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Introduction

MATLAB is the tool of the modern day mathematician or engineer. The incredible deep functionality of MATLAB 
makes what would have taken hours 40 years ago, often less than a minute with MATLAB built in functions. MATLAB 
enables you to explore multiple approaches and reach a solution faster often more accurately than with other tools 
or traditional programming languages, such as C/C++ or Java. More importantly, it has changed the way we learn 
and made getting solutions immensely simpler. So, you can now focus on the application, instead of the math. And 
with that easily available power, you can explore and find more and more functions, test hypotheses and become a 
significantly more powerful worker.

This book is designed for use, in part, as a tool to enable you to use MATLAB as a scientific/business calculator 
so that you can get numerical solutions to problems involving a wide array of mathematics using MATLAB. But it 
is broader in scope than that. The book can be used as an independent resource for MATLAB. A background in the 
necessary mathematics is assumed, so this book shows you how to interpret your problems to get MATLAB to do what 
you want it to do. Just look up the function you want in the book and you are ready to use it in MATLAB or use the 
book to learn about the enormous range of options that MATLAB offers. The book is topical, picking examples to show 
not only general methods in using MATLAB, but specifics to use MATLAB for advanced mathematical computations 
while giving a glimpse at their application.

MATLAB Numerical Calculations focuses on MATLAB capabilities to give you numerical solutions to problems 
you are likely to encounter in your professional or scholastic life. It introduces you to the MATLAB language with 
practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at basic 
MATLAB functionality with integers, rational numbers and real and complex numbers, and MATLAB’s relationship 
with Maple, you will learn how to solve equations in MATLAB, and how to simplify the results. You will see how 
MATLAB incorporates vector, matrix and character variables, and functions thereof. MATLAB is a powerful tool used 
to defined, manipulate and simplify complex algebraic expressions. With MATLAB you can also work with ease in 
matrix algebra, making use of commands which allow you to find eigenvalues, eigenvectors, determinants, norms and 
various matrix decompositions, among many other features. Lastly, you will see how you can write scripts and use 
MATLAB to explore numerical analysis, finding approximations of integrals, derivatives and numerical solutions of 
differential equations.



1

Chapter 1

Introduction to MATLAB

1.1 Numerical Calculations with MATLAB
You can use MATLAB as a powerful numerical calculator. While most calculators handle numbers only to a preset 
degree of accuracy, MATLAB works to whichever precision is necessary for any given calculation. In addition, unlike 
calculators, we can perform operations not only with individual numbers, but also with objects such as matrices.

Most classical numerical analysis topics are treated by MATLAB. It supports matrix algebra, statistics, 
interpolation, fit by least squares, numerical integration, minimization of functions, linear programming, numerical 
solutions of algebraic equations and differential equations and a long list of further techniques.

Here are some examples of numerical calculations with MATLAB (once the commands have been entered to the 
right of the input prompt “>>” simply hit Enter to obtain the result):

 1. We can calculate 4 + 3 and get 7 as a result. To do this, just type 4 + 3 and then Enter:
 
>> 4 + 3
 
ans =
 
     7
 

 2. We can also find the value of 3 raised to the power 100, without previously fixing the 
precision. For this it is enough to simply type 3 ^ 100:
 
>> 3 ^ 100
 
ans =
 
  5. 1538e + 047
 

 3. We can also use the command format long e to obtain results in scientific notation with  
16 more exponential digits of precision:
 
>> format long e;
>> 3 ^ 100
 
ans =
 
    5.153775207320115e+047
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 4. We can also work with complex numbers. We find the result of the operation  
raising (2 + 3i) to the power 10 by typing the expression (2 + 3i) ^ 10:
 
>> (2 + 3i) ^ 10
 
ans =
 
    -3 415250000000001e + 005 - 1. 456680000000001e + 005i
 
The command format long g will optimize the output of future calculations.
 
>> format long g
>> (2 + 3i) ^ 10
 
ans =
 
     -341525 - 145668i
 

 5. The previous result can also be obtained in short format using the command format short:
 
>> format short;
>> (2 + 3i) ^ 10
 
ans =
 
    -3.4152e+005- 1.4567e+005i
 

 6. We can calculate the value of the Bessel function at the point 13.5. To do this, we type 
Besselj(0,13.5):
 
>> Besselj(0,13.5)
 
ans =
 
    0.2150
 

 7. We can also perform numerical integration. To calculate the integral between 0 and p 
of sin(x), we type the expression int(sin(x), 0, pi) after having declared the variable x as 
symbolic with the command syms:
 
>> syms x
>> int(sin(x), 0, pi)
  
ans =
  
2
 

These themes will be treated more thoroughly later.
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1.2 Symbolic Calculations with MATLAB
MATLAB handles symbolic mathematical computation perfectly, manipulating formulae and algebraic expressions 
easily and efficiently. You can expand, factor and simplify polynomials, rational functions and trigonometric 
expressions; you can find algebraic solutions of polynomial equations and systems of equations; you can evaluate 
derivatives and integrals symbolically and find solutions of differential equations; you can manipulate power series, 
find limits and explore many other facets of algebraic series.

To perform this task, MATLAB requires that all variables (or algebraic expressions) are previously declared as 
symbolic using the command syms.

Here are some examples of symbolic computations with MATLAB:

 1. We find the cube of the algebraic expression: (x + 1)(x + 2) - (x + 2)^2. This is done by 
typing the expression: expand((x + 1)*(x + 2) - (x + 2)^2)^3). The result will be another 
algebraic expression:
 
>> syms x
>> expand (((x + 1)*(x + 2)-(x + 2)^2)^3).
 
ans =
 
-x ^ 3-6 * x ^ 2-12 * x-8
 

 2. We can factor the result of the above calculation by typing  
factor((x + 1) *(x + 2) - (x + 2)^2)^3):
 
>> syms x
>> factor(((x + 1)*(x + 2)-(x + 2)^2)^3)
 
ans =
 
-(x+2) ^ 3
 

 3. We can find the indefinite integral of the function  
(x ^ 2)sin(x)^2 by typing int(x^2 * sin(x)^2, x):
 
>> syms x
>> int(x^2*sin(x)^2, x)
  
ans =
  
x ^ 2 * (-1/2 * cos(x) * sin(x) + 1/2 * x)-1/2 * x * cos(x) ^ 2 + 1/4 *  
cos(x) * sin(x) + 1/4 * 1/x-3 * x ^ 3
 

 4. We can simplify the previous result:
 
>> syms x
>> simplify(int(x^2*sin(x)^2, x))
 
ans =
 
-1/2 * x ^ 2 * cos(x) * sin(x) + 1/6 * x ^ 3-1/2 * x * cos(x) ^ 2 + 1/4 *  
cos(x) * sin(x) + 1/4 * x

 



Chapter 1 ■ IntroduCtIon to MatLaB

4

 5. We can display the previous result in standard mathematical notation:
 
>> syms x
>> pretty(simplify(int('x^2*sin(x)^2', 'x')))
 
             2              3              2
-1/2 x cos(x) sin(x) + 1/6 x - 1/2 x cos(x) + 1/4 cos(x) sin(x) + 1/4 x
 

 6. We can expand the function x^2 * sin(x)^2 as a power series up to order 12, presenting the 
result in standard form:
 
>> syms x
>> pretty(taylor(x^2*sin(x)^2,12))
 
 
    4     6       8         10      12
  x 1/3 x + 2/45 x - 1/315 x + 0 (x)
 

 7. We can solve the equation 3ax 7x^2 + x^3 = 0 (where a is a parameter):
 
>> syms x a
>> solve('3*a*x-7*x^2 + x^3 = 0', x)
 
ans =
 
[         0                  ]
[7/2 + 1/2 *(49-12*a) ^(1/2)  ]
[7/2-1/2 *(49-12*a) ^(1/2)  ]
         
 

 8. We can find the five solutions of the equation x^5 + 2x + 1 = 0 :
 
>> syms x
>> solve('x^5+2*x+1','x')
 
ans =
 
[-.7018735688558619 -.8796971979298240 * i]
[-.7018735688558619 +.8796971979298240 * i]
[-.4863890359345430                       ]
[ .9450680868231334 -.8545175144390459 * i]
[ .9450680868231334 +.8545175144390459 * i]
 

On the other hand, MATLAB can be used together with the Maple program libraries to work with symbolic 
mathematics, thus extending its field of action. In this way, MATLAB can be used to work on topics such as differential 
forms, Euclidean geometry, projective geometry, statistics, etc.

At the same time, we can extend MATLAB’s numerical calculation cababilities by using the Maple libraries 
(combinatorics, optimization, number theory, statistics, etc.)
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1.3 MATLAB and Maple
Whenever it is necessary to use a Maple command or function from MATLAB, use the command maple followed 
by the corresponding Maple syntax. This functionality is only available if you have installed the symbolic 
computation Toolbox “Extended Symbolic Math Toolbox”. This is the tool one uses to work with linear algebra and 
mathematical analysis.

To use a Maple command from MATLAB, the syntax is as follows:

maple(‘Maple_command_syntax’)

or alternatively:

maple ‘Maple_command_syntax’

To use a Maple command with N arguments from MATLAB, the syntax is as follows:

maple(‘Maple_command_syntax’, argument1, argument2, . . . , argumentN)

Let’s see some examples:

 1. We can calculate the limit of the function (x^3 -1) / (x-1) as x - > 1:

 
>> maple('limit((x^3-1)/(x-1),x=1)')
 
ans =
 
3
 
We could also have used the following syntax:
 
>> maple 'limit((x^3-1)/(x-1),x=1)'
 
ans =
 
3
 

 2. We can calculate the greatest common divisor of 10,000 and 5,000:
 
>> maple('gcd', 10000, 5000)
 
ans =
 
5000 

1.4 General Notation. The Command Window
Whenever a program is used, it is necessary to become familiar with the general characteristics of its notation. Like 
any program, the best way to learn MATLAB is to use it. Each example consists of the user input prompt “>>” followed 
by the command and the MATLAB response on the next line. See Figure 1-1.
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Sometimes, depending on the type of command (user input) given to MATLAB in the Command Window, the 
response will begin with the expression ans =. See Figure 1-2.

It is important to pay attention to uppercase and lowercase characters, parentheses and square brackets, and the 
use of spaces and punctuation (in particular commas and semicolons).

Like the C programming language, MATLAB is case sensitive; for example, Sin(x) is different to sin(x). The names 
of all built-in functions begin with lowercase letters. Each bracket has its own meaning, as we will see later.

To indicate that two variables must be multiplied you put the symbol * between them, and there cannot be spaces 
in the names of commands, variables or functions. In other cases, spaces are ignored, but they can be included to 
make the input more readable.

Figure 1-1.  

Figure 1-2.  
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Once a MATLAB command has been entered, simply press Enter. If at the end of the input we put a semicolon, 
the program runs the calculation and keeps it in memory (Workspace), but does not display the result on screen.  
The input prompt “>>” reappears to indicate that you can input a new entry.
 
>> 2 + 3;
>>
 

If the entry is too long and doesn’t fit on a single line of the MATLAB Command Window, just put three dots at 
the end of the line and press Enter to continue with the rest of the entry on the next line. Once the entry is complete, 
press Enter to run the command:
 
>> 1254 + 3456789 + 14267890 + 345217 +...
78965 + 125347 + 86500
 
ans =
 
    18361962
>>
 

You can make multiple entries in the same command line by separating them with commas and pressing Enter at 
the end of the last entry. If you use a semicolon at the end of one of the entries of the line, its corresponding output is 
ignored. If the number of consecutive entries doesn’t fit on one line, three dots are used to continue on the next line, 
as described above:
 
>> 2+2, 5+3, 8+5
 
ans =
 
     4
 
ans =
 
     8
 
ans =
 
    13
 
>> 2+2; 5+3, 8+5; 3*4
 
ans =
 
     8
 
ans =
 
    12
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To enter a descriptive comment in a command line, just start it with the “%” symbol. When you run the input, 
MATLAB will ignore the comment and process the rest.
 
>> F = 125 + 2 %F represents units of force
 
F =
 
   127
 

To simplify the process of entering a script to be evaluated by the MATLAB interpreter (via the command window 
prompt), you can use arrow keys. For example, if you press the up arrow once, you recover the last entry submitted in 
MATLAB. If you press the up arrow twice, you recover the penultimate entry submitted, and so on.

If you type a sequence of characters in the input area and then click the up arrow, you recover the last entry that 
begins with the specified string.

The commands entered during a MATLAB session are stored temporarily in the buffer (Workspace) until the end 
of the session, at which time you can permanently save the session to file or lose it.

Below is a summary of the keys that can be used in the MATLAB command line, and their functions:

Up Arrow (Ctrl-P) Retrieves the entry preceding the current one.

Down Arrow (Ctrl-N) Retrieves the entry following the current one.

Left Arrow (Ctrl-B) Moves the cursor one character to the left.

Right Arrow (Ctrl-F) Moves the cursor one character to the right.

CTRL-Left Arrow Moves the cursor one word to the left.

CTRL-Right Arrow Moves the cursor one word to the right.

Home (Ctrl-A) Moves the cursor to the beginning of the current line.

End (Ctrl-E) Moves the cursor to the end of the current line.

Escape Clears the command line.

Delete (Ctrl-D) Erases the character indicated by the cursor.

Backspace Deletes the character to the left of the cursor.

CTRL-K Clears (kills) the entire current line.

The command clc clears the command window, but does not delete the contents of the work area (the content 
currently in memory).

1.5 MATLAB and Programming
By properly combining all the features of MATLAB, one can build useful mathematical research programming code. 
Programs usually consist of a sequence of instructions in which various values are calculated. These sequences of 
commands are assigned names and can be reused in further calculations.

As in programming languages like C or Fortran, MATLAB supports loops, control flow and conditional 
statements. MATLAB can write procedural programs, i.e., it can define a sequence of standard steps to run. As in C or 
Pascal, one can repeat calculations using Do, For, or While loops. The language of MATLAB also includes conditional 
constructs such as If Then Else. MATLAB also supports different logical operators, such as And, Or, Not and Xor.
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MATLAB supports procedural programming (with iterative processes, recursive functions, loops...), functional 
programming and object-oriented programming. Here are two simple examples of programs. The first generates the 
order n Hilbert matrix, and the second calculates the Fibonacci numbers less than 1000.
 
% Generates the order n Hilbert matrix
t = '1/(i+j-1)';
for i = 1:n
      for j = 1:n
           a(i,j) = eval(t);
      end
 end
 
% Calculates Fibonacci numbers
f = [1 1]; i = 1;
while f(i) + f(i-1) < 1000
          f(i+2) = f(i) + f(i+1);
          i = i+1
end 

1.6 Translating C, FORTRAN and TEX expressions
MATLAB offers the possibility to translate math expressions to code in other programming languages such as Fortran or C.  
Additionally, it can also translate expressions to eqn and TeX form. To do this, one can use the following commands:

maple(‘fortran(expression)’) Translates the given Maple expression to Fortran.

maple(‘fortran(expr,optimized)’) Translates the given Maple expression to Fortran in 
an optimized way.

maple(‘fortran(expr,precision=double)’) Translates the Maple expression to Fortran 
using double-precision.

maple(‘fortran(expr,digits=n)’) Translates the Maple expression to Fortran using n 
floating point digits.

maple(‘fortran(procedure)’) Translates the given Maple procedure to a Fortran 
procedure. Also translates Maple arrays and lists to Fortran.

maple(‘fortran(exp,filename=name)’) Translates the given Maple expression to 
Fortran and saves it in a file named name.

maple(‘C(expression)’) Translates the given Maple expression to C. It is necessary to 
first load the C library with the command readlib(C).

maple(‘C(expression,optimized)’) Translates the given Maple expression into C in an 
optimized way.

maple(‘C(expr,precision=single)’) Translates the given Maple expression into C using 
single-precision (double precision is the default).

maple(‘C(expr,digits=n)’) Translates the given Maple expression into C using n floating 
point digits.

maple(‘C(procedure)’) Translates the given Maple procedure to a C procedure. It also 
translates Maple arrays and lists to C.
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maple(‘C(procedure, ansi)’) Translates the given Maple procedure to C following 
standard ANSI C syntax for the declaration of the parameters.

maple(‘C(expr, filename=name)’) Translates the given Maple expression to C and 
saves it in a file with the name nom.

maple(‘latex(expression)’) Converts the given Maple expression to TeX.

maple(‘latex(expr, filename=name)’) Converts the given Maple expression to TeX and 
saves it in a file named nom.

maple(‘eqn(expression)’) Translates the given Maple expression to eqn. It is necessary 
to first load the eqn library with the command readlib(eqn).

maple(‘eqn(expr, filename=name)’) Translates the given Maple expression to eqn and 
saves it in a file with the name name.

As examples, we translate the integral of 1 /(x4+1) to TeX, Fortan and C:
 
>> maple('latex(Int(1/(x^4+1),x))')
 
ans =
 

\int \!\left ({x}^{4}+1\right )^{-1}{dx}
 
>> maple('fortran(Int(1/(x^4+1),x))')
 
ans =
 
     t0 = Int(1/(x**4+1),x)
 
>> maple('readlib(C)'); maple('C(Int(1/(x^4+1),x))')
 
ans =
 
     t0 = Int(1/(pow(x,4.0)+1.0),x);
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Chapter 2

Integers, Divisibility and Number 
Systems

2.1 Arithmetic Operations in MATLAB
Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is an 
interactive program that allows you to perform a wide variety of mathematical operations. Furthermore, it has other 
properties that make it extremely versatile and complex, applicable to a broad range of subjects from more theoretical 
mathematics to the more applied.

One of the first applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional 
calculator, but with one important difference: the precision of calculation. Operations are performed to the greatest 
accuracy required, or the user may specify the degree of precision in advance. This unlimited precision in calculation 
sets MATLAB apart from other numerical software, where the accuracy is determined by the word length of the 
computer, so it is essentially determined by the hardware and cannot be modified. This feature is one of the most 
important in symbolic calculation.

MATLAB assumes the usual arithmetic operations of sum, difference, product, division and power, with the usual 
hierarchy between them:
 
x + y sum
x - y difference
x * y or x y product
x/y division
x ^ y power
 

To add two numbers, simply enter the first number, type a plus sign (+) and then enter the second number. 
Spaces may be included before or after the plus sign to ease readability.
 
>> 53 + 78
 
ans =
 
   131
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We can perform the calculation of powers directly.
 
>> 34 ^ 56
 
ans =
 
  5. 7919e + 085
 

Unlike a calculator, when working with integers, MATLAB displays the exact result even when you have more 
digits than would normally fit across the screen. Here MATLAB returns the exact value of 34 ^ 56.
 
>> vpa ' 34 ^ 56' 90
 
ans =
 
57918773205287127842044254126179599852840968492056164062843692360166371779746690236416.
 

These operations are used to perform calculations of varying degrees of complexity. When combining several 
operations in the same instruction, one must take into account the usual criteria of priority among them, which 
determine the order of evaluation of the expression. Consider the following example:
 
>> 2 * 3 ^ 2 + (5-2) * 3
 
ans =
 
    27
 

Taking into account the usual order of priority of operators, the first to be evaluated is the power operation. The 
usual order of evaluation can be altered by grouping expressions in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions, and the user can 
also define their own functions. Both the embedded MATLAB functions and operators can be applied to symbolic or 
numeric constants.
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eXerCISe 2-1

perform the following operations:

(a) (-2 + 3 - 5) (4 - 3 + 2)/(15 + 4 - 21)

(b) [(2 - 3)(4 - 3 + 5)]3 [(3 - 2) + (6 - 8 - 5)]

(c) 5 - [4 - 3 + 2 * 7 + 5] + [(3 - 6)2 (7 - 9)2]

(d) 6 - 4 * 3/2 - 7 * 2 + 8 - 6/3 - 52 + 3

(e) [5 + 3 * 2/6 - 4].[4/2 - 3 + 6]/[7/2 - 8 - 2]2

We input the above operations in the following way:
 
>> ((-2 + 3 - 5)*(4 - 3 + 2))/(15 + 4 - 21)
 
ans =
 
     6
 
>> ((2 - 3)*(4 - 3 + 5))^3 * (3 - 2 + 6 - 8 - 5)
 
ans =
 
    1296
 
>> 5 - (4 - 3 + 2 * 7 + 5) + (3 - 6)^2 * (7 - 9)^2
 
ans =
 
    21
 
>> 6 - (4 * 3)/2 - 7 * 2 + 8 - 6/3 - 5^2 + 3
 
ans =
 
   -30
 
>>  ((5 + (3*2)/6 - 4)*(4/2 - 3 + 6))/(7 - 8/2 - 2)^2
 
ans =
 
    10 
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eXerCISe 2-2

perform the following operations:

(a) 6 a b + 3a2 + 2 a b

(b) 6 a2  + 2 a - b2  + 3 a - 5 a2  + b2

(c) 6 a b - 2 a2 – 4 a b + 3 a2

We input the above operations in the following way:
 
>> syms a b
>> pretty(simplify(6*a*b + 3*a^2 + 2*a*b))
 
                                             2
                                  8 a b + 3 a
 
>> pretty(simplify( 6*a^2 + 2*a - b^2 + 3*a - 5*a^2 + b^2))
 
                                     2
                                    a   +  5 a
 
>> pretty(simplify(6*a*b - 2*a^2 - 4*a*b + 3*a^2))
 
                                            2
                                   2 a b + a
 

the purpose of this exercise is to demonstrate the need to declare symbolic variables as such when they are part 
of non-numeric expressions.

eXerCISe 2-3

Where h = 3 a 2 – 2a + 7, F = 6 a3 - 5 a  + 2 and g = 5 a2 + 4a -3, calculate:

a) h + F + g

b) h - F + g

c) h - F - g

We input the previous operations in the following way:
 
>> syms a
>> H = 3*a^2 - 2*a + 7, F = 6*a^3 - 5*a + 2, G = 5*a^2 + 4*a - 3
 
H =
 
3*a^2 - 2*a + 7
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F =
 
6*a^3 - 5*a + 2
 
G =
 
5*a^2 + 4*a – 3
 
>> pretty(H+F+G)
  
                                2                3
                             8 a  - 3 a + 6 + 6 a
>> pretty(H-F+G)
 
                                2                3
                             8 a  + 7 a + 2 - 6 a
 
>> pretty(H-F-G)
  
                                  2              3
                             - 2 a  - a + 8 - 6 a
 
We can also perform these operations by using matlab’s specific symbolic computation command symop. In 
general, the command symop applies the specified operations (op) in quotation marks to the symbolic (sym) 
variables in the order presented.
 
>> pretty(symop(H,'+',F,'+',G))
  
                                2                3
                             8 a  - 3 a + 6 + 6 a
 
>> pretty(symop(H,'-',F,'+',G))
  
                                2                3
                             8 a  + 7 a + 2 - 6 a
  
>> pretty(symop(H,'-',F,'-',G))
  
                                  2              3
                             - 2 a  - a + 8 - 6 a
 
When it comes to symbolic operations, it is always possible to make use of the interrelationship between matlab 
and maple.
 
>> pretty(sym(maple('3*a^2 - 2*a + 7 + 6*a^3 - 5*a + 2 + 5*a^2 + 4*a - 3')))
  
                                2                3
                             8 a  - 3 a + 6 + 6 a
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>> pretty(sym(maple('3*a^2 - 2*a + 7 - (6*a^3 - 5*a + 2) + 5*a^2 + 4*a - 3')))
  
                                2                3
                             8 a  + 7 a + 2 - 6 a
 
>> pretty(sym(maple('3*a^2 - 2*a + 7 - (6*a^3 - 5*a + 2) - (5*a^2 + 4*a - 3)')))
 
  
                                  2              3
                             - 2 a  - a + 8 - 6 a
 

however, in this simple case it is not necessary to use maple, because matlab already executes the operations 
correctly by introducing symbolic expressions between quotation marks.
 
>> syms a
>> pretty('3*a^2 - 2*a + 7 - (6*a^3 - 5*a + 2) - (5*a^2 + 4*a - 3)')
 
  
                                  2              3
                             - 2 a  - a + 8 - 6 a 

2.2 Integers 
The MATLAB program can work on different platforms. Depending on the power of the hardware and software, 
the program will work with greater or lesser precision. The precision with which MATLAB works means that there 
is virtually no limit to the maximum size of integers that it is capable of handling; the most typical limitation is the 
amount of computer memory available. Thus, all the usual operations with integers are exact, regardless of the size of 
the result.

If we want the result of an operation to appear on screen with a certain number of significant figures, we use the 
symbolic computation command vpa (variable precision arithmetic), whose syntax is:
 
vpa 'operation' no_of _ figures
 

For example, to calculate 7 to the power 400 to 500 significant figures we enter the following:
 
>> vpa '7 ^ 400' 500
  
ans =
 
1094500604336113085424254456486662175299754873359706186335419407515439063163492090021478568469687152
8073999537352825386155249571017070263772889172085286838471044006674397286276116996066357907929105887
8933088274875698178024977088223396398265555596916473536792437134632739719389969690630523317113111727
683195819839003492006097994729312240001.
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The result of the operation is accurate, always placing a point at the end of the result. In this case the result can be 
expressed in fewer than 500 figures, so the solution is exact. If you request a smaller number of significant figures than 
the exact result has, MATLAB will round the number to the appropriate multiple of a power of 10. For example, if we 
perform the above calculation only to 50 significant figures we get:
 
>> vpa ' 7 ^ 400' 50
 
ans =
 
1. 0945006043361130854242544564866621752997548733597e338
 

2.3 Divisibility
MATLAB provides multiple commands relating to divisibility. The program implements a variety of functions with 
integer arguments which will be presented below, most of which concern divisibility. Several of these functions 
are only available if you have installed the extended symbolic mathematics Toolbox. A group of the commands are 
accessible directly, another group first requires the command  maple, and to gain access to the final group, it is 
necessary to load the Maple numtheory library with the command maple(‘with(numtheory)’).

Among the most typical functions with integer arguments are the following:

rem(n,m): the remainder of the division of n by m (valid for real n and m)

sign(n): the sign of n (1 if n > 0, - 1 if n < 0, n real)

binomial(n,m): the binomial coefficient n choose m : n! / (m! (m-n)! )

bernoulli(n): the nth Bernoulli number Bn: text/(et - 1) = S Bn(x) tn/n!   n=0…∞

euler(n) the nth Euler number En: 2/(et + e-t) = S En(x) tn/n!   n=0…∞.

max(n1,n2): the maximum of n1 and n2

min(n1,n2): the minimum of n1 and n2

gcd(n1,n2): the greatest common divisor of n1 and n2

lcm(n1,n2): the least common multiple of n1 and n2

maple(‘irem(n,m)’): the remainder of the division of n by m

maple(‘igcd(n1,n2,…,nk)’): the greatest common divisor of k numbers

maple(‘igcdex(n1,n2,…,nk)’): the greatest common divisor of k numbers using Euclid’s 
algorithm

maple(‘ilcm(n1,n2,…,nk)’): the least common multiple of k numbers

maple(‘max(n1,n2,…,nk)’): the maximum of k numbers

maple(‘min(n1,n2,…,nk)‘): the minimum of k numbers

maple(‘n!’): factorial n (n! = n(n-1) (n-2)…2.1)

maple(‘ifactor(n)’) or factor(n): factorizes n

maple(‘ithprime(k)’): returns the k-th prime

maple(‘seq(ithprime(k),k = 1… n’) or primes(n): returns the first n primes
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maple(‘isprime(n)’) or isprime(n): determines whether n is prime or not

maple(‘type(expr,prime)’): determines if the expression is a prime

maple(‘type(expr,facint)’): determines if the given expression is completely factored or 
not

maple(‘isqrt(n)’): determines if n is perfect square

maple(‘nextprime(n)’): finds the smallest prime larger than n

maple(‘prevprime(n)’): finds the largest prime less than n

Among the most typical functions with integer arguments for which it is necessary to previously load Maple’s 
numtheory library, we have the following:

maple(‘with(numtheory)’) loads the numtheory library to be used before the following 
commands

maple(‘issqr(n)’): determines if n is the square of an integer

maple(‘issqrfree(n)’): determines if n is square-free

maple(‘ifactors(n)’): returns the prime factors of n and their orders

maple(‘factorset(n)’): returns the set of prime factors of n

maple(‘splitters(n)’): returns a list of the divisors of n

maple(‘sigma(n)’): returns the sum of the divisors of n

maple(‘tau(n)’): returns the number of positive divisors of n

maple(‘bigomega(n)’): returns the number of prime divisors of n

maple(‘iroot(n,m)’): returns the integer part of n1/m

maple(‘iquo(n1,n2)’): returns the integer part of the ratio n1/n2

maple(‘b(n)’): returns the nth Bernoulli number Bn

maple(‘fermat(n)’): returns the nth Fermat number: 2^(2^n)+1

Here are some examples:
Factorize the number 24:

 
>> maple ('ifactor(24)')
 
ans =
 
 (2) ^ 3 * (3)
 

Factorize the number 999999999999:
 
>> maple ('ifactor(999999999999)')
 
ans =
 
 (3) ^ 3 *(7) * (11) * (13) * (37) * (101) * (9901)
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Find the remainder of the division of 17 by 3:
 
>> rem (17,3)
 
ans =
 
2
 

Find the remainder of division of 4.1 by 1.2:
 
>> rem (4.1,1.2)
 
ans =
 
0.5000
 

Find the remainder of the division of -4.1 by 1.2:
 
>> rem(-4.1,1.2)
 
ans =
 
-0.5000
 

Find the greatest common divisor of 1000, 500 and 625:
 
>> maple ('igcd (1000,500,625)')
 
ans =
 
125
 

Find the least common multiple of 1000, 500 and 625:
 
>> maple ('ilcm (1000,500,625)')
 
ans =
 
5000
 

Is 99991 a prime number?:
 
>> maple ('isprime (99991)')
 
ans =
 
true
 

Indeed, the number is prime.
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Find the 100th prime number:
 
>> maple ('ithprime (100)')
 
ans =
 
541
 

Find the set of all numbers that divide 24:
 
>> maple('with(numtheory)');maple('divisors(24)')
 
ans =
 
{1, 2, 3, 4, 6, 8, 12, 24}
 

Find the prime factors of 12267845 together with their orders of multiplicity:
 
>> maple('with(numtheory)'); maple('ifactors(12267845)')
 
ans =
 
[1, [[5, 1], [113, 1], [21713, 1]]]
 

Find the set of prime factors of 135678743:
 
>> maple('with(numtheory)');maple('factorset(135678743)')
 
ans =
 
{135678743}
 

Logically, the above number has to be prime:
 
>> maple ('isprime (135678743)')
 
ans =
 
true
 

Find the set of prime factors of the number 135678742:
 
>> maple('with(numtheory)');maple('factorset(135678742)')
 
ans =
 
{2, 1699, 39929}
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Find the list of divisors, the number of divisors and the sum of the divisors of 1000000:
 
>> maple('with(numtheory)');maple('divisors(1000000)')
 
ans =
 
{1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 250000, 3125, 31250, 62500, 125000, 
500000, 1000000, 12500, 625, 15625, 25000, 250, 6250, 1250, 500, 2500, 200, 1000, 5000, 400, 2000, 
160, 800, 4000, 50000, 10000, 100000, 20000, 200000, 40000, 320, 1600, 8000}
 
>> maple('with(numtheory)');maple('tau(1000000)')
 
ans =
 
49
 
>> maple('with(numtheory)');maple('sigma(1000000)')
 
ans =
 
2480437 

eXerCISe 2-4

Find the number of different ways of selecting 9 elements from 45 without repetition. Consider the same problem 
for three elements selected from n.
 
>> maple('binomial(45, 9)')
 
ans =
 
886163135
 
>> maple('expand(binomial(n, 3))')
 
ans =
 
1/6 * n ^ 3-1/2 * n ^ 2 + 1/3 * n 
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eXerCISe 2-5

Find the remainder of the division of 2134 by 3. also find the smallest positive integer k such that k ≡ 12 mod 8.
 
>> rem(2^134,3)
 
ans =
 
1
 
>> maple('chrem([12],[8])')
 
ans =
 
4
 
the syntax of the function chrem will be presented in the next section.

eXerCISe 2-6

Find the prime factors and all the divisors of 18900. also find the 189th prime number.
 
>> maple ('ifactor(18900)')
 
ans =
 
(2)^2*(3)^3*(5)^2*(7)
 
>> maple('with(numtheory)');maple('divisors(18900)')
  
ans =
 
{1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 25, 27, 28, 30, 35, 36, 42, 45, 50, 54, 
60, 63, 70, 75, 84, 90, 100, 105, 108, 126, 135, 1050, 2700, 18900, 525, 1260, 180, 150, 225, 
300, 450, 675, 900, 270, 1350, 540, 140, 175, 189, 210, 252, 315, 350, 378, 420, 630, 700, 
756, 945, 1575, 2100, 3150, 4725, 6300, 1890, 9450, 3780}
 
>> maple('ithprime(189)')
 
ans =
 
1129 
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eXerCISe 2-7

two books have 840 and 384 pages, respectively. If they are formed by sections of an equal number of pages 
(more than 18), calculate the number of pages per section.
 
>> gcd (840, 384)
 
ans =
 
    24 

eXerCISe 2-8

Find the smallest number n that when divided by 16, 24, 30 and 32 leaves the remainder 5.

n-5 will be a multiple of 16, 24, 30 and 32, and we are asked to calculate the least number, so n-5 will be the 
least common multiple of 16, 24, 30 and 32:
 
>> maple ('(16, 24, 30, 32) ilcm')
 
ans =
 
480
        Therefore N = 480 + 5 = 485. 

eXerCISe 2-9

Calculate the factorial of 2000.

We have here an example of the high-precision of matlab:
 
>> maple('2000!')
 
ans =
 
331627509245063324117539338057632403828111720810578039457193543706038077905600822400273230859
732592255402352941225834109258084817415293796131386633526343688905634058556163940605117252571
870647856393544045405243957467037674108722970434684158343752431580877533645127487995436859247
408032408946561507233250652797655757179671536718689359056112815871601717232657156110004214012
420433842573712700175883547796899921283528996665853405579854903657366350133386550401172012152
635488038268152152246920995206031564418565480675946497051552288205234899995726450814065536678
969532101467622671332026831552205194494461618239275204026529722631502574752048296064750927394
165856283531779574482876314596450373991327334177263608852490093506621610144459709412707821313
732563831572302019949914958316470942774473870327985549674298608839376326824152478834387469595
829257740574539837501585815468136294217949972399813599481016556563876034227312912250384709872
909626622461971076605931550201895135583165357871492290916779049702247094611937607785165110684
432255905648736266530377384650390788049524600712549402614566072254136302754913671583406097831
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074945282217490781347709693241556111339828051358600690594619965257310741177081519922564516778
571458056602185654760952377463016679422488444485798349801548032620829890965857381751888619376
692828279888453584639896594213952984465291092009103710046149449915828588050761867924946385180
879874512891408019340074625920057098729578599643650655895612410231018690556060308783629110505
601245908998383410799367902052076858669183477906558544700148692656924631933337612428097420067
172846361939249698628468719993450393889367270487127172734561700354867477509102955523953547941
107421913301356819541091941462766417542161587625262858089801222443890248677182054959415751991
701271767571787495861619665931878855141835782092601482071777331735396034304969082070589958701
381980813035590160762908388574561288217698136182483576739218303118414719133986892842344000779
246691209766731651433494437473235636572048844478331854941693030124531676232745367879322847473
824485092283139952509732505979127031047683601481191102229253372697693823670057565612400290576
043852852902937606479533458179666123839605262549107186663869354766108455046198102084050635827
676526589492393249519685954171672419329530683673495544004586359838161043059449826627530605423
580755894108278880427825951089880635410567917950974017780688782869810219010900148352061688883
720250310665922068601483649830532782088263536558043605686781284169217133047141176312175895777
122637584753123517230990549829210134687304205898014418063875382664169897704237759406280877253
702265426530580862379301422675821187143502918637636340300173251818262076039747369595202642632
364145446851113427202150458383851010136941313034856221916631623892632765815355011276307825059
969158824533457435437863683173730673296589355199694458236873508830278657700879749889992343555
566240682834763784685183844973648873952475103224222110561201295829657191368108693825475764118
886879346725191246192151144738836269591643672490071653428228152661247800463922544945170363723
627940757784542091048305461656190622174286981602973324046520201992813854882681951007282869701
070737500927666487502174775372742351508748246720274170031581122805896178122160747437947510950
620938556674581252518376682157712807861499255876132352950422346387878954850885764466136290394
127665978044202092281337987115900896264878942413210454925003566670632909441579372986743421470
507213588932019580723064781498429522595589012754823971773325722910325760929790733299545056388
362640474650245080809469116072632087494143973000704111418595530278827357654819182002449697761
111346318195282761590964189790958117338627206088910432945244978535147014112442143055486089639
578378347325323595763291438925288393986256273242862775563140463830389168421633113445636309571
965978466338551492316196335675355138403425804162919837822266909521770153175338730284610841886
554138329171951332117895728541662084823682817932512931237521541926970269703299477643823386483
008871530373405666383868294088487730721762268849023084934661194260180272613802108005078215741
006054848201347859578102770707780655512772540501674332396066253216415004808772403047611929032
210154385353138685538486425570790795341176519571188683739880683895792743749683498142923292196
309777090143936843655333359307820181312993455024206044563340578606962471961505603394899523321
800434359967256623927196435402872055475012079854331970674797313126813523653744085662263206768
837585132782896252333284341812977624697079543436003492343159239674763638912115285406657783646
213911247447051255226342701239527018127045491648045932248108858674600952306793175967755581011
679940005249806303763141344412269037034987355799916009259248075052485541568266281760815446308
305406677412630124441864204108373119093130001154470560277773724378067188899770851056727276781
247198832857695844217588895160467868204810010047816462358220838532488134270834079868486632162
720208823308727819085378845469131556021728873121907393965209260229101477527080930865364979858
554010577450279289814603688431821508637246216967872282169347370599286277112447690920902988320
166830170273420259765671709863311216349502171264426827119650264054228231759630874475301847194
095524263411498469508073390080000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000 
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eXerCISe 2-10

Calculate the number 2^115-1 and determine whether or not it is prime. If it is compound, break it down into its 
prime factors. Calculate the closest prime numbers greater than and less than 2^115-1. verify that the largest of 
these two numbers is indeed prime.
 
>> 2 ^ 115-1
 
ans =
 
  4. 1538e + 034
 
We can now calculate the exact value:
 
>> vpa ' 2 ^ 115-1' 100
 
ans =
 
41538374868278621028243970633760767
    
now let’s check if it is prime:
 
>> maple ('isprime(2^115-1)')
 
ans =
 
false
 
thus the number is not prime.

We find the decomposition into prime factors:
 
>> maple ('ifactor(2^115-1)')
 
ans =
 
(31) *(47) * (2646507710984041) *(4036961) * (178481) * (14951)
 
We now calculate the two prime numbers closest to the above number, one less than the number and the other 
greater than the number, and we see that the latter is indeed prime.
 
>> maple('prevprime(2^115-1)')
 
ans =
 
41538374868278621028243970633760701
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>> maple('nextprime(2^115-1)')
 
ans =
 
41538374868278621028243970633760839
 
>> maple('isprime(nextprime(2^115-1))')
 
ans =
 
true 

eXerCISe 2-11

Calculate the first 100 prime numbers.
 
>> maple('seq(ithprime(k),k=1..100)')
    
ans =
 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283293, 
307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 
523, 541 

eXerCISe 2-12

given the number 51648597:

(a) Determine whether or not it is prime.

(b) If it is composite, break it down into prime factors.

(c) Calculate the set of its prime factors.

(d) Find its prime factors with their multiplicities.

(e) Find the set of its divisors.

(f) Find the sum of its divisors.

(g) Find the number of its divisors.
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a)
 
>> maple ('isprime (51648597)')
 
ans =
 
false
 
thus, it is not prime.
 
b)
 
>> maple('ifactor(51648597)')
 
ans =
 
(3)^4*(7)^3*(11)*(13)^2
 
c)
 
>> maple('with(numtheory)');maple('factorset(51648597)')
 
ans =
 
{3, 7, 11, 13}
 
d)
 
>> maple('with(numtheory)');maple('ifactors(51648597)')
 
ans =
 
[1, [[3, 4], [7, 3], [11, 1], [13, 2]]]
 
e)
 
>> maple('with(numtheory)');maple('divisors(51648597)')
 
ans =
 
{1, 3, 7, 9, 11, 13, 21, 27, 33, 39, 49, 63, 77, 81, 91, 99, 117, 819, 429, 297, 343, 351, 
3972969, 11583, 4459, 14553, 3861, 1053, 231, 147, 1287, 441, 3003, 9009, 693, 51648597, 
33957, 5733, 91091, 507, 305613, 120393, 273, 150579, 49049, 637637, 21021, 273273, 63063, 
819819, 31941, 7371, 7007, 1565109, 95823, 51597, 24843, 74529, 117117, 81081, 1054053, 
27027, 351351, 13377, 173901, 40131, 521703, 1911, 147147, 1912911, 361179, 4695327, 1324323, 
17216199, 567567, 7378371, 17199, 223587, 39039, 10647, 13013, 13689, 16731, 50193, 57967, 
3549, 4563, 5577, 637, 8281, 1001, 189189, 2459457, 441441, 5738733, 6237, 2079, 1183, 1521, 
1859, 11319, 1029, 3087, 1323, 9261, 567, 3969, 27783, 539, 891, 3773, 1617, 4851, 101871, 
43659, 169, 670761, 2457, 189, 143}
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f)
 
>> maple('with(numtheory)');maple('sigma(51648597)')
 
ans =
 
106286400
 

g)
 
>> maple('with(numtheory)');maple('tau(51648597)')
 
ans =
 
120 

2.4 Modular Arithmetic
MATLAB’s elementary number theoretic cababilities can be expanded via the numtheory library of the Extended 
Symbolic Math toolbox, which incorporates commands related to modular arithmetic. We have the following:

maple(‘mroot(n1, n2, n3)’) is n11/n2 modulo n3

maple(‘msrqt(n1,n2)’) is n11/2 modulo n2

maple(‘nthpow(n1,n2)’) is the largest n such that n divides n1n2

maple(‘chrem([n1…nx],[m1…mx])’) is the unique integer n such that  
n(mod mi) = ni i=1.....x

maple(‘imagunit(n)’) gives √-1 modulo n

maple(‘mlog(p,q,r)’) gives the logarithm of p to base q modulo r

maple(‘phi(n)’) gives the number of positive integers less than or equal to n that are 
relatively prime with n

maple(‘invphi(n)’) the inverse phi function (i.e. returns the set of positive integers k 
such that phi(k)=n)

maple(‘jacobi(n1,n2)’) or maple(‘J(n1,n2)’) gives the Jacobi symbol of the integers n1 
and n2, i.e. it returns 1 if n1 is relatively prime with n2 and n2 is positive and odd, n2 if 
n1 is not a positive odd integer, and -1 otherwise

maple(‘legendre(n1,n2)’) or maple(‘L(n1,n2)’) gives the Legendre symbol of the 
integers n1 and n2, i.e. it returns 1 if n1 is a quadratic residue modulo n2, and -1 if it is 
not (n1 is a quadratic residue modulo n2 if there exists an integer m such that m2≡n1 
(mod n2))

maple(‘lambda(n)’) gives the size of the largest cyclic group generated by gi(mod n)

maple(‘mersenne(n)’) or maple(‘M(n)’) returns 2n - 1 if it is prime, and if not,  
returns false

maple(‘mcombine(n1,m1,n2,m2)’): gives an integer n such that n ≡ m1(mod n1) and  
n ≡ m2(mod n2). Returns FAIL if there is no such n
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maple(‘ mipolys(n,p)’) gives the number of monic univariate irreducible polynomials 
of degree n over Z (mod p)

maple(‘mipolys(n,p,m)’) gives the number of monic univariate irreducible 
polynomials of degree n over the Galois field of order pm

maple(‘mobius(n)’) gives the positive integer equal to the Möbius function of n

maple(‘order(n1,n2)’) gives the order of the integer n1 in the multiplicative group 
modulo n2, i.e. gives the smallest positive integer m such that n1m ≡ 1(mod n2)

maple(‘pprimroot(n)’) gives the smallest pseudo primitive root of the positive integer 
n, that is, the generator of the cyclic group under multiplication modulo n containing 
the integers relatively prime with n, and if it doesn’t exist, gives the least positive 
integer not exceeding n and relatively prime to n

maple(‘pprimroot(n1,n2)’) gives the smallest pseudo primitive root of the positive 
integer n2 that is greater than n1

maple(‘primroot(n)’) gives the smallest primitive root of the positive integer n, that is, 
the generator of the cyclic group under multiplication modulo n containing relatively 
prime integers with n

maple(‘primroot(n1,n2)’) gives the smallest primitive root of the positive integer n2 
that is greater than n1

maple(‘quadres(n1,n2)’) determines if n1 is a quadratic residue modulo n2

maple(‘rootsunity(p,n)’)  give all p-th roots of unity modulo n

maple(‘safeprime(n)’) calculates the smallest prime p greater than n such that (p-1) / 2 
is also prime

Below are some examples:
To find the logarithm of 1000000 in base 8 and modulo 52 we do the following:

 
>> maple('with(numtheory)');maple('mlog(1000000,8,52)')
 
ans =
 
4
 

To find the fifth root of 1000000 modulo 52:
 
>> maple('with(numtheory)');maple('mroot(1000000,5,52)')
 
ans =
 
40
 

To find the square root of -1 modulo 5:
 
>> maple('with(numtheory)');maple('imagunit(5)')
 
ans =
 
2
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To check if 24- 1 and 25- 1 are primes:
 
>> maple('with(numtheory)');maple('mersenne(4)')
 
ans =
 
false
 
>> maple('with(numtheory)');maple('mersenne(5)')
 
ans =
 
31
 

To find how many positive integers less than or equal to 15 are relatively prime with 15:
 
>> maple('with(numtheory)');maple('phi(15)')
 
ans =
 
8 

eXerCISe 2-13

Find the largest integer n such that n3 divides 6561. also find the square root of n modulo 7.
 
>> maple('with(numtheory)'); maple('nthpow (6561,3)')
 
ans =
 
(9)^3
 
>> maple('with(numtheory)');maple('msqrt(9,7)')
 
ans =
 
3 
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eXerCISe 2-14

Find the integer n that simultaneously satisfies the equations n ≡ 1000 (mod 37) and n ≡ 1500 (mod 53). also find 
the integer n that simultaneously satisfies the equations n ≡ 500 (mod 3), n ≡ 600 (mod4) and n ≡ 700 (mod 5). Is 
there an integer m such that m2 ≡ 1000 (mod 37)? Finally, find the smallest integer k such that 1500k ≡ 1 (mod 53).
 
>> maple('with(numtheory)');
>> maple mcombine(37,1000,53,1500)
 
ans =
 
334
 
>> maple chrem([500,600,700],[3,4,5])
 
ans =
 
20
 
>> maple legendre(1000,37)
 
ans =
 
1
 
>> maple order (1500,53)
 
ans =
 
13
 
We therefore conclude that there is such an integer m.

eXerCISe 2-15

Find the number of monic irreducible univariate polynomials of degree 3 over the ring Z (mod 17). Find the 
number of monic univariate irreducible polynomials of degree 5 over the galois field of order 711.
 
>> maple('with(numtheory)');
>> maple mipolys(3,17)
 
ans =
 
1632
 
>> maple mipolys(5,7,11)
 
ans =
 
6045360394355011189649410336790819322177683040 
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eXerCISe 2-16

Find the smallest generator of the cyclic group under multiplication modulo 1500 containing integers relatively 
prime with 1500. Find such a generator with the condition that it be greater than 11.
 
>> maple('with(numtheory)');
>> maple pprimroot(1500)
 
ans =
 
7
 
>> maple pprimroot(10,1500)
 
ans =
 
11 

eXerCISe 2-17

Find the fifth roots of unity modulo 11. also find the smallest prime p greater than 1000 such that (p-1)/2 is also 
prime.
 
>> maple('with(numtheory)');
>> maple rootsunity(5,11)
 
ans =
 
1, 3, 4, 5, 9
 
>> maple safeprime(1000)
 
ans =
 
1019 

2.5 Divisibility in Z[√n]
Via the numtheory library of the Extended Symbolic Math toolbox, MATLAB allows you to perform divisibility tasks in 
the ring Z[√n], where n is any integer. In this regard, the program implements the following functions:

maple(‘factorEQ(n,m)’) calculates the entire factorization of m in the Euclidean ring 
Z[n1/2]

maple(‘sq2factor(n)’) gives the entire factorization of n in Z[√2]

maple(‘sum2sqr(n)’) gives a list of pairs of numbers whose squares sum to n
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eXerCISe 2-18

Factorize the following:

(a) 38477343 in the ring Z[√11]

(b) 38434 *√33 in the ring Z[√33]

(c) 408294234124-4242 *√29 in the ring Z[√29]
 
>> maple('with(numtheory)');
>> maple factorEQ(38477343,11)
 
ans =
 
 (3) * (125 + 34 * 11 ^(1/2)) * (125-34 * 11 ^(1/2)) *(85 + 16 * 11 ^(1/2)) * (85-16 *  
11 ^(1/2))
 
Written in radical form, this is:

( )3 125 34 11 125 34 11 85 16 11 85 16 11+( ) -( ) +( ) -( )  

>> maple factorEQ (38434 * sqrt (33), 33)
 
ans =
 
(33 ^(1/2)) * (- 23 + 4 * 33 ^(1/2)) * (5/2 + 1/2 * 33 ^(1/2)) * (5/2-1/2 * 33 ^(1/2)) *  
(11 + 2 * 33 ^(1/2)) ^ 2 * (58 + 7 * 33 ^(1/2)) * (58-7 * 33 ^(1/2))
 
Written in radical form, this is:

( )33 23 4 33
5

2

1

2
33

5

2

1

2
33 11 2 33 58 7 33 58

2

- +( ) +æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ +( ) +( ) --( )7 33

 

>> maple factorEQ (408294234124-4242 * sqrt (29), 29)
 
ans =
 
-(2) *(1/2 + 1/2 * 29 ^(1/2)) * (1/2-1/2 * 29 ^(1/2)) *(5/2-1/2 * 29 ^(1/2)) ^ 4 * (11 + 2 * 
29 ^(1/2)) *(4 + 29 ^(1/2)) * (38 + 7 * 29 ^(1/2)) *(955872689/2 + 331629325/2 * 29 ^(1/2))
 
Written in radical form, this is:

-( ) +æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ +( ) +( )2

1

2

1

2
29

1

2

1

2
29

5

2

1

2
29 11 2 29 4 29

4

111 2 29 38 7 29

955872689

2

331629325

2
29

+( ) +( )

+æ
è
ç

ö
ø
÷
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eXerCISe 2-19

Factorize the following in Z[√2]:

a) (1-√2)-4

b) 83424959

c) 9232-932*√2
 
>> maple('with(numtheory)');
>> maple sq2factor ((1-sqrt (2)) ^(-4))
 
ans =
 
(2 ^(1/2) + 1) ^ 4
 

Written in radical form, this is:

1 2
4

+( )  

>> maple sq2factor (83424959)
 
ans =
 
 (9503 + 1855 * 2 ^(1/2)) *(9503-1855 * 2 ^(1/2))
 

Written in radical form, this is:

9503 1855 2 9503 1855 2+( ) -( )  

>> maple sq2factor (9232-932 * sqrt (2))
 
ans =
 
(2 ^(1/2)) ^ 5 * (2-^(1/2)-1) * (1 + 3 * 2 ^(1/2)) * (5 + 2 ^(1/2)) * (17 + 59 * 2 ^(1/2))
 
Written in radical form, this is:

2 1 2 1 3 2 5 2 17 59 2
5( ) - +( ) +( ) +( ) +( )
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2.6 Diophantine Equations
Via the numtheory library of the Extended Symbolic Math toolbox, MATLAB can attempt to solve Diophantine 
equations, i.e., it can find integer solutions of certain equations, inequalities, systems of equations and systems of 
inequalities. In this regard, the program implements the following functions:

maple(‘kronecker({ineq1,…,ineqx},{var1,1,…,var1,m},{var2,1,…,var2,n})’) gives the 
Diophantine approximation, in the inhomogeneous case, of the specified inequalities 
with respect to the given two sets of variables

maple(‘minkowski({ineq1,…,ineqx},{var1,1,…,var1,m},{var2,1,…,var2,n})’) gives the 
Diophantine approximation, in the homogeneous case, of the specified inequalities 
with respect to the given two sets of variables

maple(‘thue(f(x,y) = m,[x,y])’) solves the equation for f(x,y)∈Z[x, y] irreducible over 
Q[x,y] and integer m

maple(‘thue(f(x,y)£m, [x, y])’) solve the inequality for f(x,y)∈Z[x, y] irreducible over 
Q[x, y] and integer m

eXerCISe 2-20

solve (integer solutions) the following equations and inequalities in Z[x,y]:

a) x2 + x y + y2= 19

b) abs(x3 + x2 y - 2 x y2 - y3)£ 5

c) abs(x5 + x4 y - 4 x3 y2 - 3x2 y3 + 3x y4 + y5) £ 10

d) x3 + y3 = 5

a)
 
>> maple('with(numtheory)');
>> maple thue(x^2 + x*y + y^2 = 19,[x,y])
 
[x = 5, y = - 3], [x = - 2, y = - 3], [x = 2, y = - 5], [x = - 2, y = 5],
[x = - 5, y = 3], [x = 2, y = 3], [x = - 5, y = 2],
[x = - 3, y = - 2], [x = 5, y = - 2], [x = 3, y = 2],
[x = - 3, y = 5], [x = 3, y = - 5]
 
b)
 
>> maple thue(abs(x^3 + x^2*y-2*x*y^2-y^3) < = 5 [x, y])
 
[x = 0, y = 0], [x = 1, y = 0], [x = 1, y = 1], [x = 5, y = 4],
[x = - 5, y = - 4], [x = - 2, y = 1], [x = - 1, y = 0],
[x = - 1, y = 1], [x = - 1, y = 2], [x = - 1, y = - 1],
[x = 1, y = - 2], [x = 1, y = - 1], [x = - 4, y = 9], [x = 0, y = 1],
[x = 0, y = - 1], [x = 2, y = - 1], [x = 4, y = - 9,]
[x = - 9, y = 5], [x = 9, y = - 5]
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c)
 
>> maple thue(abs(x^5 + x^4*y-4*x^3*y^2-3*x^2*y^3 + 3*x*y^4 + y^5) < = 10, [x, y])
 
[x = 0, y = 0], [x = 1, y = 0], [x = 1, y = 1], [x = - 1, y = 1],
[x = - 2, y = 1], [x = 0, y = 1], [x = 0, y = - 1],
[x = - 1, y = - 1], [x = - 1, y = 0], [x = 1, y = - 1],
[x = 2, y = - 1]
 

d)
 
>> maple thue(x^3 + y^3 =5,[x,y])
 
Error, (in thue) this binary form is not irreducible 

eXerCISe 2-21

solve the following Diophantine system in both homogeneous and inhomogeneous cases:

|ez1 + 21/2z2 - s1 | £ 10-2

|31/3 z1 + p z2 - s2 | £ 10 -4

 
>> maple('with(numtheory)');
>> maple minkowski ({abs (exp(1)*z1 + 2^(1/2)*z2 - s1 ) <=10^(-2),
   abs (3^(1/3)*z1 + Pi*z2 - s2 ) <=10^(-4)}, {z1,z2},{s1,s2})
 
         [z1 = 7484], [z2 = -2534], [s1 = 16760], [s2 = 2833]
 
>> maple kronecker ({abs (exp(1)*z1 + 2^(1/2)*z2 - s1 ) <=10^(-2),
   abs (3^(1/3)*z1 + Pi*z2 - s2 ) <=10^(-4)}, {z1,z2},{s1,s2})
 
         [z1 = - 1014], [z2 = 5300], [s1 = 4739], [s2 = 15188] 

2.7 Number Systems
MATLAB allows you to work with number systems to any base, as long as the extended symbolic math Toolbox is 
available. It also allows you to express all kinds of numbers in different bases. The following functions are available:

maple(‘convert(decimal,base,n_base)’) or dec2base(decimal,n_base) (base 10) 
converts the specified decimal number to the base n_base

base2dec(number,B) converts the given number in base B to decimal

maple(‘convert(decimal,binary)’) or dec2bin(decimal) converts the specified decimal 
number to base 2 (binary)

maple(‘convert(decimal,octal)’) converts the specified decimal number to base 8 
(octal)
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maple(‘convert(decimal,octal,n)’) or dec2hex(decimal)  converts to base 8 (octal) the 
specified decimal number with n digits of precision

maple(‘convert(decimal,hex)’) converts the decimal number specified to base 16 
(hexadecimal)

maple(‘convert(binary,decimal,binary)’) or bin2dec (binary) converts the specified 
binary number to decimal

maple(‘convert(octal,decimal,octal)’) converts the octal number to decimal

maple(‘convert(hexadecimal,decimal,hex)’) or hex2dec (hexadecimal) converts the 
specified base 16 number to decimal

maple(‘convert([a,b,…,c],base,old_base,new_base)’) converts the number whose digits 
in the old base are: c… ba, to the new base. The result is a list with the figures placed in 
the reverse order to the usual ordering

maple(‘convert(decimal,double,option)’) converts a decimal number to a double-
precision hexadecimal according to the given option (ibm, mips and vax)

maple(‘convert(hexad,double,maple,option)’) converts the given double-precision 
hexadecimal number to a Maple format hexadecimal according to the given option 
(ibm, mips and vax)

eXerCISe 2-22

express the decimal number 2342424 in base 2. also express the decimal number 242345341 in base 16.
 
>> maple ('convert(2342424,binary)')
 
ans =
 
1000111011111000011000
 
>> maple('convert(242345341,hex)')
 
ans =
 
E71E57D 
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eXerCISe 2-23

express the binary number 100101 in base 10, and express in base 10 the hexadecimal number ffffaa00. Find in 
base 10 the result of the operation of hexadecimal numbers fffaa2 + ff – 1.
 
>> maple ('convert(100101,decimal,binary)') or  base2dec('100101',2)
 
ans =
 
37
 
>> maple ('convert (FFFFAA0, decimal, hex)') or  base2dec ('FFFFAA0', 16)
 
ans =
 
268434080
 
>> maple ('convert (FFFAA2, decimal, hex) + convert(FF,decimal,hex) - 1')
 
ans =
 
16776096
 
>> base2dec ('FFFAA2', 16) + base2dec('FF',16)-1
 
ans =
 
    16776096 

eXerCISe 2-24

Calculate in base 5 the results of the operation:

a25aaff616 + 6789aba12 + 11002218 + 356713 – 1250

We first convert the base 12 number 6789aba to decimal:
 
>> base2dec('6789aba',12)
 
ans =
 
19840750
 
or we can also use the function convert:
 
>> maple('convert([10,11,10,9,8,7,6],base,12,10)')
 
ans =
 
[0, 5, 7, 0, 4, 8, 9, 1]
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let us not forget that this form of the function convert returns the result with the figures in the reverse order to 
the usual ordering.

We now transform the base 3 number 1100221 to decimal:
 
>> base2dec('1100221',3)
 
ans =
 
   997
 

We can also perform this operation as follows:
 
>> maple('convert([1,2,2,0,0,1,1],base,3,10)')
 
ans =
 
[7, 9, 9]
 
the number in base 10 is 997. now we calculate the result of the entire operation in base 10:
 
>> maple ('convert(a25aaf6,decimal,hex) + 19840750 + convert(35671,decimal,octal) +  
997-1250')
 
ans =
 
190096544
 
the same result is obtained directly as follows:
 
>> base2dec('a25aaf6',16) + base2dec('6789aba',12) + base2dec('35671',8) + 
base2dec('1100221',3)-1250
 
ans =
 
   190096544
 
but we still need to convert this result to base 5:
 
>>  maple('convert([4,4,5,6,9,0,0,9,1],base,10,5)')
 
ans =
 
[4, 3, 1, 2, 4, 0, 1, 3, 1, 2, 4, 3]
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thus, the final result of the operation in base 5 is 342131042134.

this last step could also have been determined as follows:
 
>> dec2base (190096544,5)
 
ans =
 
342131042134 

eXerCISe 2-25

In base 13, find the result of the following operation:

(666551)4 (aa199800a)7 + (fffaaa125)11 / (33331 + 6)16

First of all, we convert all numbers to base 10:
 
>> maple('convert([1,5,5,6,6,6],base,7,10)')
 
ans =
 
[7, 8, 5, 7, 1, 1]
 
>> maple('convert([10,0,0,8,9,9,1,10,10],base,11,10)')
 
ans =
 
[7, 6, 9, 3, 2, 8, 1, 4, 3, 2]
 
>> maple ('convert (FFFAAA125, decimal, hex)')
 
ans =
 
68713881893
 
>> maple('convert([1,3,3,3,3],base,4,10)')
 
ans =
 
[1, 2, 0, 1]
 
now we carry out the proposed calculations in base 10.
 
 >> vpa ' 117587 * 2341823967 + 79 * 68713881893 /(1021+6)' 15
 
ans =
 
275373340490852
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a more direct way of doing all of the above is:
 
>> base2dec('666551',7) * base2dec('aa199800a',11) + 79 * base2dec('fffaaa125',16) / 
(base2dec ('33331', 4) + 6)
 
ans =
 
           275373340490852
 

We now transform the result gained into base 13.
 
>> maple('convert([2,5,8,0,9,4,0,4,3,3,7,3,5,7,2],base,10,13)')
 
ans =
 
[6, 9, 4, 1, 12, 3, 6, 9, 7, 6, 8, 10, 11]
 

thus, the final result in base 13 is the number ba867963C1496.

this last conversion can also be done as follows:
 
>> dec2base (275373340490852,13)
 
ans =
 
BA867963C1496 

eXerCISe 2-26

Convert the decimal 125.7864 to binary and convert the results of the decimal operation 8796.43 + 0.6789 - 
4.25 to octal.
 
>> maple('convert(125.7864, binary)')
 
ans =
 
1111101.110010010
 
>> vpa '8796.43+0.6789-4.25'
 
ans =
 
8792.8589
 
>> maple('convert(8792.8589, octal)')
 
ans =
 
21130.66760336645 
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Chapter 3

Real and Complex Numbers

3.1 Rational Numbers 
A rational number is a number of the form p/q, where p and q are integers. That is, the rational numbers are those 
numbers that can be represented as the quotient of two integers. The way in which MATLAB treats rational numbers 
is different from the majority of calculators.

If we ask a calculator to calculate the sum 2/4 + 24/144, most will return something like 0.6666667, which is no 
more than an approximation of the result.

MATLAB can work with rational numbers in exact mode, so the result of arithmetic expressions involving 
rational numbers is always another rational number. To this end, it is necessary to activate the rational format with 
the command format rat. However, if the reader so wishes, MATLAB can also return decimal approximations of 
rational numbers, activating any other type of format (e.g. format short or format long). MATLAB evaluates rational 
expressions in exact mode as follows:
 
>> format rat
 
>> 2/4 + 24/144
 
ans =
 
2/3
 

By dealing with rational numbers exactly as ratios of integers, rounding errors are not introduced in calculations 
with fractions, which can become very serious, as evidenced by the theory of errors. Note that, once the rational 
format is enabled, when MATLAB is asked to add two rational numbers, it returns a rational number as a ratio of 
integers and thus represents it symbolically, as you can see in the following examples:
 
>> (2/3-3/5) * 5/2
 
ans =
 
1/6
 
>> 2 + 2/5
 
ans =
 
12/5
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In the second example, the number 12/5 is exactly equivalent in value to 2.4, but MATLAB represents these 
numbers in different ways.

Once the rational format is enabled, operations with rational numbers will be exact until a different format is 
introduced, in which case we can also obtain decimal approximations.

A floating point or decimal number is interpreted as exact if the rational format has been enabled. If there is a 
number with a floating point expression, MATLAB will treat it as an exact expression and represent it as a rational 
number. If an irrational number appears in a rational expression, MATLAB will approximate it by a fraction and then 
work with it in rational form.
 
>> 1/2 + 2.4/144
 
ans =
 
31/60
 
>> .5/7 + pi
 
ans =
 
5626/1751
 

Another way to work with accurate results with rational numbers, without having to enable the rat format,  
is to use the command simplify. Using this command allows you to work with rational expressions exactly, even 
if the expressions contain irrational numbers. The use of this command requires that the numeric expressions be 
considered as symbolic, so you will need to prepend to all numeric expressions the command sym.
 
>> simplify(sym(2/5+3/4))
  
ans =
  
23/20
 
>> simplify(sym(2/5+3/4+pi))
  
ans =
  
2415951884441619/562949953421312
 
>> simplify(sym(2/5+3/4)+pi)
  
ans =
  
23/20 + pi
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There are certain commands that can be used when working with rational numbers. Among the most important 
are the following:

simplify(sym(rational_expr)) completely simplifies the specified rational expression 
and gives the result as a rational number

[n,m] = numden(rational_expr) gives the simplified numerator and denominator of 
the rational expression

maple(‘simplify(rational)’) simplifies the specified rational number

maple(‘normal(rational_expr)’) simplifies the specified rational expression

maple(‘convert(decimal,fraction)’) converts the decimal to a fraction

maple(‘convert(decimal,rational)’) converts the decimal to rational form

maple(‘denom(fraction)’) gives the denominator of the simplified fraction

maple(‘num(fraction)’) gives the numerator of the simplified fraction

Here are some examples:
 
>> simplify (sym(125/1500))
 
ans =
 
1/12
 
>> maple('simplify(125/1500)')
 
ans =
 
1/12
 
>> maple('normal(125/1500)')
 
ans =
 
1/12
 
>> [n,m]=numden(sym(125/1500))
  
n =
  
1
  
m =
  
12
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>> maple('denom(125/1500)')
 
ans =
 
12
 
>> maple('numer(125/1500)')
 
ans =
 
1
 
>> maple('convert(125.1500,fraction)')
 
ans =
 
2503/20
 
>> maple('convert(125.1500,rational)')
 
ans =
 
2503/20

eXerCISe 3-1

perform the following operations with rational numbers:

a) 3/5+2/5+7/5

b) 1/2+1/3+1/4+1/5+1/6

c) 1/2-1/3+1/4-1/5+1/6

d) (2/3-1/6)-(4/5+2+1/3)+(4-5/7)

e) ((1/5*4/7)/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)

f) ((-1)4 /(2/5)3)-2  / ((-3/7)2 -(2/5)-1)

g) [(2-1/5)2 /(3-2/9)-1]/[(6/7*5/4-(2/7)/(1/2))]3 /(1/2-1/3)
 
a)
 
>> format rat
>> 3/5+2/5+7/5
 
ans =
 
    12/5
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b)
 
>> 1/2+1/3+1/4+1/5+1/6
 
ans =
 
    29/20
 
c)
 
>> 1/2-1/3+1/4-1/5+1/6
 
ans =
 
    23/60
 
d)
 
>> (2/3-1/6)-(4/5+2+1/3)+(4-5/7)
 
ans =
 
   137/210
 
e)
 
>> (1/5*4/7/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)
 
ans =
 
   216/7385
 
f)
 
>> ((-1)^4/(2/5)^3)^(-2)/((-3/7)^2-(2/5)^(-1))
 
ans =
 
   -53/29972
 
g)
 
>> (2-1/5)^2/(3-2/9)^(-1)/(6/7*5/4-(2/7)/(1/2))^3/(1/2-1/3)
 
ans =
 
    432
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alternatively, the operations can be performed as follows:
 
>> simplify(sym(3/5+2/5+7/5))
 
ans =
 
    12/5
 
>> simplify(sym(1/2+1/3+1/4+1/5+1/6))
 
ans =
 
    29/20
 
>> simplify(sym(1/2-1/3+1/4-1/5+1/6))
 
ans =
 
    23/60
 
>> simplify(sym((2/3-1/6)-(4/5+2+1/3)+(4-5/7)))
 
ans =
 
   137/210
 
>> simplify(sym((1/5*4/7/(4/3-2/5))/(6-(5/9-1/7)*5+1/4)))
 
ans =
 
   216/7385
 
>> simplify(sym((-1)^4/(2/5)^3)^(-2)/((-3/7)^2-(2/5)^(-1)))
 
ans =
 
   53/29972
 
>> simplify(sym((2-1/5)^2/(3-2/9)^(-1)/(6/7*5/4-(2/7)/(1/2))^3/(1/2-1/3)))
 
ans =
 
    432
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eXerCISe 3-2

perform the following rational operations:

a) 3/a+2/a+7/a

b) 1/2a+1/3a+1/4a+1/5a+1/6a

c) 1/2a+1/3b+1/4a+1/5b+1/6c

to treat operations with expressions that contain the symbolic variable a, it is necessary to prepend the command 
syms a to declare the variable a as symbolic, and then use simplify. the commands normal, maple and simplify 
can also be used.

a)
 
>> syms a
>> simplify(3/a+2/a+7/a)
 
ans =
 
12/a
 
>> 3/a+2/a+7/a
 
ans =
 
12/a
 
>> maple('3/a+2/a+7/a')
 
ans =
 
12/a
 
b)
 
>> 1/(2*a)+1/(3*a)+1/(4*a)+1/(5*a)+1/(6*a)
 
ans =
 
29/20/a
 
c)
 
>> syms a b c
>> 1/(2*a)+1/(3*b)+1/(4*a)+1/(5*b)+1/(6*c)
 
ans =
 
1/60*(45*b*c+32*a*c+10*a*b)/a/b/c
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eXerCISe 3-3

simplify the following rational expressions as much as possible:

a) (1-a9)/(1-a3)

b) 1/2a+1/3a+1/4a+1/5a+1/6a

c) 1/2a+1/3b+1/4a+1/5b+1/6c

d) (3a+2a+7a)/(a3 +a)

e) 1/(1+a)+1/(1+a)2 +1/(1+a)3

f) 1+a/(a+b)+a2 /(a+b)2

a)
 
>> syms a
>> simplify((1-a^9)/(1-a^3))
 
ans =
 
a^6+a^3+1
 
>> maple('simplify((1-a^9)/(1-a^3))')
 
ans =
 
a^6+a^3+1
 
>> maple('normal((1-a^9)/(1-a^3))')
 
ans =
 
a^6+a^3+1
 
b)
 
>> simplify((1/2)*a+(1/3)*a+(1/4)*a+(1/5)*a+(1/6)*a)
 
ans =
 
29/20*a
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c)
 
>> syms a b c
>> [n, d] = numden (1 /(2*a) + 1 /(3*b) + 1 /(4*a) + 1 /(5*b) + 1 /(6*c))
 
n =
 
45 * b * c + 32 * a * c + 10 * a * b
 
d =
 
60 * a * b * c
 
the result is an algebraic fraction whose numerator is n and whose denominator is d.
 
d)
 
>> simplify ((3*a+2*a+7*a) /(a^3+a))
 
ans =
 
12 /(a^2+1)
 
e)
 
>> maple ('normal (1 /(1+a) + 1 /(1+a) ^ 2 + 1 /(1+a) ^ 3)')
 
ans =
 
(3 + 3 * a + a ^ 2) /(1+a) ^ 3
 
f)
 
>> maple('simplify(1+a/(a+b)+a^2/(a+b)^2)')
 
ans =
 
(3 * a ^ 2 + 3 * a * b + b ^ 2) / (a + b) ^ 2

3.2 Continued Fractions
MATLAB enables you to work with continued fractions using the following commands. With the exception of the first 
and last commands, these can be found in Maple’s numtheory library:

rat(r): returns the continued fraction of the rational number r

maple(‘cfrac (r)’): returns the continued fraction of the rational number r

maple(‘cfrac(polynomial)’): returns the continued fraction for each of the real roots of 
the given univariate polynomial
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maple(‘invcfrac (frac)’): converts the continued fraction frac to an irrational quadratic

maple(‘nthnumer(expr,n)’): gives the nth numerator of the continued fraction expr

maple(‘nthdenom(expr,n)’): gives the nth denominator of the continued fraction expr

maple(‘nthdconver(expr,n)’): gives the nth partial quotient of the continued fraction expr

maple(‘pdexpand(rational)’): gives the periodic expansion of the given rational 
number, i.e. it gives the sign, the positive integer part, the non-recurrent part and the 
periodic part

maple(‘convert(number,confrac,m)’): converts a number to a continued fraction with 
m partial quotients

Here are some examples:
 
>> rat(3/5)
 
ans =
 
1 + 1/(-3 + 1/(2))
 
>> maple('cfrac(3/5)')
 
ans =
 
1/(1+1/(1+1/2))
 
>> pretty(sym(maple('cfrac(3/5)')))
  
     1
-----------
       1
1 + -------
    1 + 1/2
 
>> pretty(sym(maple('cfrac(125.1500)')))
  
           1
125 + -----------
             1
      6 + -------
          1 + 1/2
 
>> maple('convert(125.1500, confrac, 4)')
 
ans =
 
[125, 6, 1, 2]
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>> maple nthnumer([125, 6, 1, 2],3)
 
ans =
 
2503
 
>> maple nthdenom([125, 6, 1, 2],3)
 
ans =
 
20

eXerCISe 3-4 

express the following numbers as continued fractions:

a) 7/9

b) the roots of the polynomial x6 -  x 5 - 6x4 + 6x3 + 8x2 - 8x + 1

c) the roots of the polynomial - 117260219 x6 + 139540883 x5 + 17033080 x4 + 800302 x3 + 18628 x2 x + 216 + 1

d) 11/9999997

e) 311/2

 
>> maple('with(numtheory)');
>> maple cfrac(7/9)
 
ans =
 
1/(1+1/(3+1/2))
 
>> pretty(sym(maple('cfrac(7/9)')))
 
     1
-----------
       1
1 + -------
    3 + 1/2
 
>> maple('cfracpol(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)')
 
ans =
 
[-2, 44, 1, 3, 3, 1, 1, 1, 3, 2, 3, ... ],
[-2, 1, 1, 6, 1, 7, 34, 1, 12, 1, 5, ...],
[0, 6, 1, 2, 4, 3, 1, 1, 3, 1, 63, ...  ],
[0, 1, 2, 1, 2, 2, 16, 1, 1, 5, 11, ... ],
[1, 1, 1, 1, 7, 6, 10, 2, 29, 20, 1, ...],
[1, 1, 10, 3, 1, 13, 1, 1, 3, 1, 4, ... ]
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>> maple('cfracpol( -117260219*x^6+139540883*x^5 + 17033080*x^4 + 800302*x^3 
+18628*x^2+216*x+1)')
 
ans =
 
[-1, 1, 41, 7, 1, 7, 34, 1, 12, 1, 5, ...],
[-1, 1, 42, 1, 1, 6, 1, 2, 4, 3, 1, ...  ],
[-1, 1, 42, 1, 1, 1, 2, 1, 2, 2, 16, ... ],
[-1, 1, 42, 1, 2, 1, 1, 1, 7, 6, 10, ... ],
[-1, 1, 42, 1, 2, 1, 10, 3, 1, 13, 1, ...],
[1, 3, 3, 1, 1, 1, 3, 2, 3, 4, 1, ...    ]
 
>> pretty(sym(maple('cfrac(11/9999997)')));
 
ans =
 
                      1
           ------------------------
                           1
           909090 + ---------------
                             1
                    1 + -----------
                               1
                        1 + -------
                            1 + 1/3
 
>> pretty(sym(maple('cfrac(31^(1/2))')));
 
ans =
 
                                    1
           5 + --------------------------------------------
                                      1
               1 + ----------------------------------------
                                        1
                   1 + ------------------------------------
                                          1
                       3 + --------------------------------
                                            1
                           5 + ----------------------------
                                              1
                               3 + ------------------------
                                                1
                                   1 + --------------------
                                                  1
                                       1 + ----------------
                                                     1
                                           10 + -----------
                                                       1
                                                1 + -------
                                                    1 + ...
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3.3 Irrational Numbers
Irrational numbers, because of their special nature, have always created difficulties in numerical calculations. The 
impossibility of representing an irrational accurately in numeric mode (using ten decimal digits, for example) is the 
cause of most of the problems. MATLAB can represent the results with greater accuracy or to any accuracy specified 
by the user. Nevertheless, by definition, an irrational number cannot be represented exactly as the ratio of two 
integers. If ordered to find the square root of 17, MATLAB will return 4.12310562561766. However, the result can be 
treated symbolically using the maple command, so that sqrt[17] will be represented by 17 ^(1/2):
 
>> sqrt(17)
 
ans =
 
   4.12310562561766
 
>> maple('sqrt(17)')
 
ans =
 
17 ^(1/2)
 

Note that if the square root of a floating point (decimal) number, e.g. √17.0, is requested, MATLAB always 
calculates an approximate result, even using the command maple.
 
>> maple ('sqrt (17.0)')
 
ans =
 
4.123105625617661
 

The main difficulty presented by the treatment of irrational numbers is the impossibility of representing them 
accurately, unless they are treated as symbolic constants, so that if it is asked to calculate the sum of the square root 
of 2 and the square root of 3 (using the function sqrt), MATLAB will return as a result 2^(1/2) + 3^(1/2), since this is 
the only way to accurately represent the sum (using the command maple). In all subsequent calculations involving 
2^(1/2) and 3^(1/2) they will be operated on symbolically following the mathematical rules of calculation with 
radicals.

Of course we can also work with decimal approximations of irrational numbers, as we pointed out above.
Among the commands used to work with irrational numbers, we have the following:

maple(‘radsimp(expr)’) simplifies the expression and, where necessary, rationalizes 
denominators

maple(‘simplify(expr,radical)’) simplifies the given irrational expression using 
standard rules of radicals

maple(‘simplify(expr,symbolic)’) simplifies the expression assuming all algebraic 
subexpressions are positive

maple(‘combine(expr,radical)’) simplifies the given irrational expression and returns 
the result in radical form

maple(‘combine(expr,radical,symbolic)’) simplifies the given irrational expression and 
returns the result in radical form, assuming all algebraic subexpressions are positive
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maple(‘combine(expr,power)’) simplifies the given irrational expression returning the 
result in terms of powers

maple(‘normal(expr)’) simplifies the given irrational expression

maple(‘readlib(radnormal): radnormal(irrational_expression)’) simplifies 
expressions containing various levels of radicals

maple(‘readlib(radnormal): rationalize(irrational_expression)’) rationalizes 
denominators

maple(‘simplify(irrat_expr)’) simplifies the given irrational expression

eXerCISe 3-5

perform the following operations with irrational numbers:

a) 3 a  + 2 a  - 5 a  + 7 a  

b) 2  + 3 2  - 2 /2

c) 4a1/3 - 3b1/3 - 5a1/3 - 2b1/3 + ma1/3

d) 432  + 75  - 363  - 108

e) 3a  27a

f) a  a3

g) (3a2 b5)1/3 (9a3 b2)1/4 (3ab)1/6

h) a a5

 
a)
 
First, we use the command simplify:
 
>> syms a
>> simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a))
  
ans =
 
7 * a ^(1/2)
 
We can also use different variants of the maple(simplify), maple and maple(combine) commands, which yields a 
completely simplified result:
 
>> maple('simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a))')
 
ans =
 
7*a^(1/2)
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>> maple('simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a),radical)')
 
ans =
 
7*a^(1/2)
 
>> maple('combine(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a),sqrt(a))')
 
ans =
 
7 * a ^(1/2)
 
b)
 
We can perform numerical operations directly in matlab, obtaining decimal results either to default accuracy or 
to a predefined accuracy:
 
>> sqrt (2) + 3 * sqrt (2) - sqrt (2) / 2
 
ans =
 
4.9497
 
We can consider the calculation as an algebraic expression, in which case the result obtained is not fully 
simplified:
 
>> sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2)
  
ans =
  
sqrt(49/2)
 
We can apply the command simplify to completely simplify the result:
 
>> simplify(sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2))
 
ans =
 
7/2 * 2 ^(1/2)
 
We can use different variants of the commands maple(simplify) and maple(combine), in which case we also 
obtain a completely simplified result:
 
>> maple('simplify(sqrt(2)+3*sqrt(2)-sqrt(2)/2)')
 
ans =
 
7/2*2^(1/2)
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>> maple('simplify(sqrt(2)+3*sqrt(2)-sqrt(2)/2,radical)')
 
ans =
 
7/2*2^(1/2)
 
>> maple('combine(sqrt(2)+3*sqrt(2)-sqrt(2)/2,power)')
 
ans =
 
7/2*2^(1/2)
 
c)
 
>> syms a b m
>> simplify(4*a^(1/3)- 3*b^(1/3)-5*a^(1/3)- 2*b^(1/3)+m*a^(1/3))
 
ans =
 
-a^(1/3)-5*b^(1/3)+m*a^(1/3)
 
>> maple('simplify(4*a^(1/3)- 3*b^(1/3)-5*a^(1/3)- 2*b^(1/3)+m*a^(1/3))')
 
ans =
 
-a^(1/3)-5*b^(1/3)+m*a^(1/3)
 
>> maple('simplify(4*a^(1/3)-3*b^(1/3)-5*a^(1/3)-2*b^(1/3)+m*a^(1/3),radical)')
 
ans =
 
-a^(1/3)-5*b^(1/3)+m*a^(1/3)
 
>> maple('combine(4*a^(1/3)-3*b^(1/3)-5*a^(1/3)- b^(1/3)+m*a^(1/3),radical)'))
 
ans =
 
-a^(1/3)-5*b^(1/3)+m*a^(1/3)
 
d)
 
If we consider the operation directly, we do not get the exact result:
 
>> sym(sqrt(432)+sqrt(75)-sqrt(363)-sqrt(108))
  
ans =
  
2 ^(-48)
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If we use the command maple(‘simplify’), the exact result is obtained.
 
>> maple('simplify(sqrt(432)+sqrt(75)-sqrt(363)-sqrt(108))')
 
ans =
 
0
 
e)
 
>> maple('simplify(sqrt(3*a)*sqrt(27*a))')
 
ans =
 
9 * a
 

or also:
 
>> simplify(sym (sqrt(3*a) * sqrt(27*a)))
 
ans =
 
9*a
 
f)
 
>> simplify(a^(1/2)*a^(1/3))
 
ans =
 
a^(5/6)
 
g)
 
>> maple('simplify((3*a^2*b^5)^(1/3)*(9*a^3*b^2)^(1/4)*(3*a*b)^(1/6),symbolic)')
 
ans =
 
3*a^(19/12)*b^(7/3)
 
h)
 
>> maple('radsimp(sqrt(a*(a^(1/5))))')
 
ans =
 
a ^(3/5)
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eXerCISe 3-6

simplify the following irrational expressions by rationalizing the denominators:

a) 
2

2
 b) 

2

23  c) 
2

43  d) 
3

3
 e) 

a

a

In these cases of rationalization, the simple use of the command simplify solves the problem. You can also use the 
command radsimp.
 
a)
 
>> simplify (sym (2/sqrt (2)))
 
ans =
 
2^(1/2)
 
b)
 
>> maple('simplify( sqrt(2)/2^(1/3))')
 
ans =
 
2^(1/6)
 
c)
 
>> maple('simplify(2/4^(1/3))')
 
ans =
 
2^(1/3)
 
d)
 
>> simplify(sym(3/sqrt(3)))
 
ans =
 
3 ^(1/2)
 
e)
 
>> maple ('simplify(a/sqrt(a), radical)')
 
ans =
 
a ^(1/2)
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eXerCISe 3-7

simplify the following expression:

6 2 2 2 3 2 6- - +

 
>> maple('readlib(radnormal):radnormal(sqrt(6-2*sqrt(2)- 2*sqrt(3)+2*sqrt(6)))')
 
ans =
 
-1 + 2 ^(1/2) + 3 ^(1/2) 

eXerCISe 3-8

rationalize the following expressions:

1

2 5

1 1

1 2

1

1 2

1

1 2

1

1 2
3+ + +

+
- +

+
-

, , ,
a b

 
>> maple('readlib(rationalize):rationalize(1/(2+sqrt(5)))')
 
ans =
 
-2 + 5 ^(1/2)
 
- +2 5
 
>> maple('readlib(rationalize):rationalize( 1/(a^(1/2)+b^(1/3)) )')
 
ans =
 
(-b^(1/3)+a^(1/2))*(a^2+a*b^(2/3)+b^(4/3))/(a^3-b^2)
 

a ab b a b

a b

- +( ) - +( )
-

1 3 2 3 3 2

3 2

/ / /

 
>> maple('readlib(rationalize):rationalize(1/(1+sqrt(2)) + 1/(1-sqrt(2)) )')
 
ans =
 
-2
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>> maple('readlib(rationalize):rationalize( 1/sqrt(1+sqrt(2)) + 1/sqrt(1-sqrt(2)) )')
 
ans =
 
-((1-2 ^(1/2)) ^(1/2) + (2 ^(1/2) + 1) ^(1/2)) * (1-2 ^(1/2)) ^(1/2) * (2 ^(1/2) + 1) ^(1/2)
 

- - + +( ) + + -1 2 1 2 1 2 1 2

3.4 Algebraic Numbers
MATLAB can operate with algebraic numbers using two types of representations, one in the form of radicals and the 
other in terms of roots of polynomials (RootOf(polynomial)).

Using the command convert, MATLAB can convert a radical representation to a RootOf representation and vice 
versa, when possible.

The commands for working with algebraic numbers are as follows:

maple(‘convert(RootOf_expression,radical)’) converts a RootOf expression to a radical 
expression

maple(‘convert(radical_expression, RootOf)’) converts a  radical expression to a 
RootOf expression

maple(‘simplify RootOf(expression)’) simplifies the RootOf expression

eXerCISe 3-9

a) Convert the following radical expressions to rootof expressions:

i) 2

ii) 1 23 -

b) perform the reverse conversions of (i) and (ii) above.
 
a)
 
i)
 
>> maple('convert(sqrt(2),RootOf)')
 
ans =
 
RootOf(_Z^2-2)
 
ii)
 
>> maple('convert((1-2^(1/2))^(1/3),RootOf)')
 
ans =
 
RootOf(_Z^3-1+RootOf(_Z^2-2))
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b)
 
>> maple('convert(RootOf(_Z^2-2),radical)')
 
ans =
 
2^(1/2)
 
>> maple('convert(RootOf(_Z^3-1+RootOf(_Z^2-2)),radical)')
 
ans =
 
(1-2 ^(1/2)) ^(1/3)

3.5 Real Numbers
The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. Included 
in the set of rational numbers is the set of integers, so all functions applicable to real numbers will also be valid for 
integers, rational and irrational numbers.

3.6 Common Functions with Real Arguments
MATLAB provides a full range of predefined functions, most of which are discussed later in this book. Within the 
group of functions with real arguments offered by MATLAB, the following are the most important:

Trigonometric functions

Function Inverse

sin(x) asin(x)

cos(x) acos(x)

tan(x) atan(x)

csc(x) acsc(x)

sec(x) asec(x)

cot(x) acot(x)

atan2(x) (inverse tangent in the fourth quadrant)

(continued)
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Hyperbolic functions

Function Inverse

sinh(x) asinh(x)

cosh(x) acosh(x)

tanh(x) atanh(x)

csch(x) acsch(x)

sech(x) asech(x)

coth(x) acoth(x)

Exponential and logarithmic functions

exp(x) exponential of x to base e (e ^ x)

log(x) logarithm of x to base e

log10(x) base 10 logarithm of x

log2(x) base 2 logarithm of x

pow2(x) power to base 2 of x

sqrt(x) square root of x

Specific functions of a numeric variable

abs(x) the absolute value of the real number x

floor(x) the greatest integer less than or equal to the real x

ceil(x) the lowest integer greater than or equal to the real x

round(x) the integer closest to the real x

fix(x) removes the decimal part of the real x

rem(a,b) gives the remainder of the division of a by b

sign(x) gives the sign of the real x (1 if x > 0, - 1 if x < 0)

First, we see how the function round rounds a real number:
 
>> round(2.574)
 
ans =
 
     3
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>> round(2.4)
 
ans =
 
     2
 
>> round(sqrt(17))
 
ans =
 
     4
 

The function ceil is illustrated in the following two cases:
 
>> ceil (4.2)
 
ans =
 
     5
 
>> ceil (4.8)
 
ans =
 
     5
 

The floor function is illustrated in the following two examples:
 
>> floor (4.2)
 
ans =
 
     4
 
>> floor (4.8)
 
ans =
 
     4
 

The fix function simply removes the decimal part of a real number:
 
>> fix (5.789)
 
ans =
 
     5
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3.7 Complex Numbers
Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that i or j 
represents the key value in complex analysis, the imaginary number √- 1. All the usual arithmetic operators can be 
applied to complex numbers, and there are also some specific functions which have complex arguments. Both the real 
and the imaginary part of a complex number can be a real number or a symbolic constant, and operations with them 
are always performed in exact mode, unless otherwise instructed or necessary, in which case an approximation of the 
result is returned. As the imaginary unit is represented by the symbol i or j, the complex numbers are expressed in the 
form a+bi or a+bj. Note that you don't need to use the product symbol (asterisk) before the imaginary unit:
 
>> (2-3i)*(1-i)/(-1+2i)
 
ans =
 
  -1.8000 + 1.4000i
 
>> format rat
>> (2-3i)*(1-i) /(-1+2i)
 
ans =
    -9/5 + 7/5i

3.8 Common Functions with Complex Arguments
MATLAB performs the usual arithmetic operations with complex numbers, but in addition, there are several features 
built into the program especially designed to work with complex variables.

The function real(z) returns the real part of the complex number z:
 
>> real(3 + 4i)
 
ans =
 
      3
 

The function imag(z) returns the imaginary part of z:
 
>> imag(3 + 4i)
 
ans =
 
      4
 

The function conj(z) returns the conjugate of z:
 
>> conj(3 + 4i)
 
ans =
 
      3 - 4i
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The function abs(z) returns the modulus (absolute value) of z:
 
>> abs(3 + 4i)
 
ans =
 
     5
 

The function angle(z) returns the argument of z:
 
>> angle(3 + 4i)
 
ans =
 
    0.9273
 

In addition to these specific functions of a complex variable, there are many other functions that can also be 
applied to complex numbers.

For example, the function round(z) rounds both the real part and the imaginary part of z:
 
>> round(2.7-8.4i)
 
ans =
 
   3.0000 - 8.0000i
 

There are many more functions in MATLAB that work with complex numbers, including sin, cos, exp, log, etc. 
Some of the most important are presented in the following table:

Trigonometric functions

Function Inverse

sin(z) asin(z)

cos(z) acos(z)

tan(z) atan(z)

csc(z) acsc(z)

sec(z) asec(z)

cot(z) acot(z)

atan2(z) (inverse tangent in the fourth quadrant)

(continued)
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Hyperbolic functions

Function Inverse

sinh(z) asinh(z)

cosh(z) acosh(z)

tanh(z) atanh(z)

csch(z) acsch(z)

sech(z) asech(z)

coth(z) acoth(z)

Exponential and logarithmic functions

exp(z) exponential of z to base e (e ^ Z)

log(z) base e logarithm of z

log10(z) base 10 logarithm of z

sqrt(z) square root of z

log2(z)  base 2 logarithm of z

pow2(z)  base 2 power of z

Specific functions for real and imaginary parts

floor(z) applies the function floor(z) to real(z) and imag(z)

ceil(z) applies the function ceil(z) to real(z) and imag(z)

round(z) applies the function round(z) to real(z) and imag(z)

fix(z) applies the function fix(z) to real(z) and imag(z)

Specific functions of a complex variable

abs(z) or maple(‘abs (z)’): modulus (absolute value) of z

angle(z) or maple(‘argument(z)’): argument of z

conj(z) or maple(‘conjugate (z)’): conjugate of z

real(z) or maple(‘Re(z)’): real part of z

imag(z) or maple(‘Im (z)’): imaginary part of z

It should be noted that, as every real number is a complex number (with zero imaginary part), all functions 
defined above are also valid for real variables.
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A number of commands used to simplify and transform complex expressions also play an important role in 
working with complex numbers. These include the following:

expand(sym(expression)) simplifies the complex expression and usually gives the 
output in trigonometric or binary form

maple(‘evalc(expression)’) simplifies the complex expression and usually gives the 
output in trigonometric or binary form

maple(‘simplify(expression,polar)’) simplifies a complex expression in polar form

maple(‘simplify(expression,trig)’) simplifies a complex expression in trigonometric form

maple(‘simplify(expression,power)’) simplifies a complex expression with powers

maple(‘simplify(expression,radical)’) simplifies a complex expression with radicals

maple(‘simplify(expression,sqrt)’) simplifies a complex expression with square roots

maple(‘simplify (expression,ln)’) simplifies a complex expression with logarithms

maple(‘simplify RootOf(expression)’) simplifies a complex expression with algebraic 
numbers

maple(‘convert(expression,polar)’) converts the expression to polar form

maple(‘convert(expression,exp)’) converts the expression to exponential or binary form

maple(‘convert(expression,trig)’) converts the expression to trigonometric or binary form

Here are some examples:
We convert 1 + i to polar form:

 
>> maple('convert(1+i,polar)')
 
ans =
 
polar (2 ^(1/2), 1/4 * pi)
 

We simplify the value of sqrt ((1+2*i) /(1-2*i)):
 
>> maple('evalc(sqrt((1+2*i)/(1-2*i)))')
 
ans =
 
1/5 * 5 ^(1/2) + 2/5 * i * 5 ^(1/2)
 

We convert the complex number 2 * cos(Pi/4) + 2 * I * sin(Pi/4) to binary form:
 
>> maple('convert(2*cos(Pi/4)+2*I*sin(Pi/4),trig)')
 
ans =
2 ^(1/2) + I * 2 ^(1/2)
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We convert the complex number 3 * exp(Pi*I/4) to trigonometric and polar form:
 
>> maple('convert(3*exp(Pi*I/4),trig)')
 
ans =
 
3*cosh(1/4*pi*I)+3*sinh(1/4*pi*I)
 
>> maple('convert(3*exp(Pi*I/4),polar)')
 
ans =
 
polar(3*exp(1/4*pi*Re(I)),argument(exp(1/4*pi*I)))
 

eXerCISe 3-10

Given the complex numbers x = 3 + 2i, Y = 3-2i and Z = i ^ 307, calculate x+Y+Z, x * Y * Z, x/y and y/z.
 
>> 3+2*i + 3-2*i - i^307
 
ans =
 
   6.0000 + 1.0000i
 
>> (3+2*i)*(3-2*i)*i^307
 
ans =
 
   0.0000 -13.0000i
 
>> (3+2*i)/(3-2*i)
 
ans =
 
   0.3846 + 0.9231i
 
>> (3-2*i)/i^307
 
ans =
 
   2.0000 + 3. 0000i
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eXerCISe 3-11

Given the complex numbers x = 2 + 2i and Y = -3-3√3 i, calculate Y3 and x2/ Y90.
 
>> expand(sym(-3-3*sqrt(3)*i)^3)
  
ans =
  
216
 
>> maple('evalc((2+2*i)^2/(-3-3*sqrt(3)*i)^90)')
 
ans =
 
1/1350586945294983814787399212987393606090501966076362410331422244995072 * i

eXerCISe 3-12

Calculate the value of 
i i

i

8 8

3 4
1

-
-

+
-

.
 
>> (i^8-i^(-8))/(3-4*i) + 1
 
ans =
 
   1.0000 - 0.0000i
 

alternatively we can write:
 
>> maple('simplify(evalc(i^8-i^(-8))/(3-4*i) + 1)')
 
ans =
 
1
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eXerCISe 3-13

Calculate the modulus and the argument of each of the following complex numbers:

i i i ii i i i i, , ( ) , ( ) .3 11 3+ -+

 
>> abs(i^i)
 
ans =
 
    0.2079
 
>> angle(i^i)
 
ans =
 
     0
 
>> abs(i^(3+i))
 
ans =
 
    0.2079
 
>> angle(i^(3+i))
 
ans =
 
   -1.5708
 
>> abs((i^i)^i)
 
ans =
 
     1
 
>> angle((i^i)^i)
 
ans =
 
   -1.5708
 
>> maple('simplify(evalc(abs((1+sqrt(3)*i)^(1-i))))')
 
ans =
 
2*exp(1/3*pi)
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>> maple('simplify(evalc(argument((1+sqrt(3)*i)^(1-i))))')
 
ans =
 
-log (2) + 1/3 * pi
 
the moduli and arguments of the first three complex numbers have been obtained approximately. they can be 
calculated exactly as follows:
 
>> maple ('simplify(evalc(abs(i^i)))')
 
ans =
 
exp(-1/2*pi)
 
>> maple('simplify(evalc(argument(i^i)))')
 
ans =
 
0
 
>> maple('simplify(evalc(abs(i^(3+i))))')
 
ans =
 
exp(-1/2*pi)
 
>> maple('simplify(evalc(argument(i^(3+i))))')
 
ans =
 
-1/2*pi
 
>> maple('simplify(evalc(abs(i^(i^i))))')
 
ans =
 
1
 
>> maple('simplify(evalc(argument(i^(i^i))))')
 
ans =
 
1/2 * exp(-1/2*pi) * pi
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eXerCISe 3-14

solve the following equations:

a) cos(z) = 2

b) cos(z) = a, where a is a real number.
 
a)
 
>> maple ('evalc (solve (cos (z) = 2))')
 
ans =
 
i * log (2 + 3 ^(1/2))
 
b)
 
>> maple ('evalc (solve (cos (z) = a, z))')
 
ans =
 
acos(1/2 * ((a+1) ^ 2) ^(1/2)-1/2 * ((a-1) ^ 2) ^(1/2)) + i * signum (a) * log(1/2 * ((a+1) ^ 2) 
^(1/2) + 1/2 * ((a-1) ^ 2) ^(1/2) + ((1/2 * ((a+1) ^ 2) ^(1/2) + 1/2 * ((a-1) ^ 2) ^(1/2))  
^ 2-1) ^(1/2))

eXerCISe 3-15

solve the following equations:

a) 1+x+x2 +x3 +x4 +x5  = 0

b) x2 +(6-i)x+8-4i = 0

c) tan(z) = 3i/5
 
a)
 
>> solve('1+x+x^2+x^3+x^4+x^5 = 0')
 
ans =
 
[                -1]
[-1/2+1/2*i*3^(1/2)]
[-1/2-1/2*i*3^(1/2)]
[ 1/2+1/2*i*3^(1/2)]
[ 1/2-1/2*i*3^(1/2)]
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b)
 
>> solve('x^2+(6-i)*x+8-4*i = 0')
 
ans =
 
[    -4]
[-2 + i]
 
c)
 
>> maple ('evalc(solve(tan (z) = 3 * i / 5))')
 
ans =
 
(i * atanh(3/5))

eXerCISe 3-16

perform the following operations:

a) isin(1 + i)

b) (2+ln(i))1/i

c) (1+i)i

d) iln(1+i)

e) (1+i*sqrt(3))1-i

 

a)
 
>> maple('evalc(i^(sin(1+i)))')
 
ans =
 
exp (-1/2 * cos(1) * sin(1) * pi) * cos(1/2 * (1) * cosh(1) * pi) +
i * exp(-1/2 * cos(1) * sin(1) * pi) * sin(1/2 * (1) * cosh(1) * pi)
 
to approximate the result, we use the command “numeric”.
 
>> numeric(maple('simplify(evalc(i^(sin(1+i))))'))
 
ans =
 
  -0.1667 + 0.3290i
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b)
 
>> maple('simplify(evalc((2+log(i))^(1/i)))')
 
ans =
 
exp (atan(1/4*pi)) * cos(-log (2) + 1/2 * log(16+pi^2))-i * exp(atan(1/4*pi)) * sin(-log (2) 
+ 1/2 * log(16+pi^2))
 
We can find the approximate result in this case directly in matlab (since it contains no complex trigonometric 
expressions):
 
>> (2+log(i))^(1/i)
 
ans =
 
   1.1581 - 1.5639i
 
c)
 
>> maple('simplify(evalc((1+i)^i))')
 
ans =
 
exp(-1/4*pi) * cos(1/2 * log(2)) + i * exp(-1/4*pi) * sin(1/2 * log(2))
 
now we find the approximate result:
 
>> (1+i)^i
 
ans =
 
   0.4288 + 0.1549i
 
d)
 
>> maple('simplify(evalc(i^log(1+i)))')
 
ans =
 
exp(-1/8*pi^2) * cos (1/4 * log (2) * pi) + i * exp(-1/8*pi^2) * sin(1/4 * log(2) * pi)
 
the approximate result is obtained directly:
 
>> i^log(1+i)
 
ans =
 
   0.2491 + 0.1508i
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e)
 
>> maple('simplify(evalc((1+i*sqrt(3))^(1-i)))')
 
ans =
 
2 * exp(1/3*pi) * cos(-log (2) + 1/3 * pi) + 2 * i * exp(1/3*pi) * sin(-log (2) + 1/3 * pi)
 
the approximate result is obtained directly:
 
>> (1+i*sqrt(3))^(1-i)
 
ans =
 
   5.3458 + 1.9759i

eXerCISe 3-17

Find the following:

a) the fourth roots of - 1 and 1

b) the fifth roots of 2 + 2i and - 1 + i√3

c) the real part of tan(iln((a+ib)/(a-ib)))

d) the imaginary part of (2 + i)cos(4-i)

 
a)
 
>> solve('x^4+1=0')
 
ans =
 
[  1/2* 2^(1/2) +1/2* i* 2^(1/2)]
[- 1/2* 2^(1/2) +1/2* i* 2^(1/2)]
[  1/2* 2^(1/2) -1/2* i* 2^(1/2)]
[- 1/2* 2^(1/2) -1/2* i* 2^(1/2)]
 
We can obtain the approximate result easily:
 
>> numeric(solve('x^4+1=0'))
 
ans =
 
   0.7071 + 0.7071i
  -0.7071 + 0.7071i
   0.7071 - 0.7071i
  -0.7071 - 0.7071i
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>> solve('x^4-1=0')
 
ans =
 
[ 1]
[-1]
[ i]
[-i]
 
b)
 
>> solve('x^5-2-2*i=0')
 
ans =
 
[                                                   (2+2*i)^(1/5)]
[ (1/4*5^(1/2)-1/4+1/4*i*2^(1/2)*(5+5^(1/2))^(1/2))*(2+2*i)^(1/5)]
[(-1/4*5^(1/2)-1/4+1/4*i*2^(1/2)*(5-5^(1/2))^(1/2))*(2+2*i)^(1/5)]
[(-1/4*5^(1/2)-1/4-1/4*i*2^(1/2)*(5-5^(1/2))^(1/2))*(2+2*i)^(1/5)]
[ (1/4*5^(1/2)-1/4-1/4*i*2^(1/2)*(5+5^(1/2))^(1/2))*(2+2*i)^(1/5)]
 

We now find the approximate result:
 
>> numeric(solve('x^5-2-2*i=0'))
 
ans =
 
   1.2160 + 0.1926i
   0.1926 + 1.2160i
  -1.0970 + 0.5589i
  -0.8706 - 0.8706i
   0.5589 - 1.0970i
 
c)
 
>> solve('x^5+1-sqrt(3)*i=0')
 
ans =
 
[                                                    (-1+i*3^(1/2))^(1/5) ]
[ ( 1/4*5^(1/2)-1/4+1/4*i*2^(1/2)*(5+5^(1/2))^(1/2))*(-1+i*3^(1/2))^(1/5) ]
[ (-1/4*5^(1/2)-1/4+1/4*i*2^(1/2)*(5-5^(1/2))^(1/2))*(-1+i*3^(1/2))^(1/5) ]
[ (-1/4*5^(1/2)-1/4-1/4*i*2^(1/2)*(5-5^(1/2))^(1/2))*(-1+i*3^(1/2))^(1/5) ]
[ ( 1/4*5^(1/2)-1/4-1/4*i*2^(1/2)*(5+5^(1/2))^(1/2))*(-1+i*3-^(1/2))^(1/5)]
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the approximate result is immediate:
 
>> numeric(solve('x^5+1-sqrt(3)*i=0'))
 
ans =
 
   1.0494 + 0.4672i
  -0.1201 + 1.1424i
  -1.1236 + 0.2388i
  -0.5743 - 0.9948i
   0.7686 - 0.8536i
 
d)
 
>> maple('simplify(evalc(Re(tan(i*log((a+i*b)/(a-i*b))))))')
 
ans =
 
-2*a*b/(a^2-b^2)
 
e)
 
>> maple('simplify(evalc(Im((2+i)^cos(4-i))))')
 
ans =
 
5 ^ (1/2 * cos(4) * cosh(1)) * exp(-sin(4) * sin(1) * atan(1/2))
* sin(1/2 * sin(4) * sin(1) * log(5) + cos(4) * cosh(1) * atan(1/2))
 
now we find the approximate result:
 
>> numeric(maple('evalc(Im((2+i)^cos(4-i)))'))
 
ans =
 
   -0.6211

3.9 Divisibility in the Complex Field. The Ring of Gaussian Integers 
Within the set C of complex numbers, the subset G = {zŒC / z = a + bi, a,bŒZ} formed by all the complex numbers with 
integer real and imaginary parts is a ring, known as the ring of Gaussian integers. Within this ring, divisibility can be 
studied in a similar manner to the study of divisibility in the ring of integers.

There are some functions in MATLAB that allow you to work in this ring, as long as the extended symbolic math 
Toolbox is available. Among them are the following:

maple(‘with(GaussInt)’) loads the Maple library GaussInt (required before using the 
commands specified below)

maple(‘GIfactor(z)’) factorizes the Gaussian integer z

maple(‘GIfactors(z)’) returns the prime factors of z and their orders
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maple(‘GIfacset(z)’) returns the set of prime factors of z

maple(‘GIdivisor(z)’) returns the list of divisors of z in the first quadrant

maple(‘GIprime(z)’) determines if the Gaussian integer z is prime

maple(‘GIphi(z)’) returns the number of Gaussian integers in a reduced system 
modulo z

maple(‘GInorm(z)’) returns the norm of z (norm(a+bi) = a2 + b2)

maple(‘GIbasis(z1,z2)’) determines whether z1 and z2 form a Gaussian basis (i.e if for 
all Gaussian integers z, there exist integers p and q such that z = pz1 + qz2)

maple(‘GIcombine(a,b,c,d)’) is the Gaussian integer n such that: n=b(mod a) and 
n=d(mod c) (a, b, c and d are Gaussian integers)

maple(‘GIquadres(z1,z2)’) determines whether there exists a Gaussian integer m such 
that m2 = z1(mod z2)

maple(‘GIorder(z1,z2)’) returns the smallest positive integer n such that z1n  = 1(mod z2).

maple(‘GIquo(z1,z2)’) gives the quotient z1/z2

maple(‘GIrem(z1,z2)’) gives the remainder of the quotient z1/z2

maple(‘GIgcd(a,b,...c)’) gives the Gaussian integer in the first quadrant nearest to the 
greatest common divisor of the Gaussian integers a,b,...,c

maple(‘GIlcm(a,b,...c)’) gives the Gaussian integer in the first quadrant closest to the 
least common multiple of the Gaussian integers a,b,...,c

maple(‘GIissqr(z)’) determines if z is the square of a Gaussian integer

maple(‘GIsqrt(z)’) gives the Gaussian integer best approximating the square root of z

maple(‘GInearest(z)’) gives the Gaussian integer nearest to the complex number z

maple(‘GIroots(complex_polynomial)’) gives the Gaussian integer roots of a univariate 
polynomial with Gaussian integer coefficients

maple(‘GIchrem([n1,...,nx],[m1,...,mx])’) gives the unique Gaussian integer G such that 
G(mod mi) = y,  i = 1,..., x

maple(‘GIfacpoly(polynomial)’) factorizes the polynomial over the Gaussian integers

maple(‘GIgcdex(a,b,c,d)’) gives the Gaussian integer g located in the first quadrant 
which is the greatest common divisor of the Gaussian integers a and b, using Euclid’s 
algorithm, returning c and d such that g = c * a + d * b

maple(‘GIhermite(M)’) calculates the Gaussian integer Hermite normal form of the 
integer matrix M. This is an upper triangular matrix with a number of non-zero rows 
equal to the rank of the matrix M.

maple(‘GIhermite(M,A)’) calculates the Gaussian integer Hermite normal form H of 
the integer matrix M and the matrix A such that H = A * M

maple(‘GInodiv(z)’) gives the number of non-associated factors of the Gaussian integer z

maple(‘GInormal(z)’) normalizes the Gaussian integer z
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maple(‘GIsieve(z)’) generates the list of all prime Gaussian integers with norm less 
than or equal to z2 (0£x<y)

maple(‘GIsmith(M)’) returns the Smith normal form of the matrix M of Gaussian 
integers

maple(‘GIsmith(M,A,B)’) returns the Smith normal form of the matrix M of Gaussian 
integers and the matrices A and B  such that S = A * M * B

maple(‘GIsqrfree(z)’) returns the square-free factorization of z,  [u,[[p[1],e[1]],...,[p[m
],e[m]]] where p[i] is a principal factor of z, e[i] is its multiplicity, gcd(p[i],p[j]) = 1 "iπj, 
and u is a unit in the ring of Gaussian integers. The square-free factorization of z will be 
of the form: z = u * p[1]^e[1] * ... * p[m]^e[m].

maple(‘GIunitnormal(z)’) normalizes the Gaussian integer z

Here are some examples:
We factorize the number 30 in the ring of Gaussian integers.

 
>> maple('with(GaussInt):GIfactor(30)')
 
ans =
 
 (i) *(1+i) ^ 2 *(1+2*i) *(1-2*i) *(-3)
 

The prime factors of 30 in the ring of Gaussian integers are: -3 with multiplicity 1,-1-2i with multiplicity 1,-1 + 2i 
with multiplicity 1, 1 + i with multiplicity 2 and i with multiplicity 1.

You can also find the set of prime factors of 30 or the list of prime factors together with their orders of multiplicity.
 
>> maple('with(GaussInt):GIfacset(30)')
 
ans =
 
{-3, 1+i, -1+2*i, -1-2*i}
 
>> maple('with(GaussInt):GIfactors(30)')
 
ans =
 
[i, [[1 + i, 2], [- 1 + 2 * i, 1], [- 1-2 * i, 1], [1, - 3]]]
 

You can also determine if a Gaussian integer is prime or not.
The number 1 + i is prime in the ring of Gaussian integers:

 
>> maple('with(GaussInt):GIprime(1+i)')
 
ans =
 
true
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eXerCISe 3-18

solve the following equation in the ring of Gaussian integers:

x4 - 17*x3 - 29*i*x3 - 188*x2 + 339*i*x2 + 1682*x - 86*i*x - 1178 - 1244*i = 0
 
>> maple('with(GaussInt):GIroots(x^4-17*x^3-29*i*x^3-188*x^2+339*i*x^2+  
1682*x-86*i*x-1178-1244*i)')
 
ans =
 
[[5+8*i, 1], [1+i, 1], [7+11*i, 1], [4+9*i, 1]]

eXerCISe 3-19

Check if the number 1000 - 500i is prime. If not, find all of its divisors and decompose it into prime factors.  
also find the closest Gaussian integer to the least common multiple and the greatest common divisor of  
1000-500i, 100-50i and 10-5i. Finally, find the norm of 1000-500i.
 
>> maple('with(GaussInt)'); maple('GIprime(1000-500*i)')
 
ans =
 
false
 
>> maple('with(GaussInt)');maple('GIdivisor(1000-500*i)')
 
ans =
 
{1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 500, 500+1000*i, 1+i, 1+2*i, 250, 12+16*i, 13+9*i, 
4+22*i, 14+2*i, 11+2*i, 4+8*i, 28+96*i, 9+13*i, 55+10*i, 6+2*i, 62+34*i, 20+40*i, 100+200*i, 
60+80*i, 5+5*i, 45+65*i, 25+25*i, 125+125*i, 30+10*i, 150+50*i, 70+10*i, 750+250*i, 2+i, 
2+2*i, 3+4*i, 2+11*i, 8+4*i, 8+44*i, 1+3*i, 7+i, 4+2*i, 6+8*i, 2+6*i, 26+18*i, 4+3*i, 7+24*i, 
16+12*i, 44+8*i, 3+i, 1+7*i, 31+17*i, 5+10*i, 20+15*i, 2+4*i, 8+6*i, 22+4*i, 14+48*i, 2+14*i, 
18+26*i, 10+5*i, 25+50*i, 100+75*i, 15+20*i, 50+25*i, 125+250*i, 80+60*i, 220+40*i, 40+20*i, 
400+300*i, 200+100*i, 15+5*i, 5+35*i, 5+15*i, 75+25*i, 25+175*i, 35+5*i, 25+75*i, 375+125*i, 
10+20*i, 40+30*i, 110+20*i, 20+10*i, 50+100*i, 200+150*i, 30+40*i, 100+50*i, 250+500*i, 
10+10*i, 10+70*i, 90+130*i, 10+30*i, 50+50*i, 50+350*i, 50+150*i, 250+250*i}
 
>> maple('with(GaussInt)');maple('GIfactor(1000-500*i)')
 
ans =
 
(-i)*(1+i)^4*(-1+2*i)^3*(-1-2*i)^4
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>> maple('with(GaussInt)');maple('GIgcd(1000-500*i,100-50*i,10-5*i)')
 
ans =
 
5+10*i
 
>> maple('with(GaussInt)');maple('GIlcm(1000-500*i,100-50*i,10-5*i)')
 
ans =
 
500+1000*i
 
>> maple('with(GaussInt)');maple('GInorm(1000-500*i)')
 
ans =
 
1250000

eXerCISe 3-20

Find the square-free factorization of the Gaussian integers 1574 + 368 * i and 3369067456 + 16670818364 * i
 
>> maple('with(GaussInt):GIsqrfree(1574+368*i)')
 
ans =
 
[i, [[65+148*i, 1], [-1+3*i, 2]]]
 
>> maple('with(GaussInt):GIsqrfree(3369067456 + 16670818364*i)')
 
ans =
 
[i, [[-3-2*i, 1], [-7+2*i, 2], [1+i, 4], [5-2*i, 5], [1+4*i, 6]]] 



Chapter 3 ■ real and Complex numbers

84

eXerCISe 3-21

Find the smith normal form of the matrix h of Gaussian integers whose rows are the vectors [- 4 + 7 * i, 8 +  
10 * i, - 6 – 8 * i], [- 5 + 7 * i, 6 - 6 * i, 5 * i] and [-10 + i, 1 - 3 * i, - 10 + 5 * i]. Find the corresponding 
transformation matrices. also find the step reduced hermite normal form of the matrix h and the corresponding 
transformation matrix.
 
>> maple('with(GaussInt):H:= array([[-4+7*i,8+10*i,-6-8*i],[-5+7*i,6-6*i,5*i], 
[- 10+i,1-3*i,-10+5*i]])')
 
ans =
 
H := matrix([[-4+7*i, 8+10*i, -6-8*i], [-5+7*i, 6-6*i, 5*i], [-10+i, 1-3*i, -10+5*i]])
 
>> maple('with(GaussInt):GIsmith(H)')
 
ans =
 
matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1797+791*i]])
 
the matrix is displayed in standard row and column format using pretty.
 
>> pretty(sym(maple('with(GaussInt):GIsmith(H)')))
  
[1    0         0     ]
[                     ]
[0    1         0     ]
[                     ]
[0    0    1797 + 791i]
 
>> pretty(sym(maple('with(GaussInt):GIsmith(H,A,B),eval(A),eval(B)')));
 
[1    0         0      ]
[                      ]
[0    1         0      ],
[                      ]
[0    0    1797 + 791i ]
 
[      1                 -1                  0         ]
[                                                      ]
[-5521 - 954i       16188 - 11418i       1405 + 13698i ],
[                                                      ]
[ 7440 - 10079i      6598 + 43799i     -28787 - 10920i ]
  
[1    778 + 3519i    -3051937 + 837129i]
[                                      ]
[0        1              44 + 877i     ]
[                                      ]
[0     247 + 54i      -36491 + 218995i ]
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>> pretty(sym(maple('with(GaussInt):GIhermite(H,M),eval(M)')))
 
[1      0        679 - 58i]  [-14 + 25i    51 + 16i   -49 +  3i]
[                         ]  [                                 ]
[0    1 + i     121 - 712i], [ 22 + 21i    30 - 48i   -10 + 51i]
[                         ]  [                                 ]
[0      0      503 + 1294i]  [-57 - 13i   -2 + 109i   -34 - 94i]

Here we have defined a matrix simply by placing its rows between square brackets, separated by commas. As we 
will see later, this is a standard way to define arrays in MATLAB.

eXerCISe 3-22

Factorize the polynomial x4 - 17x3 - 29ix3 - 188x2 + 339ix2 + 1682x - 86ix – 1178 - 1244i in the ring of Gaussian 
integers. also find its roots in the ring of Gaussian integers.
 
>> maple('with(GaussInt):GIfacpoly(x^4-17*x^3-29*I*x^3-188*x^2+339*I*x^2  
+1682*x-86*I*x-1178-1244*I)')
 
ans =
 
[1, [[x-4-9*i, 1], [x-5-8*i, 1], [x-1-i, 1], [x-7-11*i, 1]]]
 
the factorization is: (x-4-9i)(x-5-8i)(x-1-i)(x-7-11i). now we find the roots, which must logically be 1 + i, 4 + 9i 
and 11i 7 + 5 + 8i, all with multiplicity 1.
 
>> maple('with(GaussInt):GIroots(x^4-17*x^3-29*i*x^3-188*x^2+339*i*x^2  
+1682*x-86*i*x-1178-1244*i)')
 
ans =
 
[[4 + 9 * i, 1], [5 + 8 * i, 1], [1 + i, 1], [7 + 11 * i, 1]]

3.10 Approximation and Precision
The accuracy of the output of numerical operations with MATLAB can be relaxed using special approximation 
techniques, returning results to a certain degree of precision.

MATLAB represents results with accuracy, but even if internally you are always working with exact calculations to 
avoid rounding errors, you can enable different approximate representation formats, which sometimes facilitate the 
interpretation of results. The following commands can be used for numerical approximation:

format long: Delivers results to 16 significant decimal figures.

format short: Delivers results to 4 decimal places. This is MATLAB’s default format.

format long e: Provides the results to 16 decimal figures more than the power of 10 
required.

format short e: Provides the results to four decimal figures more than the power of 10 
required.
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format long g: Delivers results in optimal long format.

format short g: Delivers results in optimal short format.

format bank: Delivers results to 2 decimal places.

format rat: Offers an approximation of results in the form of a rational number

format +: Returns the sign of the results (+, - or 0).

format hex: Returns results in hexadecimal.

vpa ‘operations’ n: Provides the result of operations to n significant decimal figures.

numeric(‘expr’): Provides the value of the expression numerically approximated by the 
current active format.

digits(n): Returns results to n significant digits.

maple(‘evalf(expr)’): Evaluates the expression numerically up to an accuracy 
determined by digits.

maple(‘evalf(expr,m)’): Evaluates the expression to m digits without affecting the value 
of digits.

maple(‘value(expr)’): Evaluates symbolically or numerically the inert symbolic 
expression.

maple(‘evalhf(expr)’): Evaluates the numerical expression with double precision to the 
number of accurate digits specified by digits.

maple(‘evala(expr)’): Evaluates the expression algebraically.

maple(‘evalc(expr)’): Evaluates the complex expression with double-precision.

maple(‘evalr(expr)’): Evaluates an expression containing ranges of variables or 
inequalities or logical symbols.

maple(‘evalb(expr)’): Evaluates an expression, equation, Boolean expression or 
inequality that contains relational operators.

maple(‘eval(expr)’): Completely evaluates the expression.

maple(‘eval(expr, n)’): Evaluates the expression to n levels. This is often used to 
evaluate the results of the command subs.

maple(‘evaln(expr)’): Evaluates an expression to a name. This is equivalent to 
introducing quotes in the expression.

maple(‘fnormal(expr)’): Normalizes a floating point expression.

maple(‘fnormal(expr, n)’): Normalizes a floating point expression to n digits.

maple(‘fnormal(expr,n,m)’): Normalizes a floating point expression to n digits with an 
error tolerance given by m.

maple(‘Float(m,n)’): Gives the number m*10n in floating-point form. The result can be 
of the form integer.integer, integer, .integer or any of these forms multiplied by 10exponent.
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Here are some examples:
For each format, find a numerical approximation of √17:

 
>> sqrt(17)
 
ans =
 
    4.1231
 
>> format long; sqrt(17)
 
ans =
 
   4.12310562561766
 
>> format long e; sqrt(17)
 
ans =
 
    4.123105625617660e+000
 
>> format short e; sqrt(17)
 
ans =
 
  4.1231e+000
 
>> format long g; sqrt(17)
 
ans =
 
          4.12310562561766
 
>> format short g; sqrt(17)
 
ans =
 
       4.1231
 
>> format bank; sqrt(17)
 
ans =
 
          4.12
 
>> format hex; sqrt (17)
 
ans =
 
   40107e0f66afed07
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Now we give some examples of the calculation of the value of sqrt(17) specifying the precision that we desire:
 
>> vpa 'sqrt(17)' 10
 
ans =
 
4.123105626
 
>> digits(15); maple('evalf(sqrt(17))')
 
ans =
 
4.12310562561766
 
>> digits(15); maple('evalhf(sqrt(17))')
 
ans =
 
4.123105625617661
 
>> digits (15); maple ('evala (sqrt (17))')
 
ans =
 
17 ^(1/2)
 

We find the decimal approximation of p to 100 digits of precision.
 
>> vpa 'pi' 100
 
ans =
 
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
 
>> digits(100); maple('evalf(pi)')
 
ans =
 
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
 

Now we convert the numbers 12345 * 10-4, 456 * 10-4 and 12345 * 1018 -12345 * 10-18 to floating point format:
 
>> maple('Float(123456,-4)')
 
ans =
 
12.3456
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>> maple('Float(456,-4)')
 
ans =
 
.456e-1
 
 
>> maple('Float(12345,18)')
 
ans =
 
. 12345e23
 
 
>> maple ('Float(12345, - 18) ')
 
ans =
 
. 12345e-13
 

We convert 1234598678 * 10-3 to a floating-point number:
 
>> maple ('Float(1234598678, - 3)')
 
ans =
 
1234598.678
 

We now consider the integral of x4 between 0 and 1 as an inert function and then calculate its numerical value:
 
>> maple('Int(x^4,x=0..1)')
 
ans =
 
Int(x^4,x = 0 .. 1)
 
 
>> maple('value(Int(x^4,x=0..1))')
 
ans =
 
1/5

3.11 Types of Numbers and Expressions
In MATLAB, you can work with different types of numbers and expressions. It is possible to declare the corresponding 
type of each number or expression, as well as to check the type of a given number or expression. These types of 
numbers and expressions cover integers, real numbers and complex numbers, and are used in arguments of functions 
whose definition is preceded by the command maple.
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Among the types of numbers in MATLAB we have the following:

integer: integer

negint: negative integer

posint: positive integer

nonnegint: nonnegative integer

even: even integer

odd: odd integer

prime: prime integer

rational: rational number

fractional: fraction

realcons: real constant

radical: radical number

radext: algebraic extension in terms of radicals

radnum: algebraic number in terms of radicals

radnumext: radical number exension

sqrt: number or expression in terms of square roots

square: perfect square expression or number

numeric: numeric expression

number: constant or constant expression

positive: positive number

negative: negative number

infinity: infinite number

nonneg: nonnegative number

algnum: algebraic number

algnumext: algebraic number extension

rootof: RootOf expression

complex: complex number or complex expression

complex(integer): complex number a+bi with a and b integer (possibly zero)

complex(rational): complex number a+bi with a and b rational

complex(float): complex number a+bi with a and b constant floating point

complex(numeric): complex number a+bi of any of the above forms

facint: integer in factored form

float: number or floating point expression

intersect: intersection
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union: union

minus: difference

list: list expression

listlist: list of lists

set: set

relation: relational expression

boolean: boolean expression

logical: logical expression

vector: vector

array: array (vector or matrix)

matrix: matrix

scalar: scalar matrix

name: name

nothing: nothing (always returns false)

protected: name protected by Maple (not editable)

range: range

string: string

table: table

text: text

Having described the types of numbers and the most important numerical expressions that can be declared in 
MATLAB, we now summarize the commands that handle them:

type(expr, type): determines whether the number or expression expr is of the  
specified type

tymematch(expr, type): determines if the number or expression expr is of the  
specified type

whattype(expr): returns the type of the number or expression expr

func(parameter::type) determines the type of the parameter of the function func

Here are some examples:
 
>> maple('type ((3+2*i), complex)')
 
ans =
 
true
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>> maple('type(257,prime)')
 
ans =
 
true
 
>> maple('whattype([1,2,3])')
 
ans =
 
list
 
>> maple('whattype({1,2,3})')
 
ans =
 
set

3.12 Random Numbers
The automatic generation of (pseudo) random numbers is a problem well handled by MATLAB.

MATLAB provides the function rand to generate uniformly distributed random numbers and the function randn 
to generate normally distributed random numbers. The following functions can be used to generate random floating 
point numbers:

rand: returns a random uniformly distributed decimal number in the interval [0,1]

rand(n): returns a matrix of size n×n whose elements are random uniformly 
distributed decimal number in the interval [0,1]

rand(m,n): returns a matrix of dimension m×n whose elements are random uniformly 
distributed decimal number in the interval [0,1]

rand(size(a)): returns a matrix of the same size as the matrix a and whose elements are 
random uniformly distributed decimal number in the interval [0,1]

rand(‘seed’): returns the current value of the uniform random number generator seed

rand(‘seed’,n): sets the current value of the uniform random number generator seed to 
the value n

randn: returns a normally distributed random decimal number with mean 0 and 
variance 1

randn(n): returns a matrix of size n×n whose elements are normally distributed 
random decimal numbers with mean 0 and variance 1

maple(‘with(linalg):randmatrix(m,n)’): returns a matrix of dimension m×n whose 
elements are random integers between -99 and 99

maple(‘with(linalg):randmatrix(m,n,option)’): returns a matrix of dimension m×n 
whose elements are random integers between -99 and 99, and of the specified type in 
option, the possible options being symmetric, antisymmetric, diagonal, identity and 
sparse
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maple(‘with(linalg):randvector(n)’): returns a vector of dimension n whose elements 
are random integers between -99 and 99

randn(m,n): returns a matrix of dimension m×n whose elements are normally 
distributed random decimal number with mean 0 and variance 1

randn(size(A)): returns a matrix of the same size as the matrix A and whose elements 
are normally distributed random decimal number with mean 0 and variance 1

randn (‘seed’): returns the current value of the normal random number generator seed

randn(‘seed’,n): sets the current value of the normal random number generator seed to 
the value n

Here are some examples:
 
>> [rand, rand (1), randn, randn (1)]
 
ans =
 
    0.8310    0.0346    1.1650    0.6268
 
>> [rand(2), randn(2)]
 
ans =
 
    0.0535    0.6711    0.0751   -0.6965
    0.5297    0.0077    0.3516    1.6961
 
>> [rand(4,3), randn(4,3)]
 
ans =
 
    0.6326 0.2470 0.6515 - 0.0562   0.4005   0.7286
    0.7564 0.9826 0.0727   0.5135 - 1.3414 - 2.3775
    0.9910 0.7227 0.6316   0.3967   0.3750 - 0.2738
    0.7534 0.8847 0.7562   1.1252 - 0.3229
 
>> maple with(linalg):randmatrix(3,3,symmetric)
 
ans =
 
matrix([[-85,-55,-35], [-55,-37, 97], [-35, 97, 50]])
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Chapter 4

Numerical Variables, Vectors  
and Matrices

4.1 Variables
The concept of variable, like the concept of function, is essential when working with mathematical software. 
Obviously, the theoretical concept of a mathematical variable is fixed and independent of the software package, but 
how to implement and manage variables is very characteristic of each particular program. MATLAB allows you to 
define and manage variables, and store them in files, in a very simple way.

When extensive calculations are performed, it is convenient to give names to intermediate results. Each 
intermediate result is assigned to a variable to make it easier to use. For example, we can define the variable x and 
assign the value 5 to it in the following way:
 
>> x = 5
 
x =
 
     5

From now on, whenever the variable x appears it will be replaced by the value 5, and it will not change its value 
until it is redefined.
 
>> x ^ 2
 
ans =
 
    25
 

The variable x will not change until we explicitly assign another value to it.
 
>> x = 7 + 4
 
x =
 
    11
 

From this moment on, the variable x will take the value 11.
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It is very important to stress that the value assigned to a variable will remain fixed until it is expressly changed or 
if the current MATLAB session is closed. It is common to forget the definitions given to variables during a MATLAB 
session, causing misleading errors when the variables are used later in the session. For this reason, it is convenient to 
be able to remove the assignment of a value to a variable. This operation is performed by using the command clear.  
It is also useful to recall the variables we have defined in the present session, which is done using the command who:

The expression •	 x = value assigns the value value to the variable x.

The command •	 clear removes the value assigned to all variables.

The command •	 clear x removes the value assigned to the variable x.

The command •	 clear x y removes the value assigned to the variables x and y.

The command •	 who gives the names of all variables currently in memory (variables in the 
workspace).

The command •	 whos gives the names, sizes, number of items, bytes occupied, and the type of 
all variables currently in memory.

Here are some examples that use the variable handling commands defined above:
 
>> x = 7, y = 4 + i, z = sqrt (3)
 
x =
 
    7
 
y =
 
    4.0000 + 1. 0000i
 
z =
 
    1.7321
 
>> p=x+y+z
 
p =
 
    12.7321 + 1. 0000i
 
>> who
 
Your variables are:
 
ans       p         x         y         z
 
>> whos
              Name Size   Elements Bytes Density Complex
 
               ANS 1 by 1    1        8     Full    No
                 p 1 by 1    1        16    Full    Yes
                 x 1 by 1    1        8     Full    No
                 y 1 by 1    1        16    Full    Yes
                 z 1 by 1    1        8     Full    No
 
Grand total is 5 elements using 56 bytes
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Now we are going to change the value of the variable y, and delete the variable x.
 
>> y = pi
 
y =
 
    3.1416
 
>> clear x;
>> whos
 
              Name Size   Elements Bytes Density Complex
   
               ANS 1 by 1    1        8     Full    No
                 p 1 by 1    1        16    Full    Yes
                 y 1 by 1    1        8     Full    No
                 z 1 by 1    1        8     Full    No
 
Grand total is 4 elements using 40 bytes
 

We see that the variable x has disappeared and that the variable y has the new value assigned, but the variable p 
has not changed, despite having changed two of its components. For an expression that contains a variable whose 
value has been changed, to update its value it is necessary to rerun it:
 
>> p=y+z
 
p =
 
    4.8736
 
>> whos
              Name Size   Elements Bytes Density Complex
 
               ANS 1 by 1   1        8      Full    No
                 p 1 by 1   1        8      Full    No
                 y 1 by 1   1        8      Full    No
                 z 1 by 1   1        8      Full    No
 
Grand total is 4 elements using 32 bytes
 

Now all values are updated, including that of p.
As for the names that can be given to the variables, the only restriction is that they cannot start with a number or 

contain punctuation characters that are assigned a special meaning in MATLAB. It is also advisable to name variables 
with words that begin with lowercase letters, and in general with words completely in lowercase. This avoids collisions 
with MATLAB functions beginning with an uppercase letter. MATLAB is case sensitive. There can be any number of 
characters in the name of a variable, but MATLAB will handle only the first 19.
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4.2 Variables and Special Constants
In many kinds of calculations we need to work with variables and special constants that the program has enabled. 
Here are some examples:

PI or maple(‘PI’): 3.1415926535897...

i or j or maple(‘i’): imaginary unit (square root of -1).

inf or maple(‘infinity’): infinity, returned for example when presented with 1/0.

NaN (Not a Number): indeterminate, returned for example when presented with 0/0.

realmin: the smallest usable positive real number.

realmax: the greatest usable positive real number.

finite(x): returns 1 if x is finite and zero otherwise.

isinf(x): returns 1 if x is infinity or -infinity, and zero otherwise.

isNaN(x): returns 1 if x is undetermined and zero otherwise.

isfinite(x): returns 1 if x is finite and zero otherwise.

ana: automatically creates a variable to represent the last unmapped processing result 
which has not been assigned to a variable.

eps: returns the distance from 1.0 to the next largest double-precision number. This is 
the default tolerance for floating-point operations (floating point relative accuracy). In 
current IEEE machines its value is 2 ^ (-52).

isieee: returns 1 if the machine is IEEE and 0 otherwise.

computer: returns the type of the computer.

flops: returns the number of floating point operations that have been executed in a 
session (flops(0) resets the operations counter).

version: returns the current version of MATLAB.

why: returns a concise message.

cputime: returns CPU time in seconds used by MATLAB since the beginning of the session.

clock: returns a list consisting of the following 6 items: [year month day hour minutes 
seconds].

date: returns the current calendar date.

etime: returns the time elapsed between two clock type lists (defined above).

tic: enables a temporary counter in seconds that ends with the use of the variable toc.

toc: returns the elapsed time in seconds since the variable tic was activated.

LastErr: returns the last error message.

See: gives information about the program and its Toolbox.

Info: provides information about MATLAB.

subscribe to: gives information about the subscription to MATLAB.

whatsnew: provides information about new undocumented MATLAB features.
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Here are some examples:
First we check if our computer is an IEEE machine, determine what type of computer it is, and find the current 

date and time:
 
>> isieee
 
ans =
 
     1
 
>> computer
 
ans =
 
PCWIN
 
>> clock
 
ans =
 
  1. 0e + 003 *
 
    1.9950 0.0110 0.0140 0.0100 0.0150 0.0079
 
>> date
 
ans =
 
14-mar-99
 

Now we check the CPU time (in seconds) that has passed since the beginning of the MATLAB session, as well as 
the number of floating-point operations that have occurred during that time:
 
>> cputime
 
ans =
 
   23.5100
 
>> flops
   
ans =
 
 1180
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eXerCISe 4-1

Calculate the time in seconds that the computer takes to return the irrational number p to 50 decimal places.
 
>> tic; vpa 'pi' 50; toc
 
elapsed_time =
 
         0.110000000000001 

eXerCISe 4-2

Calculate the number of floating-point operations required to calculate the numerical value of the square root of 
the irrational number p to default accuracy. Consider the number p  first as a numerical constant, and secondly, 
as a symbolic constant.
 
>> flops(0);numeric((pi)^(1/2));flops
 
ans =
 
   427
 
>> flops(0);numeric('(pi)^(1/2)');flops
 
ans =
 
   6
 
We see that much fewer floating-point operations are required when we consider p as a symbolic constant. the 
calculations are faster when we work in the symbolic field.

4.3 Symbolic and Numeric Variables
MATLAB deems as symbolic any algebraic expression whose variables have previously been defined as symbolic via 
the command syms. For example, if we want to treat as symbolic the expression 6ab + 3a2 + 2ab in order to simplify it, 
we need to declare the two variables a and b as symbolic as shown below:
 
>> syms a b
>> simplify(6*a*b + 3*a^2 + 2*a*b)
 
ans =
  
8 * a * b + 3 * a ^ 2
 



Chapter 4 ■ NumeriCal Variables, VeCtors aNd matriCes 

101

The command sym can be used to transform a numeric expression into a symbolic expression. For example, if we 
want to simplify the numeric expression 2/5 + 6/10 + 8/20, we first need to transform it into a symbolic expression via 
sym(2/5+6/10+8/20), making the simplification as follows:
 
>> simplify (sym(2/5+6/10+8/20))
  
ans =
  
7/5
 

The variables contained in a symbolic expressions must be symbolic. Some commands for working with 
symbolic and numerical variables are described below:

syms x y z... t: makes the variables x, y, z,..., t  symbolic.

syms x y z... t real: makes the variables x, y, z,..., t symbolic with real values.

syms x y z... t unreal: makes the variables x, y, z,..., t symbolic with non-real values.

syms: lists the symbolic variables in the workspace.

x = sym (‘x’): x becomes a symbolic variable (equivalent to syms x).

x = sym (‘x’, real): x becomes a real symbolic variable.

x = sym(‘x’,unreal): x becomes a symbolic non-real variable.

S = sym(A): creates a symbolic variable S from A, where A can be a string, a scalar, an 
array, a numeric expression, etc.

S = sym(A,‘option’): converts the array, scalar or numeric expression A to a symbolic 
variable S according to the specified option. The option  can be ‘f ’ for floating point, ‘r’ 
for rational, ‘e’ for error format and ‘d’ for decimal.

numeric(x): makes the variable or expression x numeric with double precision.

sym2poly(poly): converts the symbolic polynomial poly to a vector whose components 
are its coefficients.

poly2sym(vector): creates a symbolic polynomial whose coefficients are the 
components of the vector.

poly2sym(vector,‘v’): converts a symbolic polynomial in the variable v whose 
coefficients are the components of the vector.

digits(d): gives symbolic variables to an accuracy of d significant figures.

digits: returns the current accuracy for symbolic variables.

vpa(expr): returns the numerical result of the expression to an accuracy determined by 
digits.

vpa(expr, n): returns the numerical result of the expression to n significant figures.

vpa(‘expr’, n): returns the numerical result of the expression to n significant figures.

pretty(expr): returns the symbolic expression in the form of standard mathematical 
script.
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eXerCISe 4-3

solve the equation ax2 + bx + c = 0 assuming that the variable is x. solve it when the variables are a, b or c, 
respectively.

since by default matlab considers x to be the only symbolic variable, to solve the equation in x we don’t need to 
declare x as symbolic. We simply use the command solve as follows:
 
>> solve('a*x^2+b*x+c=0')
 
ans =
 
[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]
 
but to solve the equation with respect to the variables a, b or c respectively, it is necessary to first specify them as 
symbolic variables:
 
>> syms a
>> solve('a*x^2+b*x+c=0',a)
 
ans =
 
-(b*x+c)/x^2
 
>> syms b
>> solve('a*x^2+b*x+c=0',b)
 
ans =
 
-(a*x^2+c)/x
 
>> syms c
>> solve('a*x^2+b*x+c=0',c)
 
ans =
 
-a * x ^ 2-b * x 
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eXerCISe 4-4

Find the roots of the polynomial x4 - 8x2 + 16 = 0 obtaining the result to default accuracy, to 20 significant figures 
and with double-precision. also generate the vector of coefficients associated with the polynomial.
 
>> p = solve('x^4-8*x^2-16=0')
 
p =
 
[ 2*(2^(1/2)+1)^(1/2)]
[-2*(2^(1/2)+1)^(1/2)]
[ 2*(1-2^(1/2))^(1/2)]
[-2*(1-2^(1/2))^(1/2)]
 
>> vpa(p)
  
ans =
  
[    3.1075479480600746146883179061262]
[   -3.1075479480600746146883179061262]
[  1.2871885058111652494708868748364*i]
[ -1.2871885058111652494708868748364*i]
 
>> numeric(p)
 
ans =
 
   3.1075
  -3.1075
        0 + 1.2872i
        0 - 1.2872i
 
>> vpa(p,20)
 
ans =
 
[   3.1075479480600746146]
[  -3.1075479480600746146]
[ 1.2871885058111652495*i]
[-1.2871885058111652495*i]
 
>>  syms x
>>  sym2poly(x^4-8*x^2-16)
 
ans =
 
     1  0  -8  0  -16 
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eXerCISe 4-5

Find the numerical value to default precision of the abscissa of the intersection point in the first quadrant of the 
curves y = sin(x) and y = cos(x). Find the symbolic solution. Find the abscissa to 12 significant figures.
 
>> p = numeric(solve('sin(x) = cos(x)'))
 
p =
 
    0.7854
 
>> q = sym(p)
 
q =
 
PI/4
 
>> digits(12);r=numeric(solve('sin(x)=cos(x)'))
 
r =
 
.785398163398 

eXerCISe 4-6

simplify the following expressions as much as possible:

1 / 2m - 1 / 3m + 1 / 4 m + 1 / 5m + 1 / 6m

1/2 - 1/3 + 1/4 + 1/5 + 1/6
 
>> syms m
>> simplify(1/(2*m) - 1/(3*m) + 1/(4*m) +1/(5*m) +1/(6*m))
  
ans =
  
47/60m
 
>> pretty(simplify(1/(2*m) - 1/(3*m) + 1/(4*m) +1/(5*m) +1/(6*m)))
   
                                     47
                                    ---
                                    60m
>> sym(1/2-1/3 + 1/4 +1/5 +1/6)
  
ans =
  
47/60 
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4.4 Vector Variables
A variable that represents a vector of length n can be defined in MATLAB in the following ways:
 
variable = [e1, e2, e3,..., en]
variable = [e1 e2 e3 ... en]
 

Therefore, to define a vector variable, simply insert the vector elements between brackets separated by commas 
or blank spaces.

When you apply most MATLAB commands and functions to a vector variable, the result obtained is that found by 
applying the command or function to each element of the vector:
 
>> vector1 = [1,3,5,2.3,1/2]
 
vector1 =
 
    1.0000 3.0000 5.0000 2.3000 0.5000
 
>> sin(vector1)
 
ans =
 
    0.8415 0.1411 - 0.9589 0.7457 0.4794
 
>> exp (vector1)
 
ans =
 
    2.7183 20.0855 148.4132 9.9742 1.6487
 
>> log (vector1)
 
ans =
 
    0 1.0986 1.6094 0.8329 - 0.6931
 

There are different ways of defining a vector variable without explicitly bracketing all its elements, separated by 
commas or blank spaces.

variable = [first_element:last_element]: Defines the vector whose first and last 
elements are specified, and the intermediate elements differ by one unit.

variable = [first_element:increase:last_element]: Defines the vector whose first and last 
elements are specified, and the intermediate elements differ by the amount specified 
by the increase.

variable = linspace (first_element, last_element, n): Defines the vector whose first and 
last elements are specified, and which has in total n evenly spaced elements.

variable = logspace (a,b,n): Defines the vector whose first and last elements are 10a  
and 10b, and which has in total n evenly logarithmically spaced elements.
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Here are some examples:
 
>> vector2 = [0:5:20]
 
vector2 =
 
     0 5 10 15 20
 

We have obtained the numbers between 0 and 20 separated by 5 units.
 
>> vector3 = [0:20]
  
vector3 =
 
  Columns 1 through 12
 
     0     1     2     3     4     5     6     7     8     9    10    11
 
  Columns 13 through 21
 
    12 13 14 15 16 17 18 19 20
 

We have obtained the numbers between 0 and 20 separated by units.
 
>> vector4 = linspace(0,10,11)
 
vector4 =
 
     0     1     2     3     4     5     6     7     8     9    10
 

We have obtained the numbers between 0 and 10 separated by units.
 
>> vector5 = linspace(0,20,6)
 
vector5 =
 
     0 4 8 12 16 20
 

We have obtained 6 equally spaced numbers between 0 and 20.
 
>> vector6 = logspace(0,2,6)
 
vector6 =
 
    1.0000 2.5119 6.3096 15.8489 39.8107 100.0000
 

We have obtained 6 evenly logarithmically spaced numbers between 100 and 102.
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We can also consider row and column vectors in MATLAB. A column vector is obtained by separating its 
elements by semicolons, or by transposing a row vector using a single apostrophe at the end of its definition.
 
>> a=[1;2;3;4]
 
a =
 
     1
     2
     3
     4
 
>> a=[1:4];b=a'
 
b =
 
     1
     2
     3
     4
 
>> c=(a')'
 
c =
 
     1 2 3 4
 

You can also select an element of a vector or a subset of elements.

x(n): returns the n-th element of the vector x.

x(a:b): returns the a-th through b-th elements of the vector x, both inclusive.

x(a:p:b): returns the a-th through b-th elements of the vector x, both inclusive, each 
separated from the next by p units (a < b).

x(b:-p:a): returns the b-th through a-th elements of the vector x, both inclusive, each 
separated from the next by p units and starting with the b-th (b > a).

Here are some examples:
 
>> x =(1:10)
 
x =
 
     1     2     3     4     5     6     7     8     9    10
 
>> x(6)
 
ans =
 
     6
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We have obtained the sixth element of the vector x.
 
>> x(4:7)
 
ans =
 
     4 5 6 7
 

We have obtained the elements of the vector x located between the fourth and the seventh elements, both inclusive.
 
>> x(2:3:9)
 
ans =
 
     2 5 8
 

We have obtained the elements of the vector x located between the second and ninth elements, both inclusive, 
but separated from each other by three units.
 
>> x(9:-3:2)
 
ans =
 
     9 6 3
 

We have obtained the elements of the vector x located between the ninth and second elements, both inclusive, 
but separated from each other by three units and starting at the ninth.

Simple mathematical operations between scalars and vectors scale each element of the vector according to the 
defined operation, and simple operations between vectors are performed elementwise.

Below is a summary of these operations:

a = {a1, a2,..., an}, b = {b1, b2,..., bn}, c = scalar

a + c = [a1 + c, a2 + c,..., an + c]: sum of a scalar and a vector

a * c = [a1 * c, a2 * c,..., an * c]: product of a scalar and a vector

a + b = [a1 + b1, a2 + b2,... an + bn]: sum of two vectors

a. * b = [a1 * b1, a2 * b2,... , an * bn]: product of two vectors

a. / b = [a1/b1 a2/b2... an/bn]: right ratio of two vectors

a. \ b = [a1\b1 a2\b2... an\bn]: left ratio of two vectors

a. ^ c = [a1 ^ c, a2 ^ c,..., an ^ c]: scalar power of a vector

c. ^ a = [c ^ a1, c ^ a2,... ,c ^ an]: vector power of a scalar

a. ^ b = [a1 ^ b1, a2 ^ b2,... ,an ^ bn]: vector power of a vector

It must be borne in mind that the vectors must be of the same length, and that in the product, quotient, and 
power the first operand is followed by a point.
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On the other hand, you can also set the vector variables to be symbolic using the command syms.
 
>> syms t
>> A=sym([sin(t),cos(t)])
 
A =
 
[sin (t), cos (t)] 

eXerCISe 4-7

Given the vector variables a = [p, 2p, 3p, 4p, 5p] and b = [e, 2e, 3e, 4e, 5e] calculate c = sin (a) + b, d = cos (a), 
e = ln (b),  f = c * d, g = c/d, h = d ^ 2, i = d ^ 2-e ^ 2 and j = 3d ^ 3-2e ^ 2.

>> a = [pi, 2 * pi, 3 * pi, 4 * pi, 5 * pi], b = [exp (1), 2 * exp (1), 3 * exp (1), 4 * exp (1), 5 * exp (1)], c=sin(a)+b, 
d=cos(a), e=log(b), f=c.*d, g=c./d, h=d.^2, i=d.^2-e.^2, j = 3 * d. ^ 3-2 * e ^ 2

 
a =

 
    3.1416 6.2832 9.4248 12.5664 15.7080

 
b =

 
    2.7183 5.4366 8.1548 10.8731 13.5914

 
c =

 
    2.7183 5.4366 8.1548 10.8731 13.5914

 
d =

 
    -1     1    -1     1    -1
e =

 
    1.0000 1.6931 2.0986 2.3863 2.6094

 
f =

 
   -2.7183 5.4366 - 8.1548 10.8731 - 13.5914

 
g =

 
   -2.7183 5.4366 - 8.1548 10.8731 - 13.5914

h =
 

     1     1        1      1         1
 

i =
 

     0  - 1.8667 - 3.4042 - 4.6944 - 5.8092
 

j =
 

   -5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183
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4.5 Matrix Variables
MATLAB defines matrices by inserting in brackets all its row vectors separated by a semicolon. Vectors can be entered 
by separating their components by spaces or by commas, as we already know.  For example, a 3 × 3 matrix variable 
can be entered in the following two ways:
 
M = [a

11
 a

12
 a

13
;a

21
 a

22
 a

23
;a

31
 a

32
 a

33
]

M = [a
11
, a

12
 ,a

13
;a

21
, a

22
, a

23
;a

31
, a

32
, a

33
]

 
Similarly we can define a matrix of general dimension (M×N). Once a matrix variable has been defined, MATLAB 

enables many ways to insert, extract, renumber, and generally manipulate its elements. The following list summarizes 
different ways to define matrix variables.

A(m,n) defines the (m, n)-th element of the matrix A (row m and column n)

A(a:b,c:d) defines the subarray of A formed between the a-th and the b-th rows and 
between the c-th and the d-th columns, inclusive

A(a:p:b,c:q:d) defines the subarray of A formed by every p-th row between the a-th and 
the b-th rows, inclusive, and every q-th column between the c-th and the d-th columns, 
inclusive

A([a b],[c d]) defines the subarray of A formed by the intersection of the a-th through 
b-th rows and c-th through d-th columns, inclusive

A([a b c...],[e f g...]) defines the subarray of A formed by the intersection of rows a, b, c,...  
and columns e, f, g,...

A(:,c:d) defines the subarray of A formed by all the rows in A and the c-th through to the 
d-th columns

A(:,[c d e ...]) defines the subarray of A formed by all the rows in A and columns c, d, e,...

A(a:b,:) defines the subarray of A formed by all the columns in A and the a-th through 
to the b-th rows

A([a b c...],:) defines the subarray of A formed by all the columns in A and rows a, b, c,...

A(a,:) defines the a-th row of the matrix A

A(:,b) defines the b-th column of the matrix A

A(:) defines a column vector whose elements are the columns of A placed in order 
below each other

A(:,:) this is equivalent to the entire matrix A

[A, B, C,...] defines the matrix formed by the matrices A, B, C,...

SA = [] clears the subarray of the matrix A, SA, and returns the remainder

diag(v) creates a diagonal matrix with the vector v in the diagonal

diag(A) extracts the diagonal of the matrix as a column vector

eye(n) creates the identity matrix of order n

eye(m,n) creates an m×n matrix with ones on the main diagonal and zeros elsewhere

zeros(m,n) creates the zero matrix of order m×n

ones(m,n) creates the matrix of order m×n with all its elements equal to 1
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rand(m,n) creates a uniform random matrix of order m×n

randn(m,n) creates a normal random matrix of order m×n

flipud(A) returns the matrix whose rows are those of A but placed in reverse order 
(from top to bottom)

fliplr(A) returns the matrix whose columns are those of A but placed in reverse order 
(from left to right)

rot90(A) rotates the matrix A counterclockwise by 90 degrees

reshape(A,m,n) returns an m×n matrix formed by taking consecutive entries of A by 
columns

size(A) returns the order (size) of the matrix A

find(condA) returns all A items that meet a given condition

length(v) returns the length of the vector v

tril(A) returns the lower triangular part of the matrix A

triu(A) returns the upper triangular part of the matrix A

A' returns the transpose of the matrix A

inv(A) returns the inverse of the matrix A

Here are some examples:
We consider first the 2 × 3 matrix whose rows are the first six consecutive odd numbers:

 
>> A = [1 3 5; 7 9 11]
 
A =
 
1 3 5
7 9 11
 

Now we are going to change the (2,3)-th element, i.e. the last element of A, to zero:
 
>> A(2,3) = 0
 
A =
 
1 3 5
7 9 0
 

We now define the matrix B to be the transpose of A:
 
>> B = A'
 
B =
 
1 7
3 9
5 0
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We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:
 
>> C = [B eye (3)]
 
C =
 
1     7     1     0     0
3     9     0     1     0
5     0     0     0     1
 

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the 
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection 
of the first two rows and the last three columns of the matrix C:
 
>> D = C(:,1:2:5)
 
D =
 
1 1 0
3 0 0
5 0 1
 
>> E = C([1 2],[3 5])
 
E =
 
1 0
0 0
 
 
>> F = C([1 2],3:5)
 
F =
 
1 0 0
0 1 0
 

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the 
main diagonal of D:
 
>> G = diag(diag(D))
 
G =
 
1 0 0
0 0 0
0 0 1
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We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third 
and fifth columns:
 
>> H = C([1 3],[2 3 5])
 
H =
 
7 1 0
0 0 1
 

Now we build an array I formed by the identity matrix of order 5 × 4, appending the zero matrix of the same 
order to its right and to the right of that, the unit matrix, again of the same order. Then we extract the first row of I and, 
finally, form the matrix J comprising the odd rows and even columns of I and calculate its order (size).
 
>> I = [eye(5,4) zeros(5,4) ones(5,4)]
 
ans =
 
1     0     0     0     0     0     0     0     1     1     1     1
0     1     0     0     0     0     0     0     1     1     1     1
0     0     1     0     0     0     0     0     1     1     1     1
0     0     0     1     0     0     0     0     1     1     1     1
0     0     0     0     0     0     0     0     1     1     1     1
    
>> I(1,:)
 
ans =
 
1     0     0     0     0     0     0     0     1     1     1     1
 
 
>> J = I(1:2:5,2:2:12)
 
J =
 
0     0     0     0     1     1
0     0     0     0     1     1
0     0     0     0     1     1
 
>> size(J)
 
ans =
 
3 6
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We now construct a random matrix K of order 3 × 4, reverse the order of the rows of K, reverse the order of the 
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 × 3 whose 
columns are obtained by taking the elements of K sequentially by columns.
 
>> K = rand(3,4)
 
K =
 
0.5269    0.4160    0.7622    0.7361
0.0920    0.7012    0.2625    0.3282
0.6539    0.9103    0.0475    0.6326
 
>> K(3:-1:1,:)
 
ans =
 
0.6539    0.9103    0.0475    0.6326
0.0920    0.7012    0.2625    0.3282
0.5269    0.4160    0.7622    0.7361
 
>> K(:,4:-1:1)
 
ans =
 
0.7361    0.7622    0.4160    0.5269
0.3282    0.2625    0.7012    0.0920
0.6326    0.0475    0.9103    0.6539
  
>> K(3:-1:1,4:-1:1)
 
ans =
 
0.6326    0.0475    0.9103    0.6539
0.3282    0.2625    0.7012    0.0920
0.7361    0.7622    0.4160    0.5269
 
>> L = reshape(K,4,3)
 
L =
 
0.5269 0.7012 0.0475
0.0920 0.9103 0.7361
0.6539 0.7622 0.3282
0.4160 0.2625 0.6326 
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eXerCISe 4-8

Given the square matrix of order 3 whose entries are the first nine natural numbers, find its inverse, its transpose 
and its diagonal. transform it into a lower triangular matrix and an upper triangular matrix and rotate it by 90 
degrees counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements. 
extract the subarray whose diagonal is formed by the elements at 11 and 22 and also remove the subarray whose 
diagonal elements are at 11 and 33.
 
>> M = [1,2,3;4,5,6;7,8,9]
 
M =
 
     1     2     3
     4     5     6
     7     8     9
 
>> A = inv(M)
 
Warning: matrix is close to singular or badly scaled.

results may be inaccurate. rCoNd = 2.937385e-018
 
A =
 
  1. 0e + 016 *
 
    0.3152 -0.6304  0.3152
   -0.6304  1.2609 -0.6304
    0.3152 -0.6304  0.3152
 
>> B = M'
 
B =
 
     1 4 7
     2 5 8
     3 6 9
 
>> V = diag(M)
 
V =
 
     1
     5
     9
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>> TI=tril(M)
 
TI =
 
     1     0     0
     4     5     0
     7     8     9
 
>> TS=triu(M)
 
TS =
 
     1     2     3
     0     5     6
     0     0     9
 
>> TR=rot90(M)
 
TR =
 
     3     6     9
     2     5     8
     1     4     7
 
>> s=M(1,1)+M(1,2)+M(1,3)
 
s =
 
     6
 
>> sd=M(1,1)+M(2,2)+M(3,3)
 
sd =
 
    15
 
>> SM=M(1:2,1:2)
 
SM =
 
     1     2
     4     5
 
>> SM1=M([1 3],[1 3])
 
SM1 =
 
     1 3
     7 9
 
the most important matrix operations are summarized below:
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A + B, A-B, A * B: addition, subtraction and product of matrices

A\B = inv(A) * B if A is square.

A\B is the solution of the system AX = B in the sense of least-squares if A is not square

B coincides with (A' \ B')'

A n coincides with A * A * A *... * A n times (n scalar)

p A performs the calculation only if p is a scalar

here are some examples:
 
>> A = [1, 3, 5; pi exp(pi) sin(1); i 2 * i 1 + i]
 
A =
 
   1.0000   3.0000  5.0000
   3.1416   2.7183  0.0000
   1.0000i  2.0000i 1.0000 + 1.0000i
 
We have defined a complex matrix. Next we will calculate its inverse, its square and its square root:
 
>> B=inv(A)
 
B =
 
   0.0711 - 0.2874i  0.5810 - 0.0806i  0.5407 + 0.8963i
  -0.0822 + 0.3322i -0.3036 + 0.0932i -0.6249 – 1.0359i
   0.2351 - 0.1418i  0.0659 - 0.0398i  0.2668 + 0.4423i
 
>> C=A^2
 
C =
 
  10.425 +      5i  72.422 +     10i   12.524 +          5i
  75.84 + 0.84147i  544.92 + 1.6829i   36.022 +    0.84147i
     -1 +  8.2832i      -2 + 51.281i        0 +     8.6829i
 
>> A^(1/2)
 
ans =
 
   0.7181 + 0.3784i 0.6691 - 0.6583i  2.0360 - 1.1395i
   1.2547 - 0.3193i 1.6690 + 0.3804i -0.5550 + 0.8311i
  -0.1046 + 0.1852i 0.1152 + 0.5870i  1.2790 + 0.2869i
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 Now we check that the product of the matrix A with its inverse is the identity matrix of order 3:
 
>> A*B
 
ans =
 
   1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
   0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
   0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i
 
Now we find the exponential of A with bases 2 and - 2:
 
>> 2^A
 
ans =
 
   1.0e+07 *
 
   0.0218 + 0.0057i   0.1569 + 0.0384i   0.0106 + 0.0031i
   0.1673 + 0.0176i   1.2036 + 0.1080i   0.0816 + 0.0110i
  -0.0024 + 0.0157i  -0.0156 + 0.1131i  -0.0014 + 0.0076i
 
>> (-2)^A
 
ans =
 
1.0e+06 *
 
   0.0585 - 0.1313i   0.4059 - 0.9492i   0.0305 - 0.0634i
   0.2852 - 1.0365i   1.9345 - 7.4766i   0.1545 - 0.5029i
   0.0965 + 0.0316i   0.6969 + 0.2161i   0.0468 + 0.0168i
 
so far, we have always worked with numeric matrices. to work with symbolic matrices, we simply define the 
variables to be symbolic using the command syms.
 
>>  syms t
>>  A=sym([sin(t),cos(t);tan(t),exp(t)])
 
A =
 
[sin(t), cos(t)]
[tan(t), exp(t)]
 
>> b = inv (A)
  
b =
  
[-exp (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), cos (t) / (-sin (t) * exp (t) +  
cos (t) * tan (t))]
[tan (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), - sin (t) / (-sin (t) * exp (t) +  
cos (t) * tan (t))] 
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4.6 Character Variables
MATLAB is a powerful numerical calculation program, but it is also a versatile character variable (i.e. text) 
manipulator. A character variable (or chain) is simply a string of characters contained within single quotes that 
MATLAB interprets as a vector form. For example:
 
>> c = 'string'
 
c =
 
character string

We have thus defined the character variable c. Among the MATLAB commands that handle character variables 
we have the following:

abs(‘character_string’) returns the array of ASCII characters equivalent to each 
character in the string

setstr(numeric_vector) returns the string of ASCII characters that are equivalent to the 
elements of the vector

str2mat(t1,t2,t3,...) returns the matrix whose rows are the strings t1, t2, t3,..., 
respectively

str2num(‘string’) converts the string to its exact numeric value used by MATLAB

num2str(number) returns the exact number in its equivalent string with fixed 
precision

int2str(integer) converts the integer to a string

sprintf(‘format’, a) converts a numeric array into a string in the specified format

sscanf(‘string’, ‘format’) converts a string to a numeric value in the specified format

dec2hex(integer) converts a decimal integer into its equivalent string in hexadecimal

hex2dec(‘string_hex’) converts a hexadecimal string into its integer equivalent

hex2num(‘string_hex’) converts a hexadecimal string into the equivalent IEEE floating 
point number

lower(‘string’) converts a string to lowercase

upper(‘string’) converts a string to uppercase

strcmp(s1,s2) compares the strings s1 and s2 and returns 1 if they are equal and 0 
otherwise

strcmp(s1,s2,n) compares the strings s1 and s2 and returns 1 if their first n characters 
are equal and 0 otherwise

strrep(c,‘exp1’, ‘exp2’) replaces exp1 by  exp2 in the chain c

findstr(c, ‘exp’) finds where exp is in the chain c

isstr(expression) returns 1 if the expression is a string and 0 otherwise

ischar(expression) returns 1 if the expression is a string and 0 otherwise

strjust(string) right justifies the string
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blanks(n) generates a string of n spaces

deblank(string) removes blank spaces from the right of the string

eval(expression) executes the expression, even if it is a string

disp(‘string’) displays the string (or array) as written, and continues the MATLAB 
process

input(‘string’) displays the string on the screen and waits for a key press to continue

Here are some examples:
 
>> eval ('4 * atan(1)')
 
ans =
 
    3.1416
 

This shows how MATLAB numerically evaluates the contents of a string (according to the program’s standard 
interpretation of the syntax).
 
>> hex2dec ('3ffe56e')
 
ans =
 
    67102062
 

 MATLAB has converted a hexadecimal string to a decimal string.
 

>> dec2hex (1345679001)
 
ans =
 
    50356E99
 

The program has converted a decimal string to a hexadecimal string.
 
>> sprintf('%f',[1+sqrt(5)/2,pi])
 
ans =
 
 2.118034 3.141593
 

The exact numerical components of a vector have been converted to a string (to default precision).
 
>> sscanf('121.00012','%f')
 
ans =
 
  121.0001
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A numeric string has been passed to exact numerical format (with default precision). Later we will see which 
alternative formats are possible.
 
>> num2str(pi)
 
ans =
 
3.142
 

The exact number p has been approximated to default precision and converted to a string.
 
>> str2num('15/14')
 
ans =
 
    1.0714
 

A string representing a rational number has been approximated to default precision and converted to a string.
 
>> setstr(32:126)
 
ans =
 
!"#$% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ^ 
_'abcdefghijklmnopqrstuvwxyz {|}~
 

The ASCII characters associated with whole numbers between 32 and 126 have been generated.
 
>> abs('{]}><#¡¿?°ª')
 
ans =
 
   123 93 125 62 60 35 161 191 63 186 170
 

The integers corresponding to the given ASCII characters have been generated.
 
>> lower('ABCDefgHIJ')
 
ans =
 
abcdefghij
 

The given string has been converted to lowercase text.
 
>> upper('abcd eFGHi jKlMn')
 
ans =
 
ABCD EFGHI JKLMN
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The given string has been converted to uppercase text.
 
>> str2mat(' The world ',' The country ',' Daily 16 ', ' ABC ')
 
ans =
 
The world
The country
Daily 16
ABC
 

The chains given as arguments of the command str2mat have been converted into rows of an array.
 
>> disp('This text will appear on the screen')
 
This text will appear on the screen
 

The argument of the command disp is displayed on screen.
 
>> c = 'this is a good example';
>> strrep(c, 'good', 'bad')
 
ans =
 
this is a bad example
 

The string good has been replaced by the string bad in the string c.
 
>> findstr(c, 'is')
 
ans =
 
     3 6
 

The positions of the first character of the string is in c are given.

4.7 Operators
MATLAB features arithmetic, logical, relational, conditional and structural operators.

4.7.1 Arithmetic Operators
There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules 
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved, 
which we have already seen, are summarized below.

+  Sum of scalars, vectors or matrices

- Subtraction of scalars, vectors, or matrices

*  Product of scalar or matrix

. *  Product of scalar or vector
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\  A\B = inv (A) * B, where A and B are matrices

.\ A. \B = [B(i,j) /A (i, j)] where A and B vectors (dim (A) = dim (B))

/  Quotient, or B/A = B * inv (A), where A and B are matrices

./ A ./ B = [A(i,j)/B (i, j)], where A and B are vectors [dim (A) = dim (B)]

^  Power of a scalar or matrix (Mp)

. ^  Power of vectors (A. ^ B = [A(i,j)B (i, j)], for vectors A and B)

eXerCISe 4-9

Where X = [1 2 3] and Y = [4 5 6], calculate X + Y, X-Y, X * Y, X'* Y, X * Y', X.*Y, X.' * Y, X.*Y', 2 * X, 2.*X, X/Y, Y\X,  
X. / Y, Y\X, 2/X, 2. / X, 2\Y, 2. \Y, X ^ Y, X. ^ Y, X ^ 2, X^ 2, 2 ^ X and 2. ^ X.
 
>> X = [1,2,3]; Y = [4,5,6]; a = X + Y, b = X-Y, c = X * Y, d = 2. * X, e = 2/X, f = 2. \Y, g 
= X. / Y,
  h =. \X, i = x ^ 2, j = 2. ^ X, k = x. ^ Y
 
a =
 
     5 7 9
 
b =
 
    -3  -3  -3
 
c =
 
     4 10 18
 
d =
 
     2  4  6
 
e =
 
    2.0000 1.0000 0.6667
 
f =
 
    2.0000 2.5000 3,0000
 
g =
 
    0.2500 0.4000 0.5000
 
h =
 
    0.2500 0.4000 0.5000
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i =
 
     1 4 9
 
j =
 
     2 4 8
  
k =
 
     1 32 729
 
the above operations are all valid since in all cases the variable operands are of the same dimension, so the 
operations are successfully carried out element by element. For the sum and the difference there is no distinction 
between vectors and matrices, as the operations are identical in both cases.
 
>> X = [1,2,3]; Y = [4,5,6]; l = X'* Y, m = X * Y ', n = 2 * X, o = X / Y, p = Y\X
 
l =
 
     4    5   6
     8   10  12
    12   15  18
 
m =
 
    32
 
n =
 
     2 4 6
 
o  =
 
    0.4156
 
p =
 
    0             0             0
    0             0             0
    0.1667        0.3333        0.5000
 
all of the above matrix operations are well defined since the dimensions of the operands are compatible in every 
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not 
element by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the 
vector operations X.' * Y and X.*Y' make no sense, since they involve vectors of different dimensions. similarly, 
the matrix operations X * Y, 2/X, 2\Y, X ^ 2, 2 ^ X and X ^ Y make no sense, again because of a conflict of 
dimensions in the arrays.
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4.7.2 Relational Operators
MATLAB also provides relational operators. Relational operators perform element by element comparisons between 
two matrices and return an array of the same size whose elements are one if the corresponding relationship is true, or 
zero if the corresponding relation is false. The relational operators can also compare scalars with vectors or matrices, 
in which case the scalar is compared to all the elements of the array. Below is a summary of these operators.

<  less than (for complex numbers this applies only to the real parts)

< =  less than or equal (only applies to real parts of complex numbers)

>  greater than (only applies to real parts of complex numbers)

> =  greater than or equal (only applies to real parts of complex numbers)

x == y  equality (also applies to complex numbers)

x ~ = y  inequality (also applies to complex numbers)

Here are some examples:
 
>> X = 5 * ones(3,3); X > = [1 2 3; 4 5 6 ; 7 8 9]
 
ans =
 
     1 1 1
     1 1 0
     0 0 0
 

The elements of the array X which are greater than or equal to the corresponding element of the matrix [1 2 3; 4 
5 6; 7 8 9] are given the value 1 in the response matrix. The rest of the elements are assigned the value 0 (the result of 
the operation would have been the same if we had compared the scalar 5 to the matrix [1 2 3; 4 5 6; 7 8 9] using the 
expression X = 5; X > = [1 2 3; 4 5 6; 7 8 9]).

Next we see another example that combines an arithmetic operation with a relational operation:
 
>> A = 1:9, B = 9-A, Y = A > 4, Z = B-(A>2)
 
A =
 
     1     2     3     4     5     6     7     8     9
 
B =
 
     8     7     6     5     4     3     2     1     0
 
Y =
 
     0     0     0     0     1     1     1     1     1
 
Z =
 
     8     7     5     4     3     2     1     0    -1
 

The values of Y equal to 1 correspond to elements of A larger than 4. The Z values result from subtracting 1 from 
the corresponding elements of B if the corresponding element of A is greater than 2, or 0 if the corresponding element 
of A is less than or equal to 2.
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4.7.3 Logical Operators 
MATLAB provides symbols to denote logical operators. The logical operators shown below offer a way to combine or 
negate relational expressions.

~ A  logical negation (NOT) or the complement of A

A & B  logical conjunction (AND) or the intersection of A and B

A | B  logical disjunction (OR) or the union of A and B

xor(A,B)   exclusive or (XOR) or the symmetric difference of A and B (gives 1 if A or B, 
but not both, are 1)

Here are some examples:
 
>> A = 1:9; P =(A>2) &(A<6)
 
P =
 
     0     0     1     1     1     0     0     0     0

Returns 1 when A is greater than 2 and less than 6, and returns 0 otherwise.
 
>> A=[1 1 2 2 3 4 5 6 7 8 9],P=(A>=1)&(A<6),xor(A,P)
 
A =
 
     1     1     2     2     3     4     5     6     7     8     9
 
P =
 
     1     1     1     1     1     1     1     0     0     0     0
 
ans =
 
     0     0     0     0     0     0     0     1     1     1     1
 

Returns 1 when A or P, but not both, have the value 1.

4.8 Logic Functions
MATLAB implements logical functions whose output can take the value true (1) or false (0). The following list 
summarizes the most important logical functions.

exist(A) checks if the variable or function exists (returns 0 if A does not exist and a 
number between 1 and 5, depending on the type, if it does exist)

any(V) returns 0 if all elements of the vector V are null and returns 1 if some element of 
V is non-zero

any(A) returns 0 for each column of the matrix A with all null elements and returns 1 
for each column of the matrix A which has non-null elements

all(V)   returns 1 if all the elements of the vector V are non-null and returns 0 if some 
element of V is null
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all(A) returns 1 for each column of the matrix A with all non-null elements and returns 
0 for each column of the matrix A with at least one null element

find(V)  returns the places (or indices) occupied by the non-null elements of the vector V

isNaN(V)   returns 1 for the elements of V that are indeterminate and returns 0 for those 
that are not

isinf(V)    returns 1 for the elements of V that are infinite and returns 0 for those that 
are not

isfinite(V)   returns 1 for the elements of V that are finite and returns 0 for those that 
are not

isempty(A)  returns 1 if A is an empty array and returns 0 otherwise (an empty array is 
an array such that one of its dimensions is 0)

issparse(A) returns 1 if A is a sparse matrix and returns 0 otherwise

isreal(V) returns 1 if all the elements of V are real and returns 0 otherwise

isprime(V) returns 1 for all elements of V that are prime and returns 0 for all elements 
of V that are not prime

islogical(V) returns 1 if V is a logical vector and 0 otherwise

isnumeric(V) returns 1 if V is a numeric vector and 0 otherwise

ishold returns 1 if the properties of the current graph are retained for the next graph 
and only new elements will be added and 0 otherwise

isieee returns 1 if the computer is capable of IEEE standard operations

isstr(S) returns 1 if S is a string and 0 otherwise

ischart(S)  returns 1 if S is a string and 0 otherwise

isglobal(A) returns 1 if A is a global variable and 0 otherwise

isletter(S) returns 1 if S is a letter of the alphabet and 0 otherwise

isequal(A,B) returns 1 if the matrices or vectors A and B are equal, and 0 otherwise

ismember(V,W) returns 1 for every element of V which is in W and 0 for every element 
V that is not in W

Here are some examples:
 
>> isinf ([pi NaN Inf - Inf])
 
ans =
 
     0     0     1     1
 
>> any([pi NaN Inf -Inf])
 
ans =
 
     1
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>> ismember([1,2,3,5],[8,12,1,3,56,5])
 
ans =
 
     1     0     1     1
 
>> A=[2,0,1]; B=[4,0,2];
>> isequal(2*A,B)
 
ans =
 
     1
 
>> V=[-10,5,3,12,0];
>> isprime(V)
 
ans =
 
     0     1     1     0     0
 
>> isnumeric(V)
 
ans =
 
     1
 
>> all(V)
 
ans =
 
     0
 
>> any(V)
 
ans =
 
     1
 
>> C=[0 2 3;0 1 2 ;0 4 6],D=[0 0 0 0;4 3 1 2;6 0 0 4]
>> any(C),all(C),any(D),all(D)
 
ans =
 
     0 1 1
 
ans =
 
     0 1 1
 
ans =
 
     1 1 1 1
 
ans =
 
     0 0 0 0



Chapter 4 ■ NumeriCal Variables, VeCtors aNd matriCes 

129

4.9 Elementary Functions that Support Complex  
Matrix Arguments

•	 Trigonometric

sin (z) sine function

sinh (z) hyperbolic sine function

asin (z) arc sine function

asinh (z) hyperbolic arc sine function

cos (z) cosine function

cosh (z) hyperbolic cosine function

acos (z) arc cosine function

acosh (z) hyperbolic arc cosine function

tan (z) tangent function

tanh (z) hyperbolic tangent function

atan (z) arc tangent function

atan2 (z) arc tangent function in the fourth quadrant

atanh (z) hyperbolic arc tangent function

sec (z) secant function

sech (z) hyperbolic secant function

asec (z) arc secant function

asech (z) hyperbolic arc secant function

csc (z) cosecant function

csch (z) hyperbolic cosecant function

acsc (z) arc cosecant function

acsch (z) hyperbolic arc cosecant function

cot (z) cotangent function

coth (z) hyperbolic cotangent function

acot (z) arc cotangent function

acoth (z) hyperbolic arc cotangent function

•	 Exponential

exp (z) base e exponential function

log (z) Naperian logarithm

log10 (z) base 10 logarithm

sqrt (z) square root function

(continued)
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•	 Complex

abs (z) modulus or absolute value

angle (z) argument

conj (z) complex conjugate

imag (z) imaginary part

real (z) real part

•	 Numerical

fix (z) removes the decimal part

floor (z) rounds decimals to the nearest lower integer

ceil (z) round decimals to the nearest greater integer

round (z) performs the common rounding of decimal

rem (z1, z2) remainder of the division of z1 by z2

sign (z) sign function

•	 Matrix

expm (Z) matrix exponential function by default

expm1 (Z) matrix exponential function in M-file

expm2 (Z) matrix exponential function via Taylor series

expm3 (Z) matrix exponential function via eigenvalues

logm (Z) matrix logarithm

sqrtm (Z) matrix square root

funm(Z, ‘function’) applies the function to the matrix Z

Here are some examples:
 
>> A = [1 2 3; 4 5 6; 7 8 9]
 
A =
 
     1     2     3
     4     5     6
     7     8     9
 
>> sin(A)
 
ans =
 
    0.8415  0.9093  0.1411
   -0.7568 -0.9589 -0.2794
    0.6570  0.9894  0.4121
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>> B=[1+i 2+i;3+i,4+i]
 
B =
 
   1.0000 + 1.0000i 2.0000 + 1.0000i
   3.0000 + 1.0000i 4.0000 + 1.0000i
 
>> sin(B)
 
ans =
 
   1.2985 + 0.6350i  1.4031 - 0.4891i
   0.2178 - 1.1634i -1.1678 - 0.7682i
 
>> exp(A)
 
ans =
 
  1. 0e + 003 *
 
    0.0027 0.0074 0.0201
    0.0546 0.1484 0.4034
    1.0966 2.9810 8.1031
 
>> exp(B)
 
ans =
 
     1.4687 + 2.2874i   3.9923 + 6.2177i
    10.8523 +16.9014i  29.4995 +45.9428i
 
>> log(B)
 
ans =
 
   0.3466 + 0.7854i   0.8047 + 0.4636i
   1.1513 + 0.3218i   1.4166 + 0.2450i
 
>> sqrt(B)
 
ans =
 
   1.0987 + 0.4551i   1.4553 + 0.3436i
   1.7553 + 0.2848i   2.0153 + 0.2481i
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The exponential functions, square root and logarithm used above apply to the array elementwise and have 
nothing to do with the matrix exponential and logarithmic functions that are used below.
 
>> expm(B)
 
ans =
 
  1.0e+002 *
 
  -0.3071 + 0.4625i  -0.3583 + 0.6939i
  -0.3629 + 1.0431i  -0.3207 + 1.5102i
 
>> logm(A)
 
ans =
 
  -5.6588 + 2.7896i  12.5041 - 0.4325i  -5.6325 - 0.5129i
  12.8139 - 0.7970i -23.3307 + 2.1623i  13.1237 - 1.1616i
  -5.0129 - 1.2421i  13.4334 - 1.5262i  -4.4196 + 1.3313i
 
>> abs(B)
 
ans =
 
    1.4142    2.2361
    3.1623    4.1231
 
>> imag(B)
 
ans =
 
     1     1
     1     1
 
>> fix(sin(B))
 
ans =
 
   1.0000           1.0000
   0 - 1.0000i     -1.0000
 
>> ceil(log(A))
 
ans =
 
     0     1     2
     2     2     2
     2     3     3
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>> sign(B)
 
ans =
 
   0.7071 + 0.7071i   0.8944 + 0.4472i
   0.9487 + 0.3162i   0.9701 + 0.2425i
 
>> rem(A,3*ones(3))
 
ans =
 
     1     2     0
     1     2     0
     1     2     0
 
>> funm(B,'sinh')
 
ans =
 
 -15.8616 +23.2384i -17.6536 +34.7072i
 -17.7736 +52.1208i -16.2216 +75.4791i
 

The result of the last function is equivalent to sinh(B), but the algorithm used is different.

4.10 Elementary Functions that Support Complex Vector 
Arguments

max(V) The maximum component of V. (max is calculated for complex vectors as the complex number with the 
largest complex modulus (magnitude), computed with max(abs(V)). Then it computes the largest phase angle with 
max(angle(x)), if necessary.)

min(V) The minimum component of V. (min is calculated for complex vectors as the complex number with the 
smallest complex modulus (magnitude), computed with min(abs(A)). Then it computes the smallest phase angle with 
min(angle(x)), if necessary.)

mean(V) Average of the components of V.
median(V) Median of the components of V.
std(V) Standard deviation of the components of V.
sort(V) Sorts the components of V in ascending order. For complex entries the order is by absolute value and 

argument.
sum(V) Returns the sum of the components of V.
prod(V) Returns the product of the components of V, so, for example, n! = prod(1:n).
cumsum(V) Gives the cumulative sums of the components of V.
cumprod(V) Gives the cumulative products of the components of V.
diff(V) Gives the vector of first differences of V (V

t
 - V

t-1
).

gradient(V) Gives the gradient of V.
del2(V) Gives the Laplacian of V (5-point discrete).
fft(V) Gives the discrete Fourier transform of V.
fft2(V) Gives the two-dimensional discrete Fourier transform of V.
ifft(V) Gives the inverse discrete Fourier transform of V.
ifft2(V) Gives the inverse two-dimensional discrete Fourier transform of V.
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These functions also support a complex matrix as an argument, in which case the result is a vector of column 
vectors whose components are the results of applying the function to each column of the matrix.

Here are some examples:
 
>> V = 1:5, W = [1-i 2i 2 + 3i]
 
V =
 
     1     2     3     4     5
 
W =
 
   1.0000 - 1.0000i        0 + 2.0000i   2.0000 + 3.0000i
 
>> diff(V)
 
ans =
 
     1     1     1     1
 
>> diff(W)
 
ans =
 
  -1.0000 + 3.0000i   2.0000 + 1.0000i
 
>> cumprod(V)
 
ans =
 
     1     2     6    24   120
 
>> cumsum(W)
 
ans =
 
   1.0000 - 1.0000i   1.0000 + 1.0000i   3.0000 + 4.0000i
 
>> mean(W)
 
ans =
 
   1.0000 + 1.3333i
 
>> std(V)
 
ans =
 
    1.5811
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>> sort(W)
 
ans =
 
   1.0000 - 1.0000i        0 + 2.0000i   2.0000 + 3.0000i
 
>> sum(W)
 
ans =
 
   3.0000 + 4.0000i
 
>> prod(V)
 
ans =
 
   120
 
>> gradient(W)
 
ans =
 
  -1.0000 + 3.0000i   0.5000 + 2.0000i   2.0000 + 1.0000i
 
>> del2(W)
 
ans =
 
        0             1.5000 - 1.0000i        0
 
>> fft(W)
 
ans =
 
   3.0000 + 4.0000i  -0.8660 - 1.7679i   0.8660 - 5.2321i
 
 
>> ifft(W)
 
ans =
 
   1.0000 + 1.3333i   0.2887 - 1.7440i    -0.2887 - 0.5893i
 
>> fft2(W)
 
ans =
 
   3.0000 + 4.0000i   - 0.8660 - 1.7679i   0.8660 - 5.2321i
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4.11 Vector Functions of Several Variables
Functions of one or several variables are defined via the command maple as follows:

maple(‘f: = x - > f (x)’) or maple f: = x - > f (x): defines the function f(x)

maple(‘f:=(x,y,z...))(- > f(x,y,z...)’): defines the function f(x,y,z,..)

maple(‘f:=(x,y,z...))(- > (f1 (x, y...), f2(x,y..),...)’): defines the vector function (f1(x,y,..), 
f2(x,y,..),...)

To find the value of the function (x, y, z) - > f(x,y,z...) at the point (a, b, c,...) the expression maple (‘f(a,b,c,...)’) is 
used.

We find the value of the vector function f:=(x,y,..)-> (f1(x,y,..), f2(x,y,..),...) at the point (a, b,...) by using the 
expression maple (‘f(a,b,..)’).

The function  f(x,y) = 2x  + y is defined in the following way:
 
>> maple ('f:=(x,y) - > 2 * x + y ');
 

 f(2,3) and f(a,b) are calculated as follows:
 
>> maple('f(2,3)')
 
ans =
 
7
 
>> maple('f(a,b)')
 
ans =
 
2 * a + b

eXerCISe 4-10

Given the function h defined by: h(x,y) = (cos(x2-y2), sin(x2-y2)), calculate h(1,2), h(-pi,pi) and h(cos(a2), cos(1-a2)).

as h is a vector function of two variables, we use the command maple:
 
>> maple ('h:=(x,y) - > (cos(x^2-y^2), sin(x^2-y^2))');
>> maple ('A = h (1, 2), B = h(-pi,pi), C = h (cos(a^2), cos(1-a^2))')
 
ans =
 
A = (cos(3),-sin(3)), B = (1, 0),
C = (cos(cos(a^2) ^ 2-cos(-1+a^2) ^ 2), sin(cos(a^2) ^ 2-cos(-1+a^2) ^ 2)) 
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4.12 Functions of One Variable
Functions of one variable are a special case of functions of several variables, but they can also be defined in MATLAB 
via the command f = ‘function’.

To find the value of the function f at a point, you use the command subs, whose syntax is as follows:

subs(f, a) applies the function f at the point a

subs (f, a, b) assigns the value of the function at the point a to the variable b

Let’s see how to define the function f(x) = x ^ 2 :
 
>> f ='x ^ 2'
 
f =
 
x ^ 2
 

Now we calculate the values f(4), f(a+1) and f(3x+x^2):
 
>> syms a x
>>  A=subs(f,4),B=subs(f,a+1),C=subs(f,3*x+x^2)
 
A =
 
16
 
B =
 
(a+1) ^ 2
 
C =
 
(3 * x + x ^ 2) ^ 2
 

It should also be borne in mind that if we use the command maple, the special constants p , e, i, and ∞ are 
defined as maple(‘Pi’), maple(‘exp(1)’), maple(‘i’) and maple(‘infinity’) respectively.
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eXerCISe 4-11

define the functions f (x) = x2, g (x) = x1/2 and h (x) = x + sin (x). Calculate f (2), g(4) and h (a-b2).
 
>> f ='x ^ 2'; g = 'x ^(1/2)'; h = 'x+sin (x)';
 
>> syms a b
>> a=subs(f,2),b=subs(g,4),c=subs(h,'a-b^2')
 
a =
 
4
 
b =
 
4 ^(1/2)
 
c =
 
a-b ^ 2 + sin(a-b^2)
 
 We could also have done the following:
 
>> maple('f:=x->x^2: g:=x->sqrt(x):h:=x->x+sin(x)');
>> maple('f(2),g(4),h(a-b^2)')
 
ans =
 
4, 2, a-b^2 + sin(a-b^2) 
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Chapter 5

Vectors and Matrices

5.1 Vectors and Matrices
We have already seen how vectors and matrices are represented in MATLAB in the chapter dedicated to variables, 
however we shall recall the notation.

Consider the matrix

A A

a a a a

a a a a

a a a a

a a

ij

n

n

n

m m

= =( )

11 12 13 1

21 22 23 2

31 32 33 3

1 2







    

aa am mn3 

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

,

i m j n= =1 2 3 1 2 3, , , , , , , , . 

You can enter this in MATLAB in the following ways:

A=[a11,a12,...,a1n ; a21,a22,...,a2n ; ... ; am1,am2,...,amn]

A=[a11 a12 ... a1n ; a21 a22 ... a2n ; ... ; am1 am2 ... amn]

A=maple(‘array([[a11,..,a1n],[a21,..,a2n],..,[am1,..,amn]])’)

A=maple(‘matrix(m,n,[a11,..,a1n,a21,..,a2n,..,am1,..,amn])’)

A=maple(‘matrix([[a11,..,a1n],[a21,..,a2n],..,[am1,..,amn]])’)

On the other hand, a vector V =(v1,v2,...,vn) is introduced as a special case of a matrix with a single row  
(i.e. a matrix of dimension 1×n) in the following form:

V = [v1, v2,..., vn]

V = [v1 v2... vn]

V = maple (‘vector([v1, v2,..., vn])’)

V = maple (‘vector(n,[v1, v2,..., vn])’)

V=maple(‘array([v1, v2, ..., vn])’)
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5.2 Operations with Numeric Matrices
MATLAB supports the most common matrix algebra operations (sum, difference, product, scalar product), provided 
the dimensionality conditions hold.

The common MATLAB matrix commands are summarized below.

A + B sum of matrices A and B

A - B difference of the matrices A and B (A minus B)

c * M product of the scalar c and the matrix M

A * B product of the matrices A and B

A ^ p matrix A raised to the power of the scalar p

p ^ A scalar p raised to the power of the matrix A

expm1 (A) eA calculated via Padé approximants

expm2 (A) eA calculated via Taylor series

expm3 (A) eA calculated via eigenvalues and eigenvectors

logm(A) (Napierian logarithm of the matrix A)

sqrtm (A) square root of the matrix A

funm (A, ‘function’) applies the function to the matrix A

transpose (A) or A' transpose of the matrix A

inv (A) inverse of the square matrix A  ( A- 1)

det (A) determinant of the square matrix A

rank (A) range of the matrix A

trace (A) sum of the elements of the diagonal of A

svd (A) gives the vector V of singular values of A. The singular values of A are the square 
roots of the eigenvalues of the symmetric matrix A' A.

[U, S, V] = svd (A) gives the diagonal matrix S  of singular values of  A (ordered from 
largest to smallest), and the matrices U and V such that A= U * S * V'.

cond (A) gives the condition number of the matrix A (the ratio between the largest and 
the smallest singular values of A)

rcond (A) the reciprocal condition number of the matrix A

norm (A) the standard or 2-norm of A (the largest singular value of A)

norm(A,1) the 1-norm of A (the maximum column magnitude, where the column 
magnitude of a column is the sum of the absolute values of its elements)

norm(A,inf) the infinity norm of A (the maximum row magnitude, where the row 
magnitude of a row is the sum of the absolute values of its elements)

norm(A,‘fro’) the Frobenius norm of A, defined by sqrt (sum (diag(A'A)))
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Z = null (A) gives an orthonormal basis for the null space of A obtained from the 
singular value decomposition, i.e. AZ has negligible elements, size(Z,2) is the nullity of 
A, and Z'Z = I.

Q = orth (A) returns an orthonormal basis for the range of A, Q’Q=I. The columns of Q 
are vectors which span the range of A. The number of columns in Q is equal to the rank 
of A.

subspace (A, B) finds the angle between two subspaces specified by the columns of A 
and B. If A and B are column vectors of unit length, this is the same as acos(abs(A'*B)).

rref(A) produces the reduced row echelon form of A using Gauss-Jordan elimination 
with partial pivoting. The number of non-zero rows of rref (A) is the rank of A.

Here are some examples:
We consider the matrix M = [1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7], and find its transpose, its inverse, its 

determinant, its range, its trace, its singular values, its condition number, its norm, M3, eM, log (M) and sqrt (M):
 
>> M = [1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]
 
M =
 
    0.3333 0.2500 0.2000
    0.2500 0.2000 0.1667
    0.2000 0.1667 0.1429
 
>> transpose = M'
 
transpose =
 
    0.3333 0.2500 0.2000
    0.2500 0.2000 0.1667
    0.2000 0.1667 0.1429
 
>> inverse = inv(M)
 
inverse =
 
  1. 0e + 003 *
 
    0.3000  -0.9000  0.6300
   -0.9000   2.8800 -2.1000
    0.6300  -2.1000  1.5750
 

To verify that the inverse has been calculated, we multiply it by M and check that the result is the identity matrix 
of order 3:
 
>> M * inv(M)
 
ans =
 
    1.0000 0.0000 0.0000
    0.0000 1.0000 0.0000
    0.0000 0.0000 1.0000
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>> determinantM = det(M)
 
determinantM =
 
  2. 6455e-006
 
>> rankM=rank(M)
 
rankM =
 
     3
 
>> traceM=trace(M)
 
traceM =
 
    0.6762
 
>> vsingular = svd(M)
 
vsingular =
 
    0.6571
    0.0189
    0.0002
 
>> condition = cond(M)
 
condition =
 
  3. 0886e + 003
 

For the calculation of the norm, we find the standard norm, the 1-norm, the infinity norm and the Frobenius norm:
 
>> norm(M)
 
ans =
 
    0.6571
 
>> norm(M,1)
 
ans =
 
    0.7833
 
>> norm(M,inf)
 
ans =
 
    0.7833
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>> norm(M,'fro')
 
ans =
 
    0.6573
 
>> M^3
 
ans =
 
    0.1403    0.1096    0.0901
    0.1096    0.0856    0.0704
    0.0901    0.0704    0.0578
 
>> logm(M)
 
ans =
 
   -2.4766    2.2200    0.5021
    2.2200   -5.6421    2.8954
    0.5021    2.8954   -4.7240
 
>> sqrtm(M)
 
ans =
 
    0.4631 0.2832 0.1966
    0.2832 0.2654 0.2221
    0.1966 0.2221 0.2342
 

The variants using eigenvalues, Padé approximants and Taylor series will be used to calculate eM:
 
>> expm(M)
 
ans =
 
    1.4679    0.3550    0.2863
    0.3550    1.2821    0.2342
    0.2863    0.2342    1.1984
 
>> expm1(M)
 
ans =
 
    1.4679    0.3550    0.2863
    0.3550    1.2821    0.2342
    0.2863    0.2342    1.1984
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>> expm2(M)
 
ans =
 
    1.4679    0.3550    0.2863
    0.3550    1.2821    0.2342
    0.2863    0.2342    1.1984
 
>> expm3(M)
 

As we see, the exponential matrix coincides using all methods.

eXerCISe 5-1
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calculate aB - Ba, a2 + B2 + C2, aBC, sqrt(a) + sqrt(B) + sqrt(C), ea(eB+eC) and find the rank, inverse, trace, 
determinant, condition number and singular values of a, B and C.
 
>> A=[1 1 0;0 1 1;0 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i];
   C=[1 1 1; 0 sqrt(2)*i -sqrt(2)*i;1 -1 -1];
 
>> M1=A*B-B*A
 
M1 =
 
        0            -1.0000 - 1.0000i   2.0000
        0                  0             1.0000 - 1.0000i
        0                  0                  0
 
>> M2=A^2+B^2+C^2
 
M2 =
 
   2.0000             2.0000 + 3.4142i   3.0000 - 5.4142i
        0 - 1.4142i   0.0000 + 1.4142i   0.0000 - 0.5858i
        0             2.0000 - 1.4142i   2.0000 + 1.4142i
 
>> M3=A*B*C
 
M3 =
 
   5.0000 + 1.0000i  -3.5858 + 1.0000i  -6.4142 + 1.0000i
   3.0000 - 2.0000i  -3.0000 + 0.5858i  -3.0000 + 3.4142i
        0 - 1.0000i        0 + 1.0000i        0 + 1.0000i
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>> M4=sqrtm(A)+sqrtm(B)-sqrtm(C)
  
M4 =
 
   0.6356 + 0.8361i  -0.3250 - 0.8204i   3.0734 + 1.2896i
   0.1582 - 0.1521i   0.0896 + 0.5702i   3.3029 - 1.8025i
  -0.3740 - 0.2654i   0.7472 + 0.3370i   1.2255 + 0.1048i
 
>> M5=expm(A)*(expm(B)+expm(C))
 
M5 =
 
  14.1906 - 0.0822i   5.4400 + 4.2724i  17.9169 - 9.5842i
   4.5854 - 1.4972i   0.6830 + 2.1575i   8.5597 - 7.6573i
   3.5528 + 0.3560i   0.1008 - 0.7488i   3.2433 - 1.8406i
 
>> ranks=[rank(A) rank(B) rank(C)]
 
ranks =
 
     3     3     3
 
>> vsingular=[svd(A),svd(B),svd(C)]
 
vsingular =
 
    1.8019    4.2130    2.0000
    1.2470    1.4917    2.0000
    0.4450    0.1591    1.4142
 
>> traces=[trace(A) trace(B) trace(C)]
 
traces =
 
   3.0000            -1.0000                  0 + 1.4142i
 
>> inv(A)
 
ans =
 
     1    -1     1
     0     1    -1
     0     0     1
 
>> inv(B)
 
ans =
 
        0 - 1.0000i  -1.0000 - 1.0000i  -4.0000 + 3.0000i
        0            -1.0000             1.0000 + 3.0000i
        0                  0                  0 + 1.0000i
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>> inv(C)
 
ans =
 
   0.5000    0               0.5000
   0.2500    0 - 0.3536i    -0.2500
   0.2500    0 + 0.3536i    -0.2500
 
>> determinants = [det(A) det (B) det (C)]
 
determinants =
 
   1.0000 - 1.0000 0 - 5. 6569i
 
>> conditions = [cond(A) cond (B) cond(C)]
 
conditions =
 
    4.0489 26.4765 1.4142 

eXerCISe 5-2

Consider the following matrix:
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Find its transpose, its inverse, its determinant, its rank, its trace, its singular values, its condition number, its norm 
and M3, regarded as a symbolic matrix.
 
>> M = sym('[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]')
 
M =
 
[1/3,1/4,1/5]
[1/4,1/5,1/6]
[1/5,1/6,1/7]
 
>> Mtranspose = transpose(M)
 
Mtranspose =
 
[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6]
[1/5, 1/6, 1/7]
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>> Minverse = inv(M)
 
Minverse =
 
[ 300,  -900,   630]
[-900,  2880, -2100]
[ 630, -2100,  1575]
 
>> Mdeterminant=det(M)
 
Mdeterminant =
 
1/378000
 
>> Mrank=rank(M)
 
Mrank =
 
3
 
>> Mtrace=trace(M)
 
Mtrace =
 
71/105
 
>> numeric(svd(M))
 
ans =
 
   0.6571
   0.0002 - 0.0000i
   0.0189 + 0.0000i
 
>> norm = maple('norm([[1/3,1/4,1/5],[1/4,1/5,1/6],[1/5,1/6,1/7]])')
 
norm =
 
47/60
 
>> sympow(M,3)
 
ans =
 
[10603/75600,     1227/11200,  26477/294000]
[1227/11200,    10783/126000, 74461/1058400]
[26477/294000, 74461/1058400,   8927/154350]
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now we find the norms and condition number of M as a numeric matrix:
 
>> [norm(numeric(M)),norm(numeric(M),1),cond(numeric(M),inf),  
cond(numeric(M),'fro'),normest(numeric(M))]
 
ans =
 
  1.0e+003 *
 
0.0008    4.6060    3.0900    0.0007    0.8
 
>> [cond(numeric(M),1),cond(numeric(M),2),cond(numeric(M),'fro'),  
condest(numeric(M))]
 
ans =
 
  1.0e+003 *
 
    4.6060    3.0886    3.0900    4.6060 

eXerCISe 5-3

define a square matrix a of dimension 5 whose elements are given by a(i,j) = i3 - j2. extract the submatrix of a 
formed by rows 2 to 4 and columns 3 to 4. delete rows 2 to 4 of the matrix a, as well as column 5. exchange the 
first and last rows of the matrix a. exchange the first and last columns of the matrix a. insert a column of 1s to the 
right of the matrix a. insert a column of 1s to the left of the matrix a. insert two rows of 1s at the top of the matrix 
a. perform the same operation at the bottom.

First, we generate the matrix A as follows:
 
>> A=sym(maple('matrix(5,5,(i,j)-> i^3-j^2)'))
  
A =
  
[   0,  -3,  -8, -15, -24]
[   7,   4,  -1,  -8, -17]
[  26,  23,  18,  11,   2]
[  63,  60,  55,  48,  39]
[ 124, 121, 116, 109, 100]
 
>> maple('A:=matrix(5,5,(i,j)-> i^3-j^2)');
>> sym(maple('submatrix(A,2..4,3..4)'))
  
ans =
  
[ -1, -8]
[ 18, 11]
[ 55, 48]
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>> sym(maple('delrows(A,2..4)'))
  
ans =
  
[   0,  -3,  -8, -15, -24]
[ 124, 121, 116, 109, 100]
 
>> sym(maple('delcols(A,5..5)'))
  
ans =
  
[   0,  -3,  -8, -15]
[   7,   4,  -1,  -8]
[  26,  23,  18,  11]
[  63,  60,  55,  48]
[ 124, 121, 116, 109]
 
>> pretty(sym(maple('swapcol(A,1,5),swaprow(A,1,5)')))
  
     [-24     -3     -8    -15      0]  [124    121    116    109    100]
     [                               ]  [                               ]
     [-17      4     -1     -8      7]  [  7      4     -1     -8    -17]
     [                               ]  [                               ]
     [  2     23     18     11     26], [ 26     23     18     11      2]
     [                               ]  [                               ]
     [ 39     60     55     48     63]  [ 63     60     55     48     39]
     [                               ]  [                               ]
     [100    121    116    109    124]  [  0     -3     -8    -15    -24]
 
>> maple('B:=array([1,1,1,1,1])');
>> pretty(sym(maple('augment(A,B),augment(B,A)')));
  
[  0     -3     -8    -15    -24    1]  [1      0     -3     -8    -15    -24]
[                                    ]  [                                    ]
[  7      4     -1     -8    -17    1]  [1      7      4     -1     -8    -17]
[                                    ]  [                                    ]
[ 26     23     18     11      2    1], [1     26     23     18     11      2]
[                                    ]  [                                    ]
[ 63     60     55     48     39    1]  [1     63     60     55     48     39]
[                                    ]  [                                    ]
[124    121    116    109    100    1]  [1    124    121    116    109    100]
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>> maple('C:=array([[1,1,1,1,1],[1,1,1,1,1]])');
>> pretty(sym(maple('stack(C,A),stack(A,C)')));
  
     [  1      1      1      1      1]  [  0     -3     -8    -15    -24]
     [                               ]  [                               ]
     [  1      1      1      1      1]  [  7      4     -1     -8    -17]
     [                               ]  [                               ]
     [  0     -3     -8    -15    -24]  [ 26     23     18     11      2]
     [                               ]  [                               ]
     [  7      4     -1     -8    -17], [ 63     60     55     48     39]
     [                               ]  [                               ]
     [ 26     23     18     11      2]  [124    121    116    109    100]
     [                               ]  [                               ]
     [ 63     60     55     48     39]  [  1      1      1      1      1]
     [                               ]  [                               ]
     [124    121    116    109    100]  [  1      1      1      1      1] 

5.3 Eigenvalues and Eigenvectors
MATLAB enables commands that allow you to work with eigenvalues and eigenvectors of a square matrix. For 
numeric matrices, we have the following:

eig(A) Finds the eigenvalues of the square matrix A.

[V, D] = eig(A) Returns the diagonal matrix D of eigenvalues of A, and a matrix V whose 
columns are the corresponding eigenvectors, so that A * V = V * D.

eig(A,B) Returns a vector with the generalized eigenvalues of the square matrices  
A and B. The generalized eigenvalues of A and B are the roots of the polynomial in  
l:  det ( l * B - A).

[V, D] = eig(A, B) returns the diagonal matrix D of generalized eigenvalues of A and B 
and a matrix V whose columns are the corresponding eigenvectors, so that A * V = B * V * D.

[AA, BB, Q, Z, V] = qz(A, B)

Calculates the upper triangular matrices AA and BB and matrices Q and Z such that  
Q * A * Z = Q and AA * B * Z = BB, and gives the matrix V of generalized eigenvectors of 
A and B, so that A * V * diag (BB) = B * V * diag (AA).

[T, B] = balance(A) Returns a similarity transformation T such that B = T\A*T, and B 
has, as closely as possible, approximately equal row and column norms. The matrix B 
is called the balanced matrix of A.

balance(A) Computes the balanced matrix B of A. This is used to approximate  
the eigenvalues of A when they are difficult to estimate. We have  eig (A) = eig  
(balance (A)).

[V, D] = cdf2rdf (V, D) If the eigensystem [V,D]= eig(X) has complex eigenvalues 
appearing in complex-conjugate pairs, cdf2rdf transforms the system so D is in real 
diagonal form, with 2×2 real blocks along the diagonal replacing the original complex 
pairs. The eigenvectors are transformed so that X = V*D/V continues to hold.
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[U, T] = schur (A) Returns a matrix T and a unitary matrix U such that A = U * T * U' and 
U'* U = eye (U). If A is complex, T is an upper triangular matrix with the eigenvalues 
of A on its diagonal. If A is real, T has the eigenvalues of A on its diagonal, and the 
corresponding complex eigenvalues correspond to the 2 × 2 diagonal blocks of T.

schur(A) Returns only the matrix T of the above decomposition.

[U, T] = rsf2csf (U, T) Converts the real Schur form to the complex form.

[H, P] = hess(A) Returns the unitary matrix P and Hessenberg matrix H such that  
A = P * H * P' and P'* P = eye (size (P)).

hess(A) Returns the Hessenberg matrix of A.

poly(A) Returns the characteristic polynomial of the matrix A.

poly(V) Returns a vector whose components are the coefficients of the polynomial 
whose roots are the elements of the vector V.

vander(C) Returns the Vandermonde matrix A such that its j-th column is  
A(:,j) = C ^ (n-j).

eXerCISe 5-4

Consider the matrix:

M i i

i i

=
-

- - -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 3

1 1 2

1 2

Compute its eigenvalues and eigenvectors, the balanced matrix with its eigenvalues, and its characteristic 
polynomial.
 
>> M=[1,-1,3;-1,i,-1-2i;i,1,i-2];
>> [V,D] = eig(M)
 
V =
 
   0.9129             0.1826 + 0.5477i  -0.1826 + 0.3651i
  -0.2739 - 0.0913i   0.5477 - 0.1826i   0.3651 - 0.7303i
  -0.0913 + 0.2739i  -0.1826 - 0.5477i   0.1826 - 0.3651i
 
D =
     
   1.0000 + 1.0000i  0                0
   0                -2.0000 + 1.0000i 0
   0                 0                0
 



Chapter 5 ■ VeCtors and MatriCes

152

We see that the eigenvalues of M are 1 + i, -2 + i and 0, and the eigenvectors are the columns of the matrix V. 
We now calculate the balanced matrix of M and verify that its eigenvalues coincide with those of M:
 
>> balance(M)
 
ans =
 
   1.0000            -1.0000             1.5000
  -1.0000             0 + 1.0000i       -0.5000 - 1.0000i
   0 + 2.0000i        2.0000            -2.0000 + 1.0000i
 
>> eig(balance(M))
 
ans =
 
 1.0000 + 1.0000i
-2.0000 + 1.0000i
 0

We now calculate the characteristic of polynomial of M:

>> p=poly(M)
 
p =
 
   1.0000    1.0000 - 2.0000i  -3.0000 - 1.0000i    0
 
>> vpa(poly2sym(p))
 
ans =
 
x^3+x^2-2.*i*x^2-3.*x-1.*i*x
 
thus, the characteristic polynomial is x3  + x2  – 2ix2  – 3 x – ix.
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eXerCISe 5-5

Consider the square matrix a of order 5 whose (i,j)th element is given by 1/(i+j-1/2). Compute the eigenvalues, 
eigenvectors, characteristic polynomial, minimum polynomial, characteristic matrix and singular values of a. 
also find the vector of condition numbers of the eigenvalues and analyze whether a is positive definite, negative 
definite or positive or negative semidefinite.

MatLaB enables you to define this type of symbolic matrix in the general form:
 
>> A=sym(maple('matrix(5,5,(i,j)-> 1/(i+j-1/2))'))
 
A =
 
[ 2/3,  2/5,  2/7,  2/9, 2/11]
[ 2/5,  2/7,  2/9, 2/11, 2/13]
[ 2/7,  2/9, 2/11, 2/13, 2/15]
[ 2/9, 2/11, 2/13, 2/15, 2/17]
[2/11, 2/13, 2/15, 2/17, 2/19]
 
>> [V, E] = eig (A)
  
V =
  
[ -.1612e-1, -.6740e-2,     .3578,     2.482,    -288.7]
[     .2084,     .1400,    -2.513,    -15.01,     2298.]
[    -.7456,    -.6391,     3.482,     20.13,    -3755.]
[         1,         1,         1,         1,         1]
[    -.4499,    -.5011,    -2.476,    -8.914,     1903.]
 
E =
  
[  2/55*.4005e-4,              0,              0,              0,              0]
[              0, 2/55* .3991e-2,              0,              0,              0]
[              0,              0,    2/55* .1629,              0,              0]
[              0,              0,              0,    2/55* 3.420,              0]
[              0,              0,              0,              0,    2/55* 34.16]
 
as is well known, the eigenvectors are the columns of the matrix V and the eigenvalues are the elements of the 
diagonal of the matrix E.
 
>> pretty(simple(poly(A)))
  
  
 5   10042  4   362807509088   3    268537284608    2
x  - ----- x  + ------------- x  - --------------- x
     7315       2228304933855      285965799844725
 
          22809860374528            4359738368
     + --------------------- x - ------------------------
       169975437532179654375     177624332221127738821875
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We can approximate the above output as follows:
 
>> pretty(simple(vpa(poly(A))))
  
       5        4        3           2         -6           -12
      x -1.373 x +.1628 x -.0009391 x +.1342*10  x -.1934*10
 
the singular values are calculated in the following way:
 
>> pretty(simple(svd(A)))
                                 [        -5]
                                 [.1456*10  ]
                                 [          ]
                                 [ .0001451 ]
                                 [          ]
                                 [ .005923  ]
                                 [          ]
                                 [  .1244   ]
                                 [          ]
                                 [  1.242   ]
 
the minimal polynomial and the characteristic matrix are calculated in the following way:
 
>> pretty(simple(sym(maple('minpoly(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)'))))
  
        34359738368             22809860374528          268537284608    2
- ------------------------ + --------------------- x - --------------- x
  177624332221127738821875   169975437532179654375     285965799844725
 
 
       362807509088   3   10042  4    5
     + ------------- x  - ----- x  + x
       2228304933855      7315
 
>> pretty(simple(sym(vpa(maple('minpoly(matrix(5,5,(i,j)->1/(i+j-1/2)),x)')))))
  
              -12           -6               2          3          4    5
     -.1934 10    + .1342 10   x - .0009391 x  + .1628 x  - 1.373 x  + x
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>> pretty(simple(sym(maple('charmat(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)'))))
   
           [                                                 -2   ]
           [x - 2/3     -2/5        -2/7        -2/9         --   ]
           [                                                 11   ]
           [                                                      ]
           [                                     -2          -2   ]
           [ -2/5      x - 2/7      -2/9         --          --   ]
           [                                     11          13   ]
           [                                                      ]
           [                                     -2          -2   ]
           [ -2/7       -2/9      x - 2/11       --          --   ]
           [                                     13          15   ]
           [                                                      ]
           [             -2          -2                      -2   ]
           [ -2/9        --          --       x - 2/15       --   ]
           [             11          13                      17   ]
           [                                                      ]
           [  -2         -2          -2          -2               ]
           [  --         --          --          --       x - 2/19]
           [  11         13          15          17               ]
 
the vector of condition numbers of the eigenvalues is calculated as follows:
 
>> condeig(numeric(A))
 
ans =
 
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
 
in a more complete way, we can calculate the matrix V whose columns are the eigenvectors of A, the diagonal 
matrix D whose diagonal elements are the eigenvalues of A, and the vector S of condition numbers of the 
eigenvalues of A, by using the command:
 
>> [V,D,s] = condeig(numeric(A))
 
V =
 
    0.0102    0.0697    0.2756   -0.6523    0.7026
   -0.1430   -0.4815   -0.7052    0.1593    0.4744
    0.5396    0.6251   -0.2064    0.3790    0.3629
   -0.7526    0.2922    0.2523    0.4442    0.2954
    0.3490   -0.5359    0.5661    0.4563    0.2496
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D =
 
    0.0000         0         0         0         0
         0    0.0001         0         0         0
         0         0    0.0059         0         0
         0         0         0    0.1244         0
         0         0         0         0    1.2423
 
s =
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
 
Using the command definite, we find that the matrix A is positive definite:
 
>> maple('definite(matrix(5,5,(i,j)-> 1/(i+j-1/2)),positive_def)')
 
ans =
 
true

5.4 Matrix Decomposition 
MATLAB enables commands that allow you to decompose a matrix as a product of orthogonal matrices and diagonal 
matrices.

We have already seen how the command [U, S, V] = svd (A) returns a diagonal matrix S of singular values of A  
(in decreasing order of magnitude), and orthogonal matrices U and V such that = U * S * V'.

We have also seen that you can obtain the Jordan decomposition of a square matrix A via the command  
[V, J] = jordan (A), which returns the Jordan canonical matrix J of A with the eigenvalues of A on its diagonal and the 
similarity transform V whose columns are the eigenvectors of A, so that V-1  * A * V = J.

On the other hand, we have also seen that you can obtain a decomposition of a square matrix A via the command 
schur,  [U, T] = schur(A), which returns an array T and an orthogonal matrix U such that A= U * T * U' and U'* U = eye 
(U). If A is complex, T is an upper triangular matrix with the eigenvalues of A on its diagonal. For real A, the matrix T 
has real eigenvalues of A on its diagonal and complex eigenvalues in 2×2 diagonal blocks in T.

We can also find the Hessenberg decomposition of the matrix A via the command [H, P] = hess (A), which gives 
the orthogonal matrix P and Hessenberg matrix H such that A= P * H * P' and P'* P = eye (size (P)).

In addition, MATLAB has a number of other commands for the numeric and symbolic decomposition of a matrix. 
They include the following:

[L, U] = lu (A) Decomposes the matrix A as the product A = L * U (an LU 
decomposition), where U is an upper triangular matrix and L is a permutation  
of a lower triangular matrix.

[L, U, P] = lu(A) Returns the lower triangular matrix L, the upper triangular matrix U 
and the permutation matrix P such that P *A = L * U.

R = chol(A) Returns the upper triangular matrix R such that R'* R =A (a Cholesky 
decomposition), where A is positive. If A is not positive, an error is returned.
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[Q, R] =qr (A) Returns the upper triangular matrix R of the same dimension as A, and 
the orthogonal matrix Q such that A = Q * R (a QR decomposition). This decomposition 
can be applied to non-square matrices.

[Q, R, E] = qr(A) Returns the upper triangular matrix R of the same dimension as A, the 
matrix permutation E and the orthogonal matrix Q such that A * E = Q * R.

X = pinv(A) Returns the matrix X (the pseudo-inverse of A), of the same dimension as 
A' such that A * X * A = A and X * A * X = X, where A * X and X * A are hermitian.

In addition, the commands listed below allow the decomposition of both numeric and symbolic matrices. All of 
these commands must be preceded by the command maple.

LUdecomp(A,P=‘p’,L=‘l’,U=‘u’,U1=‘u1’,R=‘r’) decomposes the matrix A into the product 
A = evalm(P&*L&*U)  (LU decomposition), where U is an upper triangular matrix, L is 
a lower triangular matrix and P is a pivot factor. In addition, U = evalm(U1&*R)  with  
U1  upper triangular and R a row reduced factor, so that A = evalm(P&*L&*U1*R).

cholesky(A) returns the lower triangular matrix R such that A = evalm(R&*R')  
(Cholesky decomposition of A). A must be positive definite.

QRdecomp(A,Q=‘q’) returns the upper triangular matrix R of the same dimension as A, 
and the orthonormal matrix Q such that  A = evalm(Q&*R)  (QR decomposition  of  A).

companion(poly,var) gives the matrix  C  associated with the given monic polynomial 
in the specified variable. If poly = a0 + a1x +...+ xn, C(i,n)=-coeff(poli,var,i-1), i=1...n, 
C(i,i-1)=1,  i=2...n, and C(i, j) = 0 for the rest of the elements in the matrix.

frobenius(A) or ratform(A) returns the canonical Frobenius form F of the matrix A. F 
is a block diagonal matrix (F = diag(C1,C2,...,Cn)), where the Ci are the companion 
matrices associated to polynomials p1, p2,..., pk such that pi divides pi-1,  i = 2... K.

frobenius(A,‘P’) assigns to P the transformation matrix corresponding to the Frobenius 
form of the matrix A, so that evalm (P- 1 & * A & * P) = F.

smith(A,var) computes the Smith normal form of a matrix with univariate polynomial 
entries in var over the integers.

smith(A,var,U,V) in addition returns the matrices U and V such that  
S = evalm(U&*A&*V).

ismith(A,var) gives the diagonal matrix corresponding to the Smith normal form S  
of the square matrix A of polynomials in the variable  var.

ismith(A,var,U,V) in addition returns the matrices U and V such that  
S =evalm(U&*A&*V).

hermite(A,var) computes the Hermite normal form (reduced row echelon form) of a 
matrix A of univariate polynomials in var.

hermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

ihermite(A,var) computes the Hermite normal form (reduced row echelon form) of a 
matrix A of univariate polynomials in var over the integers.

ihermite(A,var,U) in addition returns the matrix U such that H = evalm(U&*A).

gaussjord (A) returns an upper triangular matrix corresponding to the row reduced 
(Gauss-Jordan) echelon form of the matrix A. This is used to facilitate the solution of 
systems of linear equations whose coefficient matrix is the matrix A.
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gaussjord (A, j) returns the j-th column of the above matrix.

gaussjord(A,r,d) gives the row reduced echelon form of the matrix A, assigns to the 
variable r the rank of A and to the variable d the determinant of submatrix(A,1..r,1..r). 
This subarray is used for solving systems of linear equations whose coefficient  
matrix is A.

gausselim(A) performs Gaussian elimination with row pivoting on A, returning the 
reduced matrix. This is used to facilitate the solution of systems of linear equations 
whose coefficient matrix is the matrix A.

gausselim(A, j) returns the j-th column of the row reduced matrix of A.

gausselim(A,r,d) returns the row reduced matrix of A, assigns the variable r to the rank 
of A, and the variable d to the determinant of  submatrix(A, 1..r,1..r) . This subarray is 
used for solving systems of linear equations whose coefficient matrix is A.

backsub(A) returns the vector x such that A * x = V, where V is the last column of the 
matrix A. If A is the result of applying forward Gaussian elimination to the augmented 
matrix of a system of linear equations (via gausselim or gaussjord, for example), 
backsub completes the solution by back substitution.

backsub(A, V) returns the vector x such that A * x = V.

backsub(A,V,t) returns the vector x such that A * x = V, where the parameter t is used for 
a possible family of parametric solutions of the system.

forwardsub(A,V) returns the vector x such that A * x = V. If A is the result of applying 
Gaussian elimination to the matrix of a system of linear equations (via LUdecomp, for 
example), forwardsub completes the solution by forward substitution.

forwardsub(A,V,t) returns the matrix X such that A * X = V, where the parameter t is 
used for a possible family of parametric solutions of the system.

forwardsub (A) returns the vector x such that A * x = V, where V is the last column of A.

forwardsub(A,B) returns the matrix X such that A * X = B.

geneqns(A,[x1,...,xn]) generates a system of linear equations in the given variables, 
equating each to zero, where the coefficients are determined by the matrix A.

geneqns(A,[x1,...,xn],V) generates a system of linear equations in the given variables, 
where the right-hand sides of the equations are determined by the vector V and the 
coefficients are determined by the matrix A.

genmatrix([equation1,...,equationm],[x1,...,xn]) generates the matrix corresponding to 
the given linear equations with respect to the specified variables.

genmatrix([equation1,...,equationm],[x1,...,xn],flag) generates the matrix 
corresponding to the given linear equations with respect to the specified variables, 
including as the last column of the matrix the right-hand sides of the equations.

genmatrix([equation1,...,equationm],[x1,..,xn],name) generates the matrix 
corresponding to the given linear equations with respect to the specified variables, and 
assigns a name to the vector that contains the right-hand sides of the equations.
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eXerCISe 5-6

Consider the 3×3 matrix a whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Find the schur,  
LU, Qr, Cholesky, hessenberg and singular value decompositions of a. Verify the results. also find the 
pseudoinverse of a.

First, we find the schur decomposition, checking that the result is correct:
 
>> A = [1,5,-2; -7,3,1; 2,2,-2];
>> [U, T] = schur (A)
 
U =
 
   -0.0530   -0.8892   -0.4544
   -0.9910   -0.0093    0.1337
    0.1231   -0.4573    0.8807
 
T =
 
    2.4475   -5.7952   -4.6361
    5.7628    0.3689    2.4332
         0         0   -0.8163
 
now, we check that U * T * U'= A and that U * U'= eye (3):
 
>> [U * T * U', U * U']
 
ans =
    1.0000    5.0000   -2.0000               1.0000    0.0000    0.0000
   -7.0000    3.0000    1.0000               0.0000    1.0000    0.0000
    2.0000    2.0000   -2.0000               0.0000    0.0000    1.0000
 
now, we find the LU, Qr, Cholesky, hessenberg and singular value decompositions, checking the results  
in each case:
 
>> [L, U, P] = lu (A)
 
L =
 
    1.0000         0         0
   -0.1429    1.0000         0      Lower triangular matrix
   -0.2857    0.5263    1.0000
 
U =
 
   -7.0000    3.0000    1.0000
         0    5.4286   -1.8571     Upper triangular matrix
         0         0   -0.7368
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P =
 
     0     1     0
     1     0     0
     0     0     1
 
>> [P * A, L * U]
 
ans =
 
    -7     3     1    -7     3     1
     1     5    -2     1     5    -2     we have that P*A=L*U
     2     2    -2     2     2    -2
 
>> [Q, R, E] = qr (A)
 
Q =
 
   -0.1361 - 0.8785 - 0.4579
    0.9526 - 0.2430   0.1831
   -0.2722 - 0.4112   0.8700
 
R =
 
   -7.3485 1.6330 1.7691
    0     -5.9442 2.3366  Upper triangular matrix
    0      0     -0.6410
 
E =
     1 0 0
     0 1 0
     0 0 1
 
>> [A * E, Q * R]
 
ans =
 
    1.0000 5.0000 -2.0000  1.0000 5.0000 -2.0000
   -7.0000 3.0000  1.0000 -7.0000 3.0000  1.0000
    2.0000 2.0000 -2.0000  2.0000 2.0000 -2.0000
 
then, a * e = Q * r.
 
>> R = chol(A)
 
??? Error using ==> chol
Matrix must be positive definite.
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We obtain an error message because the matrix is not positive definite.
 
>> [P,H] = hess(A)
 
P =
 
    1.0000  0      0
    0      -0.9615 0.2747
    0       0.2747 0.9615
 
H =
 
    1.0000 -5.3571 -0.5494
    7.2801  1.8302 -2.0943
    0      -3.0943 -0.8302
 
>> [P*H*P', P'*P]
 
ans =
 
    1.0000 5.0000 -2.0000 1.0000 0      0
   -7.0000 3.0000  1.0000 0      1.0000 0
    2.0000 2.0000 -2.0000 0      0      1.0000
 
then, php'= a and p'p = i.
 
>> [U, S, V] = svd (A)
 
U =
 
   -0.1034 -0.8623   0.4957
   -0.9808  0.0056  -0.1949
    0.1653 -0.5064  -0.8463
 
S =
 
    7.8306 0      0
    0      6.2735 0        diagonal matrix
    0      0      0.5700
 
V =
 
    0.9058 -0.3051 0.2940
   -0.3996 -0.8460 0.3530
   -0.1411  0.4372 0.8882
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>> U * S * V'
 
ans =
 
    1.0000 5.0000 -2.0000
   -7.0000 3.0000  1.0000 therefore USV'= A
    2.0000 2.0000 -2.0000
 
Now, we calculate the pseudoinverse of A:
 
>> X = pinv (A)
 
X =
 
    0.2857 -0.2143 -0.3929
    0.4286 -0.0714 -0.4643
    0.7143 -0.2857 -1.3571
 
>> [A * X * A, X * A * X]
 
ans =
 
    1.0000 5.0000 -2.0000 0.2857 -0.2143 -0.3929
   -7.0000 3.0000  1.0000 0.4286 -0.0714 -0.4643
    2.0000 2.0000 -2.0000 0.7143 -0.2857 -1.3571

Thus, we have AXA = A and XAX = X. 

eXerCISe 5-7

Consider the square matrix of order 5 whose (i,j)th element is defined by aij = 1 /(i+j-1/2). Calculate its Jordan 
form (and check the result). Find its LU, Qr, Frobenius, smith and hermite decompositions, calculating the 
matrices involved and verifying that they do indeed yield the original matrix.
 
>> A=sym(maple('matrix(5,5,(i,j)-> i+j-1/2)'))
  
A =
  
[3/2, 5/2, 7/2, 9/2, 11/2]
[5/2, 7/2, 9/2, 11/2, 13/2]
[7/2, 9/2, 11/2, 13/2, 15/2]
[9/2, 11/2, 13/2, 15/2, 17/2]
[11/2, 13/2, 15/2, 17/2, 19/2]
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>> [V, J] = Jordan (A);
>> pretty(sym(V))
  
         [             1/2                1/2       22   19]
         [8/9, 9/170 17 + 3/10, 9/170 3/17 +  3/10, --,  --]
         [                                          45   45]
         [                                                 ]
         [-71            1/2           1/2    -7        ]
         [---, - 2/85 17 + 1/5, 2/85 17 + 1/5,---, - 2/9]
         [90                                  18        ]
         [                                                 ]
         [-67          1/2               1/2      -49   -14]
         [---, 1/170 17 + 1/10, -1/170 17 + 1/10, ----, ---]
         [90                                       90   45 ]
         [                                                 ]
         [             1/2         1/2                     ]
         [3/10, 3/85 17,  - 3/85 17,   3/10,  - 2/5]
         [                                                           ]
         [31      11   1/2               11   ½             -13   -23]
         [-- ,   --- 17    - 1/10 ,   - --- 17    - 1/10 ,   -- ,  --]
         [90     170                    170                  90    45]
 
>> pretty(sym(J))
  
            [0            0                    0            0    0]
            [                                                     ]
            [                 1/2                                 ]
            [0 55/4 + 15/4 17                  0            0    0]
            [                                                     ]
            [                                   1/2               ]
            [0            0         55/4-15/4 17            0    0]
            [                                                     ]
            [0            0                    0            0    0]
            [                                                     ]
            [0            0                    0            0    0]
 
>> pretty(simple(sym(symmul(symmul(V,J),inv(V)))))
  
                    [3/2  5/2   7/2   9/2    11/2]
                    [5/2  7/2   9/2   11/2   13/2]
                    [7/2  9/2   11/2  13/2   15/2]
                    [9/2  11/2  13/2  15/2   17/2]
                    [13/2 11/2  15/2  17/2   19/2]
 
We have calculated the transformation matrix V and the diagonal matrix (the Jordan form) J of A. We have also 
proven that V * J * V-1= A. We now calculate the LU decomposition matrix of A and the matrices involved, checking 
the result. since symbolic matrices are involved, we will use the maple command.
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>> maple('A:=matrix(5,5,(i,j)-> i+j-1/2)');
>> pretty (sym (maple ('LUdecomp(A,P=p,L=l,U=u,U1=u1,R=r)')))
  
                     [3/2    5/2     7/2     9/2    11/2]
                     [                                  ]
                     [0    - 2/3   - 4/3    - 2    - 8/3]
                     [                                  ]
                     [ 0      0       0       0      0  ]
                     [                                  ]
                     [ 0      0       0       0      0  ]
                     [                                  ]
                     [ 0      0       0       0      0  ]
 
>> pretty(sym(maple('print(p,l)')))
  
              [1 0 0 0 0]  [1    0    0    0    0]
              [         ]  [                     ]
              [0 1 0 0 0]  [5/3  1    0    0    0]
              [         ]  [                     ]
              [0 0 1 0 0], [7/3  2    1    0    0]
              [         ]  [                     ]
              [0 0 0 1 0]  [3    3    0    1    0]
              [         ]  [                     ]
              [0 0 0 0 1]  [11/3 4    0    0    1]
 
>> pretty(sym(maple('print(u1,r)')))
    
           [3/2    5/2     0    0    0]  [1    0    -1    -2    -3]
           [                          ]  [                        ]
           [0    - 2/3     0    0    0]  [0    1     2     3     4]
           [                          ]  [                        ]
           [ 0      0      1    0    0], [0    0     0     0     0]
           [                          ]  [                        ]
           [ 0      0      0    1    0]  [0    0     0     0     0]
           [                          ]  [                        ]
           [ 0      0      0    0    1]  [0    0     0     0     0]
 
>> pretty (sym (maple ('evalm(p&*l&*u1&*r), evalm(p&*l&*u)')))
  
[3/2  5/2  7/2  9/2  11/2]  [3/2 5/2 7/2 9/2   11/2]
[                        ]  [                      ]
[5/2  7/2  9/2 11/2  13/2]  [5/2 7/2 9/2 11/2  13/2]
[                        ]  [                      ]
[7/2  9/2 11/2 13/2  15/2], [7/2 9/2 11/2 13/2 15/2]
[                        ]  [                      ]
[9/2 11/2 13/2 17/2  15/2]  [9/2 11/2 13/2 17/2 15/2]
[                        ]  [                       ]
[13/2 11/2 15/2 17/2 19/2]  [13/2 11/2 15/2 17/2 19/2]
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We see that p * l * u1 * r = A and that p * l * u = A. We will now calculate the Qr decomposition of A and the 
matrices involved, checking the result.
 
>> pretty(sym(maple('print(R)')))
  
        [       1/2 71    1/2      85    1/2      33    1/2 113    1/2]
        [1/2 285,  --- 285,       --- 285,       --- 285,   --- 285   ]
        [          114            114             38        114       ]
        [                                                             ]
        [                 1/2            1/2            1/2        1/2]
        [0,       2/57 570,      4/57 570,      2/19 570,   8/57 570  ]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]
 
>> pretty(sym(maple('print(q)')))
   
    [        1/2         1/2        1/2                             ]
    [1/95 285,   3/95 570,    1/5/10,         0,                   0]
 
    [        1/2   11    1/2        1/2        1/2                  ]
    [1/57 285,    --- 570,  - 1/5 10,   1/10 30,                   0]
    [             570                                               ]
 
    [         1/2        1/2        1/2        1/2              1/2 ]
    [7/285 285, 2/285 570,    - 1/10, - 2/15 30,           1/6 6    ]
 
    [        1/2         1/2                   1/2             1/2  ]
    [3/95 285, - 1/190 570,        0, - 1/30 30,        - 1/3 6     ]
 
    [ 11     1/2         1/2        1/2        1/2               1/2]
    [--- 285 , - 1/57 570,   1/10/10,   1/15 30,            1/6 6   ]
    [285                                                            ]
 
>> pretty(sym(maple('evalm(q&*R)')))
  
                    [3/2  5/2  7/2  9/2  11/2]
                    [                        ]
                    [5/2  7/2  9/2 11/2  13/2]
                    [                        ]
                    [7/2  9/2 11/2 13/2  15/2]
                    [                        ]
                    [9/2 11/2 13/2 17/2  15/2]
                    [                        ]
                    [13/2 11/2 15/2 17/2 19/2]
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We see that q * R = A. next we find the smith decomposition of the matrix A and the matrices involved, checking 
the result.
 
>> pretty(sym(maple('smith(A,X,U,V)')))
  
                            [1 0 0 0 0]
                            [         ]
                            [0 1 0 0 0]
                            [         ]
                            [0 0 0 0 0]
                            [         ]
                            [0 0 0 0 0]
                            [         ]
                            [0 0 0 0 0]
 
>> pretty(sym(maple('print(U,V)')))
   
                                          [     -13                  ]
         [0     0     0     0      2/11]  [1    ---     1     2     3]
         [                             ]  [      11                  ]
         [0     0     0    11/2   - 9/2]  [                          ]
         [                             ]  [0     1     -2    -3    -4]
         [-1    2    -1     0       0  ], [                          ]
         [                             ]  [0     0      1     0     0]
         [ 0    1    -2     1       0  ]  [                          ]
         [                             ]  [0     0      0     1     0]
         [ 0    0     1     -2      1  ]  [                          ]
                                          [0     0      0     0     1]
 
>> pretty(sym(maple('evalm(U&*A&*V)')))
  
                            [1 0 0 0 0]
                            [         ]
                            [0 1 0 0 0]
                            [         ]
                            [0 0 0 0 0]
                            [         ]
                            [0 0 0 0 0]
                            [         ]
                            [0 0 0 0 0]
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We see that U * A * V = Smith matrix. next we calculate the hermite decomposition of the matrix A and find the 
matrices involved.
 
>> pretty(sym(maple('H:=hermite(A,x,V); V:=evalm(V)')))
>> pretty(sym(maple('print(H,V)')))
    
           [1    0    -1    -2    -3]  [-7/2    5/2     0    0    0]
           [                        ]  [                           ]
           [0    1     2     3     4]  [5/2   - 3/2     0    0    0]
           [                        ]  [                           ]
           [0    0     0     0     0], [ 2       -4     2    0    0]
           [                        ]  [                           ]
           [0    0     0     0     0]  [ 4       -6     0    2    0]
           [                        ]  [                           ]
           [0    0     0     0     0]  [ 6       -8     0    0    2]
 
>> pretty(sym(maple('evalm(V&*A)')))
  
                          [1    0    -1    -2    -3]
                          [                        ]
                          [0    1     2     3     4]
                          [                        ]
                          [0    0     0     0     0]
                          [                        ]
                          [0    0     0     0     0]
                          [                        ]
                          [0    0     0     0     0]
 
We see that V*A = H. Finally, we calculate the Frobenius decomposition of A and find the matrices involved, 
checking the result.
 
>> pretty(sym(maple('F:=frobenius(A,P); P:=evalm(P)')))
>> pretty(sym(maple('print(F,P)')))
  
                                  [ 67                       22      19 ]
                                  [ --     3/2     285/4     --      -- ]
                                  [ 45                       45      45 ]
                                  [                                     ]
      [0    0     0      0    0]  [ -7                       -7         ]
      [                        ]  [ --     5/2     355/4     --     -2/9]
      [1    0    50      0    0]  [ 18                       18         ]
      [                        ]  [                                     ]
      [0    1    55/2    0    0], [-49                      -49     -14 ]
      [                        ]  [---     7/2     425/4    ---     --- ]
      [0    0     0      0    0]  [90                       90      45  ]
      [                        ]  [                                     ]
      [0    0     0      0    0]  [3/10    9/2     495/4    3/10    -2/5]
                                  [                                     ]
                                  [ 13                       13      23 ]
                                  [ --     11/2    565/4     --      -- ]
                                  [ 90                       90      45 ]
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>> pretty(sym(maple('evalm(P^(-1)&*A&*P)')))
  
                          [0    0     0      0    0]
                          [                        ]
                          [1    0    50      0    0]
                          [                        ]
                          [55/2 1     0      0    0]
                          [                        ]
                          [0    0     0      0    0]
                          [                        ]
                          [0    0     0      0    0]
 
We have shown that P- 1* A * P = F.

eXerCISe 5-8

Consider the 3 × 3 matrix a whose rows are given by the vectors (1,5,-2), (-7,3,1) and (2,2,-2). if V is the vector 
of ones, solve the system L * x = V based on the LU decomposition of a. solve the system G * x = V, where G is 
obtained from a via Gaussian elimination. solve the system J * x = V where J is the Jordan form of a. represent 
the matrix system in the form of equations, and find the hermite and smith decompositions of a.

First, we define the matrix A and the vector V using the maple command as follows:
 
>> maple ('A: = matrix(3,3,[1,5,-2,-7,3,1,2,2,-2]);) V: = array ([1,1,1])');
 
then we find the LU decomposition of A, solving the system L*x = V using the command backsub.
 
>> pretty(sym(maple('L:=LUdecomp(A)')))
>> pretty(sym(maple('backsub(L,V)')))
  
                             [253   - 233   – 19]
                             [---    ----    ---]
                             [532     532     14]
 
We have solved the system L * x = V, which can be expressed in the form of equations with the command 
geneqns as follows:
 
>> pretty(sym(maple('geneqns(L,[x1,x2,x3],V)')))
  
 
                                                             14
            {x 1 + 5 x 2 - 2 x 3 = 1, 38 x 2 - 13 x 3 = 1, - -- x 3 = 1}
                                                             19
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now we solve the system G * x = V where G is obtained from A by Gaussian elimination.
 
>> pretty(sym(maple('G:=gausselim(A)')))
>> pretty(sym(maple('backsub(G,V)')))
  
                              [79   - 11        ]
                              [--    ---    -2/7]
                              [56    56        ]
 
the system of equations is found as follows:
 
>> pretty(sym(maple('geneqns(G,[x1,x2,x3],V)')))
  
     {x 1 + 5 x 2 - 2 x 3 = 1, 8 x 2 + 2 x 3 = 1, - 7/2 x 3 = 1}
 
now, we solve the system J * x = V where J is the canonical Jordan form of A. We use the command forwardsub.
 
>> pretty(sym(maple('J:=gaussjord(A)')))
>> pretty(sym(maple('forwardsub(J,V)')))
  
                                 [1 1 1]
 
Finally, we find the smith and hermite matrices associated with A.
 
>> pretty(sym(maple('ihermite(A,x)')))
  
                                [1 1 6]
                                [0 2 3]
                                [0 0 14]
 
>> pretty(sym(maple('ismith(A)')))
  
                                [1 0 0]
                                [0 1 0]
                                [0 0 28] 

5.5 Similar Matrices and Diagonalization
Two matrices A and B of dimensions (M×N) are equivalent if there exist two invertible matrices U and V such that  
A = UBV. The MATLAB command [U, S, V] = svd (A) calculates a diagonal matrix S which is equivalent to A.

Two square matrices A and B of order n are said to be congruent if there is an invertible matrix P such that  
A = PtBP.

The MATLAB command [U, T] = schur (A) calculates a matrix T which is congruent with A.
Congruence implies equivalence, and two congruent matrices must always have the same rank.
Two square matrices of order n, A and B, are similar if there is an invertible matrix P such that A = PBP-1.
Two similar matrices are equivalent.
A matrix A is diagonalizable if it is similar to a diagonal matrix D, that is, if there is an invertible matrix P such that 

A = PDP- 1.
The process of calculating the diagonal matrix D and the matrix P is called diagonalization of A.



Chapter 5 ■ VeCtors and MatriCes

170

Given a square matrix of real numbers A of order n, if all the eigenvalues of A are real and distinct, then A is 
diagonalizable. The matrix D will have the eigenvalues of A as the diagonal elements. The matrix P has as columns the 
eigenvectors of A corresponding to these eigenvalues.

If the matrix A has an eigenvalue with multiplicity r greater than 1, then it is diagonalizable if and only if the 
kernel of the matrix A - r * I

n
 has dimension equal to the degree of multiplicity of the eigenvalue r.

The MATLAB command  [V, J] = jordan (A)  diagonalizes the matrix A by calculating the diagonal matrix J and the 
matrix V such that A=VJV

-1
.

eXerCISe 5-9

diagonalize the symmetric matrix whose rows are the vectors:

(3, -1, 0), (-1, 2, -1), (0, -1, 3).

Check the result and confirm that the eigenvalues of the initial matrix are the elements of the diagonal matrix 
obtained.

We calculate the diagonal matrix J similar to A, which will have the eigenvalues of A on its diagonal, and the 
transformation matrix V. to do this, we use the command [V, J] = jordan (A):
 
>> A = [3, 0, - 1, - 1, 2, - 1; 0, - 1, 3]
 
A =
 
     3  -1  0
    -1  -2 -1
     0  -3 -1
 
>> [V, J] = jordan (A)
 
V =
 
[1/6,  1/2, 1/3]
[1/3,  0,  -1/3]
[1/6, -1/2, 1/3]
 
J =
 
[1, 0, 0]
[0, 3, 0]
[0, 0, 4]
 
We now confirm that the diagonal matrix J has the eigenvalues of A on its diagonal:
 
>> eigensys (A)
 
ans =
 
[1]
[3]
[4]
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the matrices A and J are similar because there a matrix V satisfying the equation V-1 * A * V = J :
 
>> symmul(symmul(inv(V),A),V)
 
ans =
 
[1, 0, 0]
[0, 3, 0]
[0, 0, 4] 

5.6 Sparse Matrices
A matrix is called sparse if it has sufficiently many zero elements that one can take advantage of.  Sparse matrix 
algorithms do not store most null elements in memory, so when working on matrix processing with sparse matrices 
one gains time and efficiency. There are specialized commands that can be used to deal with sparse matrices. Some of 
these commands are listed below.

S = sparse (i, j, s, m, n, nzmax), i = vector, j = vector, s = vector. Creates a sparse matrix 
S of dimension m×n with space for nzmax non-zero elements given by s. The vector  
i contains the i-input components of the non-null elements and the vector j contains 
the corresponding j-input components.

S=sparse(i,j,s,m,n) creates the sparse matrix S using nzmax=length(s).

S = sparse(i,j,s) creates a sparse matrix S with m = max (i) and n = max (j).

S = sparse (A) converts the matrix A into sparse form.

A = full (S) converts the sparse matrix S into full matrix form A.

S = spconvert (D) converts an external ASCII file read with name D into a sparse  
matrix S.

(i, j) = find (A) returns the row and column indices of the non-zero entries of the matrix A.

B = spdiags (A, d) builds a sparse matrix by extracting the diagonal elements of A 
specified by the vector d.

S = speye (m, n) creates the sparse m×n matrix with ones on the main diagonal.

S = speye (n) creates the sparse square identity matrix of order n.

R = sprandn (S) generates a random sparse matrix with non-zero values normally 
distributed in (0,1) with the same structure as the sparse matrix S.

R = sprandsym (S) generates a sparse random symmetric matrix with non-zero entries 
normally distributed in (0,1) whose lower diagonal triangle has the same structure as S.

r = sprank (S) gives the structural rank of the sparse matrix S.

n = nnz (S) gives the number of non-zero elements in the sparse matrix S.

k = nzmax (S) returns the amount of storage occupied by the non-zero elements in the 
sparse matrix S. If S is a full matrix then nzmax (S) = prod (size (S)).

s=spalloc(m,n,nzmax) creates space in memory for a sparse matrix of dimension m×n.

R = spones(S) replaces the zero entries of the sparse matrix S with ones.
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n = condest(S) computes a lower bound for the 1-norm condition number of a square 
matrix S.

m = normest(S) returns an estimate of the 2-norm of the matrix S.

issparse(A) returns 1 if the matrix A is sparse, and 0 otherwise.

Here are some examples:
 
>> sparse([1,1,2,2,3,4],[4,2,3,1,2,3],[-7,12,25,1,-6,8],4,4,10)
 
ans =
 
   (2,1) 1
   (1,2) 12
   (3,2) -6
   (2,3) 25
   (4,3) 8
   (1,4) -7
 

Now we convert this sparse matrix into complete form:
 
>> full(ans)
 
ans =
 
     0  12  0  -7
     1   0 25   0
     0  -6  0   0
     0  0   8   0
 

Now we define a sparse matrix whose full form is a diagonal matrix:
 
sparse(1:5,1:5,-6)
 
ans =
 
   (1,1)       -6
   (2,2)       -6
   (3,3)       -6
   (4,4)       -6
   (5,5)       -6
 
>> full(ans)
 
ans =
 
    -6     0     0     0     0
     0    -6     0     0     0
     0     0    -6     0     0
     0     0     0    -6     0
     0     0     0     0    -6
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5.7 Special Matrices
MATLAB provides commands to define certain special types of matrices. These include the following:

H = hadamard(n): Returns the Hadamard matrix of order n, a matrix with values 1 or –1  
such that H'* H = n * eye(n).

hankel(V): Returns the square Hankel matrix whose first column is the vector V and 
whose elements are zero below the first anti-diagonal. The matrix hankel(C,R) has first 
column vector C and last row vector R.

hilb(n): Returns the Hilbert matrix of order n, a matrix whose ij-th element is 1 /(i+j-1).

invhilb(n): Returns the inverse of the Hilbert matrix of order n.

magic(n): Returns a magic square of order n. Its elements are integers from 1 to n2 with 
equal sums of rows and columns.

pascal(n): Returns the Pascal matrix of order n (symmetric, positive definite with 
integer entries taken from Pascal’s triangle).

rosser: Returns the Rosser matrix, an 8 × 8 matrix with a double eigenvalue, three 
nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue 
and a small non-zero eigenvalue.

toeplitz(C,R): Returns a Toeplitz matrix (not symmetric, with the vector C in the first 
column and R as the first row vector).

vander(C): Returns a Vandermonde matrix whose penultimate column is the vector C. 
In addition, A(:,j) = C ^ (n-j).

wilkinson(n): Returns the Wilkinson matrix of order n (symmetric tridiagonal with 
pairs of eigenvalues close but not the same).

compan(P): Returns the corresponding companion matrix whose first row  
is -P(2:n)/P(1), where  P  is a vector of polynomial coefficients.

maple(‘hadamard (n)’): Returns the Hadamard matrix of order n, a matrix with values 
1 or - 1 such that H'* H = n * eye(n).

maple (‘hilbert (n)’): Returns the Hilbert matrix of order n, a matrix whose ij-th 
element is 1 /(i+j-1).

maple (‘hilbert(n,exp)’): Returns the matrix of order n with ij-th entry equal to  
1 /(i+j-exp).

maple(‘bezout(poly1,poly2,x)’): Constructs the Bézout matrix of the given  
polynomials in x, with dimension max(m,n), where m = degree (poly1) and  
n = degree (poly2). The determinant of this matrix is the resultant of the two 
polynomials (resultant(poly1,poly2,x)).

maple(‘sylvester(p1,p2,x)’): Constructs the Sylvester matrix of the given polynomials  
in x, with dimension n+m, where m = degree(p1) and n =degree(p2). The determinant 
of this matrix is the resultant of the two polynomials.

maple (‘fibonacci (n)’): Returns the nth Fibonacci matrix F(n) whose size is the sum of 
the dimensions of F (n-1) and F (n-2).
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maple(‘toeplitz([ex1,...,exn])’): Returns the symmetric Toeplitz matrix whose elements 
are the specified expressions.

maple(‘vandermonde([expr1,..., exprn])’): Returns the Vandermonde matrix whose 
ij-th element is exprij-1.

maple (‘wronskian(V,x)’): Returns the Wronskian matrix of the vector V =(f1,...,fn) with 
respect to the variable x. The ij-th element is diff (fj, x$(i-1)).

maple (‘jacobian([expr1,...,exprm],[x1,..., xn])’): Returns the m×n Jacobian matrix with 
ij-th element diff(expri,xj).

maple(‘hessian(exp,[x1,...,xn])’): Returns the m×n Hessian matrix with ij-th element 
diff(exp, xi,xj).

eXerCISe 5-10

Find the eigenvalues of the Wilkinson matrix of order 8, a magic square of order 8 and the rosser matrix.
 
>> [eig(wilkinson(8)), eig(rosser), eig(magic(8))]
 
ans =
 
  1. 0e + 003 *
 
   0.0042  1.0000  0.2600
   0.0043  1.0000  0.0518
   0.0028  1.0200 -0.0518
   0.0026  1.0200  0.0000
   0.0017  1.0199  0.0000 + 0.0000i
   0,0011  0.0001  0.0000 - 0.0000i
   0.0002  0.0000  0.0000 + 0.0000i
  -0.0010 -1.0200  0.0000 - 0.0000i
 
observe that the Wilkinson matrix has pairs of eigenvalues which are close, but not equal. the rosser matrix has 
a double eigenvalue, three nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue 
and a small non-zero eigenvalue.
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eXerCISe 5-11

Find the smith and hermite forms of the inverse of the hilbert matrix of order 2 in the variable x. also find the 
corresponding transformation matrices.
 
>> maple('with(linalg):H:= inverse(hilbert(2,x))');
>> pretty(simple(sym(maple('H'))))
  
          [            2                                           ]
          [   -(-3 + x)  (-2 + x)        (-3 + x) (-2 + x) (-4 + x)]
          [                                                        ]
          [                                          2             ]
          [(-3 + x) (-2 + x) (-4 + x)       -(-3 + x)  (-4 + x)    ]
 
>> maple ('B: = smith(H,x,U,V);)U: = eval (U); V: = eval (V)');
>> pretty(simple(sym(maple('B'))))
  
                     [-3 + x               0              ]
                     [                                    ]
                     [                        2           ]
                     [0           (- 2 + x) (x - 7 x + 12)]
 
>> pretty(simple(sym(maple('U'))))
  
                    [       -1                  -1        ]
                    [                                     ]
                    [               2                   2 ]
                    [10 - 13/2 x + x    - 13/2 x + 9 + x  ]
 
>> pretty(simple(sym(maple('V'))))
  
                             [-7/2 + x      - 4 + x]
                             [                     ]
                             [-3/2 + x      - 2 + x]
 
>> maple('HM:=hermite(H,x,Q);Q:=evalm(Q)');
>> pretty(simple(sym(maple('HM'))))
  
                        [ 2                           ]
                        [x  - 5 x + 6          0      ]
                        [                             ]
                        [                 2           ]
                        [     0          x  - 7 x + 12]
 
>> pretty(simple(sym(maple('Q'))))
  
                              [- x + 3    - x + 2]
                              [                  ]
                              [- x + 4    - x + 3] 
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eXerCISe 5-12

Verify that the functions x, x2 and x3 are linearly independent.
 
>> maple('v:=[x,x^2,x^3]:w:=wronskian(v,x)');
>> pretty(simple(sym(maple('w'))))
  
                              [      2       3  ]
                              [x    x       x   ]
                              [                 ]
                              [                2]
                              [1   2 x      3 x ]
                              [                 ]
                              [0     2      6 x ]
 
>> pretty(simple(sym(maple('det(w)'))))
  
                                        3
                                     2 x
 

since the determinant of the Wronskian is non-zero, the functions are linearly independent.

eXerCISe 5-13

Find the Jacobian matrix and the Jacobian determinant of the transformation:
 
x = e u sin (v), y = e u cos (v).
>> pretty(sym(maple('jacobian(vector([exp(u) * sin(v), exp(u) * cos(v)]), [u, v])')))
  
                       [exp (u) sin (u)   exp (u) cos (v)]
                       [                                 ]
                       [exp (u) cos (v) - exp (u) sin (v)]
 
>> pretty(simple(sym(maple('det(")'))))
  
                                       2
                                   -exp (u) 
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eXerCISe 5-14

Find the Bézout and sylvester matrices B and t for the functions p = a + bx + cx2 and q = d + ex + fx2. Verify that 
the determinants of B and t coincide with the resultant of p and q.
 
>> maple('p:=a+b*x+c*x^2; q:= d+e*x+f*x^2; B:=bezout(p, q, x); T:=sylvester(p, q, x)')
>> pretty(sym(maple('B')))
  
                           [dc - af   db - ae]
                           [                 ]
                           [ec - bf   dc - af]
 
>> pretty(sym(maple('T')))
  
                              [c b a 0]
                              [0 c b a]
                              [f e d 0]
                              [0 f e d]
  
>> pretty(sym(maple('det(B)'))),pretty(sym(maple('det(T)'))),                             
pretty(sym(maple('resultant(p,q,x)')))
  
         2  2              2 2               2       2
        d c - 2 d c a f + a f - d b y c + d b f + a e c - a e b f
  
         2  2              2 2               2       2
        d c - 2 d c a f + a f - d b y c + d b f + a e c - a e b f
  
         2  2              2 2               2       2
        d c - 2 d c a f + a f - d b y c + d b f + a e c - a e b f 
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Chapter 6

Functions

6.1 Custom Defined Functions
We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program. 
But, in addition, MATLAB also offers the possibility of custom defined functions. The most common way to define a 
function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the 
function to be used whenever required.

The second way to define a function is to use the relation between MATLAB and Maple, provided you have the 
symbolic math Toolbox installed. In this case, functions of a variable can also be directly defined.

6.2 Functions and M-files
MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single 
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of 
commands in batch mode, in which case a sequence of commands can be submitted which were previously written 
in a file. This file (M-file) must be stored on disk with the extension ".m" in the MATLAB subdirectory, using any ASCII 
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow 
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top 
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and 
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes 
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the 
command echo on is active and only the results of successive executions of the interpreted commands are displayed. 
Work in batch mode is useful when automating large scale tedious processes which, if done manually, would be prone 
to mistakes. You can enter explanatory text and comments into M-files by starting each line of the comment with the 
symbol %. The help command can be used to display comments made in a particular M-file.

MATLAB provides certain commands which are frequently used in M-file scripts. Among them are the following:
 
echo on: View on-screen commands of an M-file script while it is running.
 
echo off: Hides on-screen commands of an M-file script (this is the default setting).
 
pause: Interrupts the execution of an M-file until the user presses a key to continue.
 
keyboard: Interrupts the execution of an M-file and passes the control to the keyboard so that the 
user can perform other tasks.  The execution of the M-file can be resumed by typing the return 
command into the Command Window and pressing Enter.
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return: Resumes execution of an M-file after an outage.
 
break: Prematurely exits a loop.
 
clc: Clears the Command Window.
 
home: Hides the cursor.
 
more on: Enables paging of the MATLAB Command Window output.
 
more off: Disables paging of the MATLAB Command Window output.
 
more(N): Sets page size to N lines.
 
menu: Offers a choice between various types of menu for user input.
 

When you define a function using an M-file, the above commands can be used if necessary.
The command function allows you to define functions in MATLAB, making it one of the most useful applications 

of M-files. The syntax of this command is as follows:
function output_parameters = function_name (input_parameters)
the function body
Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some 

explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.
When there is more than one output parameter, they are placed between square brackets and separated by 

commas. If there is more than one input parameter, they are separated by commas. The body of the function is the 
syntax that defines it, and should include commands or instructions that assign values to output parameters.  
Each command or instruction of the body often appears in a line that ends either with a comma or, when variables are 
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is 
stored in the M-file named function_name.m.

Let us define the function fun1(x) = x ^ 3 - 2 x + cos(x), creating the corresponding M-file named fun1.m by using 
the syntax:
 
function p = fun1(x)
% Definition of a simple function
p = x ^ 3 - 2 * x + cos(x);
 

To define this function in MATLAB select M-file New from the File menu in the top menu bar (or click the button 
 in the MATLAB tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert 

command lines defining the function, as shown in Figure 6-1.
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To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB 
Editor/Debugger. This opens the Save dialog of Figure 6-2, which we use to save our function with the desired name 
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button  or select 
Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function 
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Figure 6-1.  

Figure 6-2.  

Once a function has been defined and saved in an M-file, it can be used from the Command Window.  
For example, to find the value of the function at 3p-2 we write in the Command Window:
  
>> fun1(pi)
 
ans =
 
   23.7231
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For help on the previous function (assuming that comments were added to the M-file that defines it) you use the 
command help, as follows:
 
>> help fun1(x)
 
 A simple function definition
 

The definition of a function with more than one input parameter and more than one output parameter is 
illustrated in the following example (Figure 6-3):
 
function [x1,x2]=equation2(a,b,c)
% This function solves the quadratic equation ax ^ 2 + bx + c = 0
% whose coefficients are a, b and c (input parameters)
% and whose solutions are x 1 and x 2 (output parameters)
d=b^2-4*a*c;
x1=(-b+sqrt(d))/(2*a);
x 2 = (-b-sqrt (d)) /(2*a);
 

Figure 6-3.  

The saved M-file with the name equation2.m will solve the equation x ^ 2-6 x + 2 = 0 in the following way:
 
>> [p,q]=equation2(1,-6,2)
 
p =
 
    5.6458
 
q =
 
    0.3542
 

We can also ask for help about the function equation2.
 
>> help equation2
 
  This function solves the quadratic equation ax ^ 2 + bx + c = 0
  whose coefficients are a, b and c (input parameters)
  and whose solutions are x1 and x2 (output parameters)
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We can also evaluate a function defined in an M-file using the command feval, whose syntax is as follows:
 
feval('F', arg1, arg1,..., argn) evaluates the function F (M-file F.m) with the specified arguments  
arg1  arg2,..., argn
 

For example, we can evaluate previously defined functions using the command feval:
 
>> [r1,r2]=feval('equation2',1,-6,2)
 
r1 =
 
    5.6458
 
R2 =
 
    0.3542
 
>> feval('fun1',pi)
 
ans =
 
   23.7231
 

6.3 Functions and Flow Control. Loops
The use of recursive functions, conditional operations and piecewise defined functions is very common in 
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition 
of the functions will be made via M-files or through the relationship with Maple, via the symbolic math Toolbox.

6.4 The FOR loop
MATLAB has its own version of the DO statement (defined in the syntax of most programming languages).  
This statement allows you to run a command or group of commands repeatedly. For example:
 
>> for i=1:3, x(i)=0, end
 
x =
 
     0
 
x =
 
     0     0
 
x =
 
     0 0 0
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The general form of a FOR loop is as follows:
 
for variable = expression
       commands
end
 

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of 
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order 
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example:
 
for i=1:m,
    for j=1:n,
        A(i,j)=1/(i+j-1);
    end
end
 

In this loop (Figure 6-4) we have defined the Hilbert matrix of order (m, n). If we save the M-file (Figure 6-5) as 
for1.m, we can build any Hilbert matrix by running the M-file and specifying values for the variables m and n as shown 
below:
 
>> m = 3, n = 4; for1; A
 
A =
 
    1.0000    0.5000    0.3333    0.2500
    0.5000    0.3333    0.2500    0.2000
    0.3333    0.2500    0.2000    0.1667
 

Figure 6-4.  
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6.5 The WHILE loop
MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages.  
This statement allows you to repeat a command or group of commands a number of times while a specified logical 
condition is met. The general syntax of this loop is as follows:

While condition
commands
end
The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes 

in its interior a whole set of commands that are separated by commas which continually loop while the condition is 
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As an 
example, we write an M-file that is saved as while1.m, which calculates the largest number whose factorial does not 
exceed 10100.
 
n=1;
while prod(1:n) < 1.e100,
      n = n + 1;
end,
n
 

Now, we run the M-file:
 
>> while1
 
n =
 
    70
 

Figure 6-5.  
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6.6 IF ELSEIF ELSE END LOOP
MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this 
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:
 
If condition
   commands
end
 

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.
 
If condition
   commands1
else
   commands2
end
 

In this case, the commands1 are executed if the condition is true, and the commands2 are executed if the 
condition is false.

The IF statements, as well as FOR statements, can be nested. When multiple IF statements are nested, use the 
ELSEIF statement, whose general syntax is as follows:
 
if condition1
   commands1
ElseIf condition2
   commands2
ElseIf condition3
   commands3
.
.
else
end
 

In this case, the commands1 are executed if condition1 is true, the commands2 are executed if condition1 is false 
and condition2 is true, the commands3 are executed if condition1 and condition2 are false and condition3 is true, and 
so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:
 
if condition1
   commands1
else
      If condition2
         commands2
     else
           if condition3
              commands3
          else
.
.
         end
     end
end
 



Chapter 6 ■ FunCtions

187

Consider as an example the following M-file named else1.m:
 
If n < 0,
   A = 'n is negative'
elseif rem(n,2) ==0
   A = 'n is even'
else
   A = 'n is odd'
end
 

Running it, we obtain the number type (negative, odd or even) for a specified value of n:
 
>> n = 8; else1
 
A =
 
n is even
 
>> n = 7; else1
 
A =
 
n is odd
 
>> n =-2; else1
 
A =
 
n is negative 

6.7 Recursive Functions
One of the applications of loops is the creation of recursive functions via M-files. For example, although the factorial 
function can be defined in MATLAB as n! = prod(1:n), it can be also defined as a recursive function in the following way:
 
function y=factori(x)
       if x==0
        y=1;
       end
       if x==1
        y=1;
       end
       if x>1
        y=x*feval('factori',x-1);
      end
 

If we now want to calculate 40!, we do the following:
 
>> factori(40)
 
ans =
 
  8. 1592e + 047
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eXerCISe 6-1

the Fibonacci sequence {an} is defined by the recurrence law  a1 = 1, a2 = 1, an = an-1 + an-2. represent this 
succession by a recurrent function and calculate a2 , a5 and a20.

We define the function using the M-file fibo.m as follows:
 

function y=fibo(x)
if x<=1
   y = 1;
else y = feval('fibo',x-1) + feval('fibo',x-2);
end

 
>> fibo(2)

 
ans =

 
     2

 
>> fibo(5)

 
ans =

 
     8

 
>> fibo(20)

 
ans =

 
       10946 

eXerCISe 6-2

newton’s method for solving the equation f (x) = 0, under certain conditions on f, is via the iteration  
xr+1 = xr - f(xr )/f ’(xr ) for an initial value x0 sufficiently close to a solution. Write a program that solves equations 
by newton’s method to a given precision and use it to calculate the root of the equation x3 - 10 x2 + 29 x - 20 = 0 
close to the point x = 7 with an accuracy of 0.00005. also search for a solution setting the precision to 0.0005.

the program code would read as follows:
 

% x is the initial value, precis is the precision required
% func is the function f and dfunc is its derivative
it=0; x0=x;
d=feval(func,x0)/feval(dfunc,x0);
while abs(d)>precis
   x1=x0-d;
   it=it+1;
   x0=x1;
   d=feval(func,x0)/feval(dfunc,x0);
end;
res = x0;
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We save the program in the file named fnewton.m.

now, we define the function f (x) = x3 - 10 x2 x + 29 - 20 and its derivative via the M-files named f302.m and 
f303.m in the following way:
 
F=x.^3-10.0*x.^2+29.0*x-20.0;
function F=f303(x);
F=3*x.^2-20*x+29;
 
to run the program that solves the given equation we type:
 
>> [x, it]=fnewton('f302','f303',7,.00005)
 
x =
 
    5.000
 
it =
 
     6
 
after 6 iterations and with an accuracy of 0.00005 we have obtained the solution x = 5. For 5 iterations and a 
precision of 0.0005 we get x = 5.0002 via:
 
>> [x, it] = fnewton('f302','f303',7,.0005)
 
x =
 
    5.0002
 
it =
 
     5 

eXerCISe 6-3

schröder’s method, which is similar to newton’s method for solving the equation f (x) = 0, under certain 
conditions required on f, uses the iteration x = xr+1 = xr -m f(xr )/f’(xr )  for a given initial value x0 close enough 
to a solution, m being the order of multiplicity of the sought root. Write a program that solves equations using 
schröder’s method to a given precision and use it to calculate a root with multiplicity 2 of the equation  
(e -x -x)2 = 0 close to the point x =-2 to an accuracy of 0.00005.

the program code reads as follows:
 
% m is the order of the multiplicity of the root
% x is the initial value, precis is precision
it=0; x0=x;
d=feval(func,x0)/feval(dfunc,x0);
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while abs(d)>precis
    x1=x0-m*d;
    it=it+1; x0=x1;
    d=feval(func,x0)/feval(dfunc,x0);
end;
res = x 0;
 
We save the program in the file named schroder.m.

now, we define the function f (x) = (e -x -x)2  and its derivative and save them in files named f304.m and f305.m:
 
function F=f304(x);
F=(exp(-x)-x).^2;
 
function F=f305(x);
F=2.0*(exp(-x)-x).*(-exp(-x)-1);
 
to run the program that solves the stated equation type:
 
>>[x,it]=schroder('f304','f305',2,-2,.00005)
 
x =
 
    0.5671
 
it =
 
    5
 
in 5 iterations we obtain the solution x = 0.56715.

6.8 Conditional Functions
Functions defined differently on different intervals of variation in the independent variable have always played an 
important role in mathematics. MATLAB enables you to work with these types of functions, which are usually defined 
using M-files, in the majority of cases relying on FOR loops, WHILE loops, IF-ELSEIF-IF-END, etc.

eXerCISe 6-4

Define the function delta (x), which has value 1 if x = 0, and 0 if x is non-zero. also define the function delta1 (x), 
which has the value 0 if x = 0, 1 if x > 0, and - 1 if x < 0, and represent it graphically.

Define delta (x) by creating the M-file delta.m as follows:
 
function y = delta (x)
If x == 0
   y = 1;
else y = 0;
end
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to define delta1(x) we create the M-file delta1.m as follows:
 
function y = delta1 (x)
If x == 0
   y = 0;
ElseIf x > 0 and = 1;
ElseIf x < 0 and =-1;
end
 
to graph a function, we use the command fplot, whose syntax is as follows:
 
fplot [xmin xmax ymin ymax] ('function')
 
this represents the function in the given ranges of x and y.

now, we represent the function delta1 (x). see Figure 6-6:
 
>> fplot ('delta1(x)', [-10 10 -2 2]) 
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Figure 6-6.  

eXerCISe 6-5

Define a function stat (v) which returns the mean and standard deviation of the elements of a given vector v. as an 
application, find the mean and standard deviation of the numbers 1, 5, 6, 7 and 9.

to define stat (v), we create the M-file stat.m as follows:
 
function [media, destip] = stat(v)
[m,n]=size(v);
if m==1
   m=n;
end
media=sum(v)/m;
destip=sqrt(sum(v.^2)/m-media.^2);
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now we calculate the mean and standard deviation of the numbers 1, 5, 6, 7 and 9:
 
>> [a,s]=stat([1 5 6 7 9])
 
a =
 
    5.6000
 
s =
 
    2.6533 

eXerCISe 6-6

Define and graph the piecewise function that has the value 0 if x£ -3,  x3 if  -3<x<-2,  x2 if -2£x£2,  x if 2<x<3 
and 0 if 3£x.

We create the function using an M-file named piece1.m:
 
function y=piece1(x)
if x<=-3
   y = 0;
ElseIf - 3 < x & x < - 2
       y = x ^ 3;
ElseIf - 2 < = x & x < = 2
       y = x ^ 2;
elseif 2<x & x<3
       y=x
elseif x>=3
       y = 0;
end
 
now, we graph the function (see Figure 6-7):
 
>> fplot('piece1', [-5 5]) 
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6.9 Defining Functions Directly. Evaluating Functions
We already know that we can define and evaluate functions by making use of the relation between MATLAB and 
Maple, provided the symbolic mathematics Toolbox is available. Using this tool, you can define functions of one or 
severable variables using the command maple.

The advantage of defining functions in this way is that it is not necessary to write files to disk.

6.10 Functions of One Variable
Functions of one variable are defined in the form f =  'function'  (or   f = function whenever its variables have 
previously been defined as symbolic with syms).

To find the value of the function f at a point, you use the command subs, whose syntax is as follows:
 
subs(f,a) applies the function f at the point a
 
subs(f,a,b) substitutes in f the value b by the value a
 

Let's see how to define the function f (x) = x ^ 2 :
 
>> f='x^2'  (or: syms x, f = x ^ 2)
 
f =
 
x ^ 2
 

Now we calculate the values f (4), f (a+1) and f(3x+x^2):
 
>> A=subs(f,4),B=subs(f,'a+1'),C=subs(f,'(3*x+x^2)')
 
A =
 
16
 

-5 0 5
-30

-25

-20

-15

-10

-5

0

5

Figure 6-7.  
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B =
 
(a+1) ^ 2
 
C =
 
(3 * x + x ^ 2) ^ 2 

6.11 Functions of Several Variables
Functions of one or several variables are defined using the maple command as follows:
 
maple('f: = x - > f (x)') defines the function f(x)
 
maple('f:=(x,y,z,...)- > f(x,y,z,...)') defines the function f(x,y,z,...)
 
maple('f:=(x,y,z,...)- > (f1(x,y,...), f2(x,y,...),...)') defines the vector function (f1(x,y,...), 
f2(x,y,...),...)
 

To find the value of the function (x, y, z) - > f(x,y,z...) at the point (a, b, c,...) the expression maple ('f(a,b,c,...)')  
is used.

The value of the vector function f:=(x,y,...)-> (f1(x,y,...), f2(x,y,...),...) at the point (a, b,...) is found using the 
expression maple ('f(a,b,...)').

The function f(x,y) = 2x  + y is defined in the following way:
 
>> maple('f:=(x,y) - > 2 * x + y');
 

f (2,3) and f(a,b) are calculated as follows:
 
>> maple('f(2,3)')
 
ans =
 
7
 
>> maple('f(a,b)')
 
ans =
 
2 * a + b
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eXerCISe 6-7

Define the functions f (x) = x2 ,  g (x) = x1/2 and h (x) = x + sin (x). Calculate f (2), g(4) and h(a-b2).
 
>> f ='x ^ 2', g = 'x ^(1/2)', h = 'x+sin(x)'
 
f =
 
x ^ 2
 
g =
 
x ^(1/2)
 
h =
 
x+sin (x)
 
>> a=subs(f,2),b=subs(g,4),c=subs(h,'a-b^2')
 
a =
 
4
 
b =
 
4 ^(1/2)
 
c =
 
a-b ^ 2 + sin(a-b^2) 

eXerCISe 6-8

Given the function h defined by h(x,y) = (cos(x2-y2), sin(x2-y2)), calculate h (1,2), h(-pi,pi) and h(cos (a2), cos (1 -a2)).

as it is a vector function of two variables, we use the command maple:
 
>> maple('h:=(x,y) - > (cos(x^2-y^2), sin(x^2-y^2))');
 
>> maple('A = h (1, 2), B = h(-pi,pi), C = h(cos(a^2), cos(1-a^2))')
 
ans =
 
A = (cos (3),-sin (3)), B = (1, 0),
C = (cos (cos(a^2) ^ 2-cos(-1+a^2) ^ 2), sin(cos(a^2) ^ 2-cos(-1+a^2) ^ 2))
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We could also define this vector function of two variables using the M-file named vector1.m below:
 
function [z,t] = vector1(x,y)
z = cos(x^2-y^2);
t = sin(x^2-y^2);
 
You can also build the function with the following syntax:
 
function h = vector1(x,y)
z = cos(x^2-y^2);
t = sin(x^2-y^2);
h = [z,t];
 
We calculate the values of the function at (1,2) and (-pi, pi) as follows:
 
>> A = vector1(1,2), B = vector1(-pi,pi)
 
A =
 
   -0.9900 - 0.1411
 
B =
 
     1 0 

eXerCISe 6-9

Given the function f defined by:

f(x,y)= 3(1-x)2 e -(y+1)^2-x^2 -10(x/5-x 3-y/5)e -x^2-y^2-1/3e -(x+1)^2-y^2

find f (0,0) and represent it graphically.

First, we can define it via the maple command:
 
>> maple ('f:=(x,y) - > 3 *(1-x) ^ 2 * exp (-(y + 1) ^ 2-x ^ 2)-
10*(x/5-x^3-y^5)*exp(-x^2-y^2)-1/3*exp(-(x+1)^2-y^2)');
 
now, we calculate the value of f at (0,0):
 
>> maple('f(0,0)')
 
ans =
 
8/3*exp(-1)
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We can also create the M-file named func2.m as follows:
 
function h = func2(x,y)
h=3*(1-x)^2*exp(-(y+1)^2-x^2)-10*(x/5-x^3-y^5)*exp(-x^2-y^2)-
    1/3 * exp (-(x + 1) ^ 2 - y ^ 2);
 
now, we calculate the value of h at (0,0):
 
>> func2(0,0)
 
ans =
 
    0.9810
 
to graph the function, we use the command meshgrid to define the x and y ranges for the domain of the function 
(a neighborhood of the origin) and the command surfing to graph the surface:
 
>> [x,y] = meshgrid(-0.1:.005:0.1,-0.1:.005:0.1);
>> z = func2(x,y);
>> surf(x,y,z)
  
this yields the graph shown in Figure 6-8:

Figure 6-8.  
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6.12 Piecewise Functions
MATLAB provides a direct command that enables you to define conditional functions that take different values 
depending on different intervals of definition of the variables (piecewise functions). The command in question is 
piecewise, and its syntax is presented below:

maple ('piecewise(expr1, value1, expr2, value2,..., exprn, valuen)')

Defines the piecewise function that takes value1 if the variable satisfies expr1, takes 
value2 if the variable satisfies expr2, and so on. For all values of the function not 
covered by the expressions the function takes the value zero.

maple ('piecewise(expr1, value1, expr2, value2,..., exprn, valuen, valuem)')

Defines the piecewise function that takes value1 if the variable satisfies expr1, takes 
value2 if the variable satisfies expr2, and so on. For all values of the function not 
covered by the expressions the function takes the value valuem.

maple ('convert (expression,piecewise)')

Converts the expression containing Heavside, abs, signum, etc. functions to a piecewise 
function. The command can be applied to a list or set of expressions which is converted 
to a list or set.

maple ('convert (expression, piecewise variable)')

Converts the expression containing Heavside, abs, signum, etc. functions to a piecewise 
function according to the specified variable.

maple ('convert (expression,pwlist)')

Converts the expression containing functions to its representation in the form of a 
piecewise list.

maple ('convert (expression, pwlist,variable)')

Converts the expression containing functions to its representation in the form of a 
piecewise list based on the specified variable.

A great advantage of this command is that it can be used together with commands like discont, diff, int, dsolve. 
This allows you to directly analyze the continuity, differentiability and integrability of piecewise-defined functions. 
At the same time, it allows this type of function to be used in the analysis of differential equations. Here are some 
examples:
 
>> pretty(sym(maple('piecewise(x>0,x)')))
 
                         |x           0 < x
                         í
                         | 0        otherwise
 
>> pretty(sym(maple('piecewise(x*x>4 and x<8,f(x))')))
 
                                          2
                | f (x)             4 - x < 0 and x - 8 < 0
                í
                |  0                 otherwise
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>> pretty(sym(maple('simplify(piecewise(x*x>4 and x<8,f(x)))')))
 
                         | f (x)       x < - 2
                         |
                         |  0          x < = 2
                         í
                         | f(x)        x < 8
                         |
                         |  0          8 <= x
 
>> pretty(sym(maple('piecewise(x<0,-1,x<1,0,1)')))
 
                        | -1      x < 0
                        |
                        í0      x < 1
                        |
                        | 1      otherwise
 

It is possible to define piecewise functions using the arrow operator, and to evaluate previously defined functions 
at different points.
 
>> pretty(sym(maple('f:=x->piecewise(x<0,-1,x<1,0,1) : f(1/2)')))
 
                                  0
 
>> pretty(sym(maple('f(5),f(-5),f(-infinity),f(infinity)')))
 
                             1, - 1, - 1, 1
 

You can also directly simplify functions defined in terms of predefined piecewise functions
  
>> pretty(sym(maple('p:= piecewise(x<0,-x,x>0,x):p'))
 
                                 | -x        x < 0
                        p:=      í
                                 | x         0 < x
 
>> pretty(sym(maple('p:= piecewise(x<0,-x,x>0,x):simplify(p^2 + 5)')))
 
                                 2
                                x + 5
 

However, you cannot directly simplify functions defined in terms of predefined piecewise functions that include 
parameters.
  
>> pretty(sym(maple('p:= piecewise(x<a,x,x>b,x*x):p')))
 
                                | x         x < a
                                |
                        p:=     í
                                |   2
                                | x         b < x
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>> pretty(sym(maple('p:= piecewise(x<a,x,x>b,x*x):simplify(p^2)')))
 
                         | x         x < a^ 2
                         |
                         í
                         |   2
                         | x         b < x
 

To simplify the above expression, we need to convert it into a piecewise function in terms of the main variable x.
 
>>  pretty(sym(maple('convert(p,piecewise,x)')))
 
                          |   2
                          | x             x < a
                          |
                          í  0             x = a
                          |
                          |   4
                          | x             a < x
 

A piecewise function can also be expressed as a list.
 
>> pretty(sym(maple('f:=piecewise(x<0,-1,x<1,0,1):')));
>> pretty(sym(maple('convert(f,pwlist)')))
 
                           [- 1, 0, 0, 1, 1] 

eXerCISe 6-10

Given the function f of a real variable defined by:

f(x)= |(1-|x|) |

 express it as a piecewise-defined function and represent it graphically.
 
>> pretty(sym(maple('convert(abs(1-abs(x)),piecewise)')))
 
                       | -1 - x        x <= -1
                       |
                       | x + 1         x <= 0
                       í
                       | 1 - x          x < 1
                       |
                       | x - 1         1 <= x
 
Below, we represent the piecewise function using the ezplot command (see Figure 6-9) which can be used for 
general representations of functions of one variable.
 
>> ezplot('abs(1-abs(x))',[-2,2]) 
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eXerCISe 6-11

Given the function p of a real variable defined by:

p (x) =-1 if x < 0, p (x) = 2 x if x > 1 and p (x) = x2 otherwise

express it as a piecewise-defined function. Find its indefinite integral and its derivative.
 
>> pretty(sym(maple('p:=piecewise(x<0, -1, x>1, 2*x, x^2):p')))
 
 
                          | -1           x < 0
                          |
                     p:=  í 2 x          1 < x
                          |
                          |   2
                          | x          otherwise
 
now, let’s calculate the indefinite integral of the function p (x).
 
>> pretty(sym(maple('h:=int(p,x):h')))
 
 
                         |     -x                  x < = 0
                         |
                         |       3
                    h:=  í  1/3 x                  x <= 1
                         |
                         |  2
                         | x - 2/3                 1 < x
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Figure 6-9.  
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next, we find the first derivative of p (x):
 
>> pretty(sym(maple('d:=diff(p,x):d')))
  
                         |     0                x <= 0
                         |
                         |    2 x              x <= 1
                         |
                    d:=  í     2              1 < x
                         |
                         | undefined       x = 1
                         |
                         | undefined       x = 0
 
note that the function p (x) is not differentiable at the points x = 1 and x = 0.

eXerCISe 6-12

Given the function of a real variable p defined in the previous exercise, solve the following differential equation:

¶
¶

+ =
y x

x
py x

( )

( )
( ) 0

 

>> maple('dsolve(diff(y(x), x) + p * y(x) = 0, y(x))');
>> pretty(sym(maple('dsolve(diff(y(x), x) + p * y(x) = 0, y(x))')))
 
                     |     _C1 exp (x)          x < = 0
                     |
                     |         3
             y (x) = í _C1 exp(-1/3 x)       x < = 1
                     |
                     |         2
                     | _C1 exp(-x + 2/3)    1 < x 
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eXerCISe 6-13

solve the following differential equation:

¶
¶

- - =
y x

x
x y x

( )

( )
| ( | |) | ( )1 02

 

>> pretty(sym(maple('convert(abs(1-abs(x)),piecewise)')))
 
                       | -1 - x        x <= -1
                       |
                       | 1 + x         x <= 0
                       í
                       | 1 - x         x <= 1
                       |
                       | x - 1          1 < x
 
>> pretty(sym(maple('dsolve(diff(y(x),x)=convert(abs(1-abs(x)),piecewise)*     
y(x)^2,y(x))')))
 
                  |            2
                  |   - -----------------          x <= -1
                  |              2
                  |     -2 x - x  + 2 _C1
                  |
                  |            2
                  | - --------------------         x <= 0
                  |               2
                  |   2 x + 2 + x  + 2 _C1
           y(x) = í
                  |            2
                  | - --------------------         x <= 1
                  |               2
                  |   2 x + 2 - x  + 2 _C1
                  |
                  |            2
                  | - ---------------------         1 < x
                  |               2
                  |   -2 x + 4 + x  + 2 _C1 
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6.13 Functional Operations
Normally, functions defined in MATLAB operate on their arguments. However, there are also functional operators that 
operate on other functions (i.e. functional operators have functions as arguments), for example, the inverse function 
operator. MATLAB also allows the classical operations between functions (sum, product, etc.).

Among the functional operators and classical operations between functions offered by MATLAB, we highlight the 
following:
 
syms x y z...
 
f = f(x,y,z,...), g = g(x,y,z,...), h = h(x,y,z,...)...
 
symadd(f,g) adds the functions f and g (i.e. f + g)
 
symop(f,'+',g,'+',h,'+',...) performs the sum f+g+h+...
 
maple('f+g+h+...') performs the sum  f+g+h +...
 
symsub(f,g) subtracts g from f (i.e. f-g)
 
symop(f,'-',g,'-',h,'-',...) forms the successive difference f-g-h-...
 
maple('f-g-h-...)') forms the successive difference f-g-h-...
 
symmul(f, g) finds the product of f and g (i.e. f * g)
 
symop(f,' * ',g,' * ',h,' * ',...) forms the product  f*g*h*...
 
maple('f*g*h*,...) ') forms the product f * g * h *...
 
symdiv(f,g) finds the quotient f / g
 
symop(f,'/',g,'/ ',h,'/ ',...) forms the successive quotient f/(g/(h/...
 
maple('f/g/h/...) ') forms the successive quotient f/(g/(h/...
 
sympow(f,k) raises f to the power k (k is a scalar)
 
symop(f,'^',g) raises a function f to the power of another function g
 
maple('f^g') raises a function f to the power of another function g
 
compose(f,g) composes two functions f and g (i.e. f(g(x)))
 
compose(f,g,u) composes the functions f and g, taking the expression u as the domain of f and g
 
maple('f @g @h @...') composes the functions f, g, h...
 
maple('f(g(h(...)'))) composes the functions f, g, h...
 
g = finverse(f) gives the inverse of the function f
 



Chapter 6 ■ FunCtions

205

g = finverse(f,v) gives the inverse of the function f using the symbolic variable v as an 
independent variable
 
maple('invfunc[f(x)]') gives the inverse of the function f(x)
 
maple('f(x)@@(-1)') gives the inverse of the function f(x)
 
maple('map(function,exp)') applies the given function to each operand or element of the expression 
(according to the first level of operations), where exp is a list or set
 
maple('map2(f,exp,list)') applies the function f to the elements of the list, in such a way that the 
function has as its first argument the constant expression expr, and as the second argument, each 
item in the specified list
 
maple('unapply(expr,x1,x2,...,xn)') returns an operator from the expression expr in the variables 
x1, x2,..., xn
 
maple('applyop(f,n,expr)') applies the function to the nth operand of the expression
 
maple('applyop(function,{n1, n2,..., nk},expr)') applies the function to the n1, n2,..., nk-th 
operands of the expression
 
maple('applyop(function,n,expr,arg2,..., argn)') replaces the nth operand of the expression expr by 
the result of applying the given function to it, passing arg2,..., argn as additional arguments
 

Here are some examples:
 
>> maple('p: = x ^ 2 + sin (x) + 1')
 
ans =
 
p := x^2+sin(x)+1
 
>>  pretty(sym(maple('f:= unapply(p,x):f')))
  
                                   2
                             x -> x  + sin(x) + 1
 
>> pretty(sym(maple('f(Pi/6)')))
 
                                    2
                             1/36 pi + 3/2
 
>> maple('q:= x^2 + y^3 + 1'):
>> pretty(sym(maple('f:= unapply(q,x) :f')))
  
                                   2    3
                             x -> x  + y  + 1
 
>> pretty(sym(maple('f(2)')))
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                                     3
                                5 + y
 
>> pretty(sym(maple('g:= unapply(q,x,y) :g')))
 
 
                                       2    3
                            (x, y) -> x  + y  + 1
 
>> pretty(sym(maple('g(2,3)')))
 
                                  32
>> clear all
>> maple('p:= y^2-2*y-3');
>> pretty(sym(maple('applyop(f,2,p)')))
 
                            2
                           y  + f(-2 y) - 3
 
>> pretty(sym(maple('applyop(f,2,p,x1,x2)')))
 
 
                        2
                       y  + f(-2 y, x1, x2) - 3
 
>> pretty(sym(maple('applyop(f,{2,3},p)')))
 
 
                          2
                         y + f(-2 y) + f (- 3)
 
>> pretty(sym(maple('map(f,x + y*z)')))
 
                            f (x) + f(y z)
 
>> pretty(sym(maple('map(f,{a,b,c})')))
 
                          {f(a), f(b), f(c)}
 
>> pretty(sym(maple('map(x -> x^2, x + y)')))
 
                                2    2
                               x  + y
 
>> pretty(sym(maple('map2(f,g,{a,b,c})')))
 
                     {f(g, a), f(g, b), f(g, c)}
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>> pretty(sym(maple('map(diff,[(x+1)*(x+2),x*(x+2)],x)')))
 
                          [2 x + 3, 2 x + 2]
 
>> pretty(sym(maple('map2(diff,x^y/z,[x,y,z])')))
 
                         y     y            y
                        x y   x  ln(x)     x
                       [----, --------, - ----]
                        x z      z          2
                                           z
                                                                                                            

eXerCISe 6-14

Let f(x) = x2+ x, g(x) = x3+ 1 and h(x) = sin (x) + cos (x). Calculate:

f (g(x)), g(f(x-1)), f(h(Pi/3)) and f(g(h(sinx))).

Graph f(g(x)) on the interval [- 1,1].
 
>> syms x
>> f = x ^ 2; g = x ^ 3 + 1; h = sin (x) + cos (x); u = compose(f, g)
 
u =
 
(x ^ 3 + 1) ^ 2
 
>> v = subs(compose(g,f),x-1)
 
v =
 
(x-1)^6+1
 
>> w=subs(compose(f,h),'pi/3')
 
w =
 
(sin(1/3*pi) + cos(1/3*pi)) ^ 2
 
>> r = subs(compose(f,compose(g, h)), sin (x))
 
r =
 
((sin (sin (x)) + cos (sin (x))) ^ 3 + 1) ^ 2
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this can also be solved in the following way:
 

>> maple('f: = x - > x ^ 2; g: = x - > x ^ 3 + 1, h: = x - > sin(x) + cos(x)');
>> maple('(f(g(h(sin(x)))')))

 
ans =

 
((sin(sin (x)) + cos (sin (x))) ^ 3 + 1) ^ 2

 
to graph the function f (g (x)) we use the command ezplot, which, like fplot, graphs functions of a single variable 
as follows  (see Figure 6-10):

 
>> ezplot(subs(compose(f,g),x),[-1,1]) 
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(x̂ 3+1) 2̂

Figure 6-10.  

eXerCISe 6-15

Define the functions f and g by f(x,y) =(x2,y2) and g(x,y) = (sin(x), sin(y)). Calculate f (f (f(x,y))) and g(f(p,p)).
 

>> maple('f:=(x,y) - >(x^2,y^2); g:=(x,y) - > (sin(x), cos(y))');
>> a = maple('(f(f(f(x,y)))'))

 
a =

 
x ^ 8, y ^ 8

 
>> maple('(g(f(pi,pi)))')

 
ans =

 
sin(pi^2), cos(pi^2) 
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eXerCISe 6-16

Calculate the inverse of each of the functions f (x) = sin (cos (x1/2) and g (x) = sqrt (tan (x2)).
 
>> syms x, f = (cos(x ^(1/2)));
 
>> finverse(f)
 
ans =
  
arccos(arcsin(x))^2
 
>> g=sqrt(tan(x^2));
 
>> finverse(g)
 
Warning: finverse(sqrt(tan(x^2))) is not unique
 
ans =
 
arctan(x^2) ^(1/2)
 
in the latter case the program warns us of the non-uniqueness of the inverse function.
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Chapter 7

Programming and Numerical  
Analysis

7.1 MATLAB and Programming
MATLAB can be used as a high-level programming language including data structures, functions, instructions for 
flow control, management of inputs/outputs and even object-oriented programming. MATLAB programs are usually 
written into files called M-files. An M-file is nothing more than a MATLAB code (script) that executes a series of 
commands or functions that accept arguments and produces an output. The M-files are created using the text editor.

7.2 The Text Editor
The Editor/Debugger is activated by clicking on the create a new M-file button  in the MATLAB desktop or by 
selecting File ➤ New ➤ M-file in the MATLAB desktop (Figure 7-1) or Command Window (Figure 7-2). The  
Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB 
programming code (Figure 7-3). You can open an existing M-file using File ➤ Open on the MATLAB desktop 
(Figure 7-1) or, alternatively, you can use the command Open in the Command Window (Figure 7-2). You can also 
open the Editor/Debugger by right-clicking on the Current Directory window and choosing New ➤ M-file from the 
resulting pop-up menu (Figure 7-4). Using the menu option Open, you can open an existing M-file. You can open 
several M-files simultaneously, each of which will appear in a different window.



Chapter 7 ■ programming and numeriCal analysis 

212

Figure 7-1.  

Figure 7-2.  
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Figure 7-3.  

Figure 7-4.  
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Figure 7-5 shows the functions of the icons in the Editor/Debugger.

Figure 7-5.  

Figure 7-6.  

7.3 Scripts
Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions 
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts 
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will 
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once the 
syntax of the script has been entered into the editor (Figure 7-6), it is stored in the work library (work) and 
simultaneously executes by clicking the button  or by selecting the option Save and run from the Debug menu  

(or pressing F5). To move from one chart to the next press ENTER.
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Figure 7-7.  

Figure 7-8.  
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Figure 7-9.  

Figure 7-10.  
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7.4 Functions and M-files. Eval and feval
We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program. 
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define 
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the 
function to be used whenever required.

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single 
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of 
commands in batch mode, in which case a sequence of commands can be submitted which were previously written 
in a file. This file (M-file) must be stored on disk with the extension ".m" in the MATLAB subdirectory, using any ASCII 
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow 
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top 
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and 
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes 
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the 
command echo on is active and only the results of successive executions of the interpreted commands are displayed. 
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually, 
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the 
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful 
applications of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters)
the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some 
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by 
commas. If there is more than one input parameter, they are separated by commas. The body of the function is the 
syntax that defines it, and should include commands or instructions that assign values to output parameters. Each 
command or instruction of the body often appears in a line that ends either with a comma or, when variables are 
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is 
stored in the M-file named function_name.m.
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To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB 
Editor/Debugger. This opens the Save dialog of Figure 7-12, which we use to save our function with the desired name 
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button  or select 

Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function 
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Figure 7-11.  

Figure 7-12.  

Let us define the function fun1(x) = x ^ 3 - 2 x + cos(x), creating the corresponding M-file fun1.m. To define this 
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button  in the MATLAB 
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the 
function, as shown in Figure 7-11.
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Once a function has been defined and saved in an M-file, it can be used from the Command Window. For 
example, to find the value of the function at 3π-2 we write in the Command Window:
 
>> fun1(3*pi/2)

ans =

95.2214
 

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the 
command help, as follows:
 
>> help fun1(x)
 

7.4.1 A Simple Function Definition
A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax of 
which is as follows:

feval ('F', arg1, arg1,..., argn)
This evaluates the function F (the M-file F.m) at the specified arguments arg1, arg2,..., argn.

As an example we build an M-file named equation2.m which contains the function equation2, whose arguments 
are the three coefficients of the quadratic equation ax2+bx+c = 0 and whose outputs are the two solutions (Figure 7-13).

Figure 7-13.  

Now if we want to solve the equation x2 + 2 x + 3 = 0 using feval, we write the following in the Command Window:
 
>> [x1, x2] = feval('equation2',1,2,3)
 
x1 =
 
-1.0000 + 1. 4142i
 
x2 =
 
-1.0000 - 1. 4142i
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The quadratic equation can also be solved as follows:
 
>> [x1, x2] = equation2 (1,2,3)
 
x1 =
 
  -1.0000 + 1. 4142i
 
x2 =
 
-1.0000 - 1. 4142i
 

If we want to ask for help about the function equation2 we do the following:
 
>> help equation2
 

This function solves the quadratic equation ax ^ 2 + bx + c = 0 whose coefficients are a, b and c (input parameters) 
and whose solutions are x 1 and x 2 (output parameters)

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval, 
whose syntax is as follows:
 
eval (expression)
 

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

 
>> n=4;
>> eval(['M' num2str(n) ' = magic(n)'])
 
M4 =
 
16 2 3 13
5 11 10 8
9 7  6 12
4 14 15 1
 

7.5 Local and Global Variables 
Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the 
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files 
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary  
to define global variables with the GLOBAL command whose syntax is as follows:

GLOBAL x y z...
This defines the variables x, y and z as global.

Any variables defined as global inside a function are available separately for the rest of the functions and in the base 
workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an empty 
array. If there is already a variable with the same name as a global variable being defined, MATLAB will send a warning 
message and change the value of that variable to match the global variable. It is convenient to declare a variable as global 
in every function that will need access to it, and also in the command line, in order to access it from the base workspace. 
The GLOBAL command is located at the beginning of a function (before any occurrence of the variable).
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As an example, suppose that we want to study the effect of the interaction coefficients a and b in the  
Lotka–Volterra predator-prey model:

y y y y

y y y y

1 1 1 2

2 2 1 2

= -

=- -

a

b

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 7-14.

Figure 7-14.  

Later, we might type the following in the command line: 

>> global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
 

These global values may then be used for a and b in the M-file lotka.m (without having to specify them).  
For example, we can generate the graph (Figure 7-15) with the following syntax:
 
>> [t, y] = ode23 ('lotka', 0.10, [1; 1]); plot(t,y)
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7.6 Data Types
MATLAB has 14 different data types, summarized in Figure 7-16 below.

Figure 7-15.  

Figure 7-16.  
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Below are the different types of data:

Data type Example Description

single 3* 10 ^ 38 Simple numerical precision. This requires less storage 
than double precision, but it is less precise. This type of 
data should not be used in mathematical operations.

Double 3*10^300 5+6i Double numerical precision. This is the most commonly 
used data type in MATLAB.

sparse speye(5) Sparse matrix with double precision.

int8, uint8, int16, uint16, 
int32, uint32

UInt8(magic (3)) Integers and unsigned integers with 8, 16, and  
32 bits. These make it possible to use entire amounts with 
efficient memory management. This type of data should 
not be used in mathematical operations.

char 'Hello' Characters (each character has a length of 16 bits).

cell {17 'hello' eye (2)} Cell (contains data of similar size)

structure a.day = 12; a.color = 'Red'; 
a.mat = magic(3);

Structure (contains cells of similar size)

user class inline('sin (x)') MATLAB class (built with functions)

java class Java. awt.Frame Java class (defined in API or own) with Java

function handle @humps Manages functions in MATLAB. It can be last in a list of 
arguments and evaluated with feval.

7.7 Flow Control: FOR, WHILE and IF ELSEIF Loops
The use of recursive functions, conditional operations and piecewise defined functions is very common in 
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition 
of the functions will be made via M-files.

7.8 FOR Loops
MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This 
statement allows you to run a command or group of commands repeatedly. For example:
 
>> for i=1:3, x(i)=0, end

x =

0

x =

0     0

x =

0 0 0
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The general form of a FOR loop is as follows:

for variable = expression
commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of 
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order 
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 7-17):

Figure 7-17.  

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz.m, we can build any 
Hilbert matrix later by running the M-file and specifying values for the variables m and n (the matrix dimensions) as 
shown below:
 
>> M = matriz (4,5)
 
M =
 
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250 

7.9 WHILE Loops
MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This 
statement allows you to repeat a command or group of commands a number of times while a specified logical 
condition is met. The general syntax of this loop is as follows:

While condition
commands
end
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Now now run the M-file.
 
>> while1
 
n =
 
    70  

7.10 IF ELSEIF ELSE END Loops
MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this 
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:
 
if condition
commands
end
 

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.
 
if condition
    commands1
else
    commands2
end
 

Figure 7-18.  

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes 
in its interior a whole set of commands that are separated by commas which continually loop while the condition is 
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As 
an example, we write an M-file (Figure 7-18) that is saved as while1.m, which calculates the largest number whose 
factorial does not exceed 10100.
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In this case, the commands commands1 are executed if the condition is true, and the commands commands2 are 
executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF 
statement, the general syntax is as follows:
 
if condition1
    commands1
elseif condition2
    commands2
elseif condition3
    commands3
.
.
else
end
 

In this case, the commands commands1 are executed if condition1 is true, the commands commands2 are 
executed if condition1 is false and condition2 is true, the commands commands3 are executed if condition1 and 
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:
 
if condition1
    commands1
else
      if condition2
          commands2
      else
            if condition3
                commands3
            else
            .
            .
            .
            end
       end
end
 

Consider, for example, the M-file else1.m (see Figure 7-19).
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When you run the file it returns negative, odd or even according to whether the argument n is negative,  
non-negative and odd, or non-negative and even, respectively:
 
>> else1 (8), else1 (5), else1 (-10)
 
A =
 
n is even
 
A =
 
n is odd
 
A =
 
n is negative 

7.11 SWITCH and CASE
The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax is as 
follows:
 
switch expression (scalar or string)
case value1
statements % runs if expression is value1
case value2
statements % runs if expression is value2
.
.
.
otherwise
statements % runs if neither case is satisfied
 
end
 

Figure 7-19.  
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Below is an example of a function that returns ‘minus one’, ‘zero’, ‘one’, or ‘another value’ according to whether the 
input is equal to -1,0,1 or something else, respectively (Figure 7-20).

Figure 7-20.  

Running the above example we get:
 
>> case1 (25)
another value
 
>> case1 (- 1)
minus one 

7.12 CONTINUE
The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring 
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 7-21) that counts the lines of 
code in the file magic.m, ignoring the white lines and comments.
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Running the M-file, we get:
 
>> continue1
25 lines 

7.13 BREAK
The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which 
appears outside of the loop. Below is an M-file break1.m (Figure 7-22) which reads the lines of code in the file fft.m, 
exiting the loop as soon as it encounters the first empty line.

Figure 7-21.  

Figure 7-22.  
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Running the M-file we get:
 
>> break1
 
%FFT Discrete Fourier transform.
%   FFT(X) is the discrete Fourier transform (DFT) of vector X.  For
%   matrices, the FFT operation is applied to each column. For N-D
%   arrays, the FFT operation operates on the first non-singleton
%   dimension.
%
%   FFT(X,N) is the N-point FFT, padded with zeros if X has less
%   than N points and truncated if it has more.
%
%   FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
%   dimension DIM.
%
%   For length N input vector x, the DFT is a length N vector X,
%   with elements
%                    N
%      X(k) =       sum  x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
%                   n=1
%   The inverse DFT (computed by IFFT) is given by
%                    N
%      x(n) = (1/N) sum  X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
%                   k=1
%
%   See also IFFT, FFT2, IFFT2, FFTSHIFT. 

7.14 TRY ... CATCH
The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the 
cause of the error. The general syntax of the command is as follows:
 
try,
instruction
...,
instruction
catch,
instruction
...,
instruction
end 

7.15 RETURN
The return statement terminates the current script and returns the control to the invoked function or the keyboard. 
The following is an example (Figure 7-23) that computes the determinant of a non-empty matrix. If the array is empty 
it returns the value 1.
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Running the function for a non-empty array we get:
  
>> A = [- 1, - 1, 1; 1,0,1; 1,1,1]
  
A =

-1 -1 -1
 1  0  1
 1 -1 -1
 
>> det1 (A)
 
ans =
 
2
 

Now we apply the function to an empty array:
 
>> B =[]
 
B =
 
     []
 
>> det1 (B)
 
ans =
 
     1 

7.16 Subfunctions
M-file-defined functions can contain code for more than one function. The main function in an M-file is called a 
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary 
function may be added which are only visible for the primary function or another subfunction within the same M-file. 
Each subfunction begins with its own function definition. An example is shown in Figure 7-24.

Figure 7-23.  
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The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary 
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and n 
as the second argument. When executing the main function, it is enough to provide as input a list of values for which 
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.
 
>> [mean, median] = newstats ([10,20,3,4,5,6])
 
mean =
 
     8
 
median =
 
    5.5000 

7.17 Commands in M-files
MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are the 
following:

echo on View on-screen commands of an M-file script while it is running.

echo off Hides on-screen commands of an M-file script (this is the default setting).

pause Interrupts the execution of an M-file until the user presses a key to continue.

pause(n) Interrupts the execution of an M-file for n seconds.

Figure 7-24.  

(continued)
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pause off Disables pause and pause (n).

pause on Enables pause and pause (n).

keyboard Interrupts the execution of an M-file and passes the control to the keyboard so that the user can 
perform other tasks.  The execution of the M-file can be resumed by typing the return command 
into the Command Window and pressing Enter.

return Resumes execution of an M-file after an outage.

break Prematurely exits a loop.

CLC Clears the Command Window.

Home Hides the cursor.

more on Enables paging of the MATLAB Command Window output.

more off Disables paging of the MATLAB Command Window output.

more(N) Sets page size to N lines.

menu Offers a choice between various types of menu for user input.

7.18 Functions relating to Arrays of Cells
An array is a well-ordered collection of individual items. It is simply a list of elements, each of which is associated 
with a positive integer called its index, which represents the position of that element in the list. It is essential that each 
element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make 
changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions, and 
correspondingly they have one or more sets of indices that identify their elements. The most important commands 
and functions that enable MATLAB to work with arrays of cells are the following:

c = cell(n)

c = cell(m,n)

c = cell([m n])

c = cell(m,n,p,...)

c = cell([m n p ...])

c = cell(size(A))

Creates an n×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an array of empty arrays of the same size as A.

D = cellfun('f',C)

D = cellfun('size',C,k)

D = cellfun('isclass',C,class)

Applies the function f (isempty, islogical, isreal, length, ndims, or prodofsize) to 
each element of the array C.

Returns the size of each element of dimension k in C.

Returns true for each element of C corresponding to class.

C=cellstr(S) Places each row of the character array S into separate cells of C.

S = cell2struct(C,fields,dim) Converts the array C to a structure array S incorporating field names ‘fields’ 
and the dimension ‘dim’ of C.

celldisp (C)

celldisp(C, name)

Displays the contents of the array C.

Assigns the contents of the array C to the variable name.

(continued)
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cellplot(C)

cellplot(C,'legend')

Shows a graphical representation of the array C.

Shows a graphical representation of the array C and incorporates a legend.

C = num2cell(A)

C = num2cell(A,dims)

Converts a numeric array A to the cell array C

Converts a numeric array A to a cell array C placing the given dimensions in 
separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.
 
>> A = ones(2,2)
 
A =

1     1
1     1
 
>> c = cell(size(A))
 
c =
 
[]     []
[]     []
 

We then define and present a 2 × 3 array of cells element by element, and apply various functions to the cells.
 
>> C{1.1} = [1 2; 4 5];
C{1,2} = 'Name';
C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);
 
>> C
 
C =
 
[2x2 double]    'Name'    [    3.1416]
[2.0000+ 4.0000i]    [   7]    [3x3 double]
   
>> D = cellfun('isreal',C)
 
D =
 
1     1     1
0     1     1
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>> len = cellfun('length',C)
 
len =
 
2     4     1
1     1     3
 
>> isdbl = cellfun('isclass',C,'double')
 
isdbl =
 
1 0 1
1 1 1
 

The contents of the cells in the array C defined above are revealed using the command celldisp.
 
>> celldisp(C)
 
C{1,1} =

1     2
4     5
 
C{2,1} =
 
2.0000 + 4.0000i
 
C{1,2} =
 
Name
 
C {2,2} =
 
7
 
C {1,3} =
 
3.1416
     
C {2,3} =
 
8 1 6
3 5 7
4 9 2
 

The following displays a graphical representation of the array C (Figure 7-25).
 
>> cellplot(C)
 



Chapter 7 ■ programming and numeriCal analysis 

236

7.19 Functions of Multidimensional Arrays
The following group of functions is used by MATLAB to work with multidimensional arrays:

C = cat(dim,A,B)

C = cat(dim,A1,A2,A3,A4...)

Concatenates arrays A and B according to the dimension dim.

Concatenates arrays A1, A2,... according to the dimension dim.

B = flipdim (A, dim) Flips the array A along the specified dimension dim.

[I,J] = ind2sub(siz,IND)

[I1,I2,I3,...,In] = ind2sub(siz,IND)

Returns the matrices I and J containing the equivalent row and column 
subscripts corresponding to each index in the matrix IND for a matrix of 
size siz.

Returns matrices I1, I2,...,In containing the equivalent row and column 
subscripts corresponding to each index in the matrix IND for a matrix of 
size siz.

A = ipermute(B,order) Inverts the dimensions of the multidimensional array D according to the 
values of the vector order.

[X1, X2, X3,...] = ndgrid(x1,x2,x3,...)

[X 1, X 2,...] = ndgrid (x)

Transforms the domain specified by vectors x1, x2,... into the arrays X1, 
X2,... which can be used for evaluation of functions of several variables 
and interpolation.

Equivalent to ndgrid(x,x,x,...).

Figure 7-25.  

(continued)



Chapter 7 ■ programming and numeriCal analysis 

237

n = ndims(A) Returns the number of dimensions in the array A.

B = permute(A,order) Swaps the dimensions of the array A specified by the vector order.

B = reshape(A,m,n)

B = reshape(A,m,n,p,...)

B = reshape(A,[m n p...])

B = reshape(A,siz)

Defines an m×n matrix B whose elements are the columns of a.

Defines an array B whose elements are those of the array A restructured 
according to the dimensions m×n×p×...

Equivalent to B = reshape(A,m,n,p,...)

Defines an array B whose elements are those of the array A restructured 
according to the dimensions of the vector siz.

B = shiftdim(X,n)

[B,nshifts] = shiftdim(X)

Shifts the dimensions of the array X by n, creating a new array B.

Defines an array B with the same number of elements as X but with 
leading singleton dimensions removed.

B=squeeze(A) Creates an array B with the same number of elements as A but with all 
singleton dimensions removed.

IND = sub2ind(siz,I,J)

IND = sub2ind(siz,I1,I2,...,In)

Gives the linear index equivalent to the row and column indices I and J for 
a matrix of size siz.

Gives the linear index equivalent to the n indices I1, I2,..., in a matrix of 
size siz.

As a first example we concatenate a magic square and Pascal matrix of order 3.
 
>> A = magic (3); B = pascal (3);
>> C = cat (4, A, B)
 
C(:,:,1,1) =
 
8 1 6
3 5 7
4 9 2
  
C(:,:,1,2) =
 
1 1 1
1 2 3
1 3 6
 

The following example flips the Rosser matrix.
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>> R=rosser
 
R =
 
   611   196  -192   407    -8   -52   -49    29
   196   899   113  -192   -71   -43    -8   -44
  -192   113   899   196    61    49     8    52
   407  -192   196   611     8    44    59   -23
    -8   -71    61     8   411  -599   208   208
   -52   -43    49    44  -599   411   208   208
   -49    -8     8    59   208   208    99  -911
    29   -44    52   -23   208   208  -911    99
 
>> flipdim(R,1)
 
ans =
 
ans =
 
    29   -44    52   -23   208   208  -911    99
   -49    -8     8    59   208   208    99  -911
   -52   -43    49    44  -599   411   208   208
    -8   -71    61     8   411  -599   208   208
   407  -192   196   611     8    44    59   -23
  -192   113   899   196    61    49     8    52
   196   899   113  -192   -71   -43    -8   -44
   611   196  -192   407    -8   -52   -49    29
 

Now we define an array by concatenation and permute and inverse permute its elements.
 
>> a = cat(3,eye(2),2*eye(2),3*eye(2))
  
a(:,:,1) =
 
1 0
0 1
  
a(:,:,2) =
 
2 0
0 2
  
a(:,:,3) =
 
3 0
0 3
 
>> B = permute(a,[3 2 1])
 
B(:,:,1) =
 
1 0
2 0
3 0
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B(:,:,2) =
 
0 1
0 2
0 3
 
>> C = ipermute(B,[3 2 1])
 
C(:,:,1) =
 
1 0
0 1
 
C(:,:,2) =
 
2 0
0 2
 
C(:,:,3) =
 
3 0
0 3
 

The following example evaluates the function f x x x e x x
1 2 1

2
1

2
2,( )= - - in the square [-2, 2] × [-2, 2] and displays it 

graphically (Figure 7-26).
 
>> [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z = X 1. * exp(-X1.^2-X2.^2);
mesh (Z) 

Figure 7-26.  
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In the following example we resize a 3 × 4 random matrix to a 2 × 6 matrix.
 
>> A = rand(3,4)
 
A =
 
0.9501    0.4860    0.4565    0.4447
0.2311    0.8913    0.0185    0.6154
0.6068    0.7621    0.8214    0.7919
 
>> B = reshape(A,2,6)
 
B =
 
   0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
   0.2311 0.4860 0.7621 0.0185 0.4447 0.7919

7.20 Numerical Analysis Methods in MATLAB
MATLAB programming techniques allow you to implement a wide range of numerical algorithms. It is possible to 
design programs which perform numerical integration and differentiation, solve differential equations, optimize 
non-linear functions, etc. However, MATLAB’s Basic module already has a number of tailor-made functions which 
implement some of these algorithms. These functions are set out in the following subsections. In the next chapter we 
will give some examples showing how these functions can be used in practice.

7.21 Zeros of Functions and Optimization
The commands (functions) that enables MATLAB’s Basic module to optimize functions and find the zeros of functions 
are as follows:

x = fminbnd(fun,x1,x2) Minimizes the function on the interval (x1 x2).

x = fminbnd(fun,x1,x2,options) Minimizes the function on the interval (x1 x2) according to the 
option given by optimset (...). This last command is explained later.

x = fminbnd(fun,x1,x2,options,P1,P2,...) Specifies additional parameters P1, P2,... to pass to the target 
function fun(x,P1,P2,...).

[x, fval] = fminbnd (...) Returns the value of the objective function at x.

[x, fval, f] = fminbnd (...) In addition, returns an indicator of convergence f (f > 0 indicates 
convergence to the solution, f < 0 indicates no convergence and 
f = 0 indicates the algorithm exceeded the maximum number of 
iterations).

[x,fval,f,output] = fminbnd(...) Provides further information (output.algorithm gives the 
algorithm used, output.funcCount gives the number of evaluations 
of fun and output.iterations gives the number of iterations).

(continued)
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x = fminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(fun,x0,options,P1,P2,...)

[x,fval] = fminsearch(...)

[x,fval,f] = fminsearch(...)

[x,fval,f,output] = fminsearch(...)

Returns the minimum of a scalar function of several variables, 
starting at an initial estimate x0.  The argument x0 can be an 
interval [a, b]. To find the minimum of fun in [a, b], x = fminsearch 
(fun, [a, b]) is used.

x = fzero(fun,x0)

x = fzero(fun,x0,options)

x = fzero(fun,x0,options,P1,P2,...)

[x, fval] = fzero (...)

[x, fval, exitflag] = fzero (...)

[x,fval,exitflag,output] = fzero(...)

Finds zeros of the function fun, with initial estimate x0, by finding a 
point where fun changes sign. The argument x0 can be an interval 
[a, b]. Then, to find a zero of fun in  [a, b], we use x = fzero (fun,  
[a, b]), where fun has opposite signs at a and b.

options = optimset('p1',v1,'p2',v2,...) Creates optimization parameters p1, p2,... with values v1, v2... 
The possible parameters are Display (with possible values 'off', 
'iter','final','notify') to respectively not display the output, 
display the output of each iteration, display only the final output, 
and display a message if there is no convergence); MaxFunEvals, 
whose value is an integer indicating the maximum number of 
evaluations; MaxIter whose value is an integer indicating the 
maximum number of iterations; TolFun, whose value is an integer 
indicating the tolerance in the value of the function, and TolX, 
whose value is an integer indicating the tolerance in the value of x.

val = optimget (options, 'param') Returns the value of the parameter specified in the optimization 
options structure.

g = inline (expr) Transforms the string expr into a function.

g = inline(expr,arg1,arg2, ...) Transforms the string expr into a function with given input 
arguments.

g = inline (expr, n) Transforms the string expr into a function with n input arguments.

f = @function Enables the function to be evaluated.

As a first example we find the value of x that minimizes the function cos(x) in the interval (3,4).
 
>> x = fminbnd(@cos,3,4)
 
x =

3.1416
 

We could also have used the following syntax:
 
>> x = fminbnd(inline('cos(x)'),3,4)
 
x =
3.1416
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In the following example we find the above minimum to 8 decimal places and find the value of x that minimizes 
the cosine in the given interval, presenting information relating to all iterations of the process.
 
>> [x,fval,f] = fminbnd(@cos,3,4,optimset('TolX',1e-8,...          'Display','iter'));
  
Func-count     x          f(x)       Procedure
1        3.38197    -0.971249        initial
2        3.61803    -0.888633        golden
3        3.23607    -0.995541        golden
4        3.13571    -0.999983        parabolic
5         3.1413           -1        parabolic
6        3.14159           -1        parabolic
7        3.14159           -1        parabolic
8        3.14159           -1        parabolic
9        3.14159           -1        parabolic
 
Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008
 

In the following example, taking (- 1, 2; 1) as initial values, we find the minimum and target value of the following 
function of two variables:

f x x x x( ) = -( ) + -( )100 12
2

1

2

1

2

 
>> [x,fval] = fminsearch(inline('100*(x(2)-x(1)^2)^2+...
(((1-x (1)) ^ 2'), [- 1.2, 1])
 
x =
 
1.0000 1.0000
  
fval =
 
8. 1777e-010
 

The following example computes a zero of the sine function with an initial estimate of 3, and a zero of the cosine 
function between 1 and 2.
 
>> x = fzero(@sin,3)
 
x =
 
3.1416
 
>> x = fzero(@cos,[1 2])
 
x =
 
    1.5708
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7.22 Numerical Integration
MATLAB contains functions that allow you to perform numerical integration using Simpson’s method and Lobatto’s 
method. The syntax of these functions is as follows:

q = quad(f,a,b) Finds the integral of f between a and b by Simpson’s method with an error 
of 10-6.

q = quad(f,a,b,tol) Find the integral of f between a and b by Simpson’s method with the 
tolerance tol instead  of 10-6.

q = quad(f,a,b,tol,trace) Find the integral of f between a and b by Simpson’s method with the 
tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol,trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fcnt] = quadl(f,a,b,...) Additionally returns the number of evaluations of f.

q = quadl(f,a,b) Finds the integral of f between a and b by Lobatto’s quadrature method 
with a 10-6 error.

q = quadl(f,a,b,tol) Finds the integral of f between a and b by Lobatto’s quadrature method 
with the tolerance tol instead of 10-6.

q = quadl(f,a,b,tol,trace) Finds the integral of f between a and b by Lobatto’s quadrature method 
with the tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol,trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fcnt] = quadl(f,a,b,...) Additionally returns the number of evaluations of f.

q = dblquad (f, xmin, xmax, 
ymin, ymax)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with an error of 10-6. dblquad will be removed in future 
releases and replaced by integral2.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with tolerance tol.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol,@quadl)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with tolerance tol and using the quadl method.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol,method,p1,p2,...)

Passes additional arguments p1, p2,... to the function f.

As a first example, we calculate 
1

2 53
0

2

x x
dx

- -ò using Simpson’s method.
 
>> F = inline('1./(x.^3-2*x-5)');
>> Q = quad(F,0,2)
 
Q =
 
-0.4605
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Then we observe that the integral remains unchanged even if we increase the tolerance to 10-18.
 
>> Q = quad(F,0,2,1.0e-18)
 
Q =
 
-0.4605
         
 

In the following example we evaluate the same integral using Lobatto’s method.
 
>> Q = quadl(F,0,2)
 
Q =
 
-0.4605
 

We evaluate the double integral y x x y dydxsin( ) cos( )+( )òò
0

2 p

p

p

.
 
>> Q = dblquad (inline (' y * sin (x) + x * cos (y)'), pi, 2 * pi, 0, pi)
 
Q =
 
   -9.8696

7.23 Numerical Differentiation
The derivative f'(x) of a function f (x) can simply be defined as the rate of change of f (x) with respect to x. The 
derivative can be expressed as a ratio between the change in f (x), denoted by df (x), and the change in x, denoted by 
dx. The derivative of a function f at the point x

k
 can be estimated by using the expression:

¢( )= ( )- ( )
-

-

-

f x
f x f x

x xk
k k

k k

1

1

provided the values x
k
, x

k-1
 are close to each other. Similarly the second derivative f''(x) of the function f(x) can be 

estimated as the first derivative of f'(x), i.e.:

¢¢( )=
¢( )- ¢( )

-
-

-

f x
f x f x

x xk
k k

k k

1

1

MATLAB includes in its Basic module the function diff, which allows you to approximate derivatives. The syntax 
is as follows:

Y = diff(X) Calculates the differences between adjacent elements in the vector X:[X(2) - X(1), X(3) - X (2),..., 
X(n) - X(n-1)]. If X is an m×n matrix, diff (X) returns the array of differences by rows: [X(2:m,:)-
X(1:m-1,:)]

Y = diff(X,n) Finds differences of order n, for example: diff(X,2) = diff (diff (X)).
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As an example we consider the function f(x) = x5-3x4-11x3+27x2+10x-24, find the difference vector of [-4,-3.9,-3.8, 
...,4.8,4.9,5] the difference vector of [f(-4),f(-3.9),f(-3.8),...,f(4.8),f(4.9),f(5)] and the elementwise quotient of the latter 
by the former, and graph the function in the interval [-4,5]. See Figure 7-27.
 
>> x =-4:0.1: 5;
>> f = x.^5-3*x.^4-11*x.^3 + 27*x.^2 + 10*x-24;
>> df=diff(f)./diff(x)
 
df =
 
  1.0e+003 *
 
  Columns 1 through 7
 
    1.2390    1.0967    0.9655    0.8446    0.7338    0.6324    0.5400
 
  Columns 8 through 14
 
    0.4560    0.3801    0.3118    0.2505    0.1960    0.1477    0.1053
 
  Columns 15 through 21
 
    0.0683    0.0364    0.0093   -0.0136   -0.0324   -0.0476   -0.0594
 
  Columns 22 through 28
 
   -0.0682   -0.0743   -0.0779   -0.0794   -0.0789   -0.0769   -0.0734
 
  Columns 29 through 35
 
   -0.0687   -0.0631   -0.0567   -0.0497   -0.0424   -0.0349   -0.0272
 
  Columns 36 through 42
 
   -0.0197   -0.0124   -0.0054    0.0012    0.0072    0.0126    0.0173
 
  Columns 43 through 49
 
    0.0212    0.0244    0.0267    0.0281    0.0287    0.0284    0.0273
 
  Columns 50 through 56
 
    0.0253    0.0225    0.0189    0.0147    0.0098    0.0044   -0.0014
 
  Columns 57 through 63
 
   -0.0076   -0.0140   -0.0205   -0.0269   -0.0330   -0.0388   -0.0441
 
  Columns 64 through 70
 
   -0.0485   -0.0521   -0.0544   -0.0553   -0.0546   -0.0520   -0.0472
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  Columns 71 through 77
 
-0.0400   -0.0300   -0.0170   -0.0007    0.0193    0.0432    0.0716
 
  Columns 78 through 84
 
    0.1046    0.1427    0.1863    0.2357    0.2914    0.3538    0.4233
 
  Columns 85 through 90
 
    0.5004    0.5855    0.67910.7816    0.8936    1.0156
 
>> plot (x, f) 

Figure 7-27.  

7.24 Approximate Solutions of Differential Equations
MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential 
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve 
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

7.25 Ordinary Differential Equations with Initial Values
An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the 
independent variable t. A first order ordinary differential equation with an initial value for the independent variable 
can be represented as:

y f t y

y t y

’ ,= ( )
( ) =0 0

The previous problem can be generalized to the case where y is a vector, y = (y
1
, y

2
,...,y

n
).
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MATLAB’s Basic module commands relating to ordinary differential equations and differential algebraic 
equations with initial values are presented in the following table:

Command Class of problem solving, numerical method and syntax

ode45 Ordinary differential equations by the Runge–Kutta method

ode23 Ordinary differential equations by the Runge–Kutta method

ode113 Ordinary differential equations by Adams’ method

ode15s Differential algebraic equations and ordinary differential equations using NDFs (BDFs)

ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the trapezoidal  rule

ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:
 
[T, y] = solver(odefun,tspan,y0)
[T, y] = solver(odefun,tspan,y0,options)
[T, y] = solver(odefun,tspan,y0,options,p1,p2...)
[T, y, TE, YE, IE] = solver(odefun,tspan,y0,options)
 

In the above, solver can be any of the commands ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb.
The argument odefun evaluates the right-hand side of the differential equation or system written in the form 

y' = f (t, y) or M(t, y)y '=f (t, y), where M(t, y) is called a mass matrix. The command ode23s can only solve equations 
with constant mass matrix. The commands ode15s and ode23t can solve algebraic differential equations and systems 
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the 
range of integration [t

0
, t

f
] (tspan= [t

0
, t

1
,...,t

f
], which must be either an increasing or decreasing list, is used to obtain 

solutions for specific values of t). The argument y
0
 specifies a vector of initial conditions. The arguments p1, p2,... are 

optional parameters that are passed to odefun. The argument options specifies additional integration options using 
the command options odeset which can be found in the program manual. The vectors T and Y present the numerical 
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential 
equations:

y y y y

y y y y

y y y y

’

’

’ .

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0 51 0 1

= ( )=
=- ( )=
=- ( )=

For this, we define a function named system1 in an M-file, which will store the equations of the system. The 
function begins by defining a column vector with three rows which are subsequently assigned components that make 
up the syntax of the three equations (Figure 7-28).
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We then solve the system by typing the following in the Command Window:
   
>> [T, Y] = ode45(@system1,[0 12],[0 1 1])
 
T =
 
0
0.0001
0.0001
0.0002
0.0002
0.0005
.
.
11.6136
11.7424
11.8712
12.0000
 
Y =
0 1.0000 1.0000
0.0001 1.0000 1.0000
0.0001 1.0000 1.0000
0.0002 1.0000 1.0000
0.0002 1.0000 1.0000
0.0005 1.0000 1.0000
0.0007 1.0000 1.0000
0.0010 1.0000 1.0000
0.0012 1.0000 1.0000
0.0025 1.0000 1.0000
0.0037 1.0000 1.0000
0.0050 1.0000 1.0000
0.0062 1.0000 1.0000
0.0125 0.9999 1.0000
0.0188 0.9998 0.9999

Figure 7-28.  
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0.0251 0.9997 0.9998
0.0313 0.9995 0.9997
0.0627 0.9980 0.9990
.
.
0.8594  -0.5105 0.7894
0.7257  -0.6876 0.8552
0.5228  -0.8524 0.9281
0.2695  -0.9631 0.9815
-0.0118 -0.9990 0.9992
-0.2936 -0.9540 0.9763
-0.4098 -0.9102 0.9548
-0.5169 -0.8539 0.9279
-0.6135 -0.7874 0.8974
-0.6987 -0.7128 0.8650
 

To better interpret the results, the above numerical solution can be graphed (Figure 7-29) by using the following 
command:
 
>> plot (T, Y(:,1), '-', T, Y(:,2),'-', T, Y(:,3),'. ') 

Figure 7-29.  

7.26 Ordinary Differential Equations with Boundary Conditions
MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions 
specify a relationship that must hold between the values of the solution function at the end points of the interval on 
which it is defined. The simplest problem of this type is the system of equations

y f x y’ ,= ( )
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where x is the independent variable, y is the dependent variable and y' is the derivative with respect to x  (i.e., y'= dy/dx). 
In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g y a y b( ) ( )( )=, 0

More generally this type of differential equation can be expressed as follows:

y f x y P

g y a y b P

’ , ,

, ,

= ( )
( ) ( )( )= 0

where the vector p consists of parameters which have to be determined simultaneously with the solution via the 
boundary conditions.

The command that solves these problems is bvp4c, whose syntax is as follows:
 
Sol = bvp4c (odefun, bcfun, solinit)
Sol = bvp4c (odefun, bcfun, solinit, options)
Sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)
 

In the syntax above odefun is a function that evaluates f (x, y). It may take one of the following forms:
 
dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun (x, y, parameters)
dydx = odefun(x,y,parameters,p1,p2,...)
 

The argument bcfun in Bvp4c is a function that computes the residual in the boundary conditions. Its form is 
as follows:
 
Res = bcfun (ya, yb)
Res = bcfun(ya,yb,p1,p2,...)
Res = bcfun (ya, yb, parameters)
Res = bcfun(ya,yb,parameters,p1,p2,...)
 

The argument solinit is a structure containing an initial guess of the solution. It has the following fields: x (which 
gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)and b 
= solinit.x(end)) and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant guess 
for the i-th component of the solution at all the mesh points given by x). The structure solinit is created using the 
command bvpinit. The syntax is solinit = bvpinit(x,y).

As an example we solve the second order differential equation:

y y"+ =0

whose solutions must satisfy the boundary conditions:

y

y

0 0

4 2

( ) =
( ) = -

This is equivalent to the following problem (where y
1
=y and y

2
=y'):

y y

y y
1 2

2 1

’

’

=

= -
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We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solution is y
1
 = 1 

and y
2
 = 0. These assumptions are included in the following syntax:

 
>> solinit = bvpinit (linspace (0,4,5), [1 0]);
 

The M-files depicted in Figures 7-30 and 7-31 show how to enter the equation and its boundary conditions.

Figure 7-31.  

Figure 7-30.  

The following syntax is used to find the solution of the equation:
 
>> Sun = bvp4c (@twoode, @twobc, solinit); 

The solution can be graphed (Figure 7-32) using the command bvpval as follows:
 
>> y = bvpval (Sun, linspace (0,4));
>> plot (x, y(1,:));
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7.27 Partial Differential Equations 
MATLAB’s Basic module has features that enable you to solve partial differential equations and systems of partial 
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe, 
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:
 
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)
 

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block, 
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun 
defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x

0
, x

1
,...,x

n
] and  

[t
0
, t

1
,...,t

f
] that specify the points at which a numerical solution is requested (n, f³3), options specifies some calculation 

options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify relative 
tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are parameters to 
pass to the functions pdefun, icfun and bcfun.

pdepe solves partial differential equations of the form:

c x t u
u

x

u

t
x

x
x f x t u

u

x
s x tm m, , , , , , ,

¶
¶

æ
è
ç

ö
ø
÷
¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷+

- ,, ,u
u

x

¶
¶

æ
è
ç

ö
ø
÷

where a£x£b and t
0
£t£t

f
. Moreover, for t = t

0
 and for all x the solution components meet the initial conditions:

u x t u x, 0 0( ) = ( )

and for all t and each x = a or x = b, the solution components satisfy the boundary conditions of the form:

p x t u q x t f x t u
u

x
, , , , , ,( ) + ( ) ¶

¶
æ
è
ç

ö
ø
÷ =0

Figure 7-32.  
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In addition, we have that a = xmesh (1), b = xmesh (end), tspan (1) = t
0
 and tspan (end) = t

f
. Moreover 

pdefun finds the terms c, f and s of the partial differential equation, so that:
 
[c, f, s] = pdefun (x, t, u, dudx)
 

Similiarly icfun evaluates the initial conditions
 
u = icfun (x)
 

Finally, bcfun evaluates the terms p and q of the boundary conditions:
 
[pl, ql, pr, qr] = bcfun (xl, ul, xr, ur, t)
 

As a first example we solve the following partial differential equation (xŒ[0,1] and t³0):

p 2 ¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

u

t x

u

x

satisfying the initial condition:

u x x, sin0( ) = p

and the boundary conditions:

u t

e
u

x
tt

0 0

1 0

,

,

( ) º

+
¶
¶

( ) =-p

We begin by defining functions in M-files as shown in Figures 7-33 to 7-35.

Figure 7-33.  
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Figure 7-34.  

Figure 7-35.  

Once the support functions have been defined, we define the function that solves the equation (see the M-file in 
Figure 7-36).
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To view the solution (Figures 7-37 and 7-38), we enter the following into the MATLAB Command Window:
 
>> pdex1 

Figure 7-36.  

Figure 7-37.  
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As a second example we solve the following system of partial differential equations (xŒ[0,1] and t³0):

¶
¶

=
¶
¶

- -( )
¶
¶

=
¶
¶

- -( )

u

t

u

x
F u u

u

t

u

x
F u u

1
2

1
2 1 2

2
2

2
2 1 2

0 024

0 170

.

.

F y y y( ) = ( )- -( )exp . exp .5 73 11 46

satisfying the initial conditions:

u x

u x

1

2

0 1

0 0

,

,

( )º
( )º

and the boundary conditions:

¶
¶

( )º

( )º
( )º

¶
¶

( )º

u

x
t

u t

u t

u

x
t

1

2

1

2

0 0

0 0

1 1

1 0

,

,

,

,

To conveniently use the function pdepe, the system can be written as:

1

1

0 024

0 170
1

2

1

2

é

ë
ê
ù

û
ú ×*

¶
¶
é

ë
ê

ù

û
ú =

¶
¶

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

t

u

u x

u x

u x

. /

. / ûû
ú
ú
+

- -( )
-( )

é

ë
ê
ê

ù

û
ú
ú

F u u

F u u

1 2

1 2

Figure 7-38.  
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The left boundary condition can be written as:

0 1

0

0 024

0 170

0

02

1

2
u

u x

u x

é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú ×*

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

û
ú
ú
=
é. /

. / ëë
ê

ù

û
ú

and the right boundary condition can be written as:

u u x

u x
1 1

2

1

0

1

0

0 024

0 170

0-é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú ×*

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

û
ú
ú
=

. /

. / 00

é

ë
ê

ù

û
ú

We start by defining the functions in M-files as shown in Figures 7-39 to 7-41.

Figure 7-39.  

Figure 7-40.  
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Once the support functions are defined, the function that solves the system of equations is given by the M-file 
shown in Figure 7-42.

Figure 7-42.  

Figure 7-41.  

To view the solution (Figures 7-43 and 7-44), we enter the following in the MATLAB Command Window:
 
>> pdex4 
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Figure 7-43.  

Figure 7-44.  
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eXerCISe 7-1

minimize the function x3-2x-5  in the interval (0,2) and calculate the value that the function takes at that point, 
displaying information about all iterations of the optimization process.
 
>> f = inline('x.^3-2*x-5');
>> [x,fval] = fminbnd(f, 0, 2,optimset('Display','iter'))
 
Func-count     x          f(x)         Procedure
1       0.763932     -6.08204        initial
2        1.23607     -5.58359        golden
3       0.472136     -5.83903        golden
4       0.786475     -6.08648        parabolic
5       0.823917     -6.08853        parabolic
6         0.8167     -6.08866        parabolic
7        0.81645     -6.08866        parabolic
8       0.816497     -6.08866        parabolic
9        0.81653     -6.08866        parabolic
 
Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004
  
x =
 
0.8165
  
fval =

 -6.0887 

eXerCISe 7-2

Find in a neighborhood of x = 1.3 a zero of the function:

f x
x x

( ) =
-( ) +

+
-( ) +

- ×
1

0 3 0 01

1

0 9 0 04
62 2

. . . .

minimize this function on the interval (0,2).

First we find a zero of the function using the initial estimate of x= 1.3, presenting information about the iterations 
and checking that the result is indeed a zero.
 
>> [x,feval]=fzero(inline('1/((x-0.3)^2+0.01)+...
1/((x-0.9)^2+0.04)-6'),1.3,optimset('Display','iter'))
 
Func-count      x           f(x)         Procedure
1             1.3   -0.00990099        initial
2         1.26323      0.882416        search
 
Looking for a zero in the interval [1.2632, 1.3]
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3         1.29959   -0.00093168        interpolation
4         1.29955  1.23235e-007        interpolation
5         1.29955 -1.37597e-011        interpolation
6         1.29955             0        interpolation
Zero found in the interval: [1.2632, 1.3].
 
x =
 
1.2995
  
feval =
 
0
 
secondly, we minimize the function specified in the interval [0,2] and also present information about the iterative 
process, terminating the process when the value of x which minimizes the function is found. in addition, the value 
of the function at this point is calculated.
 
>> [x,feval]=fminbnd(inline('1/((x-0.3)^2+0.01)+...
1/((x-0.9)^2+0.04)-6'),0,2,optimset('Display','iter'))
 
Func-count     x          f(x)        Procedure
 1        0.763932    15.5296         initial
 2        1.23607      1.66682        golden
 3        1.52786     -3.03807        golden
 4        1.8472      -4.51698        parabolic
 5        1.81067     -4.41339        parabolic
 6        1.90557     -4.66225        golden
 7        1.94164     -4.74143        golden
 8        1.96393     -4.78683        golden
 9        1.97771     -4.81365        golden
10        1.98622     -4.82978        golden
11        1.99148     -4.83958        golden
12        1.99474     -4.84557        golden
13        1.99675     -4.84925        golden
14        1.99799     -4.85152        golden
15        1.99876     -4.85292        golden
16        1.99923     -4.85378        golden
17        1.99953     -4.85431        golden
18        1.99971     -4.85464        golden
19        1.99982     -4.85484        golden
20        1.99989     -4.85497        golden
21        1.99993     -4.85505        golden
22        1.99996     -4.85511        golden
 
Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004
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x =
 
2.0000
 
feval =
 
-4.8551  

eXerCISe 7-3

the intermediate value theorem says that if f is a continuous function on the interval [a, b] and l is a number 
between f(a) and f(b), then there is a c (a < c < b) such that f(c) = l. For the function f(x) = cos(x-1), find the value 
c in the interval [1, 2.5] such that f(c)= 0.8.

the question asks us to solve the equation cos(x - 1) - 0.8 = 0 in the interval [1, 2.5].
 
>> c = fzero (inline ('cos (x-1) - 0.8'), [1 2.5])
 
c =
 
1.6435  

eXerCISe 7-4

Calculate the following integral using both simpson’s and lobatto’s methods:

2 2
1

6
+ ( ) ×( )ò sin x dx

For the solution using simpson’s method we have:
 
>> quad(inline('2+sin(2*sqrt(x))'),1,6)
 
ans =
 
8.1835
 

For the solution using lobatto’s method we have:
 
>> quadl(inline('2+sin(2*sqrt(x))'),1,6)
 
ans =
 
8.1835 
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eXerCISe 7-5

Calculate the area under the normal curve (0,1) between the limits - 1.96 and 1.96.

the integral we need to calculate is 
e

x

dx

-

-ò

2

196

196 2
2p

the calculation is done in matlaB using lobatto’s method as follows:
 
>> quadl(inline('exp(-x.^2/2)/sqrt(2*pi)', - 1.96,1.96)
 
ans =
 
0.9500
  

eXerCISe 7-6

Calculate the volume of the hemisphere-function defined in [-1,1]×[-1,1] by

-[ ]´ -[ ] ( )= - +( )1 1 1 1 1 2 2, , , .by f x y x y

 >> dblquad(inline('sqrt(max(1-(x.^2+y.^2),0))'),-1,1,-1,1)
 
ans =
 
2.0944 

the calculation could also have been done in the following way:
 
>> dblquad(inline('sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1)'),-1,1,-1,1)
 
ans =
 
2.0944 
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eXerCISe 7-7

evaluate the following double integral:

1
21

2

3

4

( )x y
dxdy

+òò

 >> dblquad(inline('1./(x+y).^2'),3,4,1,2)
 
ans =
 
    0.0408 

eXerCISe 7-8

solve the following Van der pol system of equations:

y y y

y y y y y

’

’

1 2 1

2
2

1 2 1 2

0 0

1000 1 0 1

= ( )=
= -( ) - ( )=

We begin by defining a function named vdp100 in an m-file, where we will store the equations of the system. 
this function begins by defining a vector column with two empty rows which are subsequently assigned the 
components which make up the equation (Figure 7-45).

Figure 7-45.  

We then solve the system and plot the solution y1 = y1(t) given by the first column (Figure 7-46) by typing the 
following into the Command Window:
 
>> [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
>> plot (T, Y(:,1),'-')
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similarly we plot the solution y2 = y2(t) (Figure 7-47) by using the syntax:
 

>> plot (T, Y(:,2),'-')  

Figure 7-46.  

Figure 7-47.  
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eXerCISe 7-9

given the following differential equation

y q x y" cos+ - ( )( ) =l 2 2 0

subject to the boundary conditions y(0) = 1, y'(0) = 0, y'(p) = 0, find a solution for q = 5 and l = 15 based on 
an initial solution defined on 10 equally spaced points in the interval [0, p ] and graph the first component of the 
solution on 100 equally spaced points in the interval [0, p ].

the given equation is equivalent to the following system of first order differential equations:

y y

y q x y

’

’ cos
1 2

2 12 2

=

=- -( )l

with the following boundary conditions:

y

y

y

1

2

2

0 1 0

0 0

0

( )- =

( )=
( )=p

the system of equations is introduced in the m-file shown in Figure 7-48, the boundary conditions are given in 
the m-file shown in Figure 7-49, and the m-file in Figure 7-50 sets up the initial solution.

Figure 7-48.  
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Figure 7-49.  

Figure 7-50.  

the initial solution for l = 15 and 10 equally spaced points in [0, p ] is calculated using the following matlaB 
syntax:
 
>> lambda = 15;
solinit = bvpinit (linspace(0,pi,10), @mat4init, lambda);
 
the numerical solution of the system is calculated using the following syntax:
 
>> sol = bvp4c(@mat4ode,@mat4bc,solinit);
 
to graph the first component on 100 equally spaced points in the interval [0, p ] we use the following syntax:
 
>> xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([0 pi-1 1.1])
xlabel ('x')
ylabel('solution y')
 
the result is shown in Figure 7-51.
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eXerCISe 7-10

solve the following differential equation

y y y y" ’+ -( ) + =1 02

in the interval [0,20], taking as initial solution y = 2, y' = 0.  solve the more general equation

y y y y" ’+ -( ) + = > ×m m1 0 02

the general equation above is equivalent to the following system of first-order linear equations:

y y

y y y y

’

’

1 2

2 1
2

2 11

=

= -( ) -m

which is defined for m = 1 in the m-file shown in Figure 7-52.

Figure 7-51.  
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taking the initial solution y1 = 2 and y2 = 0 in the interval [0,20], we can solve the system using the following 
matlaB syntax:
 
>> [t, y] = ode45(@vdp1,[0 20],[2; 0])
 
t =
 
0
0.0000
0.0001
0.0001
0.0001
0.0002
0.0004
0.0005
0.0006
0.0012
.
.
19.9559
19.9780
20.0000
 
y =
 
2.0000 0
2.0000 - 0.0001
2.0000 - 0.0001
2.0000 - 0.0002
2.0000 - 0.0002
2.0000 - 0.0005
.
.
1.8729 1.0366
1.9358 0.7357
1.9787 0.4746

Figure 7-52.  
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2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404
 
We can graph the solutions using the following syntax (see Figure 7-53):
 
>> plot (t, y(:,1),'-', t, y(:,2),'-')
>> xlabel ('time t')
>> ylabel('solution y')
>> legend ('y_1', 'y_2')
 

Figure 7-53.  

to solve the general system with the parameter m, we define the system in the m-file shown in Figure 7-54.
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now we can graph the first solution y1 = 2 and y2= 0 corresponding to m = 1000 in the interval [0,1500] using 
the following syntax (see Figure 7-55):
 
>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],1000);
>> xlabel ('time t')
>> ylabel ('solution y_1')
 

Figure 7-55.  

Figure 7-54.  
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to graph the first solution y1 = 2 and y2 = 0 for another value of the parameter, for example m= 100, in the 
interval [0,1500], we use the following syntax (see Figure 7-56):
 
>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
>> plot (t, y(:,1),'-'); 

Figure 7-56.  

eXerCISe 7-11

the Fibonacci sequence {an} is defined by the recurrence law a1 = 1, a2 = 1, an+1 =an-1 + an. represent this 
sequence by a recursive function and calculate a2, a5 and a20.

to generate terms of the Fibonacci sequence we define a recursive function in the m-file fibo.m shown in 
Figure 7-57.
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terms 2, 5 and 20 of the sequence are now calculated using the syntax:
 
>> [fibo(2), fibo(5), fibo(20)]
 
ans =
 
           2 8 10946
 

eXerCISe 7-12

define the Kronecker delta, which equals 1 if x = 0 and 0 otherwise. define the modified Kronecker delta function, 
which is 0 if x = 0, 1 if x> 0 and -1 if x <0 and graph it. lastly, define the piecewise function that is equal to 0 if x 
£ -3, x3 if -3 <x <-2, x2 if -2£x£2, x if 2<x<3 and 0 if 3£x, and graph it.

the Kronecker delta delta(x) is defined in the m-file delta.m shown in Figure 7-58. the modified Kronecker delta 
delta1(x) is defined in the m-file delta1.m shown in Figure 7-59. to define the third function piece1(x) of the 
exercise, we create the m-file piece1.m shown in Figure 7-60.

Figure 7-57.  
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Figure 7-58.  

Figure 7-59.  
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to graphically represent the modified Kronecker delta on the domain [-10, 10] (and with codomain [-2, 2]) we  
use the following syntax (see Figure 7-61):
 
>> fplot ('delta1 (x)', [- 10 10 – 2-2])
>> title 'Modified Kronecker Delta' 

Figure 7-60.  

Figure 7-61.  
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eXerCISe 7-13

define a function descriptive(v) which returns the variance and coefficient of variation of the elements of a given 
vector v. as an application, find the variance and coefficient of variation of the set of numbers 1, 5, 6, 7 and 9.

Figure 7-63 shows the m-file which defines the function descriptive.

to graphically represent the piecewise function on the interval [- 5,5] we use the following syntax (see 
Figure 7-62):
 
>> fplot ('piece1 (x)', [- 5 5]);
>> title 'Piecewise function'
 

Figure 7-62.  
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to find the variance and coefficient of variation of the given set of numbers, we use the following syntax:
 
>> [variance, cv] = descriptive([1 5 6 7 9])
 
variance =
 
    7.0400
 
cv =
 
    0.4738 

Figure 7-63.  
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Chapter 8

Numerical Algorithms: Equations, 
Derivatives, Integrals and Differential 
Equations

8.1 Solving Non-Linear Equations 
MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which 
play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are 
stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or 
functions that accept arguments and produces output. The M-files are created using the text editor.

8.1.1 The Fixed Point Method for Solving x = g(x) 
The fixed point method solves the equation x = g(x), under certain conditions on the function g, using an iterative 
method that begins with an initial value p

0
 (a first approximation to the solution) and defines p

k+1
 = g(p

k
). The fixed 

point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation 
 x = g(x). In practice the iterative process will stop when the absolute or relative error corresponding to two 
consecutive iterations is less than a preset value (tolerance). The smaller this value, the better the approximation to 
the solution of the equation.

This simple iterative method can be implemented using the M-file shown in Figure 8-1.
As an example we solve the following non-linear equation:
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x x- =-2 0.

In order to apply the fixed point algorithm we write the equation in the form x = g(x) as follows:

x g xx- =-2 ( ).

We will start by finding an approximate solution which will be the first term p
0
. To plot the x axis and the curve 

defined by the given equation on the same graph we use the following syntax (see Figure 8-2):
 
>> fplot ('[x-2^(-x), 0]',[0, 1])
 

Figure 8-1.  
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The graph shows that one solution is close to x = 0.6. We can take this value as the initial value. We choose p
0
 = 0.6. 

If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have defined 
the function g(x) in the M-file g1.m (see Figure 8-3).

Figure 8-2.  

Figure 8-3.  

We can now solve the equation using the MATLAB syntax:
 
>> [k, p] = fixedpoint('g1',0.6,0.0001,1000)
 
k =
 
    10
  
p =
 
    0.6412
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We obtain the solution x = 0.6412 at the 1000th iteration. To check if the solution is approximately correct, we 
must verify that g1(0.6412) is close to 0.6412.
 
>> g1 (0.6412)
 
ans =
 
    0.6412
 

Thus we observe that the solution is acceptable.

8.1.2 Newton’s Method for Solving the Equation f(x) = 0
Newton’s method (also called the Newton–Raphson method) for solving the equation f(x) = 0, under certain 
conditions on f, uses the iteration

x x f x f xr r r r+ = - ¢1 ( )/ ( )

for an initial value x
0
 close to a solution.

The M-file in Figure 8-4 shows a program which solves equations by Newton’s method to a given precision.

Figure 8-4.  

As an example we solve the following equation by Newton’s method:

x x x2 0 15 0- - + =sin( . ) .

The function f (x) is defined in the M-file f1.m (see Figure 8-5), and its derivative f'(x) is given in the M-file derf1.m 
(see Figure 8-6).



Chapter 8 ■ NumeriCal algorithms: equatioNs, Derivatives, iNtegrals aND DiffereNtial equatioNs

283

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax, 
starting with an initial estimate of 1.5:
 
>> [x,it]=newton('f1','derf1',1.5,0.0001)
 
x =
 
1.6101
  
it =
 
2
 

Figure 8-5.  

Figure 8-6.  
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>> [x,it]=newton('f1','derf1',1.5,0.000001)
x =
 
1.6100
 
it =
 
3
 

Thus we have obtained the solution x = 1.61 in just 2 iterations for a precision of 0.0001 and in just 3 iterations for 
a precision of 0.000001.

8.1.3 Schröder’s Method for Solving the Equation f(x)=0
Schröder's method, which is similar to Newton’s method, solves the equation f (x) = 0, under certain conditions on  
f, via the iteration

X X mf X f Xr r r r+ = - ¢1 ( )/ ( )

for an initial value x
0
 close to a solution, and where m is the order of multiplicity of the solution being sought.

The M-file shown in Figure 8-7 gives the function that solves equations by Schröder's method to a given precision.

Figure 8-7.  

8.2 Systems of Non-Linear Equations 
As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear 
equations using classical iterative numerical methods.

Among a diverse collection of existing methods we will consider the Seidel and Newton–Raphson methods.

8.2.1 The Seidel Method
The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single 
equations.

In the case of a system of two equations x = g
1
(x,y) and y = g

2
(x,y) the terms of the iteration are defined as:

P
k+1

= g
1
(p

k
,q

k
) and q

k+1
= g

2
(p

k
,q

k
).
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Similarly, in the case of a system of three equations x=g
1
(x,y,z),

y = g
2
(x,y,z) and z = g

3
(x,y,z) the terms of the iteration are defined as:

p
k
+

1
= g

1
(p

k
,q

k
,r

k
),  q

k
+

1
= g

2
(p

k
,q

k
,r

4
) and r

k
+

1
= g

3
(p

k
,q

k
,r

4
).

The M-file shown in Figure 8-8 gives a function which solves systems of equations using Seidel’s method up to a 
specified accuracy.

Figure 8-8.  

8.2.2 The Newton-Raphson Method
The Newton–Raphson method for solving systems of equations is a generalization of Newton’s method for single 
equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations F(X) = 0 is obtained 
by generating from an initial approximation P

0
 a sequence of approximations P

k
 which converges to the solution. 

Figure 8-9 shows the M-file containing the function which solves systems of equations using the Newton–Raphson 
method up to a specified degree of accuracy.
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As an example we solve the following system of equations by the Newton–Raphson method:

x x y

x y

2

2 2

2 0 5

4 4 0

- - = -

+ - =

.

taking as an initial approximation to the solution P = [2 3].
We start by defining the system F(X) = 0 and its Jacobian matrix JF according to the M-files F.m and JF.m shown in 

Figures 8-10 and 8-11.

Figure 8-9.  
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Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following 
MATLAB syntax:
 
>> [P,it,absoluteerror]=raphson('F','JF',[2 3],0.00001,0.00001,100)
 
P =
 
1.9007 0.3112
 
it =
 
6
 

Figure 8-10.  

Figure 8-11.  
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absoluteerror =
 
8. 8751e-006
 

The solution obtained in 6 iterations is x = 1.9007, y = 0.3112, with an absolute error of 8.8751e-006.

8.3 Interpolation Methods
There are many different methods available to find an interpolating polynomial that fits a given set of points in the 
best possible way.

Among the most common methods of interpolation, we have Lagrange polynomial interpolation, Newton 
polynomial interpolation and Chebyshev approximation.

8.3.1 Lagrange Polynomial Interpolation
The Lagrange interpolating polynomial which passes through the N+1 points (x

k
 y

k
), k= 0,1,…, N, is defined as follows:

P x y L xk N k
k

N

( ) ( ),=
=
å

0

where:

L x

x x

x x
N k

j
j
j k

N

k j
j
j k

N, ( )

( )

( )
.=

-

-

=
¹

=
¹

Õ

Õ

0

0

The algorithm for obtaining P and L is easily implemented by the M-file shown in Figure 8-12.
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As an example we find the Lagrange interpolating polynomial that passes through the points (2,3), (4,5), (6,5), 
(7,6), (8,8), (9,7).

We will simply use the following MATLAB syntax:
 
>> [F, L] = lagrange([2 4 6 7 8 9],[3 5 5 6 8 7])
 
C =
 
-0.0185 0.4857 -4.8125 22.2143 -46.6690 38.8000
 
L =
 
-0.0006 0.0202 -0.2708 1.7798 -5.7286 7.2000
0.0042 -0.1333 1.6458 -9.6667 26.3500 -25.2000
-0.0208 0.6250 -7.1458 38.3750 -94.8333 84.0000
0.0333 -0.9667 10.6667 -55.3333 132.8000 -115.2000
-0.0208 0.5833 -6.2292 31.4167 -73.7500 63.0000
0.0048 -0.1286 1.3333 -6.5714 15.1619 -12.8000
 

Figure 8-12.  
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We can obtain the symbolic form of the polynomial whose coefficients are given by the vector C by using the 
following MATLAB command:
 
>> pretty(poly2sym(C))
 
   31     5    1093731338075689      4   77       3      311     2   19601
- ----   x  + -----------------     x  - ----    x  +    ---    x  - --------    x + 194/5
  1680         2251799813685248          16              14          420 

8.3.2 Newton Polynomial Interpolation
The Newton interpolating polynomial that passes through the N+1 points (x

k
 y

k
) = (x

k
, f(x

k
)), k= 0,1,…, N, is defined 

as follows:

P x d d x x d x x x x d x x x xN N( ) ( ) ( )( ) ( )( ) (, , , ,= + - + - - + + - -0 0 1 1 0 2 2 0 1 0 1  xx xN- -1)

where:

d y d
d d

x dk j k k j
k j k j

k k
, ,

, , .= =
-

-
- - -

-

1 1 1

1

Obtaining the coefficients C of the interpolating polynomial and the divided difference table D is easily done via 
the M-file shown in Figure 8-13.

Figure 8-13.  
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As an example we apply Newton’s method to the same interpolation problem solved by the Lagrange method in 
the previous section. We will use the following MATLAB syntax:
 
>> [C, D] = pnewton([2 4 6 7 8 9],[3 5 5 6 8 7])

C =

-0.0185 0.4857 - 4.8125 22.2143 - 46.6690 38.8000

D =

3.0000         0         0         0         0         0
5.0000    1.0000         0         0         0         0
5.0000         0       - 0.2500    0         0         0
6.0000    1.0000         0.3333    0.1167    0         0
8.0000    2.0000         0.5000    0.0417  - 0.0125    0
7.0000  - 1.0000       - 1.5000  - 0.6667  - 0.1417  - 0.0185
 

The interpolating polynomial in symbolic form is calculated as follows:
 
>> pretty(poly2sym(C))

    31     5  17   4   77   3   311    2   19601
- ----   x  + --  x  - --  x  + ---   x  - -----    x + 194/5
  1680        35       16       14          420
 

Observe that the results obtained by both interpolation methods are similar.

8.4 Numerical Derivation Methods
There are various different techniques available for numerical derivation. These are of great importance when 
developing algorithms to solve problems involving ordinary or partial differential equations.

Among the most common methods for numerical derivation are derivation using limits, derivation using 
extrapolation and derivation using interpolation on N-1 nodes.

8.4.1 Numerical Derivation via Limits
This method consists in building a sequence of numerical approximations to f' (x) via the generated sequence:

¢ » =
+ - -- -

-f x D
f x h f x h

hk

k k

k
( )

( ) ( )

( )
.

10 10

2 10

The iterations continue until |D
n+1

−D
n
|³|D

n
−D

n-1
| or |D

n
−D

n−1
|< tolerance. This approach approximates f'(x) by D

n
.

The algorithm to obtain the derivative D is easily implemented by the M-file shown in Figure 8-14.
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As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

at the point 1 5

2

- .

To begin we define the function f in an M-file named funcion (see Figure 8-15). (Note: we use funcion rather than 
function here since the latter is a protected term in MATLAB.)

Figure 8-14.  
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The derivative is then given by the following MATLAB command:
 
>> [L, n] = derivedlim ('funcion', (1-sqrt (5)) / 2,0.01)
 
L =

1.0000 - 0.7448 0
0.1000 - 2.6045 1.8598
0.0100 - 2.6122 0.0077
0.0010 - 2.6122 0.0000
0.0001 - 2.6122 0.0000
 
n =

4
 

Thus we see that the approximate derivative is – 2.6122, which can be checked as follows:
 
>> f = diff ('sin (cos (x))')
 
f =
 
cos (cos (x)) * sin (x) / x ^ 2
 
>> subs (f, (1-sqrt (5)) / 2).
 
ans =
 
   -2.6122

Figure 8-15.  
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8.4.2 Richardson’s Extrapolation Method
This method involves building numerical approximations to f'(x) via the construction of a table of values D(j, k) with 
k£j that yield a final solution to the derivative f' (x) = D(n, n). The values D(j, k) form a lower triangular matrix, the first 
column of which is defined as:

D j
f x h f x h

h

j j

j
( , )

( ) ( )
1

2 2

2 1
=

+ - -- -

- +

and the remaining elements are defined by:

D j k D j k
D j k D j k

k j
k

( , ) ( , )
( , ) ( , )

( )= - +
- - - -

-
£ £1

1 1 1

4 1
2

The corresponding algorithm for D is implemented by the M-file shown in Figure 8-16.

Figure 8-16.  

As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
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at the point 1 5

2

- .
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As the M-file that defines the function f has already been defined in the previous section, we can find the 
approximate derivative using the MATLAB syntax:
 
>> [D, relativeerror, absoluteerror, n] = richardson ('funcion', (1-sqrt(5))/2,0.001,0.001)
 
D =
 
   -0.7448   0        0        0        0        0
   -1.1335 - 1.2631   0        0        0        0
   -2.3716 - 2.7843 - 2.8857   0        0        0
   -2.5947 - 2.6691 - 2.6614 - 2.6578   0        0
   -2.6107 - 2.6160 - 2.6125 - 2.6117 - 2.6115   0
   -2.6120 - 2.6124 - 2.6122 - 2.6122 - 2.6122 - 2.6122
 
relativeerror =
 
  6. 9003e-004
 
absoluteerror =
 
  2. 6419e-004
 
n =

6
 

Thus we get the same result as before when we used the limit method.

8.4.3 Derivation Using Interpolation (n + 1 Nodes)
This method consists in building the Newton interpolating polynomial of degree N:

P x a a x x a x x x x a x x x x x xN N( ) ( ) ( )( ) ( )( ) ( )= + - + - - + + - - - -0 1 0 2 0 1 0 1 1 

and numerically approximating f'(x
0
) by P'(x

0
).

The algorithm for the derivative D is easily implemented by the M-file shown in Figure 8-17.
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As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

at the point 1 5

2

- .

As the M-file that defines the function f has already been constructed in the previous section, we can calculate the 
approximate derivative using the MATLAB command:
 
>> [A, df] = nodes([2 4 6 7 8 9],[3 5 5 6 8 7])
 
A =
 
3.0000  1.0000  - 0.2500  0.1167  - 0.0125  - 0.0185
 
df =

-1.4952
 

Figure 8-17.  
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8.5 Numerical Integration Methods 
Given the difficulty of obtaining an exact primitive for most functions, numerical integration methods are especially 
important. There are many different ways to numerically approximate definite integrals, among them the trapezium 
method, Simpson’s method and Romberg’s method (all implemented in MATLAB’s Basic module).

8.5.1 The Trapezium Method
The trapezium method for numerical integration has two variants: the trapezoidal rule and the recursive  
trapezoidal rule.

The trapezoidal rule approximates the definite integral of the function f(x) between a and b as follows:

f x dx
h

f a f b h f x
a

b

k
k

M

( ) ( ( ) ( )) ( )» + +ò å
=

-

2 1

1

calculating f (x) at equidistant points x
k
  = a+kh, k = 0,1,…, M where x

0
= a and x

M
 = b.

The trapezoidal rule is implemented by the M-file shown in Figure 8-18.

Figure 8-18.  

The recursive trapezoidal rule considers the points x
k
 = a+kh, k = 0,1,…, M, where x

0
 = a and x

M
 = b, dividing the 

interval [a, b] into 2J = M subintervals of the same size h = (b-a)/2J. We then consider the following recursive formula:

T
h

f a f b( ) ( ( ) ( ))0
2

= +

T J
T J

h f x k
k

M

( )
( )

( )=
-

+ -
=
å1

2 2 1
1
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and the integral of the function f(x) between a and b can be calculated as:

f x dx
h

f x f xk
k

ka

b
J

( ) ( ( ) ( ))» +
=

-åò 2 1

2

1

using the trapezoidal rule as the number of sub-intervals [a, b] increases, taking at the J-th iteration a set of 2J+ 1 
equally spaced points.

The recursive trapezoidal rule is implemented via the M-file shown in Figure 8-19.

Figure 8-19.  

As an example, we calculate the following integral using 100 iterations of the recursive trapezoidal rule:

1
1

10
20

2

x
dx

+
ò .

We start by defining the integrand by means of the M-file integrand1.m shown in Figure 8-20.
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We then calculate the requested integral as follows:
 
>> recursivetrapezoidal('integrand1',0,2,14)
 
ans =
 
Columns 1 through 4
 
10.24390243902439   6.03104212860310   4.65685845031979   4.47367657743630
 
Columns 5 through 8
 
4.47109102437123 4.47132194954670 4.47138003053334 4.47139455324593
 
Columns 9 through 12
 
4.47139818407829 4.47139909179602 4.47139931872606 4.47139937545860
 
Columns 13 through 15
 
4.47139938964175 4.47139939318754 4.47139939407398
 

This shows that after 14 iterations an accurate value for the integral is 4.47139939407398.
We calculate the same integral using the trapezoidal rule, using M = 14, using the following MATLAB command:

 
>> trapezoidalrule('integrand1',0,2,14)
 
ans =

4.47100414648074
 

The result is now the less accurate 4.47100414648074.

Figure 8-20.  
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8.5.2 Simpson’s Method
Simpson’s method for numerical integration is generally considered in two variants: the simple Simpson’s rule and 
the composite Simpson's rule.

Simpson’s simple approximation of the definite integral of the function f(x) between the points a and b is the 
following:

f x dx
h

f a f b f c c
a b

a

b
( ) ( ( ) ( ) ( ))» + + =

+
ò 3

4
2

This can be implemented using the M-file shown in Figure 8-21.

Figure 8-21.  

The composite Simpson's rule approximates the definite integral of the function f (x) between points a and b as 
follows:

f x dx
h

f a f b
h

f x
h

f xk
k

M
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32
1
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1

calculating f(x) at equidistant points x
k
 = a+kh, k = 0, 1,…, 2

M
, where x

0
= a and x

2M
 = b.

The composite Simpson's rule is implemented using the M-file shown in Figure 8-22.
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As an example, we calculate the following integral by the composite Simpson's rule taking M = 14:

1
1

10
20

2

x
dx

+
ò .

We use the following syntax:
 
>> compositesimpson('integrand1',0,2,14)
 
ans =
 
   4.47139628125498
 

Next we calculate the same integral using the simple Simpson’s rule:
 
>> Z=simplesimpson('integrand2',0,2,0.0001)
 
Z =
 
Columns 1 through 4
 
0 2.00000000000000 4.62675535846268 4.62675535846268
 

Figure 8-22.  
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Columns 5 through 6
 
0.00010000000000 0.00010000000000
 

As we see, the simple Simpson’s rule is less accurate than the composite rule.
In this case, we have previously defined the integrand in the M-file named integrand2.m (see Figure 8-23).

Figure 8-23.  

8.6 Ordinary Differential Equations
Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different 
methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include, 
among others, Euler’s method, Heun’s method, the Taylor series method, the Runge–Kutta method (implemented in 
MATLAB’s Basic module), the Adams–Bashforth–Moulton method, Milne’s method and Hamming’s method.

8.6.1 Euler’s Method
Suppose we want to solve the differential equation y' = f (t, y),  y(a)=y

0
, on the interval [a, b]. We divide the interval [a, b] 

into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k = 0,1,…, M, h = (b-a) /M. Euler’s 

method then finds the solution of the differential equation iteratively by calculating y
k+1

 = y
k
+hf (t

k
, y

k
),  k = 0,1, …, M-1.

Euler’s method is implemented using the M-file shown in Figure 8-24.
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8.6.2 Heun’s Method
Suppose we want to solve the differential equation y' = f (t, y), y(a) = y

0
, on the interval [a, b]. We divide the interval 

[a, b] into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k = 0,1,…, M, h = (b-a) /M. 

Heun’s method then finds the solution of the differential equation iteratively by calculating y
k + 1

 = y
k
+ h(f (t

k
, y

k
) + f (t

k + 1
, 

y
k
+ f (t

k
, y

k
))) / 2, k = 0,1,…, M-1.

Heun’s method is implemented using the M-file shown in Figure 8-25.

Figure 8-24.  
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8.6.3 The Taylor Series Method
Suppose we want to solve the differential equation y' = f (t, y), y(a) = y

0
, on the interval [a, b]. We divide the interval 

[a, b] into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k = 0,1,…, M, h = (b-a) /M. 

The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by 
evaluating y', y", y"' and y"" to give the 4th order Taylor series for y at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 8-26.

Figure 8-25.  
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As an example we solve the differential equation y'(t) = (t - y) / 2 on the interval [0,3], with y(0) = 1, using Euler’s 
method, Heun’s method and by the Taylor series method.

We will begin by defining the function f (t, y) via the M-file shown in Figure 8-27.

Figure 8-26.  

Figure 8-27.  

The solution of the equation using Euler’s method in 100 steps is calculated as follows:
 
>> E = euler('dif1',0,3,1,100)
   
E =
 
0 1.00000000000000
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0.03000000000000 0.98500000000000
0.06000000000000 0.97067500000000
0.09000000000000 0.95701487500000
0.12000000000000 0.94400965187500
0.15000000000000 0.93164950709688
0.18000000000000 0.91992476449042
.
.
.
2.85000000000000 1.56377799005910
2.88000000000000 1.58307132020821
2.91000000000000 1.60252525040509
2.94000000000000 1.62213737164901
2.97000000000000 1.64190531107428
3.00000000000000 1.66182673140816
 

This solution can be graphed as follows (see Figure 8-28):
 
>> plot (E (:,2))
 

Figure 8-28.  
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The solution of the equation by Heun’s method in 100 steps is calculated as follows:
 
>> H = heun('dif1',0,3,1,100)

H =

0 1.00000000000000
0.03000000000000 0.98533750000000
0.06000000000000 0.97133991296875
0.09000000000000 0.95799734001443
0.12000000000000 0.94530002961496
.
.
.
2.88000000000000 1.59082209379464
2.91000000000000 1.61023972987327
2.94000000000000 1.62981491089478
2.97000000000000 1.64954529140884
3.00000000000000 1.66942856088299
 

The solution using the Taylor series method requires the previously defined function df = [y' y'' y''' y''''] using the 
M-file shown in Figure 8-29.

Figure 8-29.  

The differential equation is solved by the Taylor series method via the command:
 
>> T = taylor('df',0,3,1,100)
 
T =

0 1.00000000000000
0.03000000000000 0.98533581882813
0.06000000000000 0.97133660068283
0.09000000000000 0.95799244555443
0.12000000000000 0.94529360082516
.
.
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.
2.88000000000000 1.59078327648360
2.91000000000000 1.61020109213866
2.94000000000000 1.62977645599332
2.97000000000000 1.64950702246046
3.00000000000000 1.66939048087422
 

eXerCISe 8-1

solve the following non-linear equation using the fixed point iterative method:
x x= cos(sin( )).

We will start by finding an approximate solution to the equation, which we will use as the initial value p0. 
to do this we show the x axis and the curve y = x-cos(sin(x)) on the same graph (figure 8-30) by using the 
following command:
 
>> fplot ([x-cos (sin (x)), 0], [- 2, 2]) 

Figure 8-30.  

the graph indicates that there is a solution close to x = 1, which is the value that we shall take as our initial 
approximation to the solution, i.e. p0 = 1. if we consider a tolerance of 0.0001 for a maximum number of 100 
iterations, we can solve the problem once we have defined the function g(x) = cos(sin(x)) via the m-file g91.m 
shown in figure 8-31.
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We can now solve the equation using the matlaB command:
 
>> [k, p, absoluteerror, P]=fixedpoint('g91',1,0.0001,1000)
 
k =
 
    13
 
p =
 
    0.7682
 
absoluteerror =
 
  6. 3361e-005
 
P =
 
1.0000
0.6664
0.8150
0.7467
0.7781
0.7636
0.7703
0.7672
0.7686
0.7680
0.7683
0.7681
0.7682
 
the solution is x = 0.7682, which has been found in 13 iterations with an absolute error of 6.3361e- 005. thus, 
the convergence to the solution is particularly fast.

Figure 8-31.  
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eXerCISe 8-2

using Newton’s method calculate the root of the equation x3 – 10x2 + 29x – 20 = 0 close to the point x = 7 with 
an accuracy of 0.00005. repeat the same calculation but with an accuracy of 0.0005.

We define the function f(x) =x3 – 10x2 + 29x – 20 and its derivative via the m-files named f302.m and f303.m 
shown in figures 8-32 and 8-33.

Figure 8-32.  

Figure 8-33.  

to run the program that solves the equation, type:
 
>> [x, it]=newton('f302','f303',7,.00005)
 
x =
 
5.0000
 
it =
 
6
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in 6 iterations and with an accuracy of 0.00005 the solution x = 5 has been obtained. in 5 iterations and with an 
accuracy of 0.0005 we get the solution x = 5.0002:
 
>> [x, it] = newton('f302','f303',7,.0005)
x =
 
5.0002
 
it =
 
5
 

eXerCISe 8-3

Write a program that calculates a root with multiplicity 2 of the equation (e-x -x)2 = 0 close to the point x = -2 to 
an accuracy of 0.00005.

We define the function f (x)=(ex - x)2 and its derivative via the m-files f304.m and f305.m shown in figures 8-34 
and 8-35:

Figure 8-34.  
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We solve the equation using schröder’s method. to run the program we enter the command:
 
>> [x,it]=schroder('f304','f305',2,-2,.00005)
 
x =
 
0.5671
 
it =
 
5
 
in 5 iterations we have found the solution x = 0.56715.

eXerCISe 8-4

Approximate the derivative of the function

f x
x

x
( ) tan cos

sin( )
=

+
+

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷

5

1 2

at the point 1 5

3

- .

to begin we define the function f in the m-file funcion1.m shown in figure 8-36.

Figure 8-35.  
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the derivative can be found using the method of numerical derivation with an accuracy of 0.0001 via the 
following matlaB command:
 
>> [L, n] = derivedlim ('funcion1', (1 + sqrt (5)) / 3,0.0001)

L =
 
1.00000000000000 0.94450896913313 0
0.10000000000000 1.22912035588668 0.28461138675355
0.01000000000000 1.22860294102802 0.00051741485866
0.00100000000000 1.22859747858110 0.00000546244691
0.00010000000000 1.22859742392997 0.00000005465113
 
n =
 
4
 
We see that the value of the derivative is approximated by 1.22859742392997.

using richardson’s method, the derivative is calculated as follows:
 
>> [D, absoluteerror, relativeerror, n] = ('funcion1' richardson,(1+sqrt(5))/3,0.0001,0.0001)
 
D =
 
Columns 1 through 4
 
   0.94450896913313                  0                                0                                
0
   1.22047776163545   1.31246735913623                  0                                0
   1.23085024935646   1.23430774526347   1.22909710433862                  0
   1.22938849854454   1.22890124827389   1.22854081514126   1.22853198515400
   1.22880865382036   1.22861537224563   1.22859631384374   1.22859719477553
 

Figure 8-36.  
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  Column 5
 
                  0
                  0
                  0
                  0
   1.22859745049954
 
absoluteerror =
 
6. 546534553897310e-005
 
relativeerror =
 
    5. 328603742973844e-005
 
n =
     5
 

eXerCISe 8-5

Approximate the following integral:

tan cos
sin( )

.
5

1 21

2

3
+
+

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷ò

x

x
dx

p

We can use the composite simpson’s rule with m=100 using the following command:
 
>> s = compositesimpson('function1',1,2*pi/3,100)
 
s =
 
0.68600990924332
 

if we use the trapezoidal rule instead, we get the following result:
 
>> s = trapezoidalrule('function1',1,2*pi/3,100)
 
s =
 
0.68600381840334
 



Chapter 8 ■ NumeriCal algorithms: equatioNs, Derivatives, iNtegrals aND DiffereNtial equatioNs

315

eXerCISe 8-6

Find an approximate solution of the following differential equation in the interval [0, 0.8]:

¢ = + =y t y y2 2 0 1( ) .

We start by defining the function f (t, y ) via the m-file in figure 8-37.

We then solve the differential equation by euler’s method, dividing the interval into 20 subintervals using the 
following command:
 
>> E = euler('dif2',0,0.8,1,20)
 
E =
0                1.00000000000000
0.04000000000000 1.04000000000000
0.08000000000000 1.08332800000000
0.12000000000000 1.13052798222336
0.16000000000000 1.18222772296696
0.20000000000000 1.23915821852503
0.24000000000000 1.30217874214655
0.28000000000000 1.37230952120649
0.32000000000000 1.45077485808625
0.36000000000000 1.53906076564045
0.40000000000000 1.63899308725380
0.44000000000000 1.75284502085643
0.48000000000000 1.88348764754208
0.52000000000000 2.03460467627982
0.56000000000000 2.21100532382941
0.60000000000000 2.41909110550949
0.64000000000000 2.66757117657970
0.68000000000000 2.96859261586445
0.72000000000000 3.33959030062305
0.76000000000000 3.80644083566367
0.80000000000000 4.40910450907999
 

Figure 8-37.  
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the solution can be graphed as follows (see figure 8-38): 

>> plot (E (:,2)) 

Figure 8-38.  
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