssssssssssssssssssnnans 211

Chapter 8: Numerical Algorithms: Equations, Derivatives, Integrals and
Differential EQUAtionscuuumememmmnmmmmmmmmmmsssssssnmnmsssssssssssss s sssnsssssssnnnns 279

iii

Introduction

MATLAB is the tool of the modern day mathematician or engineer. The incredible deep functionality of MATLAB
makes what would have taken hours 40 years ago, often less than a minute with MATLAB built in functions. MATLAB
enables you to explore multiple approaches and reach a solution faster often more accurately than with other tools
or traditional programming languages, such as C/C++ or Java. More importantly, it has changed the way we learn
and made getting solutions immensely simpler. So, you can now focus on the application, instead of the math. And
with that easily available power, you can explore and find more and more functions, test hypotheses and become a
significantly more powerful worker.

This book is designed for use, in part, as a tool to enable you to use MATLAB as a scientific/business calculator
so that you can get numerical solutions to problems involving a wide array of mathematics using MATLAB. But it
is broader in scope than that. The book can be used as an independent resource for MATLAB. A background in the
necessary mathematics is assumed, so this book shows you how to interpret your problems to get MATLAB to do what
you want it to do. Just look up the function you want in the book and you are ready to use it in MATLAB or use the
book to learn about the enormous range of options that MATLAB offers. The book is topical, picking examples to show
not only general methods in using MATLAB, but specifics to use MATLAB for advanced mathematical computations
while giving a glimpse at their application.

MATLAB Numerical Calculations focuses on MATLAB capabilities to give you numerical solutions to problems
you are likely to encounter in your professional or scholastic life. It introduces you to the MATLAB language with
practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at basic
MATLAB functionality with integers, rational numbers and real and complex numbers, and MATLAB's relationship
with Maple, you will learn how to solve equations in MATLAB, and how to simplify the results. You will see how
MATLAB incorporates vector, matrix and character variables, and functions thereof. MATLAB is a powerful tool used
to defined, manipulate and simplify complex algebraic expressions. With MATLAB you can also work with ease in
matrix algebra, making use of commands which allow you to find eigenvalues, eigenvectors, determinants, norms and
various matrix decompositions, among many other features. Lastly, you will see how you can write scripts and use
MATLAB to explore numerical analysis, finding approximations of integrals, derivatives and numerical solutions of
differential equations.

XV

CHAPTER 1

Introduction to MATLAB

1.1 Numerical Calculations with MATLAB

You can use MATLAB as a powerful numerical calculator. While most calculators handle numbers only to a preset
degree of accuracy, MATLAB works to whichever precision is necessary for any given calculation. In addition, unlike
calculators, we can perform operations not only with individual numbers, but also with objects such as matrices.

Most classical numerical analysis topics are treated by MATLAB. It supports matrix algebra, statistics,
interpolation, fit by least squares, numerical integration, minimization of functions, linear programming, numerical
solutions of algebraic equations and differential equations and a long list of further techniques.

Here are some examples of numerical calculations with MATLAB (once the commands have been entered to the
right of the input prompt “»%” simply hit Enter to obtain the result):

1. We can calculate 4 + 3 and get 7 as a result. To do this, just type 4 + 3 and then Enter:
>» 4+3
ans =
7

2. We can also find the value of 3 raised to the power 100, without previously fixing the
precision. For this it is enough to simply type 3 » 100:

» 3 "~ 100
ans =
5. 1538e + 047

3. We can also use the command format long e to obtain results in scientific notation with
16 more exponential digits of precision:

»> format long e;
» 3 " 100

ans =

5.153775207320115e+047

CHAPTER 1

INTRODUCTION TO MATLAB

We can also work with complex numbers. We find the result of the operation
raising (2 + 3i) to the power 10 by typing the expression (2 + 3i) A 10:

» (2 +3i) ~ 10
ans =
-3 415250000000001e + 005 - 1. 456680000000001e + 0051
The command format long g will optimize the output of future calculations.

»> format long g
» (2 +31) ~ 10

ans =
-341525 - 1456681
The previous result can also be obtained in short format using the command format short:

»> format short;
» (2 +3i) ~ 10

ans =
-3.4152e+005- 1.4567e+0051

We can calculate the value of the Bessel function at the point 13.5. To do this, we type
Besselj(0,13.5):

»> Besselj(0,13.5)
ans =
0.2150
We can also perform numerical integration. To calculate the integral between 0 and ©
of sin(x), we type the expression int(sin(x), 0, pi) after having declared the variable x as

symbolic with the command syms:

> syms x
»> int(sin(x), 0, pi)

ans =

These themes will be treated more thoroughly later.

CHAPTER 1 © INTRODUCTION TO MATLAB

1.2 Symbolic Calculations with MATLAB

MATLAB handles symbolic mathematical computation perfectly, manipulating formulae and algebraic expressions
easily and efficiently. You can expand, factor and simplify polynomials, rational functions and trigonometric
expressions; you can find algebraic solutions of polynomial equations and systems of equations; you can evaluate
derivatives and integrals symbolically and find solutions of differential equations; you can manipulate power series,
find limits and explore many other facets of algebraic series.

To perform this task, MATLAB requires that all variables (or algebraic expressions) are previously declared as
symbolic using the command syms.

Here are some examples of symbolic computations with MATLAB:

1. We find the cube of the algebraic expression: (x + I)(x + 2) - (x + 2)A2. This is done by
typing the expression: expand((x + 1)*(x + 2) - (x + 2)A2)A3). The result will be another
algebraic expression:

»> syms X
»> expand (((x + 1)*(x + 2)-(x + 2)"2)"3).

ans =
-X % 3-6 ¥ x A 2-12 * x-8

2. We can factor the result of the above calculation by typing
Jactor((x + 1) *(x + 2) - (x + 2)A2)A3):

> syms X
»> factor(((x + 1)*(x + 2)-(x + 2)*2)"3)

ans =
-(x+2) " 3

3. We can find the indefinite integral of the function
(x ~ 2)sin(x)*2 bytyping int(x*2 * sin(x)"2, x):

> syms x
»» int(x"2*sin(x)"2, x)

ans =

x "~ 2% (-1/2 * cos(x) * sin(x) + 1/2 * x)-1/2 * x * cos(x) * 2 + 1/4 *
cos(x) * sin(x) + 1/4 * 1/x-3 * x " 3

4. We can simplify the previous result:

»> syms X
»> simplify(int(x"2*sin(x)"2, x))

ans =

-1/2 * x * 2 * cos(x) * sin(x) + 1/6 * x ~ 3-1/2 * x * cos(x) * 2 + 1/4 *
cos(x) * sin(x) + 1/4 * x

CHAPTER 1

5.

On the other hand, MATLAB can be used together with the Maple program libraries to work with symbolic
mathematics, thus extending its field of action. In this way, MATLAB can be used to work on topics such as differential

INTRODUCTION TO MATLAB

We can display the previous result in standard mathematical notation:

> syms X
»» pretty(simplify(int('x*2*sin(x)*2", 'x')))

2 3 2

-1/2 x cos(x) sin(x) + 1/6 x - 1/2 x cos(x) + 1/4 cos(x) sin(x) + 1/4 x

We can expand the function xA2 *sin(x)A2 as a power series up to order 12, presenting the

result in standard form:

»> syms X
»> pretty(taylor(x~2*sin(x)"2,12))

4 6 8 10 12
X 1/3 x + 2/45 x - 1/315 x + 0 (x)

We can solve the equation 3ax 7xA2 + xA3 = 0 (where a is a parameter):

»> syms X a
»> solve('3*a*x-7*x*2 + x*3 = 0', x)

ans =

[0)|
[7/2 + 1/2 *(49-12%a) ~(1/2)]
[7/2-1/2 *(49-12*%a) ~(1/2)]

We can find the five solutions of the equation xA5 +2x+1=0:

»> syms x
»> solve('x*5+2*x+1',"'x")

ans =

[-.7018735688558619 -.8796971979298240 * 1]
[-.7018735688558619 +.8796971979298240 * 1]
[-.4863890359345430]
[.9450680868231334 -.8545175144390459 * 1]
[.9450680868231334 +.8545175144390459 * 1]

forms, Euclidean geometry, projective geometry, statistics, etc.

At the same time, we can extend MATLAB’s numerical calculation cababilities by using the Maple libraries

(combinatorics, optimization, number theory, statistics, etc.)

CHAPTER 1 © INTRODUCTION TO MATLAB

1.3 MATLAB and Maple

Whenever it is necessary to use a Maple command or function from MATLAB, use the command maple followed
by the corresponding Maple syntax. This functionality is only available if you have installed the symbolic
computation Toolbox “Extended Symbolic Math Toolbox”. This is the tool one uses to work with linear algebra and
mathematical analysis.

To use a Maple command from MATLAB, the syntax is as follows:

maple(‘Maple_command_syntax’)

or alternatively:

maple ‘Maple_command_syntax’

To use a Maple command with N arguments from MATLAB, the syntax is as follows:
maple(‘Maple_command_syntax), argumentl, argument2, ..., argumentN)

Let’s see some examples:

1. We can calculate the limit of the function (xA3-1) / (x-1) as x - > I:
»> maple('limit((x*3-1)/(x-1),x=1)")
ans =
3
We could also have used the following syntax:
»> maple 'limit((x"3-1)/(x-1),x=1)"
ans =
3
2. We can calculate the greatest common divisor of 10,000 and 5,000:
»> maple('ged’', 10000, 5000)
ans =

5000

1.4 General Notation. The Command Window

Whenever a program is used, it is necessary to become familiar with the general characteristics of its notation. Like
any program, the best way to learn MATLAB is to use it. Each example consists of the user input prompt “>>" followed
by the command and the MATLAB response on the next line. See Figure 1-1.

CHAPTER 1 © INTRODUCTION TO MATLAB

-) MATLAB Command Window =] E3
File Edt View Window Help

DI| =] ©] o8] & 2|

> A=[1,2,3;4,5,6;7,8,9] |
A =

1 2 3

N 5 6

7 8 9
by B=iI'IU(ﬂ)

Warning: Hatrix is close to singular or badly scaled.
Results may be ipaccurate. RCOND = 2.0855969e-018.

B =
1.0e+816 =
-0.4504 0.9007 -0.4504
0.9007 -1.8014 0.2007 J
-0.4504 0.9007 -0.4504 -
4] | LlJ
Feady [[NUM | 7
Figure 1-1.

Sometimes, depending on the type of command (user input) given to MATLAB in the Command Window, the
response will begin with the expression ans =. See Figure 1-2.

-) MATLAB Command Window M[=]E3

File Edit View Window Help
D] &[] -] 8]8] & 2|

by 2+2

=
=

ans =

Figure 1-2.

It is important to pay attention to uppercase and lowercase characters, parentheses and square brackets, and the
use of spaces and punctuation (in particular commas and semicolons).

Like the C programming language, MATLAB is case sensitive; for example, Sin(x) is different to sin(x). The names
of all built-in functions begin with lowercase letters. Each bracket has its own meaning, as we will see later.

To indicate that two variables must be multiplied you put the symbol * between them, and there cannot be spaces
in the names of commands, variables or functions. In other cases, spaces are ignored, but they can be included to
make the input more readable.

6

CHAPTER 1 © INTRODUCTION TO MATLAB

Once a MATLAB command has been entered, simply press Enter. If at the end of the input we put a semicolon,
the program runs the calculation and keeps it in memory (Workspace), but does not display the result on screen.
The input prompt “>>” reappears to indicate that you can input a new entry.

» 2 + 33
»

If the entry is too long and doesn’t fit on a single line of the MATLAB Command Window, just put three dots at
the end of the line and press Enter to continue with the rest of the entry on the next line. Once the entry is complete,
press Enter to run the command:

> 1254 + 3456789 + 14267890 + 345217 +...
78965 + 125347 + 86500

ans =

18361962
»

You can make multiple entries in the same command line by separating them with commas and pressing Enter at
the end of the last entry. If you use a semicolon at the end of one of the entries of the line, its corresponding output is
ignored. If the number of consecutive entries doesn’t fit on one line, three dots are used to continue on the next line,
as described above:

> 2+2, 5+3, 8+5

ans =
4
ans =
8
ans =
13

> 242; 5+3, 8+5; 3*4

ans =

ans =

12

CHAPTER 1 © INTRODUCTION TO MATLAB

To enter a descriptive comment in a command line, just start it with the “%” symbol. When you run the input,
MATLAB will ignore the comment and process the rest.

> F = 125 + 2 %F represents units of force
F =
127

To simplify the process of entering a script to be evaluated by the MATLAB interpreter (via the command window
prompt), you can use arrow keys. For example, if you press the up arrow once, you recover the last entry submitted in
MATLAB. If you press the up arrow twice, you recover the penultimate entry submitted, and so on.

If you type a sequence of characters in the input area and then click the up arrow, you recover the last entry that
begins with the specified string.

The commands entered during a MATLAB session are stored temporarily in the buffer (Workspace) until the end
of the session, at which time you can permanently save the session to file or lose it.

Below is a summary of the keys that can be used in the MATLAB command line, and their functions:

Up Arrow (Ctrl-P) Retrieves the entry preceding the current one.
Down Arrow (Ctrl-N) Retrieves the entry following the current one.
Left Arrow (Ctrl-B) Moves the cursor one character to the left.
Right Arrow (Ctrl-F) Moves the cursor one character to the right.
CTRL-Left Arrow Moves the cursor one word to the left.
CTRL-Right Arrow Moves the cursor one word to the right.

Home (Ctrl-A) Moves the cursor to the beginning of the current line.
End (Ctrl-E) Moves the cursor to the end of the current line.
Escape Clears the command line.

Delete (Ctrl-D) Erases the character indicated by the cursor.
Backspace Deletes the character to the left of the cursor.
CTRL-K Clears (kills) the entire current line.

The command clc clears the command window, but does not delete the contents of the work area (the content
currently in memory).

1.5 MATLAB and Programming

By properly combining all the features of MATLAB, one can build useful mathematical research programming code.
Programs usually consist of a sequence of instructions in which various values are calculated. These sequences of
commands are assigned names and can be reused in further calculations.

As in programming languages like C or Fortran, MATLAB supports loops, control flow and conditional
statements. MATLAB can write procedural programs, i.e., it can define a sequence of standard steps to run. As in C or
Pascal, one can repeat calculations using Do, For, or While loops. The language of MATLAB also includes conditional
constructs such as If Then Else. MATLAB also supports different logical operators, such as And, Or, Not and Xor.

CHAPTER 1 © INTRODUCTION TO MATLAB

MATLAB supports procedural programming (with iterative processes, recursive functions, loops...), functional
programming and object-oriented programming. Here are two simple examples of programs. The first generates the
order n Hilbert matrix, and the second calculates the Fibonacci numbers less than 1000.

% Generates the orxrder n Hilbert matrix
t = "1/(i+j-1)';
for i = 1:n
for j = 1:n
a(i,j) = eval(t);
end
end

% Calculates Fibonacci numbexs

f=[11];1i=1;

while f(i) + f(i-1) < 1000
f(i+2) = f(i) + f(i+1);
i=isfl

end

1.6 Translating C, FORTRAN and TEX expressions

MATLAB offers the possibility to translate math expressions to code in other programming languages such as Fortran or C.
Additionally, it can also translate expressions to eqn and TeX form. To do this, one can use the following commands:

maple(‘fortran(expression)’) Translates the given Maple expression to Fortran.

maple(‘fortran(expr,optimized)’) Translates the given Maple expression to Fortran in
an optimized way.

maple(‘fortran(expr,precision=double)’) Translates the Maple expression to Fortran
using double-precision.

maple(‘fortran(expr,digits=n)’) Translates the Maple expression to Fortran using n
floating point digits.

maple(‘fortran(procedure)’) Translates the given Maple procedure to a Fortran
procedure. Also translates Maple arrays and lists to Fortran.

maple(‘fortran(exp,filename=name)’) Translates the given Maple expression to
Fortran and saves it in a file named name.

maple(‘C(expression)’) Translates the given Maple expression to C. It is necessary to
first load the C library with the command readlib(C).

maple(‘C(expression,optimized)’) Translates the given Maple expression into C in an
optimized way.

maple(‘C(expr,precision=single)’) Translates the given Maple expression into C using
single-precision (double precision is the default).

maple(‘C(expr,digits=n)’) Translates the given Maple expression into C using n floating
point digits.

maple(‘C(procedure)’) Translates the given Maple procedure to a C procedure. It also
translates Maple arrays and lists to C.

CHAPTER 1

INTRODUCTION TO MATLAB
maple(‘C(procedure, ansi)’) Translates the given Maple procedure to C following
standard ANSI C syntax for the declaration of the parameters.

maple(‘C(expr, filename=name)’) Translates the given Maple expression to C and
saves it in a file with the name nom.

maple(‘latex(expression)’) Converts the given Maple expression to TeX.

maple(‘latex(expr, filename=name)’) Converts the given Maple expression to TeX and
saves it in a file named nom.

maple(‘eqn(expression)’) Translates the given Maple expression to egn. It is necessary
to first load the eqn library with the command readlib(eqn).

maple(‘eqn(expr, filename=name)’) Translates the given Maple expression to eqn and
saves it in a file with the name name.

As examples, we translate the integral of 1 /(x*+1) to TeX, Fortan and C:

»> maple('latex(Int(1/(x"4+1),x))"')

ans =

\int \I\left ({x}*{4}+1\right)*{-1}{dx}

»> maple('fortran(Int(1/(x"4+1),x))")

ans =

to =

Int(1/(x**4+1),x)

»> maple('readlib(C)'); maple('C(Int(1/(x"4+1),x))")

ans =

to =

10

Int(1/(pow(x,4.0)+1.0),x);

CHAPTER 2

Integers, Divisibility and Number
Systems

2.1 Arithmetic Operations in MATLAB

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is an
interactive program that allows you to perform a wide variety of mathematical operations. Furthermore, it has other
properties that make it extremely versatile and complex, applicable to a broad range of subjects from more theoretical
mathematics to the more applied.

One of the first applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional
calculator, but with one important difference: the precision of calculation. Operations are performed to the greatest
accuracy required, or the user may specify the degree of precision in advance. This unlimited precision in calculation
sets MATLAB apart from other numerical software, where the accuracy is determined by the word length of the
computer, so it is essentially determined by the hardware and cannot be modified. This feature is one of the most
important in symbolic calculation.

MATLAB assumes the usual arithmetic operations of sum, difference, product, division and power, with the usual
hierarchy between them:

X + Yy sum

x - y difference

x ¥ y or x y product
x/y division

X "y power

To add two numbers, simply enter the first number, type a plus sign (+) and then enter the second number.
Spaces may be included before or after the plus sign to ease readability.

> 53 + 78
ans =

131

11

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

We can perform the calculation of powers directly.
>» 34 ~ 56
ans =
5. 7919e + 085

Unlike a calculator, when working with integers, MATLAB displays the exact result even when you have more
digits than would normally fit across the screen. Here MATLAB returns the exact value of 34 A 56.

»> vpa ' 34 * 56" 90
ans =
57918773205287127842044254126179599852840968492056164062843692360166371779746690236416.

These operations are used to perform calculations of varying degrees of complexity. When combining several
operations in the same instruction, one must take into account the usual criteria of priority among them, which
determine the order of evaluation of the expression. Consider the following example:

3 2 %3724 (5-2) 3
ans =

27

Taking into account the usual order of priority of operators, the first to be evaluated is the power operation. The
usual order of evaluation can be altered by grouping expressions in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions, and the user can

also define their own functions. Both the embedded MATLAB functions and operators can be applied to symbolic or
numeric constants.

12

CHAPTER 2

INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-1

Perform the following operations:
@((-2+3-54-3+2/(15+4-21)
D) [2-3)@4-3+5F[B-2)+(6-8-9)
(€)5-[4-3+2*7+5]+[(3-6)*(7-9]
(d)6-4*32-7*2+8-6/3-52+3
) [5+3*2/6-4].[4/2-3 +6)/[7/2-8-2]
We input the above operations in the following way:
» ((-2 + 3 - 5)*(4 - 3 +2))/(15 + 4 - 21)
ans =
6

» ((2-3)*(4-3+5))"3*(3-2+6-8-35)
ans =

1296
5 5-(4-3+2*7+5)+(3-6)2%(7-9)2
ans =

21
6 - (4*3)/2-7%2+8-6/3-524+3
ans =

-30
» ((5 + (3*2)/6 - 4)*(4/2 - 3 + 6))/(7 - 8/2 - 2)"2
ans =

10

13

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-2

Perform the following operations:
(@@6ab+3a%+2ab

(b)6a +2a-b> +3a-5a% +b?
(c6ab-2a*>-4ab+3a?

We input the above operations in the following way:

>> syms a b
»> pretty(simplify(6*a*b + 3*a*2 + 2*a*b))

2
8ab+3a

»> pretty(simplify(6*a*2 + 2*a - b2 + 3*a - 5*%a*2 + b*2))

2
a + 5a

»> pretty(simplify(6*a*b - 2*a”2 - g4*a*b + 3*a"2))

2
2ab+a

The purpose of this exercise is to demonstrate the need to declare symbolic variables as such when they are part
of non-numeric expressions.

EXERCISE 2-3

14

WhereH=3a2-2a+7,F=62a*-5a +2and G=>5a?+ 4a -3, calculate:
aAH+F+G
b)H-F+G
C)H-F-G

We input the previous operations in the following way:

»> syms a
»» H=3%a"2 - 2*a + 7, F = 6*a*3 - 5*a + 2, G = 5*a*2 + 4*a - 3

H =

3*a*2 - 2*a + 7

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS
F =
6*a"3 - 5%a + 2
G =
5*%a*2 + 4*a - 3
»> pretty(H+F+G)
2 3
8a -3a+6+6a
»> pretty(H-F+G)
8a +7a+2-6a
»> pretty(H-F-G)

2 3
-2a -a+8-6a

We can also perform these operations by using MATLAB’s specific symbolic computation command symop. In
general, the command symop applies the specified operations (op) in quotation marks to the symbolic (sym)
variables in the order presented.

»> pretty(symop(H,'+',F,"'+',G))

2 3
8a -3a+6+6a

»> pretty(symop(H,'-',F,'+',G))

2 3
8a +7a+2-6a

»> pretty(symop(H,'-',F,’'-',G))

2 3
-2a -a+8-6a

When it comes to symbolic operations, it is always possible to make use of the interrelationship between MATLAB
and Maple.

»> pretty(sym(maple('3*a”2 - 2*a + 7 + 6*a"3 - 5*a + 2 + 5%a*2 + 4*a - 3')))

2 3
8a -3a+6+6a

15

CHAPTER 2 = INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS
»> pretty(sym(maple('3*a*2 - 2*a + 7 - (6*a*3 - 5%a + 2) + 5*a"2 + 4*a - 3')))

2 3
8a +7a+2-6a

»> pretty(sym(maple('3*a”2 - 2*a + 7 - (6*a*3 - 5*%a + 2) - (5*%a"2 + 4*a - 3)')))

2 3
-2a -a+8-6a

However, in this simple case it is not necessary to use Maple, because MATLAB already executes the operations
correctly by introducing symbolic expressions between quotation marks.

»> syms a
»> pretty('3*a”2 - 2*a + 7 - (6*a"3 - 5%a + 2) - (5*a*2 + 4*a - 3)')

-2a -a+8-6a

2.2 Integers

The MATLAB program can work on different platforms. Depending on the power of the hardware and software,
the program will work with greater or lesser precision. The precision with which MATLAB works means that there
is virtually no limit to the maximum size of integers that it is capable of handling; the most typical limitation is the
amount of computer memory available. Thus, all the usual operations with integers are exact, regardless of the size of
the result.

If we want the result of an operation to appear on screen with a certain number of significant figures, we use the
symbolic computation command vpa (variable precision arithmetic), whose syntax is:

vpa 'operation' no_of _ figures

For example, to calculate 7 to the power 400 to 500 significant figures we enter the following:
»> vpa '7 * 400" 500
ans =
1094500604336113085424254456486662175299754873359706186335419407515439063163492090021478568469687152
8073999537352825386155249571017070263772889172085286838471044006674397286276116996066357907929105887

8933088274875698178024977088223396398265555596916473536792437134632739719389969690630523317113111727
683195819839003492006097994729312240001.

16

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

The result of the operation is accurate, always placing a point at the end of the result. In this case the result can be
expressed in fewer than 500 figures, so the solution is exact. If you request a smaller number of significant figures than
the exact result has, MATLAB will round the number to the appropriate multiple of a power of 10. For example, if we
perform the above calculation only to 50 significant figures we get:

> vpa ' 7 " 400' 50
ans =

1. 0945006043361130854242544564866621752997548733597€338

2.3 Divisibility

MATLAB provides multiple commands relating to divisibility. The program implements a variety of functions with
integer arguments which will be presented below, most of which concern divisibility. Several of these functions
are only available if you have installed the extended symbolic mathematics Toolbox. A group of the commands are
accessible directly, another group first requires the command maple, and to gain access to the final group, it is

necessary to load the Maple numtheory library with the command maple(‘with(numtheory)’).
Among the most typical functions with integer arguments are the following:

rem(n,m): the remainder of the division of n by m (valid for real n and m)
sign(n): the sign of n (1ifn >0, - 1 ifn < 0, nreal)

binomial(n,m): the binomial coefficient n choose m :n! / (m! (m-n)!)
bernoulli(n): the nth Bernoulli number B : te*/(e' - 1) = Z B _(x) t"/n! n=0...c
euler(n) the nth Euler number E : 2/(e' +) = X En(x) t"/n! n=0...c.
max(nl,n2): the maximum of n1 and n2

min(nl,n2): the minimum of n1 and n2

gcd(nl,n2): the greatest common divisor of n1 and n2

Icm(n1,n2): the least common multiple of n1 and n2

maple(‘irem(n,m)’): the remainder of the division of n by m
maple(‘iged(nl,n2,...,nk)’): the greatest common divisor of k numbers

maple(‘igcdex(nl,n2,...,nk)’): the greatest common divisor of k numbers using Euclid’s
algorithm

maple(‘ilcm(nl,n2,...,nk)’): the least common multiple of k numbers
maple(‘max(nl,n2,...,nk)’): the maximum of k numbers
maple(‘min(nl,n2,...,nk)): the minimum of k numbers

maple(‘n!’): factorial n (n! = n(n-1) (n-2)...2.1)

maple(‘ifactor(n)’) or factor(n): factorizes n

maple(‘ithprime(k)’): returns the k-th prime

maple(‘seq(ithprime(k),k = 1... n’) or primes(n): returns the first n primes

17

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

maple(‘isprime(n)’) or isprime(n): determines whether n is prime or not
maple(‘type(expr,prime)’): determines if the expression is a prime

maple(‘type(expr,facint)’): determines if the given expression is completely factored or
not

maple(‘isqrt(n)’): determines if n is perfect square
maple(‘nextprime(n)’): finds the smallest prime larger than n
maple(‘prevprime(n)’): finds the largest prime less than n

Among the most typical functions with integer arguments for which it is necessary to previously load Maple’s
numtheory library, we have the following:

maple(‘with(numtheory)’) loads the numtheory library to be used before the following
commands

maple(‘issqr(n)’): determines if is the square of an integer
maple(‘issqrfree(n)’): determines if n is square-free
maple(‘ifactors(n)’): returns the prime factors of n and their orders
maple(‘factorset(n)’): returns the set of prime factors of n
maple(‘splitters(n)’): returns a list of the divisors of n
maple(‘sigma(n)’): returns the sum of the divisors of n
maple(‘tau(n)’): returns the number of positive divisors of n
maple(‘bigomega(n)’): returns the number of prime divisors of n
maple(‘iroot(n,m)’): returns the integer part of n'/'™
maple(‘iquo(nl,n2)’): returns the integer part of the ratio n1/n2
maple(‘b(n)’): returns the nth Bernoulli number B,
maple(‘fermat(n)’): returns the nth Fermat number: 2A(2An)+1

Here are some examples:
Factorize the number 24:

»> maple ('ifactor(24)')
ans =
(2) »3*(3)
Factorize the number 999999999999:
»> maple ('ifactor(999999999999)")
ans =

(3) * 3 %(7) * (12) * (13) * (37) * (101) * (9901)

18

CHAPTER 2

Find the remainder of the division of 17 by 3:
»> rem (17,3)

ans =

Find the remainder of division of 4.1 by 1.2:
»> rem (4.1,1.2)
ans =
0.5000
Find the remainder of the division of -4.1 by 1.2:
»> rem(-4.1,1.2)
ans =
-0.5000
Find the greatest common divisor of 1000, 500 and 625:
»> maple ('iged (1000,500,625)")
ans =
125
Find the least common multiple of 1000, 500 and 625:
»> maple ('ilcm (1000,500,625)")
ans =
5000
Is 99991 a prime number?:
»> maple ('isprime (99991)')
ans =
true

Indeed, the number is prime.

INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

19

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

Find the 100" prime number:
»> maple ('ithprime (1200)')
ans =
541
Find the set of all numbers that divide 24:
»> maple('with(numtheory)');maple('divisors(24)")
ans =
{1, 2, 3, 4, 6, 8, 12, 24}
Find the prime factors of 12267845 together with their orders of multiplicity:
»> maple('with(numtheory)'); maple('ifactors(12267845)")
ans =
[1, [[5, 1], [113, 1], [21713, 1]]]
Find the set of prime factors of 135678743:
»> maple('with(numtheory)');maple('factorset(135678743)")
ans =
{135678743}
Logically, the above number has to be prime:
»> maple ('isprime (135678743)')
ans =
true
Find the set of prime factors of the number 135678742:
»> maple('with(numtheory)');maple('factorset(135678742)")
ans =

{2, 1699, 39929}

20

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

Find the list of divisors, the number of divisors and the sum of the divisors of 1000000:
»> maple('with(numtheory)');maple(’divisors(1000000)")
ans =
{1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 250000, 3125, 31250, 62500, 125000,
500000, 1000000, 12500, 625, 15625, 25000, 250, 6250, 1250, 500, 2500, 200, 1000, 5000, 400, 2000,
160, 800, 4000, 50000, 10000, 100000, 20000, 200000, 40000, 320, 1600, 8000}
»> maple('with(numtheory)');maple(’tau(1000000)")
ans =
49
>> maple('with(numtheory)');maple(’sigma(1000000)")
ans =

2480437

EXERCISE 2-4

Find the number of different ways of selecting 9 elements from 45 without repetition. Consider the same problem
for three elements selected from n.

»> maple('binomial(45, 9)')

ans =

886163135

»> maple('expand(binomial(n, 3))')
ans =

1/6 *n * 3-1/2 *n * 2 + 1/3 *n

21

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-5

Find the remainder of the division of 2'* by 3. Also find the smallest positive integer k such that k = 12 mod 8.
»> rem(2°134,3)

ans =

1

»> maple('chrem([12],[8])")

ans =

4

The syntax of the function chrem will be presented in the next section.

EXERCISE 2-6

Find the prime factors and all the divisors of 18900. Also find the 189" prime number.

»> maple ('ifactor(18900)')

ans =

(2)"2%(3)"3%(5)"2%(7)

»> maple('with(numtheory)');maple('divisors(18900)')

ans =

{1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 25, 27, 28, 30, 35, 36, 42, 45, 50, 54,
60, 63, 70, 75, 84, 90, 100, 105, 108, 126, 135, 1050, 2700, 18900, 525, 1260, 180, 150, 225,
300, 450, 675, 900, 270, 1350, 540, 140, 175, 189, 210, 252, 315, 350, 378, 420, 630, 700,
756, 945, 1575, 2100, 3150, 4725, 6300, 1890, 9450, 3780}

»> maple('ithprime(189)')

ans =

1129

22

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-7

Two books have 840 and 384 pages, respectively. If they are formed by sections of an equal number of pages
(more than 18), calculate the number of pages per section.

»> ged (840, 384)
ans =

24

EXERCISE 2-8

Find the smallest number N that when divided by 16, 24, 30 and 32 leaves the remainder 5.

N-5 will be a multiple of 16, 24, 30 and 32, and we are asked to calculate the least number, so N-5 will be the
least common multiple of 16, 24, 30 and 32:

»> maple ('(26, 24, 30, 32) ilcm')
ans =

480
Therefore N = 480 + 5 = 485.

EXERCISE 2-9

Calculate the factorial of 2000.
We have here an example of the high-precision of MATLAB:

»> maple('2000!")
ans =

331627509245063324117539338057632403828111720810578039457193543706038077905600822400273230859
732592255402352941225834109258084817415293796131386633526343688905634058556163940605117252571
870647856393544045405243957467037674108722970434684158343752431580877533645127487995436859247
408032408946561507233250652797655757179671536718689359056112815871601717232657156110004214012
420433842573712700175883547796899921283528996665853405579854903657366350133386550401172012152
635488038268152152246920995206031564418565480675946497051552288205234899995726450814065536678
969532101467622671332026831552205194494461618239275204026529722631502574752048296064750927394
165856283531779574482876314596450373991327334177263608852490093506621610144459709412707821313
732563831572302019949914958316470942774473870327985549674298608839376326824152478834387469595
829257740574539837501585815468136294217949972399813599481016556563876034227312912250384709872
909626622461971076605931550201895135583165357871492290916779049702247094611937607785165110684
432255905648736266530377384650390788049524600712549402614566072254136302754913671583406097831

23

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

074945282217490781347709693241556111339828051358600690594619965257310741177081519922564516778
571458056602185654760952377463016679422488444485798349801548032620829890965857381751888619376
692828279888453584639896594213952984465291092009103710046149449915828588050761867924946385180
879874512891408019340074625920057098729578599643650655895612410231018690556060308783629110505
601245908998383410799367902052076858669183477906558544700148692656924631933337612428097420067
172846361939249698628468719993450393889367270487127172734561700354867477509102955523953547941
107421913301356819541091941462766417542161587625262858089801222443890248677182054959415751991
701271767571787495861619665931878855141835782092601482071777331735396034304969082070589958701
381980813035590160762908388574561288217698136182483576739218303118414719133986892842344000779
246691209766731651433494437473235636572048844478331854941693030124531676232745367879322847473
824485092283139952509732505979127031047683601481191102229253372697693823670057565612400290576
043852852902937606479533458179666123839605262549107186663869354766108455046198102084050635827
676526589492393249519685954171672419329530683673495544004586359838161043059449826627530605423
580755894108278880427825951089880635410567917950974017780688782869810219010900148352061688883
720250310665922068601483649830532782088263536558043605686781284169217133047141176312175895777
122637584753123517230990549829210134687304205898014418063875382664169897704237759406280877253
702265426530580862379301422675821187143502918637636340300173251818262076039747369595202642632
364145446851113427202150458383851010136941313034856221916631623892632765815355011276307825059
969158824533457435437863683173730673296589355199694458236873508830278657700879749889992343555
566240682834763784685183844973648873952475103224222110561201295829657191368108693825475764118
886879346725191246192151144738836269591643672490071653428228152661247800463922544945170363723
627940757784542091048305461656190622174286981602973324046520201992813854882681951007282869701
070737500927666487502174775372742351508748246720274170031581122805896178122160747437947510950
620938556674581252518376682157712807861499255876132352950422346387878954850885764466136290394
127665978044202092281337987115900896264878942413210454925003566670632909441579372986743421470
507213588932019580723064781498429522595589012754823971773325722910325760929790733299545056388
362640474650245080809469116072632087494143973000704111418595530278827357654819182002449697761
111346318195282761590964189790958117338627206088910432945244978535147014112442143055486089639
578378347325323595763291438925288393986256273242862775563140463830389168421633113445636309571
965978466338551492316196335675355138403425804162919837822266909521770153175338730284610841886
554138329171951332117895728541662084823682817932512931237521541926970269703299477643823386483
008871530373405666383868294088487730721762268849023084934661194260180272613802108005078215741
006054848201347859578102770707780655512772540501674332396066253216415004808772403047611929032
210154385353138685538486425570790795341176519571188683739880683895792743749683498142923292196
309777090143936843655333359307820181312993455024206044563340578606962471961505603394899523321
800434359967256623927196435402872055475012079854331970674797313126813523653744085662263206768
837585132782896252333284341812977624697079543436003492343159239674763638912115285406657783646
213911247447051255226342701239527018127045491648045932248108858674600952306793175967755581011
679940005249806303763141344412269037034987355799916009259248075052485541568266281760815446308
305406677412630124441864204108373119093130001154470560277773724378067188899770851056727276781
247198832857695844217588895160467868204810010047816462358220838532488134270834079868486632162
720208823308727819085378845469131556021728873121907393965209260229101477527080930865364979858
554010577450279289814603688431821508637246216967872282169347370599286277112447690920902988320
166830170273420259765671709863311216349502171264426827119650264054228231759630874475301847194
0955242634114984695080733900800
000
000
000
000
000

24

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-10

Calculate the number 22115-1 and determine whether or not it is prime. If it is compound, break it down into its
prime factors. Calculate the closest prime numbers greater than and less than 2A115-1. Verify that the largest of
these two numbers is indeed prime.

2 * 115-1
ans =

4. 1538e + 034
We can now calculate the exact value:
» vpa ' 2 * 115-1' 100
ans =
41538374868278621028243970633760767
Now let’s check if it is prime:
»> maple ('isprime(2°115-1)')
ans =
false

Thus the number is not prime.

We find the decomposition into prime factors:

»> maple ('ifactor(2°115-1)')

ans =

(31) *(47) * (2646507710984041) *(4036961) * (178481) * (14951)

We now calculate the two prime numbers closest to the above number, one less than the number and the other
greater than the number, and we see that the latter is indeed prime.

»> maple('prevprime(2°115-1)")
ans =

41538374868278621028243970633760701

25

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

»> maple('nextprime(2°115-1)")

ans =
41538374868278621028243970633760839

»> maple('isprime(nextprime(2°115-1))")
ans =

true

EXERCISE 2-11

Calculate the first 100 prime numbers.
»> maple('seq(ithprime(k),k=1..100)")
ans =

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283293,
307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
523, 541

EXERCISE 2-12

26

Given the number 51648597:

(a) Determine whether or not it is prime.

(b) If it is composite, break it down into prime factors.
(c) Calculate the set of its prime factors.

(d) Find its prime factors with their multiplicities.

(e) Find the set of its divisors.

(f) Find the sum of its divisors.

(9) Find the number of its divisors.

CHAPTER 2

a)

»> maple ('isprime (51648597)")

ans =

false

Thus, it is not prime.

b)

»> maple('ifactor(51648597)")

ans =

(3)74%(7)"3*(11)*(13)"2

c)

»> maple('with(numtheory)');maple(’factorset(51648597)")
ans =

{3, 7, 11, 13}

d)

»> maple('with(numtheory)');maple('ifactors(51648597)")
ans =

[1, [[3, 4], [7, 3], [11, 1], [13, 2]]]

e)

»> maple('with(numtheory)');maple('divisors(51648597)")

ans =

INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

{1, 3, 7, 9, 11, 13, 21, 27, 33, 39, 49, 63, 77, 81, 91, 99, 117, 819, 429, 297, 343, 351,
3972969, 11583, 4459, 14553, 3861, 1053, 231, 147, 1287, 441, 3003, 9009, 693, 51648597,
33957, 5733, 91091, 507, 305613, 120393, 273, 150579, 49049, 637637, 21021, 273273, 63063,
819819, 31941, 7371, 7007, 1565109, 95823, 51597, 24843, 74529, 117117, 81081, 1054053,
27027, 351351, 13377, 173901, 40131, 521703, 1911, 147147, 1912911, 361179, 4695327, 1324323,
17216199, 567567, 7378371, 17199, 223587, 39039, 10647, 13013, 13689, 16731, 50193, 57967,
3549, 4563, 5577, 637, 8281, 1001, 189189, 2459457, 441441, 5738733, 6237, 2079, 1183, 1521,
1859, 11319, 1029, 3087, 1323, 9261, 567, 3969, 27783, 539, 891, 3773, 1617, 4851, 101871,

43659, 169, 670761, 2457, 189, 143}

27

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

f)
»> maple('with(numtheory)');maple('sigma(51648597)")
ans =

106286400

9)
»> maple('with(numtheory)');maple(’tau(51648597)")
ans =

120

2.4 Modular Arithmetic

MATLAB's elementary number theoretic cababilities can be expanded via the numtheory library of the Extended
Symbolic Math toolbox, which incorporates commands related to modular arithmetic. We have the following:

maple(‘mroot(nl, n2, n3)’) is n1'"2 modulo n3
maple(‘msrqt(nl,n2)’) is n12 modulo n2
maple(‘nthpow(nl,n2)’) is the largest n such that n divides n1"2

maple(‘chrem([nl...nx],[m1...mx])’) is the unique integer n such that
n(mod mi) = ni i=1.....x

maple(‘imagunit(n)’) gives y-1 modulo n
maple(‘mlog(p,q,r)’) gives the logarithm of p to base g modulo r

maple(‘phi(n)’) gives the number of positive integers less than or equal to n that are
relatively prime with n

maple(‘invphi(n)’) the inverse phi function (i.e. returns the set of positive integers k
such that phi(k)=n)

maple(‘jacobi(nl,n2)’) or maple(‘J(n1,n2)’) gives the Jacobi symbol of the integers n1
and n2, i.e. it returns 1 if n1 is relatively prime with n2 and n2 is positive and odd, n2 if
nl is not a positive odd integer, and -1 otherwise

maple(‘legendre(n1,n2)’) or maple(‘L(n1,n2)’) gives the Legendre symbol of the
integers nl and n2, i.e. it returns 1 if n1 is a quadratic residue modulo n2, and -1 if it is
not (n1 is a quadratic residue modulo n2 if there exists an integer m such that m*=n1
(mod n2))

maple(‘lambda(n)’) gives the size of the largest cyclic group generated by g'(mod n)

maple(‘mersenne(n)’) or maple(‘M(n)’) returns 2" - 1 if it is prime, and if not,
returns false

maple(‘mcombine(nl,m1,n2,m2)’): gives an integer n such that n=m1(mod n1) and
n =m2(mod n2). Returns FAIL if there is no such n

28

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS
maple(‘ mipolys(n,p)’) gives the number of monic univariate irreducible polynomials
of degree n over Z (mod p)

maple(‘mipolys(n,p,m)’) gives the number of monic univariate irreducible
polynomials of degree n over the Galois field of order p™

maple(‘mobius(n)’) gives the positive integer equal to the Mébius function of n

maple(‘order(nl,n2)’) gives the order of the integer n1 in the multiplicative group
modulo n2, i.e. gives the smallest positive integer m such that n1™ = 1(mod n2)

maple(‘pprimroot(n)’) gives the smallest pseudo primitive root of the positive integer
n, that is, the generator of the cyclic group under multiplication modulo 7 containing
the integers relatively prime with n, and if it doesn’t exist, gives the least positive
integer not exceeding n and relatively prime to n

maple(‘pprimroot(nl,n2)’) gives the smallest pseudo primitive root of the positive
integer n2 that is greater than nl

maple(‘primroot(n)’) gives the smallest primitive root of the positive integer n, that is,
the generator of the cyclic group under multiplication modulo 7 containing relatively
prime integers with n

maple(‘primroot(nl,n2)’) gives the smallest primitive root of the positive integer n2
that is greater thannl

maple(‘quadres(nl,n2)’) determines if n1 is a quadratic residue modulo n2
maple(‘rootsunity(p,n)’) give all p-th roots of unity modulo n

maple(‘safeprime(n)’) calculates the smallest prime p greater than n such that (p-1) / 2
is also prime

Below are some examples:
To find the logarithm of 1000000 in base 8 and modulo 52 we do the following:

»> maple('with(numtheory)');maple(’mlog(1000000,8,52)")
ans =
4
To find the fifth root of 1000000 modulo 52:
»> maple('with(numtheory)');maple('mroot(1000000,5,52)")
ans =
40
To find the square root of -1 modulo 5:
»> maple('with(numtheory)');maple(' imagunit(5)')

ans =

29

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

To check if 2*- 1 and 2°- 1 are primes:
»> maple('with(numtheory)');maple('mersenne(4)')
ans =
false
»> maple('with(numtheory)');maple('mexrsenne(5)')
ans =
31
To find how many positive integers less than or equal to 15 are relatively prime with 15:
»> maple('with(numtheory)');maple(’phi(15)")
ans =

8

EXERCISE 2-13

Find the largest integer n such that n3 divides 6561. Also find the square root of n modulo 7.
>> maple('with(numtheory)'); maple('nthpow (6561,3)')

ans =

(9)"3

»> maple('with(numtheory)');maple('msqrt(9,7)")

ans =

3

30

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-14

Find the integer n that simultaneously satisfies the equations n = 1000 (mod 37) and n = 1500 (mod 53). Also find
the integer n that simultaneously satisfies the equations n = 500 (mod 3), n = 600 (mod4) and n = 700 (mod 5). Is
there an integer m such that m? = 1000 (mod 37)? Finally, find the smallest integer k such that 1500% = 1 (mod 53).

»> maple('with(numtheory)');
»> maple mcombine(37,1000,53,1500)

ans =
334

»> maple chrem([500,600,700],[3,4,5])
ans =

20

»> maple legendre(1000,37)

ans =

1

»> maple order (1500,53)

ans =

13

We therefore conclude that there is such an integer m.

EXERCISE 2-15

Find the number of monic irreducible univariate polynomials of degree 3 over the ring Z (mod 17). Find the
number of monic univariate irreducible polynomials of degree 5 over the Galois field of order 7.

»> maple('with(numtheory)');
»> maple mipolys(3,17)

ans =
1632
»> maple mipolys(5,7,11)
ans =

6045360394355011189649410336790819322177683040

31

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-16

Find the smallest generator of the cyclic group under multiplication modulo 1500 containing integers relatively
prime with 1500. Find such a generator with the condition that it be greater than 11.

»> maple('with(numtheory)');
»> maple pprimroot(1500)

ans =
7

»> maple pprimroot(10,1500)
ans =

11

EXERCISE 2-17

Find the fifth roots of unity modulo 11. Also find the smallest prime p greater than 1000 such that (p-1)/2 is also
prime.

»> maple('with(numtheory)');
»> maple rootsunity(5,11)

ans =
1, 3, 4, 5, 9

»> maple safeprime(1000)
ans =

1019

2.5 Divisibility in Z[/n]

Via the numtheory library of the Extended Symbolic Math toolbox, MATLAB allows you to perform divisibility tasks in
the ring Z[yn], where n is any integer. In this regard, the program implements the following functions:

maple(‘factorEQ(n,m)’) calculates the entire factorization of m in the Euclidean ring
Z[nl/Z]

maple(‘sq2factor(n)’) gives the entire factorization of n in Z[2]

maple(‘sum2sqr(n)’) gives a list of pairs of numbers whose squares sum to n

32

CHAPTER 2 '~ INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-18

Factorize the following:

(a) 38477343 in the ring Z[y11]

(b) 38434 *y33 in the ring Z[y33]

(c) 408294234124-4242 *\29 in the ring Z[y29]

»> maple('with(numtheory)');
»> maple factorEQ(38477343,11)

ans =

(3) * (125 + 34 * 11 ~(1/2)) * (125-34 * 11 ~(1/2)) *(85 + 16 * 11 ~(1/2)) * (85-16 *
11 ~(1/2))

Written in radical form, this is:

(3)(125 +34V11)(125-34V11)(85+ 1611) (85-16V11)

»> maple factorEQ (38434 * sqrt (33), 33)
ans =

(33 ~(1/2)) * (- 23 + 4 * 33 ~(2/2)) * (5/2 + 1/2 * 33 ~(1/2)) * (5/2-1/2 * 33 ~(1/2)) *
(12 + 2 * 33 ~(2/2)) ~ 2 * (58 + 7 * 33 ~(1/2)) * (58-7 * 33 ~(1/2))

Written in radical form, this is:

(\/%)(—23+4@)(2+%@)[§—%J§)(11+2«/§)Z(58+7\/§)(58—7\/§)

»> maple factorEQ (408294234124-4242 * sqrt (29), 29)
ans =

-(2) *(1/2 + 1/2 * 29 ~(1/2)) * (1/2-1/2 * 29 ~(1/2)) *(5/2-1/2 * 29 ~(1/2)) * 4 * (11 + 2 *
29 ~(1/2)) *(4 + 29 ~(1/2)) * (38 + 7 * 29 ~(1/2)) *(955872689/2 + 331629325/2 * 29 ~(1/2))

Written in radical form, this is:

_(2)(;+;\/EJG—;@]G—;@T(11+2@)(4+@)(11+2@)(38+7@)

(9558;2689 N 331629325 @)

33

CHAPTER 2 " INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-19

Factorize the following in Z[y2]:
a) (1-y2)*

b) 83424959

c) 9232-932*y2

»> maple('with(numtheory)');
»> maple sq2factor ((1-sqrt (2)) ~(-4))

ans =

(2 ~(1/2) + 1) * 4
Written in radical form, this is:
(14—\ﬁ5)4

»> maple sq2factor (83424959)
ans =

(9503 + 1855 * 2 ~(1/2)) *(9503-1855 * 2 ~(1/2))
Written in radical form, this is:

(9503 +1855+2) (9503 -1855+2)

»> maple sq2factor (9232-932 * sqrt (2))

ans =

(2 ~(1/2)) » 5 * (2-2(1/2)-1) * (1 + 3 * 2 ~(1/2)) * (5 + 2 ~(1/2)) * (17 + 59 * 2 *(1/2))

Written in radical form, this is:

(\/5)5(—1+JE)(1+3J§)(5+J§)(17+59J§)

34

2.6 Diophantine Equations

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

Via the numtheory library of the Extended Symbolic Math toolbox, MATLAB can attempt to solve Diophantine
equations, i.e., it can find integer solutions of certain equations, inequalities, systems of equations and systems of
inequalities. In this regard, the program implements the following functions:

maple(‘kronecker({ineq,,...,ineq_},{var

1,l,...,varl’m},{var

.,varzyn})') gives the

217"

Diophantine approximation, in the inhomogeneous case, of the specified inequalities
with respect to the given two sets of variables

maple(‘minkowski({ineq,,...,ineq },{var

1’l,...,varl_m},{var

,varzyn})’) gives the

2,17°0"

Diophantine approximation, in the homogeneous case, of the specified inequalities
with respect to the given two sets of variables

maple(‘thue(f(x,y) = m,[x,y])’) solves the equation for f(x,y)e Z[x, y] irreducible over

Q[x,y] and integer m

maple(‘thue(f(x,y)£m, [x, y])’) solve the inequality for f(x,y)< Z[x, y] irreducible over

Q[x, y] and integer m

EXERCISE 2-20

Solve (integer solutions) the following equations and inequalities in Z[x,y]:

axXt+xy+y=19

b) abs(x®* + X2y - 2xy?2-y3)<5
c)abs(x5+x4y 4x3y2-3x2 Y3+ 3yt +y9) <10
d)x®+y3

a)

»> maple('with(numtheory)');

»> maple thue(x"2 + x*y + y*2 = 19,[x,y])

[X=5)y='3]1 [X='2)y='3]1 [X=2;,V='5], [X='21y=5]1
[X=-5;,V=3];[X=2 =3]J[X=-5J.y=2])
[X=-3;J/='2];[X‘5:y='2]; [X=3 J/=2],

[X:'3) —5])[X—3)y:'5]

b)

»> maple thue(abs(x3 + x"2*y-2*x*y*2-y"3) <

[X=0:y=0];[x-1y=0];[X=1:y=1];[X=5;
[X:-5;y:-4];[xz-2,y:1],[X:-l;
[X=-1;y=1],[x—-)y
[X=1)y='2],[X=1,y='1])[x=-4,y
[X=0,J/=-1],[X=2;,V=
[X=-9;J/=5],[X=9;,V=-5]

5 [x, y])

y=4])
y:o])

=2])[X='1)y:'1])

= 9], [X=0,y=1],

- 1], [X=4)y='9,-]

35

CHAPTER 2 " INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS
0)
»> maple thue(abs(x"5 + x"4*y-4*x"3*y*2-3*x"2%y*3 + 3*x*y*4 + y"5) < = 10, [x, y])

[x=0,y=0], [x=1, y=0], [x=1,y=1], [x=-1,y=1],

[x=-2,y=1], [x=0,y=1], [x=0, y=-1],
[X='11y='1])[X='11y=0];[x=1;y='1])
[X=2)y='1]

d)

»> maple thue(x*3 + y*3 =5,[x,y])

Error, (in thue) this binary form is not irreducible

EXERCISE 2-21

Solve the following Diophantine system in both homogeneous and inhomogeneous cases:
le”' + 2"z, -5 1 <107?
13"z, +mz,-s,1<10*
»> maple('with(numtheory)');
»> maple minkowski ({abs (exp(1)*z1 + 2°(1/2)*z2 - s1) <=10"(-2),
abs (3°(1/3)*z1 + Pi*z2 - s2) <=10"(-4)}, {z1,z2},{s1,s2})
[z1 = 7484], [z2 = -2534], [s1 = 16760], [s2 = 2833]

»> maple kronecker ({abs (exp(1)*z1 + 2%(1/2)*z2 - s1) <=10"(-2),
abs (3°(1/3)*z1 + Pi*z2 - s2) <=10"(-4)}, {z1,z2},{s1,s2})

[z1 = - 1014], [z2 = 5300], [s1 = 4739], [s2 = 15188]

2.7 Number Systems

MATLAB allows you to work with number systems to any base, as long as the extended symbolic math Toolbox is
available. It also allows you to express all kinds of numbers in different bases. The following functions are available:

maple(‘convert(decimal,base,n_base)’) or dec2base(decimal,n_base) (base 10)
converts the specified decimal number to the base n_base

base2dec(number,B) converts the given number in base B to decimal

maple(‘convert(decimal,binary)’) or dec2bin(decimal) converts the specified decimal
number to base 2 (binary)

maple(‘convert(decimal,octal)’) converts the specified decimal number to base 8
(octal)

36

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

maple(‘convert(decimal,octal,n)’) or dec2Zhex(decimal) converts to base 8 (octal) the
specified decimal number with n digits of precision

maple(‘convert(decimal,hex)’) converts the decimal number specified to base 16
(hexadecimal)

maple(‘convert(binary,decimal,binary)’) or bin2dec (binary) converts the specified
binary number to decimal

maple(‘convert(octal,decimal,octal)’) converts the octal number to decimal

maple(‘convert(hexadecimal,decimal,hex)’) or hex2dec (hexadecimal) converts the
specified base 16 number to decimal

maple(‘convert([a,b,...,c],base,old_base,new_base)’) converts the number whose digits
in the old base are: c... ba, to the new base. The result is a list with the figures placed in
the reverse order to the usual ordering

maple(‘convert(decimal,double,option)’) converts a decimal number to a double-
precision hexadecimal according to the given option (ibm, mips and vax)

maple(‘convert(hexad,double,maple,option)’) converts the given double-precision
hexadecimal number to a Maple format hexadecimal according to the given option
(ibm, mips and vax)

EXERCISE 2-22

Express the decimal number 2342424 in base 2. Also express the decimal number 242345341 in base 16.
»> maple ('convert(2342424,binary)")

ans =

1000111011111000011000

»> maple('convert(242345341,hex)")

ans =

E71E57D

37

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

EXERCISE 2-23

Express the binary number 100101 in base 10, and express in base 10 the hexadecimal number ffffaa00. Find in
base 10 the result of the operation of hexadecimal numbers fffaa2 + ff — 1.

»> maple ('convert(100101,decimal,binary)’') or base2dec('100101',2)

ans =

37

»> maple ('convert (FFFFAAO, decimal, hex)') or base2dec ('FFFFAAO', 16)
ans =

268434080

»> maple ('convert (FFFAA2, decimal, hex) + convert(FF,decimal,hex) - 1')
ans =

16776096

»> base2dec ('FFFAA2', 16) + base2dec('FF',16)-1

ans =

16776096

EXERCISE 2-24

38

Calculate in base 5 the results of the operation:
a25aaff6,, + 6789aba,, + 1100221, + 35671, — 1250

We first convert the base 12 number 6789aba to decimal:

»> base2dec('6789aba’,12)

ans =

19840750

or we can also use the function convert:

»> maple('convert([10,11,10,9,8,7,6],base,12,10)")
ans =

[0, 5, 7, 0, 4, 8, 9, 1]

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

Let us not forget that this form of the function convert returns the result with the figures in the reverse order to

the usual ordering.

We now transform the base 3 number 1100221 to decimal:
»> base2dec('1100221',3)
ans =

997

We can also perform this operation as follows:

»> maple('convert([1,2,2,0,0,1,1],base,3,10)")

ans =

[7, 9, 9]

The number in base 10 is 997. Now we calculate the result of the entire operation in base 10:

»> maple ('convert(a25aaf6,decimal,hex) + 19840750 + convert(35671,decimal,octal) +
997-1250")

ans =
190096544
The same result is obtained directly as follows:

»> base2dec('a25aaf6',16) + base2dec('6789aba’,12) + base2dec('35671',8) +
base2dec('1100221',3)-1250

ans =
190096544
but we still need to convert this result to base 5:
»> maple('convert([4,4,5,6,9,0,0,9,1] ,base,10,5)")
ans =

[4) 3) 1) 2) 4) O) 1) 3) 1) 2) 4) 3]

39

CHAPTER 2 ' INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

Thus, the final result of the operation in base 5 is 342131042134.

This last step could also have been determined as follows:
»> dec2base (190096544,5)
ans =

342131042134

EXERCISE 2-25

40

In base 13, find the result of the following operation:
(666551), (aa199800a), + (fffaaa125),, / (33331 + 6),

First of all, we convert all numbers to base 10:

»> maple('convert([1,5,5,6,6,6],base,7,10)")
ans =

[7, 8 5, 7, 1, 1]

»> maple('convert([10,0,0,8,9,9,1,10,10],base,11,10) ")
ans =

[7, 6, 9, 3, 2, 8, 1, 4, 3, 2]

»> maple ('convert (FFFAAA125, decimal, hex)')
ans =

68713881893

»> maple('convert([1,3,3,3,3],base,4,10)")

ans =

[1, 2, o0, 1]

Now we carry out the proposed calculations in base 10.

»> vpa ' 117587 * 2341823967 + 79 * 68713881893 /(1021+6)"' 15

ans =

275373340490852

CHAPTER 2 * INTEGERS, DIVISIBILITY AND NUMBER SYSTEMS

A more direct way of doing all of the above is:

»> base2dec('666551',7) * base2dec('aa199800a‘,11) + 79 * base2dec(’fffaaa125',16) /
(base2dec ('33331', 4) + 6)

ans =

275373340490852

We now transform the result gained into base 13.

»> maple('convert([2,5,8,0,9,4,0,4,3,3,7,3,5,7,2] ,base,10,13) ')
ans =

(6, 9, 4, 1, 12, 3, 6, 9, 7, 6, 8, 10, 11]

Thus, the final result in base 13 is the number BA867963C1496.

This last conversion can also be done as follows:

»> dec2base (275373340490852,13)

ans =

BA867963C1496

EXERCISE 2-26

Convert the decimal 125.7864 to binary and convert the results of the decimal operation 8796.43 + 0.6789 -
4.25 to octal.

»> maple('convert(125.7864, binary)')
ans =

1111101.110010010

»> vpa '8796.43+0.6789-4.25"

ans =

8792.8589

»> maple('convert(8792.8589, octal)')
ans =

21130.66760336645

41

CHAPTER 3

Real and Complex Numbers

3.1 Rational Numbers

A rational number is a number of the form p/q, where p and g are integers. That is, the rational numbers are those
numbers that can be represented as the quotient of two integers. The way in which MATLAB treats rational numbers
is different from the majority of calculators.

If we ask a calculator to calculate the sum 2/4 + 24/144, most will return something like 0.6666667, which is no
more than an approximation of the result.

MATLAB can work with rational numbers in exact mode, so the result of arithmetic expressions involving
rational numbers is always another rational number. To this end, it is necessary to activate the rational format with
the command format rat. However, if the reader so wishes, MATLAB can also return decimal approximations of
rational numbers, activating any other type of format (e.g. format short or format long). MATLAB evaluates rational
expressions in exact mode as follows:

»> format rat
> 2/4 + 24/144
ans =
2/3
By dealing with rational numbers exactly as ratios of integers, rounding errors are not introduced in calculations
with fractions, which can become very serious, as evidenced by the theory of errors. Note that, once the rational
format is enabled, when MATLAB is asked to add two rational numbers, it returns a rational number as a ratio of
integers and thus represents it symbolically, as you can see in the following examples:
> (2/3-3/5) * 5/2
ans =
1/6
2+ 2/5

ans =

12/5

43

CHAPTER 3 © REAL AND COMPLEX NUMBERS

In the second example, the number 12/5 is exactly equivalent in value to 2.4, but MATLAB represents these
numbers in different ways.

Once the rational format is enabled, operations with rational numbers will be exact until a different format is
introduced, in which case we can also obtain decimal approximations.

A floating point or decimal number is interpreted as exact if the rational format has been enabled. If there is a
number with a floating point expression, MATLAB will treat it as an exact expression and represent it as a rational
number. If an irrational number appears in a rational expression, MATLAB will approximate it by a fraction and then
work with it in rational form.

» 1/2 + 2.4/144
ans =

31/60

> .5/7 + pi

ans =

5626/1751

Another way to work with accurate results with rational numbers, without having to enable the rat format,
is to use the command simplify. Using this command allows you to work with rational expressions exactly, even
if the expressions contain irrational numbers. The use of this command requires that the numeric expressions be
considered as symbolic, so you will need to prepend to all numeric expressions the command sym.

»> simplify(sym(2/5+3/4))

ans =

23/20

»> simplify(sym(2/5+3/4+pi))

ans =
2415951884441619/562949953421312
»> simplify(sym(2/5+3/4)+pi)

ans =

23/20 + pi

44

CHAPTER 3 © REAL AND COMPLEX NUMBERS

There are certain commands that can be used when working with rational numbers. Among the most important

are the following:

simplify(sym(rational_expr)) completely simplifies the specified rational expression

and gives the result as a rational number

[n,m] = numden(rational_expr) gives the simplified numerator and denominator of

the rational expression

maple(‘simplify(rational)’) simplifies the specified rational number

maple(‘normal(rational_expr)’) simplifies the specified rational expression

maple(‘convert(decimal,fraction)’) converts the decimal to a fraction

maple(‘convert(decimal,rational)’) converts the decimal to rational form

maple(‘denom(fraction)’) gives the denominator of the simplified fraction

maple(‘num(fraction)’) gives the numerator of the simplified fraction

Here are some examples:

»> simplify (sym(125/1500))
ans =

1/12

»> maple('simplify(125/1500)")
ans =

1/12

»> maple('normal(125/1500)")
ans =

1/12

»> [n,m]=numden(sym(125/1500))

n =

12

45

CHAPTER 3 © REAL AND COMPLEX NUMBERS

»> maple('denom(125/1500)")

ans

12

»> maple('numer(125/1500)")

ans

1

>> maple('convert(125.1500,fraction)’)

ans

2503/20

»> maple('convert(125.1500,rational)")

ans

2503/20

EXERCISE 3-1

46

Perform the following operations with rational numbers:
a) 3/5+2/5+7/5

b) 1/2+1/3+1/4+1/5+1/6

c) 1/2-1/3+1/4-1/5+1/6

d) (2/3-1/6)-(4/5+2+1/3)+(4-5/7)

e) ((1/5*4/7)/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)

f) (1) /@2/5)°)2 1 ((-3/7)% -(2/5)7)

g) [(2-1/5)2 /(3-2/9)"/[(6/7*5/4-(2/7)/(1/2))]* /(1/2-1/3)

a)

»> format rat
> 3/5+2/5+7/5

ans =

12/5

b)
> 1/2+1/3+1/4+1/5+1/6
ans =
29/20
<)
> 1/2-1/3+1/4-1/5+1/6
ans =
23/60
d)
»> (2/3-1/6)-(4/5+2+1/3)+(4-5/7)
ans =
137/210
e)
»> (1/5*a/1/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)
ans =
216/7385
f)
» ((-1)"a/(2/5)"3)"(-2)/((-3/7)*2-(2/5)"(-1))
ans =
-53/29972

g)

»> (2-1/5)"2/(3-2/9)*(-1)/(6/7*5/4-(2/7)/(2/2))*3/(1/2-1/3)

ans =

432

CHAPTER 3

REAL AND COMPLEX NUMBERS

47

CHAPTER 3 © REAL AND COMPLEX NUMBERS

Alternatively, the operations can be performed as follows:
»> simplify(sym(3/5+2/5+7/5))
ans =
12/5
»> simplify(sym(1/2+1/3+1/4+1/5+1/6))
ans =
29/20
»> simplify(sym(1/2-1/3+1/4-1/5+1/6))
ans =
23/60
»> simplify(sym((2/3-1/6)-(4/5+2+1/3)+(4-5/7)))
ans =
137/210
»> simplify(sym((1/5*4/7/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)))
ans =
216/7385
»> simplify(sym((-1)"4/(2/5)"3)"(-2)/((-3/7)"2-(2/5)"(-1)))
ans =
53/29972
»> simplify(sym((2-1/5)"2/(3-2/9)"(-1)/(6/7*5/4-(2/7)/(1/2))*3/(1/2-1/3)))
ans =

432

48

CHAPTER 3

REAL AND COMPLEX NUMBERS

EXERCISE 3-2

Perform the following rational operations:
a) 3/a+2/a+7/a

b) 1/2a+1/3a+1/4a+1/5a+1/6a

c) 1/2a+1/3b+1/4a+1/5b+1/6¢c

To treat operations with expressions that contain the symbolic variable a, it is necessary to prepend the command
syms ato declare the variable a as symbolic, and then use simplify. The commands normal, maple and simplify

can also be used.
a)

»> syms a
»> simplify(3/a+2/a+7/a)

ans =
12/a

»> 3/a+2/a+7/a

ans =

12/a

»> maple('3/a+2/a+7/a")

ans =

12/a

b)

»» 1/(2*a)+1/(3*a)+1/(4*a)+1/(5*%a)+1/(6%a)
ans =

29/20/a

<)

> syms a b c
»> 1/(2*a)+1/(3*b)+1/(4*a)+1/(5*b)+1/(6%c)

ans =

1/60*(45*b*c+32*a*c+10*a*b)/a/b/c

49

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-3

50

Simplify the following rational expressions as much as possible:
a) (1-a%/(1-a%)

b) 1/2a+1/3a+1/4a+1/5a+1/6a

c) 1/2a+1/3b+1/4a+1/5b+1/6¢c

d) (3a+2a+7a)/(a® +a)

e) 1/(1+a)+1/(1+a)> +1/(1+a)®

f) 1+a/(a+b)+a? /(a-+h)?

a)

»> syms a
»> simplify((1-a*9)/(1-a"3))

ans =
a’6+a’3+1

»> maple('simplify((1-a*9)/(1-a"3))")

ans =

a*6+a’3+1

»> maple('normal((1-a*9)/(1-a*3))")

ans =

a’6+a’3+1

b)

»> simplify((1/2)*a+(1/3)*a+(1/4)*a+(1/5)*a+(1/6)*a)
ans =

29/20*a

CHAPTER 3 © REAL AND COMPLEX NUMBERS

9

> syms a b c
»> [n, d] = numden (1 /(2*a) + 1 /(3*b) + 1 /(4*a) + 1 /(5*b) + 1 /(6%c))

n =
45 ¥ b *c+32*a*c+10*a*b

d =

60 *a *b *c

The result is an algebraic fraction whose numerator is n and whose denominator is d.
d)

»> simplify ((3*a+2*a+7*a) /(a"3+a))

ans =

12 /(a*2+1)

e)

»>> maple ('normal (1 /(1+a) + 1 /(1+a) ~ 2 + 1 /(1+a) " 3)')

ans =

(3+3*a+a"2)/(1+4a) * 3

)

>> maple('simplify(1+a/(atb)+a*2/(a+b)"2)")

ans =

(3*a*2+3*a*b+b*2)/ (a+b)"2

3.2 Continued Fractions

MATLAB enables you to work with continued fractions using the following commands. With the exception of the first
and last commands, these can be found in Maple’s numtheory library:

rat(r): returns the continued fraction of the rational number r
maple(‘cfrac (r)’): returns the continued fraction of the rational number r

maple(‘cfrac(polynomial)’): returns the continued fraction for each of the real roots of
the given univariate polynomial

51

CHAPTER 3 © REAL AND COMPLEX NUMBERS

maple(‘invcfrac (frac)’): converts the continued fraction frac to an irrational quadratic
maple(‘nthnumer(expr,n)’): gives the nth numerator of the continued fraction expr

maple(‘nthdenom(expr,n)’): gives the nth denominator of the continued fraction expr
maple(‘nthdconver(expr,n)’): gives the nth partial quotient of the continued fraction expr

maple(‘pdexpand(rational)’): gives the periodic expansion of the given rational
number, i.e. it gives the sign, the positive integer part, the non-recurrent part and the
periodic part

maple(‘convert(number,confrac,m)’): converts a number to a continued fraction with
m partial quotients

Here are some examples:
»> rat(3/5)
ans =
1+ 1/(-3 +1/(2))
»> maple('cfrac(3/5)')
ans =
1/(1+1/(1+1/2))

»> pretty(sym(maple('cfrac(3/5)')))

»> maple('convert(125.1500, confrac, 4)')
ans =

[125) 6) 1) 2]

52

»> maple nthnumer([125, 6, 1, 2],3)
ans =
2503
»> maple nthdenom([125, 6, 1, 2],3)
ans =

20

CHAPTER 3

REAL AND COMPLEX NUMBERS

EXERCISE 3-4

Express the following numbers as continued fractions:

a)7/9

b) the roots of the polynomial X6 - x 5 - 6x* + 6X° + 8x? - 8x + 1
c) the roots of the polynomial - 117260219 x8 + 139540883 x° + 17033080 x* + 800302 x3 + 18628 X*> X + 216 + 1

)
d) 11/9999997
g) 312

»> maple('with(numtheory)');
»> maple cfrac(7/9)

ans =
1/(1+1/(3+1/2))

»> pretty(sym(maple('cfrac(7/9)')))

»> maple('cfracpol(x*6 - x*5 - 6*x"4 + 6*x"3 + 8*x"2 - 8*x + 1)')

ans =

[-2, 44, 1, 3, 3, 1, 1, 1, 3, 2, 3, ...
[-2, 1, 1, 6, 1, 7, 34, 1, 12, 1, 5, ...
[OJ 6; 11 2; 4) 3; 11 lJ 31 1; 63; e
[o, 1, 2, 1, 2, 2, 16, 1, 1, 5, 11, .

[1, 1, 1, 1, 7, 6, 10, 2, 29, 20, 1,

I,
I,

- I

ool

[1, 1, 10, 3, 1, 13, 1, 1, 3, 1, 4, ...

]

53

CHAPTER 3 © REAL AND COMPLEX NUMBERS

»> maple('cfracpol(-117260219*x"6+139540883*x"5 + 17033080*x"4 + 800302*x"3
+18628*x"2+216*x+1) ')

ans =

[-1, 1, 41, 7, 1, 7, 34, 1, 12, 1, 5, ...],
['1) 1) 42) 1) l) 6) 1) 2) 4) 3) 1) e])
[-1, 1, 42, 1, 1, 1, 2, 1, 2, 2, 16, ...],
['11 1, 42) 1, 2; 1, 1, 1, 7, 6; 10; e])
[-1, 1, 42, 1, 2, 1, 10, 3, 1, 13, 1, ...],

)) 2
[1, 3, 3,1, 1, 1, 3, 2, 3, 4, 1, ... 1

»> pretty(sym(maple('cfrac(11/9999997)')));

»> pretty(sym(maple('cfrac(31*(1/2))')));

ans =

54

CHAPTER 3 © REAL AND COMPLEX NUMBERS

3.3 Irrational Numbers

Irrational numbers, because of their special nature, have always created difficulties in numerical calculations. The
impossibility of representing an irrational accurately in numeric mode (using ten decimal digits, for example) is the
cause of most of the problems. MATLAB can represent the results with greater accuracy or to any accuracy specified
by the user. Nevertheless, by definition, an irrational number cannot be represented exactly as the ratio of two
integers. If ordered to find the square root of 17, MATLAB will return 4.12310562561766. However, the result can be
treated symbolically using the maple command, so that sqr¢[17]will be represented by 17 A(1/2):

»> sqrt(17)

ans =
4.12310562561766

»> maple('sqrt(17)')

ans =

17 ~(1/2)

Note that if the square root of a floating point (decimal) number, e.g. \17.0, is requested, MATLAB always
calculates an approximate result, even using the command maple.

»> maple ('sqrt (17.0)')
ans =
4.123105625617661

The main difficulty presented by the treatment of irrational numbers is the impossibility of representing them
accurately, unless they are treated as symbolic constants, so that if it is asked to calculate the sum of the square root
of 2 and the square root of 3 (using the function sqrf), MATLAB will return as a result 2A(1/2) + 37(1/2), since this is
the only way to accurately represent the sum (using the command maple). In all subsequent calculations involving
27(1/2) and 37(1/2) they will be operated on symbolically following the mathematical rules of calculation with
radicals.

Of course we can also work with decimal approximations of irrational numbers, as we pointed out above.

Among the commands used to work with irrational numbers, we have the following:

maple(‘radsimp(expr)’) simplifies the expression and, where necessary, rationalizes
denominators

maple(‘simplify(expr,radical)’) simplifies the given irrational expression using
standard rules of radicals

maple(‘simplify(expr,symbolic)’) simplifies the expression assuming all algebraic
subexpressions are positive

maple(‘combine(expr,radical)’) simplifies the given irrational expression and returns
the result in radical form

maple(‘combine(expr,radical,symbolic)’) simplifies the given irrational expression and
returns the result in radical form, assuming all algebraic subexpressions are positive

55

CHAPTER 3 © REAL AND COMPLEX NUMBERS
maple(‘combine(expr,power)’) simplifies the given irrational expression returning the
result in terms of powers
maple(‘normal(expr)’) simplifies the given irrational expression

maple(‘readlib(radnormal): radnormal(irrational_expression)’) simplifies
expressions containing various levels of radicals

maple(‘readlib(radnormal): rationalize(irrational_expression)’) rationalizes
denominators

maple(‘simplify(irrat_expr)’) simplifies the given irrational expression

EXERCISE 3-5

Perform the following operations with irrational numbers:
a)3Va +2vJa -5Ja +7Ja

b) V2 +3v2 —2/2

c) 4a"® — 3b'S — 5a'® — 2b"® + ma'?

d) V432 + /75 — /363 — /108

e) V3a 27a

f)Va Ya

g) (322 b%)'S (9a® b?)"* (3ab)"®

h) Jaila

a)

First, we use the command simplify.

»> syms a
»> simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a))

ans =
7 *a *(1/2)

We can also use different variants of the maple(simplify), maple and maple(combine) commands, which yields a
completely simplified result:

»> maple('simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a))')
ans =

7*a*(1/2)

56

CHAPTER 3 REAL AND COMPLEX NUMBERS
»> maple('simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a),radical)’)
ans =
7*a*(1/2)
»> maple('combine(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a),sqrt(a))')
ans =
7 *a "(1/2)
b)

We can perform numerical operations directly in MATLAB, obtaining decimal results either to default accuracy or
to a predefined accuracy:

»> sqrt (2) + 3 * sqrt (2) - sqrt (2) / 2
ans =
4.9497

We can consider the calculation as an algebraic expression, in which case the result obtained is not fully
simplified:

>> sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2)

ans =

sqrt(49/2)

We can apply the command simplify to completely simplify the result:
»> simplify(sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2))

ans =

7/2 * 2 ~(1/2)

We can use different variants of the commands maple(simplify) and maple(combine), in which case we also
obtain a completely simplified result:

»> maple('simplify(sqrt(2)+3*sqrt(2)-sqrt(2)/2)")
ans =

7/2%27(1/2)

57

CHAPTER 3 © REAL AND COMPLEX NUMBERS

58

>> maple('simplify(sqrt(2)+3*sqrt(2)-sqrt(2)/2,radical)’)
ans =

7/2%27(1/2)

>> maple('combine(sqrt(2)+3*sqrt(2)-sqrt(2)/2,power)’)
ans =

7/2*%27(1/2)

<)

> syms abm
»> simplify(4*a~(1/3)- 3*b~(1/3)-5*a"(1/3)- 2*b*(1/3)+m*a*(1/3))

ans =

-a*(1/3)-5*b"(1/3)+m*a*(1/3)

»> maple('simplify(4*a~(1/3)- 3*b"(1/3)-5*a"(1/3)- 2*b*(1/3)+m*a*(1/3))")

ans =

-a*(1/3)-5*b"(1/3)+m*a*(1/3)

»> maple('simplify(4*a”(1/3)-3*b"(1/3)-5%a"(1/3)-2*b"(1/3)+m*a"(1/3),radical)")
ans =

-a*(1/3)-5*b"(1/3)+m*a"(1/3)

»> maple('combine(4*a*(1/3)-3*b"(1/3)-5*a*(1/3)- b"(1/3)+m*a"(1/3),radical)'))
ans =

-a*(1/3)-5*b"(1/3)+m*a"(1/3)

d)

If we consider the operation directly, we do not get the exact result:

»> sym(sqrt(432)+sqrt(75)-sqrt(363)-sqrt(108))

ans =

2 *(-48)

If we use the command maple(‘simplify’), the exact result is obtained.

>> maple('simplify(sqrt(432)+sqrt(75)-sqrt(363)-sqrt(108))’')
ans =

0

e)

»> maple('simplify(sqrt(3*a)*sqrt(27*a))’)

ans =

9 *a

or also:

»> simplify(sym (sqrt(3*a) * sqrt(27*a)))
ans =

9*a

f)

»> simplify(a~(1/2)*a”(1/3))

ans =

a”(5/6)

g)

CHAPTER 3

REAL AND COMPLEX NUMBERS

»> maple('simplify((3*a*2*b*5)~(1/3)*(9*a"3*b 2)"(1/4)*(3*a*b)"(1/6),symbolic)")

ans =
3%a*(19/12)*b*(7/3)

h)

»>> maple('radsimp(sqrt(a*(a*(1/5))))")
ans =

a "(3/5)

59

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-6

Simplify the following irrational expressions by rationalizing the denominators:
2 N2 2 3 a
w‘Jg b) Q? Q‘gj ®‘7§ Q‘JZ
In these cases of rationalization, the simple use of the command simplify solves the problem. You can also use the
command radsimp.

a)

>> simplify (sym (2/sqrt (2)))

ans =

27(1/2)

b)

»> maple('simplify(sqrt(2)/2°(1/3))"')
ans =

27(1/6)

9)

»> maple('simplify(2/4"(1/3))")

ans =

27(1/3)

d)

»> simplify(sym(3/sqrt(3)))

ans =

3 "(1/2)

e)

»> maple ('simplify(a/sqrt(a), radical)')
ans =

a "(1/2)

60

CHAPTER 3

REAL AND COMPLEX NUMBERS

EXERCISE 3-7

Simplify the following expression:

J6-2v2 -2\3+2V6

»> maple('readlib(radnormal):radnormal(sqrt(6-2*sqrt(2)- 2*sqrt(3)+2*sqrt(6)))’)

ans =

-1+ 2 "(1/2) + 3 *(1/2)

EXERCISE 3-8

Rationalize the following expressions:
1 1 1 1 1 1

2205 Jar b 12 12 Iz i

»> maple('readlib(rationalize):rationalize(1/(2+sqrt(5)))")

ans =

-2 + 5 7(1/2)

—2++5

»> maple('readlib(rationalize):rationalize(1/(a"(1/2)+b*(1/3)))')
ans =

(-b*(1/3)+a*(1/2))*(a*2+a*b"(2/3)+b"(4/3))/(a"3-b"2)

(a—\/%m +b2/3)(—a3/2 +b)

a’-b’

»> maple('readlib(rationalize):rationalize(1/(1+sqrt(2)) + 1/(1-sqrt(2)))')

ans =

-2

61

CHAPTER 3 REAL AND COMPLEX NUMBERS
»> maple('readlib(rationalize):rationalize(1/sqrt(1+sqrt(2)) + 1/sqrt(1-sqrt(2)))')
ans =

-((1-2 ~(1/2)) ~(1/2) + (2 ~(1/2) + 1) *(1/2)) * (1-2 ~(1/2)) ~(1/2) * (2 ~(1/2) + 1) *(1/2)

—(\/1—\/5 +\/1+\/§)\/1+\/§+\/1—\/§

3.4 Algebraic Numbers

MATLAB can operate with algebraic numbers using two types of representations, one in the form of radicals and the
other in terms of roots of polynomials (RootOf(polynomial)).

Using the command convert, MATLAB can convert a radical representation to a RootOfrepresentation and vice
versa, when possible.

The commands for working with algebraic numbers are as follows:

maple(‘convert(RootOf_expression,radical)’) converts a RootOf expression to a radical
expression

maple(‘convert(radical_expression, RootOf)’) converts a radical expression to a
RootOf expression

maple(‘simplify RootOf(expression)’) simplifies the RootOf expression

EXERCISE 3-9

a) Convert the following radical expressions to RootOf expressions:
) V2
i) 312

b) Perform the reverse conversions of (i) and (ii) above.
a)

i)

»> maple('convert(sqrt(2),Root0f)’)

ans =

RootOf(772-2)

ii)

»> maple('convert((1-2~(1/2))"(1/3),Ro0t0f)")
ans =

RootOf(Z"3-1+RootOf(Z"2-2))

62

b)

»> maple('convert(Root0f(_z"2-2),radical)")

ans =

27(1/2)

»> maple('convert(Root0f(_Z"3-1+Root0f(_2"2-2)),radical)")

ans =

(1-2 ~(1/2)) *~(1/3)

REAL AND COMPLEX NUMBERS

3.5 Real Numbers

The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. Included

in the set of rational numbers is the set of integers, so all functions applicable to real numbers will also be valid for
integers, rational and irrational numbers.

3.6 Common Functions with Real Arguments

MATLAB provides a full range of predefined functions, most of which are discussed later in this book. Within the
group of functions with real arguments offered by MATLAB, the following are the most important:

Trigonometric functions

Function Inverse
sin(x) asin(x)
cos(x) acos(x)
tan(x) atan(x)
csc(x) acsc(x)
sec(x) asec(x)
cot(x) acot(x)

atan2(x) (inverse tangent in the fourth quadrant)

63

CHAPTER 3 © REAL AND COMPLEX NUMBERS

Hyperbolic functions

Function Inverse

sinh(x) asinh(x)
cosh(x) acosh(x)
tanh(x) atanh(x)
csch(x) acsch(x)
sech(x) asech(x)
coth(x) acoth(x)

Exponential and logarithmic functions

exp(x) exponential of x to base e (e A x)
log(x) logarithm of x to base e

log10(x) base 10 logarithm of x

log2(x) base 2 logarithm of x

pow2(x) power to base 2 of x

sqrt(x) square root of x

Specific functions of a numeric variable

abs(x) the absolute value of the real number x

floor(x) the greatest integer less than or equal to the real x
ceil(x) the lowest integer greater than or equal to the real x
round(x) the integer closest to the real x

fix(x) removes the decimal part of the real x

rem(a,b) gives the remainder of the division of a by b

sign(x) gives the sign of the real x (1ifx >0, - 1 ifx < 0)

First, we see how the function round rounds a real number:
»> round(2.574)

ans =

64

»> round(2.4)
ans =
2
»> round(sqrt(17))
ans =

4

The function ceil is illustrated in the following two cases:

»> ceil (4.2)
ans =

5
»> ceil (4.8)
ans =

5

The floor function is illustrated in the following two examples:

»> floor (4.2)
ans =

4
»> floor (4.8)
ans =

4

The fix function simply removes the decimal part of a real number:

»> fix (5.789)

ans =

CHAPTER 3

REAL AND COMPLEX NUMBERS

65

CHAPTER 3 © REAL AND COMPLEX NUMBERS

3.7 Complex Numbers

Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that i or j
represents the key value in complex analysis, the imaginary number +- 1. All the usual arithmetic operators can be
applied to complex numbers, and there are also some specific functions which have complex arguments. Both the real
and the imaginary part of a complex number can be a real number or a symbolic constant, and operations with them
are always performed in exact mode, unless otherwise instructed or necessary, in which case an approximation of the
result is returned. As the imaginary unit is represented by the symbol i or j, the complex numbers are expressed in the
form a+bi or a+bj. Note that you don't need to use the product symbol (asterisk) before the imaginary unit:

» (2-31)*(2-i)/(-1+21i)

ans =

-1.8000 + 1.40001

»> format rat
> (2-3i)*(2-i) /(-1+2i)

ans =
-9/5 + 7/51

3.8 Common Functions with Complex Arguments

MATLAB performs the usual arithmetic operations with complex numbers, but in addition, there are several features
built into the program especially designed to work with complex variables.
The function real(z) returns the real part of the complex number z:
»> real(3 + 4i)
ans =
3
The function imag(z) returns the imaginary part of z:
»> imag(3 + 4i)
ans =
4
The function comnj(z) returns the conjugate of z:
»> conj(3 + 4i)

ans =

3 -4i

66

CHAPTER 3 © REAL AND COMPLEX NUMBERS

The function abs(z) returns the modulus (absolute value) of z:
»> abs(3 + 4i)
ans =

5

The function angle(z) returns the argument of z:
»> angle(3 + 4i)
ans =

0.9273

In addition to these specific functions of a complex variable, there are many other functions that can also be
applied to complex numbers.

For example, the function round(z) rounds both the real part and the imaginary part of z:
»> round(2.7-8.4i)

ans =

3.0000 - 8.00001

There are many more functions in MATLAB that work with complex numbers, including sin, cos, exp, log, etc.

Some of the most important are presented in the following table:

Trigonometric functions

Function Inverse
sin(z) asin(z)
cos(z) acos(z)
tan(z) atan(z)
csc(z) acsc(z)
sec(z) asec(z)
cot(z) acot(z)

atan2(z) (inverse tangent in the fourth quadrant)

(continued)

67

CHAPTER 3 © REAL AND COMPLEX NUMBERS

Hyperbolic functions

Function Inverse

sinh(z) asinh(z)
cosh(z) acosh(z)
tanh(z) atanh(z)
csch(z) acsch(z)
sech(z) asech(z)
coth(z) acoth(z)

Exponential and logarithmic functions

exp(z) exponential of z to base e (e A Z)
log(z) base e logarithm of z

log10(z) base 10 logarithm of z

sqrt(z) square root of z

log2(z) base 2 logarithm of z

pow2(z) base 2 power of z

Specific functions for real and imaginary parts

floor(z) applies the function floor(z) to real(z) and imag(z)
ceil(z) applies the function ceil(z) to real(z) and imag(z)
round(z) applies the function round(z) to real(z) and imag(z)

fix(z) applies the function fix(z) to real(z) and imag(z)

Specific functions of a complex variable

abs(z) or maple(‘abs (z)’): modulus (absolute value) of z
angle(z) or maple(‘argument(z)’): argument of z

conj(z) or maple(‘conjugate (z)’): conjugate of z

real(z) or maple(‘Re(z)’): real part of z

imag(z) or maple(‘Im (z)’): imaginary part of z

It should be noted that, as every real number is a complex number (with zero imaginary part), all functions
defined above are also valid for real variables.

68

CHAPTER 3

REAL AND COMPLEX NUMBERS

A number of commands used to simplify and transform complex expressions also play an important role in

working with complex numbers. These include the following:

expand(sym(expression)) simplifies the complex expression and usually gives the

output in trigonometric or binary form

maple(‘evalc(expression)’) simplifies the complex expression and usually gives the

output in trigonometric or binary form

maple(‘simplify(expression,polar)’) simplifies a complex expression in polar form

maple(‘simplify(expression,trig)’) simplifies a complex expression in trigonometric form

maple(‘simplify(expression,power)’) simplifies a complex expression with powers

maple(‘simplify(expression,radical)’) simplifies a complex expression with radicals

maple(‘simplify(expression,sqrt)’) simplifies a complex expression with square roots

maple(‘simplify (expression,In)’) simplifies a complex expression with logarithms

maple(‘simplify RootOf(expression)’) simplifies a complex expression with algebraic

numbers

maple(‘convert(expression,polar)’) converts the expression to polar form

maple(‘convert(expression,exp)’) converts the expression to exponential or binary form

maple(‘convert(expression,trig)’) converts the expression to trigonometric or binary form

Here are some examples:
We convert 1 + i to polar form:

»> maple('convert(1+i,polar)')
ans =

polar (2 ~(1/2), 1/4 * pi)

We simplify the value of sqrt ((1+2*1) /(1-2*)):

»> maple('evalc(sqrt((1+2*i)/(1-2*i)))")
ans =

1/5 * 5 ~(1/2) + 2/5 * 1 * 5 ~(1/2)

We convert the complex number 2 * cos(Pi/4) + 2 * I * sin(Pi/4) to binary form:

»> maple('convert(2*cos(Pi/4)+2*I*sin(Pi/g),trig)’)

ans =
2 M1/72) + I *2 7(1/2)

69

CHAPTER 3 © REAL AND COMPLEX NUMBERS
We convert the complex number 3 * exp(Pi*I/4) to trigonometric and polar form:
»> maple('convert(3*exp(Pi*I/4),trig)")
ans =
3%cosh(1/4*pi*I)+3*sinh(1/4*pi*I)
»> maple('convert(3*exp(Pi*I/4),polar)"’)
ans =

polar(3*exp(1/4*pi*Re(I)),argument (exp(1/4*pi*I)))

EXERCISE 3-10

Given the complex numbers X =3 + 2i,Y = 3-2i and Z =i » 307, calculate X+Y+Z, X *Y * Z, x/y and y/z.
> 342*i + 3-2%i - i"307
ans =

6.0000 + 1.00001
»> (3+2*1)*(3-2*i)*i*307
ans =

0.0000 -13.00001
»> (3+2*%i)/(3-2*1)
ans =

0.3846 + 0.92311
» (3-2*i)/i*307
ans =

2.0000 + 3. 00001

70

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-11

Given the complex numbers X = 2 + 2i and Y = —3-3V3 i, calculate Y2 and X%/ Y.
»> expand(sym(-3-3*sqrt(3)*i)"3)

ans =

216

»> maple('evalc((2+2*i)*2/(-3-3*sqrt(3)*i)*90)")

ans =

1/1350586945294983814787399212987393606090501966076362410331422244995072 * 1

EXERCISE 3-12

i

Calculate the value of +1.

»> (i~8-i~(-8))/(3-4%i) + 1
ans =

1.0000 - 0.00001

Alternatively we can write:
»> maple('simplify(evalc(i*8-i*(-8))/(3-4*i) + 1)')

ans =

71

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-13

Calculate the modulus and the argument of each of the following complex numbers:
i, %, (@), (143

»> abs(i*i)
ans =

0.2079
»> angle(i*i)
ans =

0

»> abs(i®(3+i))
ans =

0.2079
»> angle(i~(3+1i))
ans =

-1.5708
»» abs((i*i)*i)
ans =

1

»> angle((i*i)~i)
ans =

-1.5708
»> maple('simplify(evalc(abs((1+sqrt(3)*i)~(1-i))))")
ans =

2*%exp(1/3*pi)

72

CHAPTER 3 © REAL AND COMPLEX NUMBERS
»> maple('simplify(evalc(argument((1+sqrt(3)*i)~(1-i))))")
ans =
-log (2) + 1/3 * pi

The moduli and arguments of the first three complex numbers have been obtained approximately. They can be
calculated exactly as follows:

»>> maple ('simplify(evalc(abs(i*i)))"')
ans =

exp(-1/2%pi)

»> maple('simplify(evalc(argument(i*i)))")

ans =

0

»> maple('simplify(evalc(abs(i*(3+i))))")

ans =

exp(-1/2%pi)

»>> maple('simplify(evalc(argument(i®(3+i))))")
ans =

-1/2%pi

»> maple('simplify(evalc(abs(i*(i*i))))")

ans =

1

»>> maple('simplify(evalc(argument(i®(i*i))))")
ans =

1/2 * exp(-1/2*pi) * pi

73

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-14

Solve the following equations:
a) cos(z) = 2

b) cos(z) = a, where a is a real number.

a)

»>> maple ('evalc (solve (cos (z) = 2))")

ans =

i*log (2 +3 7(1/2))

b)

>> maple ('evalc (solve (cos (z) = a, z))')

ans =

acos(1/2 * ((a+1) * 2) ~(1/2)-1/2 * ((a-1) ~ 2) ~(1/2)) + i * signum (a) * log(1/2 * ((a+1) ~ 2)

M1/2) + 1/2 * ((a-1) ~ 2) ~(1/2) + ((1/2 * ((a+1) * 2) ~(1/2) + 1/2 * ((a-1) * 2) ~(1/2))
A 2-1) M1/2))

EXERCISE 3-15

74

Solve the following equations:
a) T+ +3 +x4+x° =0
b) X% +(6-i)x+8-4i =0

c) tan(z) = 3i/5

a)
»> solve('1+x+X"24x"3+Xx"4+x"5 = 0')
ans =

[-1]
[-1/2+1/2%1%37(1/2)]
[-1/2-1/2%i%*37(1/2)]
[1/2+1/2%i*37(1/2)]
[1/2-1/2%i*3%(1/2)]

CHAPTER 3
b)

»> solve('x"2+(6-1i)*x+8-4*i = 0')

ans =
[-4]
[-2 + 1]
<)

»> maple ('evalc(solve(tan (z) =3 *i / 5))')
ans =

(i * atanh(3/5))

REAL AND COMPLEX NUMBERS

EXERCISE 3-16

Perform the following operations:
a) isin(1 +1)

b) (2+Ln(i))"

c) (1+i)

d) iLn(1+i)

e) (1+i*sqri(3))"

a)
»> maple('evalc(i*(sin(1+i)))")
ans =

exp (-1/2 * cos(1) * sin(1) * pi) * cos(1/2 * (1) * cosh(1) * pi) +
1 *exp(-1/2 * cos(1) * sin(1) * pi) * sin(1/2 * (1) * cosh(1) * pi)

To approximate the result, we use the command “numeric’.
»> numeric(maple('simplify(evalc(i*(sin(1+i))))'))
ans =

-0.1667 + 0.32901

75

CHAPTER 3 © REAL AND COMPLEX NUMBERS
b)
>> maple('simplify(evalc((2+log(i))~(2/i)))")
ans =

exp (atan(1/4*pi)) * cos(-log (2) + 1/2 * log(16+pi”2))-i * exp(atan(1/4*pi)) * sin(-log (2)
+ 1/2 * log(16+pi*2))

We can find the approximate result in this case directly in MATLAB (since it contains no complex trigonometric
expressions):

»> (2+log(i))~(2/1)
ans =
1.1581 - 1.56391
9
»> maple('simplify(evalc((2+i)*i))")
ans =
exp(-1/4*pi) * cos(1/2 * log(2)) + 1 * exp(-1/4*pi) * sin(1/2 * log(2))
Now we find the approximate result:
» (1+i) i
ans =
0.4288 + 0.15491
d)
»> maple('simplify(evalc(i*log(1+i)))")
ans =
exp(-1/8*%pi”2) * cos (1/4 * log (2) * pi) + 1 * exp(-1/8*pi*2) * sin(1/4 * log(2) * pi)
The approximate result is obtained directly:
»> i*log(1+i)
ans =

0.2491 + 0.15081

76

CHAPTER 3 © REAL AND COMPLEX NUMBERS
e)
»> maple('simplify(evalc((1+i*sqrt(3))~(1-i)))")
ans =
2 * exp(1/3*pi) * cos(-log (2) + 1/3 * pi) + 2 * 1 * exp(1/3*pi) * sin(-log (2) + 1/3 * pi)
The approximate result is obtained directly:
»> (1+i*sqrt(3))"(1-1)
ans =

5.3458 + 1.97591

EXERCISE 3-17

Find the following:

a) the fourth roots of — 1 and 1

b) the fifth roots of 2 + 2i and — 1 + V3
c) the real part of tan(iLn((a+ib)/(a—ib)))
d) the imaginary part of (2 + i)cs¢

a)

»> solve('x"4+1=0")

ans =

[172*% 27(1/2) +1/2%* i* 27(1/2)]
[- 1/2% 27(1/2) +1/2*% i* 27(1/2)]
[1/2% 27(1/2) -1/2*% i* 27(1/2)]
[- 1/2*% 27(1/2) -1/2* i* 27(1/2)]

We can obtain the approximate result easily:
»> numeric(solve('x"4+1=0"))
ans =

0.7071 + 0.7071i

-0.7071 + 0.70711

0.7071 - 0.70711
-0.7071 - 0.70711

77

CHAPTER 3 © REAL AND COMPLEX NUMBERS

78

»> solve('x"4-1=0")
ans =

[1]

[-1]

[1]

[-1]

b)

»> solve('x"5-2-2*%i=0")

ans =

[(2+2%1)*(1/5)]
[(1/4*5%(1/2)-1/4+1/4*1*27(1/2)*(5+57(1/2))"(1/2))*(2+2*1)*(1/5)]
[(-1/4*57(1/2)-1/4+1/4%1%27(1/2)*(5-5%(1/2))"(1/2)) *(2+2*1)*(1/5)]
[(-1/4*57(1/2)-1/4-1/4%i*27(1/2)*(5-5"(1/2))"(1/2))*(2+2*1)*(1/5)]
[(1/4*57(1/2)-1/4-1/4*1*27(1/2)*(5+5%(1/2))"(1/2))*(2+2*1)"(1/5)]

We now find the approximate result;

»> numeric(solve('x"*5-2-2*%i=0"))

ans =
1.2160 + 0.19261
0.1926 + 1.21601
-1.0970 + 0.55891
-0.8706 - 0.87061
0.5589 - 1.09701
<)

»> solve('x"5+1-sqrt(3)*i=0")

(-1+1*37(1/2))"(1/5)]
(1/4%5%(1/2)-1/4+1/4%1*2~(1/2)*(5+5"(1/2))"(1/2)) *(-1+i*37(1/2))" (1/5)]
(-1/4*57(1/2)-1/4+1/4*1*2(1/2)*(5-5(1/2))~ (1/2)) *(-1+1*37(1/2)) *(1/5)]
(-1/4*57(1/2)-1/4-1/4*i*2(1/2)*(5-5(1/2))*(1/2)) *(-1+1*3~(1/2)) *(1/5)]
(

[
[
f
[(1/4*5%(1/2)-1/4-1/4*1*27(1/2)*(5+5%(1/2))"(1/2))*(-1+i*3-"(1/2))*(1/5)]

CHAPTER 3 © REAL AND COMPLEX NUMBERS

The approximate result is immediate:
»> numeric(solve('x*5+1-sqrt(3)*i=0'))
ans =

1.0494 + 0.46721
-0.1201 + 1.14241
-1.1236 + 0.23881
-0.5743 - 0.99481
0.7686 - 0.85361

d)

>> maple('simplify(evalc(Re(tan(i*log((a+i*b)/(a-i*b))))))")
ans =

-2*a*b/(a"2-b"2)

e)

»>> maple('simplify(evalc(Im((2+i)*cos(4-i))))")

ans =

5~ (1/2 * cos(4) * cosh(1)) * exp(-sin(4) * sin(1) * atan(1/2))
* sin(1/2 * sin(4) * sin(1) * log(5) + cos(4) * cosh(1) * atan(1/2))

Now we find the approximate result:
»> numeric(maple('evalc(Im((2+i)"cos(4-i)))"'))
ans =

-0.6211

3.9 Divisibility in the Complex Field. The Ring of Gaussian Integers

Within the set C of complex numbers, the subset G = {ze C/ z = a + bi, a,be Z} formed by all the complex numbers with
integer real and imaginary parts is a ring, known as the ring of Gaussian integers. Within this ring, divisibility can be
studied in a similar manner to the study of divisibility in the ring of integers.

There are some functions in MATLAB that allow you to work in this ring, as long as the extended symbolic math
Toolbox is available. Among them are the following:

maple(‘with(GaussInt)’) loads the Maple library GaussInt (required before using the
commands specified below)

maple(‘GIfactor(z)’) factorizes the Gaussian integer z

maple(‘GIfactors(z)’) returns the prime factors of z and their orders

79

CHAPTER 3

80

REAL AND COMPLEX NUMBERS

maple(‘GIfacset(z)’) returns the set of prime factors of z
maple(‘GIdivisor(z)’) returns the list of divisors of z in the first quadrant
maple(‘GIprime(z)’) determines if the Gaussian integer z is prime

maple(‘GIphi(z)’) returns the number of Gaussian integers in a reduced system
modulo z

maple(‘GInorm(z)’) returns the norm of z (norm(a+bi) = a? + b?)

maple(‘GlIbasis(z1,22)’) determines whether z1 and z2 form a Gaussian basis (i.e if for
all Gaussian integers z, there exist integers p and q such that z = pzI + qz2)

maple(‘GIcombine(a,b,c,d)’) is the Gaussian integer n such that: n=b(mod a) and
n=d(mod c) (a, b, c and d are Gaussian integers)

maple(‘GIquadres(z1,z2)’) determines whether there exists a Gaussian integer m such
that m? = z1(mod z2)

maple(‘Glorder(z1,z2)’) returns the smallest positive integer n such thatz1" = 1(mod z2).
maple(‘GIquo(z1,z2)’) gives the quotient z1/z2
maple(‘GIrem(z1,z2)’) gives the remainder of the quotient z1/z2

maple(‘GIgcd(a,b,...c)’) gives the Gaussian integer in the first quadrant nearest to the
greatest common divisor of the Gaussian integers a,b,...,c

maple(‘GIlcm(a,b,...c)’) gives the Gaussian integer in the first quadrant closest to the
least common multiple of the Gaussian integers a,b,...,c

maple(‘Glissqr(z)’) determines if z is the square of a Gaussian integer
maple(‘GlIsqrt(z)’) gives the Gaussian integer best approximating the square root of z
maple(‘GInearest(z)’) gives the Gaussian integer nearest to the complex number z

maple(‘GIroots(complex_polynomial)’) gives the Gaussian integer roots of a univariate
polynomial with Gaussian integer coefficients

maple(‘GIchrem([nl,...,nx],[m1,...,mx])’) gives the unique Gaussian integer G such that
G(modmi) =y, i=1,...,x

maple(‘GIfacpoly(polynomial)’) factorizes the polynomial over the Gaussian integers

maple(‘GIgcdex(a,b,c,d)’) gives the Gaussian integer g located in the first quadrant
which is the greatest common divisor of the Gaussian integers a and b, using Euclid’s
algorithm, returning cand d suchthatg=c*a+d*b

maple(‘GIhermite(M)’) calculates the Gaussian integer Hermite normal form of the
integer matrix M. This is an upper triangular matrix with a number of non-zero rows
equal to the rank of the matrix M.

maple(‘GIhermite(M,A)’) calculates the Gaussian integer Hermite normal form H of
the integer matrix M and the matrix A suchthat H=A*M

maple(‘GInodiv(z)’) gives the number of non-associated factors of the Gaussian integer z

maple(‘GInormal(z)’) normalizes the Gaussian integer z

CHAPTER 3 © REAL AND COMPLEX NUMBERS

maple(‘Glsieve(z)’) generates the list of all prime Gaussian integers with norm less
than or equal to z? (0<x<y)

maple(‘GIsmith(M)’) returns the Smith normal form of the matrix M of Gaussian
integers

maple(‘GIsmith(M,A,B)’) returns the Smith normal form of the matrix M of Gaussian
integers and the matrices A and B such that S=A*M *B

maple(‘GIsqrfree(z)’) returns the square-free factorization of z, [u,[[p[1],e[1]],...,[p[m
],e[m]]] where p[i] is a principal factor of z, e[i] is its multiplicity, gcd(p[il,plj]) = 1 Vi=j,
and u is a unit in the ring of Gaussian integers. The square-free factorization of z will be
of the form: z = u * p[1]2e[1] *... * p[m]re[m].

maple(‘GIunitnormal(z)’) normalizes the Gaussian integer z

Here are some examples:
We factorize the number 30 in the ring of Gaussian integers.

»> maple('with(GaussInt):GIfactor(30)")

ans =

(i) *(1+i) * 2 *(1+2%i) *(1-2*%i) *(-3)

The prime factors of 30 in the ring of Gaussian integers are: -3 with multiplicity 1,-1-2i with multiplicity 1,-1 + 2i
with multiplicity 1, 1 + i with multiplicity 2 and i with multiplicity 1.
You can also find the set of prime factors of 30 or the list of prime factors together with their orders of multiplicity.

»> maple('with(GaussInt):GIfacset(30)")

ans =

{-3, 1+i, -1+2*%i, -1-2*i}

»> maple('with(GaussInt):GIfactors(30)')

ans =

[i) [[1 + iJ 2]J [' 1+2% i) 1]) [' 1-2 * i) 1]) [1) - 3]]]

You can also determine if a Gaussian integer is prime or not.
The number 1 + i is prime in the ring of Gaussian integers:

>> maple('with(GaussInt):GIprime(1+i)')

ans =

true

81

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-18

Solve the following equation in the ring of Gaussian integers:
X —17*%3 — 29*1"x® — 188*x? + 339**x? + 1682*x — 86*i*x — 1178 —1244*i =0

»> maple('with(GaussInt):GIroots(x"4-17*x"3-29*i*x"3-188*x"2+339*i*x"2+
1682*x-86*i*x-1178-1244*i)")

ans =

[[5+8*i, 1], [1+1, 1], [7+11*i, 1], [4+9*i, 1]]

EXERCISE 3-19

82

Check if the number 1000 - 500i is prime. If not, find all of its divisors and decompose it into prime factors.
Also find the closest Gaussian integer to the least common multiple and the greatest common divisor of
1000-500i, 100-50i and 10-5i. Finally, find the norm of 1000-500i.

»> maple('with(GaussInt)'); maple('GIprime(1000-500*i)')
ans =
false
»> maple('with(GaussInt)');maple('GIdivisor(1000-500*1i)")
ans =

{1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 500, 500+1000*i, 1+i, 1+2*i, 250, 12+16*i, 13+9*i,

4+422%1, 14+2*%i, 11+2*i, 4+8*1, 28+96*i, 9+13*i, 55+10%i, 6+2*i, 62+34*i, 20+40*i, 100+200*i,

60+80*1, 5+5%1, 45+65%i, 25+25%1, 125+125%i, 30+10%i, 150+50*i, 70+10*i, 750+250*i, 2+i,

2+2%1, 3+4*1, 2+11*i, 8+4*i, 8+44*i, 1+3*i, 7+i, 4+2*i, 6+8%i, 2+6*i, 26+18*i, 4+3*i, 7+24*i,
16+12*%1, 44+8*i, 3+i, 1+7*i, 31+17*i, 5+10%i, 20+15%i, 2+4*i, 8+6*i, 22+4*i, 14+48*i, 2+14*i,
18+26*1, 10+5*i, 25+50*i, 100+75*1, 15+20*i, 50+25*i, 125+250*i, 80+60*i, 220+40*i, 40+20*i,
400+300*%1, 200+100*%i, 15+5*i, 5+35*i, 5+15%i, 75+25%i, 25+175%1, 35+5*i, 25+75%i, 375+125%*1i,

10+20*%1, 40+30%i, 110+20*i, 20+10*i, 50+100*i, 200+150*i, 30+40*i, 100+50*i, 250+500%*i,
10+10*1, 10+70*i, 90+130*i, 10+30*i, 50+50*i, 50+350*i, 50+150*i, 250+250*i}

»> maple('with(GaussInt)');maple(’GIfactor(1000-500%i)")
ans =

(-1)*(1+1)74*(-142%1)"3%(-1-2%1)"4

CHAPTER 3

»> maple('with(GaussInt)"');maple('GIgcd(1000-500*i,100-50*i,10-5%i)")
ans =

5+10%*1

»> maple('with(GaussInt)"');maple('GIlcm(1000-500%i,100-50%i,10-5%i)")
ans =

500+1000*1

»> maple('with(GaussInt)');maple('GInoxm(1000-500%i)")

ans =

1250000

REAL AND COMPLEX NUMBERS

EXERCISE 3-20

Find the square-free factorization of the Gaussian integers 1574 + 368 * i and 3369067456 + 16670818364 * i

»> maple('with(GaussInt):GIsqrfree(1574+368%i)")

ans =

[, [[65+148*i, 1], [-1+3*i, 2]]]

»> maple('with(GaussInt):GIsqrfree(3369067456 + 16670818364*i)")
ans =

[i, [[-3-2%i, 1], [-7+2*1, 2], [1+1, 4], [5-2*i, 5], [1+4*i, 6]]]

83

CHAPTER 3 © REAL AND COMPLEX NUMBERS

EXERCISE 3-21

Find the Smith normal form of the matrix H of Gaussian integers whose rows are the vectors [-4 + 7 *i, 8 +
10*i,-6-8*i],[-5+7*i,6-6*i,5*]and [-10 +i,1-3*i,— 10 + 5 *i]. Find the corresponding
transformation matrices. Also find the step reduced Hermite normal form of the matrix H and the corresponding
transformation matrix.

»> maple('with(GaussInt):H:= array([[-4+7*i,8+10*%i,-6-8*i],[-5+7*i,6-6%i,5%i],
[- 10+i,1-3%i,-1045%1]])")

ans =

H := matrix([[-4+7*%i, 8+10*i, -6-8*i], [-5+7*i, 6-6*i, 5*i], [-10+i, 1-3*i, -10+5*%i]])
»> maple('with(GaussInt):GIsmith(H)')

ans =

matrix([[1, o, 0], [0, 1, 0], [0, 0, 1797+791%*i]])

The matrix is displayed in standard row and column format using pretty.

»> pretty(sym(maple('with(GaussInt):GIsmith(H)')))

[1 0 0]
[1
[o 1 0]
[1
[0 0 1797 + 791i]

»> pretty(sym(maple('with(GaussInt):GIsmith(H,A,B),eval(A),eval(B)")));

[1 0 0]

[1

[o 1 0 1,

[1

[o 0 1797 + 7911]

[1 -1 0]
[1
[-5521 - 9541 16188 - 114181 1405 + 136981],
[)|
[7440 - 100791 6598 + 437991 -28787 - 109201]
[1 778 + 35191 -3051937 + 8371291i]

[1

[o 1 44 + 8771]

[1

[o 247 + 541 -36491 + 2189951]

84

CHAPTER 3 © REAL AND COMPLEX NUMBERS

»> pretty(sym(maple('with(GaussInt):GIhermite(H,M),eval(M)')))

[1 0 679 - 58i] [-14 + 251 51 + 161 -49 + 3i]
[11 1
[0 1+ 1 121 - 712i], [22 + 21i 30 - 481 -10 + 51i]
[I []
[0 0 503 + 1294i] [-57 - 131 -2 + 1091 -34 - 94i]

Here we have defined a matrix simply by placing its rows between square brackets, separated by commas. As we
will see later, this is a standard way to define arrays in MATLAB.

EXERCISE 3-22

Factorize the polynomial x* - 17x3 - 29ix3 - 188x? + 339ix? + 1682x — 86ix — 1178 — 1244i in the ring of Gaussian
integers. Also find its roots in the ring of Gaussian integers.

»> maple('with(GaussInt):GIfacpoly(x*4-17*x"3-29*I*x"3-188%x"2+339*I*x"2
+1682*x-86*I*x-1178-1244*I)")

ans =
[1) [[X'4'9*i) 1]) [X—S-S*i, 1]) [X'l'i) 1]) [X'7'11*i) 1]]]

The factorization is: (x-4-9i)(x-5-8i)(x-1-i)(x-7-11i). Now we find the roots, which must logically be 1 + i, 4 + 9i
and 11i 7 + 5 + 8i, all with multiplicity 1.

»> maple('with(GaussInt):GIroots(x"4-17*x"3-29*i*x"3-188*x"2+339*i*x"2
+1682*x-86*i*x-1178-1244*i) ")

ans =

[[4 +9 *i, 1], [5+8*1i, 1], [1+1,1], [7+11*1 1]]

3.10 Approximation and Precision

The accuracy of the output of numerical operations with MATLAB can be relaxed using special approximation
techniques, returning results to a certain degree of precision.

MATLAB represents results with accuracy, but even if internally you are always working with exact calculations to
avoid rounding errors, you can enable different approximate representation formats, which sometimes facilitate the
interpretation of results. The following commands can be used for numerical approximation:

format long: Delivers results to 16 significant decimal figures.
format short: Delivers results to 4 decimal places. This is MATLAB's default format.

format long e: Provides the results to 16 decimal figures more than the power of 10
required.

format short e: Provides the results to four decimal figures more than the power of 10
required.

85

CHAPTER 3

86

REAL AND COMPLEX NUMBERS

format long g: Delivers results in optimal long format.

format short g: Delivers results in optimal short format.

format bank: Delivers results to 2 decimal places.

format rat: Offers an approximation of results in the form of a rational number
format +: Returns the sign of the results (+, - or 0).

format hex: Returns results in hexadecimal.

vpa ‘operations’ n: Provides the result of operations to » significant decimal figures.

numeric(‘expr’): Provides the value of the expression numerically approximated by the
current active format.

digits(n): Returns results to n significant digits.

maple(‘evalf(expr)’): Evaluates the expression numerically up to an accuracy
determined by digits.

maple(‘evalf(expr,m)’): Evaluates the expression to m digits without affecting the value
of digits.

maple(‘value(expr)’): Evaluates symbolically or numerically the inert symbolic
expression.

maple(‘evalhf(expr)’): Evaluates the numerical expression with double precision to the
number of accurate digits specified by digits.

maple(‘evala(expr)’): Evaluates the expression algebraically.
maple(‘evalc(expr)’): Evaluates the complex expression with double-precision.

maple(‘evalr(expr)’): Evaluates an expression containing ranges of variables or
inequalities or logical symbols.

maple(‘evalb(expr)’): Evaluates an expression, equation, Boolean expression or
inequality that contains relational operators.

maple(‘eval(expr)’): Completely evaluates the expression.

maple(‘eval(expr, n)’): Evaluates the expression to n levels. This is often used to
evaluate the results of the command subs.

maple(‘evaln(expr)’): Evaluates an expression to a name. This is equivalent to
introducing quotes in the expression.

maple(‘fnormal(expr)’): Normalizes a floating point expression.
maple(‘fnormal(expr, n)’): Normalizes a floating point expression to » digits.

maple(‘fnormal(expr,n,m)’): Normalizes a floating point expression to » digits with an
error tolerance given by m.

maple(‘Float(m,n)’): Gives the number m*10" in floating-point form. The result can be
of the form integer.integer, integer, .integer or any of these forms multiplied by 10°*rore™,

Here are some examples:

For each format, find a numerical approximation of \17:

»> sqrt(17)
ans =

4.1231
»> format long; sqrt(17)
ans =

4.12310562561766
»> format long e; sqrt(17)
ans =

4.123105625617660e+000
»> format short e; sqrt(17)
ans =

4.1231e+000
»> format long g; sqrt(17)
ans =
4.12310562561766
»> format short g; sqrt(17)
ans =
4.1231
»> format bank; sqrt(17)
ans =
4.12

»> format hex; sqrt (17)
ans =

40107e0f66afedo7

CHAPTER 3

REAL AND COMPLEX NUMBERS

87

CHAPTER 3 © REAL AND COMPLEX NUMBERS

Now we give some examples of the calculation of the value of sqr#(17) specifying the precision that we desire:
> vpa 'sqrt(17)' 10
ans =
4.123105626
»> digits(15); maple('evalf(sqrt(17))’')
ans =
4.12310562561766
»> digits(15); maple('evalhf(sqrt(17))')
ans =
4.123105625617661
»» digits (15); maple ('evala (sqrt (17))')
ans =
17 ~(1/2)
We find the decimal approximation of © to 100 digits of precision.
»> vpa 'pi' 100
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
»> digits(100); maple('evalf(pi)')
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
Now we convert the numbers 12345 * 10, 456 * 10 and 12345 * 10'® -12345 * 108 to floating point format:
»> maple('Float(123456,-4)")
ans =

12.3456

88

CHAPTER 3 REAL AND COMPLEX NUMBERS
»> maple('Float(456,-4)")
ans =

.456e-1

»> maple('Float(12345,18)")
ans =

. 12345e23

»> maple ('Float(12345, - 18) ')
ans =
. 12345e-13
We convert 1234598678 * 10~ to a floating-point number:
»> maple ('Float(1234598678, - 3)')
ans =
1234598.678
We now consider the integral of x* between 0 and 1 as an inert function and then calculate its numerical value:
»> maple('Int(x"4,x=0..1)")
ans =

Int(x,x =0 .. 1)

»> maple('value(Int(x"4,x=0..1))")
ans =

1/5

3.11 Types of Numbers and Expressions

In MATLAB, you can work with different types of numbers and expressions. It is possible to declare the corresponding
type of each number or expression, as well as to check the type of a given number or expression. These types of
numbers and expressions cover integers, real numbers and complex numbers, and are used in arguments of functions
whose definition is preceded by the command maple.

89

CHAPTER 3 © REAL AND COMPLEX NUMBERS

90

Among the types of numbers in MATLAB we have the following:

integer: integer

negint: negative integer

posint: positive integer

nonnegint: nonnegative integer

even: even integer

odd: odd integer

prime: prime integer

rational: rational number

fractional: fraction

realcons: real constant

radical: radical number

radext: algebraic extension in terms of radicals

radnum: algebraic number in terms of radicals

radnumext: radical number exension

sqrt: number or expression in terms of square roots

square: perfect square expression or number

numeric: numeric expression

number: constant or constant expression

positive: positive number

negative: negative number

infinity: infinite number

nonneg: nonnegative number

algnum: algebraic number

algnumext: algebraic number extension

rootof: RootOf expression

complex: complex number or complex expression
complex(integer): complex number a+bi with a and b integer (possibly zero)
complex(rational): complex number a+bi with a and b rational
complex(float): complex number a+bi with a and b constant floating point
complex(numeric): complex number a+bi of any of the above forms
facint: integer in factored form

float: number or floating point expression

intersect: intersection

CHAPTER 3 © REAL AND COMPLEX NUMBERS

union: union

minus: difference

list: list expression

listlist: list of lists

set: set

relation: relational expression
boolean: boolean expression

logical: logical expression

vector: vector

array: array (vector or matrix)

matrix: matrix

scalar: scalar matrix

name: name

nothing: nothing (always returns false)
protected: name protected by Maple (not editable)
range: range

string: string

table: table

text: text

Having described the types of numbers and the most important numerical expressions that can be declared in
MATLAB, we now summarize the commands that handle them:

type(expr, type): determines whether the number or expression expr is of the
specified type

tymematch(expr, type): determines if the number or expression expr is of the
specified type

whattype(expr): returns the type of the number or expression expr
func(parameter::type) determines the type of the parameter of the function func

Here are some examples:
>> maple('type ((3+2*i), complex)')
ans =

true

91

CHAPTER 3 = REAL AND COMPLEX NUMBERS
»> maple('type(257,prime)’)
ans =

true

»> maple('whattype([1,2,3])")
ans =

list

»> maple('whattype({1,2,3})")
ans =

set

3.12 Random Numbers

The automatic generation of (pseudo) random numbers is a problem well handled by MATLAB.

MATLAB provides the function rand to generate uniformly distributed random numbers and the function randn
to generate normally distributed random numbers. The following functions can be used to generate random floating

point numbers:

92

rand: returns a random uniformly distributed decimal number in the interval [0,1]

rand(n): returns a matrix of size nxn whose elements are random uniformly
distributed decimal number in the interval [0,1]

rand(m,n): returns a matrix of dimension mxn whose elements are random uniformly
distributed decimal number in the interval [0,1]

rand(size(a)): returns a matrix of the same size as the matrix @ and whose elements are
random uniformly distributed decimal number in the interval [0,1]

rand(‘seed’): returns the current value of the uniform random number generator seed

rand(‘seed)n): sets the current value of the uniform random number generator seed to
the value n

randn: returns a normally distributed random decimal number with mean 0 and
variance 1

randn(n): returns a matrix of size nxn whose elements are normally distributed
random decimal numbers with mean 0 and variance 1

maple(‘with(linalg):randmatrix(m,n)’): returns a matrix of dimension mxn whose
elements are random integers between —99 and 99

maple(‘with(linalg):randmatrix(m,n,option)’): returns a matrix of dimension mxn
whose elements are random integers between —99 and 99, and of the specified type in
option, the possible options being symmetric, antisymmetric, diagonal, identity and
sparse

CHAPTER 3 © REAL AND COMPLEX NUMBERS

maple(‘with(linalg):randvector(n)’): returns a vector of dimension z whose elements
are random integers between —99 and 99

randn(m,n): returns a matrix of dimension mxn whose elements are normally
distributed random decimal number with mean 0 and variance 1

randn(size(A)): returns a matrix of the same size as the matrix A and whose elements
are normally distributed random decimal number with mean 0 and variance 1

randn (‘seed’): returns the current value of the normal random number generator seed

randn(‘seed)n): sets the current value of the normal random number generator seed to
the value n

Here are some examples:
»» [rand, rand (1), randn, randn (1)]
ans =

0.8310 0.0346 1.1650 0.6268
»» [rand(2), randn(2)]

ans =

o

.0535 0.6711 0.0751 -0.6965
.5297 0.0077 0.3516 1.6961

o

»> [rand(4,3), randn(4,3)]

ans =
0.6326 0.2470 0.6515 - 0.0562 0.4005 0.7286
0.7564 0.9826 0.0727 0.5135 - 1.3414 - 2.3775
0.9910 0.7227 0.6316 0.3967 0.3750 - 0.2738
0.7534 0.8847 0.7562 1.1252 - 0.3229

»> maple with(linalg):randmatrix(3,3,symmetric)

ans =

matrix([[—85,—55,—35], ['55)'37) 97]) ['35) 97, 50]])

93

CHAPTER 4

Numerical Variables, Vectors
and Matrices

4.1 Variables

The concept of variable, like the concept of function, is essential when working with mathematical software.
Obviously, the theoretical concept of a mathematical variable is fixed and independent of the software package, but
how to implement and manage variables is very characteristic of each particular program. MATLAB allows you to
define and manage variables, and store them in files, in a very simple way.

When extensive calculations are performed, it is convenient to give names to intermediate results. Each
intermediate result is assigned to a variable to make it easier to use. For example, we can define the variable x and
assign the value 5 to it in the following way:

»x=5
X =

5

From now on, whenever the variable x appears it will be replaced by the value 5, and it will not change its value
until it is redefined.

» x "2
ans =
25
The variable x will not change until we explicitly assign another value to it.
»x=7+4
X =
11

From this moment on, the variable x will take the value 11.

95

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

It is very important to stress that the value assigned to a variable will remain fixed until it is expressly changed or
if the current MATLAB session is closed. It is common to forget the definitions given to variables during a MATLAB
session, causing misleading errors when the variables are used later in the session. For this reason, it is convenient to
be able to remove the assignment of a value to a variable. This operation is performed by using the command clear-.
It is also useful to recall the variables we have defined in the present session, which is done using the command who:

e The expression x = value assigns the value value to the variable x.

e The command clear removes the value assigned to all variables.

e The command clear x removes the value assigned to the variable x.

e The command clear x y removes the value assigned to the variables x and y.

e The command who gives the names of all variables currently in memory (variables in the
workspace).

e The command whos gives the names, sizes, number of items, bytes occupied, and the type of
all variables currently in memory.

Here are some examples that use the variable handling commands defined above:

»x=17,y=4+i, z = sqrt (3)

X =

7
y =

4.0000 + 1. 00001
z =

1.7321
> p=X+y+z
p =

12.7321 + 1. 00001
»> who

Your variables are:
ans p X y z

»> whos
Name Size Elements Bytes Density Complex

ANS 1 by 1 1 8 Full No
p1byi1 1 16 Full Yes
x1byi1 1 8 Full No
y 1by1 1 16 Full Yes
z1by1 1 8 Full No

Grand total is 5 elements using 56 bytes

96

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

Now we are going to change the value of the variable y, and delete the variable x.

»y=pi
y:
3.1416

»> clear x;
»> whos

Name Size

ANS 1 by 1
p1byi1
y 1by1
z1byi1

Elements Bytes Density Complex

R R R R

8
16
8
8

Grand total is 4 elements using 40 bytes

Full
Full
Full
Full

No
Yes
No
No

We see that the variable x has disappeared and that the variable y has the new value assigned, but the variable p
has not changed, despite having changed two of its components. For an expression that contains a variable whose
value has been changed, to update its value it is necessary to rerun it:

» p=y+z
p:
4.8736
»> whos
Name Size
ANS 1 by 1
p1byi1
y 1by1
z1by1

Elements Bytes Density Complex

R R Rk R

S Oo G0

Grand total is 4 elements using 32 bytes

Now all values are updated, including that of p.

Full
Full
Full
Full

No
No
No
No

As for the names that can be given to the variables, the only restriction is that they cannot start with a number or
contain punctuation characters that are assigned a special meaning in MATLAB. It is also advisable to name variables
with words that begin with lowercase letters, and in general with words completely in lowercase. This avoids collisions
with MATLAB functions beginning with an uppercase letter. MATLAB is case sensitive. There can be any number of
characters in the name of a variable, but MATLAB will handle only the first 19.

97

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.2 Variables and Special Constants

In many kinds of calculations we need to work with variables and special constants that the program has enabled.
Here are some examples:

98

PI or maple(‘PT’): 3.1415926535897...

ior j or maple(‘i’): imaginary unit (square root of -1).

inf or maple(‘infinity’): infinity, returned for example when presented with 1/0.

NaN (Not a Number): indeterminate, returned for example when presented with 0/0.
realmin: the smallest usable positive real number.

realmax: the greatest usable positive real number.

finite(x): returns 1 if x is finite and zero otherwise.

isinf(x): returns 1 if x is infinity or -infinity, and zero otherwise.

isNaN(x): returns 1 if x is undetermined and zero otherwise.

isfinite(x): returns 1 if x is finite and zero otherwise.

ana: automatically creates a variable to represent the last unmapped processing result
which has not been assigned to a variable.

eps: returns the distance from 1.0 to the next largest double-precision number. This is
the default tolerance for floating-point operations (floating point relative accuracy). In
current IEEE machines its value is 2 A (-52).

isieee: returns 1 if the machine is IEEE and 0 otherwise.
computer: returns the type of the computer.

flops: returns the number of floating point operations that have been executed in a
session (flops(0) resets the operations counter).

version: returns the current version of MATLAB.
why: returns a concise message.
cputime: returns CPU time in seconds used by MATLAB since the beginning of the session.

clock: returns a list consisting of the following 6 items: [year month day hour minutes
seconds].

date: returns the current calendar date.

etime: returns the time elapsed between two clock type lists (defined above).

tic: enables a temporary counter in seconds that ends with the use of the variable toc.
toc: returns the elapsed time in seconds since the variable tic was activated.

LastErr: returns the last error message.

See: gives information about the program and its Toolbox.

Info: provides information about MATLAB.

subscribe to: gives information about the subscription to MATLAB.

whatsnew: provides information about new undocumented MATLAB features.

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

Here are some examples:
First we check if our computer is an IEEE machine, determine what type of computer it is, and find the current
date and time:

»> isieee

ans =

> computer
ans =
PCWIN
»> clock
ans =

1. 0e + 003 *

1.9950 0.0110 0.0140 0.0100 0.0150 0.0079

»> date
ans =
14-mar-99

Now we check the CPU time (in seconds) that has passed since the beginning of the MATLAB session, as well as
the number of floating-point operations that have occurred during that time:

»> cputime
ans =

23.5100
»> flops
ans =

1180

99

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-1

Calculate the time in seconds that the computer takes to return the irrational number = to 50 decimal places.
»» tic; vpa 'pi' 50; toc
elapsed time =

0.110000000000001

EXERCISE 4-2

Calculate the number of floating-point operations required to calculate the numerical value of the square root of
the irrational number = to default accuracy. Consider the number =t first as a numerical constant, and secondly,
as a symbolic constant.

»> flops(0);numeric((pi)~(1/2));flops
ans =

427
»> flops(0);numeric(’(pi)~(1/2)");flops
ans =

6

We see that much fewer floating-point operations are required when we consider i as a symbolic constant. The
calculations are faster when we work in the symbolic field.

4.3 Symbolic and Numeric Variables

MATLAB deems as symbolic any algebraic expression whose variables have previously been defined as symbolic via
the command syms. For example, if we want to treat as symbolic the expression 6ab + 3a* + 2ab in order to simplify it,
we need to declare the two variables a and b as symbolic as shown below:

> syms a b
»> simplify(6*a*b + 3*a"2 + 2*a*b)

ans =

8*a*bhb+3*ag"2

100

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

The command sym can be used to transform a numeric expression into a symbolic expression. For example, if we
want to simplify the numeric expression 2/5 + 6/10 + 8/20, we first need to transform it into a symbolic expression via
sym(2/5+6/10+8/20), making the simplification as follows:

»> simplify (sym(2/5+6/10+8/20))
ans =
7/5
The variables contained in a symbolic expressions must be symbolic. Some commands for working with
symbolic and numerical variables are described below:
syms x y Z... t: makes the variables x, y, z,..., £ symbolic.
Syms X y Z... t real: makes the variables x, y, z,..., t symbolic with real values.
Syms X y Z... t unreal: makes the variables x;, y, z,..., t symbolic with non-real values.
syms: lists the symbolic variables in the workspace.
x = sym (‘x’): x becomes a symbolic variable (equivalent to syms x).
x = sym (‘x) real): x becomes a real symbolic variable.
x = sym(‘xjunreal): x becomes a symbolic non-real variable.

S = sym(A): creates a symbolic variable S from A, where A can be a string, a scalar, an
array, a numeric expression, etc.

S = sym(A,option’): converts the array, scalar or numeric expression A to a symbolic
variable S according to the specified option. The option can be ‘f’ for floating point, ‘r’
for rational, ‘e’ for error format and ‘d’ for decimal.

numeric(x): makes the variable or expression x numeric with double precision.

sym2poly(poly): converts the symbolic polynomial poly to a vector whose components
are its coefficients.

poly2sym(vector): creates a symbolic polynomial whose coefficients are the
components of the vector.

poly2sym(vector;v’): converts a symbolic polynomial in the variable v whose
coefficients are the components of the vector.

digits(d): gives symbolic variables to an accuracy of d significant figures.
digits: returns the current accuracy for symbolic variables.

vpa(expr): returns the numerical result of the expression to an accuracy determined by
digits.

vpa(expr, n): returns the numerical result of the expression to 7 significant figures.
vpa(‘expr) n): returns the numerical result of the expression to z significant figures.

pretty(expr): returns the symbolic expression in the form of standard mathematical
script.

101

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-3

Solve the equation ax? + bx + ¢ = 0 assuming that the variable is x. Solve it when the variables are a, b or c,
respectively.

Since by default MATLAB considers x to be the only symbolic variable, to solve the equation in x we don’t need to
declare x as symbolic. We simply use the command solve as follows:

»> solve('a*x*2+b*x+c=0")
ans =

[1/72/a*(-b+(b"2-4%a*c)*(1/2))]
[1/2/a*(-b-(b*2-4%*a*c)*(1/2))]

But to solve the equation with respect to the variables a, b or ¢ respectively, it is necessary to first specify them as
symbolic variables:

»> syms a
»> solve('a*x"2+b*x+c=0"',a)

ans =
-(b*x+c)/x"2

»> syms b
»> solve('a*x"2+b*x+c=0",b)

ans =
-(a*x"2+c)/x

»> syms c
»> solve('a*x*2+b*x+c=0",c)

ans =

-a *x " 2-b *x

102

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-4

Find the roots of the polynomial x* - 8x? + 16 = 0 obtaining the result to default accuracy, to 20 significant figures
and with double-precision. Also generate the vector of coefficients associated with the polynomial.

> p = solve('x"4-8*x"2-16=0")

p:

[2*(27(1/2)+1)*(1/2)]
[-2*%(27(1/2)+1)"(1/2)]
[2*(1-27(1/2))"(1/2)]
[-2*%(1-27(1/2))"(1/2)]

>> vpa(p)

ans =

[3.1075479480600746146883179061262]
[-3.1075479480600746146883179061262]
[1.2871885058111652494708868748364%*1]
[-1.2871885058111652494708868748364*1]

»> numeric(p)

ans =
3.1075
-3.1075

0 + 1.28721

0 - 1.28721

»> vpa(p,20)

ans =

[3.1075479480600746146]
[-3.1075479480600746146]
[1.2871885058111652495%1]
[-1.2871885058111652495%1]

» syms x
»> sym2poly(x"4-8*x"2-16)

ans =

1 0 -8 0 -16

103

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-5

Find the numerical value to default precision of the abscissa of the intersection point in the first quadrant of the
curves y = sin(x) and y = cos(x). Find the symbolic solution. Find the abscissa to 12 significant figures.

»> p = numeric(solve('sin(x) = cos(x)'))

p =
0.7854

» q = sym(p)

q -

PI/4

»> digits(12);r=numeric(solve('sin(x)=cos(x)"'))
T =

.785398163398

EXERCISE 4-6

Simplify the following expressions as much as possible:
1/2m-1/3m+1/4m+1/5m+1/6m
1/2-1/3+1/4+1/5+1/6

> syms m
»> simplify(2/(2*m) - 1/(3*m) + 1/(4*m) +1/(5*m) +1/(6*m))

ans =

47/60m

>> pretty(simplify(1/(2*m) - 1/(3*m) + 1/(4*m) +1/(5%*m) +1/(6*m)))
47

60m
»> sym(1/2-1/3 + 1/4 +1/5 +1/6)

ans =

47/60

104

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.4 Vector Variables

A variable that represents a vector of length n can be defined in MATLAB in the following ways:

variable = [e1, e2, e3,..., en]
variable = [e1 e2 e3 ... en]

Therefore, to define a vector variable, simply insert the vector elements between brackets separated by commas
or blank spaces.
When you apply most MATLAB commands and functions to a vector variable, the result obtained is that found by
applying the command or function to each element of the vector:
»» vector1 = [1,3,5,2.3,1/2]
vector1 =
1.0000 3.0000 5.0000 2.3000 0.5000
»> sin(vector1)
ans =
0.8415 0.1411 - 0.9589 0.7457 0.4794
»> exp (vector1)
ans =
2.7183 20.0855 148.4132 9.9742 1.6487
»> log (vectori)
ans =

0 1.0986 1.6094 0.8329 - 0.6931

There are different ways of defining a vector variable without explicitly bracketing all its elements, separated by
commas or blank spaces.

variable = [first_element:last_element]: Defines the vector whose first and last
elements are specified, and the intermediate elements differ by one unit.

variable = [first_element:increase:last_element]: Defines the vector whose first and last
elements are specified, and the intermediate elements differ by the amount specified
by the increase.

variable = linspace (first_element, last_element, n): Defines the vector whose first and
last elements are specified, and which has in total n evenly spaced elements.

variable = logspace (a,b,n): Defines the vector whose first and last elements are 10*
and 10%, and which has in total n evenly logarithmically spaced elements.

105

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

Here are some examples:
»> vector2 = [0:5:20]
vector2 =
05 10 15 20
We have obtained the numbers between 0 and 20 separated by 5 units.
»> vector3 = [0:20]
vector3 =
Columns 1 through 12
0 1 2 3 4 5 6 7 8 9 10 11
Columns 13 through 21
12 13 14 15 16 17 18 19 20
We have obtained the numbers between 0 and 20 separated by units.
»> vectorq = linspace(0,10,11)
vectorqd =
0 1 2 3 4 5 6 7 8 9 10
We have obtained the numbers between 0 and 10 separated by units.
»> vector5 = linspace(0,20,6)
vectors =
04 8 12 16 20
We have obtained 6 equally spaced numbers between 0 and 20.
»> vector6 = logspace(0,2,6)
vector6 =
1.0000 2.5119 6.3096 15.8489 39.8107 100.0000

We have obtained 6 evenly logarithmically spaced numbers between 10° and 10

106

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

We can also consider row and column vectors in MATLAB. A column vector is obtained by separating its
elements by semicolons, or by transposing a row vector using a single apostrophe at the end of its definition.

»> a=[1;2;3;4]

a =

AN W N R

»> a=[1:4];b=a’

b =
1
2
3
4
» c=(a')’
Cc =
1234

You can also select an element of a vector or a subset of elements.
x(n): returns the n-th element of the vector x.
x(a:b): returns the a-th through b-th elements of the vector x, both inclusive.

x(a:p:b): returns the a-th through b-th elements of the vector x, both inclusive, each
separated from the next by p units (a <b).

x(b:-p:a): returns the b-th through a-th elements of the vector x, both inclusive, each
separated from the next by p units and starting with the b-th (b > a).

Here are some examples:

» x =(1:10)

X =
1 2 3 4 5 6 7 8 9 10

»> x(6)

ans =

107

CHAPTER 4 = NUMERICAL VARIABLES, VECTORS AND MATRICES
We have obtained the sixth element of the vector x.
»> x(4:7)
ans =
4567
We have obtained the elements of the vector x located between the fourth and the seventh elements, both inclusive.
»> x(2:3:9)
ans =
258

We have obtained the elements of the vector x located between the second and ninth elements, both inclusive,
but separated from each other by three units.

> x(9:-3:2)
ans =
963

We have obtained the elements of the vector x located between the ninth and second elements, both inclusive,
but separated from each other by three units and starting at the ninth.

Simple mathematical operations between scalars and vectors scale each element of the vector according to the
defined operation, and simple operations between vectors are performed elementwise.

Below is a summary of these operations:

a=1{al, a2,..., an}, b = {bl, b2,..., bn}, c = scalar

a+c=[al + ¢, a2 + c,..., an + c¢]: sum of a scalar and a vector
a*c=[al *c, a2 *,..., an * c]: product of a scalar and a vector
a+b=[al +bl, a2 + b2,... an + bn]: sum of two vectors

a.*b =[al *bl, a2 * b2,..., an * bn]: product of two vectors
a./b=[al/bl a2/b2... an/bn]: right ratio of two vectors

a.\ b =[al\bl a2\b2... an\bn]: left ratio of two vectors

a. N ¢ =[al A ¢, a2 A c,..., an A c]: scalar power of a vector
c.Aa=[cAal,cAa2,..,c A an]: vector power of a scalar

a. b =[al A bl, a2 A b2,... ,an A bn]: vector power of a vector

It must be borne in mind that the vectors must be of the same length, and that in the product, quotient, and
power the first operand is followed by a point.

108

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

On the other hand, you can also set the vector variables to be symbolic using the command syms.

»> syms t
»> A=sym([sin(t),cos(t)])

A =

[sin (t), cos (t)]

EXERCISE 4-7

Given the vector variables a = [r, 2, 3w, 4w, 57] and b = [e, 2e, 3e, 4e, 5¢] calculate ¢ = sin (a) + b, d = cos (a),
e=In(), f=c*d,g=c/d,h=dr2,i=d"2-e”~2andj=3d " 3-2e " 2.

> a=[pi,2*pi,3*pi,4*pi,5*pi],b=[exp(1),2*exp (1),3*exp(1),4 *exp (1), 5 * exp (1)], c=sin(a)+b,
d=cos(a), e=log(b), f=c.*d, g=c./d, h=d.A2, i=d.A2-e./2,j=3*d. A 3-2*e " 2

a =

3.1416 6.2832 9.4248 12.5664 15.7080

b =
2.7183 5.4366 8.1548 10.8731 13.5914
C =
2.7183 5.4366 8.1548 10.8731 13.5914
d =
-1 1 -1 1 -1
e =
1.0000 1.6931 2.0986 2.3863 2.6094
f =
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
g =
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
h =
1 1 1 1 1
is=
0 - 1.8667 - 3.4042 - 4.6944 - 5.8092
j =

-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183

109

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.5 Matrix Variables

MATLAB defines matrices by inserting in brackets all its row vectors separated by a semicolon. Vectors can be entered
by separating their components by spaces or by commas, as we already know. For example, a 3 x 3 matrix variable
can be entered in the following two ways:

= o o
M= [au a, a;5a, a, a,5a, a, a,
. o
M [an’ a, 53,333, a,,, 3,53, a,, a33]

Similarly we can define a matrix of general dimension (MxN). Once a matrix variable has been defined, MATLAB
enables many ways to insert, extract, renumber, and generally manipulate its elements. The following list summarizes
different ways to define matrix variables.

A(m,n) defines the (m, n)-th element of the matrix A (row m and column n)

A(a:b,c:d) defines the subarray of A formed between the a-th and the b-th rows and
between the c-th and the d-th columns, inclusive

A(a:p:b,c:q:d) defines the subarray of A formed by every p-th row between the a-th and
the b-th rows, inclusive, and every q-th column between the c-th and the d-th columns,
inclusive

A([ab],[c d]) defines the subarray of A formed by the intersection of the a-th through
b-th rows and c-th through d-th columns, inclusive

A([abc...],[e fg...]) defines the subarray of A formed by the intersection of rows a, b, c,...
and columns e, f, g,...

A(:,c:d) defines the subarray of A formed by all the rows in A and the c-th through to the
d-th columns

A(;[cd e ...]) defines the subarray of A formed by all the rows in A and columns c, d, e,...

A(a:b,:) defines the subarray of A formed by all the columns in A and the a-th through
to the b-th rows

A([a b c...],:) defines the subarray of A formed by all the columns in A and rows a, b, c,...
A(a,:) defines the a-th row of the matrix A
A(:,b) defines the b-th column of the matrix A

A(:) defines a column vector whose elements are the columns of A placed in order
below each other

A(:,:) this is equivalent to the entire matrix A

[A, B, C,...] defines the matrix formed by the matrices A, B, C,...

SA =[] clears the subarray of the matrix A, SA, and returns the remainder

diag(v) creates a diagonal matrix with the vector v in the diagonal

diag(A) extracts the diagonal of the matrix as a column vector

eye(n) creates the identity matrix of order n

eye(m,n) creates an mxn matrix with ones on the main diagonal and zeros elsewhere
zeros(m,n) creates the zero matrix of order mxn

ones(m,n) creates the matrix of order mxn with all its elements equal to 1

110

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

rand(m,n) creates a uniform random matrix of order mxn
randn(m,n) creates a normal random matrix of order mxn

flipud(A) returns the matrix whose rows are those of A but placed in reverse order
(from top to bottom)

fliplr(A) returns the matrix whose columns are those of A but placed in reverse order
(from left to right)

rot90(A) rotates the matrix A counterclockwise by 90 degrees

reshape(A,m,n) returns an mxn matrix formed by taking consecutive entries of A by
columns

size(A) returns the order (size) of the matrix A
find(cond,) returns all A items that meet a given condition
length(v) returns the length of the vector v

tril(A) returns the lower triangular part of the matrix A
triu(A) returns the upper triangular part of the matrix A

A' returns the transpose of the matrix A

inv(A) returns the inverse of the matrix A

Here are some examples:
We consider first the 2 x 3 matrix whose rows are the first six consecutive odd numbers:

> A =[135;79 11]
A =

135
79 11

Now we are going to change the (2,3)-th element, i.e. the last element of 4, to zero:
» A(2,3) =0
A =
135
790
We now define the matrix B to be the transpose of A:
>> B =A'

B =

w
A(e)

111

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:

» C = [B eye (3)]

C =
1 7 1 0 0
3 9 0 1

5 0 0 0 1

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection
of the first two rows and the last three columns of the matrix C:

» D = C(:,1:2:5)

D =

v
v
m
n

C([2 2],[3 5D)

v
v
m
n

c([1 2],3:5)

010

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the
main diagonal of D:

»» G = diag(diag(D))

G =

(e}
[}
(e}

112

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third
and fifth columns:

» H = ¢([1 3],[2 3 5])

H =

Now we build an array I formed by the identity matrix of order 5 x 4, appending the zero matrix of the same
order to its right and to the right of that, the unit matrix, again of the same order. Then we extract the first row of I and,
finally, form the matrix / comprising the odd rows and even columns of I and calculate its order (size).

»>> I = [eye(5,4) zeros(5,4) ones(5,4)]

ans =

1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
» I(1,:)

ans =

1 0 0 0 0 0 0 0 1 1 1 1
»» J = I(1:2:5,2:2:12)

J =

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

»> size(J)
ans =

36

113

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

We now construct a random matrix K of order 3 x 4, reverse the order of the rows of K, reverse the order of the
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 x 3 whose
columns are obtained by taking the elements of K sequentially by columns.

»» K = rand(3,4)
K =
0.5269 0.4160 0.7622 0.7361

0.0920 0.7012 0.2625 .3282
0.6539 0.9103 0.0475 0.6326

o

»> K(3:-1:1,:)
ans =
0.6539 0.9103 0.0475 0.6326

0.0920 0.7012 0.2625 .3282
0.5269 0.4160 0.7622 0.7361

()

»> K(:,4:-1:1)
ans =
0.7361 0.7622 0.4160 0.5269

0.3282 0.2625 0.7012 .0920
0.6326 0.0475 0.9103 0.6539

(]

»> K(3:-1:1,4:-1:1)
ans =
0.6326 0.0475 0.9103 0.6539

0.3282 0.2625 0.7012 .0920
0.7361 0.7622 0.4160 0.5269

()

»» L = reshape(K,4,3)
L =

0.5269 0.7012 0.0475
0.0920 0.9103 0.7361

0.6539 0.7622 0.3282
0.4160 0.2625 0.6326

114

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-8

Given the square matrix of order 3 whose entries are the first nine natural numbers, find its inverse, its transpose
and its diagonal. Transform it into a lower triangular matrix and an upper triangular matrix and rotate it by 90
degrees counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements.
Extract the subarray whose diagonal is formed by the elements at ., and ,, and also remove the subarray whose
diagonal elements are at ,, and ,,.

> M = [1,2,3;4,5,657,8,9]
M =

1 2 3

4 5 6

7 8 9
»> A = inv(M)

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.937385e-018
A =
1. 0e + 016 *
0.3152 -0.6304 0.3152
-0.6304 1.2609 -0.6304
0.3152 -0.6304 0.3152

» B =M

115

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

»> TI=tril(M)

I =
1 0 0
4 5 0
7 8 9

»> TS=triu(M)

TS =
1 2 3
0 5 6
0 0 9

»> TR=rot9o(M)

TR =
3 6 9
2 5 8
1 4 7

> s=M(1,1)+M(1,2)+M(1,3)
s =

6
»> sd=M(1,1)+M(2,2)+M(3,3)
sd =

15
»> SM=M(1:2,1:2)
SM =

1 2
4 5

»> SMa=M([1 3],[2 3])
SM1 =

13
79

The most important matrix operations are summarized below:

116

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

A + B, A-B, A * B: addition, subtraction and product of matrices
A\B = inv(A)* Bif A is square.
A\Bis the solution of the system AX = Bin the sense of least-squares if A is not square
B coincides with (4'\ B")"
A" coincides with A*A* A *...* A n times (n scalar)
p 4 performs the calculation only if p is a scalar
Here are some examples:
> A = [1, 3, 5; pi exp(pi) sin(2); i 2 * i 1 + i]
A =
1.0000 3.0000 5.0000
3.1416 2.7183 0.0000
1.0000i 2.0000i 1.0000 + 1.00001
We have defined a complex matrix. Next we will calculate its inverse, its square and its square root:
»> B=inv(A)
B =
0.0711 - 0.28741i 0.5810 - 0.0806i 0.5407 + 0.89631

-0.0822 + 0.33221 -0.3036 + 0.09321 -0.6249 - 1.03591
0.2351 - 0.14181 0.0659 - 0.03981 0.2668 + 0.44231

» C=A"2
C =
10.425 + 51 72.422 + 101 12.524 + 51
75.84 + 0.841471 544.92 + 1.68291 36.022 + 0.841471
-1 + 8.28321 -2 + 51.2811 0+ 8.68291
»> A*(1/2)
ans =

0.7181 + 0.37841 0.6691 - 0.65831 2.0360 - 1.13951
1.2547 - 0.31931 1.6690 + 0.3804i -0.5550 + 0.83111
-0.1046 + 0.18521 0.1152 + 0.58701 1.2790 + 0.28691

117

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

Now we check that the product of the matrix A with its inverse is the identity matrix of order 3:
»> A*B
ans =

1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.00001

0.0000 + 0.00001 1.0000 + 0.00001 0.0000 + 0.00001
0.0000 + 0.00001 0.0000 + 0.00001 1.0000 + 0.00001

Now we find the exponential of A with bases 2 and - 2:
> 2°A
ans =
1.0e+07 *
0.0218 + 0.0057i 0.1569 + 0.0384i 0.0106 + 0.0031i

0.1673 + 0.01761 1.2036 + 0.10801 0.0816 + 0.01101
-0.0024 + 0.01571 -0.0156 + 0.11311i -0.0014 + 0.00761

» (-2)*A

ans =

1.0e+06 *
0.0585 - 0.13131 0.4059 - 0.94921 0.0305 - 0.06341
0.2852 - 1.03651 1.9345 - 7.47661 0.1545 - 0.50291

0.0965 + 0.03161 0.6969 + 0.21611 0.0468 + 0.01681

So far, we have always worked with numeric matrices. To work with symbelic matrices, we simply define the
variables to be symbolic using the command syms.

> syms t
»> A=sym([sin(t),cos(t);tan(t),exp(t)])

A =

[sin(t), cos(t)]
[tan(t), exp(t)]

»» b = inv (A)

b =

[-exp (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), cos (t) / (-sin (t) * exp (t) +
cos (t) * tan (t))]

[tan (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), - sin (t) / (-sin (t) * exp (t) +
cos (t) * tan (t))]

118

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.6 Character Variables

MATLAB is a powerful numerical calculation program, but it is also a versatile character variable (i.e. text)
manipulator. A character variable (or chain) is simply a string of characters contained within single quotes that
MATLAB interprets as a vector form. For example:

»» ¢ = 'string’

character string

We have thus defined the character variable c. Among the MATLAB commands that handle character variables
we have the following:

abs(‘character_string’) returns the array of ASCII characters equivalent to each
character in the string

setstr(numeric_vector) returns the string of ASCII characters that are equivalent to the
elements of the vector

str2mat(t1,t2,t3,...) returns the matrix whose rows are the strings t1, t2, t3,...,
respectively

str2num(‘string’) converts the string to its exact numeric value used by MATLAB

num2str(number) returns the exact number in its equivalent string with fixed
precision

int2str(integer) converts the integer to a string

sprintf(‘format) a) converts a numeric array into a string in the specified format
sscanf(‘string’, ‘format’) converts a string to a numeric value in the specified format
dec2hex(integer) converts a decimal integer into its equivalent string in hexadecimal
hex2dec(‘string_hex’) converts a hexadecimal string into its integer equivalent

hex2num(‘string_hex’) converts a hexadecimal string into the equivalent IEEE floating
point number

lower(‘string’) converts a string to lowercase
upper(‘string’) converts a string to uppercase

strcmp(s1,s2) compares the strings s1 and s2 and returns 1 if they are equal and 0
otherwise

strcmp(sl,s2,n) compares the strings s1 and s2 and returns 1 if their first n characters
are equal and 0 otherwise

strrep(c,expl) ‘exp2’) replaces expl by exp2 in the chain c

findstr(c, ‘exp’) finds where exp is in the chain c

isstr(expression) returns 1 if the expression is a string and 0 otherwise
ischar(expression) returns 1 if the expression is a string and 0 otherwise

strjust(string) right justifies the string

119

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

blanks(n) generates a string of n spaces
deblank(string) removes blank spaces from the right of the string
eval(expression) executes the expression, even if it is a string

disp(‘string’) displays the string (or array) as written, and continues the MATLAB
process

input(‘string’) displays the string on the screen and waits for a key press to continue

Here are some examples:
»> eval ('4 * atan(1)')
ans =

3.1416

This shows how MATLAB numerically evaluates the contents of a string (according to the program’s standard
interpretation of the syntax).

»> hex2dec ('3ffe56e’)
ans =
67102062
MATLAB has converted a hexadecimal string to a decimal string.
»> dec2hex (1345679001)
ans =
50356E99
The program has converted a decimal string to a hexadecimal string.
>> sprintf('%f',[1+sqrt(5)/2,pi])
ans =
2.118034 3.141593
The exact numerical components of a vector have been converted to a string (to default precision).
»> sscanf('121.00012",'%f")
ans =

121.0001

120

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

A numeric string has been passed to exact numerical format (with default precision). Later we will see which
alternative formats are possible.

»> num2str(pi)
ans =
3.142
The exact number p has been approximated to default precision and converted to a string.
»> str2num('15/14")
ans =
1.0714
A string representing a rational number has been approximated to default precision and converted to a string.
»> setstr(32:126)
ans =

1"#8% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJIKLMNOPQRSTUVWXYZ [\]
_'abcdefghijklmnopqrstuvwxyz {[}~

The ASCII characters associated with whole numbers between 32 and 126 have been generated.
»> abs('{]}><#j¢?°2")
ans =

123 93 125 62 60 35 161 191 63 186 170

The integers corresponding to the given ASCII characters have been generated.
>> lower('ABCDefgHIJ')
ans =
abcdefghij

The given string has been converted to lowercase text.
>> upper('abcd eFGHi jK1Mn')
ans =

ABCD EFGHI JKLMN

121

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

The given string has been converted to uppercase text.
»> stramat(’' The woxld ',' The country ',' Daily 16 ', ' ABC ')
ans =
The world
The country
Daily 16
ABC
The chains given as arguments of the command str2mat have been converted into rows of an array.
»> disp('This text will appear on the screen')
This text will appear on the screen

The argument of the command disp is displayed on screen.

»» ¢ = "this is a good example';
»> strrep(c, 'good', 'bad’)

ans =
this is a bad example
The string good has been replaced by the string bad in the string c.
»> findstr(c, 'is')
ans =
36

The positions of the first character of the string is in c are given.

4.7 Operators

MATLAB features arithmetic, logical, relational, conditional and structural operators.

4.7.1 Arithmetic Operators

There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved,
which we have already seen, are summarized below.

+ Sum of scalars, vectors or matrices
- Subtraction of scalars, vectors, or matrices
* Product of scalar or matrix

K Product of scalar or vector

122

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

\ A\B =inv (A) * B, where A and B are matrices

A A. \B=[B(i,j) /A (i, j)] where A and B vectors (dim (A) = dim (B))

/ Quotient, or B/A =B *inv (A), where A and B are matrices

. A./B=[A(i,j)/B (i, j)], where A and B are vectors [dim (A) = dim (B)]
A Power of a scalar or matrix (Mp)

A Power of vectors (A. A B = [A(i,j)B (i, j)], for vectors A and B)

EXERCISE 4-9

Where X =[123]andY = [4 5 6], calculate X + Y, X-Y, X * Y, XY, X *Y', X.*Y, X." * Y, X*Y', 2 * X, 2K, X/Y, Y\X,
XA 2/X, 2.7 X, 2\, 2.\, XA Y, X AY, XA 2, XA 2,2 A Xand 2. A X

> X = [1,2,3]; Y = [4,5,6]; a=X+Y,b=X-Y,c=X*V,d=2, *X,e=2/X, f=2.1\Y, g
=X. 7%,
h=c\W,i=x"2,j=2. "X, k=x."Y

a =
579
b =
-3 -3 -3
C =
4 10 18
d =
2 4 6
e =
2.0000 1.0000 0.6667
f =
2.0000 2.5000 3,0000
g =
0.2500 0.4000 0.5000
h =

0.2500 0.4000 0.5000

123

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

149
J =

248
k =

132 729

The above operations are all valid since in all cases the variable operands are of the same dimension, so the
operations are successfully carried out element by element. For the sum and the difference there is no distinction
between vectors and matrices, as the operations are identical in both cases.

»» X = [1,2,3]; Y=[4,5,6]; 1 =X'*Y, m=X*Y',n=2%X,0=X/Y, p=Y\X

1=
4 5 6
8 10 12
12 15 18
m =
32
n =
246
0 =
0.4156
p =
0 0 0
0 0 0
0.1667 0.3333 0.5000

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not
element by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the
vector operations X.’ *Yand X.*Y' make no sense, since they involve vectors of different dimensions. Similarly,
the matrix operations X *Y, 2/X, 2\Y, X 2 2, 2 ~ Xand X / Y make no sense, again because of a conflict of
dimensions in the arrays.

124

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.7.2 Relational Operators

MATLAB also provides relational operators. Relational operators perform element by element comparisons between
two matrices and return an array of the same size whose elements are one if the corresponding relationship is true, or
zero if the corresponding relation is false. The relational operators can also compare scalars with vectors or matrices,
in which case the scalar is compared to all the elements of the array. Below is a summary of these operators.

< less than (for complex numbers this applies only to the real parts)
<= less than or equal (only applies to real parts of complex numbers)

> greater than (only applies to real parts of complex numbers)

>= greater than or equal (only applies to real parts of complex numbers)

x ==y equality (also applies to complex numbers)
X ~ =y inequality (also applies to complex numbers)

Here are some examples:
> X =5 * ones(3,3); X>=[123;456;7809]
ans =

111
110
000

The elements of the array X which are greater than or equal to the corresponding element of the matrix [I 2 3; 4
56; 78 9] are given the value 1 in the response matrix. The rest of the elements are assigned the value 0 (the result of
the operation would have been the same if we had compared the scalar 5 to the matrix [I 2 3; 4 5 6; 7 8 9] using the
expression X=5X>=[123;456; 789]).

Next we see another example that combines an arithmetic operation with a relational operation:

>> A =1:9,B=9-A, Y=A> 4, Z=B-(A2)

A =

1 2 3 4 5 6 7 8 9
B =

8 7 6 5 4 3 2 1 0
Yy =

0 0 0 0 1 1 1 1 1
7 =

8 7 5 4 3 2 1 0 -1
The values of Yequal to 1 correspond to elements of A larger than 4. The Z values result from subtracting 1 from

the corresponding elements of B if the corresponding element of A is greater than 2, or 0 if the corresponding element
of A is less than or equal to 2.

125

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.7.3 Logical Operators

MATLAB provides symbols to denote logical operators. The logical operators shown below offer a way to combine or
negate relational expressions.

~A logical negation (NOT) or the complement of A
A&B logical conjunction (AND) or the intersection of A and B
A|B logical disjunction (OR) or the union of A and B

xor(A,B) exclusive or (XOR) or the symmetric difference of A and B (gives 1 if A or B,
but not both, are 1)

Here are some examples:
»> A = 1:9; P =(A>2) &(A<6)
P =

0 0 1 1 1 0 0 0 0

Returns 1 when A is greater than 2 and less than 6, and returns 0 otherwise.

> A=[11223456 78 9],P=(A>=1)&(A<6),xor(A,P)

A =

1 1 2 2 3 4 5 6 7 8 9
P =

1 1 1 1 1 1 1 0 0 0 0
ans =

0 0 0 0 0 0 0 1 1 1 1

Returns 1 when A or P, but not both, have the value 1.

4.8 Logic Functions

MATLAB implements logical functions whose output can take the value true (1) or false (0). The following list
summarizes the most important logical functions.

exist(A) checks if the variable or function exists (returns 0 if A does not exist and a
number between 1 and 5, depending on the type, if it does exist)

any(V) returns 0 if all elements of the vector V are null and returns 1 if some element of
Vis non-zero

any(A) returns 0 for each column of the matrix A with all null elements and returns 1
for each column of the matrix A which has non-null elements

all(V) returns 1 if all the elements of the vector V are non-null and returns 0 if some
element of V is null

126

CHAPTER 4 = NUMERICAL VARIABLES, VECTORS AND MATRICES
all(A) returns 1 for each column of the matrix A with all non-null elements and returns
0 for each column of the matrix A with at least one null element
find(V) returns the places (or indices) occupied by the non-null elements of the vector V

isNaN(V) returns 1 for the elements of V that are indeterminate and returns 0 for those
that are not

isinf(V) returns 1 for the elements of V that are infinite and returns 0 for those that
are not

isfinite(V) returns 1 for the elements of V that are finite and returns 0 for those that
are not

isempty(A) returns 1 if A is an empty array and returns 0 otherwise (an empty array is
an array such that one of its dimensions is 0)

issparse(A) returns 1 if A is a sparse matrix and returns 0 otherwise
isreal(V) returns 1 if all the elements of V are real and returns 0 otherwise

isprime(V) returns 1 for all elements of V that are prime and returns 0 for all elements
of V that are not prime

islogical(V) returns 1 if V is a logical vector and 0 otherwise
isnumeric(V) returns 1 if V is a numeric vector and 0 otherwise

ishold returns 1 if the properties of the current graph are retained for the next graph
and only new elements will be added and 0 otherwise

isieee returns 1 if the computer is capable of IEEE standard operations

isstr(S) returns 1 if S is a string and 0 otherwise

ischart(S) returns 1 ifS is a string and 0 otherwise

isglobal(A) returns 1 if A is a global variable and 0 otherwise

isletter(S) returns 1 if S is a letter of the alphabet and 0 otherwise

isequal(A,B) returns 1 if the matrices or vectors A and B are equal, and 0 otherwise

ismember(V,W) returns 1 for every element of V which is in W and 0 for every element
V that is notin W

Here are some examples:
»> isinf ([pi NaN Inf - Inf])
ans =

0 0 1 1
»> any([pi NaN Inf -Inf])

ans =

127

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

»> ismembex([1,2,3,5],[8,12,1,3,56,5])
ans =
1 0 1 1

»> A=[2,0,1]; B=[4,0,2];
»> isequal(2*A,B)

ans =
1

»» V=[-10,5,3,12,0];
»> isprime(V)

ans =
0 1 1 0 0
»> isnumeric(V)
ans =
1
»> all(Vv)
ans =
0
»> any(V)
ans =
1

»» €=[0 2 3;0 12 ;0 4 6],D=[0 00034 312;600 4]
»» any(C),all(C),any(D),all(D)

ans =

128

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.9 Elementary Functions that Support Complex

Matrix Arguments

o Trigonometric

sin (z)
sinh (z)
asin (z)
asinh (z)
cos (z)
cosh (z)
acos (z)
acosh (z)
tan (z)
tanh (z)
atan (z)
atan2 (z)
atanh (z)
sec (z)
sech (z)
asec (z)
asech (z)
csc (z)
csch (z)
acsc (z)
acsch (z)
cot (z)
coth (z)
acot (z)
acoth (z)
o Exponential
exp (2)
log (2)
logl0 (z)
sqrt (z)

sine function

hyperbolic sine function

arc sine function

hyperbolic arc sine function
cosine function

hyperbolic cosine function

arc cosine function

hyperbolic arc cosine function
tangent function

hyperbolic tangent function

arc tangent function

arc tangent function in the fourth quadrant
hyperbolic arc tangent function
secant function

hyperbolic secant function

arc secant function

hyperbolic arc secant function
cosecant function

hyperbolic cosecant function
arc cosecant function
hyperbolic arc cosecant function
cotangent function

hyperbolic cotangent function
arc cotangent function

hyperbolic arc cotangent function

base e exponential function
Naperian logarithm
base 10 logarithm

square root function

(continued)

129

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

e Complex
abs (z)

angle (z)
conj (z)

imag (z)

real (z)

e Numerical
fix (z)

floor (z)

ceil (z)
round (z)
rem (zl1, z2)
sign (z)

e Matrix
expm (Z)
expml (Z)
expm?2 (Z)
expm3 (Z)
logm (Z)
sqrtm (Z)

funm(Z, ‘function’)

modulus or absolute value
argument

complex conjugate
imaginary part

real part

removes the decimal part

rounds decimals to the nearest lower integer
round decimals to the nearest greater integer
performs the common rounding of decimal
remainder of the division of zI by z2

sign function

matrix exponential function by default
matrix exponential function in M-file

matrix exponential function via Taylor series
matrix exponential function via eigenvalues
matrix logarithm

matrix square root

applies the function to the matrix Z

Here are some examples:

>» A=[123; 456; 78 9]

A=
1 2 3
4 5 6
7 8 9

»> sin(A)

ans =

0.8415 0.9093 0.1411
-0.7568 -0.9589 -0.2794
0.6570 0.9894 0.4121

130

CHAPTER 4

»> B=[1+i 2+i;3+i,4+i]

B =

1.0000 + 1.00001
3.0000 + 1.00001

»> sin(B)
ans =

1.2985 + 0.63501
0.2178 - 1.16341

»> exp(A)
ans =
1. Oe + 003 *
0.0027 0.0074 O.
0.0546 0.1484 0.
1.0966 2.9810 8.

»> exp(B)

ans =

2.0000 + 1.00001
4.0000 + 1.00001

1.4031 - 0.48911
-1.1678 - 0.76821

0201
4034
1031

1.4687 + 2.28741i 3.9923 + 6.21771
10.8523 +16.90141 29.4995 +45.94281

»> log(B)
ans =

0.3466 + 0.78541
1.1513 + 0.32181

»> sqrt(B)
ans =

1.0987 + 0.45511
1.7553 + 0.28481

0.8047 + 0.46361
1.4166 + 0.24501

1.4553 + 0.34361
2.0153 + 0.24811

NUMERICAL VARIABLES, VECTORS AND MATRICES

131

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

The exponential functions, square root and logarithm used above apply to the array elementwise and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

»> expm(B)
ans =

1.0e+002 *

-0.3071 + 0.46251 -0.3583
-0.3629 + 1.04311 -0.3207

»> logm(A)

ans =

-5.6588 + 2.78961 12.5041
12.8139 - 0.7970i -23.3307
-5.0129 - 1.2421i 13.4334

»> abs(B)

ans

XY

.4142 2.2361
.1623 4.1231

w

»> imag(B)
ans =

1 1
1 1

»» fix(sin(B))
ans =

1.0000 1.0000
0 - 1.00001 -1.0000

»> ceil(log(A))

ans =
0 1 2
2 2 2
2 3 3

132

+ 0.69391
+ 1.51021

0.43251
+ 2.16231
1.52621

-5.6325 - 0.51291
13.1237 - 1.16161
-4.4196 + 1.33131

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES
»> sign(B)
ans =

0.7071 + 0.70711 0.8944 + 0.44721
0.9487 + 0.31621 0.9701 + 0.24251

»> rem(A,3*ones(3))

ans =
1 2 0
1 2 0
1 2 0

»> funm(B, 'sinh")
ans =

-15.8616 +23.23841 -17.6536 +34.70721
-17.7736 +52.12081 -16.2216 +75.47911

The result of the last function is equivalent to sink(B), but the algorithm used is different.

4.10 Elementary Functions that Support Complex Vector
Arguments

max(V) The maximum component of V. (max is calculated for complex vectors as the complex number with the
largest complex modulus (magnitude), computed with max(abs(V)). Then it computes the largest phase angle with
max(angle(x)), if necessary.)

min(V) The minimum component of V. (min is calculated for complex vectors as the complex number with the
smallest complex modulus (magnitude), computed with min(abs(A)). Then it computes the smallest phase angle with
min(angle(x)), if necessary.)

mean(V) Average of the components of V.

median(V) Median of the components of V.

std(V) Standard deviation of the components of V.

sort(V) Sorts the components of V in ascending order. For complex entries the order is by absolute value and
argument.

sum(V) Returns the sum of the components of V.

prod(V) Returns the product of the components of V, so, for example, n! = prod(1:n).

cumsum(V) Gives the cumulative sums of the components of V.

cumprod(V) Gives the cumulative products of the components of V.

diff(V) Gives the vector of first differences of V(V,- V).

gradient(V) Gives the gradient of V.

del2(V) Gives the Laplacian of V (5-point discrete).

fft(V) Gives the discrete Fourier transform of V.

fft2(V) Gives the two-dimensional discrete Fourier transform of V.

ifft(V) Gives the inverse discrete Fourier transform of V.

ifft2(V) Gives the inverse two-dimensional discrete Fourier transform of V.

133

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

These functions also support a complex matrix as an argument, in which case the result is a vector of column
vectors whose components are the results of applying the function to each column of the matrix.
Here are some examples:

> V = 1:5, W= [1-i 2i 2 + 3i]

V=

1.0000 - 1.00001 0 + 2.00001 2.0000 + 3.00001
»> diff(V)

ans =

»> diff(W)
ans =

-1.0000 + 3.0000i 2.0000 + 1.00001
»> cumprod(V)
ans =

1 2 6 24 120

»> cumsum(W)
ans =

1.0000 - 1.00001 1.0000 + 1.0000i 3.0000 + 4.00001
»> mean(W)
ans =

1.0000 + 1.33331
»> std(V)
ans =

1.5811

134

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

»> sort(W)
ans =

1.0000 - 1.00001 0 + 2.00001 2.0000 + 3.00001
»> sum(W)
ans =

3.0000 + 4.00001
»> prod(V)
ans =

120
»> gradient(W)
ans =

-1.0000 + 3.00001 0.5000 + 2.00001 2.0000 + 1.00001
»> del2(W)
ans =
0 1.5000 - 1.00001 0

»> FFt(W)
ans =

3.0000 + 4.00001 -0.8660

1
Y

.7679i 0.8660 - 5.23211

»> ifFt(W)
ans =

1.0000 + 1.33331 0.2887 .74401 -0.2887 - 0.58931

1
[}

> fFt2(W)
ans =

3.0000 + 4.00001 - 0.8660 - 1.76791 0.8660 - 5.23211i

135

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.11 Vector Functions of Several Variables

Functions of one or several variables are defined via the command maple as follows:
maple(‘f: = x - > f (x)’) or maple f: = x - > f (x): defines the function f{x)
maple(‘f:=(x,y,z...)) (- > f(x,y,z...)"): defines the function f(x,y,z,..)

maple(‘f:=(x,y,z...)) (- > (f1 (x, y...), f2(x,y..),...)"): defines the vector function (f1(x,y,..),
Lxy,.)...)

To find the value of the function (, y, z) - > f{x,y,z...) at the point (a, b, ¢,...) the expression maple (‘f(a,b,c,...)’) is
usedWe find the value of the vector function f:=(x,y,..)-> (f1(x,,-.), f2(%,¥,..),...) at the point (a, b,...) by using the
expression maple (‘f(a,b,..)’).

The function f{x,y) = 2x +yis defined in the following way:

»> maple ('f:=(x,y) - > 2 *x+y"');

f(2,3) and f(a,b) are calculated as follows:
>> maple('f(2,3)")
ans =
7
»> maple('f(a,b)')

ans =

2*a+b

EXERCISE 4-10

Given the function h defined by: h(x,y) = (cos(x®-y?), sin(x?-y?)), calculate h(1,2), h(-Pi,Pi) and h(cos(a?), cos(1-a?)).

As his a vector function of two variables, we use the command maple:

ans =

A = (cos(3),-sin(3)), B = (1, 0),
C = (cos(cos(a*2) * 2-cos(-1+a”2) * 2), sin(cos(a”2) * 2-cos(-1+a”2) * 2))

136

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

4.12 Functions of One Variable

Functions of one variable are a special case of functions of several variables, but they can also be defined in MATLAB
via the command f= function’.
To find the value of the function fat a point, you use the command subs, whose syntax is as follows:

subs(f, a) applies the function fat the point a
subs (f, a, b) assigns the value of the function at the point a to the variable b

Let’s see how to define the function f{x) =x 2:
> f="x*2'
f =
x "2
Now we calculate the values f(4), fla+1) and f(3x+x"2):

»> syms a x
»> A=subs(f,4),B=subs(f,a+1),C=subs(f,3*x+x"2)

A=
16

B -

(a+1) * 2

C =
(3*x+x72)72

It should also be borne in mind that if we use the command maple, the special constants 7, e, i, and « are
defined as maple(‘Pi’), maple(‘exp(1)’), maple(‘i’) and maple(‘infinity’) respectively.

137

CHAPTER 4 © NUMERICAL VARIABLES, VECTORS AND MATRICES

EXERCISE 4-11

Define the functions f (x) = X2, g (x) = x"2and h (x) = x + sin (). Calculate f (2), g(4) and h (a-b?).
» f="x*2"; g="x"1/2)"'; h = "x¢sin (x)';

»> syms a b
»> a=subs(f,2),b=subs(g,4),c=subs(h,'a-b"2")

a =

4

4 "(1/2)

a-b » 2 + sin(a-b*2)
We could also have done the following:

»> maple('f:=x->x"2: g:=x->sqrt(x):h:=x->x+sin(x)");
»> maple('f(2),g(4),h(a-b"2)")

ans =

4, 2, a-b*2 + sin(a-b"2)

138

CHAPTER 5

Vectors and Matrices

5.1 Vectors and Matrices

We have already seen how vectors and matrices are represented in MATLAB in the chapter dedicated to variables,
however we shall recall the notation.
Consider the matrix

a a

m2 'm3 i mn

i=1,2,3,...,m j=1,2,3,...,n.

You can enter this in MATLAB in the following ways:
A=[all,al2,...,aln; a21,a22,...,a2n;...; aml,am2,...,amn]
A=[allal2...aln;a2la22...a2n;...;aml am2...amn]
A=maple(‘array([[all,..,aln],[a21,..,a2n],..,[am1,..,amn]])’)
A=maple(‘matrix(m,n,[all,..,aln,a2l,..,a2n,..,aml,..,amn])’)
A=maple(‘matrix([[al1,..,aln],[a21,..,a2n],..,[am]1,..,amn]])’)

On the other hand, a vector V=(v1,v2,...,vn) is introduced as a special case of a matrix with a single row
(i.e. a matrix of dimension 1xn) in the following form:

V = [vl, v2,..., vn]

V= [vlv2...vn]

V = maple (‘vector([vl, v2,..., vn])’)
V = maple (‘vector(n,[vl, v2,..., vn])’)

V=maple(‘array([v1, v2, ..., vi])’)

139

CHAPTER 5 © VECTORS AND MATRICES

5.2 Operations with Numeric Matrices

MATLAB supports the most common matrix algebra operations (sum, difference, product, scalar product), provided
the dimensionality conditions hold.
The common MATLAB matrix commands are summarized below.

A + B sum of matrices A and B

A - B difference of the matrices A and B (A minus B)

¢ * M product of the scalar ¢ and the matrix M

A * B product of the matrices A and B

A A p matrix A raised to the power of the scalar p

p M A scalar p raised to the power of the matrix A

expml (A) e* calculated via Padé approximants

expm?2 (A) e* calculated via Taylor series

expm3 (A) e* calculated via eigenvalues and eigenvectors
logm(A) (Napierian logarithm of the matrix A)

sqrtm (A) square root of the matrix A

funm (A, ‘function’) applies the function to the matrix A
transpose (A) or A' transpose of the matrix A

inv (A) inverse of the square matrix A (A?)

det (A) determinant of the square matrix A

rank (A) range of the matrix A

trace (A) sum of the elements of the diagonal of A

svd (A) gives the vector V of singular values of A. The singular values of A are the square
roots of the eigenvalues of the symmetric matrix A’ A.

[U, S, V] = svd (A) gives the diagonal matrix S of singular values of A (ordered from
largest to smallest), and the matrices U and Vsuch that A= U *S * V.

cond (A) gives the condition number of the matrix A (the ratio between the largest and
the smallest singular values of A)

rcond (A) the reciprocal condition number of the matrix A
norm (A) the standard or 2-norm of A (the largest singular value of A)

norm(A,1) the 1-norm of A (the maximum column magnitude, where the column
magnitude of a column is the sum of the absolute values of its elements)

norm(A,inf) the infinity norm of A (the maximum row magnitude, where the row
magnitude of a row is the sum of the absolute values of its elements)

norm(A,fro’) the Frobenius norm of A, defined by sqrt (sum (diag(A’A)))

140

CHAPTER 5 © VECTORS AND MATRICES

Z = null (A) gives an orthonormal basis for the null space of A obtained from the
singular value decomposition, i.e. AZ has negligible elements, size(Z,2) is the nullity of
A,andZ'Z=1.

Q = orth (A) returns an orthonormal basis for the range of A, Q’Q=I. The columns of Q
are vectors which span the range of A. The number of columns in Q is equal to the rank
of A.

subspace (A, B) finds the angle between two subspaces specified by the columns of A
and B. If A and B are column vectors of unit length, this is the same as acos(abs(A’*B)).

rref(A) produces the reduced row echelon form of A using Gauss-Jordan elimination
with partial pivoting. The number of non-zero rows of rref (A) is the rank of A.

Here are some examples:

We consider the matrix M = [1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7], and find its transpose, its inverse, its
determinant, its range, its trace, its singular values, its condition number, its norm, M?, e, log (M) and sqrt (M):
»> M = [1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]

M =

0.3333 0.2500 0.2000

0.2500 0.2000 0.1667

0.2000 0.1667 0.1429
»> transpose = M'
transpose =

0.3333 0.2500 0.2000

0.2500 0.2000 0.1667

0.2000 0.1667 0.1429
»> inverse = inv(M)
inverse =

1. Oe + 003 *
0.3000 -0.9000 0.6300
-0.9000 2.8800 -2.1000
0.6300 -2.1000 1.5750

To verify that the inverse has been calculated, we multiply it by M and check that the result is the identity matrix
of order 3:

»> M * inv(M)

ans =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

141

CHAPTER 5 © VECTORS AND MATRICES

»> determinantM = det(M)
determinantM =
2. 6455e-006
»> rankM=rank(M)
rankM =
3
»> traceM=trace(M)
traceM =
0.6762
»> vsingular = svd(M)
vsingular =
0.6571
0.0189
0.0002
»> condition = cond(M)
condition =
3. 0886e + 003
For the calculation of the norm, we find the standard norm, the 1-norm, the infinity norm and the Frobenius norm:
»> norm(M)
ans =
0.6571
»> noxrm(M,1)
ans =
0.7833
»> norm(M,inf)
ans =

0.7833

142

»> noxm(M, 'fro")

ans =
0.6573

» M3

ans =
0.1403 0.1096
0.1096 0.0856
0.0901 0.0704

»> logm(M)

ans =

-2.4766 2.2200
2.2200 -5.6421
0.5021 2.8954 -

»> sqrtm(M)
ans =
0.4631 0.2832 0.1966

0.2832 0.2654 0.2221
0.1966 0.2221 0.2342

0.0901
0.0704
0.0578

0.5021
2.8954
4.7240

CHAPTER 5 © VECTORS AND MATRICES

The variants using eigenvalues, Padé approximants and Taylor series will be used to calculate e*:

»> expm(M)
ans =
1.4679 0.3550
0.3550 1.2821
0.2863 0.2342
»> expm1(M)
ans =
1.4679 0.3550

0.3550 1.2821
0.2863 0.2342

0.2863
0.2342
1.1984

0.2863
0.2342
1.1984

143

CHAPTER 5 = VECTORS AND MATRICES

»> expm2(M)

ans =
1.4679 0.3550 0.2863
0.3550 1.2821 0.2342
0.2863 0.2342 1.1984

»> expm3(M)

As we see, the exponential matrix coincides using all methods.

EXERCISE 5-1
Given the three matrices
110 i 1-i 2+i 1 1 1
A=l0 1 1|, B=|0 -1 3-i|, C=|0 V2 -iV2
0 0 1 0 - 1 -1 -1

calculate AB - BA, A% + B? + C?, ABC, sqrt(A) + sqrt(B) + sqrt(C), e*(e+e°®) and find the rank, inverse, trace,
determinant, condition number and singular values of A, B and C.

> A=[1 1 0;0 1 1;0 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i];
C=[1 1 1; 0 sqrt(2)*i -sqrt(2)*iz;1 -1 -1];

»> M1=A*B-B*A

M1 =
0 -1.0000 - 1.00001 2.0000
0 0 1.0000 - 1.00001
0 0 0

> M2=A"2+B"2+C"2

M2 =
2.0000 2.0000 + 3.41421 3.0000 - 5.41421
0 - 1.41421 0.0000 + 1.41421 0.0000 - 0.58581
0 2.0000 - 1.41421 2.0000 + 1.41421
> M3=A*B*C
M3 =

5.0000 + 1.0000i -3.5858 + 1.00001 -6.4142 + 1.00001
3.0000 - 2.00001 -3.0000 + 0.58581 -3.0000 + 3.41421
0 - 1.00001 0 + 1.00001 0 + 1.00001

+

144

»> Ma=sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =

0.6356 + 0.83611
0.1582 - 0.15211
-0.3740 - 0.26541

-0.3250 - 0.82041
0.0896 + 0.57021
0.7472 + 0.33701

»> M5=expm(A)*(expm(B)+expm(C))

M5 =

14.1906 - 0.08221
4.5854 - 1.49721
3.5528 + 0.35601

5.4400 + 4.27241
0.6830 + 2.15751
0.1008 - 0.74881

»> ranks=[rank(A) rank(B) rank(C)]

ranks =

3 3 3

»> vsingular=[svd(A),svd(B),svd(C)]

vsingular =
1.8019 4.2130
1.2470 1.4917
0.4450 0.1591

2.0000
2.0000
1.4142

»» traces=[trace(A) trace(B) trace(C)]

traces =
3.0000
»> inv(A)
ans =
1 -1 1
0 1 -1
0 0 1
»> inv(B)
ans =
0 - 1.00001
0
0

-1.0000

-1.0000 - 1.00001
-1.0000
0

CHAPTER 5 © VECTORS AND MATRICES

3.0734 + 1.28961

3.3029 - 1.80251
1.2255 + 0.10481
17.9169 - 9.58421
8.5597 - 7.65731
3.2433 - 1.84061

0 + 1.41421

-4.0000 + 3.00001
1.0000 + 3.00001
0 + 1.00001

145

CHAPTER 5 © VECTORS AND MATRICES

»> inv(C)

ans =
0.5000 0 0.5000
0.2500 0 - 0.35361 -0.2500
0.2500 0 + 0.35361 -0.2500

»> determinants = [det(A) det (B) det (C)]
determinants =

1.0000 - 1.0000 0 - 5. 65691
»» conditions = [cond(A) cond (B) cond(C)]
conditions =

4.0489 26.4765 1.4142

EXERCISE 5-2

Consider the following matrix:

1/3 1/4 1/5
M=|1/4 1/5 1/6
1/5 1/6 1/7

Find its transpose, its inverse, its determinant, its rank, its trace, its singular values, its condition number, its norm
and M3, regarded as a symbolic matrix.

> M = sym('[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]")
M =

[1/3,1/4,1/5]

[1/4,1/5,1/6]

[1/5,1/6,1/7]

»> Mtranspose = transpose(M)

Mtranspose =

[1/3, 1/4, 1/5]

[1/4, 1/5, 1/6]
[1/5, 1/6, 1/7]

146

»> Minverse = inv(M)
Minverse =
[300, -900, 630]
[-900, 2880, -2100]
[630, -2100, 1575]
»> Mdeterminant=det(M)
Mdeterminant =
1/378000
»> Mrank=rank(M)
Mrank =
3
»> Mtrace=trace(M)
Mtrace =
71/105
»> numeric(svd(M))
ans =

0.6571

0.0002 - 0.00001
0.0189 + 0.00001

»> norm = maple('noxm([[1/3,1/4,1/5],[1/4,1/5,1/6],[1/5,1/6,1/7]])")

norm =

47/60

»> sympow(M,3)

ans =

[10603/75600, 1227/11200, 26477/294000]

[1227/11200, 10783/126000, 74461/1058400]
[26477/294000, 74461/1058400, 8927/154350]

CHAPTER 5 © VECTORS AND MATRICES

147

CHAPTER 5 © VECTORS AND MATRICES

Now we find the norms and condition number of M as a numeric matrix:

»> [noxrm(numeric(M)),norm(numeric(M),1),cond(numeric(M),inf),
cond(numeric(M), 'fro'),normest(numeric(M))]

ans =
1.0e+003 *
0.0008 4.6060 3.0900 0.0007 0.8

»> [cond(numeric(M),1),cond(numeric(M),2),cond(numeric(M), " 'fro'),
condest(numexric(M))]

ans =
1.0e+003 *

4.6060 3.0886 3.0900 4.6060

EXERCISE 5-3

Define a square matrix A of dimension 5 whose elements are given by A(i,j) = i® - j2. Extract the submatrix of A
formed by rows 2 to 4 and columns 3 to 4. Delete rows 2 to 4 of the matrix A, as well as column 5. Exchange the
first and last rows of the matrix A. Exchange the first and last columns of the matrix A. Insert a column of 1s to the
right of the matrix A. Insert a column of 1s to the left of the matrix A. Insert two rows of 1s at the top of the matrix
A. Perform the same operation at the bottom.

First, we generate the matrix A as follows:

»> A=sym(maple('matrix(5,5,(i,j)-» i*3-j*2)'))

[0) '3J '81 '151 '24]
[7) 4) '1) '8) '17]
[26, 23, 18, 11, 2]
[63, 60, 55, 48, 39]
[124, 121, 116, 109, 100]

»> maple('A:=matrix(5,5,(i,j)-» i*3-j*2)');
»> sym(maple('submatrix(A,2..4,3..4)"))

ans =

['1; '8]
[18, 11]
[55, 48]

148

»> sym(maple('delrows(A,2..4)"))
ans =

[0) '3J '8J '151 '24]
[124, 121, 116, 109, 100]

»> sym(maple('delcols(A,5..5)"))
ans =

[0) '31 '81 '15]
[7, 4, -1, -8]
[26, 23, 18, 11]
[63, 60, 55, 48]
[124, 121, 116, 109]

»> pretty(sym(maple(’swapcol(A,1,5),swaprow(A,1,5)')))

-24 -3 -8 -15
-17 4 -1 -8
23 18 11

60 55 48

w
o

100 121 116 109

— — — — — — — — —
N

»> maple('B:=array([1,1,1,1,1])");

o] [124

124] [o

121

23

60

-3

»> pretty(sym(maple(’augment(A,B),augment(B,A)')));

0 -3 -8 -15 -24
7 4 -1 -8 -17
23 18 11 2

(o)}
w

60 55 48 39

124 121 116 109 100

— — — — — — — — —
N
(o)}

1] [1

0

7

26

63

124

1

23

60

121

16

18

55

109

11

48

-15

18

55

116

CHAPTER 5 © VECTORS AND MATRICES

100]
-17]
2]
39]

-24]

-15

11
48

109

-24]
-17]
2]
39]

100]

149

CHAPTER 5 © VECTORS AND MATRICES

>> maple('C:=array([[1,1,1,1,1],[1,1,1,1,1]])");
»> pretty(sym(maple('stack(C,A),stack(A,C)')));

[1 1 1 1 1] [o -3 -8 -15 -24]
[11)|
[1 1 1 1 1] [7 4 -1 -8 -17]
[11)|
[o -3 -8 -15 -24] [26 23 18 11 2]
[I []
[7 4 -1 -8 -17], [63 60 55 48 39]
[11 1
[26 23 18 11 2] [124 121 116 109 100]
[I []
[63 60 55 48 39] [1 1 1 1 1]
[I []
[124 121 116 109 100] [1 1 1 1 1]

5.3 Eigenvalues and Eigenvectors

MATLAB enables commands that allow you to work with eigenvalues and eigenvectors of a square matrix. For
numeric matrices, we have the following:

eig(A) Finds the eigenvalues of the square matrix A.

[V, D] = eig(A) Returns the diagonal matrix D of eigenvalues of A, and a matrix Vwhose
columns are the corresponding eigenvectors, so that A * V=V *D,

eig(A,B) Returns a vector with the generalized eigenvalues of the square matrices
A and B. The generalized eigenvalues of A and B are the roots of the polynomial in
I: det(1*B-A).

[V, D] = eig(A, B) returns the diagonal matrix D of generalized eigenvalues of A and B
and a matrix Vwhose columns are the corresponding eigenvectors, so that A *V=B*V*D.

[AA, BB, Q,Z, V] = qz(A, B)

Calculates the upper triangular matrices AA and BB and matrices Q and Z such that
Q*A*Z=Qand AA * B *Z = BB, and gives the matrix V of generalized eigenvectors of
A and B, so that A *V *diag (BB) = B *V *diag (AA).

[T, B] = balance(A) Returns a similarity transformation T such that B = T\A*T, and B
has, as closely as possible, approximately equal row and column norms. The matrix B
is called the balanced matrix of A.

balance(A) Computes the balanced matrix B of A. This is used to approximate
the eigenvalues of A when they are difficult to estimate. We have eig (A) = eig
(balance (A)).

[V, D] = cdf2rdf (V, D) If the eigensystem [V,D]= eig(X) has complex eigenvalues
appearing in complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2x2 real blocks along the diagonal replacing the original complex
pairs. The eigenvectors are transformed so that X = V*D/V continues to hold.

150

CHAPTER 5 © VECTORS AND MATRICES

[U, T] = schur (A) Returns a matrix T and a unitary matrix U such that A= U *T * U’ and
U’* U = eye (U). If A is complex, T is an upper triangular matrix with the eigenvalues

of A on its diagonal. If A is real, T has the eigenvalues of A on its diagonal, and the
corresponding complex eigenvalues correspond to the 2 x 2 diagonal blocks of T.

schur(A) Returns only the matrix T of the above decomposition.
[U, T] = rsf2¢csf (U, T) Converts the real Schur form to the complex form.

[H, P] = hess(A) Returns the unitary matrix P and Hessenberg matrix H such that
A=P*H*P and P’* P = eye (size (P)).

hess(A) Returns the Hessenberg matrix of A.
poly(A) Returns the characteristic polynomial of the matrix A.

poly(V) Returns a vector whose components are the coefficients of the polynomial
whose roots are the elements of the vector V.

vander(C) Returns the Vandermonde matrix A such that its j-th column is
A(5j) = CA (n).

EXERCISE 5-4

Consider the matrix:

Compute its eigenvalues and eigenvectors, the balanced matrix with its eigenvalues, and its characteristic
polynomial.

»» M=[1,-1,3;-1,i,-1-2i;i,1,i-2];
»» [V,D] = eig(M)

V =
0.9129 0.1826 + 0.54771 -0.1826 + 0.36511

-0.2739 - 0.09131 0.5477 - 0.1826i 0.3651 - 0.73031
-0.0913 + 0.27391 -0.1826 - 0.54771 0.1826 - 0.36511

D =
1.0000 + 1.0000i O 0
0 -2.0000 + 1.0000i O
0 0 0

151

CHAPTER 5 © VECTORS AND MATRICES

We see that the eigenvalues of Mare 7 + i, -2 + i and 0, and the eigenvectors are the columns of the matrix V.
We now calculate the balanced matrix of M and verify that its eigenvalues coincide with those of M:

»> balance(M)

ans =
1.0000 -1.0000 1.5000
-1.0000 0 + 1.00001 -0.5000 - 1.00001
0 + 2.00001 2.0000 -2.0000 + 1.00001

»> eig(balance(M))
ans =
1.0000 + 1.00001

-2.0000 + 1.00001
0

We now calculate the characteristic of polynomial of M:
»> p=poly(M)
p =
1.0000 1.0000 - 2.0000i ~-3.0000 - 1.0000i 0
»> vpa(poly2sym(p))
ans =
X"3+x72-2.¥1*¥x"2-3. ¥x-1.*1*x

Thus, the characteristic polynomial is X* + X* —2ix* —3 x—ix.

152

CHAPTER 5 © VECTORS AND MATRICES

EXERCISE 5-5

Consider the square matrix A of order 5 whose (i,j)th element is given by 1/(i+j-1/2). Compute the eigenvalues,
eigenvectors, characteristic polynomial, minimum polynomial, characteristic matrix and singular values of A.
Also find the vector of condition numbers of the eigenvalues and analyze whether A is positive definite, negative

definite or positive or negative semidefinite.

MATLAB enables you to define this type of symbolic matrix in the general form:

»> A=sym(maple('matrix(5,5,(i,j)-> 1/(i+j-1/2))"))

[2/3, 2/5, 2/7, 2/9,
[2/5, 2/7, 2/9, 2/11,
[277, 2/9, 2/11, 2/13,
[279, 2/11, 2/13, 2/15,
[2/11, 2/13, 2/15, 2/17,

» [V, E] = eig (A)

V =
[-.1612e-1, -.6740e-2,
[2084, .1400,
[-.7456, -.6391,
[1, 1,
[-.4499, -.5011,
E =

[2/55%.4005e-4,

[0, 2/55%
[0,

[0,

[0,

As is well known, the eigenvectors are the columns of the matrix VVand the eigenvalues are the elements of the

diagonal of the matrix E.

2/11]
2/13]
2/15]
2/17]
2/19]

.3578, 2.482,
-2.513, -15.01,
3.482, 20.13,
1, 1,
-2.476, -8.914,
0, 0,
.3991e-2, 0,
0, 2/55% .1629,
0, 0,
0, 0,

»> pretty(simple(poly(A)))

5 10042 4 362807509088 3 268537284608 2
X - ----- X F mmmmmmmmmeo- X = e X
7315 2228304933855 285965799844725
22809860374528 4359738368
4 o m e X = mmmmmmmmmm e

169975437532179654375

-288.7]
2298.]
-3755.]
1]
1903.]

0, 0]

0, o]

0, 0]

2/55% 3.420, o]

0, 2/55% 34.16]

177624332221127738821875

153

CHAPTER 5 © VECTORS AND MATRICES

We can approximate the above output as follows:
»> pretty(simple(vpa(poly(A))))

5 4 3 2 -6 -12
X -1.373 x +.1628 x -.0009391 x +.1342*10 x -.1934*10

The singular values are calculated in the following way:

»> pretty(simple(svd(A)))

[-5]
[.1456*%10]
[]
[.0001451]
[)|
[.005923]
[1
[.1244]
[]
[1.242]

The minimal polynomial and the characteristic matrix are calculated in the following way:
»> pretty(simple(sym(maple('minpoly(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)"))))
34359738368 22809860374528 268537284608 2

177624332221127738821875 169975437532179654375 285965799844725

362807509088 3 10042 4 5
2228304933855 7315
»> pretty(simple(sym(vpa(maple('minpoly(matrix(5,5,(1,j)-»1/(i+j-1/2)),x)")))))

-12 -6 2 3 4 5
-.1934 10 + .1342 10 X - .0009391 x + .1628 x - 1.373 X + X

154

CHAPTER 5 © VECTORS AND MATRICES

»> pretty(simple(sym(maple('charmat(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)"))))

[

[x - 2/3
[

[

[

[-2/5
[

[

[

[-2/7
[

[

[

[-2/9
[

[

[-2
[__
[11

-2/5

X - 2/7

-2/9

-2

11

-2

13

-2/7

-2/9

X - 2/11

15

-2/9

13

x - 2/15

-2

11

-2

13
-2

15

X - 2/19

The vector of condition numbers of the eigenvalues is calculated as follows:

»> condeig(numeric(A))

ans

.0000
.0000
.0000
.0000
.0000

R R R R R

— e e e e e e e e e e e s e e

In a more complete way, we can calculate the matrix Vwhose columns are the eigenvectors of A, the diagonal
matrix D whose diagonal elements are the eigenvalues of A, and the vector S of condition numbers of the
eigenvalues of A, by using the command:

»» [V,D,s] = condeig(numeric(A))

V =

0.0102
-0.1430
0.5396
-0.7526
0.3490

0.0697
-0.4815
0.6251
0.2922
-0.5359

0.2756
-0.7052
-0.2064

0.2523

0.5661

-0.6523
0.1593
0.3790
0.4442
0.4563

0.7026
0.4744
0.3629
0.2954
0.2496

155

CHAPTER 5 © VECTORS AND MATRICES

D =
0.0000 0 0 0 0
0 0.0001 0 0 0
0] 0 0.0059 0 0]
0 0 0 0.1244 0
0 0 0 0 1.2423
S =
1.0000
1.0000
1.0000
1.0000
1.0000

Using the command definite, we find that the matrix A is positive definite:
>> maple('definite(matrix(s,5,(i,j)-> 1/(i+j-1/2)),positive def)")
ans =

true

5.4 Matrix Decomposition

MATLAB enables commands that allow you to decompose a matrix as a product of orthogonal matrices and diagonal
matrices.

We have already seen how the command [U, S, V] = svd (A) returns a diagonal matrix S of singular values of A
(in decreasing order of magnitude), and orthogonal matrices U and Vsuch that=U*S *V".

We have also seen that you can obtain the Jordan decomposition of a square matrix A via the command
[V, J] = jordan (A), which returns the Jordan canonical matrix J of A with the eigenvalues of A on its diagonal and the
similarity transform Vwhose columns are the eigenvectors of A, so that V! *A*V =]

On the other hand, we have also seen that you can obtain a decomposition of a square matrix A via the command
schur, [U, T] = schur(A), which returns an array T and an orthogonal matrix U such that A= U *T * U"and U"* U = eye
(U). If A is complex, T'is an upper triangular matrix with the eigenvalues of A on its diagonal. For real A, the matrix T
has real eigenvalues of A on its diagonal and complex eigenvalues in 2x2 diagonal blocks in T.

We can also find the Hessenberg decomposition of the matrix A via the command [H, P] = hess (A), which gives
the orthogonal matrix P and Hessenberg matrix H such that A= P * H * P'and P"* P = eye (size (P)).

In addition, MATLAB has a number of other commands for the numeric and symbolic decomposition of a matrix.
They include the following:

[L, U] = lu (A) Decomposes the matrix A as the product A = L *U (an LU
decomposition), where U is an upper triangular matrix and L is a permutation
of alower triangular matrix.

[L, U, P] = lu(A) Returns the lower triangular matrix L, the upper triangular matrix U
and the permutation matrix P such that P *A =L * U.

R = chol(A) Returns the upper triangular matrix R such that R’* R =A (a Cholesky
decomposition), where A is positive. If A is not positive, an error is returned.

156

CHAPTER 5 © VECTORS AND MATRICES

[Q, R] =qr (A) Returns the upper triangular matrix R of the same dimension as A, and
the orthogonal matrix Q such that A = Q * R (a QR decomposition). This decomposition
can be applied to non-square matrices.

[Q, R, E] = qr(A) Returns the upper triangular matrix R of the same dimension as A, the
matrix permutation E and the orthogonal matrix Q such that A*E=Q *R.

X = pinv(A) Returns the matrix X (the pseudo-inverse of A), of the same dimension as
A'suchthat A *X*A =Aand X *A *X = X, where A *X and X * A are hermitian.

In addition, the commands listed below allow the decomposition of both numeric and symbolic matrices. All of
these commands must be preceded by the command maple.

LUdecomp(A,P=‘p,L="1,U="u,U1="ul,R="r’) decomposes the matrix A into the product
A = evalm(P&*L&*U) (LU decomposition), where U is an upper triangular matrix, L is
alower triangular matrix and P is a pivot factor. In addition, U = evalm(U1&*R) with
U1 upper triangular and R a row reduced factor, so that A = evalm(P&*L&*U1*R).

cholesky(A) returns the lower triangular matrix R such that A = evalm(R&*R’)
(Cholesky decomposition of A). A must be positive definite.

QRdecomp(A,Q=‘q’) returns the upper triangular matrix R of the same dimension as A,
and the orthonormal matrix Q such that A = evalm(Q&*R) (QR decomposition of A).

companion(poly,var) gives the matrix C associated with the given monic polynomial
in the specified variable. If poly = a0 + alx +...+ x", C(i,n)=-coeff(poli,var,i-1), i=1...n,
C(iji-1)=1, i=2...n, and C(j, j) = 0 for the rest of the elements in the matrix.

frobenius(A) or ratform(A) returns the canonical Frobenius form F of the matrix A. F
is a block diagonal matrix (F = diag(C1,C2,...,Cn)), where the Ci are the companion
matrices associated to polynomials p1, p2,..., pk such that pi divides p, , i=2... K.

frobenius(A,P’) assigns to P the transformation matrix corresponding to the Frobenius
form of the matrix A, so thatevalm (P ' & *A & *P)=F.

smith(A,var) computes the Smith normal form of a matrix with univariate polynomial
entries in var over the integers.

smith(A,var,U,V) in addition returns the matrices U and V such that
S = evalm(U&*A&*V).

ismith(A,var) gives the diagonal matrix corresponding to the Smith normal form S
of the square matrix A of polynomials in the variable var.

ismith(A,var,U,V) in addition returns the matrices U and V such that
S —evalm(U&*A&*V).

hermite(A,var) computes the Hermite normal form (reduced row echelon form) of a
matrix A of univariate polynomials in var.

hermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

ihermite(A,var) computes the Hermite normal form (reduced row echelon form) of a
matrix A of univariate polynomials in var over the integers.

ihermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

gaussjord (A) returns an upper triangular matrix corresponding to the row reduced
(Gauss-Jordan) echelon form of the matrix A. This is used to facilitate the solution of
systems of linear equations whose coefficient matrix is the matrix A.

157

CHAPTER 5 © VECTORS AND MATRICES

158

gaussjord (A, j) returns the j-th column of the above matrix.

gaussjord(A,r,d) gives the row reduced echelon form of the matrix A, assigns to the
variable r the rank of A and to the variable d the determinant of submatrix(A,1..r,1..r).
This subarray is used for solving systems of linear equations whose coefficient

matrix is A.

gausselim(A) performs Gaussian elimination with row pivoting on A, returning the
reduced matrix. This is used to facilitate the solution of systems of linear equations
whose coefficient matrix is the matrix A.

gausselim(A, j) returns the j-th column of the row reduced matrix of A.

gausselim(A,r,d) returns the row reduced matrix of A, assigns the variable r to the rank
of A, and the variable d to the determinant of submatrix(A, 1..r,1..r) . This subarray is
used for solving systems of linear equations whose coefficient matrix is A.

backsub(A) returns the vector x such that A *x = V, where Vs the last column of the
matrix A. If A is the result of applying forward Gaussian elimination to the augmented
matrix of a system of linear equations (via gausselim or gaussjord, for example),
backsub completes the solution by back substitution.

backsub(A, V) returns the vector x such that A *x = V.

backsub(A,V,t) returns the vector x such that A * x =V, where the parameter ¢ is used for
a possible family of parametric solutions of the system.

forwardsub(A,V) returns the vector x such that A *x = V. If A is the result of applying
Gaussian elimination to the matrix of a system of linear equations (via LUdecomp, for
example), forwardsub completes the solution by forward substitution.

forwardsub(A\V,t) returns the matrix X such that A * X = V, where the parameter ¢ is
used for a possible family of parametric solutions of the system.

forwardsub (A) returns the vector x such that A *x = V, where Vis the last column of A.
forwardsub(A,B) returns the matrix X such that A *X = B.

geneqns(A,[x1,...,xn]) generates a system of linear equations in the given variables,
equating each to zero, where the coefficients are determined by the matrix A.

geneqns(A,[x1,...,xn],V) generates a system of linear equations in the given variables,
where the right-hand sides of the equations are determined by the vector V and the
coefficients are determined by the matrix A.

genmatrix([equationl,...,equationm],[x1,...,xn]) generates the matrix corresponding to
the given linear equations with respect to the specified variables.

genmatrix([equationl,...,equationm],[x1,...,xn],flag) generates the matrix
corresponding to the given linear equations with respect to the specified variables,
including as the last column of the matrix the right-hand sides of the equations.

genmatrix([equationl,...,equationm],[x1,..,xn],name) generates the matrix
corresponding to the given linear equations with respect to the specified variables, and
assigns a name to the vector that contains the right-hand sides of the equations.

CHAPTER 5 © VECTORS AND MATRICES

EXERCISE 5-6

Consider the 3x3 matrix A whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Find the Schur,
LU, QR, Cholesky, Hessenberg and singular value decompositions of A. Verify the results. Also find the

pseudoinverse of A.

First, we find the Schur decomposition, checking that the result is correct:

> A = [1,5,-2; -7,3,1; 2,2,-2];
»» [U, T] = schur (A)

U=
-0.0530 -0.8892 -0.4544
-0.9910 -0.0093 0.1337

0.1231 -0.4573 0.8807

T =

2.4475 -5.7952 -4.6361
5.7628 0.3689 2.4332
0 0 -0.8163

Now, we check that U * T * U'=Aand that U * U'= eye (3):

» [U*T*U', U*U"]

ans =
1.0000 5.0000 -2.0000 1.0000 0.0000
-7.0000 3.0000 1.0000 0.0000 1.0000
2.0000 2.0000 -2.0000 0.0000 0.0000

0.0000
0.0000
1.0000

Now, we find the LU, QR, Cholesky, Hessenberg and singular value decompositions, checking the results

in each case:

» [L, U, P] = 1u (A)

L =
1.0000 0 0
-0.1429 1.0000 0 Lower triangular matrix
-0.2857 0.5263 1.0000

U =

-7.0000 3.0000 1.0000
0 5.4286 -1.8571 Upper triangular matrix
0 0 -0.7368

159

CHAPTER 5 © VECTORS AND MATRICES

P =
0 1 0
1 0
0 0 1

>> [P *A, L *U]

1 5 -2 1 5 -2 we have that P*A=L*U
2 2 -2 2 2 -2
» [0, R, E] = qr (R)
0 =
-0.1361 - 0.8785 - 0.4579
0.9526 - 0.2430 0.1831
-0.2722 - 0.4112 0.8700
R =
-7.3485 1.6330 1.7691
0 -5.9442 2.3366 Upper triangular matrix
0 0 -0.6410
E =
100
010
001

>> [A *E, Q * R]

ans =
1.0000 5.0000 -2.0000 1.0000 5.0000 -2.0000
-7.0000 3.0000 1.0000 -7.0000 3.0000 1.0000
2.0000 2.0000 -2.0000 2.0000 2.0000 -2.0000

Then,A*E=Q*R

»> R = chol(A)

22?2 Error using ==> chol
Matrix must be positive definite.

160

We obtain an error message because the matrix is not positive definite.

»> [P,H] = hess(A)

P =
1.0000 0 0
0 -0.9615 0.2747
0 0.2747 0.9615
H=

1.0000 -5.3571 -0.5494
7.2801 1.8302 -2.0943
0 -3.0943 -0.8302

»> [P*H*P', P'*P]

ans =
1.0000 5.0000 -2.0000 1.0000 O 0
-7.0000 3.0000 1.0000 O 1.0000 0
2.0000 2.0000 -2.0000 O 0 1.0000

Then, PHP'=Aand P'P =1.

»» [U, S, V] = swud (A)

U=
-0.1034 -0.8623 0.4957
-0.9808 0.0056 -0.1949
0.1653 -0.5064 -0.8463
S =
7.8306 0 0
0 6.2735 0 diagonal matrix
0 0 0.5700
V=

0.9058 -0.3051 0.2940
-0.3996 -0.8460 0.3530
-0.1411 0.4372 0.8882

CHAPTER 5 © VECTORS AND MATRICES

161

CHAPTER 5 © VECTORS AND MATRICES
»U*s*y
ans =
1.0000 5.0000 -2.0000
-7.0000 3.0000 1.0000 therefore USV'= A
2.0000 2.0000 -2.0000
Now, we calculate the pseudoinverse of A:
»> X = pinv (A)
X =
0.2857 -0.2143 -0.3929
0.4286 -0.0714 -0.4643
0.7143 -0.2857 -1.3571

> [A*X *A, X * A *X]

1.0000 5.0000 -2.0000 0.2857 -0.2143 -0.3929
-7.0000 3.0000 1.0000 0.4286 -0.0714 -0.4643
2.0000 2.0000 -2.0000 0.7143 -0.2857 -1.3571

Thus, we have AXA = A and XAX=X.

EXERCISE 5-7

Consider the square matrix of order 5 whose (i,j)th element is defined by AU. =1 /(i+j-1/2). Calculate its Jordan
form (and check the result). Find its LU, QR, Frobenius, Smith and Hermite decompositions, calculating the
matrices involved and verifying that they do indeed yield the original matrix.

»> A=sym(maple('matrix(5,5,(i,j)-» i+j-1/2)"))
A =

[3/2, 5/2, 7/2, 9/2, 11/2]

[5/2, 7/2, 9/2, 11/2, 13/2]

[7/2, 9/2, 11/2, 13/2, 15/2]

[9/2, 11/2, 13/2, 15/2, 17/2]
[11/2, 13/2, 15/2, 17/2, 19/2]

162

»> [V, 3] = Jordan (A);
»> pretty(sym(V))

[1/2 1/2 22 19]
[8/9, 9/170 17 + 3/10, 9/170 3/17 + 3/10, --, --]
[45 45]
[]
[-71 1/2 172 -7]
[---, - 2/85 17 + 1/5, 2/85 17 + 1/5,---, - 2/9]
[90 18]
[]
[-67 1/2 1/2 49 -14]
[---, 1/170 17 + 1/10, -1/170 17 + 1/10, ----, ---]
[90 90
[
[1/2 1/2
[3/10, 3/85 17, - 3/85 17, 3/10, - 2/5]
[
[31 1 1/2 11 %
[--, =---17 -1/10, - ---17 - 1/10,
[90 170 170
»> pretty(sym(J))

[o 0 0

[

[1/2

[0 55/4 + 15/4 17 0

[

[1/2

[o 0 55/4-15/4 17

[

[o 0 0

[

[o 0 0

»> pretty(simple(sym(symmul(symmul(V,3),inv(V)))))

[3/2 5/2 7/2 9/2 11/2]
[572 7/2 9/2 11/2 13/2]
[7/2 9/2 11/2 13/2 15/2]
[9/2 11/2 13/2 15/2 17/2]
[13/2 11/2 15/2 17/2 19/2]

]
-13 -23]
] "]
90 45]

o o]
)|
1
o 0]
1
)
o o]
)|
o 0]
1
o 0]

CHAPTER 5 © VECTORS AND MATRICES

We have calculated the transformation matrix /and the diagonal matrix (the Jordan form) J of A. We have also
proven that I *J * I/'= A. We now calculate the LU decomposition matrix of A and the matrices involved, checking
the result. Since symbolic matrices are involved, we will use the maple command.

163

CHAPTER 5 © VECTORS AND MATRICES

>> maple('A:=matrix(5,5,(i,j)-> i+j-1/2)");
»> pretty (sym (maple ('LUdecomp(A,P=p,L=1,U=u,U1=u1,R=r)")))

[3/72 5/2 7/2 9/2 11/2]

[]
[o -2/3 - 4/3 -2 - 8/3]
[)|
[0 0 0 0 0]
[]
[o 0 0 0 o]
[]
[0 0 0 0 0]

»> pretty(sym(maple('print(p,1)’)))

[10000] [1 0 0 0 o]

[I [1
[o1000] [5/3 1 0 0 o]
[|]
[oo100], [7/3 2 1 0 o]
[I]
[oooz10] [3 3 o0 1 0]
[I [1

[o0000 1] [11/3 4 0 0 1]
»> pretty(sym(maple('print(ui,r)’)))

[3/2 572 o o0 o] [1 0 -1 -2

[I [
[o - 2/3 0 0 o] [o 1 2 3
[I
[o 0 1 0 o], [o 0 0 0
[I [
[o 0 0 1 o] [o 0 0 0
[I [
[o 0 0 0 1] [o 0 0 0

»> pretty (sym (maple ('evalm(p&*1&*ui&*r), evalm(p&*1&*u)')))

[372 5/2 7/2 9/2 11/2] [3/2 5/2 7/2 9/2 11/2]

[I [|
[5/2 7/2 9/2 11/2 13/2] [5/2 7/2 9/2 11/2 13/2]
[I []
[7/72 9/2 11/2 13/2 15/2], [7/2 9/2 11/2 13/2 15/2]
[I [1
[9/2 11/2 13/2 17/2 15/2] [9/2 11/2 13/2 17/2 15/2]
[I [I

[13/2 11/2 15/2 17/2 19/2] [13/2 11/2 15/2 17/2 19/2]

164

CHAPTER 5 © VECTORS AND MATRICES

We see that p */ *u7 *r=Aand that p */ * u = A. We will now calculate the QR decomposition of A and the
matrices involved, checking the result.

»> pretty(sym(maple('print(R)')))

[1/2 71 1/2 85 1/2 33 1/2 113 1/2]
[1/2 285, --- 285, --- 285, --- 285, --- 285]
[114 114 38 114]
[1
[1/2 1/2 1/2 1/2]
[o, 2/57 570, 4/57 570, 2/19 570, 8/57 570]
[1
[o, 0, 0, 0, 0]
[1
[o, 0, 0, o, 0]
[1
o, o, 0, 0, 0]

»> pretty(sym(maple('print(q)')))

[1/2 1/2 1/2]
[1/95 285, 3/95 570, 1/5/10, 0, 0]
[1/2 11 1/2 1/2 1/2]
[1/57 285, --- 570, - 1/5 10, 1/10 30, 0]
[570]
[1/2 1/2 1/2 1/2 1/2]
[7/285 285, 2/285 570, - 1/10, - 2/15 30, 1/6 6]
[1/2 1/2 1/2 172]
[3/95 285, - 1/190 570, 0, - 1/30 30, -1/3 6]
[11 1/2 1/2 1/2 1/2 1/2]
[--- 285 , - 1/57 570, 1/10/10, 1/15 30, 1/6 6]
[285]

»> pretty(sym(maple('evalm(q&*R)')))

[3/2 5/2 7/2 9/2 11/2]

[]
[5/2 7/2 9/2 11/2 13/2]
[]
[7/2 9/2 11/2 13/2 15/2]
[1
[9/2 11/2 13/2 17/2 15/2]
[]

[13/2 11/2 15/2 17/2 19/2]

165

CHAPTER 5 © VECTORS AND MATRICES

We see that g * R = A. Next we find the Smith decomposition of the matrix A and the matrices involved, checking
the result.

»> pretty(sym(maple('smith(A,X,U,V)")))

[10000]

[]

[01000]

[]

[0 000 0]

[|

[o0000]

[]

[00000]

»> pretty(sym(maple(’print(U,V)')))

[-13 1
[o 0 0 0 2/11] [1 1 2 3]
[1 [11]
[0 0 o 1172 -9/2] [1
[] o 1 -2 -3 -4]
[-1 2 -1 0 o], []
[] [o 0 1 0 0]
[0 1 -2 1 o] []
[] [o 0 0 1 0]
[0 o 1 -2 1]]
[0 0 0 0 1]

»> pretty(sym(maple(’'evalm(U&*A&*V)')))

[10000]

[1

[01000]

[1

[00000]

[]

[o0000]

[1

[00000]

166

CHAPTER 5 © VECTORS AND MATRICES

We see that U *A *V = Smith matrix. Next we calculate the Hermite decomposition of the matrix A and find the
matrices involved.

»> pretty(sym(maple('H:=hermite(A,x,V); V:=evalm(V)')))
»> pretty(sym(maple('print(H,V)')))

[1 0 -1 -2 -3] [-772 5/2 o o0 0]

[1L]
[o 1 2 3 4] [572 - 372 0 0 0]
[I []
[o 0 0 0 o], [2 -4 2 0 o]
[I[]
[0 o 0 0 o] [4 -6 o 2 0]
[[]
[o o 0 0 o] [6 -8 o o 2]

»> pretty(sym(maple('evalm(V&*A)')))

[1 0 -1 -2 -3]

[]
[o 1 2 3 4]
[1
[0 0 0 0 o]
[]
[o 0 0 0 0]
[]

[o 0 0 0 o]

We see that I/*A = H. Finally, we calculate the Frobenius decomposition of A and find the matrices involved,
checking the result.

»> pretty(sym(maple('F:=frobenius(A,P); P:=evalm(P)')))
»> pretty(sym(maple(’print(F,P)')))

[67 22 19]
[-- 3/2 285/4 -- --1]
[45 45 45]
[]
[o o 0 o o] [-7 -7]
[][-- 5/2 355/4 -- -2/9]
[1 0 50 0 o] [18 18]
[I []
[0 1 55/2 0 0], [-49 -49 -14]
[] [--- 7/2 425/4 --- ---]
[o o 0 o o] [90 90 45]
[|)|
[o o 0 o o] [37/7270 9/2 495/4 3/10 -2/5]
[]
[13 13 23]
[-- 11/2 565/4 -- --]
[90 90 45]

167

CHAPTER 5 © VECTORS AND MATRICES

»> pretty(sym(maple('evalm(P*(-1)&*A&*P)')))

[o 0 0 0 0]
[]
[1 0 50 0 o]
[1
[55/2 1 0 o 0]
[]
[o 0 0 0 0]
[1
[0 0 0 0 o]

We have shown that P "*A *P =F.

EXERCISE 5-8

Consider the 3 x 3 matrix A whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). If V is the vector
of ones, solve the system L * x =V based on the LU decomposition of A. Solve the system G * x =V, where G is
obtained from A via Gaussian elimination. Solve the system J * x =V where J is the Jordan form of A. Represent
the matrix system in the form of equations, and find the Hermite and Smith decompositions of A.

First, we define the matrix A and the vector V/ using the maple command as follows:
»> maple ('A: = matrix(3,3,[1,5,-2,-7,3,1,2,2,-2]);) V: = array ([1,1,1])');
Then we find the LU decomposition of A, solving the system L*x = I/ using the command backsub.

»> pretty(sym(maple(’'L:=LUdecomp(A)')))
»> pretty(sym(maple('backsub(L,V)')))

[253 - 233 - 19]
[--- ---]
[532 532 14]

We have solved the system L * x = I/, which can be expressed in the form of equations with the command
geneqns as follows:

»> pretty(sym(maple(’geneqns(L,[x1,x2,x3],V)")))

14
{x1+5x2-2x3=1,38x2-13x3=1, - -- x 3 = 1}
19

168

CHAPTER 5 © VECTORS AND MATRICES

Now we solve the system G * x = Vwhere G is obtained from A by Gaussian elimination.

»> pretty(sym(maple('G:=gausselim(A)')))
»> pretty(sym(maple('backsub(G,V)')))

[79 - 11]
[-- --- -2/7]
[56 56]

The system of equations is found as follows:
»> pretty(sym(maple(’geneqns(G,[x1,x2,x3],V)")))
{x1+5x2-2x3=1,8x2+2x3=1, -7/2x 3 =1}
Now, we solve the system J *x = I/where Jis the canonical Jordan form of A. We use the command forwardsub.

»> pretty(sym(maple('J:=gaussjord(A)')))
»> pretty(sym(maple(’forwardsub(3,V)')))

[11 1]

Finally, we find the Smith and Hermite matrices associated with A.
»> pretty(sym(maple('ihermite(A,x)')))

[116]

[0 23]

[0 0 14]
»> pretty(sym(maple('ismith(A)')))

[100]

[0 1 0]
[0 0 28]

5.5 Similar Matrices and Diagonalization

Two matrices A and B of dimensions (MxN) are equivalent if there exist two invertible matrices U and V such that
A = UBV. The MATLAB command [U, S, V] = svd (A) calculates a diagonal matrix S which is equivalent to A.

Two square matrices A and B of order 7 are said to be congruent if there is an invertible matrix P such that
A=P'BP.

The MATLAB command [U, T] = schur (A) calculates a matrix T'which is congruent with A.

Congruence implies equivalence, and two congruent matrices must always have the same rank.

Two square matrices of order n, A and B, are similar if there is an invertible matrix P such that A = PBP.

Two similar matrices are equivalent.

A matrix A is diagonalizable if it is similar to a diagonal matrix D, that is, if there is an invertible matrix P such that
A=PDP

The process of calculating the diagonal matrix D and the matrix P is called diagonalization of A.

169

CHAPTER 5 © VECTORS AND MATRICES

Given a square matrix of real numbers A of order #, if all the eigenvalues of A are real and distinct, then A is
diagonalizable. The matrix D will have the eigenvalues of A as the diagonal elements. The matrix P has as columns the
eigenvectors of A corresponding to these eigenvalues.

If the matrix A has an eigenvalue with multiplicity r greater than 1, then it is diagonalizable if and only if the
kernel of the matrix A - r *I has dimension equal to the degree of multiplicity of the eigenvalue r.

The MATLAB command [V, J] = jordan (A) diagonalizes the matrix A by calculating the diagonal matrix J/ and the
matrix Vsuch that A=VJV .

EXERCISE 5-9

Diagonalize the symmetric matrix whose rows are the vectors:
(3,-1,0),(-1,2,-1),(0, -1, 3).

Check the result and confirm that the eigenvalues of the initial matrix are the elements of the diagonal matrix
obtained.

We calculate the diagonal matrix J similar to A, which will have the eigenvalues of A on its diagonal, and the
transformation matrix V. To do this, we use the command [V, J] = jordan (A):

>» A=[3,0, -1, -1, 2, -1;0, -1, 3]

A=
3 -1 0
-1 -2 -1
0 -3 -1

»> [V, 3] = jordan (A)
V =

[1/6, 1/2, 1/3]
[1/3, o0, -1/3]

[1/6, -1/2, 1/3]

J =

[1, 0, 0]

[0, 3, 0]

[0, 0, 4]

We now confirm that the diagonal matrix J has the eigenvalues of A on its diagonal:
»> eigensys (A)

ans =

[1]
[3]
[4]

170

CHAPTER 5 © VECTORS AND MATRICES

The matrices A and J are similar because there a matrix Vsatisfying the equation VV* *A *V = J:
>> symmul(symmul(inv(V),A),V)

ans =

[1, 0, 0]

[0, 3, 0]
[0, 0, 4]

5.6 Sparse Matrices

A matrix is called sparse if it has sufficiently many zero elements that one can take advantage of. Sparse matrix
algorithms do not store most null elements in memory, so when working on matrix processing with sparse matrices
one gains time and efficiency. There are specialized commands that can be used to deal with sparse matrices. Some of
these commands are listed below.

S = sparse (i, j, s, m, n, nzmax), i = vector, j = vector, s = vector. Creates a sparse matrix
S of dimension mxn with space for nzmax non-zero elements given by s. The vector

i contains the i-input components of the non-null elements and the vector j contains
the corresponding j-input components.

S=sparse(i,j,s,m,n) creates the sparse matrix S using nzmax=Ilength(s).

S = sparse(i,j,s) creates a sparse matrix S with m = max (i) and n = max (j).
S = sparse (A) converts the matrix A into sparse form.

A = full (S) converts the sparse matrix S into full matrix form A.

S = spconvert (D) converts an external ASCII file read with name D into a sparse
matrix S.

(i, j) = find (A) returns the row and column indices of the non-zero entries of the matrix A.

B = spdiags (A, d) builds a sparse matrix by extracting the diagonal elements of A
specified by the vector d.

S = speye (m, n) creates the sparse mxn matrix with ones on the main diagonal.
S = speye (n) creates the sparse square identity matrix of order n.

R = sprandn (S) generates a random sparse matrix with non-zero values normally
distributed in (0,1) with the same structure as the sparse matrix S.

R = sprandsym (S) generates a sparse random symmetric matrix with non-zero entries
normally distributed in (0,1) whose lower diagonal triangle has the same structure as S.

r = sprank (S) gives the structural rank of the sparse matrix S.
n = nnz (S) gives the number of non-zero elements in the sparse matrix S.

k = nzmax (S) returns the amount of storage occupied by the non-zero elements in the
sparse matrix S. If S is a full matrix then nzmax (S) = prod (size (S)).

s=spalloc(m,n,nzmax) creates space in memory for a sparse matrix of dimension mxn.

R = spones(S) replaces the zero entries of the sparse matrix S with ones.

171

CHAPTER 5 © VECTORS AND MATRICES

n = condest(S) computes a lower bound for the 1-norm condition number of a square
matrix S.

m = normest(S) returns an estimate of the 2-norm of the matrix S.
issparse(A) returns 1 if the matrix A is sparse, and 0 otherwise.

Here are some examples:

»> sparse([1,1,2,2,3,4],[4,2,3,1,2,3],[-7,12,25,1,-6,8],4,4,10)

ans

(2,1) 1
(1,2) 12
(3,2) -6
(2,3) 25
(4,3) 8
(1,4) -7

Now we convert this sparse matrix into complete form:

»> full(ans)

ans

0 7
1 0
0 -6 0 0
0 0

Now we define a sparse matrix whose full form is a diagonal matrix:

sparse(1:5,1:5,-6)

ans

(111) -6
(212) -6
(3,3) -6
(414) -6
(5,5) -6

»> full(ans)

ans

172

-6 0 0 0 0
0 -6 0 0 0
0 0 -6 0 0
0 0 0 -6 0
0] 0 0] 0 -6

CHAPTER 5 © VECTORS AND MATRICES

5.7 Special Matrices

MATLAB provides commands to define certain special types of matrices. These include the following:

H = hadamard(n): Returns the Hadamard matrix of order n, a matrix with values 1 or -1
such that H'* H=n * eye(n).

hankel(V): Returns the square Hankel matrix whose first column is the vector Vand
whose elements are zero below the first anti-diagonal. The matrix hankel(C,R) has first
column vector C and last row vector R.

hilb(n): Returns the Hilbert matrix of order n, a matrix whose ij-th element is 1 /(i+j-1).
invhilb(n): Returns the inverse of the Hilbert matrix of order n.

magic(n): Returns a magic square of order n. Its elements are integers from 1 to n? with
equal sums of rows and columns.

pascal(n): Returns the Pascal matrix of order n (symmetric, positive definite with
integer entries taken from Pascal’s triangle).

rosser: Returns the Rosser matrix, an 8 X 8 matrix with a double eigenvalue, three
nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.

toeplitz(C,R): Returns a Toeplitz matrix (not symmetric, with the vector C in the first
column and R as the first row vector).

vander(C): Returns a Vandermonde matrix whose penultimate column is the vector C.
In addition, A(:,j) = C A (n-j).

wilkinson(n): Returns the Wilkinson matrix of order n (symmetric tridiagonal with
pairs of eigenvalues close but not the same).

compan(P): Returns the corresponding companion matrix whose first row
is -P(2:n)/P(1), where P is a vector of polynomial coefficients.

maple(‘hadamard (n)’): Returns the Hadamard matrix of order n, a matrix with values
1 or - 1 such that H'* H = n * eye(n).

maple (‘hilbert (n)’): Returns the Hilbert matrix of order n, a matrix whose ij-th
element is I /(i+j-1).

maple (‘hilbert(n,exp)’): Returns the matrix of order n with ij-th entry equal to
1 /(i+j-exp).

maple(‘bezout(polyl,poly2,x)’): Constructs the Bézout matrix of the given
polynomials in x, with dimension max(m,n), where m = degree (polyl) and
n = degree (poly2). The determinant of this matrix is the resultant of the two
polynomials (resultant(polyl,poly2,x)).

maple(‘sylvester(p1,p2,x)’): Constructs the Sylvester matrix of the given polynomials
in x, with dimension n+m, where m = degree(p1) and n =degree(p2). The determinant
of this matrix is the resultant of the two polynomials.

maple (‘fibonacci (n)’): Returns the nth Fibonacci matrix F(n) whose size is the sum of
the dimensions of F (n-1) and F (n-2).

173

CHAPTER 5 © VECTORS AND MATRICES

maple(‘toeplitz([exl,...,exn])’): Returns the symmetric Toeplitz matrix whose elements
are the specified expressions.

maple(‘vandermonde([exprl,..., exprn])’): Returns the Vandermonde matrix whose
ij-th element is exprii'.

maple (‘wronskian(V,x)’): Returns the Wronskian matrix of the vector V =(fl,...,fn) with
respect to the variable x. The ij-th element is diff (fj, x$(i-1)).

maple (‘jacobian([exprl,...,exprm],[x1,..., xn])’): Returns the mxn Jacobian matrix with
ij-th element diff(expri,xj).

maple(‘hessian(exp,[x1,...,xn])’): Returns the mxn Hessian matrix with ij-th element
diff(exp, xi,xj).

EXERCISE 5-10

Find the eigenvalues of the Wilkinson matrix of order 8, a magic square of order 8 and the Rosser matrix.
»> [eig(wilkinson(8)), eig(rosser), eig(magic(8))]
ans =

1. Oe + 003 *

0.0042 1.0000 0.2600
0.0043 1.0000 0.0518
0.0028 1.0200 -0.0518
0.0026 1.0200 0.0000
0.0017 1.0199 0.0000 + 0.00001
0,0011 0.0001 0.0000 - 0.00001
0.0002 0.0000 0.0000 + 0.00001
-0.0010 -1.0200 0.0000 - 0.00001

Observe that the Wilkinson matrix has pairs of eigenvalues which are close, but not equal. The Rosser matrix has
a double eigenvalue, three nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.

174

CHAPTER 5 © VECTORS AND MATRICES

EXERCISE 5-11

Find the Smith and Hermite forms of the inverse of the Hilbert matrix of order 2 in the variable x. Also find the

corresponding transformation matrices.

»> maple('with(linalg):H:= inverse(hilbert(2,x))");
»> pretty(simple(sym(maple('H'))))

[2]
[-(-3+x) (-2 +X) (-3 +x) (-2 +x) (-4 +x)]
[1
[2

[(-3 +x) (-2 + x) (-4 + x) -(-3+x) (-4 +x)

»> maple ('B: = smith(H,x,U,V);)U: = eval (U); V: = eval (V)');

»> pretty(simple(sym(maple('B'))))

]
]
[2]
]

[o (-2+x) (x-7x+12)

»> pretty(simple(sym(maple('U’))))

[-1 -1)|
[1
[2 2]
[10 - 13/2 x + X -13/2 x+ 9+ x]

»> pretty(simple(sym(maple('V'))))

[-7/2 + x -4+ x]
[1
[-372 + x -2+ x]

»> maple('HM:=hermite(H,x,0);0:=evalm(Q)’);
»> pretty(simple(sym(maple('HM'))))

[2 1
[x -5x+6 0]
[)|
[2)|
[0 X -7x+12]

»> pretty(simple(sym(maple('Q'))))

[- x +3 - x+ 2]
[]
[- x + 4 - x + 3]

175

CHAPTER 5 © VECTORS AND MATRICES

EXERCISE 5-12

Verify that the functions x, x? and x® are linearly independent.

»> maple('v:=[x,x"2,x*3]:w:=wronskian(v,x)");
»> pretty(simple(sym(maple('w'))))

[2 3
[x X X

[

[2
[1 2x
[

[0 2

W
x
[N NS N N S

(o)}
x

»> pretty(simple(sym(maple('det(w)'))))

3
2 X

Since the determinant of the Wronskian is non-zero, the functions are linearly independent.

EXERCISE 5-13

Find the Jacobian matrix and the Jacobian determinant of the transformation:

X =e"sin (v), y =e" cos (v).
»> pretty(sym(maple('jacobian(vector([exp(u) * sin(v), exp(u) * cos(v)]), [u, v])')))

[exp (u) sin (u) exp (u) cos (v)]

[1

[exp (u) cos (v) - exp (u) sin (v)]
»> pretty(simple(sym(maple('det(")'))))

2
-exp_(u)

176

CHAPTER 5 © VECTORS AND MATRICES

EXERCISE 5-14

Find the Bézout and Sylvester matrices B and T for the functions p = a + bx + cx? and q = d + ex + fx2. Verify that
the determinants of B and T coincide with the resultant of p and q.

»> maple('p:=atb*x+c*x"2; q:= d+e*x+f*x*2; B:=bezout(p, q, x); T:=sylvester(p, q, x)')
»> pretty(sym(maple('B')))

[dc - af db - ae]
[)|
[ec - bf dc - af]

»> pretty(sym(maple('T')))

[c b ao]
[0 c b a]
[fedo]
[ofed]

»> pretty(sym(maple('det(B)'))),pretty(sym(maple(’'det(T)"))),
pretty(sym(maple(' resultant(p,q,x)")))

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf

2 2 22 2 2
dc-2dcaf+af-dbyc+dbf+aec-aebf

177

CHAPTER 6

Functions

6.1 Custom Defined Functions

We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program.
But, in addition, MATLAB also offers the possibility of custom defined functions. The most common way to define a
function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the
function to be used whenever required.

The second way to define a function is to use the relation between MATLAB and Maple, provided you have the
symbolic math Toolbox installed. In this case, functions of a variable can also be directly defined.

6.2 Functions and M-files

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single

line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of
commands in batch mode, in which case a sequence of commands can be submitted which were previously written
in a file. This file (M-file) must be stored on disk with the extension ".m" in the MATLAB subdirectory, using any ASCII
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow

you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the
command echo on is active and only the results of successive executions of the interpreted commands are displayed.
Work in batch mode is useful when automating large scale tedious processes which, if done manually, would be prone
to mistakes. You can enter explanatory text and comments into M-files by starting each line of the comment with the
symbol %. The help command can be used to display comments made in a particular M-file.

MATLAB provides certain commands which are frequently used in M-file scripts. Among them are the following:

echo on: View on-screen commands of an M-file script while it is running.

echo off: Hides on-screen commands of an M-file script (this is the default setting).

pause: Interrupts the execution of an M-file until the user presses a key to continue.

keyboard: Interrupts the execution of an M-file and passes the control to the keyboard so that the

user can perform other tasks. The execution of the M-file can be resumed by typing the return
command into the Command Window and pressing Enter.

179

CHAPTER 6 © FUNCTIONS

return: Resumes execution of an M-file after an outage.

break: Prematurely exits a loop.

clc: Clears the Command Window.

home: Hides the cursor.

more on: Enables paging of the MATLAB Command Window output.

more off: Disables paging of the MATLAB Command Window output.
more(N): Sets page size to N lines.

menu: Offers a choice between various types of menu for user input.

When you define a function using an M-file, the above commands can be used if necessary.

The command function allows you to define functions in MATLAB, making it one of the most useful applications
of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters)

the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by
commas. If there is more than one input parameter, they are separated by commas. The body of the function is the
syntax that defines it, and should include commands or instructions that assign values to output parameters.
Each command or instruction of the body often appears in a line that ends either with a comma or, when variables are
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is
stored in the M-file named function_name.m.

Let us define the function funl(x) = x A 3 - 2 x + cos(x), creating the corresponding M-file named funl.m by using
the syntax:

function p = funi(x)
% Definition of a simple function
p=x"3-2%x4+ cos(x);

To define this function in MATLAB select M-file New from the File menu in the top menu bar (or click the button

] in the MATLAB tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert
command lines defining the function, as shown in Figure 6-1.

180

CHAPTER 6 © FUNCTIONS

%) Untitled*
Ele Edit View Text Debug Breakpoints Web Window Help

DzE & B AH| OB 0 0 AR #2) | stac| x]
1
2 function pe=funl (x) |
3 $Definicion of a simple function
4 pexA3-2"X4COS(X) 2
5]

Ready

Figure 6-1.

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB
Editor/Debugger. This opens the Save dialog of Figure 6-2, which we use to save our function with the desired name
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button I3 or select
Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Guardar en: I*ﬂbin j il |§‘§§

Nornbre de archive: [[T] |__Guaidar_|
Guardar como tipo: IMATL&B[*‘m; *cdi) Ll Cancelar I

Figure 6-2.

Once a function has been defined and saved in an M-file, it can be used from the Command Window.
For example, to find the value of the function at 3r-2 we write in the Command Window:

»> funi(pi)
ans =

23.7231

181

CHAPTER 6 © FUNCTIONS

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the
command help, as follows:

»> help funi(x)
A simple function definition

The definition of a function with more than one input parameter and more than one output parameter is
illustrated in the following example (Figure 6-3):

function [x1,x2]=equation2(a,b,c)

% This function solves the quadratic equation ax * 2 + bx + c = 0
% whose coefficients are a, b and ¢ (input parameters)

% and whose solutions are x 1 and x 2 (output parameters)
d=b"2-4*a*c;

x1=(-b+sqrt(d))/(2*a);

x 2 = (-b-sqrt (d)) /(2*a);

Fle Edt View Text Debug Breskponts Weh Window Hebp

DR & B AH 88 B st | x|
1 a.b.cl : -
2 e ax~2+bx+o=
3
5|=| de=b*2-4varc:
Bl=| xl=(-besqrr(d))/(2%a):
T|=| x2«(-b-sqret(d))/(2%a):
g L
9 =

d I+
Ready
Figure 6-3.

The saved M-file with the name equation2.m will solve the equation x A 2-6 x + 2 = 0 in the following way:
»> [p,q]=equation2(1,-6,2)
p =

5.6458

0.3542
We can also ask for help about the function equation?2.
»> help equation2
This function solves the quadratic equation ax * 2 + bx + ¢ = 0
whose coefficients are a, b and c (input parameters)

and whose solutions are x1 and x2 (output parameters)

182

CHAPTER 6 © FUNCTIONS

We can also evaluate a function defined in an M-file using the command feval, whose syntax is as follows:

feval('F', argi, argl,..., argn) evaluates the function F (M-file F.m) with the specified arguments
argl arg2,..., argn

For example, we can evaluate previously defined functions using the command feval:
»> [r1,r2]=feval('equation2',1,-6,2)
Il =
5.6458
R2 =
0.3542
»> feval('funi',pi)
ans =

23.7231

6.3 Functions and Flow Control. Loops

The use of recursive functions, conditional operations and piecewise defined functions is very common in
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition
of the functions will be made via M-files or through the relationship with Maple, via the symbolic math Toolbox.

6.4 The FOR loop

MATLAB has its own version of the DO statement (defined in the syntax of most programming languages).
This statement allows you to run a command or group of commands repeatedly. For example:

»» for i=1:3, x(i)=0, end

X =
0
X =
0 0
X =
000

183

CHAPTER 6 © FUNCTIONS

The general form of a FOR loop is as follows:

for variable = expression
commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example:

for i=1:m,
for j=1:n,
A(i,§)=1/(i+j-1);
end
end

In this loop (Figure 6-4) we have defined the Hilbert matrix of order (m, n). If we save the M-file (Figure 6-5) as

Sforl.m, we can build any Hilbert matrix by running the M-file and specifying values for the variables m and n as shown
below:

>>m=3, n=4; forl; A
A =
1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667

MATLAB Editor/Debugger - [forl.m - C:A\MATLA. .. [Hi[=] E3
[4] Fle Edit View Debug Tools Window Help 8] x|

Dl=s@| [=e] s/e
L]] G T2

for i=1l:m,
for j=1:n,
Afi,3)=1/(i+3-1):

Fleady [Ghe5 | [2382M

Figure 6-4.

184

CHAPTER 6 © FUNCTIONS

Guardar en: It‘lbin j gl it EE

] fun
:r!] rootquad

MNombre de archivo: |lor1 | Guardar I
Guardar como tipo: |MATLAB [*.m; *.cdr) Ll Cancelar ,

Figure 6-5.

6.5 The WHILE loop

MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages.
This statement allows you to repeat a command or group of commands a number of times while a specified logical
condition is met. The general syntax of this loop is as follows:

While condition

commands

end

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes
in its interior a whole set of commands that are separated by commas which continually loop while the condition is
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As an
example, we write an M-file that is saved as whilel.m, which calculates the largest number whose factorial does not
exceed 101,

n=1;

while prod(1:n) < 1.e100,
n=n+1;

end,

n

Now, we run the M-file:

»> while1

70

185

CHAPTER 6 © FUNCTIONS

6.6 IF ELSEIF ELSE END LOOP

MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:

If condition
commands
end

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.

If condition
commands1
else
commands2
end

In this case, the commands1 are executed if the condition is true, and the commands2 are executed if the
condition is false.

The IF statements, as well as FOR statements, can be nested. When multiple IF statements are nested, use the
ELSEIF statement, whose general syntax is as follows:

if conditioni
commands1

ElseIlf condition2
commands2

Elself condition3
commands3

else
end

In this case, the commands1 are executed if conditionl is true, the commands2 are executed if conditionl is false
and condition2 is true, the commands3 are executed if conditionl and condition2 are false and condition3 is true, and
so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:

if conditioni
commands1
else
If condition2
commands2
else
if condition3
commands3
else

end
end
end

186

CHAPTER 6 © FUNCTIONS

Consider as an example the following M-file named elsel.m:

Ifn<o,

A = 'n is negative'
elseif rem(n,2) ==

A = 'n is even'
else

A = 'n is odd'
end

Running it, we obtain the number type (negative, odd or even) for a specified value of n:
> n = 8; else1
A =
n is even

elsel

v
v
=
n
~J
e

n is odd

> n =-2; elsel

n is negative

6.7 Recursive Functions

One of the applications of loops is the creation of recursive functions via M-files. For example, although the factorial
function can be defined in MATLAB as n! = prod(1:n), it can be also defined as a recursive function in the following way:

function y=factori(x)
if x==
y=1;
end
if x==
y=1;
end
if 1
y=x*feval('factori’,x-1);
end

If we now want to calculate 40/, we do the following:
»» factori(40)
ans =

8. 1592e + 047

187

CHAPTER 6 © FUNCTIONS

EXERCISE 6-1

The Fibonacci sequence {an} is defined by the recurrence law a, =1,a,=1,a =a ., +a_,. Represent this
succession by a recurrent function and calculate a, , a, and a,,.

We define the function using the M-file fibo.m as follows:

function y=fibo(x)
if x¢=1
y=1;

else y = feval('fibo',x-1) + feval('fibo',x-2);
end
»> fibo(2)
ans =
2
»> fibo(5)
ans =
8
»> fibo(20)

ans =

10946

EXERCISE 6-2

Newton’s method for solving the equation f (x) = 0, under certain conditions on f, is via the iteration

X, =X - f(x)/f’(x) for an initial value x, sufficiently close to a solution. Write a program that solves equations
by Newton’s method to a given precision and use it to calculate the root of the equation x* - 10 x> +29x-20=0
close to the point x = 7 with an accuracy of 0.00005. Also search for a solution setting the precision to 0.0005.

The program code would read as follows:

% x is the initial value, precis is the precision required
% func is the function f and dfunc is its derivative
it=0; x0=x;
d=feval(func,x0)/feval(dfunc,x0);
while abs(d)»precis
x1=x0-d;
it=it+1;
X0=x1;
d=feval(func,x0)/feval(dfunc,x0);
end;
res = x0;

188

CHAPTER 6 © FUNCTIONS

We save the program in the file named fnewton.m.

Now, we define the function f (x) = x3 - 10 x2 x + 29 - 20 and its derivative via the M-files named 302.m and
f303.m in the following way:

F=X."3-10.0*X."2+29.0%x-20.0;
function F=f303(x);
F=3*x."2-20*x+29;
To run the program that solves the given equation we type:
»» [x, it]=fnewton('f302','f303',7,.00005)
X =
5.000
it =
6

After 6 iterations and with an accuracy of 0.00005 we have obtained the solution x = 5. For 5 iterations and a
precision of 0.0005 we get x = 5.0002 via:

»» [x, it] = fnewton('f302','f303',7,.0005)
X =
5.0002

it =

EXERCISE 6-3

Schroder’s method, which is similar to Newton’s method for solving the equation f (x) = 0, under certain
conditions required on f, uses the iteration x =x _, = x_-m f(x)/f'(x.) for a given initial value x, close enough
to a solution, m being the order of multiplicity of the sought root. Write a program that solves equations using
Schroder’s method to a given precision and use it to calculate a root with multiplicity 2 of the equation

(e *-x)2 = 0 close to the point x =-2 to an accuracy of 0.00005.

The program code reads as follows:
% m is the order of the multiplicity of the root
% x is the initial value, precis is precision

it=0; x0=x;
d=feval(func,x0)/feval(dfunc,x0);

189

CHAPTER 6 © FUNCTIONS

while abs(d)»precis
x1=x0-m*d;
it=it+1; x0=x1;
d=feval(func,x0)/feval(dfunc,x0);
end;
res = x 0;

We save the program in the file named schroder.m.

Now, we define the function f (x) = (e * -x)?> and its derivative and save them in files named 7304.m and 7305.m:

function F=f304(x);
F=(exp(-x)-x)."2;

function F=305(x);
F=2.0*(exp(-x)-x).*(-exp(-x)-1);

To run the program that solves the stated equation type:
»>[x,it]=schroder('f304',"'f305',2,-2,.00005)
X =
0.5671
it =
5

In 5 iterations we obtain the solution x = 0.56715.

6.8 Conditional Functions

Functions defined differently on different intervals of variation in the independent variable have always played an
important role in mathematics. MATLAB enables you to work with these types of functions, which are usually defined
using M-files, in the majority of cases relying on FOR loops, WHILE loops, IF-ELSEIF-IF-END, etc.

EXERCISE 6-4

Define the function delta (x), which has value 1 if x = 0, and 0 if x is non-zero. Also define the function deltal (x),
which has the value 0 if x =0, 1 if x > 0, and - 1 if x < 0, and represent it graphically.

Define delta (x) by creating the M-file delta.m as follows:

function y = delta (x)
If x==0
y=1;
else y = 0;
end

190

CHAPTER 6 © FUNCTIONS

To define deltal(x) we create the M-file delta1.m as follows:

function y = delta1 (x)

If x==0

y = 05
ElseIf x » 0 and = 1;
ElseIf x < 0 and =-1;
end

To graph a function, we use the command fplot, whose syntax is as follows:
fplot [xmin xmax ymin ymax] ('function')

This represents the function in the given ranges of x and y.

Now, we represent the function delfa7 (x). See Figure 6-6:

»> fplot ('deltai(x)', [-10 10 -2 2])

-15 }

-2 1 1 1
-10 -5 0 5 10

Figure 6-6.

EXERCISE 6-5

Define a function stat (v) which returns the mean and standard deviation of the elements of a given vector v. As an
application, find the mean and standard deviation of the numbers 1, 5,6, 7 and 9.

To define stat (v), we create the M-file stat.m as follows:

function [media, destip] = stat(v)
[myn]=size(v);
if m==

m=n;
end
media=sum(v)/m;
destip=sqrt(sum(v."2)/m-media. 2);

191

CHAPTER 6 © FUNCTIONS

Now we calculate the mean and standard deviation of the numbers 1, 5, 6, 7 and 9:
»> [a,s]=stat([1 5 6 7 9])
a =

5.6000

2.6533

EXERCISE 6-6

Define and graph the piecewise function that has the value 0 if x< -3, x®if -3<x<-2, X2 if -2<x<2, x if 2<x<3
and 0 if 3<x.

We create the function using an M-file named piece1.m:

function y=piece1(x)

if x«¢=-3
y = 0;
ElseIf - 3 < x & x< -2
=x " 3;
ElseIf - 2 ¢ =x&x<¢ =2
y=x"2;
elseif 2<x & x<3
y=x
elseif x»=3
y =0;

end
Now, we graph the function (see Figure 6-7):

»> fplot('piece1’, [-5 5])

192

CHAPTER 6 © FUNCTIONS

. ’_/‘//I—
st i
-10 | .
15| i
20| i

-25 | 4

-30 L
-5 0 5

Figure 6-7.

6.9 Defining Functions Directly. Evaluating Functions

We already know that we can define and evaluate functions by making use of the relation between MATLAB and
Maple, provided the symbolic mathematics Toolbox is available. Using this tool, you can define functions of one or
severable variables using the command maple.

The advantage of defining functions in this way is that it is not necessary to write files to disk.

6.10 Functions of One Variable

Functions of one variable are defined in the form f= 'function' (or f= function whenever its variables have
previously been defined as symbolic with syms).
To find the value of the function fat a point, you use the command subs, whose syntax is as follows:
subs(f,a) applies the function f at the point a
subs(f,a,b) substitutes in f the value b by the value a
Let's see how to define the function f(x)=x " 2:
»» f="x*2' (or: syms x, f = x * 2)
f =
x "2
Now we calculate the values f(4), f (a+1) and f{3x+x2):
»> A=subs(f,4),B=subs(f, 'a+1'),C=subs(f," ' (3*x+x"2)")
A =

16

193

CHAPTER 6 - FUNCTIONS
B -

(a+1) * 2

C =

(3*x+x72)72

6.11 Functions of Several Variables

Functions of one or several variables are defined using the maple command as follows:
maple('f: = x - » f (x)') defines the function f(x)
maple('f:=(x,y,2y...)- » f(X,y¥,2,...)") defines the function f(x,y,z,...)

maple(' f:=(X,¥,Zyeee)- > (FL(Xy¥yeee)y F2(XyYyece)yeee)’) defines the vector function (fi(x,y,...),
F2(%,y5000)5000)

To find the value of the function (x, y, z) - > f(x,y,z...) at the point (a, b, ¢,...) the expression maple ('f(a,b,c,...)’)
° us?[(li'l.e value of the vector function f:=(x,y,...)-> (f1(x,y,...), f2(x,y,...),...) at the point (g, b,...) is found using the
expression maple ('f(a,b,...)").
The function f{x,y) = 2x +y is defined in the following way:
>> maple('f:=(x,y) - > 2 * x +y');
f(2,3) and f{a,b) are calculated as follows:
»> maple('f(2,3)"')
ans =
7
»> maple('f(a,b)")

ans =

2*%a+b

194

CHAPTER 6 © FUNCTIONS

EXERCISE 6-7

Define the functions f () = x2, g (x) = x"2and h (x) = x + sin (x). Calculate f (2), g(4) and h(a-b?).
»» f="x*2", g="x"1/2)", h = "x+sin(x)’

f =

x "2

g =

x "(1/2)

h =

x+sin (x)

»> a=subs(f,2),b=subs(g,4),c=subs(h,'a-b*2")

a =

4

4 "(1/2)

a-b » 2 + sin(a-b*2)

EXERCISE 6-8

Given the function h defined by h(x,y) = (cos(x>-y?), sin(x?-y?)), calculate h (1,2), h(-pi,pi) and h(cos (a?), cos (1 -a?).

As it is a vector function of two variables, we use the command maple:

>> maple('h:=(x,y) - » (cos(x*2-y*2), sin(x"2-y*2))');

»> maple('A = h (1, 2), B = h(-pi,pi), C = h(cos(a*2), cos(1-a"2))')
ans =

A = (cos (3),-sin (3)), B = (1, 0),
C = (c

os (cos(a*2) ~ 2-cos(-1+a*2) * 2), sin(cos(a*2) " 2-cos(-1+a"2) * 2))

195

CHAPTER 6 © FUNCTIONS

We could also define this vector function of two variables using the M-file named vectori.m below:
function [z,t] = vectori(x,y)

z = cos(x"2-y*2);

t = sin(x"2-y*2);

You can also build the function with the following syntax:

function h = vectori(x,y)

z = cos(x"2-y2);
t = sin(x"2-y*2);
h = [z,t];

We calculate the values of the function at (7,2) and (-pi, pi) as follows:
»» A = vector1(1,2), B = vector1(-pi,pi)
A =

-0.9900 - 0.1411

10

EXERCISE 6-9

Given the function f defined by:
f(x,y)= 3(1-x)? e W+1"2x*2 _10(x/5-x 3-y/5)e *"2¥"2-1/3g -*+1"2y"2
find f (0,0) and represent it graphically.

First, we can define it via the maple command:

»>> maple ('f:=(x,y) - » 3 *(1-x) * 2 * exp (-(y + 1) * 2-x * 2)-
10*(x/5-x"3-y*5)*exp(-x"2-y*2)-1/3%*exp(-(x+1)"2-y*2)"');

Now, we calculate the value of fat (0,0):
»> maple('f(0,0)")
ans =

8/3*%exp(-1)

196

CHAPTER 6 © FUNCTIONS

We can also create the M-file named func2.m as follows:

function h = func2(x,y)

h=3*(1-x)"2*exp(-(y+1)*2-x"2)-10*(x/5-x"3-y"5)*exp(-x"2-y*2)-
1/3 * exp (-(x +1) 2 -y * 2);

Now, we calculate the value of hat (0,0):

»> func2(0,0)

ans =

0.9810

To graph the function, we use the command meshgrid to define the x and y ranges for the domain of the function
(a neighborhood of the origin) and the command surfing to graph the surface:

»» [x,y] = meshgrid(-0.1:.005:0.1,-0.1:.005:0.1);
»» z = func2(x,y);
»> surf(x,y,z)

This yields the graph shown in Figure 6-8:

6741 ...
674 .
6.739 ...

¢
6.738. - 4

6.737

Figure 6-8.

197

CHAPTER 6 © FUNCTIONS

6.12 Piecewise Functions

MATLAB provides a direct command that enables you to define conditional functions that take different values
depending on different intervals of definition of the variables (piecewise functions). The command in question is
piecewise, and its syntax is presented below:

maple ('piecewise(exprl, valuel, expr2, value2,..., exprn, valuen)")

Defines the piecewise function that takes valuel if the variable satisfies expr1, takes
value2 if the variable satisfies expr2, and so on. For all values of the function not
covered by the expressions the function takes the value zero.

maple ('piecewise(exprl, valuel, expr2, value2,..., exprn, valuen, valuem)')

Defines the piecewise function that takes valuel if the variable satisfies exprl, takes
value2 if the variable satisfies expr2, and so on. For all values of the function not
covered by the expressions the function takes the value valuem.

maple ('convert (expression,piecewise)")

Converts the expression containing Heavside, abs, signum, etc. functions to a piecewise
function. The command can be applied to a list or set of expressions which is converted
to a list or set.

maple ('convert (expression, piecewise variable)')

Converts the expression containing Heavside, abs, signum, etc. functions to a piecewise
function according to the specified variable.

maple ('convert (expression,pwlist)’)

Converts the expression containing functions to its representation in the form of a
piecewise list.

maple ('convert (expression, pwlist,variable)')

Converts the expression containing functions to its representation in the form of a
piecewise list based on the specified variable.

A great advantage of this command is that it can be used together with commands like discont, diff, int, dsolve.
This allows you to directly analyze the continuity, differentiability and integrability of piecewise-defined functions.
At the same time, it allows this type of function to be used in the analysis of differential equations. Here are some
examples:

»> pretty(sym(maple(’piecewise(x>0,x)")))
| x 0< X
\
| 0 otherwise

»> pretty(sym(maple('piecewise(x*x>4 and x<8,f(x))')))

2
| £ (x) 4-x<0and x - 8<0

| o otherwise

198

CHAPTER 6 © FUNCTIONS

»> pretty(sym(maple(’simplify(piecewise(x*x»4 and x<8,f(x)))')))

| £ (x) X< -2
|

| o X< =2
3

| £(x) x < 8
|

| o 8 <= x

»> pretty(sym(maple('piecewise(x<0,-1,x<1,0,1)"')))

| 1 otherwise

It is possible to define piecewise functions using the arrow operator, and to evaluate previously defined functions
at different points.

»> pretty(sym(maple('f:=x->piecewise(x<0,-1,x¢1,0,1) : f(1/2)")))

0
»> pretty(sym(maple('f(5),f(-5),f(-infinity),f(infinity)')))

1, -1, -1, 1
You can also directly simplify functions defined in terms of predefined piecewise functions

»> pretty(sym(maple('p:= piecewise(x<0,-x,x>0,x):p"'))

| -x X<0

pi= A

| x 0< x

»> pretty(sym(maple('p:= piecewise(x<0,-x,x>0,x):simplify(p”2 + 5)")))

2
X+ 5

However, you cannot directly simplify functions defined in terms of predefined piecewise functions that include
parameters.

»> pretty(sym(maple('p:= piecewise(x<a,x,x>b,x*x):p')))

| x x<a
|

pi= A
| 2
| x b < x

199

CHAPTER 6 = FUNCTIONS

»> pretty(sym(maple('p:= piecewise(x<a,x,x>b,x*x):simplify(p*2)')))
| x X <at 2
|

3

| 2

| x b < x

To simplify the above expression, we need to convert it into a piecewise function in terms of the main variable x.

»> pretty(sym(maple('convert(p,piecewise,x)’)))

| 2

| x x<a
|

{0 X =a
|

| 4

| x a<x

A piecewise function can also be expressed as a list.

»> pretty(sym(maple('f:=piecewise(x<0,-1,x<1,0,1):')));
»> pretty(sym(maple(’convert(f,pwlist)’)))

[' 1, 0) O) 1, 1]

EXERCISE 6-10

Given the function f of a real variable defined by:
f(x)=1(1-IxI) |

express it as a piecewise-defined function and represent it graphically.

»> pretty(sym(maple(’convert(abs(1-abs(x)),piecewise)’)))

| -1 - x X <= -1
|

| x +1 X <=0
i

[1-x X< 1
/

| x -1 1<=x

Below, we represent the piecewise function using the ezplot command (see Figure 6-9) which can be used for
general representations of functions of one variable.

»> ezplot('abs(1-abs(x))',[-2,2])

200

CHAPTER 6

abs(1-abs()

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6-9.

FUNCTIONS

EXERCISE 6-11

Given the function p of a real variable defined by:
p(x)=-1ifx<0,p(x)=2xifx>1andp (x) = x* otherwise
express it as a piecewise-defined function. Find its indefinite integral and its derivative.

»> pretty(sym(maple('p:=piecewise(x<0, -1, x>1, 2*x, x*2):p')))

| -1 X<0
|
pi= 3 2 x 1¢x
|
| 2
| x otherwise

Now, let’s calculate the indefinite integral of the function p (x).

»> pretty(sym(maple('h:=int(p,x):h')))

| -X X<=0
|
| 3

h:={ 1/3 x X <=1
|
| 2
| x - 2/3 1<x

201

CHAPTER 6 © FUNCTIONS

Next, we find the first derivative of p (x):

»> pretty(sym(maple('d:=diff(p,x):d")))

| 0 X <=0
|
| 2 x X <=1
|
d:= 3 2 1< x
|
| undefined x=1
|
| undefined Xx=0

Note that the function p (x) is not differentiable at the points x = 7 and x = 0.

EXERCISE 6-12

Given the function of a real variable p defined in the previous exercise, solve the following differential equation:

ay(x)
o(x)

+py(x)=0
»> maple('dsolve(diff(y(x), x) + p * y(x) = 0, y(x))');
»> pretty(sym(maple('dsolve(diff(y(x), x) + p * y(x) = 0, y(x))')))
| _C1 exp (x) X<=0
|
| 3
y (x) =1 _C1 exp(-1/3 x) X<=1
|
| 2
| iCl exp(-x + 2/3) 1< x

202

CHAPTER 6 © FUNCTIONS

EXERCISE 6-13

Solve the following differential equation:

oy(x)

o0 -10-]xD]y*(x)=0

»> pretty(sym(maple(’convert(abs(1-abs(x)),piecewise)')))

| -1 - x X <= -1
|

| 12+ x X <=0
3

| 1 -x X <=1
|

| x -1 1<x

»> pretty(sym(maple('dsolve(diff(y(x),x)=convert(abs(1-abs(x)),piecewise)*
y(x)"2,y(x))")))

| 2
| - e X <= -1
| 2
| 2x-x +2_Q
|
| 2
| = mmmmm X <=0
| 2
| 2x+2+x +2_C
y(x) =3
| 2
| = mmmmm e X <=1
| 2
| 2x+2-x +2_(1
|
| 2
| = mmmmmm e 1<x
| 2
|

22 X+4+x +2_ (1
-

203

CHAPTER 6 © FUNCTIONS

6.13 Functional Operations

Normally, functions defined in MATLAB operate on their arguments. However, there are also functional operators that
operate on other functions (i.e. functional operators have functions as arguments), for example, the inverse function
operator. MATLAB also allows the classical operations between functions (sum, product, etc.).
Among the functional operators and classical operations between functions offered by MATLAB, we highlight the
following:
SYms X y Zee.
f = F(X,¥525¢00)5 8 = 8(X,¥525¢00), h = h(X,y,25.00)...
symadd(f,g) adds the functions f and g (i.e. f + g)
symop(f,'+',8,"'+"5hy"+"'5...) perfoxrms the sum fig+h+...
maple('f+g+h+...') performs the sum f+g+h +...
symsub(f,g) subtracts g from f (i.e. f-g)
symop(f,'-',g,"-",h,"'-",...) forms the successive difference f-g-h-...
maple('f-g-h-...)') forms the successive difference f-g-h-...
symmul(f, g) finds the product of f and g (i.e. f * g)
symop(f,' * ',g," * ',h," * ',...) forms the product fF*g*h*...
maple('f¥g*h*,...) ') forms the product f * g * h *...
symdiv(f,g) finds the quotient f / g
symop(f,'/',g,'/ ',h,'/ ',...) forms the successive quotient f/(g/(h/...
maple('f/g/h/...) ') forms the successive quotient f/(g/(h/...
sympouw(f,k) raises f to the power k (k is a scalar)
symop(f,'~',g) raises a function f to the power of another function g
maple('f*g') raises a function f to the power of another function g
compose(f,g) composes two functions f and g (i.e. f(g(x)))
compose(f,g,u) composes the functions f and g, taking the expression u as the domain of f and g
maple('f @g @h @...') composes the functions f, g, h...

maple('f(g(h(...)'))) composes the functions f, g, h...

g = finverse(f) gives the inverse of the function f

204

CHAPTER 6 © FUNCTIONS

g = finverse(f,v) gives the inverse of the function f using the symbolic variable v as an
independent variable

maple('invfunc[f(x)]') gives the inverse of the function f(x)
maple('f(x)@@(-1)') gives the inverse of the function f(x)

maple('map(function,exp)') applies the given function to each operand or element of the expression
(according to the first level of operations), where exp is a list or set

maple('map2(f,exp,list)’') applies the function f to the elements of the list, in such a way that the
function has as its first argument the constant expression expr, and as the second argument, each
item in the specified list

maple('unapply(expr,x1,x2,...,xn)"') returns an operator from the expression expr in the variables
X1y, X2yeeey XN

maple('applyop(f,n,expr)’') applies the function to the nth operand of the expression

maple('applyop(function,{n1, n2,..., nk},expr)') applies the function to the n1, n2,..., nk-th
operands of the expression

maple('applyop(function,n,expr,arg2,..., argn)') replaces the nth operand of the expression expr by
the result of applying the given function to it, passing arg2,..., argn as additional arguments

Here are some examples:
»> maple('p: = x * 2 + sin (x) + 1)
ans =
p := x"2+sin(x)+1

»> pretty(sym(maple('f:= unapply(p,x):f')))

2
X ->x + sin(x) + 1

»> pretty(sym(maple('f(Pi/6)')))

2
1/36 pi + 3/2

»> maple('q:= x"2 + y*3 + 1'):
»> pretty(sym(maple('f:= unapply(q,x) :f')))

2 3
X->X +y +1

»> pretty(sym(maple('f(2)')))

205

CHAPTER 6 © FUNCTIONS

3
5+y

»> pretty(sym(maple('g:= unapply(q,x,y) :g')))

2 3
(x, y) >x +y +1
>> pretty(sym(maple('g(2,3)")))
32
»» clear all

>> maple('p:= y*2-2%y-3');
»> pretty(sym(maple('applyop(f,2,p)')))

2
y +f(-2y) -3

»> pretty(sym(maple('applyop(f,2,p,x1,x2)")))

2
y +f(-2y, x1, x2) -3

»> pretty(sym(maple('applyop(f,{2,3},p)")))

Ve f 29+ f - 3)
»> pretty(sym(maple('map(f,x + y*z)')))
f(x)+fly2)
>> pretty(sym(maple('map(f,{a,b,c})"')))
{f(a), f(b), f(c)}
»> pretty(sym(maple(’'map(x -> x*2, x +y)')))

2 2
X +y

»> pretty(sym(maple(‘map2(f,g,{a,b,c})")))

{f(g, a), f(g, b), f(g, c)}

206

CHAPTER 6 © FUNCTIONS
»> pretty(sym(maple('map(diff, [(x+1)*(x+2),x*(x+2)],x)')))
[2 x+3, 2x+2]

»> pretty(sym(maple('map2(diff,x*y/z,[x,y,z])")))

EXERCISE 6-14

Let f(x) = x2+ x, g(x) = x>+ 1 and h(x) = sin (x) + cos (x). Calculate:
f(9(x), g(fix-1)), f(h(Pi/3)) and f(g(h(sinx))).
Graph f{g(x)) on the interval [- 7,1].

»> syms x
» f=x"2;g=x"3+1; h=sin (x) + cos (x); u = compose(f, g)

u =
(x "3+1) "2

»> v = subs(compose(g,f),x-1)

v =

(x-1)"6+1

»> w=subs(compose(f,h), 'pi/3")

W=

(sin(1/3*pi) + cos(1/3*pi)) * 2

»» r = subs(compose(f,compose(g, h)), sin (x))
r =

((sin (sin (x)) + cos (sin (x))) ~ 3 +1) " 2

207

CHAPTER 6 © FUNCTIONS

This can also be solved in the following way:

»>> maple('f: = x - » x 25 g: =x->x"3+1, h: = x - » sin(x) + cos(x)");

»> maple(’ (f(g(h(sin(x)))")))
ans =
((sin(sin (x)) + cos (sin (x))) ~ 3 + 1) ~ 2

To graph the function f (g (x)) we use the command ezplot, which, like fplot, graphs functions of a single variable
as follows (see Figure 6-10):

>> ezplot(subs(compose(f,g),x),[-1,1])

(x/3+1)A2

Figure 6-10.

EXERCISE 6-15

Define the functions f and g by f(x,y) =(x2,y?) and g(x,y) = (sin(x), sin(y)). Calculate f (f (f(x,y))) and g(f(r,m)).

>> maple('f:=(x,y) - >(x"2,y*2); g:=(x,y) - > (sin(x), cos(y))');
»> a = maple('(f(f(f(x,y)))"))

a =

x "8, y"38
»> maple(' (g(f(pi,pi)))")
ans =

sin(pi*2), cos(pi”2)

208

CHAPTER 6

FUNCTIONS

EXERCISE 6-16

Calculate the inverse of each of the functions f (x) = sin (cos (x'”?) and g (x) = sqrt (tan (x?)).
»> syms x, f = (cos(x ~(1/2)));

»> finverse(f)

ans =

arccos(arcsin(x))"2

»> g=sqrt(tan(x"2));

»> finverse(g)

Warning: finverse(sqrt(tan(x"2))) is not unique

ans =

arctan(x*2) *(1/2)

In the latter case the program warns us of the non-uniqueness of the inverse function.

209

CHAPTER 7

Programming and Numerical
Analysis

7.1 MATLAB and Programming

MATLAB can be used as a high-level programming language including data structures, functions, instructions for
flow control, management of inputs/outputs and even object-oriented programming. MATLAB programs are usually
written into files called M-files. An M-file is nothing more than a MATLAB code (script) that executes a series of
commands or functions that accept arguments and produces an output. The M-files are created using the text editor.

7.2 The Text Editor

The Editor/Debugger is activated by clicking on the create a new M-file button J in the MATLAB desktop or by
selecting File » New » M-file in the MATLAB desktop (Figure 7-1) or Command Window (Figure 7-2). The
Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB
programming code (Figure 7-3). You can open an existing M-file using File » Open on the MATLAB desktop
(Figure 7-1) or, alternatively, you can use the command Oper in the Command Window (Figure 7-2). You can also
open the Editor/Debugger by right-clicking on the Current Directory window and choosing New » M-file from the
resulting pop-up menu (Figure 7-4). Using the menu option Open, you can open an existing M-file. You can open
several M-files simultaneously, each of which will appear in a different window.

211

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

7 Edit View Web ‘Window Help
EE i ovectory: [0t ~] . |
Open... Ctrl+0 Figure
Close Command Window Crl+w Model I
o6ul
Import Data... =
Save Workspace As... Ctrl+5
Set Path... 3
Preferences...
ne.
Brint... is the sine of the elements
d nethods
1 DL 1 2\workimatrizl . asc Y/ Sin. m

2 D\ financelacrubond.m
3 D financelacrudisc.m
4 D:\...\finance\amortize.m

sine.
Exit MATLAE Ctrl+0Q is the cosine of the elemer
[f— | T
- Overloaded methods
All files

help sym/cos.m

unatriz.asc :
12 T I —
q | » | Command Hi| | <] L

Ready

Figure 7-1.

=) Command Window

S Edit View Web Window Help

Open... Ctrl+0 Figure
Close Command Window Cerl+wW Model

oGuUI
Import Data...
Save Workspace As.., Ctrl+5

lements of X.

Set Path...
Preferences...
Print...

Print Selectiol

1 D:\...12Yworkimatriz1.asc
2 D:\.. \financelacrubond.m elements of X.
3 D:\...\financelacrudisc.m
4 D:\...\finance\amoartize.m

Exit MATLAB Ctrl+Q
>> =
1| 3
Ready
Figure 7-2.

212

&) Untitled®

fle Edt Yiew Iext Debug Bresipoints Web Window Help
DEE& i R |(MH| 886 5D0E R | suclE: x|
1 |) =
1 I
Ready
Figure 7-3.

File Edit ‘Yiew Web Window
Do Bl

Launch Pad

- o\ MATLAB
o\ Commmications Toc-

f\Data Acquisition -
4\ Database Toolbox

@ control systen Tod AN BN

Haln
Open

Feovectory. [Gvai =] _ |

Open as Text
Import Data...

Rename Model
Delete Folder

+— Ml Narafesd Tanlhav
<|»| Launchpag [wo

I): \matlabRlZ\work

All files Fi

B nacriz. asc
Dmatrizl. asc

4 | 4 | Command History

ormer T - (>

cut |
Copy

Fasie

addtopath > | || B ok | &
Refresh Modified Des
0Z-ene-2001 03:27 a.

02-ene-2001 03:27 a.

Current Directory

Ready

Figure 7-4.

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

213

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

Figure 7-5 shows the functions of the icons in the Editor/Debugger.

Open new empty M-file Search and replace strings in an M-file
Open existing M-file Go to a function
Save M-file Place cut-off for debugger (breakpoinit)
Print M-file Delete breakpoint
Cut Run M-file current line
Copy Run a function
Paste Step-pause function
Run up to new breakpoint
= - X l[lj Stad
Figure 7-5.

7.3 Scripts

Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once the
syntax of the script has been entered into the editor (Figure 7-6), it is stored in the work library (work) and
simultaneously executes by clicking the button 7 or by selecting the option Save and run from the Debug menu

(or pressing F5). To move from one chart to the next press ENTER.

%) D:imatlabR1 2vworkilor.m*

File Edit View Text Debug Breskpoints Web Window Help
DR & Bo o | MAH | SR B 3 ¥ x|
1 $tM-file script producing graphics of petals -
21= theta = -pi:0.01l:pi;
3| - tho(l,:) = 2*sin(S5"theta)."2;
4= tho(2,:) = cos(l0*theta).*3;
5| = rho(3,:) = sin(theta).*2;
B| - rho(4,:) = 5%*cos(3.5%theta).~3;
7= gor i = 1:4
8| - polar (theta,rho(i,:))
9| - pause
10| - end -
1]
d| 1]
Ready
Figure 7-6.

214

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

=) Figure No. 1
File Edit Wew Insert Took Window Help

D& YA 2/ 200

Figure 7-7.

=) Figure No. 1
File Edit Wew Insert Took Window Help

D& YA 2/ 200

Figure 7-8.

215

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

=) Figure No. 1
File Edit Wew Insert Took Window Help

D& YA 2/ 200

Figure 7-9.

=) Figure No. 1
File Edit Yew Insert Took Window Help

D& YA 2/ 200

Figure 7-10.

216

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

7.4 Functions and M-files. Eval and feval

We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program.
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the
function to be used whenever required.

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of
commands in batch mode, in which case a sequence of commands can be submitted which were previously written
in a file. This file (M-file) must be stored on disk with the extension ".m" in the MATLAB subdirectory, using any ASCII
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the
command echo on is active and only the results of successive executions of the interpreted commands are displayed.
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually,
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful
applications of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters)
the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by
commas. If there is more than one input parameter, they are separated by commas. The body of the function is the
syntax that defines it, and should include commands or instructions that assign values to output parameters. Each
command or instruction of the body often appears in a line that ends either with a comma or, when variables are
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is
stored in the M-file named function_name.m.

217

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

Let us define the function funi(x) = x A 3 - 2 x + cos(x), creating the corresponding M-file funl.m. To define this
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button) in the MATLAB
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the
function, as shown in Figure 7-11.

¥} Untitled*

Fle Edit View Text Debug Bredgpoints Web Window Help

DR & Bo - AH| OB DR | s x|
1 -
2 function p=funl(x) —
3 fDefinition of a simple function
4 pex*3-2%x+cos (%)
5

Ready

Figure 7-11.

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB
Editor/Debugger. This opens the Save dialog of Figure 7-12, which we use to save our function with the desired name
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button 7 or select

Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Save file as:
Guardar en: [q work El - L'_’I‘ '

B E
s = cosint.m

Documentos | [Z] exponen
recientes @ id4

@ % mgica

Escritorio

X]

7

Mis documentos

MiPC
Mis stios de red Nombre: [funl.m | | Guardar |

Tipg: [A0 Files (<) ~| Cancelar

Figure 7-12.

218

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

Once a function has been defined and saved in an M-file, it can be used from the Command Window. For
example, to find the value of the function at 3n-2 we write in the Command Window:

»> fun1(3*pi/2)
ans =

95.2214

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the
command help, as follows:

»> help funi(x)

7.4.1 A Simple Function Definition

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax of
which is as follows:

feval ('F', argl, argl,..., argn)
This evaluates the function F (the M-file Em) at the specified arguments argl, arg2,..., argn.

As an example we build an M-file named equation2.m which contains the function equation2, whose arguments
are the three coefficients of the quadratic equation ax*+bx+c = 0 and whose outputs are the two solutions (Figure 7-13).

|Fle Edt View Text Debug Bresiponts Web Window Heb
DEE& BRo AH 8B D% sue| x|
sl function fxl,x21=equation2 -
2 sinis 1 i0n +C=
" aniga 038 304UCd 3 xl] x =1
5(=| deb*2-4varc;
Bl=| xl=(-b+sqrei(d))/(2%a):
T|=| x2e=(-b-sqrt(d))/(2%a):
8 =
9 =1
| J
jReamr
Figure 7-13.

Now if we want to solve the equation x* + 2 x + 3 = 0 using feval, we write the following in the Command Window:
»» [x1, x2] = feval('equation2',1,2,3)
X1 =
-1.0000 + 1. 4142i
X2 =

-1.0000 - 1. 41421

219

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

The quadratic equation can also be solved as follows:
»» [x1, x2] = equation2 (1,2,3)
X1 =
-1.0000 + 1. 41421
X2 =
-1.0000 - 1. 41421
If we want to ask for help about the function equation2 we do the following:

»> help equation2

This function solves the quadratic equation ax /A 2 + bx + ¢ = 0 whose coefficients are a, b and c¢ (input parameters)
and whose solutions are x 1 and x 2 (output parameters)

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval,
whose syntax is as follows:

eval (expression)

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

> n=4;
»>> eval(['M’' num2stx(n) ' = magic(n)'])

M4

16 2 3 13
511 10 8
97 612
414 15 1

7.5 Local and Global Variables

Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary

to define global variables with the GLOBAL command whose syntax is as follows:

GLOBALxYyz...
This defines the variables x, y and z as global.

Any variables defined as global inside a function are available separately for the rest of the functions and in the base
workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an empty
array. If there is already a variable with the same name as a global variable being defined, MATLAB will send a warning
message and change the value of that variable to match the global variable. It is convenient to declare a variable as global
in every function that will need access to it, and also in the command line, in order to access it from the base workspace.
The GLOBAL command is located at the beginning of a function (before any occurrence of the variable).

220

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

As an example, suppose that we want to study the effect of the interaction coefficients @ and S in the
Lotka-Volterra predator-prey model:

Yi=yi—ay\y,
Yo=Y, =By,

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 7-14.

3} C:\MATLAB6p1\workillotka. m Q@@

File Edit View Text Debug Breakpoints Web Window Help
DEE& »2Bo ~ AH| QB |G 6EE DL stee| x|

1 function yp = lotka(t,y) =

2 5LOTKA Lotka-Volterra predator-prey model.

3= global ALPHA BETA

4= | yp = [¥(l) - ALPHA™Y(1)*y(2); -¥(2) + BETATY(1)*¥{2)]:

5

6

7 =
<| bl

.?fl ecuacion2.m lotka.m I

Ready
Figure 7-14.

Later, we might type the following in the command line:

>> global ALPHA BETA
ALPHA = 0.01
BETA = 0.02

These global values may then be used for o and B in the M-file lotka.m (without having to specify them).
For example, we can generate the graph (Figure 7-15) with the following syntax:

>> [t, y] = ode23 ('lotka', 0.10, [1; 1]); plot(t,y)

221

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

<) Figure No. 1 Q@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2P D

1000

g

100

9 10

Figure 7-15.

7.6 Data Types

MATLAB has 14 different data types, summarized in Figure 7-16 below.

ARRAY

|

char NUMERIC cell structure function handle

user class java class

[I |
int8, uints, single double

int16, uint1e,
int32, uint32 sparse
Figure 7-16.

222

Below are the different types of data:

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

Data type Example Description

single 3*10/ 38 Simple numerical precision. This requires less storage
than double precision, but it is less precise. This type of
data should not be used in mathematical operations.

Double 3*10/300 5+6i Double numerical precision. This is the most commonly
used data type in MATLAB.

sparse speye(5) Sparse matrix with double precision.

int8, uint8, int16, uintl6, UInt8(magic (3)) Integers and unsigned integers with 8, 16, and

int32, uint32 32 bits. These make it possible to use entire amounts with
efficient memory management. This type of data should
not be used in mathematical operations.

char 'Hello' Characters (each character has a length of 16 bits).

cell {17 "hello' eye (2)} Cell (contains data of similar size)

structure a.day = 12; a.color ='Red'; Structure (contains cells of similar size)

a.mat = magic(3);

user class inline('sin (x)") MATLAB class (built with functions)

java class Java. awt.Frame Java class (defined in API or own) with Java

function handle @humps Manages functions in MATLAB. It can be last in a list of

arguments and evaluated with feval.

7.7 Flow Control: FOR, WHILE and IF ELSEIF Loops

The use of recursive functions, conditional operations and piecewise defined functions is very common in
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition
of the functions will be made via M-files.

7.8 FOR Loops

MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This
statement allows you to run a command or group of commands repeatedly. For example:

»» for i=1:3, x(i)=0, end

X =
0

X =

223

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

The general form of a FOR loop is as follows:

for variable = expression
commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 7-17):

) C:\MATLAB6p 1\workimatriz. m

Ele Edit View Text QDebug Breakpoints Web Window Help
D& & B & Hr a8 - 1 x|
1 function A = matriz(m.,n) - |
2 3Definition of a matrix
3| - for iwl:m,
4] = for j=l:n,
5| - Ali,})=0/(i+3-1);
6| - end
' B end; —_
8
9 =)
<| |+
| L | ecuacion2.m matriz.m
Ready
Figure 7-17.

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz.m, we can build any
Hilbert matrix later by running the M-file and specifying values for the variables m and 7 (the matrix dimensions) as
shown below:

»> M = matriz (4,5)
M =

1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250

7.9 WHILE Loops

MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This
statement allows you to repeat a command or group of commands a number of times while a specified logical
condition is met. The general syntax of this loop is as follows:

While condition
commands
end

224

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes
in its interior a whole set of commands that are separated by commas which continually loop while the condition is
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As
an example, we write an M-file (Figure 7-18) that is saved as whilel.m, which calculates the largest number whose
factorial does not exceed 10'.

5} C:\MATLABG6p 1\work\matriz. m*
File Edit Wiew Text Debug Breakpoints Web Window Help

DeE & S@Bo > AH 8x 3 x|
1= n=1; =
2|-| while prodil:n) < l.el00,

3 - n=n+l1;
4/—-| end,
5-| n =
B
7
| | o

| > | _ecuacionzm _ _matrizm_|

Ready

Figure 7-18.

Now now run the M-file.

»> while1

70

7.10 IF ELSEIF ELSE END Loops

MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:

if condition
commands
end

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.

if condition
commands1
else
commands2
end

225

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

In this case, the commands commandsl are executed if the condition is true, and the commands commands2 are
executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF
statement, the general syntax is as follows:

if conditioni
commands1

elseif condition2
commands2

elseif condition3
commands3

else
end

In this case, the commands commandsl are executed if conditionl is true, the commands commands2 are
executed if conditionl is false and condition2 is true, the commands commands3 are executed if conditionl and
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:

if condition1
commands1
else
if condition2
commands2
else
if condition3
commands3
else

end
end
end

Consider, for example, the M-file elsel.m (see Figure 7-19).

226

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

“ C:\MATLABG6p1\worklelse1.m - BX
Fle Edt View Text Debug Breskponts Web Wndow Hep
DB & B AH OB x|
1 function elsel(n) -~
2 feven, odd, positive, negative.
3|-| 1t n<o,
4= A='n i3 negative'
5= elseif rem(n,2) w0
6| - A='n is even' .-
7= else
8| - A= "n is odd'
8|=| end -l
1 [+
4 | » [equation2.m| whilet.m sisel.m
Ready
Figure 7-19.

When you run the file it returns negative, odd or even according to whether the argument 7 is negative,
non-negative and odd, or non-negative and even, respectively:

»> else1 (8), elsei (5), elsei (-10)
A =

n is even

n is negative

7.11 SWITCH and CASE

The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax is as
follows:

switch expression (scalar or string)

case valuel

statements % runs if expression is valuel
case value2

statements % runs if expression is value2

otherwise
statements % runs if neither case is satisfied

end

227

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

’

Below is an example of a function that returns ‘minus one, ‘zero, ‘one, or ‘another value’ according to whether the
input is equal to -1,0,1 or something else, respectively (Figure 7-20).

Y. C:\AMATLAB6p1\worklcase1.m

Bl Edt View Text Debug Breapoints Weh Window Help
DeE& B - AN OB ¢ x|
1 funcrtion casel(n) =
2 %=1, 0, 1 or another number
3~ switch n
4| = case =1
5|= disp('minus one'):
8| - case O
= disp('zero'):
8|~ case 1
9= disp('one'):
10| - otherwise
11| = disp('a
12| = end
13
14 ’
| L=l
4| » [equa::.cn:.m| whilel.m | elsel.m casel.m !
Ready
Figure 7-20.

Running the above example we get:

»> casel (25)
another value

»> casel (- 1)
minus one

7.12 CONTINUE

The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 7-21) that counts the lines of
code in the file magic.m, ignoring the white lines and comments.

228

4 C:\MATLAB6p1\workicontinue1.m* =]

Fle Edt View Text Debug Breaponts Web Window Hebp
DeE& @' "Bav - AH X X

1|]=| tid = topen(‘'magic.a’','r'); -

2|=| count = 0;

3=| while -feof(fid)

4= line = fgetl(tid):

5= if isempty(line) | stincmp(line,'s',1)

6|~ continue

7= end

8- count = count + 1;

9l-| end

10|=| disp(sprintf('sd lines ', count)); Si

1

12 _:]

i I KT 1]
(| » [equation2.n| whietm | elsetm continuetm |
Ready

Figure 7-21.

Running the M-file, we get:

> continue1l
25 lines

7.13 BREAK

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which
appears outside of the loop. Below is an M-file break1.m (Figure 7-22) which reads the lines of code in the file fft.m,

exiting the loop as soon as it encounters the first empty line.

5) C:\MATLAB6p 1\work\continue1.m* E”@@

Fle Edt View Text Debug Breakpoints Web Window Help

DEBE& @+~ "B o« AfH {3 ij Wz 13

£id = fopen('magic.m','r'):
count = 0;
while ~feof (£id)
line = fgetl(fid);
if isempry(line) | strncmp(line,'s',l)
continue
end
count = count + 1;
end
disp(sprintf('sd lineas', count)):

d| I'ILI

4]-‘|equal:ion2.m| while1l.m | elsel.m continuel.m |
Ready

b Ix

=
O W0~ & Wk =

e
R ==

Figure 7-22,

229

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

Running the M-file we get:
»> breaki

%FFT Discrete Fourier transform.

% FFT(X) is the discrete Fourier transform (DFT) of vector X. For
% matrices, the FFT operation is applied to each column. For N-D

% arrays, the FFT operation operates on the first non-singleton

% dimension.

%
% FFT(X,N) is the N-point FFT, padded with zeros if X has less
% than N points and truncated if it has more.

%
% FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
% dimension DIM.

%
% For length N input vector x, the DFT is a length N vector X,
% with elements

>

>

e

e

e

>

>

>

e

e

e

>

>

% N

% X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
% n=1

% The inverse DFT (computed by IFFT) is given by

% N

% x(n) = (2/N) sum X(k)*exp(j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
% k=1

%

Q

% See also IFFT, FFT2, IFFT2, FFTSHIFT.

7.14 TRY ... CATCH

The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the
cause of the error. The general syntax of the command is as follows:

try,
instruction

ey
instruction
catch,

instruction

ceey
instruction

end

7.15 RETURN

The return statement terminates the current script and returns the control to the invoked function or the keyboard.
The following is an example (Figure 7-23) that computes the determinant of a non-empty matrix. If the array is empty
it returns the value 1.

230

Fle Edit View Text Debug Breskpoints Web Window Help

DR & B> AH 8 i £ xd
1|= function d = detl{d) =
2| - if isemprty(A)
3= d=1;
4= return _
5| - else
B - det(A)
= end :J

d [

[b |equat.ion2.m while1m | elsel.m deti.m

Ready

Figure 7-23.

Running the function for a non-empty array we get:

>»» A=[-1, -1, 1; 1,0,1; 1,1,1]

A=
-1 -1 -1
1 0 1
1-1-1
»» det1 (A)
ans =
2

Now we apply the function to an empty array:
»» B =[]
B =

(]
»> det1 (B)
ans =

7.16 Subfunctions

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

M-file-defined functions can contain code for more than one function. The main function in an M-file is called a
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary
function may be added which are only visible for the primary function or another subfunction within the same M-file.
Each subfunction begins with its own function definition. An example is shown in Figure 7-24.

231

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

Fle Edit View Text Debug Breakponts Web Window Help

Dl & Bo o | 8B EE B | stasc [F x|
1 function [avg,med] = newstats(u) % nary =
2 % NEWSTATS Calculates the nean and me 12l functions
3 n = length(u);
4 avyg = mean(u,n):
5 med = median(u,n):
]
7 function a = mean(v,n) $Subfunction
8 %Calculaces the mean
9 & = sun(v)/n;
10
11 function n = nedxnn[y,n}
12 $Calculates the median
13 w = s0rt(v);
14 if rem(n,2) == 1
15 m o= wi(n+l)/2):
16 else
17| B = (W(n/2)4w(n/2+1))/2;
18 end
19
20 =
B I T I+
«|» |equacion2.m| whilet.m | elset.m | dett.m untitieds
Ready
Figure 7-24.

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and n
as the second argument. When executing the main function, it is enough to provide as input a list of values for which
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.

»> [mean, median] = newstats ([10,20,3,4,5,6])

mean =

median =

5.5000

7.17 Commands in M-files

MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are the
following:

echo on View on-screen commands of an M-file script while it is running.

echo off Hides on-screen commands of an M-file script (this is the default setting).
pause Interrupts the execution of an M-file until the user presses a key to continue.
pause(n) Interrupts the execution of an M-file for n seconds.

(continued)

232

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

pause off Disables pause and pause (n).

pause on Enables pause and pause (n).

keyboard Interrupts the execution of an M-file and passes the control to the keyboard so that the user can
perform other tasks. The execution of the M-file can be resumed by typing the return command
into the Command Window and pressing Enter.

return Resumes execution of an M-file after an outage.

break Prematurely exits a loop.

CLC Clears the Command Window.

Home Hides the cursor.

more on Enables paging of the MATLAB Command Window output.

more off Disables paging of the MATLAB Command Window output.

more(N) Sets page size to N lines.

menu Offers a choice between various types of menu for user input.

7.18 Functions relating to Arrays of Cells

An array is a well-ordered collection of individual items. It is simply a list of elements, each of which is associated
with a positive integer called its index, which represents the position of that element in the list. It is essential that each
element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make
changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions, and
correspondingly they have one or more sets of indices that identify their elements. The most important commands
and functions that enable MATLAB to work with arrays of cells are the following:

c = cell(n)

¢ = cell(m,n)

¢ =cell([m n])

¢ = cell(m,n,p,...)
c=cell(mnp..])
¢ = cell(size(A))

D = cellfun('f",C)

D = cellfun('size’,C,k)

D = cellfun('isclass’,C,class)
C=cellstr(S)

S = cell2struct(C,fields,dim)

celldisp (C)
celldisp(C, name)

Creates an nxn array whose cells are empty arrays.

Creates an mxn array whose cells are empty arrays.

Creates an mxn array whose cells are empty arrays.

Creates an mxnxpx... array of empty arrays.

Creates an mxnxpx... array of empty arrays.

Creates an array of empty arrays of the same size as A.

Applies the function f (isempty, islogical, isreal, length, ndims, or prodofsize) to
each element of the array C.

Returns the size of each element of dimension k in C.

Returns true for each element of C corresponding to class.
Places each row of the character array S into separate cells of C.

Converts the array C to a structure array S incorporating field names fields’
and the dimension ‘dim’ of C.

Displays the contents of the array C.

Assigns the contents of the array C to the variable name.

(continued)

233

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

cellplot(C) Shows a graphical representation of the array C.

cellplot(C,'legend") Shows a graphical representation of the array C and incorporates a legend.
C = num2cell(A) Converts a numeric array A to the cell array C

C = num2cell(A,dims) Converts a numeric array A to a cell array C placing the given dimensions in

separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.

»> A = ones(2,2)

A =
1 1
1 1

»» ¢ = cell(size(A))

[] []
[]
We then define and present a 2 x 3 array of cells element by element, and apply various functions to the cells.

» C{1.1} = [1 25 4 5];
C{1,2} = 'Name';

C{1)3} = Pl,
{2,1} = 2 + 4i;
{2,2} = 7;

{2,3} = magic(3);
» C

C =

[2x2 double] 'Name' [3.1416]
[2.0000+ 4.0000i] [7] [3x3 double]

»> D = cellfun('isreal’,C)

D =
1 1 1
0 1 1

234

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

»> len = cellfun('length’,C)

len =
2 4 1
1 1 3

»» isdbl = cellfun('isclass',C, 'double')
isdbl =

101
111

The contents of the cells in the array C defined above are revealed using the command celldisp.
»> celldisp(C)

{1,1} =

1 2
5

{2,1} =

2.0000 + 4.00001
{1,2} =

Name

C {2,2} =

7

C {1,3} =

3.1416

C {2,3} =

&~ w o
O U
N N O

The following displays a graphical representation of the array C (Figure 7-25).

»> cellplot(C)

235

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

<) Figure No. 1 Q@g

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

Figure 7-25.

7.19 Functions of Multidimensional Arrays

The following group of functions is used by MATLAB to work with multidimensional arrays:

C = cat(dim,A,B) Concatenates arrays A and B according to the dimension dim.

C = cat(dim,A1,A2,A3,A4...) Concatenates arrays Al, A2,... according to the dimension dim.

B = flipdim (A, dim) Flips the array A along the specified dimension dim.

[L,J] = ind2sub(siz,IND) Returns the matrices I and] containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix of
size siz.

[11,12,13,...,In] = ind2sub(siz,IND) Returns matrices 11, 12,...,In containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix of
size siz.

A = ipermute(B,order) Inverts the dimensions of the multidimensional array D according to the

values of the vector order.

[X1, X2, X3,...] = ndgrid(x1,x2,x3,...) Transforms the domain specified by vectors x1, X2,... into the arrays X1,
X2,... which can be used for evaluation of functions of several variables
and interpolation.

[X1,X2,...] = ndgrid (x) Equivalent to ndgrid(x,x,x,...).

(continued)

236

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

n = ndims(A) Returns the number of dimensions in the array A.

B = permute(A,order) Swaps the dimensions of the array A specified by the vector order.

B =reshape(A,m,n) Defines an mxn matrix B whose elements are the columns of a.

B =reshape(A,m,n,p,...) Defines an array B whose elements are those of the array A restructured
according to the dimensions mxnxpx...

B =reshape(A,[mn p...]) Equivalent to B = reshape(A,m,n,p,...)

B = reshape(A,siz) Defines an array B whose elements are those of the array A restructured
according to the dimensions of the vector siz.

B = shiftdim(X,n) Shifts the dimensions of the array X by n, creating a new array B.

[B,nshifts] = shiftdim(X) Defines an array B with the same number of elements as X but with
leading singleton dimensions removed.

B=squeeze(A) Creates an array B with the same number of elements as A but with all
singleton dimensions removed.

IND = sub2ind(siz,1,J) Gives the linear index equivalent to the row and column indices I and] for
a matrix of size siz.

IND = sub2ind(siz,I1,12,...,In) Gives the linear index equivalent to the n indices 11, I2,..., in a matrix of
size siz.

As a first example we concatenate a magic square and Pascal matrix of order 3.

v
v
=
1]

magic (3); B = pascal (3);

»» C = cat (4, A, B)

C(:J:}111) =

B~ W oo
o v
NN O

C(:J:)llz)

R R R
w N R
o w R

The following example flips the Rosser matrix.

237

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

»> R=rosser
R =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44
-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23

-8 -71 61 8 411 -599 208 208
-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911

29 -44 52 -23 208 208 -911 99

»> flipdim(R,1)
ans =
ans =

29 -44 52 -23 208 208 -911 99
-49 -8 8 59 208 208 99 -911
-52 -43 49 44 -599 411 208 208

-8 -71 61 8 411 -599 208 208
407 -192 196 611 8 44 59 -23

-192 113 899 196 61 49 8 52
196 899 113 -192 =71 -43 -8 -44
611 196 -192 407 -8 -52 -49 29

Now we define an array by concatenation and permute and inverse permute its elements.
»» a = cat(3,eye(2),2%eye(2),3%*eye(2))
a(:,:,1) =

10
01

a(z,:,2)
20
02

a(:,:,3)
30
03
»> B = permute(a,[3 2 1])

B(:,:,1) =

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

B(:,:,2) =

01

02

03

»» C = ipermute(B,[3 2 1])

C(:,:,1) =

€(:,:,3)

o w
w O

2
—x%

The following example evaluates the function f(x,,x,)=x,e " in the square [-2, 2] x [-2, 2] and displays it

graphically (Figure 7-26).

» [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z=X1. * exp(-X1.%2-X2."2);
mesh (Z)

) Figure No. 1
Fie Edt View Jset Took Window Heb
D& A2/ 200

Figure 7-26.

239

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

In the following example we resize a 3 x 4 random matrix to a 2 x 6 matrix.

»> A = rand(3,4)

A =

0.9501 0.4860 0.4565 0.4447
0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919

»> B = reshape(A,2,6)

0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
0.2311 0.4860 0.7621 0.0185 0.4447 0.7919

7.20 Numerical Analysis Methods in MATLAB

MATLAB programming techniques allow you to implement a wide range of numerical algorithms. It is possible to
design programs which perform numerical integration and differentiation, solve differential equations, optimize
non-linear functions, etc. However, MATLAB’s Basic module already has a number of tailor-made functions which
implement some of these algorithms. These functions are set out in the following subsections. In the next chapter we
will give some examples showing how these functions can be used in practice.

7.21 Zeros of Functions and Optimization

The commands (functions) that enables MATLAB’s Basic module to optimize functions and find the zeros of functions

are as follows:

x = fminbnd(fun,x1,x2)

x = fminbnd(fun,x1,x2,0ptions)

x = fminbnd(fun,x1,x2,0ptions,P1,P2,...)

[x, fval] = fminbnd (...)
[x, fval, f] = fminbnd (...)

[x,fval,f,output] = fminbnd(...)

Minimizes the function on the interval (x1 x2).

Minimizes the function on the interval (x1 x2) according to the
option given by optimset (...). This last command is explained later.

Specifies additional parameters P1, P2,... to pass to the target
function fun(x,P1,P2,...).

Returns the value of the objective function at x.

In addition, returns an indicator of convergence f (f > 0 indicates
convergence to the solution, f< 0 indicates no convergence and
f=0indicates the algorithm exceeded the maximum number of
iterations).

Provides further information (output.algorithm gives the
algorithm used, output. funcCount gives the number of evaluations
of fun and output. iterations gives the number of iterations).

240

(continued)

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

x = fminsearch(fun,x0) Returns the minimum of a scalar function of several variables,
x = fminsearch(fun,x0,options) starting at an initial estimate x0. The argument x0 can be an
interval [a, b]. To find the minimum of fun in [a, b], x = fminsearch

x = fminsearch(fun,x0,options,P1,P2,...) (fun, [a, b)) is used

[x,fval] = fminsearch(...)
[x,fval,f] = fminsearch(...)
[x,fval,f,output] = fminsearch(...)

x = fzero(fun,x0) Finds zeros of the function fun, with initial estimate x0, by finding a
x = fzero(fun,x0,options) point where fun changes sign. The argument x0 can be an interval
[a, b]. Then, to find a zero of fun in [a, b], we use x = fzero (fun,

x = fzero(fun,x0,0ptions,P1,P2,...) [a, b]), where fun has opposite signs at a and b.

[x, fval] = fzero (...)
[x, fval, exitflag] = fzero (...)
[x,fval,exitflag,output] = fzero(...)

options = optimset('p1’,vl1,'p2',v2,...) Creates optimization parameters p1, p2,... with values v1, v2...
The possible parameters are Display (with possible values 'off',
'iter’,'final’,'notify’) to respectively not display the output,
display the output of each iteration, display only the final output,
and display a message if there is no convergence); MaxFunEvals,
whose value is an integer indicating the maximum number of
evaluations; MaxIter whose value is an integer indicating the
maximum number of iterations; TolFun, whose value is an integer
indicating the tolerance in the value of the function, and TolX,
whose value is an integer indicating the tolerance in the value of x.

val = optimget (options, 'param") Returns the value of the parameter specified in the optimization
options structure.

g = inline (expr) Transforms the string expr into a function.

g = inline(expr,argl,arg2, ...) Transforms the string expr into a function with given input
arguments.

g = inline (expr, n) Transforms the string expr into a function with n input arguments.

f = @function Enables the function to be evaluated.

As a first example we find the value of x that minimizes the function cos(x) in the interval (3,4).
»» x = fminbnd(@cos,3,4)

X =

3.1416
We could also have used the following syntax:
»> x = fminbnd(inline('cos(x)'),3,4)

X =
3.1416

241

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

In the following example we find the above minimum to 8 decimal places and find the value of x that minimizes
the cosine in the given interval, presenting information relating to all iterations of the process.

»» [x,fval,f] = fminbnd(@cos,3,4,optimset('TolX',1e-8,... 'Display’,'iter'));
Func-count X f(x) Procedure
1 3.38197 -0.971249 initial

2 3.61803 -0.888633 golden

3 3.23607 -0.995541 golden

4 3.13571 -0.999983 parabolic
5 3.1413 -1 parabolic
6 3.14159 -1 parabolic
7 3.14159 -1 parabolic
8 3.14159 -1 parabolic
9 3.14159 -1 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008

In the following example, taking (- 1, 2; 1) as initial values, we find the minimum and target value of the following
function of two variables:

2

f(x):IOO(xz—xﬂ)2+(I—xJ
»> [x,fval] = fminsearch(inline('100*(x(2)-x(1)"2)"2+...
(((2-x (2)) ~ 2°), [- 1.2, 1])
X =
1.0000 1.0000
fval =
8. 1777e-010

The following example computes a zero of the sine function with an initial estimate of 3, and a zero of the cosine
function between 1 and 2.

»> x = fzero(@sin,3)
X =
3.1416

»> x = fzero(@cos,[1 2])

1.5708

242

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

7.22 Numerical Integration

MATLAB contains functions that allow you to perform numerical integration using Simpson’s method and Lobatto’s
method. The syntax of these functions is as follows:

q = quad(f,a,b) Finds the integral of f between a and b by Simpson’s method with an error
of 10°°.

q = quad(f,a,b,tol) Find the integral of f between a and b by Simpson’s method with the
tolerance tol instead of 10°.

q = quad(f,a,b,tol,trace) Find the integral of f between a and b by Simpson’s method with the
tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol, trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fent] = quadl(f,a,b,...) Additionally returns the number of evaluations of f.

q = quadi(f,a,b) Finds the integral of f between a and b by Lobatto’s quadrature method
with a 10° error.

q = quadi(f,a,b,tol) Finds the integral of f between a and b by Lobatto’s quadrature method
with the tolerance tol instead of 10°°.

q = quadl(f,a,b,tol, trace) Finds the integral of f between a and b by Lobatto’s quadrature method
with the tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol, trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fent] = quadl(f,a,b,...) Additionally returns the number of evaluations of f.

q = dblquad (f, xmin, xmax, Evaluates the double integral f(x,y) in the rectangle specified by the given

ymin, ymax) parameters, with an error of 10°. dblquad will be removed in future
releases and replaced by integral2.

q = dblquad (f, xmin, xmax, Evaluates the double integral f(x,y) in the rectangle specified by the given

ymin,ymax,tol) parameters, with tolerance tol.

q = dblquad (f, xmin, xmax, Evaluates the double integral f{x,y) in the rectangle specified by the given

ymin,ymax,tol,@quadl) parameters, with tolerance tol and using the quadl method.

q = dblquad (f, xmin, xmax, Passes additional arguments p1, p2,... to the function f.

ymin,ymax,tol,method,p1,p2,...)

As a first example, we calculate ~:[x3—;x—5dx using Simpson’s method.
»» F = inline('1./(x."3-2*x-5)");
»» 0 = quad(F,0,2)
0=
-0.4605

243

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

Then we observe that the integral remains unchanged even if we increase the tolerance to 10°.
»» 0 = quad(F,0,2,1.0e-18)
Q=

-0.4605

In the following example we evaluate the same integral using Lobatto’s method.
»> 0 = quadl(F,o0,2)
0=
-0.4605

We evaluate the double integral T]{-(ysin(x)+xcos(y))dydx .

)

»> 0 = dblquad (inline (' y * sin (x) + x * cos (y)'), pi, 2 * pi, 0, pi)
0=

-9.8696

7.23 Numerical Differentiation

The derivative f'(x) of a function f(x) can simply be defined as the rate of change of f(x) with respect to x. The
derivative can be expressed as a ratio between the change in f(x), denoted by df(x), and the change in x, denoted by
dx. The derivative of a function fat the point x, can be estimated by using the expression:

J(x)-f(x)

Xp =X

I'(x)=

provided the values x,, x, , are close to each other. Similarly the second derivative f"(x) of the function f{x) can be
estimated as the first derivative of f/(x), i.e.:

):f'(xk)_f’(xk—l)

X =X

I (%

MATLAB includes in its Basic module the function diff, which allows you to approximate derivatives. The syntax
is as follows:

Y = diff(X) Calculates the differences between adjacent elements in the vector X:[X(2) - X(1), X(3) - X (2),...,
X(n) - X(n-1)]. If X is an mxn matrix, diff (X) returns the array of differences by rows: [X(2:m,:)-
X(1:m-1,:)]

Y = diff(X,n) Finds differences of order n, for example: diff(X,2) = diff (diff (X)).

244

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

As an example we consider the function f{x) = x°>-3x*-11x°+27x*+10x-24, find the difference vector of [-4,-3.9,-3.8,
..,4.8,4.9,5] the difference vector of [f(-4),/(-3.9),(-3.8),...,14.8),f(4.9),/(5)] and the elementwise quotient of the latter
by the former, and graph the function in the interval [-4,5]. See Figure 7-27.

» X =-4:0.1: 5
> f = X 5-3*Ne 4-11%X. "3 + 27*X."2 + 10*X-24;
»> df=diff(f)./diff(x)

df =

1.0e+003 *

Columns 1 through 7

1.2390

1.0967

Columns 8 through 14

0.4560
Columns 15
0.0683
Columns 22
-0.0682
Columns 29
-0.0687
Columns 36
-0.0197
Columns 43
0.0212
Columns 50
0.0253
Columns 57
-0.0076
Columns 64

-0.0485

0.3801
through

0.0364
through
-0.0743
through
-0.0631
through
-0.0124
through

0.0244
through

0.0225
through
-0.0140
through

-0.0521

21

28

49

56

63

0.

9655

.3118

.0093

.0779

.0567

.0054

.0267

.0189

.0205

.0544

.8446

.2505

.0136

.0794

.0497

.0012

.0281

.0147

.0269

.0553

.7338

.1960

.0324

.0789

.0424

.0072

.0287

.0098

.0330

.0546

.6324

.1477

.0476

.0769

.0349

.0126

.0284

.0044

.0388

.0520

.5400

.1053

.0594

.0734

.0272

.0173

.0273

.0014

.0441

.0472

245

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

Columns 71 through 77
-0.0400 -0.0300 -0.0170 -0.0007 0.0193 0.0432 0.0716
Columns 78 through 84
0.1046 0.1427 0.1863 0.2357 0.2914 0.3538 0.4233
Columns 85 through 90
0.5004 0.5855 0.67910.7816 0.8936 1.0156

» plot (x, f)

) Figure No. 1 L@@

Ele Edit View [nsert Jools Window Help

DS N A A 200

Figure 7-27.

7.24 Approximate Solutions of Differential Equations

MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

7.25 Ordinary Differential Equations with Initial Values

An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the
independent variable ¢. A first order ordinary differential equation with an initial value for the independent variable
can be represented as:

y'=f(ty)
y(to) =Yo

The previous problem can be generalized to the case where yis a vector, y = (y,, ¥,....,)-

246

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

MATLAB'’s Basic module commands relating to ordinary differential equations and differential algebraic
equations with initial values are presented in the following table:

Command Class of problem solving, numerical method and syntax

oded5 Ordinary differential equations by the Runge-Kutta method

ode23 Ordinary differential equations by the Runge-Kutta method

odell3 Ordinary differential equations by Adams’ method

odel5s Differential algebraic equations and ordinary differential equations using NDFs (BDFs)
ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the trapezoidal rule
ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:

T, y] = solver(odefun,tspan,y0)

T, y] = solver(odefun,tspan,yo,options)

T, y] = solver(odefun,tspan,y0,options,p1,p2...)
T, y, TE, YE, IE] = solver(odefun,tspan,y0,options)

In the above, solver can be any of the commands ode45, ode23, odel13, odel5s, ode23s, ode23t, or ode23tb.

The argument odefun evaluates the right-hand side of the differential equation or system written in the form
vy =f(t y) or M(t, y)y =f(¢, y), where M(¢, y) is called a mass matrix. The command ode23s can only solve equations
with constant mass matrix. The commands odel5s and ode23t can solve algebraic differential equations and systems
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the
range of integration [z, tf] (tspan=[t, tl,...,tf], which must be either an increasing or decreasing list, is used to obtain
solutions for specific values of). The argument y, specifies a vector of initial conditions. The arguments p1, p2,... are
optional parameters that are passed to odefun. The argument options specifies additional integration options using
the command options odeset which can be found in the program manual. The vectors T and Y present the numerical
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential
equations:

y'I:y2y3 J/1(0):0
VY2==0Ys yZ(O):l
y’3:70.51y1yz yd(o):1

For this, we define a function named systemI in an M-file, which will store the equations of the system. The
function begins by defining a column vector with three rows which are subsequently assigned components that make
up the syntax of the three equations (Figure 7-28).

247

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

%) C:\MATLAB6p 1\workinewstats.m" [:I@@
Window

Eile Edit ‘iew Text Debug Breakpoints Web

Help

D@38 & B~ AaH R o x
1 function dy = systeml (t,y g
2|- dy = zeros(3,1): $column vector
3| =| dyil) = yv(2) * ¥(3);
4-| ay(2) = -y(l) * v(3): -
5|- dy(3) = -0.51 * y(l) * y(2):
? =
1 14 | ja|

4 i DI equation2] whilel.m] elsel.m] detl.m newstats|

Ready

Figure 7-28.

We then solve the system by typing the following in the Command Window:

» [T, Y] = ode45(@system1,[0 12],[0 1 1])

T =
0

0.0001

0.0001

0.0002

0.0002

0.0005

11.6136

11.7424

11.8712

12.0000

Y =

0 1.0000 1.0000
0.0001 1.0000 1.0000
0.0001 1.0000 1.0000
0.0002 1.0000 1.0000
0.0002 1.0000 1.0000
0.0005 1.0000 1.0000
0.0007 1.0000 1.0000
0.0010 1.0000 1.0000
0.0012 1.0000 1.0000
0.0025 1.0000 1.0000
0.0037 1.0000 1.0000
0.0050 1.0000 1.0000
0.0062 1.0000 1.0000
0.0125 0.9999 1.0000
0.0188 0.9998 0.9999

248

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

0.0251 0.9997 0.9998
.0313 0.9995 0.9997
.0627 0.9980 0.9990

o o

.8594 -0.5105
.7257 -0.6876
.5228 -0.8524
.2695 -0.9631
-0.0118 -0.9990
-0.2936 -0.9540
-0.4098 -0.9102
-0.5169 -0.8539
-0.6135 -0.7874
-0.6987 -0.7128

.7894
.8552
.9281
.9815
.9992
.9763
9548
.9279
.8974
.8650

O O O O -

0
0
0
0
0
0
0
0
0
0

To better interpret the results, the above numerical solution can be graphed (Figure 7-29) by using the following
command:

»> plot (T, Y(:,1), '-', T, ¥(:,2),"'-", T, ¥(:,3),". ')

) Figure No. 1
Fie Edit View Jnsert Toos Window Heb
DS hA2/s 20D

08 /
/

06

. / NN \]

‘e

0 2 4 5 8 w2

Figure 7-29.

7.26 Ordinary Differential Equations with Boundary Conditions

MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions
specify a relationship that must hold between the values of the solution function at the end points of the interval on
which it is defined. The simplest problem of this type is the system of equations

y'=f(xy)

249

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

where x is the independent variable, y is the dependent variable and y’is the derivative with respect to x (i.e., y'= dy/dx).
In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g(y(a),y(b))=0
More generally this type of differential equation can be expressed as follows:

y'=f(xy,P)

g(y(a),y(b),P): 0
where the vector p consists of parameters which have to be determined simultaneously with the solution via the
boundary conditions.

The command that solves these problems is bup4c, whose syntax is as follows:

Sol = bvp4c (odefun, bcfun, solinit)

Sol = bvp4c (odefun, bcfun, solinit, options)
Sol = bvpac(odefun,bcfun,solinit,options,p1,p2...)

In the syntax above odefun is a function that evaluates f(x, y). It may take one of the following forms:
dydx = odefun(x,y)

dydx = odefun(x,y,p1,p2,...)
dydx = odefun (x, y, parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

The argument bcfun in Bup4c is a function that computes the residual in the boundary conditions. Its form is
as follows:

Res = bcfun (ya, yb)

Res = bcfun(ya,yb,p1,p2,...)

Res = bcfun (ya, yb, parameters)

Res = bcfun(ya,yb,parameters,p1,p2,...)

The argument solinit is a structure containing an initial guess of the solution. It has the following fields: x (which
gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)and b
=solinit.x(end)) and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant guess
for the i-th component of the solution at all the mesh points given by x). The structure solinit is created using the
command bvpinit. The syntax is solinit = bvpinit(x,y).

As an example we solve the second order differential equation:

y'+ ‘ y‘ =0

whose solutions must satisfy the boundary conditions:

This is equivalent to the following problem (where y, =y and y,=y"):
W=V,
V2 '=- ‘yl‘
250

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solutionisy =1
and y, = 0. These assumptions are included in the following syntax:

»» solinit = bupinit (linspace (0,4,5), [1 0]);

The M-files depicted in Figures 7-30 and 7-31 show how to enter the equation and its boundary conditions.

File Edit View Text Debug Breakpoints Web Window
Help
DB & tBRo o @AHr B8 0 x|
1 function dydx = twoode(x,¥) =
A= dyde = [y(2)
3= -abs(y(l))]:
4
2 L
B -
1| | LH
4| > [_whilet.m | elset.m | dett.m twoode.m
Ready
Figure 7-30.

File Edit View Text Debug EBreakpoints ‘Web Window

Help

DB & Bo o ApH BR|E x|
l function res = twobc(ya,yb) -~
2= res = [ya(l)
3| - vyb(l) + 2]:
4 —l
5
B

y | o]
| » [Cwhiet.m | eiset.m | dettm twobem |

Ready

Figure 7-31.

The following syntax is used to find the solution of the equation:

»> Sun = bup4c (@twoode, @twobc, solinit);

The solution can be graphed (Figure 7-32) using the command bvpval as follows:

»> y = bvpval (Sun, linspace (0,4));
» plot (x, y(1,:));

251

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

[} 0.5 1 15 2 25 3 as 4

Figure 7-32.

7.27 Partial Differential Equations

MATLAB'’s Basic module has features that enable you to solve partial differential equations and systems of partial
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe,
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:

Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block,
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun
defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x,, X,,...,x,] and
(¢, t,...,2] that specify the points at which a numerical solution is requested (n, f23), options specifies some calculation
options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify relative
tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are parameters to
pass to the functions pdefun, icfun and bcfun.

pdepe solves partial differential equations of the form:

(6uj ou ., 0(, (Ou] (6u)
c| x,t,u,— | — =x"—| x" f| x,t,u,— | |+ s| x,t,u,—
ox) ot ox ox 0x

where a<x<b and ¢ <i<t. Moreover, for ¢ = and for all x the solution components meet the initial conditions:

u(x,t,) =u,(x)

and for all tand each x = a or x = b, the solution components satisfy the boundary conditions of the form:

ou
rt; + ;t ytr T :0
p(x,t,u)+q(x)f[x uaxj
252

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

In addition, we have thata = xmesh (1), b = xmesh (end), tspan (1) = ¢ andtspan (end) = t.Moreover
pdefun finds the terms ¢, fand s of the partial differential equation, so that:

[c, f, s] = pdefun (x, t, u, dudx)

Similiarly icfun evaluates the initial conditions
u = icfun (x)

Finally, bcfun evaluates the terms p and g of the boundary conditions:
[pl, q1, pr, qr] = bcfun (x1, ul, xr, ur, t)

As a first example we solve the following partial differential equation (xe[0,1] and £0):
,o0u 0 (auj
P
ot ox\ox
satisfying the initial condition:
u(x,0) =sinzx

and the boundary conditions:

u(0,t)=0

o Oou
—(L,¢)=0

e +8x()

We begin by defining functions in M-files as shown in Figures 7-33 to 7-35.

4} C:\AMATLAB6p 1\work\pdexipde. m Q@@

Fle Edit View Text Debug Breakpoints Web Window
Help
DEeE& &+~ 2Rw > dH axn & x|
1 function [c,£,s5] = pdexlpde (x,t,u,DubDx) =
2|-| ¢ = pi*2;
3 - £f = Dubx:
4-| s = 0;
5
I >
Ready
Figure 7-33.

253

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

3) C:\MATLAB6p 1\work\pdex1ic.m Q@B}

Fle Edit View Text Debug Breakpoints Web Window
Help
DEeE&E @+~ 2B > AH a8 & x|
1 function ul = pdexlic(x) =
2|=| w0 = sin(pi®*x):
3
4
J o
Ready
Figure 7-34.

%) C:\MATLAB6p 1\work\pdex1bc.m ’;‘@@

File Edit Wiew Text Debug Breakpoints Web Window Help
DEE& :2@v «|[@AH ARG D x
1 function [pl,ql,pr,qr] = pdexlbe(xl,ul,xr,ur,t) =~
2-| pl =ul:
3-| gl = 0;
4| - pr = pi ¥ exp(-t):
5=| qr=1:
8 | |
7 =
«| [~
Ready
Figure 7-35.

Once the support functions have been defined, we define the function that solves the equation (see the M-file in
Figure 7-36).

254

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

¥) C:\AMATLAB6p1\work\pdex1.m
Fle Edt View Text Debug Breakpoints Web Window Help

DEE&|) BRoc | AfH| 8| ED0E BRI sx|
1 function pdexl -
2
3-| m=0;

4 % = linspace(0,1,20);

5 t = linspace(0,2,5):

B

71-| sol = pdepein,@pdexlpde,Bpdexlic,Bpdexlbe,x,t);

8 $Extracts the first component of the solution as u
9]-] u = sol:,:,1):

10
1 $The solution is represented graphically as a surface
12(-| figure(l)
13|-| surf(x,c,u)
14| - cicle('Numerical solution with 20 grid points.')

15|-| xlabel('Distance x')
16|-| ylabel('Time t')

17
18 gProfile of the solution
19|-| Eigure(2)

20|-| plot(x,u(end,:))

21|-| ticle ("Solution in t=2'") -
22|-| xlabel ('Distance x')

23|=| wylabel({'u(x,2)")

24 El
<| I'

Ready

Figure 7-36.
To view the solution (Figures 7-37 and 7-38), we enter the following into the MATLAB Command Window:

»> pdexi

He Eot Yew juat Todk Wrdow Heb
DEES A2y OO
Numerical solution with 20 grid points

Distance x

Figure 7-37.

255

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

B (3t Yew st Jook YWrdow |Help
DFEIS A2/, PALD

Solution at t=2|
014

012 / ™~

0 01 02 03 04 05 06 07 08 09 1
Distance x

Figure 7-38.

As a second example we solve the following system of partial differential equations (x€[0,1] and £20):

ou, o’u,
= =00247 4 —F(u,~u,)
ou, o’u,
= 01702 —F(u,~u,)

F(y)=exp(5.73y)—exp(-11.46y)

satisfying the initial conditions:

u, (x,0)=1
u,(x,0)=0

and the boundary conditions:

ou,
—(0,t)=0
= (0)
u,(0,t)=0
u, (1,1)=1

ou,
—=(1,7)=0
&)

To conveniently use the function pdepe, the system can be written as:
1, ofm]_o 0.024(0u, /ox) | |-F(u,—u,)
o — = — +
1] ot|u,| 0x|0.170(u,/ox)| | F(u,—u,)

256

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

The left boundary condition can be written as:

o o[s]famteur o]

and the right boundary condition can be written as:

Mo o

We start by defining the functions in M-files as shown in Figures 7-39 to 7-41.

) C:\MATLABG6p 1\work\pdex4p... D@@

Fle Edit View Text Debug Breakpoints Web
Window Help
DESES&S ' “Bv - #AH BEX
1 function [c,£,s] = pdexdpde(x,t,u,Dubx]) a
28l c = [1; 1]1;
3= £ = [0.024; 0.17] .* DuDx;
4= v = uil) - u(2);
4 [— F = exp(5.73%y)-exp(-11.47%y);
Bl - s = [-F:; F]: -
«| | >
Ready
Figure 7-39.

Fle Edit vVview Text Debug Breakpoints Web Window Help
DEES| @0 AH| AR 20X
1 function [pl,ql,pr,qr] = pdexdbe(xl,ul,xr,ur,t) ~|
2= pl = [0;ul(2)]:
3= ol = [1: 0]:
4-| pr = [ur(l)-1l; 0]:
5(-| qr = [0; 1]
| [
Ready
Figure 7-40.

257

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

%) C:\MATLAB6p 1\work\pdex4ic. m [:]@[E

File Edit View Text Debug Breskpoints Web Window

Help

DEE&| y2@d0 | ihn| R Ex|
1 function uld = pdexdic(x); =
2|=| wd = [1: 0]:

4| | >
Ready
Figure 7-41.

Once the support functions are defined, the function that solves the system of equations is given by the M-file
shown in Figure 7-42.

%) C:\MATLAB6p 1\work\pdex4.m
Fle Edit View Text Debug Breskpoints Web Window Help

DERB& @ "B~ | dAH | 88| LD B sedx|
1 function pdexd4 =
2 m=0;

3 ¥ = [0 0,005 0.01 0,05 0.1 0.2 0,50.7 0,9 0,95 0.99 0,995 1]:
4| - t = [0 0.005 0.01 0.05 0.1 0.51 1.5 2]:
5
B|—| sol = pdepein,@pdexdpde,Bpdexdic,Bpdexdbe,x,t):
7= wul = sol(:,:,1):
8|-| uz = sol(:,:,2):
9
10|= ficqure
11)= surf (x,t,ul)
12|=| title('ulix,t}")
13|—| xlabel{'Distance x')
14|—| vylabel{'Tinme t')
15
16|— figqure
17|=| surfix,t,u)
18|—| title{'uz(x,c)")
19|-| xlabel{'Distancia x')
20|=| wlabel('Tiempo t')
21
d| D
Ready
Figure 7-42.

To view the solution (Figures 7-43 and 7-44), we enter the following in the MATLAB Command Window:

>> pdex4

258

<) Figure No. 3
File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

Distance x

Figure 7-43.

<) Figure No. 4
File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

Tiempo t 0o

Distancia x

L OX

Figure 7-44.

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

259

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

EXERCISE 7-1

Minimize the function x3-2x-5 in the interval (0,2) and calculate the value that the function takes at that point,
displaying information about all iterations of the optimization process.

»» f = inline('x."3-2*x-5");
»> [x,fval] = fminbnd(f, 0, 2,optimset('Display’,'iter'))

Func-count X f(x) Procedure
1 0.763932 -6.08204 initial

2 1.23607 -5.58359 golden

3 0.472136 -5.83903 golden

4 0.786475 -6.08648 parabolic

5 0.823917 -6.08853 parabolic

6 0.8167 -6.08866 parabolic

7 0.81645 -6.08866 parabolic

8 0.816497 -6.08866 parabolic

9 0.81653 -6.08866 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

X =
0.8165

fval =
-6.0887

EXERCISE 7-2

Find in a neighborhood of x = 1.3 a zero of the function:

F) et

—6-
(x-0.3)"+0.01 (x-0.9)"+0.04

Minimize this function on the interval (0,2).

First we find a zero of the function using the initial estimate of x= 1.3, presenting information about the iterations
and checking that the result is indeed a zero.

»» [x,feval]=fzero(inline('1/((x-0.3)"2+0.01)+...
1/((x-0.9)"2+0.04)-6"),1.3,0optimset('Display’, 'iter'))

Func-count X f(x) Procedure
1 1.3 -0.00990099 initial
2 1.26323 0.882416 search

Looking for a zero in the interval [1.2632, 1.3]

260

3
4
5
6

1.

1.

29959

29955

-0.00093168
1.29955 1.23235e-007
1.29955 -1.37597e-011

0

interpolation
interpolation
interpolation
interpolation

Zero found in the interval: [1.2632, 1.3].

X

1.2995

feval =

0

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

Secondly, we minimize the function specified in the interval [0,2] and also present information about the iterative
process, terminating the process when the value of x which minimizes the function is found. In addition, the value

of the function at this point is calculated.

»> [x,feval]=fminbnd(inline('1/((x-0.3)*2+0.01)+...

1/((x-0.9)"2+0.04)-6"'),0,2,optimset('Display’, 'iter'))

Func-count

[y
o

NNRPRRRRRBRRRPR
P O W - A WN R

N
N

Optimization terminated successfully:

1

O oo~NOYUVT B W N

[e)}

PR PR RPRRPRRPRPRRRPRRPRRPRRPRPRPRRPRRPRRRRLRRLRRLRO

X

.763932
.23607
.52786
.8472
.81067
.90557
.94164
.96393
97771
.98622
99148
.99474
.99675
-99799
.99876
.99923
<99953
.99971
99982
99989
<99993
.99996

f(x)

5296

.66682
.03807
.51698
.41339
.66225
.74143
.78683
.81365
.82978
.83958
.84557
.84925
.85152
.85292
.85378
.85431
.85464
.85484
.85497
.85505
.85511

Procedure
initial
golden
golden
parabolic
parabolic
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

261

CHAPTER 7 PROGRAMMING AND NUMERICAL ANALYSIS

2.0000

feval =

-4.8551

EXERCISE 7-3

The intermediate value theorem says that if f is a continuous function on the interval [a, b] and L is a number
between f(a) and f(b), then there is a ¢ (a < ¢ < b) such that f(c) = L. For the function f(x) = cos(x-1), find the value
¢ in the interval [1, 2.5] such that f(c)= 0.8.

The question asks us to solve the equation cos(x - 1) - 0.8 = 0 in the interval [1, 2.5].
»» ¢ = fzero (inline ('cos (x-1) - 0.8'), [1 2.5])
C =

1.6435

EXERCISE 7-4

Calculate the following integral using both Simpson’s and Lobatto’s methods:
J‘]G(2+sin(2\/3_c)dx-)

For the solution using Simpson’s method we have:

»> quad(inline('2+sin(2*sqrt(x))’),1,6)

ans =

8.1835

For the solution using Lobatto’s method we have:
»> quadl(inline('2+sin(2*sqrt(x))'),1,6)
ans =

8.1835

262

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

EXERCISE 7-5

Calculate the area under the normal curve (0,1) between the limits - 1.96 and 1.96.

The integral we need to calculate is i

dx

J"% 2
The calculation is done in MATLAB using Lobatto’s method as follows:
»> quadl(inline('exp(-x."2/2)/sqrt(2*pi)’', - 1.96,1.96)
ans =

0.9500

EXERCISE 7-6

Calculate the volume of the hemisphere-function defined in [-1,1]x[-1,1] by
f(x,y)=./l—(x2+y2).

»> dblquad(inline('sqrt(max(1-(x."2+y.*2),0))"),-1,1,-1,1)

ans =

2.0944
The calculation could also have been done in the following way:

»> dblquad(inline('sqrt(1-(x."2+y."2)).¥(x.*2+y."2¢=1)"),-1,1,-1,1)

ans =

2.0944

263

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

EXERCISE 7-7

Evaluate the following double integral:

1
.[:Lz (x+y)2 dXdy

»> dblquad(inline('1./(x+y).*2'),3,4,1,2)
ans =

0.0408

EXERCISE 7-8

Solve the following Van der Pol system of equations:
V=Y, y.(0)=0
y'2=1000(1—y21)y27y1 y2(0)=1

We begin by defining a function named vap700in an M-file, where we will store the equations of the system.
This function begins by defining a vector column with two empty rows which are subsequently assigned the
components which make up the equation (Figure 7-45).

% C:\MATLAB6p 1\workisistemat.m* [|[E1|X]

Fle Edit View Text Debug Breskpoints Web Window
Help
DzE & B AH 8RB 4 x|
1 function dy = vdpl0o00(t,y) -
2|-| dy = zeros(2,1); % Column vector
3=| d&yi{l) = vi2):
4/-| dy{2) = 1000%{1 - y(l)*2)*y{2) - y(1): =
5
: -
< | LJ
ﬂ: | while1.m I else1.mJ detl.m sistemal.m I
Ready
Figure 7-45.

We then solve the system and plot the solution y, = y,(f given by the first column (Figure 7-46) by typing the
following into the Command Window:

»» [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
»» plot (T, Y(:,1),"'-'

264

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

<) Figure No. 1
Fle Edit Vew Insert Took Window Help
DS KA2A/s 200

1::\' IR

0 500 1000 1500 2000 2500 3000

Figure 7-46.
Similarly we plot the solution y, = y,(#) (Figure 7-47) by using the syntax:

>> plot (T, Y(:,2),"'-")

<) Figure No. 1
Fle Edit Vew Insert Took Window Help
D& "A A/ 2RO

1500

0 500 1000 1500 2000 2500 3000

Figure 7-47.

265

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

EXERCISE 7-9

Given the following differential equation
y"+(A-2qcos(2x))y=0

subject to the boundary conditions y(0) = 1, y'(0) = 0, y'(=) = 0, find a solution for ¢ = 5 and A = 15 based on
an initial solution defined on 10 equally spaced points in the interval [0, =] and graph the first component of the
solution on 100 equally spaced points in the interval [0, 7t].

The given equation is equivalent to the following system of first order differential equations:
y’l =Y,
¥, =—(A-2qcos2x)y,

with the following boundary conditions:

7,(0)-1=0
¥,(0)=0

The system of equations is introduced in the M-file shown in Figure 7-48, the boundary conditions are given in
the M-file shown in Figure 7-49, and the M-file in Figure 7-50 sets up the initial solution.

%) C:\MATLABG6p1\workimatdode. m =]

File Edit View Text Debug Breakpoints Web Window Help

DEE& @ @B~ AH 88 46l x
1 function dydx = matdode(x,v,lanbda) Al
-] gq=5:
3-| dydx = [y(2) | |
4| - -(lambda - 2*g*cos(2%*x))*y(l) J:
: =

«| | i
Ready
Figure 7-48.

266

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

5] C:\MATLABG6p1\workimatdbc. m EOX

File Edit View Text Debug Breakpoints Web Window Help
DEE& » 2B #AH | Q8| E6G[x|
1 function res = matdbe(ya,vb, lambhda) =
2|=| res = [vwyai2)
3| - ybi2) —_
4| - ya(l)-1];
5 -
i[»
Ready
Figure 7-49.

%) C:\MATLAB6p 1\workimat4init.m g@@

File Edit View Text Debug Breakpoints Web Window Help
DSBS sdoc|An|R|a 0 x
1 function yinit = matdinitix) -~
2=| wyinit = [cos{4*x)
3| - -4%zin(4*x)]: —
4
5 -
«| »
Ready
Figure 7-50.

The initial solution for A = 15 and 10 equally spaced points in [0, r] is calculated using the following MATLAB
syntax:

»> lambda = 15;
solinit = bupinit (linspace(0,pi,10), @mat4init, lambda);

The numerical solution of the system is calculated using the following syntax:
»> sol = bvp4c(@matqode,@matqbc,solinit);

To graph the first component on 100 equally spaced points in the interval [0, =] we use the following syntax:

»» xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([o pi-1 1.1])

xlabel ('x')

ylabel('solution y')

The result is shown in Figure 7-51.

267

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

<) Figure No. 4 Q@g

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

solucion y
o o o o
o i (8] [} L8]

o
m
T

=

o
(=
o
-
-
n
L]
(]
i
)

Figure 7-51.

EXERCISE 7-10

Solve the following differential equation
y"+(1—y2)y'+y:0
in the interval [0,20], taking as initial solution y = 2, y' = 0. Solve the more general equation
y'+u(1=y*)y'+y=0 u>0-
The general equation above is equivalent to the following system of first-order linear equations:

Vi=Y.
y’2::u<1_y12)y2_y1

which is defined for m = 1 in the M-file shown in Figure 7-52.

268

File Edit View Text Debug Breakpoints

web Window Help

DR & ¢ H 88 B
1 function dydt -
g' dydt = [y(2): (1-y(l)*2)*v(2)-¥(1)]>
4
5 v

4| »
Ready
Figure 7-52.

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

Taking the initial solution y, = 2 and y, = 0 in the interval [0,20], we can solve the system using the following
MATLAB syntax:

» [t, yl

t =

.0000
.0001
.0001
.0001
.0002
.0004
.0005
.0006
.0012

O OO O O0OO0OO0OO0OOoOOo

19.9559
19.9780
20.0000

y:

.0000 O
.0000 -
.0000 -
.0000 -
.0000 -
.0000 -

N NDNNNNDN

1.8729 1.
.9358 0.
1.9787 0.

[N

= ode45(@vdp1,[o0 20],[2; o])

0.0001
0.0001
0.0002
0.0002
0.0005

0366
7357
4746

269

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404

We can graph the solutions using the following syntax (see Figure 7-53):

» plot (t, y(:,1),'-", t, y(:,2),"'-")
»> xlabel ('time t')

»> ylabel('solution y')

»> legend ('y_1', 'y 2')

<) Figure No. 4 Q@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

solucion y

0 2 4 B 8 10 12 14 16 18 20
tiempo t

Figure 7-53.

To solve the general system with the parameter m, we define the system in the M-file shown in Figure 7-54.

270

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

File Edit View Text Debug Breakpoints Web Window Help

DEE& &+ 2o o @H 88 & 5|
1 function dydt = wdp2i{t,y,mu) -
g‘ dydt = [¥(2); ma*({l-y(1)*2)*y(2)-¥(1)];
2 -
5 -

4| >
Ready
Figure 7-54.

Now we can graph the first solution y, = 2 and y,= 0 corresponding to m = 1000 in the interval [0,1500] using
the following syntax (see Figure 7-55):

»» [t, y] = ode1ss(@vdp2,[0 1500],[2; 0],[],1000);
»> xlabel ('time t')
»> ylabel ('solution y_1')

<) Figure No. 1 D@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

solucion 7]

tiempo t

Figure 7-55.

271

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

To graph the first solution y, = 2 and y, = 0 for another value of the parameter, for example m= 100, in the
interval [0,1500], we use the following syntax (see Figure 7-56):

»» [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
» plot (t, y(:,1),'-");

<) Figure No. 1 Q@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

25

2
A

25 L 1
]

Figure 7-56.

EXERCISE 7-11

The Fibonacci sequence {an} is defined by the recurrence law a, = 1,a,=1,a

sequence by a recursive function and calculate a,, a, and a,.

=a_, + a_. Represent this

n+1

To generate terms of the Fibonacci sequence we define a recursive function in the M-file fibo.m shown in
Figure 7-57.

272

%) C:\MATLAB6p 1\work\fibo.m

- OX

File Edit View Text Debug Breakpoints Webh Window

Help

ez & B>~ AH S8 x|
1 function y=fibo(x) A
2|-| if x<=1
3= v=1:
4| - else y=feval('fibo',x-1)+fewval{'£fibo’',x-2); -
5|-| end
6 e

Ready

Figure 7-57.

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

Terms 2, 5 and 20 of the sequence are now calculated using the syntax:

> [fibo(2), fibo(5), fibo(20)]

ans

2 8 10946

EXERCISE 7-12

Define the Kronecker delta, which equals 1 if x = 0 and 0 otherwise. Define the modified Kronecker delta function,
whichis0if x =0, 1 if x> 0 and -1 if x <0 and graph it. Lastly, define the piecewise function that is equal to 0 if x
<-3,x%if -3 <x <-2, X2 if -2<x<2, x if 2<x<3 and 0 if 3<x, and graph it.

The Kronecker delta delfa(x) is defined in the M-file delta.m shown in Figure 7-58. The modified Kronecker delta
deltal(x) is defined in the M-file delta1.m shown in Figure 7-59. To define the third function piece1(x) of the

exercise, we create the M-file piece1.m shown in Figure 7-60.

273

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

5) C:\MATLAB6p1\... Q@@

Fle Edit View Text Debug
Breakpoints Webh Window Help

D Dﬂ E é | ’:. 1_“ E K) (4 X

1 function y=delta(x) -
2= if x==0
3= v=1;
4 -| else y=0;
5= end
6 v
4 b
Ready
Figure 7-58.

Fle Edit View Text Debug
Breakpoints Webh Window Help

DEE&| & =@ v o X

1 function y=deltal (x) -
2= if x==0

3= v=0;

4/ -1 elseif x>0 v=1:

5(—| elseif x<0 y=-1;

6|-| end 2t

<| S
Ready
Figure 7-59.

274

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

%) C:\MATLAB6p1\... I:]@”Zl

File Edt View Text Debug
Breskpoints Webh Window Help
el & e o x|
1 function y=piecel (X)
2|- if x<=-3
3= ¥=0;
4| - elself -3<x & x<-2
5= yex*3;
6| - elseif -2<=x & X<=2
7|- y=x*2;
8|- elseif 2<x & x<3
a| - y=x 1
10|- elseif x>=3
11|=- y=0:
12|- end |
4] >
Ready
Figure 7-60.

To graphically represent the modified Kronecker delta on the domain [-10, 10] (and with codomain [-2, 2]) we
use the following syntax (see Figure 7-61):

»> fplot ('delta1 (x)', [- 10 10 - 2-2])
»» title 'Modified Kronecker Delta'

) Figure No. 1

Blo Edt Vww [reert Jook Window Help
DEES R A2/ PPD
Modified Kronecker delta
15} J
I N
05} .
0- -
05} .
A .
A54 4
% 8 6 4 2 0 2 4 & @& 1o

Figure 7-61.

275

CHAPTER 7~ PROGRAMMING AND NUMERICAL ANALYSIS

To graphically represent the piecewise function on the interval [- 5,5] we use the following syntax (see
Figure 7-62):

»> fplot ('piece (x)', [- 5 51);
»> title 'Piecewise function'

) Figure No. 1

Fle Edt View [mert Took Window Hep
DEE&E X" A2/ PPD
: Piecewise function

+—

0

Figure 7-62.

EXERCISE 7-13

Define a function descriptive(v) which returns the variance and coefficient of variation of the elements of a given
vector v. As an application, find the variance and coefficient of variation of the set of numbers 1, 5,6, 7 and 9.

Figure 7-63 shows the M-file which defines the function descriptive.

276

CHAPTER 7 = PROGRAMMING AND NUMERICAL ANALYSIS

%) C:\MATLABG6p 1\work\descript... D@@

Fle Edit View Text Debug Breakpoints Web

Window Help

DESR& » 8w - | &H| B8 X
1 function [variance, cv] = descriptive(v) <
2|= [m,n]=size(v):
3 - if m==1
4| - n=n;
5/-| end
6|—| mean =sum(v)/m;
7|=| variance=sum(v.*2)/m- mean.*2: j |
8|=| cv=sqrtivariance),;mean:
g -

d| I’l—|
Ready
Figure 7-63.

To find the variance and coefficient of variation of the given set of numbers, we use the following syntax:
»» [variance, cv] = descriptive([1 5 6 7 9])
variance =
7.0400
Ccv =

0.4738

277

CHAPTER 8

Numerical Algorithms: Equations,
Derivatives, Integrals and Differential
Equations

8.1 Solving Non-Linear Equations

MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which
play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are
stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or
functions that accept arguments and produces output. The M-files are created using the text editor.

8.1.1 The Fixed Point Method for Solving x = g(x)

The fixed point method solves the equation x = g(x), under certain conditions on the function g, using an iterative
method that begins with an initial value p, (a first approximation to the solution) and defines p, , = g(p,). The fixed
point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation
x = g(x). In practice the iterative process will stop when the absolute or relative error corresponding to two
consecutive iterations is less than a preset value (folerance). The smaller this value, the better the approximation to
the solution of the equation.

This simple iterative method can be implemented using the M-file shown in Figure 8-1.

As an example we solve the following non-linear equation:

279

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Fle Edt View Text Debug Breskponts Web Window Help

DR & Bo AN QR|ED I DL s 3 X
function ([k,p,absoluteerror,P)] = fixedpoint (g,p0,tolerance,maximumiterations)
P(1)= p0:

for k=2:maximumiterations

P(k)=feval(g,P(k-1)):

absoluteerror=abs (P (k)-P(k-1));

relativeerror=absoluteerror/ (abs(P(k))+eps):

p=P(k):

if (absoluteerror<tolerance) | (relativeerror<tolerance),break;end
end

if k == maximumiterations
disp ('maximum number of iterations exceeded')
end

B=P';
4| » | _Untitled3 [fixedpoint.m g91.m | gim fixedpoint.m|
Ready

Figure 8-1.

x—-2""=0.
In order to apply the fixed point algorithm we write the equation in the form x = g(x) as follows:
x-2"=g(x).

We will start by finding an approximate solution which will be the first term p,. To plot the x axis and the curve
defined by the given equation on the same graph we use the following syntax (see Figure 8-2):

» fplot ('[x-2°(-x), 0]',[0, 1])

280

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

- ~
B Figure 1 @M
Eile Edit View |[nsert Tools Desktop Window Help ¥

DEde | RRRODLL- 2 0B ad

0.5

051 1

e

- L L L 1 " L " L L

o 01 02 03 04 05 06 07 08 09 1

L >

Figure 8-2.

The graph shows that one solution is close to x = 0.6. We can take this value as the initial value. We choose p, = 0.6.
If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have defined
the function g(x) in the M-file g1.m (see Figure 8-3).

Fle Edt View Text Debug Breakpoints Web Window Hebp
Deld & B AH | OB x
1 | function g=gl (X) -
2- g=2"(-x);
3 —
: fixedpointm [gl?mx] e |
Figure 8-3.

We can now solve the equation using the MATLAB syntax:
>> [k, p] = fixedpoint('g1',0.6,0.0001,1000)
k =

10

0.6412

281

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

We obtain the solution x = 0.6412 at the 1000th iteration. To check if the solution is approximately correct, we
must verify that g1(0.6412) is close to 0.6412.

>> g1 (0.6412)
ans =
0.6412

Thus we observe that the solution is acceptable.

8.1.2 Newton’s Method for Solving the Equation f(x) = 0

Newton’s method (also called the Newton-Raphson method) for solving the equation f{x) = 0, under certain
conditions on f, uses the iteration

X, =%, —f(x,)/ f(x,)

for an initial value x, close to a solution.
The M-file in Figure 8-4 shows a program which solves equations by Newton’s method to a given precision.

%) C:\MATLAB6p1iworkinewton.m Q@g|

Fle Edit View Text Debug Breakpoints Web Window Help
Dﬁﬂﬁ glﬂ 4 “.f’ aﬁ C E AIB"_"- Sud(:I_LI
1 function [res, it]=newton(func,dfunc,x,precis) -
2 3x0 is the initial value, precis is the required accuracy
3 $func is the is its
4|=| dit=0; x0=x:
5|=| d=feval (func,x0)/feval (dfunc,x0):
B6|-| while abs(d)>precis
7l- x1=x0-d;
8- it=iv+l;
al= ®0=x1;
10|- d=feval (func,x0) /feval (dfunc,x0) ;
11|=| end:
12|=| res=x0: 1
13
by o
4|] 3
4| » [_Untiied3 | fixedpointm | gatm | gim _ newtonm
Ready

Figure 8-4.
As an example we solve the following equation by Newton’s method:
x* —x—sin(x+0.15)=0.

The function f(x) is defined in the M-file f1.m (see Figure 8-5), and its derivative f'(x) is given in the M-file derfl.m
(see Figure 8-6).

282

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

5} C:AMATLAB6p1\workifi.m El@‘

File Edit View Text Debug Breakpoints Web Window Help
DEE& +2Roa AH | R ED3Ex
1 function £=£1(x): =
2|-| f=x*2-x-sin(x+0.15);
3
al Dl
4| » [untiteds | puntotjo.m | o81m sm [newtonm |
Ready
Figure 8-5.

5} C:\MATLAB6p1\work\fi.m

Fle Edit View Text Debug Breakpoints Web Window Help
DESE& L roc AH| BB 2DEY

il function f=£1(x): -
2|- £=x*2-x-3in(x+0.15):
3

| [
4| » [_untitied3 | fixedpointm | gatm f1m [newtonm |
Ready

Figure 8-6.

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax,
starting with an initial estimate of 1.5:

» [X,it]=neﬂton('f1','derfl',:l..s,o.OOOl)
X =
1.6101

it =

283

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

»» [x,it]=newton('f1','derf1',1.5,0.000001)
X =

1.6100
it =
3

Thus we have obtained the solution x = 1.61 in just 2 iterations for a precision of 0.0001 and in just 3 iterations for
a precision of 0.000001.

8.1.3 Schroder’s Method for Solving the Equation f(x)=0

Schrider's method, which is similar to Newton’s method, solves the equation f(x) = 0, under certain conditions on
/, via the iteration

X0 =X, —mf(X,)/ f(X,)

for an initial value x, close to a solution, and where m is the order of multiplicity of the solution being sought.
The M-file shown in Figure 8-7 gives the function that solves equations by Schréder's method to a given precision.

¥) C:\MATLAB6p1\work\derf1.m Q@]@

Fle Edt View Text Debug Breskponts Web Window Help
DR & © o AH aa x|
1 function dsdexrfl(x): -
2|- d=2%x-1-cos(x+0.15);
3 I
d Pl
4| » | sucesiontm | Untiied3 | fixedpointm | ga1m | dfim | newt
Ready
Figure 8-7.

8.2 Systems of Non-Linear Equations

As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear
equations using classical iterative numerical methods.
Among a diverse collection of existing methods we will consider the Seidel and Newton-Raphson methods.

8.2.1 The Seidel Method

The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single
equations.
In the case of a system of two equations x = g,(x,y) and y = g,(x,y) the terms of the iteration are defined as:

P, =8(pyq)andq,,=g,p,q,).

284

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Similarly, in the case of a system of three equations x=g,(x,y,2),

y=g,(xy,2) and z = g,(x,y,z) the terms of the iteration are defined as:

p+=&Puder) 4,:+=8,(Pyq,r,) andr+ =g (p.q,r).

The M-file shown in Figure 8-8 gives a function which solves systems of equations using Seidel’s method up to a
specified accuracy.

¥, C:\MATLABG6p 1\work\seidel. m*
File Edit View Text Debug Breakpoints Web Window Help

DRl & B o A 88 EMmETIRE Stadc | x|
1 functien [P,it]= seidel (G,P, tolerance, maximumiterations) -
;‘; %G i= the non-linear to be created in the M-file
4 %P i= the init
g %it is the number of i
7= N=length(P):
8
g| - for k=1 :maximumiterations
10| = XK=P;
11
12|=- for j=Ll:N
13|= A=teval('G"',X):
14| - XK(3)=A(2):
15| - end
16 absoluteerror=abs (noxrm(X-P)) ;
:; = relativeerror=absoluteerror/ (norm(X)+eps);
19| - B=X;
20| - iter=k; :
21| - it (absoluteerror<delta) | (relativeerror<delta)
22| - break
23| - end
24| - end =
B i |
J L]
4| » | ornm | schroderm | B03m | 305.m seidelm
Ready
Figure 8-8.

8.2.2 The Newton-Raphson Method

The Newton-Raphson method for solving systems of equations is a generalization of Newton’s method for single
equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations F(X) = 0 is obtained
by generating from an initial approximation P, a sequence of approximations P, which converges to the solution.
Figure 8-9 shows the M-file containing the function which solves systems of equations using the Newton-Raphson
method up to a specified degree of accuracy.

285

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

F
) C:\MATLAB6p1\work\raphson.m = |D|g‘
Fle Edt View Text Debug Ereskpoints Web Wndow Help
DR & B AH| QB EDE IDE | sus| 3| x|
1 function (P, it,abscluteerror]= raphsen(F,JF, P, delta,epsilon, maximumiteraticns) 4|
i %F is the system defined in the M-file F.m
4
5 %P is an ir the sclution
6 %2delta is the ¢ E
; tepsilon is the tolerance for F(P)
q $maximumiterations is the maximum number of iterations
10 %ic ia the r er of iterations
11|-| Y=feval(F,P):
12
13|-| for k=l:maximumiteracions
14]- J=teval (JF,P):
15|= Q=P=-(I\Y') '
16— I=feval(F,Q):
17| - absoluteerror=norm(Q-P);
18| - relativesrrors absoluteerror/ (norm(Q)+eps) ;
19|- P=0;
20|- Y=2;
21- itsk;
22|- if (abscluseerzor<delta) | (zelativeezzoz<delta)| (abs(Y)<epsilon)
23| - break
24| - end
25|=| end |
26
27
28 l:l
il |»
1|)[seidel.m | G.m] g.m phson.m
Ready
Figure 8-9.

As an example we solve the following system of equations by the Newton-Raphson method:

x*-2x-y=-0.5
X’ +4y*-4=0
taking as an initial approximation to the solution P = [2 3].

We start by defining the system F(X) = 0 and its Jacobian matrix JF according to the M-files Em and JEm shown in
Figures 8-10 and 8-11.

286

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) C:\MATLAB6p1\work\F. m D@@

File Edit View Text Debug Breakpoints Web Window Help

DeB& +»2=rmo o AH a8 37 x|

function Z=F(X) =
= | =x=X{l): v=X(2):

= Z=zeros(l,2):

Z(1l)=x*2-2%x-y+0.5;

-| Z{2)=x*2+4*y*2-4;

D B Wk =
I

J [
<] » [m0sm | seidetm | 6m | am | raphsonm Fm]_
Ready

Figure 8-10.

5] C:\MATLAB6p1\work\JF.m D@@

File Edit View Text Debug Breskpoints Web Window Help

DE@&| P 2moo H B8 441

1 function W=JF(X)

2= x=X{l): v=X(2):

3 -| w=[2*x-2 -1:2%x 8%y]:
4

%

dl i
4| » [m0sm | seisetm | 6m | gm | raphsonm grm ||
Ready

Figure 8-11.

Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following
MATLAB syntax:

»» [P,it,absoluteerror]=raphson('F','JF',[2 3],0.00001,0.00001,100)

©
n

1.9007 0.3112

it =

287

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

absoluteerror =
8. 8751e-006

The solution obtained in 6 iterations is x = 1.9007, y = 0.3112, with an absolute error of 8.8751e-006.

8.3 Interpolation Methods

There are many different methods available to find an interpolating polynomial that fits a given set of points in the
best possible way.

Among the most common methods of interpolation, we have Lagrange polynomial interpolation, Newton
polynomial interpolation and Chebyshev approximation.

8.3.1 Lagrange Polynomial Interpolation

The Lagrange interpolating polynomial which passes through the N+1 points (x, y,), k=0,1,..., N, is defined as follows:

P(x)= iykl’l\',k(x)

where:

[16-x)

Ly, (x)= {vzk

H(xij)

Jjzk

The algorithm for obtaining P and L is easily implemented by the M-file shown in Figure 8-12.

288

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) C:\MATLAB6p1\work\lagran.m* E|@@

Fle Edt View Text Debug Breskpoints ‘Web Window Help
DB & B> AH OB 40T RDE sux[EE x|

function [C,L])=lagrange(X,Y)
X is the vector of abscissas
%Y is the vecor of ordinates

%C is the vector of coefficients of the interpolating polynomial

L is the coefficient matrix of the polynomial

=| w=length(X):;

-
OO~ Wk =
o
"

=| nsw-l;
=| L=zeros(w,w);
1
12(=| for k=l:n+l
13- V=1;
14| - for i=l:n+l
15(= if ke=3
16| - V=conv (V,poly (X(3)))/ (X(k)-X(3)):
17| - end
18- end
19| - L(k,:)=V;
20(-| end
2
22(-| Cc=Y*L; il
23
24 =
T L
4| » | B03m | 1305m | seidelm | 6m | gm | raphsonm | JEm | Fm jagrannm
Ready

Figure 8-12.

As an example we find the Lagrange interpolating polynomial that passes through the points (2,3), (4,5), (6,5),
(7,6), (8,8), (9,7).
We will simply use the following MATLAB syntax:

»> [F, L] = lagrange([2 4 6 7 8 9],[3 55 6 8 7])
C =

-0.0185 0.4857 -4.8125 22.2143 -46.6690 38.8000

L =

-0.0006 0.0202 -0.2708 1.7798 -5.7286 7.2000
0.0042 -0.1333 1.6458 -9.6667 26.3500 -25.2000
-0.0208 0.6250 -7.1458 38.3750 -94.8333 84.0000
0.0333 -0.9667 10.6667 -55.3333 132.8000 -115.2000

-0.0208 0.5833 -6.2292 31.4167 -73.7500 63.0000
0.0048 -0.1286 1.3333 -6.5714 15.1619 -12.8000

289

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

We can obtain the symbolic form of the polynomial whose coefficients are given by the vector C by using the
following MATLAB command:

»> pretty(poly2sym(C))

31 5 1093731338075689 4 77 3 311 2 19601

8.3.2 Newton Polynomial Interpolation

The Newton interpolating polynomial that passes through the N+1 points (x, y,) = (x,, f{x,)), k=0,1,..., N, is defined
as follows:

P(x)=dy,+d,,(x—x))+d,,(x—x)(x —x)+ +dy y(x—x)(x—x) - (x—xy,)
where:

d .. .—d
=y d ;= k';l_d
 ~ %

k-1,j-1

Obtaining the coefficients C of the interpolating polynomial and the divided difference table D is easily done via
the M-file shown in Figure 8-13.

%) C:\AMATLAB6p1\work\pnewton.m

Fle Edit View Text Debug Breakpoints Web Window Help
DB & Bo | AH 88| D i | Stacc | x|

function [C,D)=pnewton(X,¥)

%X contains the abscissas of the i

%Y contains

%D contains

- n=length(X)
= D=zeros(n.,n):
=| D(:,1)=¥';

L i i s
COO-NONMEWN=00O0~NIOLEWN=

= Dik,3)=(D(k,)=1)=-D(k=1,3-1)) /(X(k)=X(k=-J+1)):
= end
= end
=| C=Din,n):
- for k=(n-1j):-1:1
21| = C=conv(C,poly(X(k))):
22| - n=length(C);
23| - Cim)=C(m)+D(k,k);
24| - end
25
26 —
d| [
(] > [seldel.m G.m Q.m raphson.m JF.m [F.m | lagrange.m pnewton.m
Ready

Figure 8-13.

290

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

As an example we apply Newton’s method to the same interpolation problem solved by the Lagrange method in
the previous section. We will use the following MATLAB syntax:

»> [C, D] = pnewton([2 4 6 7 8 9],[3 55 6 8 7])
C =
-0.0185 0.4857 - 4.8125 22.2143 - 46.6690 38.8000

D =

3.0000 0 0 0 0 0
5.0000 1.0000 0] 0 0] 0
5.0000 0 - 0.2500 0 0 0
6.0000 1.0000 0.3333 0.1167 0 0
8.0000 2.0000 0.5000 0.0417 - 0.0125 0
7.0000 - 1.0000 - 1.5000 - 0.6667 - 0.1417 - 0.0185

The interpolating polynomial in symbolic form is calculated as follows:

»> pretty(poly2sym(C))

31 517 4 77 3 311 2 19601
R D G D G G T G X + 194/5
1680 35 16 14 420

Observe that the results obtained by both interpolation methods are similar.

8.4 Numerical Derivation Methods

There are various different techniques available for numerical derivation. These are of great importance when
developing algorithms to solve problems involving ordinary or partial differential equations.

Among the most common methods for numerical derivation are derivation using limits, derivation using
extrapolation and derivation using interpolation on N-1 nodes.

8.4.1 Numerical Derivation via Limits
This method consists in building a sequence of numerical approximations to f (x) via the generated sequence:

F(x+10"h)- f(x—10"h)

Fe~D, = 2(10 °h)

The iterations continue until |D, -D [>|D -D, |or|D -D, |< tolerance. This approach approximates f(x) by D,.
The algorithm to obtain the derivative D is easily implemented by the M-file shown in Figure 8-14.

291

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Y. C:\AMATLAB6p 1\work\derivadalim.m*

Fle Edit View Text Debug Breskpoints ‘Web Window Help
DR&| ® - 4H | BB E D E IR stk 4| x|
; function [L,nl=derivedlim (£,%,tolerance) =
3
4
5
B c b
7
8
9= maximumiterations =15:
10| - h=1:
11]= H{l)=h;
12] = D{l)=(feval (£,x+h)-feval{£,x-h))/({2%h);
13|-| E{1l)=0:
14|-| Ril)=0:
15
16(-| for n=l1:2
17]= h=h/10;
18| - H(n+l)=h:
19| - D(n+l)=(feval (£,x+h)-feval(f,x=h))}/{2%h);
20| - E(n+l)=abs(D{n+l)-Din));
21| - R(n+l)=2%E (n+l) * (abs (D (n+l))+abs (D (n))+eps) ;
22| = end
23
24| - n=2;
25
26| - while([E(n)>E(n+l))& (R(n)>tolerance))en< maximumiterations
27| = h=h/10:
28| = H(n+2)=h:
29| - D(n+2)=(feval (£,x+h)-feval (£,x-h}))/(2*h):
30| - E(n+2)=abs(D(n+2)-Din+l)):
|- R({n+2)=2*E (n+2) * (abs (D (n+2)) +abs (D (n+1))+eps) :
32(- n=n+l;
33|-| end
34
35| - n=length(D)=1;
36|-=| L=[(H' D' E']: —
37
-
1 |»|—I
1[>| g.m [raphson.m | JF.m | F.m [lagrange.m pnewton.m {erivadalirm.m
Ready

Figure 8-14.

As an example, we approximate the derivative of the function:

f(x):sin(cos(ijj

at the point 1— 5 .
2
To begin we define the function fin an M-file named funcion (see Figure 8-15). (Note: we use funcion rather than
function here since the latter is a protected term in MATLAB.)

292

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

File Edt View Text Debug Breakpoints Web Window Help

DEFE& P 2R~ MH 88 4|
1 function f=funcioni(x): |
2|-| f£=sin{cosi{l./x)):

3

J

[
lagrange.m | pnewton.m | derivadalim.m funcion.m

4|
Ready
Figure 8-15.

The derivative is then given by the following MATLAB command:

» [L, n] = derivedlim ('funcion', (1-sqrt (5)) / 2,0.01)

L =

1.0000 - 0.7448 0
0.1000 - 2.6045 1.8598
0.0100 - 2.6122 0.0077
0.0010 - 2.6122 0.0000
0.0001 - 2.6122 0.0000
n =

4

Thus we see that the approximate derivative is - 2.6122, which can be checked as follows:
»> f = diff ('sin (cos (x))')
f =
cos (cos (x)) * sin (x) / x ~ 2
»» subs (f, (1-sqrt (5)) /7 2).
ans =

-2.6122

293

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

8.4.2 Richardson’s Extrapolation Method

This method involves building numerical approximations to f(x) via the construction of a table of values D(j, k) with
k£j that yield a final solution to the derivative f (x) = D(n, n). The values D(j, k) form a lower triangular matrix, the first
column of which is defined as:

)= f(x+27R)- f(x-2"h)

D(]’l 27j+1h

and the remaining elements are defined by:

D(j k)= D(j k-1)+ 2 AN DU L)

i (2<k<j)

The corresponding algorithm for D is implemented by the M-file shown in Figure 8-16.

%) C:\MATLABG6p1\workrichardson.m N =]7q
File Edt Wew Text Debug Breaskpoints Web Window Help
DezE & B AH | R DD E R sex -] x|
1 function [D,abso‘luteerror,re'Iat'i\.reerror_.n]-:icha:dsoﬂ(t,x,delta,:o'larance } =
2
3
4
5
6|
71-| absoluteerrorsl;
8- relativeerror=1;
9-| hel;
100-| 3=1:
11|=| D(l,l)=(feval(f,x+h)-feval (£f,x-h))/(2%h):
12
13|=| while relativeerror > tolerance & absoluteerror > delta &j <12
14| - h=h/2;
15| - D(j+1,1)=(feval (E,x+h)-feval (£,x-h))/(2%h) :
16| - for k=1:3
17]- D3+l k+1) =D (3+L,k}+(D(3+1,k)-D(3,k)) /({4°k)-1):
18| - end
19| - absoluteerror=abs(D{j+1,3+1)-D(3,3)):
20| - relativeerrors2*absoluteerror/{abs(D{j+L,j+l))+abs(D(3,))+eps);
|- j=3+1;
22|-| end
23
24| - [n,n]=size(D): =
25
26 hd
d| I
4| b| pnewton.m | derivadalimm | funcionm ichardson.m
Ready

Figure 8-16.
As an example, we approximate the derivative of the function:

f(x)= sin(cos(ljj
X

at the point 1- 5 .
2

294

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

As the M-file that defines the function fhas already been defined in the previous section, we can find the

approximate derivative using the MATLAB syntax:

»> [D, relativeerror, absoluteerror, n] = richaxdson ('funcion', (1-sqrt(5))/2,0.001,0.001)

D =
-0.7448 0 0 0 0 0
-1.1335 - 1.2631 0 0 0 0
-2.3716 - 2.7843 - 2.8857 0 0 0
-2.5947 - 2.6691 - 2.6614 - 2.6578 0 0
-2.6107 - 2.6160 - 2.6125 - 2.6117 - 2.6115 0
-2.6120 - 2.6124 - 2.6122 - 2.6122 - 2.6122 - 2.6122

relativeerror =

6. 9003e-004
absoluteerror =
2. 6419e-004
n =
6

Thus we get the same result as before when we used the limit method.

8.4.3 Derivation Using Interpolation (n + 1 Nodes)

This method consists in building the Newton interpolating polynomial of degree N:
P(x) =a, +al(x_xo)+az(x_xo)(x_x1)+" '+azv(x_x0)(x_x1)' "(x_xN—1)

and numerically approximating f(x,) by P'(x,).

The algorithm for the derivative D is easily implemented by the M-file shown in Figure 8-17.

295

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

5 C:\MATLAB6p 1\work\nodos.m

File Edit View Text Debug Breakpoints web Window Help
Dﬁﬂg I &‘n = “f’ aa - ¢ la’* Sladc:l "l x|

1 function [A,df]=nodes(X,Y) =

3

4 %, : mial

5

6 |

T|=| &=Y¥:

8|-| N=length(x):

9

10| - ftor 3=2:N

11| = for k=N:-1:)

12| - Afk)=(A(k)-A(k=1))/(X(K)-X(k=-3+1));

13| = end

14| - end

15

16]-| x0=X(1):

17|-| dE=A(2):

18|- prod=1;

19|~ | nl=length{A)-1:

20

21| - for k=2:nl

22 - prod=prod® (x0-X{k)):

23| = df=df+prod®A(k+l) :

24|-| end L

25 .

2 Ly]
4| » [9rm | Fm | lagrangem | pnewtonm | derivadalimm | funcion.m | richardson.m nodes.m [_
Ready

Figure 8-17.

As an example, we approximate the derivative of the function:

f(x)= sin(cos(lj]
X

at the point 1- 5 .
2

As the M-file that defines the function fhas already been constructed in the previous section, we can calculate the
approximate derivative using the MATLAB command:

»> [A, df] = nodes([2 46 7 8 9],[3 556 8 7])
A =

3.0000 1.0000 - 0.2500 0.1167 - 0.0125 - 0.0185

df =
-1.4952

296

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

8.5 Numerical Integration Methods

Given the difficulty of obtaining an exact primitive for most functions, numerical integration methods are especially
important. There are many different ways to numerically approximate definite integrals, among them the trapezium
method, Simpson’s method and Romberg’s method (all implemented in MATLAB’s Basic module).

8.5.1 The Trapezium Method

The trapezium method for numerical integration has two variants: the trapezoidal rule and the recursive

trapezoidal rule.

The trapezoidal rule approximates the definite integral of the function f{x) between a and b as follows:

I/ 7Gx = 2@+ F)+ Y. 5 s)

calculating f(x) at equidistant points x, = a+kh, k=0,1,..., Mwhere x=a and x,, = b.
The trapezoidal rule is implemented by the M-file shown in Figure 8-18.

%) D:imatlabR1 2\workitraprl.m*

CEX

File Edit View Text Debug Breakpoints Web Window Help
DB & mo o | 8B x|
1 function s= trapezoidalrule(f,a,b,N) -~
2
3|-| h=(b-a)/M;
4| - 3=0;
5
6| - for k=1:(M-1)
1= x=a+h*k;
8- s=s+feval (£,x);
9| - end
10
11| - s=h~*(feval (£,a)+feval (£,b)) /2+h*s;
12
13)
Rl e
Ready
Figure 8-18.

The recursive trapezoidal rule considers the points x,_= a+kh, k=0,1,..., M, where x, = a and x, = b, dividing the
interval [, b] into 2] = M subintervals of the same size h = (b-a)/2J. We then consider the following recursive formula:

T(O):g(f(aw(b))

(=

TU-1) <
2

+ hz Flx)

297

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

and the integral of the function f{x) between a and b can be calculated as:

[fde gzz(f(xk) +F(x)

using the trapezoidal rule as the number of sub-intervals [a, b] increases, taking at the J-th iteration a set of 2J+ 1
equally spaced points.
The recursive trapezoidal rule is implemented via the M-file shown in Figure 8-19.

%) D:umatlabR12\workirctrap.m™

File Edt View Text Debug Breskpoints Web Window Help
D@ & Boc AH QB E0G X
1 function T= recursivetrapezcidal (f,a,b,n) -
2
3-| H=1;
4|=| hs=b-a;
5|=| T=zeros(l,nt+l):
B|=| T(l)=h*(feval(f,a)+feval(f,b))/2;
7
8|=| for j=l:n
9| - H=27%M;
10|~ h=h/2:
1= s=0;
121= for k=1:M/2
13|- x=a+h*(2%k-1);
14|- g=3+feval (£,x):
15|- end
16| - T{3+1)=T{3)/2+h*s;
17|-| end -
18 =
< o
4 | 4 ’recursivetrapucidﬂ .m rctrap.m
Ready
Figure 8-19.

As an example, we calculate the following integral using 100 iterations of the recursive trapezoidal rule:

We start by defining the integrand by means of the M-file integrandl.m shown in Figure 8-20.

298

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) D:\matlabR12\workYintegrandod.m Q@@

File Edt Yiew Text Debug Breakpoints Web Window Help

DB & © o ¢ 8K x|
1 function F= integrandl (x): =]
2|-| F=1/(x*2+1/10):
3
4 =
5 ba

< | 2
:| » |recursivetrapezc dalm integrandl.m I
Ready
Figure 8-20.

We then calculate the requested integral as follows:
>> recursivetrapezoidal('integrand1',0,2,14)
ans =
Columns 1 through 4
10.24390243902439 6.03104212860310 4.65685845031979 4.47367657743630
Columns 5 through 8
4.47109102437123 4.47132194954670 4.47138003053334 4.47139455324593
Columns 9 through 12
4.47139818407829 4.47139909179602 4.47139931872606 4.47139937545860
Columns 13 through 15
4.47139938964175 4.47139939318754 4.47139939407398

This shows that after 14 iterations an accurate value for the integral is 4.47139939407398.
We calculate the same integral using the trapezoidal rule, using M = 14, using the following MATLAB command:

»» trapezoidalrule('integrand1’,0,2,14)

ans =

4.47100414648074

The result is now the less accurate 4.47100414648074.

299

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

8.5.2 Simpson’s Method

Simpson’s method for numerical integration is generally considered in two variants: the simple Simpson’s rule and
the composite Simpson's rule.

Simpson'’s simple approximation of the definite integral of the function f{x) between the points a and b is the
following:

a+b
2

I} =2 (f(@)+ 1)+ e e =

This can be implemented using the M-file shown in Figure 8-21.

%) D:imatlabR1 2\workisimpsonsimple.m QE]

File Edit View Text Debug Breakpoints Web Window Help

DB & R > AH | 8|34
1 function 2= simplesimpson (f,a,b, tolerance | -~
2
3|-| h=(b-a)/2:
4| - C=zeros(l,3):;
== C=feval (£,[a (a+b)/2 b]):
6| - S=h* (C(1)+4*C(2)+C(3))/3:
7|- 52=5;

8- tolerancel = tolerance ;
9| - absoluteerror=tolerance

10
11| - Z=[a b § 52 absoluteerror tolerancell’ -y
12
13 =

| | il

‘l 4 | compositesimpson.m simplesimpson.m |

Ready

Figure 8-21.

The composite Simpson's rule approximates the definite integral of the function f(x) between points @ and b as
follows:

I} 1= 0@ ron+ 2)+ Y fe)

calculating f(x) at equidistant points x, = a+kh, k=0, 1,..., 2,, where x= a and x,,, = b.

The composite Simpson's rule is implemented using the M-file shown in Figure 8-22.

300

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) D:\matlabR1 2\workisimpsoncompuesta.m

File Edit Yiew Text Debug Breakpoints Web Window Help
D& & Bo o AH| BB A x
1 function s=compositesimpson(f,a,b,M) -
2
3[-| h=(b-a)/(2%M);
4-| =1=0;
5|-| s2=0;
6
7|-| for k=1:M
8- x=a+h*(2*k-1);
9|- sl=sl+feval (f,x):
10|-| end
11|=| for k=1:(M-1)
12| = x=a+h*2%k;
13- s2=s2+feval (f,x):
14|—| end
15
16{—| s=h*(feval(f,a)+feval(f,b)+4%s1+2%32)/3;
17
18
< »
Figure 8-22.

As an example, we calculate the following integral by the composite Simpson's rule taking M = 14:

We use the following syntax:
>> compositesimpson('integrandi',0,2,14)
ans =

4.47139628125498

Next we calculate the same integral using the simple Simpson’s rule:
»» Z=simplesimpson('integrand2',0,2,0.0001)
7 =
Columns 1 through 4

0 2.00000000000000 4.62675535846268 4.62675535846268

301

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Columns 5 through 6
0.00010000000000 0.00010000000000

As we see, the simple Simpson’s rule is less accurate than the composite rule.
In this case, we have previously defined the integrand in the M-file named integrand2.m (see Figure 8-23).

%) D:\matlabR1 2\work\integrando2.m Q@

File Edit Yiew Text Debug Breakpoints Web Window Help
D8 & L © @ Hr 88 x|
1 function F=integrand2(x): =
2|=| F=l./(x.*2+1/10);
3 =
4 2
| J i

Figure 8-23.

8.6 Ordinary Differential Equations

Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different
methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include,
among others, Euler’s method, Heun’s method, the Taylor series method, the Runge-Kutta method (implemented in
MATLAB's Basic module), the Adams-Bashforth-Moulton method, Milne’s method and Hamming’s method.

8.6.1 Euler’s Method

Suppose we want to solve the differential equation y'=f(, y), y(a)=y, on the interval [a, b]. We divide the interval [, b]

into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h = (b-a) /M. Euler’s

method then finds the solution of the differential equation iteratively by calculating y, , =y +hf(t,), k=0,1, ..., M-1.
Euler’s method is implemented using the M-file shown in Figure 8-24.

302

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) D:imatlabR1 2\work\euler.m®
File Edit View Text Debug Breakpoints Web Window Help

DR & B > AH AR B 3 %2 | x|
1 function E=euler(£f,a,b,ya,l) -
2
3
4
5
6
7
8|-| h=(b-a)/M:
9|-| T=zeros(l,M+l):
10|=| Y=zeros(l,M+l):
11|=| T=a:h:b;
12|=| Y(l)=va:

13
14|=| for j=1:M
15|= Y(3+1)=Y(j)+h*feval (£,T(3),Y(3)):
16|—| end
a7

18|—| E=[T' Y'); =

19 -
« LI'J

Figure 8-24.

8.6.2 Heun’s Method

Suppose we want to solve the differential equation y’ = f(%,), y(a) = y,, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h = (b-a) /M.
Heun'’s method then finds the solution of the differential equation iteratively by calculating y, , =y+ h(f(z, v,) + f(¢,
v+, y)))/2,k=0,1,.., M-1.

Heun’s method is implemented using the M-file shown in Figure 8-25.

+1

303

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

File Edit Yiew Text Debug Breakpoints Web Window Help
DeEB& @W="Baw - #AH 88 x|
1 function H=heun(f,a,b,ya, M) -]
7]
3| - h=(b-a)/M;
4/=| T=zerosil,M+l):
58— | Y=zeros{l,M+l):;
B6|-| T=a:h:b;
Tl=| ¥i(l)=va:
8|-| for j=1:HM
g|- kl=feval(£,T(3),¥(3)):
10| - kZ=feval (£,T(j+1),Y(j)+h*kl);
1|- Y(I+1)=Y(3)+(h/2) % (kl+k2) :
12|-| end
(13 _
14| - H=[T' ¥']:
15 ¥
4 | »
4| i:=| simpsonsimplem | eulerm heunm |
Ready
Figure 8-25.

8.6.3 The Taylor Series Method

Suppose we want to solve the differential equation y’ = f(t, y), y(a) = y,, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h = (b-a) /M.
The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by
evaluating y’, y”, y” and y"” to give the 4th order Taylor series for y at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 8-26.

nn

304

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

) D:matlabR1 2\workMaylor.m

File Edit View Text Debug Breakpoints Web Window Help
DEE& Roc | dn| AR DT R X
1 function T4=taylor(df,a,b,ya,M) -]
2
3 % df=[y*' y'' y''' y*''' 1] is the string 'df’
4 % T4=[T' Y']
5
B| - h=(b-a) /M:
7|=| T=zeros(l,M+l):
8|-| Y=zeros(l,M+l):
9=| T=a:h:b;
10|=| Y(l)=va:
1
12]=| for j=1:H
13| - D=feval (df,T(3),¥(3)):
14]- T(3+1)=Y{3)+h*(D(1)+h* (D (2) /2+h* (D(3) /6+h*D(4) /24))):
15|-| end
16
17|=| T4=[T' Y']1: —
18 -
J e
Figure 8-26.

As an example we solve the differential equation y'(#) = (¢ - y) / 2 on the interval [0,3], with y(0) = 1, using Euler’s
method, Heun’s method and by the Taylor series method.
We will begin by defining the function f(#, y) via the M-file shown in Figure 8-27.

%) D:\matlabR1 2\workidif1.m
File Edit View Text Debug Breakpoints Web Window Help

DEE& @+ =rko o | #AH AR

1 function f£=difl(t,y) a
2
31-| E=(t-y)/2:
4

«| | >

< » [Ceulerm | heunm dift.m]
Ready

Figure 8-27.

The solution of the equation using Euler’s method in 100 steps is calculated as follows:
»> E = euler('dif1',0,3,1,100)
E =
0 1.00000000000000

305

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

.03000000000000
.06000000000000
.09000000000000
.12000000000000
.15000000000000
.18000000000000

QO O O O O O

0.98500000000000
0.97067500000000
0.95701487500000
0.94400965187500
0.93164950709688
0.91992476449042

2.85000000000000 1.56377799005910
2.88000000000000 1.58307132020821
2.91000000000000 1.60252525040509
2.94000000000000 1.62213737164901
2.97000000000000 1.64190531107428
3.00000000000000 1.66182673140816

This solution can be graphed as follows (see Figure 8-28):

»» plot (E (:,2))

<) Figure No. 1 g@|®

File Edit View Insert Took Window Help

D& "A 22/ 2LPD

Figure 8-28.

306

The solution of the equation by Heun’s method in 100 steps is calculated as follows:

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

»> H = heun('dif1',0,3,1,100)

H

1.00000000000000

0

0.03000000000000
0.
0
0

06000000000000

.09000000000000
.12000000000000

0.98533750000000
0.97133991296875
0.95799734001443
0.94530002961496

2.88000000000000 1.59082209379464
2.91000000000000 1.61023972987327
2.94000000000000 1.62981491089478
2.97000000000000 1.64954529140884
3.00000000000000 1.66942856088299

"

The solution using the Taylor series method requires the previously defined function df=[y'y"” y""y""] using the

M-file shown in Figure 8-29.

%) D:imatlabR12\workidf.m
File Edit View Text Debug Breakpoints Web Window Help

DR & ‘= MCe] #éHr 8B SENEIRES
il function f=df(t,¥)
2
3|-| f£=[(t-¥)/2, (2-t+y)/4, (-2+t-y)/B, (2-t+y)/16]; —
‘ |
4| |)|
4| » [euerm | heunm grm
Ready
Figure 8-29.

The differential equation is solved by the Taylor series method via the command:
» T = taylor('df’,o0,3,1,100)

T =

0 1.00000000000000

0.03000000000000 0.98533581882813
0.06000000000000 0.97133660068283
0.09000000000000 0.95799244555443
0.12000000000000 0.94529360082516

307

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

2.88000000000000 1.59078327648360
2.91000000000000 1.61020109213866
2.94000000000000 1.62977645599332
2.97000000000000 1.64950702246046
3.00000000000000 1.66939048087422

EXERCISE 8-1

Solve the following non-linear equation using the fixed point iterative method:

x = cos(sin(x)).

We will start by finding an approximate solution to the equation, which we will use as the initial value p,.
To do this we show the x axis and the curve y = x-cos(sin(x)) on the same graph (Figure 8-30) by using the
following command:

»> fplot ([x-cos (sin (x)), o], [- 2, 2])

) Figure No. 1
Fie Edit View [Jset Took Window Heb
DS hA2/s 20D
15 . T
4 s
05
0
05 yd
S
1 e
/
15
2
25
% 15 1 05 0 05 1 15 2
Figure 8-30.

The graph indicates that there is a solution close to x = 1, which is the value that we shall take as our initial
approximation to the solution, i.e. p, = 1. If we consider a tolerance of 0.0001 for a maximum number of 100
iterations, we can solve the problem once we have defined the function g(x) = cos(sin(x)) via the M-file g97.m
shown in Figure 8-31.

308

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

¥ C:\MATLAB6p1iwork\g91.m (=]

File Edit View Text Debug Breskpoints WwWeb Window Help

DEE & /| Bk o M fr EI ﬁ ERERY
1 function g=g9l(x): |
2|-| g=cosisin(x)):

3

| 3|
4 | b | sucesioni.m | Untitled3 | puntofijo.m g91.m I

Ready

Figure 8-31.

We can now solve the equation using the MATLAB command:
>> [k, p, absoluteerror, P]=fixedpoint('g91',1,0.0001,1000)
k =

13

0.7682
absoluteerror =

6. 3361e-005

.0000
.6664
.8150
. 7467
7781
.7636
.7703
.7672
.7686
.7680
.7683
.7681
.7682

O OO0 O O0OO0O0OO0O0OO0OO0O OO R

The solution is x = 0.7682, which has been found in 13 iterations with an absolute error of 6.3361¢- 005. Thus,
the convergence to the solution is particularly fast.

309

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 8-2

Using Newton’s method calculate the root of the equation x® — 10x? + 29x — 20 = 0 close to the point x = 7 with
an accuracy of 0.00005. Repeat the same calculation but with an accuracy of 0.0005.

We define the function f(x) =x% — 10x? + 29x — 20 and its derivative via the M-files named f302.m and f303.m
shown in Figures 8-32 and 8-33.

5) C:\MATLAB6p1\work\f302. m

File Edit Wiew Text Debug Breskpoints Web Window Help
DESES 28~ | #H AR L 0E x
1 function F=£302(x): =
2|=| F=x.*3-10.0%x.*2+29.0%x-20.0;
3 =
d [»]
<| » | puntofijom | g91.m | drim | newtonm f302m |
Ready
Figure 8-32.

5) C:\MATLAB6p1\work\f303.m

File Edit Wiew Text Debug Breskpoints Web Window Help
DESES 28~ | #H AR L 0E x
1 function F=£303(x): =
2|=| F=3%x. 2-20%x+29;
3 =
d [>]
<| » | puntofiiom | g91.m | drim | newtonm f303m |
Ready
Figure 8-33.

To run the program that solves the equation, type:
»> [x, it]=newton('f302','f303',7,.00005)
X =

5.0000

it =

310

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

In 6 iterations and with an accuracy of 0.00005 the solution x = 5 has been obtained. In 5 iterations and with an
accuracy of 0.0005 we get the solution x = 5.0002:

»» [x, it] = newton('f302','f303',7,.0005)
X =

5.0002
it =

5

EXERCISE 8-3

Write a program that calculates a root with multiplicity 2 of the equation (e* -xf? = 0 close to the point x = -2 to
an accuracy of 0.00005.

We define the function f(x)=(e* - x)? and its derivative via the M-files £304.m and £305.m shown in Figures 8-34
and 8-35:

%) C:\MATLAB6p 1\work\f304.m D@

File Edit View Text Debug Breakpoints wWeb Window Help
DSR&| @0~ |#H BRA|[ED x
1 function F=£304(x); =
2|—| F=iexp(-x)-x)."2;
3
e I
(l)l puntofijo.m l g91.m l dft.m l schroder.m f303.m 1304
Ready |
Figure 8-34.

311

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) C:\MATLAB6p 1\work\f305.m D@

File Edit View Text Debug Breakpoints ‘Web Window Help

DERB& @' 2@Ba- - AH 8|50 x
1 function F=£305(x):
2|—| F=2.0%(exp(-X)=-X).*(-exp(-x)-1);
3
4
1 b
(l | g91.m l dft.m l schroder.m f303.m f305.m I

Ready

Figure 8-35.

We solve the equation using Schréder’s method. To run the program we enter the command:
»> [x,it]=schrodex('f304','f305',2,-2,.00005)

X =

0.5671

it =

5

In 5 iterations we have found the solution x = 0.56715.

EXERCISE 8-4

Approximate the derivative of the function

f(x)= tan[cos(\/mn(x)n

1+x*

at the point 1-/5 .
3

To begin we define the function fin the M-file funcion1.m shown in Figure 8-36.

312

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

%) D:imatlabR1 2¥workMfuncion1.m
File Edit View Text Debug Breakpoints Web Window Help

DERB& F 2o AafH 88 *x
1 function f=funcionl (x) I~
)
3|-| f=tan{cos{{sqrtiS)+sin(x))/(14+x*2)1)); =
4
4|: | milne.m] hamming.m | difl.m funcion1.m I
Ready
Figure 8-36.

The derivative can be found using the method of numerical derivation with an accuracy of 0.0001 via the
following MATLAB command:

» [L, n] = derivedlim ('funcioni’', (1 + sqrt (5)) / 3,0.0001)
L =

.00000000000000 0.94450896913313 0

.10000000000000 1.22912035588668 0.28461138675355
.01000000000000 1.22860294102802 0.00051741485866
.00100000000000 1.22859747858110 0.00000546244691
.00010000000000 1.22859742392997 0.00000005465113

O O O O R

4

We see that the value of the derivative is approximated by 1.22859742392997.

Using Richardson’s method, the derivative is calculated as follows:
»> [D, absoluteerror, relativeerror, n] = ('funcioni’' richardson,(1+sqrt(5))/3,0.0001,0.0001)
D =

Columns 1 through 4

0.94450896913313 0 0

0
1.22047776163545 1.31246735913623 0 0
1.23085024935646 1.23430774526347 1.22909710433862 0

1.22938849854454 1.22890124827389 1.22854081514126 1.22853198515400
1.22880865382036 1.22861537224563 1.22859631384374 1.22859719477553

313

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Column 5

S © © O

1.22859745049954

absoluteerror =

6. 546534553897310e-005
relativeerror =

5. 328603742973844e-005

EXERCISE 8-5

Approximate the following integral:

J%:tan[cos[\ﬁ§+sn§jjj]dx
1 1+x

We can use the composite Simpson’s rule with M=100 using the following command:
»» s = compositesimpson('function1',1,2*pi/3,100)
S =

0.68600990924332

If we use the trapezoidal rule instead, we get the following result:
»» s = trapezoidalrule('function1',1,2*pi/3,100)
S =

0.68600381840334

314

CHAPTER 8 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 8-6

Find an approximate solution of the following differential equation in the interval [0, 0.8]:
y='+y* y(0)=1.

We start by defining the function f(t, y) via the M-file in Figure 8-37.

%) D:\matlabR1 2\workidif2.m
File Edit View Text Debug Breakpoints Web Window Help

DEE& & ko o M4fr i
1 function f=dif2(t,¥)
2
3= f£=tr24yr2:
4

Figure 8-37.

We then solve the differential equation by Euler’s method, dividing the interval into 20 subintervals using the
following command:

»» E = euler('dif2',0,0.8,1,20)

E =

0 1.00000000000000
0.04000000000000 1.04000000000000
0.08000000000000 1.08332800000000
0.12000000000000 1.13052798222336
0.16000000000000 1.18222772296696
0.20000000000000 1.23915821852503
0.24000000000000 1.30217874214655
0.28000000000000 1.37230952120649
0.32000000000000 1.45077485808625
0.36000000000000 1.53906076564045
0.40000000000000 1.63899308725380
0.44000000000000 1.75284502085643
0.48000000000000 1.88348764754208
0.52000000000000 2.03460467627982
0.56000000000000 2.21100532382941
0.60000000000000 2.41909110550949
0.64000000000000 2.66757117657970
0.68000000000000 2.96859261586445
0.72000000000000 3.33959030062305
0.76000000000000 3.80644083566367
0.80000000000000 4.40910450907999

315

CHAPTER 8 = NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The solution can be graphed as follows (see Figure 8-38):

»» plot (E (:,2))

0
(@
x)

J) Figure Mo, 1
Fle Edt View [nsert Tools ‘Window Help
DESR& AA A/ 2OD

45

-

Figure 8-38.

316

MATLAB Numerical
Calculations

César Pérez Lopez

Apress-

MATLAB Numerical Calculations

Copyright © 2014 by César Pérez Lépez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0347-7
ISBN-13 (electronic): 978-1-4842-0346-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jeffrey Pepper

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Barnaby Sheppard

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents

About the AULROFcciiceiiiimsmnsmsmsses s a s a s a s nnn s na s nnnn s nnnnannnnannnnnns xi
L1 T 11T (1 Xv
Chapter 1: Introduction t0 MATLABccouunmmmmmmmmmmmmmmmssssssssssssmssmsssssssssssssssssssssssssssssnsens 1
1.1 Numerical Calculations With MATLAB ..o s sesessssssess 1
1.2 Symbolic Calculations With MATLAB...........ccccerrrrrrrerserserses s se s snssnssnssnsnnas 3
1.3 MATLAB and MAPIEccoriecirieecirse s s e s se s sn s s sn e s s n s s n e s n e s nne s nne s 5
1.4 General Notation. The Command WinQOWcccoverrrenmrnnenesesesesesesesesesesessesessssesessssenens 5
1.5 MATLAB and Programming.........ccccuersersersessessessessessessessessssssssesssnns 8
1.6 Translating C, FORTRAN and TEX @XPreSSiONS.......c.ccuverrerverrersessessesssssssssssssssssessssssssssssssssssssens 9
Chapter 2: Integers, Divisibility and Number Systems...........ccccnnnnmesssnmnnnnnmssssssssmns 11
2.1 Arithmetic Operations in MATLAB...........cooivirrrr s s sa s sn s sn s sa s sn e s 11
P (10T -] SRS S 16
2.3 DIVISIDIIILY ...ucucreeresrsiseseercse e s e 17
2.4 Modular AftNMETIC.......ccceereerereerere e 28
2.5 DiViSIDIlItY iN Z[\N].ccurrierereririressssesessss s st 32
2.6 Diophanting EQUALIONScccceeeeercerrinsie e sn s snesn s snssn e sn s sn e sn s snssnsnna s 35
2.7 NUMDEE SYSTEBMS.....ceiceieesir st ss e s s e sa s e e a e sa e e a e n e e e sn e sa e nnenn e e s 36
Chapter 3: Real and Complex NUMDErScouueemeemmmmmmssssssssssssnsmssssssssssssssssssssssssssssssnnnssnnss 43
3.1 Rational NUMDETS ..o s 43
3.2 ContinUEd FraClionscccccerererenencsenecres e s ses s sansenens 51
3.3 Irrational NUMDEIScoovoiiieririresise s ss s s sn s s sn s sns s nnens 55
3.4 AlGEDraiC NUMDEIS......cccieerrerrerrerrer s ses e s e e e s e e se s s se s e sa e s e sa s sa e sn e sn e sa e e e nn e e s sn e e e nnennns 62

vi

CONTENTS

3.5 REal NUMDEIS.....ccicircriei i s 63
3.6 Common Functions with Real Argumentsccocvercrcrcr s 63
3.7 CoMPIEX NUMDEISccceeceeserrirrieser e sessssses s sesses s s sss s s sas s s s s s s s e sas e s sa s s s s e sa e s e s e snesnssnssnsnsnnnes 66
3.8 Common Functions with Complex ArgUMENTScceevvrvrrnrenrs e ses e ees 66
3.9 Divisibility in the Complex Field. The Ring of Gaussian Integersccccevevereersersersensennnns 79
3.10 Approximation and PreCiSioN...........ccccveeerverrersersessesses s ses s ses s s ssssss s ssssesssssesssssssnens 85
3.11 Types of Numbers and EXPreSSioNs.........ccccvveererierrensessesssssessessssssessessssssessssssessssssesssssses 89
3.12 Random NUMDEIS.......ccccotieriiirnrresiss e sn s s n s 92
Chapter 4: Numerical Variables, Vectors and Matrices.......ccccuuseemmmmsssnnssssssssnsssssssssnssssns 95
T T 1] N 95
4.2 Variables and Special Constantscccvvvirirnrsnsssn s 98
4.3 Symbolic and NUmMeric Variables............c.cceeerriernsinesniesesnse s sss e sss e ssssnssessessssens 100
LT (0] G LT 0] R 105
4.5 MAtriX VariaDbIEsS..........cocemrmierrrenesisse s s s 110
4.6 CharacCter VariabIEsSccoveererensenesessenessese s s ssssssssssassssssssssssssssnnes 119
A0 0TC] (0] SRS 122

4.7.1 ArithmeEtic OPEIatOrs.......ceveveree e se e s a e e e e e e sae e e e e e e s e s e e e sa e s e na e e e saesaeaennens 122

4.7.2 Relational OPEraltorscccceierereiesiestesee s seesessaesaessessesaesassaesaesassaesaesaesaesassasssesssssssssssssssssessesssssnsasssnsanns 125

4.7.3 L0GICAI OPEIALOrSccccereeerrerirerinesseesse st e e s sas s as s e e sese s e s e e e et Re e R e e e Re e s ae e et e R et e Re e eRe e naennanen 126
4.8 LOGIC FUNCHIONSccovieiiciscriesese s sss s sn s sss s s ss s ss s sssssnssnnsssssnsnnens 126
4.9 Elementary Functions that Support Complex Matrix Arguments..........cccvvvrrrnsersersensennnnne 129
4.10 Elementary Functions that Support Complex Vector Arguments..........cccceeverereeriencennnnns 133
4.11 Vector Functions of Several Variablesccourrennsesennsesnssnessssesssssssessssesssssssessessssens 136
4.12 Functions of One Variable.............cccerrenrnienrneserscse e s snssenens 137
Chapter 5: Vectors and Matrices.......ccuscemmmmsssmnnmmsssssnnmmssssssnssssssssnsssssssssssssssnssssssssnnnnssns 139
5.1 Vectors and MatriCeS.......c.cuceremrerenireisissse s s s 139
5.2 Operations with NUMEriC MAtriCesS.........ccuerrrrersersrsrses s sn s e sn e e snssnenns 140
5.3 Eigenvalues and Eigenvectors.........ccceierenniennsmssssssess s ssssessssssssssssesssssssens 150
5.4 Matrix DECOMPOSITIONcccevciiierririr e s s s n e s n s 156

CONTENTS

5.5 Similar Matrices and Diagonalization............ccccvvvvrrnrrnnnnrer s 169
5.6 SPArse MALFICEScccveeeeceecircersirsie e sn s n s r s sr s sn e e n e sn e sn e sn e nnesnennennnnnannnn 171
5.7 SPECIAl MALICES.......ceecerrererrerrerser s a s a s s sa s sa e a s n e sn e sr e sn e snesnesn e nnesnenen 173
Chapter 6: FUNCHIONScoiiciiiimssesssnnninnssssssssssnnsssssssssssssssssssssssssssssssnssssesssssnnnnnnnnnness 179
6.1 Custom Defined FUNCHIONScccoiieienrnicresencsesss s se s s sss s snsssnnens 179
6.2 FUNCtions and M-fIles..........ccoereriirnniir s 179
6.3 Functions and FIOW Control. LOOPSccceeeeeerrsessesssssssssesss s sssssssssssssssssssssssssnsssssssssssssnnnns 183
6.4 THE FOR I00P ...eveeiereererrirser sttt s e sa s s sn s a st n s sn s a e sn s sa e e sn e sn e nn e sn e sn e nssn e e e nnennns 183
6.5 THE WHILE 100Dcceceerereresssssseeesesesesessssssesseesesesssssssssssssssssssssssssssssnssssssssssnsnssssssasaes 185
6.6 IF ELSEIF ELSE END LOOPcceeeecrereresrsssse e sesssss s sse e sssssss s s s sesesssssssssssssnssnes 186
6.7 RECUISIVE FUNCLIONScoieeeerserissesesessesse e e ss s e sns e s s sse e s s snesnnsessnnsnnens 187
6.8 Conditional FUNCLIONS..........ccovrcerrercre e ses s sas e 190
6.9 Defining Functions Directly. Evaluating FUNGLIONScccceereicecrcsce e 193
6.10 Functions of One Variable.............cccorrnrnicnnncnes s 193
6.11 Functions of Several Variablesccccorrrenrnnenensnesssnesessese s ssssesessssesssssssnens 194
6.12 PieCeWiSe FUNCHONSccoeiiciersen e 198
6.13 FUNCLIONAl OPEIAtiONScceeveereererieererree s s e sessee s s e e s e s e e ssese e s s e e snesanesaesanesaesnesanen 204
Chapter 7: Programming and Numerical AnalySiSuusseeeesmmmmsssssssssssssnssssssssssssnssnssnnnss 211
7.1 MATLAB and Programming.........cccceeeeerersersessessessessnns 211
2 T - = (0] 211
BT 1 SRS 214
7.4 Functions and M-files. Eval and fevalccovrecnrrnenennsenessesesssese s sssesesnssenens 217

7.4.1 A Simple FUNCtion DEfiNItIONcccoceirieicnrrees e 122
7.5 Local and Global VariabIEsccccovreenermrienerssesessese s ssssssesssssssssssenens 220
7.6 DA TYPES ...t r e r s r e r s r e n e n e e r e e s e e e e nenn e e e e e R e nnennennennennann 222
7.7 Flow Control: FOR, WHILE and IF ELSEIF LOOPS......cccceourerrerrersersersessessessesssssessessessessessssenss 223
7.8 FOR LOOPS ..ccueeereeereriessassessessessassasses e sassassas s e s s e saesas st e s s e s s e sassassassasssesssssssnsssssnssasssnnnnne 223
7.9 WHILE LOOPS.....eectieeiirriresssansane 224

vii

CONTENTS

7.10 IF ELSEIF ELSE END LOOPScevueueueeeseseressssssssssssesesesssssssssssssssssesssssssssssssssssssssssssssssssasnes 225
7.11 SWITCH @Nd CASEcoceteeirrrriseeesenesesssssssssssseesesssssss s ss e s ssssssssssssssssssssssssssssssssasasaes 227
712 CONTINUE......ccciteecceeecrere s se e et sa sttt 228
TABBREAK ...ttt sas s se e ne e e 229
TAATRY ... CATCH.....c.eeeeeccerr s e ne e p e 230
TS5 BETURN ...ttt et et et 230
7.16 SUDFUNCHIONS ...ttt nnn s 231
7.17 Commands in M-filESccoiiiirnirnrs s 232
7.18 Functions relating to Arrays 0Of CellS........c.cccvrerrrrernsesesensesesesessssessesesesss e ssesessessesensens 233
7.19 Functions of Multidimensional ArraysS.........ccoceeereessnns 236
7.20 Numerical Analysis Methods in MATLAB...........ccooeinerrre s sns s s e e snennns 240
7.21 Zeros of Functions and Optimization..........cccccevvvvevinreniense s ssessessessesssesaees 240
7.22 Numerical INtegration............ceeeeeeeinsese s sn s snssnssr s srssresnssnssnesnennnns 243
7.23 Numerical Differentiationcocoveeennrennicsrsre e 244
7.24 Approximate Solutions of Differential EQUAtiONS.........cccvvvververreriee v sseesaens 246
7.25 Ordinary Differential Equations with Initial ValUesccocevvreeninecnccnsscresenccesenens 246
7.26 Ordinary Differential Equations with Boundary Conditions...........ccceeevvvvrvrcncscssenceninnns 249
7.27 Partial Differential EQUAtiONSccccevverieerienieeriiriesssesssssesssessssssessssssesssssssssssssssssessssssssanes 252
Chapter 8: Numerical Algorithms: Equations, Derivatives, Integrals and
Differential EQuUations..........cccuisemmmmmnmnnimmmssssssssmnssssssssssssssss s ssnssssssnnes 279
8.1 Solving Non-Linear EQUALIONSccceeiereriniennsine s s s e sesessssesssssssesssssssens 279
8.1.1 The fixed Point Method for SOIVING X = G(X) «.eeeeeeeeeeeeeeeeseesee e se e e s e s sesesens 279
8.1.2 Newton’s Method for Solving the EQUation f(X) = 0......ccccceererereriererrerensersesereesessesesesssessssessssessesessesanaens 282
8.1.3 Schrider’s Method for Solving the EquUation f(X)=0..........ccceevrererrererrernsererereseresessessssessssessssessesessesasaens 284
8.2 Systems of Non-Linear EQUALIONScccceeeeerceecesircis e sn s sn e s e e snsnns 284
8.2.1 The Seidel METNOM.........ccoceeieeeeereectr e 284
8.2.2 The Newton-Raphson MEthodcoeveririrerc e se e sa e sa e sa e saesnennens 285

viii

CONTENTS

8.3 Interpolation MEthOdScccecvieeririee e sn e sa e s nenne s 288
8.3.1 Lagrange Polynomial INterpolationccoeerevrcerriersrre s res e ses e saesessesessesessesasessssesassessssesaenanaens 288
8.3.2 Newton Polynomial INterpolation...........c.cninnssssssssssss s 290

8.4 Numerical Derivation Methods..........c.cuvrriinnin 291
8.4.1 Numerical Derivation via LIMitS.........ccuouimsssssssssssssss s 291
8.4.2 Richardson’s Extrapolation Method............ccoeveierenenccerrr s sa e saesa e e 294
8.4.3 Derivation Using Interpolation (N + 1 NOUES).......ccccvriernrninieninesine s sessesss e ssssessssesssssssessssens 295

8.5 Numerical Integration Methods ... 297
8.5.1 The Trapezitm MEINOMc.ccceeeeeecrir e nnns 297
8.5.2 SIMPSON’S METNOM ...t nnne 300

8.6 Ordinary Differential EQUALIONSccccvrerrerreriirrerser s e e e e sn s e e e e sasnns 302
8.6.1 EUIEI’S METNOM. ...t 302
8.6.2 HEuN’s MENOM........cuririiiini s 303
8.6.3 The Taylor SEries MELhOMccoveverererre et rer e sa s rae e ae e sae e saesasaesas e sa e e sae e saenasaenanaens 304

ix

About the Author

César Pérez Lopez is a Professor at the Department of Statistics and Operations Research at the University of
Madrid. César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body
which belongs to the Superior Systems and Information Technology Department of the Spanish Government.
César also currently works at the Institute for Fiscal Studies in Madrid.

Xi

Also Available

e MATLAB Programming for Numerical Analysis, 978-1-4842-0296-8
e MATLAB Control Systems Engineering, 978-1-4842-0290-6

e MATLAB Differential Equations, 978-1-4842-0311-8

e MATLAB Linear Algebra, 978-1-4842-0323-1

e MATLAB Differential and Integral Calculus, 978-1-4842-0305-7

e MATLAB Optimization Techniques, 978-1-4842-0293-7

e MATLAB Symbolic Algebra and Calculus Tools, 978-1-4842-0344-6

xiii

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Introduction to MATLAB
	1.1 Numerical Calculations with MATLAB
	1.2 Symbolic Calculations with MATLAB
	1.3 MATLAB and Maple
	1.4 General Notation. The Command Window
	1.5 MATLAB and Programming
	1.6 Translating C, FORTRAN and TEX expressions

	Chapter 2: Integers, Divisibility and Number Systems
	2.1 Arithmetic Operations in MATLAB
	2.2 Integers
	2.3 Divisibility
	2.4 Modular Arithmetic
	2.5 Divisibility in Z[√n]
	2.6 Diophantine Equations
	2.7 Number Systems

	Chapter 3: Real and Complex Numbers
	3.1 Rational Numbers
	3.2 Continued Fractions
	3.3 Irrational Numbers
	3.4 Algebraic Numbers
	3.5 Real Numbers
	3.6 Common Functions with Real Arguments
	3.7 Complex Numbers
	3.8 Common Functions with Complex Arguments
	3.9 Divisibility in the Complex Field. The Ring of Gaussian Integers
	3.10 Approximation and Precision
	3.11 Types of Numbers and Expressions
	3.12 Random Numbers

	Chapter 4: Numerical Variables, Vectors and Matrices
	4.1 Variables
	4.2 Variables and Special Constants
	4.3 Symbolic and Numeric Variables
	4.4 Vector Variables
	4.5 Matrix Variables
	4.6 Character Variables
	4.7 Operators
	4.7.1 Arithmetic Operators
	4.7.2 Relational Operators
	4.7.3 Logical Operators

	4.8 Logic Functions
	4.9 Elementary Functions that Support Complex Matrix Arguments
	4.10 Elementary Functions that Support Complex Vector Arguments
	4.11 Vector Functions of Several Variables
	4.12 Functions of One Variable

	Chapter 5: Vectors and Matrices
	5.1 Vectors and Matrices
	5.2 Operations with Numeric Matrices
	5.3 Eigenvalues and Eigenvectors
	5.4 Matrix Decomposition
	5.5 Similar Matrices and Diagonalization
	5.6 Sparse Matrices
	5.7 Special Matrices

	Chapter 6: Functions
	6.1 Custom Defined Functions
	6.2 Functions and M-files
	6.3 Functions and Flow Control. Loops
	6.4 The FOR loop
	6.5 The WHILE loop
	6.6 IF ELSEIF ELSE END LOOP
	6.7 Recursive Functions
	6.8 Conditional Functions
	6.9 Defining Functions Directly. Evaluating Functions
	6.10 Functions of One Variable
	6.11 Functions of Several Variables
	6.12 Piecewise Functions
	6.13 Functional Operations

	Chapter 7: Programming and Numerical Analysis
	7.1 MATLAB and Programming
	7.2 The Text Editor
	7.3 Scripts
	7.4 Functions and M-files. Eval and feval
	7.5 Local and Global Variables
	7.6 Data Types
	7.7 Flow Control: FOR, WHILE and IF ELSEIF Loops
	7.8 FOR Loops
	7.9 WHILE Loops
	7.10 IF ELSEIF ELSE END Loops
	7.11 SWITCH and CASE
	7.12 CONTINUE
	7.13 BREAK
	7.14 TRY ... CATCH
	7.15 RETURN
	7.16 Subfunctions
	7.17 Commands in M-files
	7.18 Functions relating to Arrays of Cells
	7.19 Functions of Multidimensional Arrays
	7.20 Numerical Analysis Methods in MATLAB
	7.21 Zeros of Functions and Optimization
	7.22 Numerical Integration
	7.23 Numerical Differentiation
	7.24 Approximate Solutions of Differential Equations
	7.25 Ordinary Differential Equations with Initial Values
	7.26 Ordinary Differential Equations with Boundary Conditions
	7.27 Partial Differential Equations

	Chapter 8: Numerical Algorithms: Equations, Derivatives, Integrals and Differential Equations
	8.1 Solving Non-Linear Equations
	8.1.1 The Fixed Point Method for Solving x = g(x)
	8.1.2 Newton’s Method for Solving the Equation f(x) = 0
	8.1.3 Schröder’s Method for Solving the Equation f(x)=0

	8.2 Systems of Non-Linear Equations
	8.2.1 The Seidel Method
	8.2.2 The Newton-Raphson Method

	8.3 Interpolation Methods
	8.3.1 Lagrange Polynomial Interpolation
	8.3.2 Newton Polynomial Interpolation

	8.4 Numerical Derivation Methods
	8.4.1 Numerical Derivation via Limits
	8.4.2 Richardson’s Extrapolation Method
	8.4.3 Derivation Using Interpolation (n + 1 Nodes)

	8.5 Numerical Integration Methods
	8.5.1 The Trapezium Method
	8.5.2 Simpson’s Method

	8.6 Ordinary Differential Equations
	8.6.1 Euler’s Method
	8.6.2 Heun’s Method
	8.6.3 The Taylor Series Method

