

MATLAB®
Programming
for Engineers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MATLAB®
Programming
for Engineers
Fifth Edition

Stephen J. Chapman
BAE Systems Australia

A u s t r a l i a • B r a z i l • M e x i c o • S i n g a p o r e • U n i t e d K i n g d o m • U n i t e d S t a t e s

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2016, 2008 Cengage Learning

WCN: 0 - -

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form
or by any means graphic, electronic, or mechanical, including but
not limited to photocopying, recording, scanning, digitizing, taping,
Web distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written permis-
sion of the publisher.

MATLAB Programming for Engineers,
Fifth Edition
Stephen J. Chapman

Product Director, Global Engineering:
Timothy L. Anderson

Senior Content Developer: Mona Zeftel

Media Assistant: Ashley Kaupert

Product Assistant: Alexander Sham

Product Assistant: Teresa Versaggi

Marketing Manager: Kristin Stine

Director, Content and Media Production:
Sharon L. Smith

Senior Content Project Manager:
Colleen A. Farmer

Production Service: RPK Editorial Services, Inc.

Copyeditor: Harlan James

Proofreader: Martha McMaster

Indexer: Shelly Gerger-Knechtl

Compositor: MPS Limited

Senior Art Director: Michelle Kunkler

Internal Designer: Carmela Pereira

Cover Designer: Andrew Adams

Cover Image: © Polushkina Svetlana/
Dreamstime.com

Intellectual Property

 Analyst: Christine Myaskovsky

 Project Manager: Sarah Shainwald

Text and Image Permissions Researcher:
Kristiina Paul

Senior Manufacturing Planner: Doug Wilke

Printed in the United States of America
Print Number: 01 Print Year: 2015

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2015937331

ISBN: 978-1-111-57671-4

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in
more than 125 countries around the world. Find your local representative
at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

MATLAB is a registered trademark of The MathWorks, Inc.,
3 Apple Hill Road, Natick, MA.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2032002

This book is dedicated with love to my youngest daughter Devorah.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vii

Preface

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language and provides a
very extensive library of pre-defined functions to make technical programming tasks
easier and more efficient. This extremely wide variety of functions makes it much
easier to solve technical problems in MATLAB than in other languages such as
Fortran or C. This book introduces the MATLAB language as it is implemented in
version R2014b, and shows how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language showing
students how to write clean, efficient, and documented programs. It makes no
pretense at being a complete description of all of MATLAB’s hundreds of functions.
Instead, it teaches the student how to use MATLAB as a computer language and
how to locate any desired function with MATLAB’s extensive on-line help facilities.

The first eight chapters of the text are designed to serve as the text for an
“Introduction to Programming/ Problem Solving” course for freshman engineer-
ing students. This material should fit comfortably into a nine-week, three-hour
course. The remaining chapters cover advanced topics such as I/O, Object-Oriented
Programming, and Graphical User Interfaces. These chapters may be covered in a
longer course or used as a reference by engineering students or practicing engineers
who use MATLAB as a part of their coursework or employment.

Changes in the Fifth Edition

The fifth edition of this book is specifically devoted to MATLAB R2014b. Release
2014b is the first edition of MATLAB to enable the new H2 Graphics System, which
produces higher-quality outputs. Graphic components are now MATLAB objects with

vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii | Preface

handles returning properties. In addition, the MATLAB implementation of objects
and object-oriented programming has matured since the last edition of this book and
deserves to be covered in detail. This book has been expanded to cover MATLAB
classes and objects, which work very closely with the new handle graphics system.

The major changes in this edition of the book include:

■■ Reduced chapter size in earlier chapters. Branches and loops now each have a
chapter to themselves and the discussion of functions is split over two chapters.
This change helps students to absorb the material in more bite-sized chunks.

■■ A new Chapter 3 is totally dedicated to 2D plots, collecting all of the plotting
information in a single place.

■■ Chapter 8 has more extensive coverage of 3D plots and Chapter 13 now has a
section devoted to animations.

■■ Chapter 12 is a totally new discussion of MATLAB classes and object-
oriented programming.

■■ Chapter 13 has been rewritten to cover the new H2 handle graphics, where
handles are now MATLAB objects instead of numbers.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are:

1. Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line or it can be used to execute
large pre-written programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for
educational use and for the rapid prototyping of new programs.

Many program development tools are provided to make the program easy
to use. They include an integrated editor/debugger, online documentation
and manuals, a workspace browser, and extensive demos.

2. Platform Independence
MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 7/8, Linux, and Macintosh. Programs
written on any platform will run on all of the other platforms, and data files
written on any platform may be read transparently on any other platform. As
a result, programs written in MATLAB can migrate to new platforms when
the needs of the user change and can easily be shared.

3. Pre-defined Functions
MATLAB comes complete with an extensive library of pre-defined functions
that provide tested and pre-packaged solutions to many basic technical tasks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface | ix

For example, suppose that you are writing a program that must calculate the
statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, etc. These and hun-
dreds of other functions are built right into the MATLAB language, making
your job much easier.

In addition to the large library of functions built into the basic MATLAB
language, there are many special-purpose toolboxes available to help solve
complex problems in specific areas. For example, you can buy standard
toolboxes to solve problems in Signal Processing, Control Systems, Com-
munications, Image Processing, and Neural Networks, among many others.

4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plotting and
imaging commands. The plots and images can be displayed on any graphical
output device supported by the computer on which MATLAB is running. This
capability makes MATLAB an outstanding tool for visualizing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a programmers to interactively construct
a Graphical User Interface (GUI) for their programs. With this capability,
programmers can design sophisticated data analysis programs that can be
operated by relatively inexperienced users.

Features of this Book

Many features of this book are designed to emphasize the proper way to write reliable
MATLAB programs. These features should serve a student well as he or she is first
learning MATLAB, but should also be useful to the practitioner on the job. They include:

1. Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 4 and
then uses it consistently throughout the rest of the book. This methodology
encourages a student to think about the proper design of a program before
beginning to code. The book emphasizes the importance of clearly defining
the problem to be solved and the required inputs and outputs before any
other work is begun. Once the problem is properly defined, the book teaches
students to employ stepwise refinement to break tasks down into successively
smaller sub-tasks, and to implement the subtasks as separate subroutines or
functions. Finally, students are taught the importance of testing at all stages
of the process, both unit testing of the component routines and exhaustive
testing of the final product.

The formal design process taught by the book may be summarized
as follows:

1. Clearly state the problem that you are trying to solve.
2. Define the inputs required by the program and the outputs to be pro-

duced by the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

x | Preface

3. Describe the algorithm that you intend to implement in the program.
This step involves top-down design and stepwise decomposition
using pseudocode or flow charts.

4. Turn the algorithm into MATLAB statements.
5. Test the MATLAB program. This step includes unit testing of specific

functions as well as exhaustive testing of the final program with many
different data sets.

2. Emphasis on Functions
The book emphasizes the use of functions to logically decompose tasks into
smaller subtasks. It teaches the advantages of functions for data hiding. It
also emphasizes the importance of unit testing functions before they are
combined into the final program. In addition, students learn about the com-
mon mistakes made with functions and how to avoid them.

3. Emphasis on MATLAB Tools
The book teaches the proper use of MATLAB’s built-in tools to make
programming and debugging easier. The tools covered include the Editor/
Debugger, Workspace Browser, Help Browser, and GUI design tools.

4. Good Programming Practice Boxes
These boxes highlight good programming practices as they are introduced
for the student's convenience. In addition, the good programming practices
introduced in a chapter are summarized at the end of each chapter. An exam-
ple of a Good Programming Practice Box is shown below.

Good Programming Practice

Always indent the body of an if construct by 2 or more spaces to improve the
readability of the code.

5. Programming Pitfalls Boxes
These boxes highlight common errors so that they can be avoided. An
example Programming Pitfalls Box is shown below.

Programming Pitfalls

Make sure that your variable names are unique in the first 31 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface | xi

6. Emphasis on Data Structures
Chapter 10 contains a detailed discussion of MATLAB data structures,
including sparse arrays, cell arrays, and structure arrays. The proper use of
these data structures is illustrated in the chapters on Handle Graphics and
Graphical User Interfaces.

7. Emphasis on Object-Oriented MATLAB
Chapter 12 includes an introduction to object-oriented programming (OOP)
and describes the MATLAB implementation of OOP in detail.

Pedagogical Features

The first eight chapters of this book are specifically designed to be used in a freshman
“Introduction to Program / Problem Solving” course. It is possible to cover this mate-
rial comfortably in a nine-week, three-hour per week course. If there is insufficient
time to cover all of the material in a particular engineering program, Chapter 8 may be
deleted as the remaining material still teaches the fundamentals of programming and
using MATLAB to solve problems. This feature should appeal to harassed engineering
educators trying to cram ever more material into a finite curriculum.

The remaining chapters cover advanced material that is useful to the engineer
and engineering students as they progress in their careers. This material includes
advanced I/O, object-oriented programming, and the design of Graphical User Inter-
faces for programs.

The book includes several features designed to aid student comprehension. A
total of 17 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 180 end-of-chapter exercises.
Answers to all exercises are included in the Instructor’s Manual. Good program-
ming practices are highlighted in all chapters with special Good Programming
Practice boxes and common errors are highlighted in Programming Pitfalls boxes.
End-of-chapter materials include Summaries of Good Programming Practice and
Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Manual, containing the solutions to
all end-of-chapter exercises. The source code for all examples in the book is avail-
able from the book’s web site, and the source code for all solutions in the Instructor’s
Manual is available separately to instructors.

MindTap Online Course

This textbook is also available online through Cengage Learning’s MindTap, a
personalized learning program that can be purchased as an addition to the book.
Students who purchase the MindTap have access to the book’s electronic Reader and
are able to complete homework and assessment material online, on their desktops,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xii | Preface

laptops, or iPads. Instructors who use a Learning Management System (such as
Blackboard or Moodle) for tracking course content, assignments, and grading, can
seamlessly access the MindTap suite of content and assessments for this course.

With MindTap, instructors can:

■■ Personalize the Learning Path to match the course syllabus by rearranging
content or appending original material to the online content

■■ Connect a Learning Management System portal to the online course and Reader
■■ Customize online assessments and assignments
■■ Track student progress and comprehension
■■ Promote student engagement through interactivity and exercises

Additionally, students can listen to the text through ReadSpeaker, take notes, study
from or create their own Flashcards, highlight content for easy reference, and check
their understanding of the material through practice quizzes and gradable homework.

A Final Note to the User

No matter how hard I try to proofread a document like this book, it is inevitable that
some typographical errors slip through and appear in print. If you should spot any
such errors, please drop me a note via the publisher, and I will do my best to get
them eliminated from subsequent printings and editions. Thank you very much for
your help in this matter.

I will maintain a complete list of errata and corrections at the book’s web site,
which is available through www.cengage.com. Please check that site for any updates
and /or corrections.

Acknowledgments

I would like to thank all my friends at Cengage Learning for the support they have
given me in getting this book to market.

I would like to thank these reviewers who offered their helpful suggestions for
this edition:

David Eromon Georgia Southern University
Arlene Guest Naval Postgraduate School
Mary M. Hofle Idaho State University
Mark Hutchenreuther California Polytechnic State University
Mani Mina Iowa State Univesity

In addition, I would like to thank my wife, Rosa, and our children, Avi, David,
Rachel, Aaron, Sarah, Naomi, Shira, and Devorah for their help and encouragement.

Stephen J. Chapman
Melbourne, Australia

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiii

Contents

Chapter 1 Introduction to MATLAB 1

1.1 The Advantages of MATLAB 2
1.2 Disadvantages of MATLAB 3
1.3 The MATLAB Environment 4

1.3.1 The MATLAB Desktop 4
1.3.2 The Command Window 6
1.3.3 The Toolstrip 7
1.3.4 The Command History Window 8
1.3.5 The Document Window 8
1.3.6 Figure Windows 11
1.3.7 Docking and Undocking Windows 12
1.3.8 The MATLAB Workspace 12
1.3.9 The Workspace Browser 14
1.3.10 The Current Folder Browser 15
1.3.11 Getting Help 16
1.3.12 A Few Important Commands 18
1.3.13 The MATLAB Search Path 19

1.4 Using MATLAB as a Calculator 21
1.5 Summary 23

1.5.1 MATLAB Summary 23
1.6 Exercises 24

Chapter 2 MATLAB Basics 27

2.1 Variables and Arrays 27
2.2 Creating and Initializing Variables in MATLAB 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiv | Contents

2.2.1 Initializing Variables in Assignment Statements 31
2.2.2 Initializing with Shortcut Expressions 34
2.2.3 Initializing with Built-in Functions 35
2.2.4 Initializing Variables with Keyboard Input 35

2.3 Multidimensional Arrays 37
2.3.1 Storing Multidimensional Arrays in Memory 38
2.3.2 Accessing Multidimensional Arrays with One Dimension 39

2.4 Subarrays 40
2.4.1 The end Function 41
2.4.2 Using Subarrays on the Left-hand Side of an Assignment

Statement 41
2.4.3 Assigning a Scalar to a Subarray 43

2.5 Special Values 43
2.6 Displaying Output Data 45

2.6.1 Changing the Default Format 45
2.6.2 The disp Function 47
2.6.3 Formatted Output with the fprintf Function 47

2.7 Data Files 49
2.8 Scalar and Array Operations 51

2.8.1 Scalar Operations 52
2.8.2 Array and Matrix Operations 52

2.9 Hierarchy of Operations 56
2.10 Built-in MATLAB Functions 58

2.10.1 Optional Results 59
2.10.2 Using MATLAB Functions with Array Inputs 59
2.10.3 Common MATLAB Functions 59

2.11 Introduction to Plotting 61
2.11.1 Using Simple xy Plots 61
2.11.2 Printing a Plot 62
2.11.3 Exporting a Plot as a Graphical Image 63
2.11.4 Multiple Plots 65
2.11.5 Line Color, Line Style, Marker Style, and Legends 66
2.11.6 Logarithmic Scales 69

2.12 Examples 70
2.13 Debugging MATLAB Programs 77
2.14 Summary 79

2.14.1 Summary of Good Programming Practice 80
2.14.2 MATLAB Summary 80

2.15 Exercises 83

Chapter 3 Two-Dimensional Plots 91

3.1 Additional Plotting Features for Two-Dimensional Plots 91
3.1.1 Logarithmic Scales 91
3.1.2 Controlling x- and y-axis Plotting Limits 95

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents | xv

3.1.3 Plotting Multiple Plots on the Same Axes 98
3.1.4 Creating Multiple Figures 99
3.1.5 Subplots 99
3.1.6 Controlling the Spacing Between Points on a Plot 101
3.1.7 Enhanced Control of Plotted Lines 105
3.1.8 Enhanced Control of Text Strings 106

3.2 Polar Plots 109
3.3 Annotating and Saving Plots 111
3.4 Additional Types of Two-Dimensional Plots 114
3.5 Using the plot Function with Two-Dimensional Arrays 119
3.6 Summary 121

3.6.1 Summary of Good Programming Practice 122
3.6.2 MATLAB Summary 122

3.7 Exercises 123

Chapter 4 Branching Statements and Program Design 127

4.1 Introduction to Top-Down Design Techniques 127
4.2 Use of Pseudocode 131
4.3 The Logical Data Type 131

4.3.1 Relational and Logic Operators 132
4.3.2 Relational Operators 132
4.3.3 A Caution About the == and ~= Operators 134
4.3.4 Logic Operators 135
4.3.5 Logical Functions 139

4.4 Branches 141
4.4.1 The if Construct 141
4.4.2 Examples Using if Constructs 143
4.4.3 Notes Concerning the Use of if Constructs 149
4.4.4 The switch Construct 152
4.4.5 The try/catch Construct 153

4.5 More on Debugging MATLAB Programs 161
4.6 Summary 168

4.6.1 Summary of Good Programming Practice 168
4.6.2 MATLAB Summary 169

4.7 Exercises 169

Chapter 5 Loops and Vectorization 175

5.1 The while Loop 175
5.2 The for Loop 181

5.2.1 Details of Operation 188
5.2.2 Vectorization: A Faster Alternative to Loops 189
5.2.3 The MATLAB Just-In-Time (JIT) Compiler 190

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xvi | Contents

5.2.4 The break and continue Statements 193
5.2.5 Nesting Loops 195

5.3 Logical Arrays and Vectorization 197
5.3.1 Creating the Equivalent of if/else Constructs with

Logical Arrays 198
5.4 The MATLAB Profiler 199
5.5 Additional Examples 202
5.6 The textread Function 216
5.7 Summary 218

5.7.1 Summary of Good Programming Practice 219
5.7.2 MATLAB Summary 219

5.8 Exercises 220

Chapter 6 Basic User -Defined Functions 229

6.1 Introduction to MATLAB Functions 230
6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme 236
6.3 Optional Arguments 246
6.4 Sharing Data Using Global Memory 252
6.5 Preserving Data Between Calls to a Function 259
6.6 Built-in MATLAB Functions: Sorting Functions 264
6.7 Built-in MATLAB Functions: Random Number Functions 266
6.8 Summary 266

6.8.1 Summary of Good Programming Practice 267
6.8.2 MATLAB Summary 267

6.9 Exercises 268

Chapter 7 Advanced Features of User-Defined Functions 277

7.1 Function Functions 277
7.2 Local Functions, Private Functions, and Nested Functions 282

7.2.1 Local Functions 282
7.2.2 Private Functions 283
7.2.3 Nested Functions 284
7.2.4 Order of Function Evaluation 286

7.3 Function Handles 287
7.3.1 Creating and Using Function Handles 287
7.3.2 The Significance of Function Handles 290
7.3.3 Function Handles and Nested Functions 291
7.3.4 An Example Application: Solving Ordinary

Differential Equations 293
7.4 Anonymous Functions 299
7.5 Recursive Functions 300
7.6 Plotting Functions 301

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents | xvii

7.7 Histograms 304
7.8 Summary 309

7.8.1 Summary of Good Programming Practice 310
7.8.2 MATLAB Summary 310

7.9 Exercises 311

Chapter 8 Complex Numbers and 3D Plots 319

8.1 Complex Data 319
8.1.1 Complex Variables 321
8.1.2 Using Complex Numbers with Relational Operators 322
8.1.3 Complex Functions 323
8.1.4 Plotting Complex Data 328

8.2 Multidimensional Arrays 332
8.3 Three-Dimensional Plots 334

8.3.1 Three-Dimensional Line Plots 334
8.3.2 Three-Dimensional Surface, Mesh, and Contour Plots 336
8.3.3 Creating Three-Dimensional Objects using

Surface and Mesh Plots 341
8.4 Summary 344

8.4.1 Summary of Good Programming Practice 344
8.4.2 MATLAB Summary 345

8.5 Exercises 345

Chapter 9 Additional Data Types 349

9.1 Strings and String Functions 350
9.1.1 String Conversion Functions 350
9.1.2 Creating Two-Dimensional Character Arrays 351
9.1.3 Concatenating Strings 351
9.1.4 Comparing Strings 352
9.1.5 Searching/Replacing Characters within a String 355
9.1.6 Uppercase and Lowercase Conversion 357
9.1.7 Trimming Whitespace from Strings 357
9.1.8 Numeric-to-String Conversions 358
9.1.9 String-to-Numeric Conversions 359
9.1.10 Summary 360

9.2 The single Data Type 366
9.3 Integer Data Types 367
9.4 Limitations of the single and Integer Data Types 369
9.5 Summary 370

9.5.1 Summary of Good Programming Practice 370
9.5.2 MATLAB Summary 371

9.6 Exercises 372

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xviii | Contents

Chapter 10 Sparse Arrays, Cell Arrays, and Structures 373

10.1 Sparse Arrays 373
10.1.1 The sparse Attribute 375

10.2 Cell Arrays 381
10.2.1 Creating Cell Arrays 383
10.2.2 Using Braces {} as Cell Constructors 384
10.2.3 Viewing the Contents of Cell Arrays 384
10.2.4 Extending Cell Arrays 385
10.2.5 Deleting Cells in Arrays 387
10.2.6 Using Data in Cell Arrays 388
10.2.7 Cell Arrays of Strings 388
10.2.8 The Significance of Cell Arrays 389
10.2.9 Summary of cell Functions 393

10.3 Structure Arrays 394
10.3.1 Creating Structure Arrays 394
10.3.2 Adding Fields to Structures 397
10.3.3 Removing Fields from Structures 397
10.3.4 Using Data in Structure Arrays 398
10.3.5 The getfield and setfield Functions 399
10.3.6 Dynamic Field Names 400
10.3.7 Using the size Function with Structure Arrays 401
10.3.8 Nesting Structure Arrays 402
10.3.9 Summary of structure Functions 403

10.4 Summary 408
10.4.1 Summary of Good Programming Practice 408
10.4.2 MATLAB Summary 408

10.5 Exercises 409

Chapter 11 Input/Output Functions 413

11.1 The textread Function 413
11.2 More about the load and save Commands 415
11.3 An Introduction to MATLAB File Processing 418
11.4 File Opening and Closing 419

11.4.1 The fopen Function 419
11.4.2 The fclose Function 422

11.5 Binary I/O Functions 422
11.5.1 The fwrite Function 422
11.5.2 The fread Function 424

11.6 Formatted I/O Functions 427
11.6.1 The fprintf Function 427
11.6.2 Understanding Format Conversion Specifiers 429
11.6.3 How Format Strings Are Used 431

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents | xix

11.6.4 The sprintf Function 433
11.6.5 The fscanf Function 434
11.6.6 The fgetl Function 436
11.6.7 The fgets Function 436

11.7 Comparing Formatted and Binary I/O Functions 437
11.8 File Positioning and Status Functions 442

11.8.1 The exist Function 442
11.8.2 The ferror Function 445
11.8.3 The feof Function 445
11.8.4 The ftell Function 445
11.8.5 The frewind Function 445
11.8.6 The fseek Function 446

11.9 The textscan Function 452
11.10 Function uiimport 454
11.11 Summary 456

11.11.1 Summary of Good Programming Practice 457
11.11.2 MATLAB Summary 457

11.12 Exercises 458

Chapter 12 User -Defined Classes and
Object-Oriented Programming 461

12.1 An Introduction to Object-Oriented Programming 462
12.1.1 Objects 462
12.1.2 Messages 463
12.1.3 Classes 463
12.1.4 Static Methods 464
12.1.5 Class Hierarchy and Inheritance 466
12.1.6 Object-Oriented Programming 466

12.2 The Structure of a MATLAB Class 467
12.2.1 Creating a Class 468
12.2.2 Adding Methods to a Class 470
12.2.3 Listing Class Types, Properties, and Methods 474
12.2.4 Attributes 475

12.3 Value Classes versus Handle Classes 479
12.3.1 Value Classes 480
12.3.2 Handle Classes 481

12.4 Destructors: The delete Method 484
12.5 Access Methods and Access Controls 486

12.5.1 Access Methods 486
12.5.2 Access Controls 488
12.5.3 Example: Creating a Timer Class 489
12.5.4 Notes on the MyTimer Class 493

12.6 Static Methods 494

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xx | Contents

12.7 Defining Class Methods in Separate Files 495
12.8 Overriding Operators 496
12.9 Events and Listeners 501

12.9.1 Property Events and Listeners 504
12.10 Exceptions 505

12.10.1 Creating Exceptions in Your Own Programs 506
12.10.2 Catching and Fixing Exceptions 507

12.11 Superclasses and Subclasses 508
12.11.1 Defining Superclasses and Subclasses 509
12.11.2 Example Using Superclasses and Subclasses 514

12.12 Summary 524
12.12.1 Summary of Good Programming Practice 525
12.12.2 MATLAB Summary 526

12.13 Exercises 526

Chapter 13 Handle Graphics and Animation 531

13.1 Handle Graphics 531
13.2 The MATLAB Graphics System 532
13.3 Object Handles 533
13.4 Examining and Changing Object Properties 534

13.4.1 Changing Object Properties at Creation Time 534
13.4.2 Changing Object Properties after Creation Time 535
13.4.3 Examining and Changing Properties Using Object Notation 535
13.4.4 Examining and Changing Properties Using

get/set Functions 537
13.4.5 Examining and Changing Properties Using

the Property Editor 539
13.5 Using set to List Possible Property Values 543
13.6 User-Defined Data 545
13.7 Finding Objects 546
13.8 Selecting Objects with the Mouse 548
13.9 Position and Units 551

13.9.1 Positions of figure Objects 551
13.9.2 Positions of axes and uicontrol Objects 552
13.9.3 Positions of text Objects 552

13.10 Printer Positions 555
13.11 Default and Factory Properties 556
13.12 Graphics Object Properties 558
13.13 Animations and Movies 558

13.13.1 Erasing and Redrawing 558
13.13.2 Creating a Movie 563

13.14 Summary 565
13.14.1 Summary of Good Programming Practice 566
13.14.2 MATLAB Summary 566

13.15 Exercises 567

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents | xxi

Chapter 14 Graphical User Interfaces 571

14.1 How a Graphical User Interface Works 571
14.2 Creating and Displaying a Graphical User Interface 574

14.2.1 A Look Under the Hood 584
14.2.2 The Structure of a Callback Subfunction 586
14.2.3 Adding Application Data to a Figure 586
14.2.4 A Few Useful Functions 589

14.3 Object Properties 589
14.4 Graphical User Interface Components 591

14.4.1 Static Text Fields 592
14.4.2 Edit Boxes 592
14.4.3 Pushbuttons 595
14.4.4 Toggle Buttons 595
14.4.5 Checkboxes and Radio Buttons 596
14.4.6 Popup Menus 600
14.4.7 List Boxes 600
14.4.8 Sliders 602
14.4.9 Tables 605

14.5 Additional Containers: Panels and Button Groups 611
14.5.1 Panels 611
14.5.2 Button Groups 612

14.6 Dialog Boxes 614
14.6.1 Error and Warning Dialog Boxes 615
14.6.2 Input Dialog Boxes 615
14.6.3 The uigetfile, uisetfile and uigetdir

Dialog Boxes 616
14.6.4 The uisetcolor and uisetfont Dialog Boxes 619

14.7 Menus 619
14.7.1 Suppressing the Default Menu 622
14.7.2 Creating Your Own Menus 622
14.7.3 Accelerator Keys and Keyboard Mnemonics 623
14.7.4 Creating Context Menus 623

14.8 Tips for Creating Efficient GUIs 630
14.8.1 Tool Tips 630
14.8.2 Toolbars 630
14.8.3 Additional Enhancements 632

14.9 Summary 637
14.9.1 Summary of Good Programming Practice 638
14.9.2 MATLAB Summary 639

14.10 Exercises 640

A UTF-8 Character Set 643

B Answers to Quizzes 645

Index 665

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

1Chapter

Introduction to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as
a program designed to perform matrix mathematics, but over the years it has
grown into a flexible computing system capable of solving essentially any technical
problem.

The MATLAB program implements the MATLAB programming language
and provides a very extensive library of predefined functions to make technical
programming tasks easier and more efficient. This book introduces the MATLAB
language as it is implemented in MATLAB Version 2014B and shows how to use it to
solve typical technical problems.

MATLAB is a huge program, with an incredibly rich variety of functions. Even
the basic version of MATLAB without any toolkits is much richer than other
technical programming languages. There are more than 1000 functions in the basic
MATLAB product alone, and the toolkits extend this capability with many more
functions in various specialties. Furthermore, these functions often solve very
complex problems (solving differential equations, inverting matrices, and so forth)
in a single step, saving large amounts of time. Doing the same thing in another
computer language usually involves writing complex programs yourself or buying
a third-party software package (such as IMSL or the NAG software libraries) that
contains the functions.

The built-in MATLAB functions are almost always better than anything that
an individual engineer could write on his or her own because many people have
worked on them, and they have been tested against many different data sets. These
functions are also robust, producing sensible results for wide ranges of input data
and gracefully handling error conditions.

This book makes no attempt to introduce the user to all of MATLAB’s functions.
Instead, it teaches a user the basics of how to write, debug, and optimize good
MATLAB programs, plus a subset of the most important functions used to solve

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2 | Chapter 1 Introduction to MATLAB

common scientific and engineering problems. Just as importantly, it teaches the
scientist or engineer how to use MATLAB’s own tools to locate the right function
for a specific purpose from the enormous list of choices available. In addition, it
teaches how to use MATLAB to solve many practical engineering problems, such
as vector and matrix algebra, curve fitting, differential equations, and data plotting.

The MATLAB program is a combination of a procedural programming language,
an integrated development environment (IDE) including an editor and debugger, and
an extremely rich set of functions to perform many types of technical calculations.

The MATLAB language is a procedural programming language, meaning that the
engineer writes procedures, which are effectively mathematical recipes for solving a
problem. This makes MATLAB very similar to other procedural languages such as C,
Basic, Fortran, and Pascal. However, the extremely rich list of predefined functions
and plotting tools makes it superior to these other languages for many engineering
analysis applications.

1.1 The Advantages of MATLAB

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are:

1. Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to exe-
cute large prewritten programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for the
rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, online documenta-
tion and manuals, a workspace browser, and extensive demos.

2. Platform Independence
MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the lan-
guage is supported on Windows XP/Vista/7, Linux, Unix, and the Macintosh.
Programs written on any platform will run on all of the other platforms, and
data files written on any platform may be read transparently on any other
platform. As a result, programs written in MATLAB can migrate to new plat-
forms when the needs of the user change.

3. Predefined Functions
MATLAB comes complete with an extensive library of predefined functions
that provide tested and prepackaged solutions to many basic technical tasks.
For example, suppose that you are writing a program that must calculate the
statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, and so forth. These

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 Disadvantages of MATLAB | 3

and hundreds of other functions are built right into the MATLAB language,
making your job much easier.

In addition to the large library of functions built into the basic MATLAB
language, there are many special-purpose toolboxes available to help solve
complex problems in specific areas. For example, a user can buy standard
toolboxes to solve problems in signal processing, control systems, communi-
cations, image processing, and neural networks, among many others. There
is also an extensive collection of free user-contributed MATLAB programs
that are shared through the MATLAB website.

4. Device-Independent Plotting
Unlike most other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on any
graphical output device supported by the computer on which MATLAB is
running. This capability makes MATLAB an outstanding tool for visualizing
technical data.

5. Graphical User Interface
MATLAB includes tools that allow an engineer to interactively construct a
Graphical User Interface (GUI) for his or her program. With this capabil-
ity, the engineer can design sophisticated data analysis programs that can be
operated by relatively inexperienced users.

6. MATLAB Compiler
MATLAB’s flexibility and platform independence is achieved by compiling
MATLAB programs into a device-independent p-code, and then interpreting
the p-code instructions at run-time. This approach is similar to that used by
Microsoft’s Visual Basic or by Java. Unfortunately, the resulting programs
can sometimes execute slowly because the MATLAB code is interpreted
rather than compiled. Recent versions of MATLAB have partially overcome
this problem by introducing just-in-time (JIT) compiler technology. The JIT
compiler compiles portions of the MATLAB code as it is executed to increase
overall speed.

A separate MATLAB compiler is also available. This compiler can
compile a MATLAB program into a standalone executable that can run on a
computer without a MATLAB license. It is a great way to convert a prototype
MATLAB program into an executable suitable for sale and distribution
to users.

1.2 Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted lan-
guage and therefore can execute more slowly than compiled languages. This problem
can be mitigated by properly structuring the MATLAB program to maximize the
performance of vectorized code and by the use of the JIT compiler.

The second disadvantage is cost: a full copy of MATLAB is five to ten times
more expensive than a conventional C or Fortran compiler. This relatively high cost
is more than offset by the reduced time required for an engineer or scientist to create

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 | Chapter 1 Introduction to MATLAB

a working program, so MATLAB is cost-effective for businesses. However, it is too
expensive for most individuals to consider purchasing. Fortunately, there is also an
inexpensive student edition of MATLAB, which is a great tool for students wishing
to learn the language. The student edition of MATLAB is essentially identical to the
full edition.1

1.3 The MATLAB Environment

The fundamental unit of data in any MATLAB program is the array. An array is a
collection of data values organized into rows and columns and known by a single
name. Individual data values within an array can be accessed by including the name
of the array followed by subscripts in parentheses, which identify the row and col-
umn of the particular value. Even scalars are treated as arrays by MATLAB—they
are simply arrays with only one row and one column. We will learn how to create and
manipulate MATLAB arrays in Section 1.4.

When MATLAB executes, it can display several types of windows that accept
commands or display information. The three most important types of windows are the
Command Window, where commands may be entered; figure windows, which dis-
play plots and graphs; and edit windows, which permit a user to create and modify
MATLAB programs. We will see examples of all three types of windows in this section.

In addition, MATLAB can display other windows that provide help and that
allow the user to examine the values of variables defined in memory. We will exam-
ine some of these additional windows here and examine the others when we discuss
how to debug MATLAB programs.

1.3.1 The MATLAB Desktop

When you start MATLAB Version 2014B, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows showing
MATLAB data, plus toolbars and a “Toolstrip” or “Ribbon Bar” similar to that used
by Microsoft Office. By default, most MATLAB tools are docked to the desktop, so
that they appear inside the desktop window. However, the user can choose to undock
any or all tools, making them appear in windows separate from the desktop.

The default configuration of the MATLAB desktop is shown in Figure 1.1.
It integrates many tools for managing files, variables, and applications within the
MATLAB environment.

The major tools within or accessible from the MATLAB desktop are:

■■ Command Window
■■ Toolstrip

1 There are also some free software programs that are largely compatible with MATLAB, such as GNU
Octave and FreeMat.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 5

■■ Documents Window, including the Editor/Debugger and Array Editor
■■ Figure Windows
■■ Workspace Browser
■■ Current Folder Browser, with the Details Window
■■ Help Browser
■■ Path Browser
■■ Popup Command History Window

The functions of these tools are summarized in Table 1.1. We will discuss them
in later sections of this chapter.

Details Window
displays the

properties of a file
selected in the

Current Folder Browser

Workspace Br owser
shows variables defined

in workspace

MATLAB Command
Window

MATLAB
Editor

Launch the
Help Browser

This control allow
a user to view
or change the

current directory

Curr ent Folder
Browser

shows a list
of the files in the
current directory

Figure 1.1 The default MATLAB desktop. The exact appearance of the desktop
may differ slightly on different types of computers.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6 | Chapter 1 Introduction to MATLAB

Table 1.1: Tools and Windows Included in the MATLAB
Desktop

Tool Description

Command Window A window where the user can type
commands and see immediate results

Toolstrip A strip across the top of the desktop con-
taining icons to select functions and tools,
arranged in tabs and sections of related
functions

Command History Window A window that displays recently used com-
mands, accessed by clicking the up arrow
when typing in the Command Window

Document Window A window that displays MATLAB files and
allows the user to edit or debug them

Figure Window A window that displays a MATLAB plot

Workspace Browser A window that displays the names and values
of variables stored in the MATLAB Workspace

Current Folder Browser A window that displays the names of files in
the current directory. If a file is selected in
the Current Folder Browser, details about the
file will appear in the Details Window

Help Browser A tool to get help for MATLAB functions,
accessed by clicking the Help button

Path Browser A tool to display the MATLAB search path,
accessed by clicking the Set Path button

1.3.2 The Command Window

The bottom center of the default MATLAB desktop contains the Command Window.
A user can enter interactive commands at the command prompt (») in the Command
Window, and they will be executed on the spot.

As an example of a simple interactive calculation, suppose that you want to
calculate the area of a circle with a radius of 2.5 m. This can be done in the MATLAB
Command Window by typing:

» area = pi * 2.5^2
area =
 19.6350

MATLAB calculates the answer as soon as the Enter key is pressed, and stores the
answer in a variable (really a 1 3 1 array) called area. The contents of the variable
are displayed in the Command Window as shown in Figure 1.2, and the variable can
be used in further calculations. (Note that p is predefined in MATLAB, so we can
just use pi without first declaring it to be 3.141592….)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 7

If a statement is too long to type on a single line, it may be continued on succes-
sive lines by typing an ellipsis (...) at the end of the first line, and then continuing
on the next line. For example, the following two statements are identical.

x1 = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6

and

x1 = 1 + 1/2 + 1/3 + 1/4 ...
 + 1/5 + 1/6

Instead of typing commands directly in the Command Window, a series of com-
mands can be placed into a file, and the entire file can be executed by typing its
name in the Command Window. Such files are called script files. Script files (and
functions, which we will see later) are also known as M-files, because they have a
file extension of “.m”.

1.3.3 The Toolstrip

The Toolstrip (see Figure 1.3) is a bar of tools that appears across the top of the desk-
top. The controls on the Toolstrip are organized into related categories of functions,
first by tabs and then by groups. For example, the tabs visible in Figure 1.3 are Home,
Plots, Apps, Editor, and so forth. When one of the tabs is selected, a series of controls

User input

Result of
calculation

Result is added
to the workspace

Figure 1.2 The Command Window appears in the center of the desktop.
Users enter commands and see responses here.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 | Chapter 1 Introduction to MATLAB

grouped into sections is displayed. In the Home tab, the sections are File, Variable,
Code, and so forth. With practice, the logical grouping of commands helps the user
to quickly locate any desired function.

In addition, the upper right-hand corner of the Toolstrip contains the Quick
Access Toolbar, which is a place where the user can customize the interface and dis-
play the most commonly used commands and functions at all times. To customize the
functions displayed there, right-click on the toolbar and select the Customize option
from the popup menu.

1.3.4 The Command History Window

The Command History window displays a list of the commands that a user has
previously entered in the Command Window. The list of commands can extend
back to previous executions of the program. Commands remain in the list until
they are deleted. To display the Command History window, press the up arrow
key while typing in the Command Window. To re-execute any command, simply
double-click it with the left mouse button. To delete one or more commands from
the Command History window, select the commands and right-click them with the
mouse. A popup menu will be displayed that allows the user to delete the items
(see Figure 1.4).

1.3.5 The Document Window

A Document Window (also called an Edit/Debug Window) is used to create new
M-files or modify existing ones. An Edit Window is created automatically when
you create a new M-file or open an existing one. You can create a new M-file with
the New Script command from the File group on the Toolstrip (Figure 1.5a), or by
clicking the New icon and selecting Script from the popup menu (Figure 1.5b). You

Figure 1.3 The Toolstrip, which allows a user to select from a wide variety of
MATLAB tools and commands.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 9

can open an existing M-file file with the Open command from the File section on
the Toolstrip.

An Edit Window displaying a simple M-file called calc_area.m is shown
in Figure 1.5. This file calculates the area of a circle given its radius and displays
the result. By default, the Edit Window is docked to the desktop, as shown in
Figure 1.5c. The Edit Window can also be undocked from the MATLAB desktop.
In that case, it appears within a container called the Documents Window, as
shown in Figure 1.5d. We will learn how to dock and undock a window later in
this chapter.

The Edit Window is essentially a programming text editor, with the MATLAB
language’s features highlighted in different colors. On screen, comments in an M-file
file appear in green, variables and numbers appear in black, complete character
strings appear in magenta, incomplete character strings appear in red, and language
keywords appear in blue. [See color insert.]

After an M-file is saved, it may be executed by typing its name in the Command
Window. For the M-file in Figure 1.5, the results are:

» calc_area
The area of the circle is 19.635

The Edit Window also doubles as a debugger, as we shall see in Chapter 2.

Figure 1.4 The Command History Window, showing two commands
being deleted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10 | Chapter 1 Introduction to MATLAB

(a)

(b)

(c)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 11

1.3.6 Figure Windows

A figure window is used to display MATLAB graphics. A figure can be a two-
or three-dimensional plot of data, an image, or a graphical user interface (GUI). A
simple script file that calculates and plots the function sin x is shown below:

% sin_x.m: This M-file calculates and plots the
% function sin(x) for 0 <= x <= 6.
x = 0:0.1:6
y = sin(x)
plot(x,y)

If this file is saved under the name sin_x.m, then a user can execute the file
by typing “sin_x” in the Command Window. When this script file is executed,
MATLAB opens a figure window and plots the function sin x in it. The resulting plot
is shown in Figure 1.6.

Figure 1.5 (a) Creating a new M-file with the New Script command.
(b) Creating a new M-file with the New >> Script popup menu. (c) The MATLAB
Editor, docked to the MATLAB desktop. (d) The MATLAB Editor, displayed as an
independent window. [See color insert.]

(d)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 | Chapter 1 Introduction to MATLAB

1.3.7 Docking and Undocking Windows

MATLAB windows such as the Command Window, the Edit Window, and Figure
Windows can either be docked to the desktop, or they can be undocked. When a
window is docked, it appears as a pane within the MATLAB desktop. When it is
undocked, it appears as an independent window on the computer screen separate from
the desktop. When a window is docked to the desktop, it can be undocked by selecting
the small down arrow in the upper right-hand corner and selecting the Undock option
from the popup menu (see Figure 1.7). When the window is an independent window,
the upper right-hand corner contains a small button with an arrow pointing down and
to the right (). If this button is clicked, then the window will be re-docked with the
desktop. The Dock button is visible in the upper right hand corner of Figure 1.6.

1.3.8 The MATLAB Workspace

A statement like

z = 10

creates a variable named z, stores the value 10 in it, and saves it in a part of computer
memory known as the workspace. A workspace is the collection of all the variables
and arrays that can be used by MATLAB when a particular command, M-file, or
function is executing. All commands executed in the Command Window (and all

Figure 1.6 MATLAB plot of sin x versus x.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 13

script files executed from the Command Window) share a common workspace, so
they can all share variables. As we will see later, MATLAB functions differ from
script files in that each function has its own separate workspace.

A list of the variables and arrays in the current workspace can be generated with
the whos command. For example, after M-files calc_area and sin_x are exe-
cuted, the workspace contains the following variables.

» whos

 Name Size Bytes Class Attributes

 area 1x1 8 double
 radius 1x1 8 double
 string 1x32 64 char
 x 1x61 488 double
 y 1x61 488 double

Script file calc_area created variables area, radius, and string, while
script file sin_x created variables x and y. Note that all of the variables are in the
same workspace, so if two script files are executed in succession, the second script
file can use variables created by the first script file.

The contents of any variable or array may be determined by typing the appro-
priate name in the Command Window. For example, the contents of string can be
found as follows:

» string
string =
The area of the circle is 19.635

Figure 1.7 Select the Undock option from the menu displayed after clicking the
small down arrow in the upper right-hand corner of a pane.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14 | Chapter 1 Introduction to MATLAB

A variable can be deleted from the workspace with the clear command. The
clear command takes the form

clear var1 var2 ...

where var1 and var2 are the names of the variables to be deleted. The command
clear variables, or simply clear, deletes all variables from the current workspace.

1.3.9 The Workspace Browser

The contents of the current workspace can also be examined with a GUI-based Work-
space Browser. The Workspace Browser appears by default in the right-hand side
of the desktop. It provides a graphic display of the same information as the whos
command, and it also shows the actual contents of each array if the information is
short enough to fit within the display area. The Workspace Browser is dynamically
updated whenever the contents of the workspace change.

A typical Workspace Browser window is shown in Figure 1.8. As you can see,
it displays the same information as the whos command. Double-clicking on any
variable in the window will bring up the Array Editor, which allows the user to
modify the information stored in the variable.

One or more variables may be deleted from the workspace by selecting them
in the Workspace Browser with the mouse and pressing the delete key or by
right-clicking with the mouse and selecting the delete option.

Workspace Br owser
shows a list of the
variables defined
in the workspace

Array Editor allows the
user to edit any variable
or array selected in the

Workspace Browser

Figure 1.8 The Workspace Browser and Array Editor. The Array Editor
is invoked by double-clicking a variable in the Workspace Browser. It
allows a user to change the values contained in a variable or array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 15

1.3.10 The Current Folder Browser

The Current Folder Browser is displayed on the upper left-hand side of the desktop.
It shows all the files in the currently selected folder, and allows the user to edit
or execute any desired file. You can double-click on any M-file to open it in the
MATLAB editor, or you can right-click it and select Run to execute it. The Current
Folder Browser is shown in Figure 1.9. A toolbar above the browser is used to select
the current folder to display.

Figure 1.9 The Current Folder Browser.

Curr ent Folder
Browser

Selecting the
curr ent folder

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16 | Chapter 1 Introduction to MATLAB

1.3.11 Getting Help

There are three ways to get help in MATLAB. The preferred method is to use the
Help Browser. The Help Browser can be started by selecting the icon from
the Toolstrip or by typing helpdesk or helpwin in the Command Window.
A user can get help by browsing the MATLAB documentation, or he or she can
search for the details of a particular command. The Help Browser is shown in
Figure 1.10.

There are also two command-line oriented ways to get help. The first way is to
type help or help followed by a function name in the Command Window. If you
just type help, MATLAB will display a list of possible help topics in the Command
Window. If a specific function or a toolbox name is included, help will be provided
for that particular function or toolbox.

The second way to get help is the lookfor command. The lookfor command
differs from the help command in that the help command searches for an exact
function name match, while the lookfor command searches the quick summary
information in each function for a match. This makes lookfor slower than help,

Figure 1.10 The Help Browser.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 17

but it improves the chances of getting back useful information. For example, suppose
that you were looking for a function to take the inverse of a matrix. Since MATLAB
does not have a function named inverse, the command help inverse will pro-
duce nothing. On the other hand, the command lookfor inverse will produce
the following results:

» lookfor inverse
ifft - Inverse discrete Fourier transform.
ifft2 - Two-dimensional inverse discrete Fourier transform.
ifftn - N-dimensional inverse discrete Fourier transform.
ifftshift - Inverse FFT shift.
acos - Inverse cosine, result in radians.
acosd - Inverse cosine, result in degrees.
acosh - Inverse hyperbolic cosine.
acot - Inverse cotangent, result in radian.
acotd - Inverse cotangent, result in degrees.
acoth - Inverse hyperbolic cotangent.
acsc - Inverse cosecant, result in radian.
acscd - Inverse cosecant, result in degrees.
acsch - Inverse hyperbolic cosecant.
asec - Inverse secant, result in radians.
asecd - Inverse secant, result in degrees.
asech - Inverse hyperbolic secant.
asin - Inverse sine, result in radians.
asind - Inverse sine, result in degrees.
asinh - Inverse hyperbolic sine.
atan - Inverse tangent, result in radians.
atan2 - Four quadrant inverse tangent.
atan2d - Four quadrant inverse tangent, result in degrees.
atand - Inverse tangent, result in degrees.
atanh - Inverse hyperbolic tangent.
invhilb - Inverse Hilbert matrix.
ipermute - Inverse permute array dimensions.
inv - Matrix inverse.
pinv - Pseudoinverse.
betaincinv - Inverse incomplete beta function.
erfcinv - Inverse complementary error function.
erfinv - Inverse error function.
gammaincinv - Inverse incomplete gamma function.
acde - Inverse of cd elliptic function.
asne - Inverse of sn elliptic function.
icceps - Inverse complex cepstrum.
idct - Inverse discrete cosine transform.
ifwht - Fast Inverse Discrete Walsh-Hadamard Transform.
unshiftdata - The inverse of SHIFTDATA.

From this list, we can see that the function of interest is named inv.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 | Chapter 1 Introduction to MATLAB

1.3.12 A Few Important Commands

If you are new to MATLAB, a few demonstrations may help to give you a feel for its
capabilities. To run MATLAB’s built-in demonstrations, type demo in the Command
Window, or select demos from the Start button.

The contents of the Command Window can be cleared at any time using the clc
command, and the contents of the current figure window can be cleared at any time
using the clf command. The variables in the workspace can be cleared with the
clear command. As we have seen, the contents of the workspace persist between
the executions of separate commands and M-files, so it is possible for the results of
one problem to have an effect on the next one that you may attempt to solve. To avoid
this possibility, it is a good idea to issue the clear command at the start of each new
independent calculation.

Another important command is the abort command. If an M-file appears to
be running for too long, it may contain an infinite loop, and it will never terminate.
In this case, the user can regain control by typing control-c (abbreviated ^c) in the
Command Window. This command is entered by holding down the control key while
typing a “c”. When MATLAB detects a ^c, it interrupts the running program and
returns a command prompt.

There is also an auto-complete feature in MATLAB. If a user starts to type a
command and then presses the Tab key, a popup list of recently typed commands and
MATLAB functions that match the string will be displayed (see Figure 1.11). The
user can complete the command by selecting one of the items from the list.

Figure 1.11 If a user types a partial command and then hits the
Tab key, MATLAB will pop up a window of suggested commands or
functions that match the string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 The MATLAB Environment | 19

The exclamation point (!) is another important special character. Its special pur-
pose is to send a command to the computer’s operating system. Any characters after
the exclamation point will be sent to the operating system and executed as though
they had been typed at the operating system’s command prompt. This feature lets you
embed operating system commands directly into MATLAB programs.

Finally, it is possible to keep track of everything done during a MATLAB ses-
sion with the diary command. The form of this command is

diary filename

After this command is typed, a copy of all input and most output typed in the
Command Window is echoed in the diary file. This is a great tool for recreating
events when something goes wrong during a MATLAB session. The command
“diary off” suspends input into the diary file, and the command “diary on”
resumes input again.

1.3.13 The MATLAB Search Path

MATLAB has a search path, which it uses to find M-files. MATLAB’s M-files are
organized in directories on your file system. Many of these directories of M-files are
provided along with MATLAB, and users may add others. If a user enters a name at
the MATLAB prompt, the MATLAB interpreter attempts to find the name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB displays the
current contents of the variable.

2. It checks to see if the name is an M-file in the current directory. If it is,
MATLAB executes that function or command.

3. It checks to see if the name is an M-file in any directory in the search path.
If it is, MATLAB executes that function or command.

Note that MATLAB checks for variable names first, so if you define a variable
with the same name as a MATLAB function or command, that function or command
becomes inaccessible. This is a common mistake made by novice users.

Programming Pitfalls

Never use a variable with the same name as a MATLAB function or command. If you
do so, that function of command will become inaccessible.

Also, if there is more than one function or command with the same name, the
first one found on the search path will be executed, and all of the others will be inac-
cessible. This is a common problem for novice users, since they sometimes create
M-files files with the same names of standard MATLAB functions, making them
inaccessible.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20 | Chapter 1 Introduction to MATLAB

MATLAB includes a special command (which) to help you find out just which
version of a file is being executed and where it is located. This can be useful in find-
ing filename conflicts. The format of this command is which functionname,
where functionname is the name of the function that you are trying to locate. For
example, the cross-product function cross.m can be located as follows:

» which cross
C:\Program
Files\MATLAB\R2014b\toolbox\matlab\specfun\cross.m

The MATLAB search path can be examined and modified at any time by
selecting the Set Path tool from the Environment section of the Home tab on
the Toolstrip, or by typing editpath in the Command Window. The Path Tool
is shown in Figure 1.12. It allows a user to add, delete, or change the order of
directories in the path.

Programming Pitfalls

Never create an M-file with the same name as a MATLAB function or command.

Figure 1.12 The Path Tool.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Using MATLAB as a Calculator | 21

Other path-related functions include:

■■ addpath Add directory to MATLAB search path.
■■ path Display MATLAB search path.
■■ path2rc Adds current directory to MATLAB search path.
■■ rmpath Remove directory from MATLAB search path.

1.4 Using MATLAB as a Calculator

In its simplest form, MATLAB can be used as a calculator to perform mathematical
calculations. The calculations to be performed are typed directly into the Command
Window, using the symbols +, -, *, /, and ̂ for addition, subtraction, multiplication,
division, and exponentiation respectively. After an expression is typed, the results of
the expression will be automatically calculated and displayed. If an equal sign is used
in the expression, then the result of the calculation is saved in the variable name to
the left of the equal sign.

For example, suppose that we would like to calculate the volume of a cylinder
of radius r and length l. The area of the circle at the base of the cylinder is given by
the equation

 A 5 pr2 (1.1)

and the total volume of the cylinder will be

 V 5 Al (1.2)

If the radius of the cylinder is 0.1 m and the length is 0.5 m, then the volume of the cyl-
inder can be found using the MATLAB statements (user inputs are shown in bold face):

» A = pi * 0.1^2
A =
 0.0314
» V = A * 0.5
V =
 0.0157

Note that pi is predefined to be the value 3.141592….

When the first expression is typed, the area at the base of the cylinder is calcu-
lated, stored in variable A, and displayed to the user. When the second expression is
typed, the volume of the cylinder is calculated, stored in variable V, and displayed to
the user. Note that the value stored in A was saved by MATLAB and re-used when
we calculated V.

If an expression without an equal sign is typed into the Command Window,
MATLAB will evaluate it, store the result in a special variable called ans, and dis-
play the result.

» 200 / 7
ans =
 28.5714

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22 | Chapter 1 Introduction to MATLAB

The value in ans can be used in later calculations, but be careful! Every time a
new expression without an equal sign is evaluated, the value saved in ans will be
overwritten.

» ans * 6
ans =
 171.4286

The value stored in ans is now 171.4286, not 28.5714.
If you want to save a calculated value and reuse it later, be sure to assign it to a

specific name instead of using the default name ans.

Programming Pitfalls

If you want to reuse the result of a calculation in MATLAB, be sure to include a vari-
able name to store the result. Otherwise, the result will be overwritten the next time
that you perform a calculation.

Quiz 1.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Chapter 1. If you have trouble with the quiz, reread the sections,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

1. What is the purpose of the MATLAB Command Window? The Edit
Window? The Figure Window?

2. List the different ways that you get help in MATLAB.
3. What is a workspace? How can you determine what is stored in a MATLAB

workspace?
4. How can you clear the contents of a workspace?
5. The distance traveled by a ball falling in the air is given by the equation

 x 5 x
0

1 v
0
t 1

1

2
at2

Use MATLAB to calculate the position of the ball at time t 5 5 s if x
0
 5 10 m,

v
0
 5 15 m/s, and a 5 29.81 m/sec2.

6. Suppose that x 5 3 and y 5 4. Use MATLAB to evaluate the following
expression:

x2y3

sx 2 yd2

The following questions are intended to help you become familiar with
MATLAB tools.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.5 Summary | 23

1.5 Summary

In this chapter, we learned about the MATLAB integrated development environment
(IDE). We learned about basic types of MATLAB windows, the workspace, and how
to get online help. The MATLAB desktop appears when the program is started. It
integrates many of the MATLAB tools in a single location. These tools include the
Command Window, the Command History Window, the Toolstrip, the Document
Window, the Workspace Browser and Array Editor, and the Current Folder viewer.
The Command Window is the most important of the windows. It is the one in which
all commands are typed and results are displayed.

The Document Window (or Edit/Debug Window) is used to create or modify
M-files. It displays the contents of the M-file with the contents of the file color-coded
according to function: comments, keywords, strings, and so forth.

The Figure Window is used to display graphics.
A MATLAB user can get help by either using the Help Browser or the command-

line help functions help and lookfor. The Help Browser allows full access to
the entire MATLAB documentation set. The command-line function help displays
help about a specific function in the Command Window. Unfortunately, you must
know the name of the function in order to get help about it. The function lookfor
searches for a given string in the first comment line of every MATLAB function and
displays any matches.

When a user types a command in the Command Window, MATLAB searches for
that command in the directories specified in the MATLAB path. It will execute the
first M-file in the path that matches the command, and any further M-files with the
same name will never be found. The Path Tool can be used to add, delete, or modify
directories in the MATLAB path.

1.5.1 MATLAB Summary

The following summary lists all of the MATLAB special symbols described in this
chapter, along with a brief description of each one.

7. Execute the M-files calc_area.m and sin_x.m in the Command
Window (these M-files are available from the book’s website). Then use the
Workspace Browser to determine what variables are defined in the current
workspace.

8. Use the Array Editor to examine and modify the contents of variable x in
the workspace. Then type the command plot(x,y) in the Command
Window. What happens to the data displayed in the Figure Window?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 | Chapter 1 Introduction to MATLAB

1.6 Exercises

1.1 The following MATLAB statements plot the function ysxd 5 2e20 .2x for the
range 0 # x # 10.

x = 0:0.1:10;
y = 2 * exp(-0.2 * x);
plot(x,y);

 Use the MATLAB Edit Window to create a new empty M-file, type these state-
ments into the file, and save the file with the name test1.m. Then, execute the
program by typing the name test1 in the Command Window. What result do
you get?

1.2 Get help on the MATLAB function exp using: (a) The help exp command
typed in the Command Window, and (b) the Help Browser.

1.3 Use the lookfor command to determine how to take the base-10 logarithm of
a number in MATLAB.

1.4 Suppose that u 5 1 and v 5 3. Evaluate the following expressions using
MATLAB.

(a)
4u

3v

(b)
2v22

su 1 vd2

(c)
v3

v3 2 u3

(d)
4

3
p v2

1.5 Suppose that x 5 2 and y 5 21. Evaluate the following expressions using
MATLAB.

(a) Ï4 2x3

(b) Ï4 2y3

Note that MATLAB evaluates expressions with complex or imaginary
answers transparently.

Special Symbols

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.6 Exercises | 25

1.6 Type the following MATLAB statements into the Command Window:

4 * 5
a = ans * pi
b = ans / pi
ans

What are the results in a, b, and ans? What is the final value saved in ans?
Why was that value retained during the subsequent calculations?

1.7 Use the MATLAB Help Browser to find the command required to show
MATLAB’s current directory. What is the current directory when MATLAB
starts up?

1.8 Use the MATLAB Help Browser to find out how to create a new directory from
within MATLAB. Then, create a new directory called mynewdir under the
current directory. Add the new directory to the top of MATLAB’s path.

1.9 Change the current directory to mynewdir. Then open an Edit Window and add
the following lines:

% Create an input array from -2*pi to 2*pi
t = -2*pi:pi/10:2*pi;

% Calculate |sin(t)|
x = abs(sin(t));

% Plot result
plot(t,x);

Save the file with the name test2.m, and execute it by typing test2 in the
Command Window. What happens?

1.10 Close the Figure Window, and change back to the original directory
that MATLAB started up in. Next, type “test2” in the Command Window.
What happens, and why?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27

2Chapter

MATLAB Basics

In this chapter, we will introduce some basic elements of the MATLAB language.
By the end of the chapter, you will be able to write simple but functional MATLAB
programs.

2.1 Variables and Arrays

The fundamental unit of data in any MATLAB program is the array. An array is
a collection of data values organized into rows and columns and is known by a
single name (See Figure 2.1). Individual data values within an array are accessed by
including the name of the array followed by subscripts in parentheses, which identify
the row and column of the particular value. Even scalars are treated as arrays by
MATLAB—they are simply arrays with only one row and one column.

Arrays can be classified as either vectors or matrices. The term “vector” is
usually used to describe an array with only one dimension, while the term “matrix”
is usually used to describe an array with two or more dimensions. In this text, we
will use the term “vector” when discussing one-dimensional arrays and the term
“matrix” when discussing arrays with two or more dimensions. If a particular discus-
sion applies to both types of arrays, we will use the generic term “array.”

The size of an array is specified by the number of rows and the number of col-
umns in the array, with the number of rows mentioned first. The total number of
elements in the array will be the product of the number of rows and the number of
columns. For example, the sizes of the following arrays are

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 | Chapter 2 MATLAB Basics

Individual elements in an array are addressed by the array name followed by
the row and column of the particular element. If the array is a row or column vector,
then only one subscript is required. For example, in the above arrays a(2,1) is 3
and c(2) 5 2.

A MATLAB variable is a region of memory containing an array and is known
by a user-specified name. The contents of the array may be used or modified at any
time by including its name in an appropriate MATLAB command.

MATLAB variable names must begin with a letter, followed by any combination
of letters, numbers, and the underscore (_) character. Only the first 63 characters are
significant; if more than 63 are used, the remaining characters will be ignored. If two
variables are declared with names that only differ in the 64th character, MATLAB
will treat them as the same variable. MATLAB will issue a warning if it has to trun-
cate a long variable name to 63 characters.

Array Size

a 5 3
1 2

3 4

5 6
4 This is a 3 3 2 matrix, containing 6

elements.

b 5 f1 2 3 4g This is a 1 3 4 array containing 4 elements,
known as a row vector.

c 5 3
1

2

3
4 This is a 3 3 1 array containing 3 elements,

known as a column vector.

Array arr

Row 1

Row 4

Row 3

Row 2

Col 1 Col 2 Col 3 Col 4 Col 5

Figure 2.1 An array is a collection of data values organized into rows and columns.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 Variables and Arrays | 29

When writing a program, it is important to pick meaningful names for the
variables. Meaningful names make a program much easier to read and to maintain.
Names such as day, month, and year are quite clear even to a person seeing a
program for the first time. Since spaces cannot be used in MATLAB variable names,
underscore characters can be substituted to create meaningful names. For example,
exchange rate might become exchange_rate.

Good Programming Practice

Always give your variables descriptive and easy-to-remember names. For example,
a currency exchange rate could be given the name exchange_rate. This practice
will make your programs clearer and easier to understand.

It is also important to include a data dictionary in the header of any program
that you write. A data dictionary lists the definition of each variable used in a pro-
gram. The definition should include both a description of the contents of the item and
the units in which it is measured. A data dictionary may seem unnecessary while the
program is being written, but it is invaluable when you or another person has to go
back and modify the program at a later time.

Good Programming Practice

Create a data dictionary for each program to make program maintenance easier.

The MATLAB language is case-sensitive, which means that uppercase and low-
ercase letters are not the same. Thus the variables name, NAME, and Name are all
different in MATLAB. You must be careful to use the same capitalization every time
that variable name is used.

Programming Pitfalls

Make sure that your variable names are unique in the first 63 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

Good Programming Practice

Be sure to capitalize a variable exactly the same way each time that it is used. It is
good practice to use only lowercase letters in variable names.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 | Chapter 2 MATLAB Basics

Many MATLAB programmers use the convention that variable names use all
lowercase letters, with underscores between words. The variable exchange_rate
mentioned previously is an example of this convention. It is used in this book.

Other MATLAB programmers use the convention common in Java and C11,
where underscores are not used, the first word is all lowercase, and all subse-
quent words are capitalized. The same variable written in this convention would
be exchangeRate. Either convention is fine, but be consistent throughout your
programs.

The most common types of MATLAB variables are double and char.
Variables of type double consist of scalars or arrays of 64-bit double-precision
floating-point numbers. They can hold real, imaginary, or complex values. The real
and imaginary components of each variable can be positive or negative numbers in
the range 102308 to 10308, with 15 to 16 significant decimal digits of accuracy, plus the
number zero. They are the principal numerical data type in MATLAB.

A variable of type double is automatically created whenever a numerical
value is assigned to a variable name. The numerical values assigned to double
variables can be real, imaginary, or complex. A real value is just a number. For
example, the following statement assigns the real value 10.5 to the double
variable var:

var = 10.5

An imaginary number is defined by appending the letter i or j to a number1. For
example, 10i and -4j are both imaginary values. The following statement assigns
the imaginary value 4i to the double variable var:

var = 4i

A complex value has both a real and an imaginary component. It is created by add-
ing a real and an imaginary number together. For example, the following statement
assigns the complex value 10 1 10i to variable var:

var = 10 + 10i

Variables of type char consist of scalars or arrays of 16-bit values, each
representing a single character. Arrays of this type are used to hold character
strings. They are automatically created whenever a single character or a character

1An imaginary number is a number multiplied by Ï21. The letter i is the symbol for Ï21 used by most
mathematicians and scientists. The letter j is the symbol for Ï21 used by electrical engineers, because
the letter i is usually reserved for currents in that discipline.

Good Programming Practice

Adopt a standard naming and capitalization convention, and use it consistently
throughout your programs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Creating and Initializing Variables in MATLAB | 31

string is assigned to a variable name. For example, the following statement
creates a variable of type char whose name is comment and stores the
specified string in it. After the statement is executed, comment will be a 1 3 26
character array.

comment = 'This is a character string'

In a language such as C, the type of every variable must be explicitly declared
in a program before it is used. These languages are said to be strongly typed. In
contrast, MATLAB is a weakly typed language. Variables may be created at any
time by simply assigning values to them, and the type of data assigned to the variable
determines the type of variable that is created.

2.2 Creating and Initializing Variables in MATLAB

MATLAB variables are automatically created when they are initialized. There are
three common ways to initialize a variable in MATLAB:

1. Assign data to the variable in an assignment statement.
2. Input data into the variable from the keyboard.
3. Read data from a file.

The first two ways will be discussed here, and the third approach will be discussed
in Section 2.6.

2.2.1 Initializing Variables in Assignment Statements

The simplest way to initialize a variable is to assign it one or more values in an
assignment statement. An assignment statement has the general form

var = expression;

where var is the name of a variable, and expression is a scalar constant, an
array, or combination of constants, other variables, and mathematical operations
(1, –, and so forth). The value of the expression is calculated using the normal
rules of mathematics, and the resulting values are stored in the named variable. The
semicolon at the end of the statement is optional. If the semicolon is absent, the
value assigned to var will be echoed in the Command Window. If it is present,
nothing will be displayed in the Command Window, even though the assignment
has occurred.

Simple examples of initializing variables with assignment statements include

var = 40i;
var2 = var / 5;
x = 1; y = 2;
array = [1 2 3 4];

The first example creates a scalar variable of type double, and stores the imaginary
number 40i in it. The second example creates a scalar variable and stores the result of

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32 | Chapter 2 MATLAB Basics

the expression var/5 in it. The third example shows that multiple assignment state-
ments can be placed on a single line, provided that they are separated by semicolons
or commas. The fourth example creates a variable and stores a 4-element row vector
in it. Note that if any of the variables had already existed when the statements were
executed, then their old contents would have been lost.

The last example shows that variables can also be initialized with arrays of data.
Such arrays are constructed using brackets ([]) and semicolons. All of the elements
of an array are listed in row order. In other words, the values in each row are listed
from left to right, with the topmost row first and the bottommost row last. Individual
values within a row are separated by blank spaces or commas, and the rows them-
selves are separated by semicolons or new lines. The following expressions are all
legal arrays that can be used to initialize a variable:

[3.4] This expression creates a 1 3 1 array (a scalar) containing the value 3.4. The
brackets are not required in this case.

[1.0 2.0 3.0] This expression creates a 1 3 3 array containing the row vector f1 2 3 g.

[1.0; 2.0; 3.0] This expression creates a 3 3 1 array containing the column vector 3
1

2

3
4.

[1, 2, 3; 4, 5, 6] This expression creates a 2 3 3 array containing the matrix 31 2 3

4 5 64.

[1, 2, 3

 4, 5, 6]

This expression creates a 2 3 3 array containing the matrix 31 2 3

4 5 64. The

end of the first line terminates the first row.

[] This expression creates an empty array, which contains no rows and no
columns. (Note that this is not the same as an array containing zeros.)

Programming Pitfalls

The number of elements in every row of an array must be the same, and the number
of elements in every column must be the same. Attempts to define an array with
different numbers of elements in its rows or different numbers of elements in its
columns will produce an error when the statement is executed.

The number of elements in every row of an array must be the same, and the number
of elements in every column must be the same. An expression such as

[1 2 3; 4 5];

is illegal because row 1 has three elements while row 2 has only two elements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Creating and Initializing Variables in MATLAB | 33

The expressions used to initialize arrays can include algebraic operations
and all or portions of previously defined arrays. For example, the assignment
statements

a = [0 1+7];
b = [a(2) 7 a];

will define an array a 5 [0 8] and an array b 5 [8 7 0 8].

Also, not all of the elements in an array must be defined when it is created. If a
specific array element is defined and one or more of the elements before it are not,
then the earlier elements will automatically be created and initialized to zero. For
example, if c is not previously defined, the statement

c(2,3) = 5;

will produce the matrix c 5 30 0 0

0 0 54. Similarly, an array can be extended by

specifying a value for an element beyond the currently defined size. For example,
suppose that array d = [1 2]. Then the statement

d(4) = 4;

will produce the array d = [1 2 0 4], as previously explained.
The semicolon at the end of each assignment statement shown above has a spe-

cial purpose: it suppresses the automatic echoing of values that normally occurs
whenever an expression is evaluated in an assignment statement. If an assignment
statement is typed without the semicolon, the result of the statement is automatically
displayed in the Command Window:

» e = [1, 2, 3; 4, 5, 6]
e =

1 2 3
4 5 6

If a semicolon is added at the end of the statement, the echoing disappears. Echoing
is an excellent way to quickly check your work, but it seriously slows down the exe-
cution of MATLAB programs. For that reason, we normally suppress echoing at all
times by ending each line with a semicolon.

However, echoing the results of calculations makes a great quick-and-dirty
debugging tool. If you are not certain what the results of a specific assignment state-
ment are, just leave off the semicolon from that statement, and the results will be
displayed in the Command Window as the statement is executed.

Good Programming Practice

Use a semicolon at the end of all MATLAB assignment statements to suppress
echoing of assigned values in the Command Window. This greatly speeds program
execution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34 | Chapter 2 MATLAB Basics

Good Programming Practice

If you need to examine the results of a statement during program debugging, you
may remove the semicolon from that statement only so that its results are echoed in
the Command Window.

2.2.2 Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the array, but what
happens when the array contains hundreds or even thousands of elements? It is just
not practical to write out each element in the array separately!

MATLAB provides a special shortcut notation for these circumstances using the
colon operator. The colon operator specifies a whole series of values by specifying
the first value in the series, the stepping increment, and the last value in the series.
The general form of a colon operator is

first:incr:last

where first is the first value in the series, incr is the stepping increment, and
last is the last value in the series. If the increment is one, it may be omitted. This
expression will generate an array containing the values first, first+incr,
first+2*incr, first+3*incr, and so forth as long as the values are less than
or equal to last. The list stops when the next value in the series is greater than the
value of last.

For example, the expression 1:2:10 is a shortcut for a 1 3 5 row vector contain-
ing the values 1, 3, 5, 7, and 9. The next value in the series would be 11, which is
greater than 10, so the series terminates at 9.

» x = 1:2:10
x =
1 3 5 7 9

With colon notation, an array can be initialized to have the hundred values
p

100
,

2p

100
,

3p

100
, …, p as follows:

angles = (0.01:0.01:1.00) * pi;

Shortcut expressions can be combined with the transpose operator (’) to
initialize column vectors and more complex matrices. The transpose operator swaps
the row and columns of any array that it is applied to. Thus the expression

f = [1:4]’;

generates a 4-element row vector [1 2 3 4], and then transposes it into the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Creating and Initializing Variables in MATLAB | 35

4-element column vector f 5 3
1

2

3

4
4. Similarly, the expressions

g = 1:4;
h = [g’ g’];

will produce the matrix h 5 3
1 1

2 2

3 3

4 4
4.

2.2.3 Initializing with Built-in Functions

Arrays can also be initialized using built-in MATLAB functions. For example, the
function zeros can be used to create an all-zero array of any desired size. There are
several forms of the zeros function. If the function has a single scalar argument,
it will produce a square array using the single argument as both the number of rows
and the number of columns. If the function has two scalar arguments, the first argu-
ment will be the number of rows, and the second argument will be the number of
columns. Since the size function returns two values containing the number of rows
and columns in an array, it can be combined with the zeros function to generate an
array of zeros that is the same size as another array. Some examples using the zeros
function follow:

a = zeros(2);
b = zeros(2,3);
c = [1 2; 3 4];
d = zeros(size(c));

These statements generate the following arrays:

a 5 30 0

0 04 b 5 30 0 0

0 0 04
c 5 31 2

3 44 d 5 30 0

0 04
Similarly, the ones function can be used to generate arrays containing all ones,

and the eye function can be used to generate arrays containing identity matrices,
in which all on-diagonal elements are one, while all off-diagonal elements are
zero. Table 2.1 contains list of common MATLAB functions useful for initializing
variables.

2.2.4 Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data that he or she
types directly at the keyboard. This option allows a script file to prompt a user for

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36 | Chapter 2 MATLAB Basics

Table 2.1: MATLAB Functions Useful for Initializing Variables

Function Purpose

zeros(n) Generates an n × n matrix of zeros.

zeros(m,n) Generates an m × n matrix of zeros.

zeros(size(arr)) Generates a matrix of zeros of the same size as arr.

ones(n) Generates an n × n matrix of ones.

ones(m,n) Generates an m × n matrix of ones.

ones(size(arr)) Generates a matrix of ones of the same size as arr.

eye(n) Generates an n × n identity matrix.

eye(m,n) Generates an m × n identity matrix.

length(arr) Returns the length of a vector, or the longest dimension of a 2-D array.

size(arr) Returns two values specifying the number of rows and columns in arr.

input data values while it is executing. The input function displays a prompt string
in the Command Window and then waits for the user to type in a response. For exam-
ple, consider the following statement:

my_val = input('Enter an input value:');

When this statement is executed, MATLAB prints out the string 'Enter an
input value:’ and then waits for the user to respond. If the user enters a single
number, it may just be typed in. If the user enters an array, it must be enclosed in
brackets. In either case, whatever is typed will be stored in variable my_val when
the return key is entered. If only the return key is entered, then an empty matrix will
be created and stored in the variable.

If the input function includes the character 's' as a second argument, then the
input data is stored in the returned variable as a character string. Thus, the statement

» in1 = input('Enter data: ');
Enter data: 1.23

stores the value 1.23 into in1, while the statement

» in2 = input('Enter data: ','s');
Enter data: 1.23

stores the character string '1.23' into in2.

Quiz 2.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.1 and 2.2. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Multidimensional Arrays | 37

1. What is the difference between an array, a matrix, and a vector?
2. Answer the following questions for the array shown below.

c 5 3
1.1 23.2 3.4 0.6

0.6 1.1 20.6 3.1

1.3 0.6 5.5 0.0
4

(a) What is the size of c?
(b) What is the value of c(2,3)?
(c) List the subscripts of all elements containing the value 0.6.

3. Determine the size of the following arrays. Check you answers by entering
the arrays into MATLAB and using the whos command or the Workspace
Browser. Note that the later arrays may depend on the definitions of arrays
defined earlier in this exercise.

(a) u = [10 20*i 10+20];
(b) v = [-1; 20; 3];
(c) w = [1 0 -9; 2 -2 0; 1 2 3];
(d) x = [u' v];
(e) y(3,3) = -7;
(f) z = [zeros(4,1) ones(4,1) zeros(1,4)’];
(g) v(4) = x(2,1);

4. What is the value of w(2,1) above?
5. What is the value of x(2,1) above?
6. What is the value of y(2,1) above?
7. What is the value of v(3) after statement (g) is executed?

2.3 Multidimensional Arrays

As we have seen, MATLAB arrays can have one or more dimensions. One-dimensional
arrays can be visualized as a series of values laid out in a row or column, with a single
subscript used to select the individual array elements (Figure 2.2a). Such arrays are
useful to describe data that is a function of one independent variable, such as a series
of temperature measurements made at fixed intervals of time.

Some types of data are functions of more than one independent variable. For
example, we might wish to measure the temperature at five different locations at
four different times. In this case, our 20 measurements could logically be grouped
into five different columns of four measurements each, with a separate column for
each location (Figure 2.2b). In this case, we will use two subscripts to access a given
element in the array: the first one to select the row and the second one to select the
column. Such arrays are called two-dimensional arrays. The number of elements in
a two-dimensional array will be the product of the number of rows and the number
of columns in the array.

MATLAB allows us to create arrays with as many dimensions as necessary
for any given problem. These arrays have one subscript for each dimension, and
an individual element is selected by specifying a value for each subscript. The total

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38 | Chapter 2 MATLAB Basics

One-Dimensional Array

(a) (b)
Two-Dimensional Array

Row 4

Col 5

Col 1
Col 2

Col 3
Col 4

Row 1

Row 2

Row 3

Row 4

Row 1

Row 2

Row 3

a1(irow) a2(irow,icol)

Figure 2.2 Representations of one- and two-dimensional arrays.

number of elements in the array will be the product of the maximum value of each
subscript. For example, the following two statements create a 2 3 3 3 2 array c:

» c(:,:,1)=[1 2 3; 4 5 6];
» c(:,:,2)=[7 8 9; 10 11 12];
» whos c

Name Size Bytes Class Attributes

c 2x3x2 96 double

This array contains 12 elements (2 3 3 3 2). Its contents can be displayed just like
any other array.

» c
c(:,:,1) =

 1 2 3
 4 5 6

c(:,:,2) =
 7 8 9
 10 11 12

2.3.1 Storing Multidimensional Arrays in Memory

A two-dimensional array with m rows and n columns will contain m × n elements,
and these elements will occupy m × n successive locations in the computer’s memory.
How are the elements of the array arranged in the computer’s memory? MATLAB
always allocates array elements in column major order. That is, MATLAB allocates
the first column in memory, then the second, then the third, etc., until all of the
columns have been allocated. Figure 2.3 illustrates this memory allocation scheme

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Multidimensional Arrays | 39

for a 4 3 3 array a. As we can see, element a(1,2) is really the fifth element
allocated in memory. The order that elements are allocated in memory will become
important when we discuss single-subscript addressing in the next section, and low-
level I/O functions in Chapter 8.

This same allocation scheme applies to arrays with more than two
dimensions. The first array subscript is incremented most rapidly, the second
subscript is incremented less rapidly, and so forth, and the last subscript in incre-
mented most slowly. For example, in a 2 3 2 3 2 array, the elements would be
allocated in the following order: (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2),
(1,2,2), (2,2,2).

2.3.2 Accessing Multidimensional Arrays with One Dimension

One of MATLAB’s peculiarities is that it will permit a user or programmer to treat
a multidimensional array as though it were a one-dimensional array whose length is
equal to the number of elements in the multidimensional array. If a multidimensional
array is addressed with a single dimension, then the elements will be accessed in the
order in which they were allocated in memory.

1 2 3

4 5 6

7 8 9

10 11 12

Arrangement
in Computer

Memory

1

4

7

10

2

5

8

11

3

6

9

12

a(1,1)

a(2,1)

a(3,1)

a(4,1)

a(1,2)

a(2,2)

a(3,2)

a(4,2)

a(1,3)

a(2,3)

a(3,3)

a(4,3)

Figure 2.3 (a) Data values for array a. (b) Layout of values in memory for array a.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40 | Chapter 2 MATLAB Basics

For example, suppose that we declare the 4 3 3 element array a as follows:

» a = [1 2 3; 4 5 6; 7 8 9; 10 11 12]
a =

 1 2 3
 4 5 6
 7 8 9
 10 11 12

Then the value of a(5) will be 2, which is the value of element a(1,2), because
a(1,2) was allocated fifth in memory.

Under normal circumstances, you should never use this feature of MATLAB.
Addressing multidimensional arrays with a single subscript is a recipe for
confusion.

2.4 Subarrays

It is possible to select and use subsets of MATLAB arrays as though they were sep-
arate arrays. To select a portion of an array, just include a list of all of the elements
to be selected in the parentheses after the array name. For example, suppose array
arr1 is defined as follows:

arr1 = [1.1 -2.2 3.3 -4.4 5.5];

Then arr1(3) is just 3.3, arr1([1 4]) is the array [1.1 -4.4], and
arr1(1:2:5) is the array [1.1 3.3 5.5].

For a two-dimensional array, a colon can be used in a subscript to select all of
the values of that subscript. For example, suppose

arr2 = [1 2 3; -2 -3 -4; 3 4 5];

This statement creates an array arr2 containing the values 3 1 2 3

22 23 24

 3 4 5
4 .

With this definition, the subarray arr2(1,:) is [1 2 3], and the subarray

arr2(:,1:2:3) is 3
 1 3

22 24

 3 5 4 .

Good Programming Practice

Always use the proper number of dimensions when addressing a multidimensional
array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4 Subarrays | 41

2.4.1 The end Function

MATLAB includes a special function named end, which is very useful for creating
array subscripts. When used in an array subscript, end returns the highest value taken
on by that subscript. For example, suppose that array arr3 is defined as follows:

arr3 = [1 2 3 4 5 6 7 8];

Then arr3(5:end) would be the array [5 6 7 8] , and arr3(end) would
be the value 8.

The value returned by end is always the highest value of a given subscript. If
end appears in different subscripts, it can return different values within the same
expression. For example, suppose that the 3 3 4 array arr4 is defined as follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then the expression arr4(2:end,2:end) would return the array 3 6 7 8

10 11 124.

Note that the first end returned the value 3, while the second end returned the value 4!

2.4.2 Using Subarrays on the Left-hand Side of an Assignment
Statement

It is also possible to use subarrays on the left-hand side of an assignment statement to
update only some of the values in an array, as long as the shape (the number of rows
and columns) of the values being assigned matches the shape of the subarray. If the
shapes do not match, then an error will occur. For example, suppose that the 3 3 4
array arr4 is defined as follows:

» arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =
 1 2 3 4
 5 6 7 8
 9 10 11 12

Then the following assignment statement is legal, since the expressions on both sides
of the equal sign have the same shape (2 3 2):

» arr4(1:2,[1 4]) = [20 21; 22 23]
arr4 =
 20 2 3 21
 22 6 7 23
 9 10 11 12

Note that the array elements (1,1), (1,4), (2,1), and (2,4) were updated. In
contrast, the following expression is illegal because the two sides do not have the
same shape.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42 | Chapter 2 MATLAB Basics

» arr5(1:2,1:2) = [3 4]
??? In an assignment A(matrix,matrix) = B, the number
of rows in B and the number of elements in the A row
index matrix must be the same.

There is a major difference in MATLAB between assigning values to a subarray
and assigning values to an array. If values are assigned to a subarray, only those values
are updated, while all other values in the array remain unchanged. On the other hand, if
values are assigned to an array, the entire contents of the array are deleted and replaced
by the new values. For example, suppose that the 3 3 4 array arr4 is defined as follows:

» arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =
 1 2 3 4
 5 6 7 8
 9 10 11 12

Then the following assignment statement replaces the specified elements of arr4:

» arr4(1:2,[1 4]) = [20 21; 22 23]
arr4 =
 20 2 3 21
 22 6 7 23
 9 10 11 12

In contrast, the following assignment statement replaces the entire contents of arr4
with a 2 3 2 array:

» arr4 = [20 21; 22 23]
arr4 =
 20 21
 22 23

Good Programming Practice

Be sure to distinguish between assigning values to a subarray and assigning values to
an array. MATLAB behaves differently in these two cases.

Programming Pitfalls

For assignment statements involving subarrays, the shapes of the subarrays on
either side of the equal sign must match. MATLAB will produce an error if they do
not match.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.5 Special Values | 43

2.4.3 Assigning a Scalar to a Subarray

A scalar value on the right-hand side of an assignment statement always matches the
shape specified on the left-hand side. The scalar value is copied into every element
specified on the left-hand side of the statement. For example, assume that the 3 3 4
array arr4 is defined as follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then the expression shown below assigns the value one to four elements of the
array.

» arr4(1:2,1:2) = 1
arr4 =
 1 1 3 4
 1 1 7 8
 9 10 11 12

2.5 Special Values

MATLAB includes a number of predefined special values. These predefined values
may be used at any time in MATLAB without initializing them first. A list of the
most common predefined values is given in Table 2.2.

Table 2.2: Predefined Special Values

Function Purpose

pi Contains p to 15 significant digits.

i, j Contain the value i (Ï21).

Inf This symbol represents machine infinity. It is usually
generated as a result of a division by 0.

NaN This symbol stands for Not-a-Number. It is the result of an
undefined mathematical operation, such as the division of
zero by zero.

clock This special variable contains the current date and time in
the form of a 6-element row vector containing the year,
month, day, hour, minute, and second.

date Contains the current data in a character string format, such
as 24-Nov-1998.

eps This variable name is short for “epsilon”. It is the smallest
difference between two numbers that can be represented on
the computer.

ans A special variable used to store the result of an expression
if that result is not explicitly assigned to some other
variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 | Chapter 2 MATLAB Basics

These predefined values are stored in ordinary variables, so they can be over-
written or modified by a user. If a new value is assigned to one of the predefined
variables, then that new value will replace the default one in all later calculations.
For example, consider the following statements that calculate the circumference of a
circle with a radius of 10 cm:

circ1 = 2 * pi * 10
pi = 3;
circ2 = 2 * pi * 10

In the first statement, pi has its default value of 3.14159…, so circ1 is 62.8319,
which is the correct circumference. The second statement redefines pi to be 3,
so in the third statement circ2 is 60. Changing a predefined value in the pro-
gram has created an incorrect answer and also introduced a subtle and hard-to-find
bug. Imagine trying to locate the source of such a hidden error in a 10,000-line
program!

Programming Pitfalls

Never redefine the meaning of a predefined variable in MATLAB. It is a recipe for
disaster, producing subtle and hard-to-find bugs.

Quiz 2.2

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.3 through 2.5. If you have trouble with the quiz, reread
the sections, ask your instructor, or discuss the material with a fellow student.
The answers to this quiz are found in the back of the book.
1. Assume that array c is defined as shown, and determine the contents of the

following sub-arrays:

c = 3
1.1 23.2 3.4 0.6

0.6 1.1 2 0.6 3.1

1.3 0.6 5.5 0.0
4

(a) c(2,:)
(b) c(:,end)
(c) c(1:2,2:end)
(d) c(6)
(e) c(4:end)
(f) c(1:2,2:4)
(g) c([1 3],2)
(h) c([2 2],[3 3])

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Displaying Output Data | 45

2. Determine the contents of array a after the following statements are executed.

(a) a = [1 2 3; 4 5 6; 7 8 9];
a([3 1],:) = a([1 3],:);

(b) a = [1 2 3; 4 5 6; 7 8 9];
a([1 3],:) = a([2 2],:);

(c) a = [1 2 3; 4 5 6; 7 8 9];
a = a([2 2],:);

3. Determine the contents of array a after the following statements are executed.

(a) a = eye(3,3);
b = [1 2 3];
a(2,:) = b;

(b) a = eye(3,3);
b = [4 5 6];
a(:,3) = b’;

(c) a = eye(3,3);
b = [7 8 9];
a(3,:) = b([3 1 2]);

2.6 Displaying Output Data

There are several ways to display output data in MATLAB. The simplest way is one we
have already seen—just leave the semicolon off of the end of a statement and it will be
echoed to the Command Window. We will now explore a few other ways to display data.

2.6.1 Changing the Default Format

When data is echoed in the Command Window, integer values are always displayed
as integers, character values are displayed as strings, and other values are printed
using a default format. The default format for MATLAB shows four digits after the
decimal point, and it may be displayed in scientific notation with an exponent if the
number is too large or too small. For example, the statements

x = 100.11
y = 1001.1
z = 0.00010011

produce the following output
x =
 100.1100

y =
 1.0011e+003

z =
 1.0011e-004

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 | Chapter 2 MATLAB Basics

This default format can be changed in one of two ways: from the main MATLAB
Window menu or using the format command. You can change the format by select-
ing the Preferences icon on the Toolstrip. This option will pop up the preferences
window (see Figure 2.4), and the format can be selected from the Command Window
item in the preferences list.

Alternately, a user can use the format command to change the preferences.
The format command changes the default format according to the values given in
Table 2.3. The default format can be modified to display more significant digits of
data, force the display to be in scientific notation, display data to two decimal digits,
or eliminate extra line feeds to get more data visible in the Command Window at a
single time. Experiment with the commands in Table 2.3 for yourself.

Which of these ways to change the data format is better? If you are working
directly at the computer, it is probably easier to use the Toolbar. On the other hand, if
you are writing programs, it is probably better to use the format command, because
it can be embedded directly into a program.

Figure 2.4 Selecting the desired numeric format within the Command Window
preferences.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Displaying Output Data | 47

Table 2.3: Output Display Formats

Format Command Results Example1

format short 4 digits after decimal (default format) 12.3457

format long 14 digits after decimal 12.34567890123457

format short e 5 digits plus exponent 1.2346e+001

format short g 5 total digits with or without exponent 12.346

format long e 15 digits plus exponent 1.234567890123457e+001

format long g 15 total digits with or without exponent 12.3456789012346

format bank “dollars and cents” format 12.35

format hex hexadecimal display of bits 4028b0fcd32f707a

format rat approximate ratio of small integers 1000/81

format compact suppress extra line feeds

format loose restore extra line feeds

format + Only signs are printed +

1The data value used for the example is 12.345678901234567 in all cases.

2.6.2 The disp Function

Another way to display data is with the disp function. The disp function accepts
an array argument and displays the value of the array in the Command Window. If the
array is of type char, then the character string contained in the array is printed out.

This function is often combined with the functions num2str (convert a number
to a string) and int2str (convert an integer to a string) to create messages to be
displayed in the Command Window. For example, the following MATLAB state-
ments will display “The value of pi 5 3.1416” in the Command Window. The first
statement creates a string array containing the message, and the second statement
displays the message.

str = ['The value of pi = ' num2str(pi)];
disp (str);

2.6.3 Formatted Output with the fprintf Function

An even more flexible way to display data is with the fprintf function. The
fprintf function displays one or more values together with related text and lets
the programmer control the way that the displayed value appears. The general form
of this function when it is used to print to the Command Window is:

fprintf(format,data)

where format is a string describing the way the data is to be printed, and data
is one or more scalars or arrays to be printed. The format is a character string

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 | Chapter 2 MATLAB Basics

containing text to be printed plus special characters describing the format of the data.
For example, the function

fprintf('The value of pi is %f \n',pi)

will print out 'The value of pi is 3.141593' followed by a line feed.
The characters %f are called conversion characters; they indicate that the value in
the data list should be printed out in floating point format at that location in the for-
mat string. The characters \n are escape characters; they indicate that a line feed
should be issued so that the following text starts on a new line. There are many types
of conversion characters and escape characters that may be used in an fprintf
function. A few of them are listed in Table 2.4, and a complete list can be found in
Chapter 11.

It is also possible to specify the width of the field in which a number will be
displayed and the number of decimal places to display. This is done by specifying
the the width and precision after the % sign and before the f. For example,
the function

fprintf('The value of pi is %6.2f \n',pi)

will print out 'The value of pi is 3.14' followed by a line feed. The
conversion characters %6.2f indicate that the first data item in the function should
be printed out in floating point format in a field six characters wide, including two
digits after the decimal point.

The fprintf function has one very significant limitation: it only displays the
real portion of a complex value. This limitation can lead to misleading results when
calculations produce complex answers. In those cases, it is better to use the disp
function to display answers.

For example, the following statements calculate a complex value x and display
it using both fprintf and disp.

x = 2 * (1 - 2*i)ˆ3;
str = ['disp: x = ' num2str(x)];
disp(str);
fprintf('fprintf: x = %8.4f\n',x);

Table 2.4: Common Special Characters in fprintf
Format Strings

Format String Results

%d Display value as an integer.

%e Display value in exponential format.

%f Display value in floating point format.

%g Display value in either floating point or exponential format,
whichever is shorter.

\n Skip to a new line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.7 Data Files | 49

The results printed out by these statements are

disp: x = -22+4i
fprintf: x = -22.0000

Note that the fprintf function ignored the imaginary part of the answer.

Programming Pitfalls

The fprintf function only displays the real part of a complex number, which can
produce misleading answers when working with complex values.

2.7 Data Files

There are many ways to load and save data files in MATLAB, most of which will be
addressed in Chapter 11. For the moment, we will consider only the load and save
commands, which are the simplest ones to use.

The save command saves data from the current MATLAB workspace into a
disk file. The most common form of this command is

save filename var1 var2 var3

where filename is the name of the file where the variables are saved, and var1,
var2, and so forth are the variables to be saved in the file. By default, the file name
will be given the extension “mat”, and such data files are called MAT-files. If no
variables are specified, then the entire contents of the workspace are saved.

MATLAB saves MAT-files in a special compact format which preserves many
details, including the name and type of each variable, the size of each array, and all
data values. A MAT-file created on any platform (PC, Mac, Unix, or Linux) can be
read on any other platform, so MAT-files are a good way to exchange data between
computers if both computers run MATLAB. Unfortunately, the MAT-file is in a
format that cannot be read by other programs. If data must be shared with other
programs, then the -ascii option should be specified, and the data values will
be written to the file as ASCII character strings separated by spaces. However, the
special information such as variable names and types are lost when the data is saved
in ASCII format, and the resulting data file will be much larger.

For example, suppose the array x is defined as

 x =[1.23 3.14 6.28; -5.1 7.00 0];

Then the command “save x.dat x –ascii” will produce a file named x.dat
containing the following data:

 1.2300000e+000 3.1400000e+000 6.2800000e+000
 -5.1000000e+000 7.0000000e+000 0.0000000e+000

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 | Chapter 2 MATLAB Basics

This data is in a format that can be read by spreadsheets or by programs written in
other computer languages, so it makes it easy to share data between MATLAB pro-
grams and other applications.

MATLAB doesn’t care what file extension is used for ASCII files. However, it
is better for the user if a consistent naming convention is used, and an extension of
“dat” is a common choice for ASCII files.

The load command is the opposite of the save command. It loads data from
a disk file into the current MATLAB workspace. The most common form of this
command is

load filename

where filename is the name of the file to be loaded. If the file is a MAT-file, then
all of the variables in the file will be restored, with the names and types the same as
before. If a list of variables is included in the command, then only those variables
will be restored. If the given filename has no extension, or if the file extension
is .mat, then the load command will treat the file as a MAT-file.

MATLAB can load data created by other programs in comma- or space-separated
ASCII format. If the given filename has any file extension other than .mat, then
the load command will treat the file as an ASCII file. The contents of an ASCII file
will be converted into a MATLAB array having the same name as the file (without
the file extension) that the data was loaded from. For example, suppose that an ASCII
data file named x.dat contains the following data:

 1.23 3.14 6.28
-5.1 7.00 0

Good Programming Practice

Save ASCII data files with a “dat” file extension to distinguish them from MAT-files,
which have a “mat” file extension.

Good Programming Practice

If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will only be used in MATLAB, save the
data in MAT-file format.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.8 Scalar and Array Operations | 51

Then the command “load x.dat” will create a 2 3 3 array named x in the current
workspace, containing these data values.

The load statement can be forced to treat a file as a MAT-file by specifying
the –mat option. For example, the statement

load –mat x.dat

would treat file x.dat as a MAT-file even though its file extension is not .mat.
Similarly, the load statement can be forced to treat a file as an ASCII file by speci-
fying the –ascii option. These options allow the user to load a file properly even if
its file extension doesn’t match the MATLAB conventions.

Quiz 2.3

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.6 and 2.7. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.
1. How would you tell MATLAB to display all real values in exponential

format with 15 significant digits?
2. What do the following sets of statements do? What is the output from them?

(a) radius = input('Enter circle radius:\n');
area = pi * radiusˆ2;
str = ['The area is ' num2str(area)];
disp(str);

(b) value = int2str(pi);
disp(['The value is ' value '!']);

3. What do the following sets of statements do? What is the output from them?

value = 123.4567e2;
fprintf('value = %e\n',value);
fprintf('value = %f\n',value);
fprintf('value = %g\n',value);
fprintf('value = %12.4f\n',value);

2.8 Scalar and Array Operations

Calculations are specified in MATLAB with an assignment statement, whose general
form is

variable_name = expression;

The assignment statement calculates the value of the expression to the right
of the equal sign and assigns that value to the variable named on the left of the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 | Chapter 2 MATLAB Basics

equal sign. Note that the equal sign does not mean equality in the usual sense of
the word. Instead, it means: store the value of expression into location
variable_name. For this reason, the equal sign is called the assignment
operator. A statement like

ii = ii + 1;

is complete nonsense in ordinary algebra, but makes perfect sense in MATLAB. It
means: take the current value stored in variable ii, add one to it, and store the result
back into variable ii.

2.8.1 Scalar Operations

The expression to the right of the assignment operator can be any valid combina-
tion of scalars, arrays, parentheses, and arithmetic operators. The standard arithmetic
operations between two scalars are given in Table 2.5.

Parentheses may be used to group terms whenever desired. When parentheses
are used, the expressions inside the parentheses are evaluated before the expressions
outside the parentheses. For example, the expression 2 ˆ ((8+2)/5) is evaluated
as shown below

2 ˆ ((8 + 2)/5) = 2 ˆ (10/5)
 = 2 ˆ 2
 = 4

2.8.2 Array and Matrix Operations

MATLAB supports two types of operations between arrays, known as array
operations and matrix operations. Array operations are operations performed
between arrays on an element-by-element basis. That is, the operation is performed

on corresponding elements in the two arrays. For example, if a 5 31 2

3 44 and

b 5 321 3

22 14, then a + b 5 30 5

1 54. Note that for these operations to work, the

Table 2.5: Arithmetic Operations between Two Scalars

Operation Algebraic Form MATLAB Form

Addition a 1 b a + b

Subtraction a – b a - b

Multiplication a 3 b a * b

Division
a

b
a / b

Exponentiation ab a ˆ b

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.8 Scalar and Array Operations | 53

number of rows and columns in both arrays must be the same. If not, MATLAB will
generate an error message.

Array operations may also occur between an array and a scalar. If the operation
is performed between an array and a scalar, the value of the scalar is applied to every

element of the array. For example, if a 5 31 2

3 44 , then a 1 4 5 35 6

7 84

.

In contrast, matrix operations follow the normal rules of linear algebra, such
as matrix multiplication. In linear algebra, the product c = a × b is defined by
the equation

c si, jd 5 o
n

k51

a si, kd b sk, jd

where n is the number of columns on matrix a and the number of rows in matrix b.

For example, if a 5 31 2

3 44 and b 5 321 3

22 14, then a × b = 3 25 5

211 134.

Note that for matrix multiplication to work, the number of columns in matrix a must
be equal to the number of rows in matrix b.

MATLAB uses a special symbol to distinguish array operations from matrix
operations. In the cases where array operations and matrix operations have a dif-
ferent definition, MATLAB uses a period before the symbol to indicate an array
operation (for example, .*). A list of common array and matrix operations is given
in Table 2.6.

Table 2.6: Common Array and Matrix Operations

Operation MATLAB Form Comments

Array Addition a + b Array addition and matrix addition are identical.

Array Subtraction a - b Array subtraction and matrix subtraction are identical.

Array Multiplication a .* b Element-by-element multiplication of a and b. Both
arrays must be the same shape, or one of them must be
a scalar.

Matrix Multiplication a * b Matrix multiplication of a and b. The number of col-
umns in a must equal the number of rows in b.

Array Right Division a ./ b Element-by-element division of a and b:a(i,j) /
b(i,j). Both arrays must be the same shape, or one
of them must be a scalar.

Array Left Division a .\ b Element-by-element division of a and b, but with b in
the numerator: b(i,j) / a(i,j). Both arrays must
be the same shape, or one of them must be a scalar.

Matrix Right Division a / b Matrix division defined by a * inv(b), where
inv(b) is the inverse of matrix b.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 | Chapter 2 MATLAB Basics

New users often confuse array operations and matrix operations. In some cases,
substituting one for the other will produce an illegal operation, and MATLAB
will report an error. In other cases, both operations are legal, and MATLAB will
perform the wrong operation and come up with a wrong answer. The most com-
mon problem happens when working with square matrices. Both array multiplica-
tion and matrix multiplication are legal for two square matrices of the same size,
but the resulting answers are totally different. Be careful to specify exactly what
you want!

Table 2.6: Common Array and Matrix Operations (Continued)

Operation MATLAB Form Comments

Matrix Left Division a \ b Matrix division defined by inv(a) * b, where
inv(a) is the inverse of matrix a.

Array Exponentiation a .^ b Element-by-element exponentiation of a and b:
a(i,j) ˆ b(i,j). Both arrays must be the same
shape, or one of them must be a scalar.

Programming Pitfalls

Be careful to distinguish between array operations and matrix operations in your
MATLAB code. It is especially common to confuse array multiplication with matrix
multiplication.

Example 2.1—Assume that a, b, c, and d are defined as follows

 a 5 31 0

2 14 b 5 321 2

0 14
 c 5 33

24 d 5 5

What is the result of each of the following expressions?

(a) a + b (e) a + c
(b) a .* b (f) a + d
(c) a * b (g) a .* d
(d) a * c (h) a * d

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.8 Scalar and Array Operations | 55

Solution
(a) This is array or matrix addition: a 1 b 5 30 2

2 24
(b) This is element-by-element array multiplication: a.* b 5 321 0

0 14
(c) This is matrix multiplication: a * b 5 321 2

22 54
(d) This is matrix multiplication: a * c 5 33

84
(e) This operation is illegal, since a and c have different numbers of columns.

(f) This is addition of an array to a scalar: a 1 d 5 36 5

7 64
(g) This is array multiplication: a.* d 5 3 5 0

10 54
(h) This is matrix multiplication: a * d 5 3 5 0

10 54

▶

Good Programming Practice:

Use the left division operator to solve systems of simultaneous equations.

The matrix left division operation has a special significance that we must understand.
A 3 3 3 set of simultaneous linear equations takes the form

a
11

x
1

1 a
12

x
2

1 a
13

x
3

5 b
1

a
21

x
1

1 a
22

x
2

1 a
23

x
3

5 b
2
 (2.1)

a
31

x
1

1 a
32

x
2

1 a
33

x
3

5 b
3

which can be expressed as

Ax 5 B (2.2)

where A 5 3
a

11
a

12
a

13

a
21

a
22

a
23

a
31

a
32

a
33
4, B 5 3

b
1

b
2

b
3

4, and x 5 3
x

1

x
2

x
3
4.

Equation (2.2) can be solved for x using linear algebra. If A is a non-singular (i.e.,
invertible) matrix, the result is

x 5 A21B (2.3)

Since the left division operator A \ B is defined to be inv(A) * B, the left division
operator solves a system of simultaneous equations in a single statement!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 | Chapter 2 MATLAB Basics

2.9 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For
example, consider the equation for the distance traveled by an object starting from
rest and subjected to a constant acceleration:

distance = 0.5 * accel * time ˆ 2

There are two multiplications and an exponentiation in this expression. In such an
expression, it is important to know the order in which the operations are evaluated.
If exponentiation is evaluated before multiplication, this expression is equivalent to

distance = 0.5 * accel * (time ˆ 2)

But if multiplication is evaluated before exponentiation, this expression is equivalent to

distance = (0.5 * accel * time) ˆ 2

These two equations have different results, and we must be able to unambiguously
distinguish between them.

To make the evaluation of expressions unambiguous, MATLAB has established
a series of rules governing the hierarchy or order in which operations are evaluated
within an expression. The rules generally follow the normal rules of algebra. The
order in which the arithmetic operations are evaluated is given in Table 2.7.

Table 2.7: Hierarchy of Arithmetic Operations

Precedence Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

2 All exponentials are evaluated, working from left to right.

3 All multiplications and divisions are evaluated, working from left
to right.

4 All additions and subtractions are evaluated, working from left to right.

Example 2.2—Variables a, b, c, and d have been initialized to the
following values

a = 3; b = 2; c = 5; d = 3;

Evaluate the following MATLAB assignment statements:

(a) output = a*b+c*d;
(b) output = a*(b+c)*d;
(c) output = (a*b)+(c*d);
(d) output = aˆbˆd;
(e) output = aˆ(bˆd);

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.9 Hierarchy of Operations | 57

Solution
(a) Expression to evaluate: output = a*b+c*d;

Fill in numbers: output = 3*2+5*3;
First, evaluate multiplications
and divisions from left to right: output = 6 +5*3;
 output = 6 + 15;
Now evaluate additions: output = 21

(b) Expression to evaluate: output = a*(b+c)*d;
Fill in numbers: output = 3*(2+5)*3;
First, evaluate parentheses: output = 3*7*3;
Now, evaluate multiplications
and divisions from left to right: output = 21*3;
 output = 63;

(c) Expression to evaluate: output = (a*b)+(c*d);
Fill in numbers: output = (3*2)+(5*3);
First, evaluate parentheses: output = 6 + 15;
Now evaluate additions: output = 21

(d) Expression to evaluate: output = aˆbˆd;
Fill in numbers: output = 3ˆ2ˆ3;
Evaluate exponentials
from left to right: output = 9ˆ3;
 output = 729;

(e) Expression to evaluate: output = aˆ(bˆd);
Fill in numbers: output = 3ˆ(2ˆ3);
First, evaluate parentheses: output = 3ˆ8;
Now, evaluate exponential: output = 6561;

Good Programming Practice
Use parentheses as necessary to make your equations clear and easy to understand.

If parentheses are used within an expression, then the parentheses must be bal-
anced. That is, there must be an equal number of open parentheses and close paren-
theses within the expression. It is an error to have more of one type than the other.

▶

As we see above, the order in which operations are performed has a major effect
on the final result of an algebraic expression.

It is important that every expression in a program be made as clear as possible.
Any program of value must not only be written but also be maintained and modi-
fied when necessary. You should always ask yourself: “Will I easily understand this
expression if I come back to it in six months? Can another programmer look at my
code and easily understand what I am doing?” If there is any doubt in your mind, use
extra parentheses in the expression to make it as clear as possible.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58 | Chapter 2 MATLAB Basics

Errors of this sort are usually typographical, and they are caught by the MATLAB
interpreter when the command is executed. For example, the expression

(2 + 4) / 2)

produces an error when the expression is executed.

Quiz 2.4

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.8 and 2.9. If you have trouble with the quiz, reread the
sections, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.
1. Assume that a, b, c, and d are defined as follows, and calculate the results

of the following operations if they are legal. If an operation is, explain why
it is illegal.

a 5 3 2 1

21 24 b 5 30 2 1

3 14
c 5 31

24 d 5 23

(a) result = a .* c;
(b) result = a * [c c];
(c) result = a .* [c c];
(d) result = a + b * c;
(e) result = a + b .* c;

2. Solve for x in the equation Ax 5 B, where A 5 3
1 2 1

2 3 2

21 0 1
4

and B 5 3
1

1

0
4.

2.10 Built-in MATLAB Functions

In mathematics, a function is an expression that accepts one or more input values
and calculates a single result from them. Scientific and technical calculations usu-
ally require functions that are more complex than the simple addition, subtraction,
multiplication, division, and exponentiation operations that we have discussed
so far. Some of these functions are very common and are used in many different
technical disciplines. Others are rarer and specific to a single problem or a small
number of problems. Examples of very common functions are the trigonometric
functions, logarithms, and square roots. Examples of rarer functions include the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.10 Built-in MATLAB Functions | 59

hyperbolic functions, Bessel functions, and so forth. One of MATLAB’s greatest
strengths is that it comes with an incredible variety of built-in functions ready
for use.

2.10.1 Optional Results

Unlike mathematical functions, MATLAB functions can return more than one result
to the calling program. The function max is an example of such a function. This
function normally returns the maximum value of an input vector, but it can also return
a second argument containing the location in the input vector where the maximum
value was found. For example, the statement

maxval = max ([1 –5 6 –3])

returns the result maxval 5 6. However, if two variables are provided to store
results in, the function returns both the maximum value and the location of the max-
imum value.

[maxval, index] = max ([1 –5 6 –3])

produces the results maxval 5 6 and index 5 3.

2.10.2 Using MATLAB Functions with Array Inputs

Many MATLAB functions are defined for one or more scalar inputs and produce a
scalar output. For example, the statement y = sin(x) calculates the sine of x and
stores the result in y. If these functions receive an array of input values, then they will
calculate an array of output values on an element-by-element basis. For example, if
x = [0 pi/2 pi 3*pi/2 2*pi], then the statement

y = sin(x)

will produce the result y = [0 1 0 –1 0] .

2.10.3 Common MATLAB Functions

A few of the most common and useful MATLAB functions are shown in Table 2.8.
These functions will be used in many examples and homework problems. If you need
to locate a specific function not on this list, you can search for the function alphabet-
ically or by subject using the MATLAB Help Browser.

Note that, unlike most computer languages, many MATLAB functions work
correctly for both real and complex inputs. MATLAB functions automatically calcu-
late the correct answer, even if the result is imaginary or complex. For example, the
function sqrt(-2) will produce a runtime error in languages such as C11, Java,
or Fortran. In contrast, MATLAB correctly calculates the imaginary answer:

» sqrt(-2)
ans =
 0 + 1.4142i

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60 | Chapter 2 MATLAB Basics

Table 2.8: Common MATLAB Functions
Function Description

Mathematical functions

vabs(x) Calculates uxu.
acos(x) Calculates cos21x (results in radians).

acosd(x) Calculates cos21x (results in degrees).

angle(x) Returns the phase angle of the complex value x, in radians.

asin(x) Calculates sin21x (results in radians).

asind(x) Calculates sin21x (results in degrees).

atan(x) Calculates tan21x (results in radians).

atand(x) Calculates tan21x (results in degrees).

atan2(y,x) Calculates u 5 tan21

y

x
 over all four quadrants of the circle,

taking into account the boundaries between the quadrants
(results in radians in the range 2p # u # p).

atan2d(y,x) Calculates u 5 tan21

y

x
 over all four quadrants of the circle,

taking into account the boundaries between the quadrants
(results in degrees in the range 21808 # u # 1808).

cos(x) Calculates cos x, with x in radians.

cosd(x) Calculates cos x, with x in degrees.

exp(x) Calculates e
x.

log(x) Calculates the natural logarithm log
e
x

[value,index] = max(x) Returns the maximum value in vector x, and optionally the
location of that value.

[value,index] = min(x) Returns the minimum value in vector x, and optionally the
location of that value.

mod(x,y) Remainder or modulo function.

sin(x) Calculates sin x, with x in radians.

sind(x) Calculates sin x, with x in degrees.

sqrt(x) Calculates the square root of x.

tan(x) Calculates tan x, with x in radians.

tand(x) Calculates tan x, with x in degrees.

Rounding functions
ceil(x) Rounds x to the nearest integer towards positive infinity:

ceil(3.1) = 4 and ceil(-3.1) = -3.

fix(x) Rounds x to the nearest integer towards zero: fix(3.1) = 3
and fix(-3.1) = -3.

floor(x) Rounds x to the nearest integer towards minus infinity:
floor(3.1) = 3 and
floor(-3.1) = -4.

round(x) Rounds x to the nearest integer.
(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.11 Introduction to Plotting | 61

2.11 Introduction to Plotting

MATLAB’s extensive, device-independent plotting capabilities are one of its most
powerful features. They make it very easy to plot any data at any time. To plot a data
set, just create two vectors containing the x and y values to be plotted, and use the
plot function.

For example, suppose that we wish to plot the function y 5 x2 2 10x 1 15 for
values of x between 0 and 10. It takes only three statements to create this plot. The
first statement creates a vector of x values between 0 and 10 using the colon operator.
The second statement calculates the y values from the equation (note that we are
using array operators here so that this equation is applied to each x value on an
element-by-element basis). Finally, the third statement creates the plot.

x = 0:1:10;
y = x.ˆ2 – 10.*x + 15;
plot(x,y);

When the plot function is executed, MATLAB opens a Figure Window and
displays the plot in that window. The plot produced by these statements is shown in
Figure 2.5.

2.11.1 Using Simple xy Plots

As we saw above, plotting is very easy in MATLAB. Any pair of vectors can be plot-
ted versus each other as long as both vectors have the same length. However, the result
is not a finished product, since there are no titles, axis labels, or grid lines on the plot.

Titles and axis labels can be added to a plot with the title, xlabel, and
ylabel functions. Each function is called with a string containing the title or
label to be applied to the plot. Grid lines can be added or removed from the plot
with the grid command: grid on turns on grid lines, and grid off turns off
grid lines. For example, the statements that follow generate a plot of the function
y 5 x2 2 10x 1 15 with titles, labels, and gridlines. The resulting plot is shown in
Figure 2.6.

Table 2.8: Common MATLAB Functions (Continued)

String conversion functions
char(x) Converts a matrix of numbers into a character string. For ASCII

characters the matrix should contain numbers ≤ 127.

double(x) Converts a character string into a matrix of numbers.

int2str(x) Converts x into an integer character string.

num2str(x) Converts x into a character string.

str2num(s) Converts character string s into a numeric array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 | Chapter 2 MATLAB Basics

x = 0:1:10;
y = x.ˆ2 – 10.*x + 15;
plot(x,y);
title ('Plot of y = x.ˆ2 – 10.*x + 15');
xlabel ('x');
ylabel ('y');
grid on;

2.11.2 Printing a Plot

Once created, a plot may be printed on a printer with the print command, by click-
ing on the “print” icon in the Figure Window, or by selecting the File/Print menu
option in the Figure Window.

The print command is especially useful because it can be included in a
MATLAB program, allowing the program to automatically print graphical images.
The form of the print command is:

print <options> <filename>

If no filename is included, this command prints a copy of the current figure on the
system printer. If a filename is specified, the command prints a copy of the current
figure to the specified file.

Figure 2.5 Plot of y 5 x2 2 10x 1 15 from 0 to 10.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.11 Introduction to Plotting | 63

2.11.3 Exporting a Plot as a Graphical Image

The print command can be used to save a plot as a graphical image by specifying
appropriate options and a file name.

print <options> <filename>

There are many different options that specify the format of the output sent to a
file. One very important option is –dpng. This option specifies that the output will
be to a file in Portable Network Graphics Format (PNG). Since this format can be
imported into all of the important word processors on PC, Mac, Unix, and Linux
platforms, it is a great way to include MATLAB plots in a document. The following
command will create a 300 dot-per-inch PNG image of the current figure and store it
in a file called my_image.png:

print –dpng –r300 my_image.png

Note that the –png specifies that the image should be in PNG format, and the
–r300 specifies that the resolution should be 300 dots per inch.

Other options allow image files to be created in other formats. Some of the most
important image file formats are given in Table 2.9.

Figure 2.6 Plot of y 5 x2 2 10x 1 15 with a title, axis labels, and gridlines.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 | Chapter 2 MATLAB Basics

In addition, the File/Save As menu option on the Figure Window can be used to
save a plot as a graphical image. In this case, the user selects the file name and the
type of image from a standard dialog box (see Figure 2.7).

Table 2.9: print Options to Create Graphics Files

Option Description

-deps Creates a monochrome encapsulated postscript image.

-depsc Creates a color encapsulated postscript image.

-djpeg Creates a JPEG image.

-dpng Creates a Portable Network Graphic color image.

-dtiff Creates a compressed TIFF image.

Figure 2.7 Exporting a plot as an image file using the File/Save As menu item.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.11 Introduction to Plotting | 65

2.11.4 Multiple Plots

It is possible to plot multiple functions on the same graph by simply including more
than one set of (x, y) values in the plot function. For example, suppose that we wanted
to plot the function f(x) 5 sin 2x and its derivative on the same plot. The derivative
of f(x) 5 sin 2x is:

d

dt
 sin 2x 5 2 cos 2x (2.4)

To plot both functions on the same axes, we must generate a set of x values and
the corresponding y values for each function. Then to plot the functions, we would
simply list both sets of (x, y) values in the plot function as shown below.

x = 0:pi/100:2*pi;
y1 = sin(2*x);
y2 = 2*cos(2*x);
plot(x,y1,x,y2);

The resulting plot is shown in Figure 2.8.

Figure 2.8 Plot of f sxd 5 sin 2 x and f sxd 5 2 cos 2 x on the same axes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66 | Chapter 2 MATLAB Basics

2.11.5 Line Color, Line Style, Marker Style, and Legends

MATLAB allows a programmer to select the color of a line to be plotted, the style
of the line to be plotted, and the type of marker to be used for data points on the
line. These traits may be selected using an attribute character string after the x and y
vectors in the plot function.

The attribute character string can have up to three characters, with the first
character specifying the color of the line, the second character specifying the style of
the marker, and the last character specifying the style of the line. The characters for
various colors, markers, and line styles are shown in Table 2.10.

The attribute characters may be mixed in any combination, and more than one
attribute string may be specified if more than one pair of (x, y) vectors are included
in a single plot function call. For example, the following statements will plot the
function y 5 x2 2 10x 1 15 with a dashed red line and include the actual data points
as blue circles (see Figure 2.9).

x = 0:1:10;
y = x.ˆ2 – 10.*x + 15;
plot(x,y,'r--',x,y,'bo');

Legends may be created with the legend function. The basic form of this
function is

legend('string1','string2',..., pos)

Table 2.10: Table of Plot Colors, Marker Styles, and Line
Styles

Color Marker Style Line Style

y yellow . point - solid

m magenta o circle : dotted

c cyan x x-mark -. dash-dot

r red + plus -- dashed

g green * star <none> no line

b blue s square

w white d diamond

k black v triangle (down)

ˆ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

<none> no marker

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.11 Introduction to Plotting | 67

where string1, string2, and so forth are the labels associated with the lines
plotted, and pos is a string specifying where to place the legend. The possible values
for pos are given in Table 2.11, and are shown graphically in Figure 2.10.

The command legend off will remove an existing legend.
An example of a complete plot is shown in Figure 2.11, and the statements to

produce that plot are shown below. They plot the function f sxd 5 sin 2 x and its
derivative f 9sxd 5 2 cos 2 x on the same axes, with a solid black line for f(x) and a
dashed line for its derivative. The plot includes a title, axis labels, a legend in the top
left corner of the plot, and grid lines.

x = 0:pi/100:2*pi;
y1 = sin(2*x);
y2 = 2*cos(2*x);
plot(x,y1,'k-',x,y2,'b--');
title ('Plot of f(x) = sin(2x) and its derivative');
xlabel ('x');
ylabel ('y');
legend ('f(x)','d/dx f(x)','Location','NW')
grid on;

Figure 2.9 Plot of the function y 5 x2 2 10x 1 15 with a dashed line,
showing the actual data points as circles.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 | Chapter 2 MATLAB Basics

Table 2.11: Values of pos in the legend Command

Value Legend Location

'NW' Above and to the left

'NL' Above top left corner

'NC' Above center of top edge

'NR' Above top right corner

'NE' Above and to right

'TW' At top and to left

'TL' Top left corner

'TC' At top center

'TR' Top right corner

'TE' At top and to right

'MW' At middle and to left

'ML' Middle left edge

'MC' Middle and center

'MR' Middle right edge

'ME' At middle and to right

'BW' At bottom and to left

'BL' Bottom left corner

'BC' At bottom center

'BR' Bottom right corner

'BE' At bottom and to right

'SW' Below and to left

'SL' Below bottom left corner

'SC' Below center of bottom edge

'SR' Below bottom right corner

'SE' Below and to right

NW

TW TL TC TR TE

MW ML MC MR ME

BW BL BC BR BE

SW SL SC SR SE

NL NC NR NE
Limits of
Plot Axes

Figure 2.10 Possible locations
for a plot legend.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.11 Introduction to Plotting | 69

2.11.6 Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are four
possible combinations of linear and logarithmic scales on the x- and y- axes, and each
combination is produced by a separate function.

1. The plot function plots both x and y data on linear axes.
2. The semilogx function plots x data on logarithmic axes and y data on

linear axes.
3. The semilogy function plots x data on linear axes and y data on

logarithmic axes.
4. The loglog function plots both x and y data on logarithmic axes.

All of these functions have identical calling sequences—the only difference
is the type of axis used to plot the data. Examples of each plot are shown in
Figure 2.12.

Figure 2.11 A complete plot with title, axis labels, legend, grid, and multiple
line styles.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70 | Chapter 2 MATLAB Basics

2.12 Examples

The following examples illustrate problem solving with MATLAB.

Example 2.3—Temperature Conversion

Design a MATLAB program that reads an input temperature in degrees Fahrenheit,
converts it to an absolute temperature in kelvin, and writes out the result.

Solution The relationship between temperature in degrees Fahrenheit (°F) and
temperature in kelvins (K) can be found in any physics textbook. It is

T sin kelvind 5 35

9
 T sin 8 Fd 2 32.04 1 273.15 (2.5)

The physics books also give us sample values on both temperature scales, which we
can use to check the operation of our program. Two such values are:

The boiling point of water 212° F 373.15 K
The sublimation point of dry ice -110° F 194.26 K

Our program must perform the following steps:

1. Prompt the user to enter an input temperature in °F.
2. Read the input temperature.

▶

Figure 2.12 Comparison of linear, semilog x, semilog y, and log-log plots.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.12 Examples | 71

3. Calculate the temperature in kelvin from Equation (2.5).
4. Write out the result and stop.

We will use function input to get the temperature in degrees Fahrenheit and
function fprintf to print the answer. The resulting program is shown below.

% Script file: temp_conversion
%
% Purpose:
% To convert an input temperature from degrees
% Fahrenheit to an output temperature in kelvins.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/03/14 S. J. Chapman Original code
%
% Define variables:
% temp_f -- Temperature in degrees Fahrenheit
% temp_k -- Temperature in kelvins

% Prompt the user for the input temperature.
temp_f = input('Enter the temperature in degrees Fahrenheit:');

% Convert to kelvin.
temp_k = (5/9) * (temp_f - 32) + 273.15;

% Write out the result.
fprintf('%6.2f degrees Fahrenheit = %6.2f kelvins.\n', ...

temp_f,temp_k);

To test the completed program, we will run it with the known input values given
above. Note that user inputs appear in bold face below.

» temp_conversion
Enter the temperature in degrees Fahrenheit: 212
212.00 degrees Fahrenheit = 373.15 kelvins.
» temp_conversion
Enter the temperature in degrees Fahrenheit: -110
-110.00 degrees Fahrenheit = 194.26 kelvins.

The results of the program match the values from the physics book.

▶

In the above program, we echoed the input values and printed the output values
together with their units. The results of this program only make sense if the units
(degrees Fahrenheit and kelvins) are included together with their values. As a general
rule, the units associated with any input value should always be printed along with

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72 | Chapter 2 MATLAB Basics

the prompt that requests the value, and the units associated with any output value
should always be printed along with that value.

Good Programming Practice
Always include the appropriate units with any values that you read or write in
a program.

The above program exhibits many of the good programming practices that we
have described in this chapter. It includes a data dictionary defining the meanings of
all of the variables in the program. It also uses descriptive variable names, and appro-
priate units are attached to all printed values.

Example 2.4—Electrical Engineering: Maximum Power Transfer to
a Load

Figure 2.13 shows a voltage source V 5 120 V with an internal resistance R
S
 of 50 Ω

supplying a load of resistance R
L
. Find the value of load resistance R

L
 that will result

in the maximum possible power being supplied by the source to the load. How much
power will be supplied in this case? Also, plot the power supplied to the load as a
function of the load resistance R

L
.

Solution In this program, we need to vary the load resistance R
L
 and compute

the power supplied to the load at each value of R
L
. The power supplied to the load

resistance is given by the equation

P
L

5 I
2R

L
 (2.6)

▶

Load

Voltage Source

RL

RS

V
2

1

Figure 2.13 A voltage source with a voltage V and an internal resistance RS
supplying a load of resistance RL.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.12 Examples | 73

where I is the current supplied to the load. The current supplied to the load can be
calculated by Ohm’s Law:

I 5
V

R
TOT

5
V

R
S

1 R
L

 (2.7)

The program must perform the following steps:

1. Create an array of possible values for the load resistance R
L
. The array will

vary R
L
 from 1 Ω to 100 Ω in 1 Ω steps.

2. Calculate the current for each value of R
L
.

3. Calculate the power supplied to the load for each value of R
L
.

4. Plot the power supplied to the load for each value of R
L
 and determine the

value of load resistance resulting in the maximum power.

The final MATLAB program is shown below.

% Script file: calc_power.m
%
% Purpose:
% To calculate and plot the power supplied to a load as
% a function of the load resistance.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/03/14 S. J. Chapman Original code
%
% Define variables:
% amps -- Current flow to load (amps)
% pl -- Power supplied to load (watts)
% rl -- Resistance of the load (ohms)
% rs -- Internal resistance of the power source

(ohms)
% volts -- Voltage of the power source (volts)

% Set the values of source voltage and internal resistance
volts = 120;
rs = 50;

% Create an array of load resistances
rl = 1:1:100;

% Calculate the current flow for each resistance
amps = volts ./ (rs + rl);

% Calculate the power supplied to the load
pl = (amps .ˆ 2) .* rl;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 | Chapter 2 MATLAB Basics

% Plot the power versus load resistance
plot(rl,pl);
title('Plot of power versus load resistance');
xlabel('Load resistance (ohms)');
ylabel('Power (watts)');
grid on;

When this program is executed, the resulting plot is shown in Figure 2.14. From
this plot, we can see that the maximum power is supplied to the load when the load’s
resistance is 50 Ω. The power supplied to the load at this resistance is 72 watts.

Figure 2.14 Plot of power supplied to load versus load resistance.
▶

Note the use of the array operators .*, .ˆ, and ./ in the above program. These
operators cause the arrays amps and pl to be calculated on an element-by-element
basis.

Example 2.5—Carbon-14 Dating

A radioactive isotope of an element is a form of the element that is not stable. Instead,
it spontaneously decays into another element over a period of time. Radioactive
decay is an exponential process. If Q

0
 is the initial quantity of a radioactive substance

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.12 Examples | 75

at time t 5 0, then the amount of that substance which will be present at any time t
in the future is given by

Qstd 5 Q
0
e2lt (2.8)

where l is the radioactive decay constant.
Because radioactive decay occurs at a known rate, it can be used as a clock to

measure the time since the decay started. If we know the initial amount of the radio-
active material Q

0
 present in a sample and the amount of the material Q left at the

current time, we can solve for t in Equation (2.8) to determine how long the decay
has been going on. The resulting equation is

t
decay

5 2
1

l
 log

e

Q

Q
0

 (2.9)

Equation (2.9) has practical applications in many areas of science. For example,
archaeologists use a radioactive clock based on carbon-14 to determine the time that
has passed since a once-living thing died. Carbon-14 is continually taken into the body
while a plant or animal is living, so the amount of it present in the body at the time of
death is assumed to be known. The decay constant l of carbon-14 is well known to be
0.00012097/year, so if the amount of carbon-14 remaining now can be accurately mea-
sured, then Equation (2.9) can be used to determine how long ago the living thing died.
The amount of carbon-14 remaining as a function of time is shown in Figure 2.15.

Figure 2.15 The radioactive decay of carbon-14 as a function of time. Notice that
50 percent of the original carbon-14 is left after about 5730 years have elapsed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 | Chapter 2 MATLAB Basics

Write a program that reads the percentage of carbon-14 remaining in a
sample, calculates the age of the sample from it, and prints out the result with
proper units.

Solution Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon-14 remaining in the
sample.

2. Read in the percentage.
3. Convert the percentage into the fraction

Q

Q
0

.

4. Calculate the age of the sample in years using Equation (2.9).
5. Write out the result and stop.

The resulting code is shown below.

% Script file: c14_date.m
%
% Purpose:
% To calculate the age of an organic sample from the
% percentage of the original carbon-14 remaining in
% the sample.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/05/14 S. J. Chapman Original code
%
% Define variables:
% age -- The age of the sample in years
% lambda -- The radioactive decay constant for
% carbon-14, in units of 1/years.
% percent -- The percentage of carbon-14 remaining
% at the time of the measurement
% ratio -- The ratio of the carbon-14 remaining at
% the time of the measurement to the
% original amount of carbon-14.

% Set decay constant for carbon-14
lambda = 0.00012097;

% Prompt the user for the percentage of C-14 remaining.
percent = input('Enter the percentage of carbon-14 remaining:\n');

% Perform calculations
ratio = percent / 100; % Convert to fractional ratio
age = (-1.0 / lambda) * log(ratio); % Get age in years

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.13 Debugging MATLAB Programs | 77

% Tell the user about the age of the sample.
string = ['The age of the sample is' num2str(age) 'years.'];
disp(string);

To test the completed program, we will calculate the time it takes for half of the
carbon-14 to disappear. This time is known as the half-life of carbon-14.

» c14_date
Enter the percentage of carbon-14 remaining:
50
The age of the sample is 5729.9097 years.

The CRC Handbook of Chemistry and Physics states that the half-life of
carbon-14 is 5730 years, so the output of the program agrees with the reference book.

▶

2.13 Debugging MATLAB Programs

There is an old saying that the only sure things in life are death and taxes. We can add
one more certainty to that list: If you write a program of any significant size, it won’t
work the first time you try it! Errors in programs are known as bugs, and the process
of locating and eliminating them is known as debugging. Given that we have written
a program and it is not working, how do we debug it?

Three types of errors are found in MATLAB programs. The first type of
error is a syntax error. Syntax errors are errors in the MATLAB statement itself,
such as spelling errors or punctuation errors. These errors are detected by the
MATLAB compiler the first time that an M-file is executed. For example, the
statement

x = (y + 3) / 2);

contains a syntax error because it has unbalanced parentheses. If this statement
appears in an M-file named test.m, the following message appears when test
is executed.

» test
??? x = (y + 3) / 2)
 |
Missing operator, comma, or semi-colon.

Error in ==> d:\book\matlab\chap1\test.m
On line 2 ==>

The second type of error is the run-time error. A run-time error occurs when an
illegal mathematical operation is attempted during program execution (for example,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 | Chapter 2 MATLAB Basics

attempting to divide by 0). These errors cause the program to return Inf or NaN,
which is then used in further calculations. The results of a program that contains
calculations using Inf or NaN are usually invalid.

The third type of error is a logical error. Logical errors occur when the program
compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are typographical
errors. Some typographical errors create invalid MATLAB statements. These errors
produce syntax errors that are caught by the compiler. Other typographical errors
occur in variable names. For example, the letters in some variable names might
have been transposed, or an incorrect letter might be typed. The result will be a
new variable, and MATLAB simply creates the new variable the first time that it
is referenced. MATLAB cannot detect this type of error. Typographical errors can
also produce logical errors. For example, if variables vel1 and vel2 are both used
for velocities in the program, then one of them might be inadvertently used instead
of the other one at some point. You must check for that sort of error by manually
inspecting the code.

Sometimes, a program will start to execute, but run-time errors or logical errors
occur during execution. In this case, there is either something wrong with the input
data or something wrong with the logical structure of the program. The first step in
locating this sort of bug should be to check the input data to the program. Either
remove semicolons from input statements or add extra output statements to verify
that the input values are what you expect them to be.

If the variable names seem to be correct and the input data is correct, then you
are probably dealing with a logical error. You should check each of your assignment
statements.

1. If an assignment statement is very long, break it into several smaller assign-
ment statements. Smaller statements are easier to verify.

2. Check the placement of parentheses in your assignment statements. It is a
very common error to have the operations in an assignment statement eval-
uated in the wrong order. If you have any doubts as to the order in which
the variables are being evaluated, add extra sets of parentheses to make your
intentions clear.

3. Make sure that you have initialized all of your variables properly.
4. Be sure that any functions you use are in the correct units. For example,

the input to trigonometric functions must be in units of radians,
not degrees.

If you are still getting the wrong answer, add output statements at various points
in your program to see the results of intermediate calculations. If you can locate the
point where the calculations go bad, then you know just where to look for the prob-
lem, which is 95% of the battle.

If you still cannot find the problem after all of the above steps, explain what
you are doing to another student or to your instructor, and let them look at the code.
It is very common for a person to see just what he or she expects to see when they
look at their own code. Another person can often quickly spot an error that you have
overlooked time after time.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.14 Summary | 79

MATLAB includes a special debugging tool called a symbolic debugger, which
is embedded into the Edit/Debug Window. A symbolic debugger is a tool that allows
you to walk through the execution of your program one statement at a time and to
examine the values of any variables at each step along the way. Symbolic debuggers
allow you to see all of the intermediate results without having to insert a lot of output
statements into your code. We will learn how to use MATLAB’s symbolic debugger
in Chapter 3.

2.14 Summary

In this chapter, we have presented many of the fundamental concepts required to
write functional MATLAB programs. We learned about the basic types of MATLAB
windows, the workspace, and how to get online help.

We introduced two data types: double and char. We also introduced assign-
ment statements, arithmetic calculations, intrinsic functions, input/output statements,
and data files.

The order in which MATLAB expressions are evaluated follows a fixed hierarchy,
with operations at a higher level evaluated before operations at lower levels. The
hierarchy of operations is summarized in Table 2.12.

The MATLAB language includes an extremely large number of built-in
functions to help us solve problems. This list of functions is much richer than
the list of functions found in other languages like Fortran or C, and it includes
device-independent plotting capabilities. A few of the common intrinsic func-
tions are summarized in Table 2.8, and many others will be introduced throughout
the remainder of the book. A complete list of all MATLAB functions is available
through the online Help Desk.

Good Programming Practice
To reduce your debugging effort, make sure that during your program design you:

1. Initialize all variables.
2. Use parentheses to make the functions of assignment statements clear.

Table 2.12: Hierarchy of Operations

Precedence Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

2 All exponentials are evaluated, working from left to right.

3 All multiplications and divisions are evaluated, working from left
to right.

4 All additions and subtractions are evaluated, working from left to right.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 | Chapter 2 MATLAB Basics

2.14.1 Summary of Good Programming Practice

Every MATLAB program should be designed so that another person who is familiar
with MATLAB can easily understand it. This is very important, since a good program
may be used for a long period of time. Over that time, conditions will change, and the
program will need to be modified to reflect the changes. The program modifications
may be done by someone other than the original programmer. The programmer mak-
ing the modifications must understand the original program well before attempting
to change it.

It is much harder to design clear, understandable, and maintainable programs
than it is to simply write programs. To do so, a programmer must develop the dis-
cipline to properly document his or her work. In addition, the programmer must
be careful to avoid known pitfalls along the path to good programs. The following
guidelines will help you to develop good programs:

1. Use meaningful variable names whenever possible. Use names that can be
understood at a glance, like day, month, and year.

2. Create a data dictionary for each program to make program maintenance easier.
3. Use only lowercase letters in variable names, so that there won’t be errors

due to capitalization differences in different occurrences of a variable name.
4. Use a semicolon at the end of all MATLAB assignment statements to

suppress echoing of assigned values in the Command Window. If you need
to examine the results of a statement during program debugging, you may
remove the semicolon from that statement only.

5. If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will only be used in MATLAB,
save the data in MAT-file format.

6. Save ASCII data files with a “dat” file extension to distinguish them from
MAT-files, which have a “ mat” file extension.

7. Use parentheses as necessary to make your equations clear and easy to
understand.

8. Always include the appropriate units with any values that you read or write
in a program.

2.14.2 MATLAB Summary

The following summary lists all of the MATLAB special symbols, commands, and
functions described in this chapter, along with a brief description of each one.

Special Symbols
[] Array constructor

() Forms subscripts

‘ ’ Marks the limits of a character string

‘ 1. Separates subscripts or matrix elements
2. Separates assignment statements on a line

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.14 Summary | 81

, Separates subscripts or matrix elements

; 1. Suppresses echoing in Command Window
2. Separates matrix rows
3. Separates assignment statements on a line

% Marks the beginning of a comment

: Colon operator, used to create shorthand lists

+ Array and matrix addition

- Array and matrix subtraction

.* Array multiplication

* Matrix multiplication

./ Array right division

.\ Array left division

/ Matrix right division

\ Matrix left division

.ˆ Array exponentiation

‘ Transpose operator

Commands and Functions
... Continues a MATLAB statement on the following line.

abs(x) Calculates the absolute value of x.

ans Default variable used to store the result of expressions not
assigned to another variable.

acos(x) Calculates the inverse cosine of x. The resulting angle is in
radians between 0 and p.

acosd(x) Calculates the inverse cosine of x. The resulting angle is in
degrees between 08 and 1808.

asin(x) Calculates the inverse sine of x. The resulting angle is in
radians between –p/2 and p/2.

asind(x) Calculates the inverse sine of x. The resulting angle is in
degrees between 2908 and 908.

atan(x) Calculates the inverse tangent of x. The resulting angle is in
radians between –p/2 and p/2.

atand(x) Calculates the inverse tangent of x. The resulting angle is in
radians between 2908 and 908.

atan2(y,x) Calculates the inverse tangent of y/x, taking into account the
boundaries between the quadrants. The resulting angle is in
radians between 2p and p.

atan2d(y,x) Calculates the inverse tangent of y/x, taking into account the
boundaries between the quadrants. The resulting angle is in
degrees between 21808 and 1808.

ceil(x) Rounds x to the nearest integer towards positive infinity:
floor(3.1) = 4 and floor(-3.1) = -3.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 | Chapter 2 MATLAB Basics

Commands and Functions (Continued)
char Converts a matrix of numbers into a character string. For

ASCII characters the matrix should contain numbers ≤ 127.

clock Current time.

cos(x) Calculates cosine of x, where x is in radians.

cosd(x) Calculates cosine of x, where x is in degrees.

date Current date.

disp Displays data in Command Window.

doc Open HTML Help Desk directly at a particular function
description.

double Converts a character string into a matrix of numbers.

eps Represents machine precision.

exp(x) Calculates ex.

eye(m,n) Generates an identity matrix.

fix(x) Rounds x to the nearest integer towards zero: fix
(3.1) = 3 and fix(-3.1) = -3.

floor(x) Rounds x to the nearest integer towards minus infinity:
floor(3.1) = 3 and floor(-3.1) = -4.

format + Prints 1 and 2 signs only.

format bank Prints in “dollars and cents” format.

format compact Suppresses extra linefeeds in output.

format hex Prints hexadecimal display of bits.

format long Prints with 14 digits after the decimal.

format long e Prints with 15 digits plus exponent.

format long g Prints with 15 digits with or without exponent.

format loose Prints with extra linefeeds in output.

format rat Prints as an approximate ratio of small integers.

format short Prints with 4 digits after the decimal.

format short e Prints with 5 digits plus exponent.

format short g Prints with 5 digits with or without exponent.

fprintf Prints formatted information.

grid Adds/removes a grid from a plot.

i Ï21.

Inf Represents machine infinity (∞).

input Writes a prompt and reads a value from the keyboard.

int2str Converts x into an integer character string.

j Ï21.

legend Adds a legend to a plot.

length(arr) Returns the length of a vector, or the longest dimension of a
2-D array.

load Load data from a file.
(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.15 Exercises | 83

log(x) Calculates the natural logarithm of x.

loglog Generates a log-log plot.

lookfor Look for a matching term in the one-line MATLAB function
descriptions.

max(x) Returns the maximum value in vector x, and optionally the
location of that value.

min(x) Returns the minimum value in vector x, and optionally the
location of that value.

mod(m,n) Remainder or modulo function.

NaN Represents not-a-number.

num2str(x) Converts x into a character string.

ones(m,n) Generates an array of ones.

pi Represents the number p.

plot Generates a linear xy plot.

print Prints a Figure Window.

round(x) Rounds x to the nearest integer.

save Saves data from workspace into a file.

semilogx Generates a log-linear plot.

semilogy Generates a linear-log plot.

sin(x) Calculates sine of x, where x is in radians.

sind(x) Calculates sine of x, where x is in degrees.

size Get number of rows and columns in an array.

sqrt Calculates the square root of a number.

str2num Converts a character string into a number.

tan(x) Calculates tangent of x, where x is in radians.

tand(x) Calculates tangent of x, where x is in degrees.

title Adds a title to a plot.

zeros(m,n) Generate an array of zeros.

2.15 Exercises

2.1 Answer the following questions for the array shown below.

array1 = 3
0.0 0.5 2.1 2 3.5 6.0

0.0 2 1.1 2 6.6 2.8 3.4

2.1 0.1 0.3 2 0.4 1.3

1.1 5.1 0.0 1.1 2 2.0
4

(a) What is the size of array1?
(b) What is the value of array1(1,4)?
(c) What is the size and value of array1(:,1:2:5)?
(d) What is the size and value of array1([1 3],end)?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 | Chapter 2 MATLAB Basics

2.2 Are the following MATLAB variable names legal or illegal? Why?

(a) dog1
(b) 1dog
(c) Do_you_know_the_way_to_san_jose
(d) _help
(e) What‘s_up?

2.3 Determine the size and contents of the following arrays. Note that the later arrays
may depend on the definitions of arrays defined earlier in this exercise.

(a) a = 2:3:8;
(b) b = [a’ a’ a’];
(c) c = b(1:2:3,1:2:3);
(d) d = a + b(2,:);
(e) w = [zeros(1,3) ones(3,1)' 3:5'];
(f) b([1 3],2) = b([3 1],2);
(g) e = 1:-1:5;

2.4 Assume that array array1 is defined as shown, and determine the contents of
the following sub-arrays:

array1 = 3
1.1 0.0 22.1 23.5 6.0

0.0 23.0 25.6 2.8 4.3

2.1 0.3 0.1 20.4 1.3

21.4 5.1 0.0 1.1 23.0
4

(a) array1(3,:)
(b) array1(:,3)
(c) array1(1:2:3,[3 3 4])
(d) array1([1 1],:)

2.5 Assume that value has been initialized to 10p, and determine what is printed
out by each of the following statements.

disp (['value = ' num2str(value)]);
disp (['value = ' int2str(value)]);
fprintf('value = %e\n',value);
fprintf('value = %f\n',value);
fprintf('value = %g\n',value);
fprintf('value = %12.4f\n',value);

2.6 Assume that a, b, c, and d are defined as follows, and calculate the results of
the following operations if they are legal. If an operation is illegal, explain why.

a 5 3 2 1

21 44 b 5 321 3

0 24
c 5 32

14 d 5 eye s2d

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.15 Exercises | 85

(a) result = a + b;
(b) result = a * d;
(c) result = a .* d;
(d) result = a * c;
(e) result = a .* c;
(f) result = a \ b;
(g) result = a .\ b;
(h) result = a .ˆ b;

2.7 Evaluate each of the following expressions.

(a) 11 / 5 + 6
(b) (11 / 5) + 6
(c) 11 / (5 + 6)
(d) 3 ˆ 2 ˆ 3
(e) v3 ˆ (2 ˆ 3)
(f) (3 ˆ 2) ˆ 3
(g) round(-11/5) + 6
(h) ceil(-11/5) + 6
(i) floor(-11/5) + 6

2.8 Use MATLAB to evaluate each of the following expressions.

(a) s3 2 4ids24 1 3id

(b) cos21 s1.2d

2.9 Solve the following system of simultaneous equations for x:

 -2.0 x
1
 + 5.0 x

2
 + 1.0 x

3
 + 3.0 x

4
 + 4.0 x

5
 - 1.0 x

6
 = 0.0

 2.0 x
1
 - 1.0 x

2
 - 5.0 x

3
 - 2.0 x

4
 + 6.0 x

5
 + 4.0 x

6
 = 1.0

 -1.0 x
1
 + 6.0 x

2
 - 4.0 x

3
 - 5.0 x

4
 + 3.0 x

5
 - 1.0 x

6
 = -6.0

 4.0 x
1
 + 3.0 x

2
 - 6.0 x

3
 - 5.0 x

4
 - 2.0 x

5
 - 2.0 x

6
 = 10.0

 -3.0 x
1
 + 6.0 x

2
 + 4.0 x

3
 + 2.0 x

4
 - 6.0 x

5
 + 4.0 x

6
 = -6.0

 2.0 x
1
 + 4.0 x

2
 + 4.0 x

3
 + 4.0 x

4
 + 5.0 x

5
 - 4.0 x

6
 = -2.0

2.10 Position and Velocity of a Ball If a stationary ball is released at a height h
0
 above

the surface of the Earth with a vertical velocity v
0
, the position and velocity of the

ball as a function of time will be given by the equations

hstd 5
1

2
 gt2 1 v

0
t 1 h

0
 (2.10)

vstd 5 gt 1 v
0
 (2.11)

where g is the acceleration due to gravity (–9.81 m/s2), h is the height above the
surface of the Earth (assuming no air friction), and v is the vertical component
of velocity. Write a MATLAB program that prompts a user for the initial height
of the ball in meters and the vertical velocity of the ball in meters per second,
and plots the height and vertical velocity as a function of time. Be sure to include
proper labels in your plots.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 | Chapter 2 MATLAB Basics

2.11 The distance between two points sx
1
, y

1
d and sx

2
, y

2
d on a Cartesian coordinate

plane is given by the equation

d 5 Ïsx1 2 x
2d

2 1 sy1 2 y
2d

2 (2.12)

(See Figure 2-16). Write a program to calculate the distance between any two
points sx

1
, y

1
d and sx

2
, y

2
d specified by the user. Use good programming practices

in your program. Use the program to calculate the distance between the points
s23, 2d and s3, 26d.

2.12 The distance between two points sx
1
, y

1
, z

1
d and sx

2
, y

2
, z

2
d in a three-dimensional

Cartesian coordinate system is given by the equation

d 5 Ïsx1 2 x
2d

2 1 sy1 2 y
2d

2 1 sz1 2 z
2d

2 (2.13)

Write a program to calculate the distance between any two points sx
1
, y

1
, z

1
d

and sx
2
, y

2
, z

2
d specified by the user. Use good programming practices in your

program. Use the program to calculate the distance between the points s23, 2, 5d
and s3,26,25d.

2.13 Decibels Engineers often measure the ratio of two power measurements
in decibels, or dB. The equation for the ratio of two power measurements in
decibels is

dB 5 10 log
10

P
2

P
1

 (2.14)

where P
2
 is the power level being measured, and P

1
 is some reference power level.

(a) Assume that the reference power level P
1
 is 1 milliwatt, and write a pro-

gram that accepts an input power P
2
 and converts it into dB with respect

to the 1 mW reference level. (Engineers have a special unit for dB power
levels with respect to a 1 mW reference: dBm.) Use good programming
practices in your program.

(b) Write a program that creates a plot of power in watts versus power in dBm
with respect to a 1 mW reference level. Create both a linear xy plot and a
log-linear xy plot.

y

(x1, y1)

(x2, y2)

x

Figure 2.16 Distance between two points on a Cartesian plane.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.15 Exercises | 87

2.14 Power in a Resistor The voltage across a resistor is related to the current flowing
through it by Ohm’s law

V 5 IR (2.15)

and the power consumed in the resistor is given by the equation

P 5 IV (2.16)

Write a program that creates a plot of the power consumed by a 1000 Ω resistor
as the voltage across it is varied from 1 V to 200 V. Create two plots, one showing
power in watts, and one showing power in dBW (dB power levels with respect
to a 1 W reference).

2.15 A three dimensional vector can be represented in either rectangular coordinates
(x, y, z) or the spherical coordinates (r, u, ø), as shown in Figure 2.182. The relationships
among these two sets of coordinates are given by the following equations:

x 5 r cos f cos u (2.17)

y 5 r cos f sin u (2.18)

z 5 r sin f (2.19)

r 5 Ïx2 1 y2 1 z2 (2.20)

u 5 tan21

y

x
 (2.21)

f 5 tan21

z

Ïx2 1 y2
 (2.22)

Use the MATLAB help system to look up function atan2, and use that function
in answering the questions below.

(a) Write a program that accepts a 3D vector in rectangular coordinates and
calculates the vector in spherical coordinates, with the angles u and ø
expressed in degrees.

(b) Write a program that accepts a 3D vector in spherical coordinates (with the
angles u and ø in degrees) and calculates the vector in rectangular coordinates.

 2.16 MATLAB includes two functions cart2sph and sph2cart to convert back
and forth between Cartesian and spherical coordinates. Look these functions up

V

1

2

Figure 2.17 Voltage and current in a resistor.

2These definitions of the angles in spherical coordinates are non-standard according to international usage,
but match the definitions employed by the MATLAB program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 | Chapter 2 MATLAB Basics

in the MATLAB help system and re-write the programs in Exercise 2.15 using
these functions. How do the answers compare between the programs written
using Equations (2.17) through (2.22) and the programs written using the built-in
MATLAB functions?

 2.17 Hyperbolic cosine The hyperbolic cosine function is defined by the equation

cosh x 5
e

x 1 e2x

2
 (2.23)

Write a program to calculate the hyperbolic cosine of a user-supplied value x.
Use the program to calculate the hyperbolic cosine of 3.0. Compare the answer
that your program produces to the answer produced by the MATLAB intrinsic
function cosh(x). Also, use MATLAB to plot the function cosh(x). What is
the smallest value that this function can have? At what value of x does it occur?

 2.18 Energy Stored in a Spring The force required to compress a linear spring is
given by the equation

F 5 kx (2.24)

where F is the force in newtons and k is the spring constant in newtons per meter.
The potential energy stored in the compressed spring is given by the equation

E 5
1

2
 kx2 (2.25)

where E is the energy in joules. The following information is available for
four springs:

Yr

P

phi

X

Z

theta

Figure 2.18 A three-dimensional vector v can be represented in either
rectangular coordinates (x, y, z) or spherical coordinates (r, u, ø).

Spring 1 Spring 2 Spring 3 Spring 4
Force (N) 20 30 25 20

Spring constant k (N/m) 200 250 300 400

Determine the compression of each spring and the potential energy stored in
each spring. Which spring has the most energy stored in it?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.15 Exercises | 89

 2.19 Radio Receiver A simplified version of the front end of an AM radio receiver is
shown in Figure 2.19. This receiver consists of an RLC tuned circuit containing
a resistor, capacitor, and an inductor connected in series. The RLC circuit is con-
nected to an external antenna and ground, as shown in the picture.

The tuned circuit allows the radio to select a specific station out of all the
stations transmitting on the AM band. At the resonant frequency of the circuit,
essentially all of the signal V

0
 appearing at the antenna appears across the resis-

tor, which represents the rest of the radio. In other words, the radio receives its
strongest signal at the resonant frequency. The resonant frequency of the LC
circuit is given by the equation

f
0

5
1

2pÏLC
 (2.26)

where L is inductance in henrys (H) and C is capacitance in farads (F). Write a
program that calculates the resonant frequency of this radio set given specific
values of L and C. Test your program by calculating the frequency of the radio
when L 5 0.25 mH and C 5 0.10 nF.

 2.20 Radio Receiver The average (rms) voltage across the resistive load in
Figure 2.18 varies as a function of frequency according to Equation (2.27).

V
R

5
R

ÎR2 1 1vL 2
1

vC2
2
 V

0
 (2.27)

where v 5 2pf and f is the frequency in hertz. Assume that L 5 0.25 mH,
C 5 0.10 nF, R 5 50 Ω, and V

0
 5 10 mV.

(a) Plot the rms voltage on the resistive load as a function of frequency. At what
frequency does the voltage on the resitive load peak? What is the voltage on the
load at this frequency? This frequency is called the resonant frequency f

0
 of the

circuit.
(b) If the frequency is changed to 10% greater than the resonant frequency, what

is the voltage on the load? How selective is this radio receiver?
(c) At what frequencies will the voltage on the load drop to half of the voltage at

the resonant frequency?

Antenna

Ground

L C

R VRV0

2

1

2

1

Figure 2.19 A simplified version of the front end of an AM radio receiver.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 | Chapter 2 MATLAB Basics

 2.21 Suppose two signals were received at the antenna of the radio receiver described
in the previous problem. One signal has a strength of 1 V at a frequency of
1000 kHz, and the other signal has a strength of 1 V at 950 kHz. Calculate the
voltage V

R
 that will be received for each of these signals. How much power will

the first signal supply to the resistive load R? How much power will the second
signal supply to the resistive load R? Express the ratio of the power supplied
by signal 1 to the power supplied by signal 2 in decibels (see Problem 2.13
above for the definition of a decibel). How much is the second signal enhanced
or suppressed compared to the first signal? (Note: The power supplied to the
resistive load can be calculated from the equation P 5 V

R
2yR.)

 2.22 Aircraft Turning Radius An object moving in a circular path at a constant tan-
gential velocity v is shown in Figure 2.20. The radial acceleration required for the
object to move in the circular path is given by the Equation (2.28)

a 5
v2

r
 (2.28)

where a is the centripetal acceleration of the object in m/s2, v is the tangential
velocity of the object in m/s, and r is the turning radius in meters. Suppose that
the object is an aircraft, and answer the following questions about it:

(a) Suppose that the aircraft is moving at Mach 0.85, or 85% of the speed of
sound. If the centripetal acceleration is 2 g, what is the turning radius of the
aircraft? (Note: For this problem, you may assume that Mach 1 is equal to
340 m/s, and that 1 g 5 9.81 m/s2).

(b) Suppose that the speed of the aircraft increases to Mach 1.5. What is the
turning radius of the aircraft now?

(c) Plot the turning radius as a function of aircraft speed for speeds between
Mach 0.5 and Mach 2.0, assuming that the acceleration remains 2 g.

(d) Suppose that the maximum acceleration that the pilot can stand is 7 g. What
is the minimum possible turning radius of the aircraft at Mach 1.5?

(e) Plot the turning radius as a function of centripetal acceleration for
accelerations between 2 g and 8 g, assuming a constant speed of Mach 0.85.

r

v

a

Figure 2.20 An object moving in uniform circular motion due to the
centripetal acceleration a.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

91

3Chapter

Two-Dimensional Plots

One of the most powerful features of MATLAB is the ability to easily create plots
that visualize the information that an engineer is working with. In other program-
ming languages used by engineers (such as C11, Java, Fortran, and so forth), plot-
ting is a major task involving either a lot of effort or additional software packages
that are not a part of the basic language. In contrast, MATLAB is ready to create
high-quality plots with minimal effort right out of the box.

We introduced a few simple plotting commands in Chapter 2 and used them
to display a variety of data on linear and logarithmic scales in various examples
and exercises.

Because the ability to create plots is so important, we will devote this entire
chapter to learning how to make good two-dimensional plots of engineering data.
Three-dimensional plots will be addressed later in Chapter 8.

3.1 Additional Plotting Features for Two-Dimensional Plots

This section describes additional features that improve the simple two-dimensional
plots introduced in Chapter 2. These features permit us to control the range of
x and y values displayed on a plot, lay multiple plots on top of each other, create
multiple figures, create multiple subplots within a figure, and provide greater con-
trol of the plotted lines and text strings. In addition, we will learn how to create
polar plots.

3.1.1 Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are four
possible combinations of linear and logarithmic scales on the x- and y-axes, and each
combination is produced by a separate function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 | Chapter 3 Two-Dimensional Plots

1. The plot function plots both x and y data on linear axes.
2. The semilogx function plots x data on a logarithmic axis and y data on a

linear axis.
3. The semilogy function plots x data on a linear axis and y data on a loga-

rithmic axis.
4. The loglog function plots both x and y data on logarithmic axes.

All of these functions have identical calling sequences—the only difference is the
type of axis used to plot the data.

To compare these four types of plots, we will plot the function y(x) 5 2x2 over
the range 0 to 100 with each type of plot. The MATLAB code to do this is:

x = 0:0.2:100;
y = 2 * x.ˆ2;

% For the linear / linear case
plot(x,y);
title('Linear / linear Plot');
xlabel('x');
ylabel('y');
grid on;

% For the log / linear case
semilogx(x,y);
title('Log / linear Plot');
xlabel('x');
ylabel('y');
grid on;

% For the linear / log case
semilogy(x,y);
title('Linear / log Plot');
xlabel('x');
ylabel('y');
grid on;

% For the log / log case
loglog(x,y);
title('Log / log Plot');
xlabel('x');
ylabel('y');
grid on;

Examples of each plot are shown in Figure 3.1.
It is important to consider the type of data being plotted when selecting linear

or logarithmic scales. In general, if the range of the data being plotted covers many
orders of magnitude, a logarithmic scale will be more appropriate, because on a
linear scale the very small part of the data set will be invisible. If the data being
plotted covers a relatively small dynamic range, then linear scales work very well.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 93

Linear / linear Plot
2

1.8

1.6

1.4

1.2

1y

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50

x
60 70 80 90 100

3 104

Log / linear Plot
2

1.8

1.6

1.4

1.2

1y

0.8

0.6

0.4

0.2

0

x

3 104

1021 100 101 102

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 | Chapter 3 Two-Dimensional Plots

Linear / log Plot

y

1022

1021

100

101

102

103

104

105

0 10 20 30 40 50
x

60 70 80 90 100

Log / log Plot

y

105

104

103

102

101

100

1021

1022

1021 100

x
101 102

Figure 3.1 Comparison of linear, semilog x, semilog y, and log-log plots.

(c)

(d)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 95

Good Programming Practice

If the range of the data to plot covers many orders of magnitude, use a logarithmic
scale to represent the data properly. If the range of the data to plot is an order of
magnitude or less, then use a linear scale.

Also, be careful of trying to plot data with zeros or negative values on a
logarithmic scale. The logarithm of zero or a negative number is undefined for real
numbers, so those negative points will never be plotted. MATLAB issues a warning
and ignores those negative values.

Programming Pitfalls

Do not attempt to plot negative data on a logarithmic scale. The data will be ignored.

3.1.2 Controlling x- and y-axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show every point
in an input data set. However, it is sometimes useful to display only the subset of the
data that is of particular interest. This can be done using the axis command/function
(see the Sidebar about the relationship between MATLAB commands and functions).

Command/Function Duality

Some items in MATLAB seem to be unable to make up their minds whether they
are commands (words typed out on the command line) or functions (with argu-
ments in parentheses). For example, sometimes axis seems to behave like a
command and sometimes it seems to behave like a function. Sometimes we treat it
as a command: axis on, and other times we might treat it as a function: axis
([0 20 0 35]). How is this possible?

The short answer is that MATLAB commands are really implemented by func-
tions, and the MATLAB interpreter is smart enough to substitute the function call
whenever it encounters the command. It is always possible to call the command
directly as a function instead of using the command syntax. Thus the following two
statements are identical:

axis on;
axis ('on');

Whenever MATLAB encounters a command, it forms a function from the
command by treating each command argument as a character string and calling
the equivalent function with those character strings as arguments. Thus MATLAB
interprets the command

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96 | Chapter 3 Two-Dimensional Plots

Some of the forms of the axis command/function are shown in Table 3.1 below.
The two most important forms are shown in bold type—they let an engineer get the
current limits of a plot and modify them. A complete list of all options can be found
in the MATLAB online documentation.

To illustrate the use of axis, we will plot the function f(x) 5 sin x from 22p to 2p,
and then restrict the axes to the region defined by 0 # x # p and 0 # y # 1. The state-
ments to create this plot are shown below, and the resulting plot is shown in Figure 3.2a.

x = -2*pi:pi/20:2*pi;
y = sin(x);
plot(x,y);
title ('Plot of sin(x) vs x');
grid on;

The current limits of this plot can be determined from the basic axis function.

» limits = axis
limits =
 -8 8 -1 1

These limits can be modified with the function call axis([0 pi 0 1]). After that
function is executed, the resulting plot is shown in Figure 3.2b.

Table 3.1: Forms of the axis Function/Command

Command Description

v = axis; This function returns a 4-element row vector containing [xmin
xmax ymin ymax], where xmin, xmax, ymin, and ymax
are the current limits of the plot.

axis ([xmin xmax ymin ymax]); This function sets the x and y limits of the plot to the specified
values.

axis equal This command sets the axis increments to be equal on both axes.

axis square This command makes the current axis box square.

axis normal This command cancels the effect of axis equal and axis square.

axis off This command turns off all axis labeling, tick marks, and
background.

axis on This command turns on all axis labeling, tick marks, and
background (default case).

garbage 1 2 3

as the following function call:

garbage('1','2','3')

Note that only functions with character arguments can be treated as commands. Func-
tions with numerical arguments must be used in function form only. This fact explains
why axis is sometimes treated as a command and sometimes treated as a function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 97

(a)

Figure 3.2 (a) Plot of sin x versus x. (b) Closeup of the region [0 π 0 1].

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 | Chapter 3 Two-Dimensional Plots

Figure 3.3 Multiple curves plotted on a single set of axes using the
hold command.

3.1.3 Plotting Multiple Plots on the Same Axes

Normally, a new plot is created each time that a plot command is issued, and the
previous data displayed on the figure are lost. This behavior can be modified with
the hold command. After a hold on command is issued, all additional plots will
be laid on top of the previously existing plots. A hold off command switches
plotting behavior back to the default situation, in which a new plot replaces the
previous one.

For example, the following commands plot sin x and cos x on the same axes. The
resulting plot is shown in Figure 3.3.

x = -pi:pi/20:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,'b-');
hold on;
plot(x,y2,'k--');
hold off;
legend ('sin x','cos x');

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 99

3.1.4 Creating Multiple Figures

MATLAB can create multiple Figure Windows, with different data displayed in each
window. Each Figure Window is identified by a figure number, which is a small
positive integer. The first Figure Window is Figure 1, the second is Figure 2, and so
forth. One of the Figure Windows will be the current figure, and all new plotting
commands will be displayed in that window.

The current figure is selected with the figure function. This function takes the
form “figure(n)”, where n is a figure number1. When this command is executed,
Figure n becomes the current figure and is used for all plotting commands. The figure
is automatically created if it does not already exist. The current figure may also be
selected by clicking on it with the mouse.

The function gcf returns a handle (a reference) to the current figure, so this
function can be used by an M-file if it needs to know the current figure.

The following commands illustrate the use of the figure function. They create
two figures, displaying ex in the first figure and e2x in the second one (see Figure 3.4).

figure(1)
x = 0:0.05:2;
y1 = exp(x);
plot(x,y1);
title(' exp(x)');
grid on;

figure(2)
y2 = exp(-x);
plot (x,y2);
title(' exp(-x)');
grid on;

3.1.5 Subplots

It is possible to place more than one set of axes on a single figure, creating multiple
subplots. Subplots are created with a subplot command of the form

subplot(m,n,p)

This command divides the current figure into m × n equal-sized regions, arranged
in m rows and n columns, and creates a set of axes at position p to receive
all current plotting commands. The subplots are numbered from left to right
and from top to bottom. For example, the command subplot(2,3,4) would
divide the current figure into six regions arranged in two rows and three columns
and create an axis in position 4 (the lower left one) to accept new plot data
(see Figure 3.5).

If a subplot command creates a new set of axes that conflict with a previously
existing set, then the older axes are automatically deleted.

1The figure function can also accept a figure handle, as will be explained further in Chapter 13.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 | Chapter 3 Two-Dimensional Plots

(b)

Figure 3.4 Creating multiple plots on separate figures using the figure function.
(a) Figure 1; (b) Figure 2.

(a)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 101

Subplot generated in
position 4 (the lower

left-hand corner)

Figure 3.5 The axis created by the subplot(2,3,4) command.

The commands below create two subplots within a single window and display
the separate graphs in each subplot. The resulting figure is shown in Figure 3.6.

figure(1)
subplot(2,1,1)
x = -pi:pi/20:pi;
y = sin(x);
plot(x,y);
title('Subplot 1 title');
subplot(2,1,2)
x = -pi:pi/20:pi;
y = cos(x);
plot(x,y);
title('Subplot 2 title');

3.1.6 Controlling the Spacing Between Points on a Plot

In Chapter 2, we learned how to create an array of values using the colon operator.
The colon operator

start:incr:end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 | Chapter 3 Two-Dimensional Plots

Figure 3.6 A figure with two subplots showing sin x and cos x respectively.

produces an array that starts at start, advances in increments of incr, and ends
when the last point equals the value end or when the last point plus the increment
would exceed the value end. The colon operator can be used to create an array, but
it has two disadvantages in regular use:

1. It is not always easy to know how many points will be in the array. For
example, can you tell how many points would be in the array defined by
0:pi:20?

2. There is no guarantee that the last specified point will be in the array, since
the increment could overshoot that point.

To avoid these problems, MATLAB includes two functions to generate an array
of points where the user has full control of both the exact limits of the array and
the number of points in the array. These functions are linspace, which produces
a linear spacing between samples, and logspace, which produces a logarithmic
spacing between samples.

The forms of the linspace function are:

y = linspace(start,end);
y = linspace(start,end,n);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 103

where start is the starting value, end is the ending value, and n is the number
of points to produce in the array. If only the start and end values are specified,
linspace produces 100 equally spaced points starting at start and ending at
end. For example, we can create an array of 10 evenly spaced points on a linear scale
with the command

» linspace(1,10,10)
ans =
 1 2 3 4 5 6 7 8 9 10

 The forms of the logspace function are:

y = logspace(start,end);
y = logspace(start,end,n);

where start is the exponent of the starting power of 10, end is the exponent of the
ending power of 10, and n is the number of points to produce in the array. If only the
start and end values are specified, logspace produces 50 points equally spaced
on a logarithmic scale, starting at start and ending at end. For example, we can
create an array of logarithmically spaced points starting at 1 (5 1 0 0) and ending at
10 (5 101) on a logarithmic scale with the command

» logspace(0,1,10)
ans =
 1.0000 1.2915 1.6681 2.1544 2.7826
3.5938 4.6416 5.9948 7.7426 10.0000

The logspace function is especially useful for generating data to be plotted on a
logarithmic scale, since the points on the plot will be evenly spaced.

Example 3.1—Creating Linear and Logarithmic Plots

Plot the function

 ysxd 5 x2 2 10x 1 25 (3.1)

over the range 0 to 10 on a linear plot using 21 evenly spaced points in one subplot
and over the range 1021 to 101 on a semi logarithmic plot using 21 evenly spaced
points on a logarithmic x-axis in a second subplot. Put markers on each point used
in the calculation so that they will be visible, and be sure to include a title and axis
labels on each plot.

Solution To create these plots, we will use function linspace to calculate an
evenly spaced set of 21 points on a linear scale and function logspace to calcu-
late an evenly spaced set of 21 points on a logarithmic scale. Next, we will evaluate
Equation (3.1) at those points and plot the resulting curves. The MATLAB code to
do this is shown on the following page.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104 | Chapter 3 Two-Dimensional Plots

% Script file: linear_and_log_plots.m
%
% Purpose:
% This program plots y(x) = xˆ2 - 10*x + 25
% on linear and semilogx axes.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 11/15/14 S. J. Chapman Original code
%

% Create a figure with two subplots
subplot(2,1,1);

% Now create the linear plot
x = linspace(0, 10, 21);
y = x.ˆ2 - 10*x + 25;
plot(x,y,'b-');
hold on;
plot(x,y,'ro');
title('Linear Plot');
xlabel('x');
ylabel('y');
hold off;

% Select the other subplot
subplot(2,1,2);

% Now create the logarithmic plot
x = logspace(-1, 1, 21);
y = x.ˆ2 - 10*x + 25;
semilogx(x,y,'b-');
hold on;
semilogx(x,y,'ro');
title('Semilog x Plot');
xlabel('x');
ylabel('y');
hold off;

The resulting plot is shown in Figure 3.7. Note that the plot scales are different, but
each plot includes 21 evenly spaced samples.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 105

3.1.7 Enhanced Control of Plotted Lines

In Chapter 2, we learned how to set the color, style, and marker type for a line. It is
also possible to set four additional properties associated with each line:

■■ LineWidth – specifies the width of each line in points
■■ MarkerEdgeColor – specifies the color of the marker or the edge color for
filled markers

■■ MarkerFaceColor – specifies the color of the face of filled markers.
■■ MarkerSize – specifies the size of the marker in points.

These properties are specified in the plot command after the data to be plotted in
the following fashion:

plot(x,y,'PropertyName',value,...)

For example, the following command plots a 3-point-wide solid black line with
6-point-wide circular markers at the data points. Each marker has a red edge and a
green center, as shown in Figure 3.8.

x = 0:pi/15:4*pi;
y = exp(2*sin(x));

Figure 3.7 Plots of the function y(x) = x2 2 10x 1 25 on linear and
semi-logarithmic axes.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 | Chapter 3 Two-Dimensional Plots

plot(x,y,'-ko','LineWidth',3.0,'MarkerSize',6,...
 'MarkerEdgeColor','r','MarkerFaceColor','g')

3.1.8 Enhanced Control of Text Strings

It is possible to enhance plotted text strings (titles, axis labels, and so forth) with
formatting such as bold face, italics, and so forth, and with special characters such as
Greek and mathematical symbols.

The font used to display the text can be modified by stream modifiers. A stream
modifier is a special sequence of characters that tells the MATLAB interpreter to
change its behavior. The most common stream modifiers are:

■■ \bf—Bold face
■■ \it—Italics
■■ \rm —Removes stream modifiers, restoring normal font
■■ \fontname{fontname}—Specify the font name to use
■■ \fontsize{fontsize}—Specify font size
■■ _{xxx}—The characters inside the braces are subscripts
■■ ˆ{xxx}—The characters inside the braces are superscripts

Once a stream modifier has been inserted into a text string, it will remain in effect until
the end of the string or until cancelled. Any stream modifier can be followed by braces
{}. If a modifier is followed by braces, only the text within the braces is affected.

Figure 3.8 A plot illustrating the use of the LineWidth and Marker properties.
[See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Additional Plotting Features for Two-Dimensional Plots | 107

Special Greek and mathematical symbols may also be used in text strings.
They are created by embedding escape sequences into the text string. These escape
sequences are the same as those defined in the TeX language. A sample of the possible
escape sequences is shown in Table 3.2; the full set of possibilities is included in the
MATLAB online documentation.

If one of the special escape characters \, {, }, _, or ˆ must be printed, precede
it by a backslash character.

The following examples illustrate the use of stream modifiers and special characters.

String Result

\tau_{ind} versus \omega_{\itm} t
ind

 versus v
m

\theta varies from 0\circ to 90\circ u varies from 08 to 908

\bf{B}_{\itS} B
S

Good Programming Practice

Use stream modifiers to create effects such as bold, italics, superscripts, subscripts,
and special characters in your plot titles and labels.

Table 3.2: Selected Greek and Mathematical Symbols

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha a \int ∫
\beta b \cong ≅
\gamma g \Gamma G \sim ∼
\delta d \Delta D \infty ∞
\epsilon e \pm ±
\eta h \leq ≤
\theta u \geq ≥
\lambda l \Lambda L \neq ≠
\mu m \propto ∝
\nu n \div ÷
\pi p \Pi P \circ °
\phi f \leftrightarrow ↔
\rho r \leftarrow ←
\sigma s \Sigma S \rightarrow →
\tau t \uparrow ↑
\omega v \Omega V \downarrow ↓

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 | Chapter 3 Two-Dimensional Plots

Example 3.2—Labeling Plots with Special Symbols

Plot the decaying exponential function

 ystd 5 10e2tyt sin vt (3.2)

where the time constant t 5 3 s and the radial velocity v 5 p rad/s over the range
0 # t # 10 s. Include the plotted equation in the title of the plot, and label the x- and
y-axes properly.

Solution To create this plot, we will use function linspace to calculate an evenly
spaced set of 100 points between 0 and 10. Next, we will evaluate Equation (3.2) at
those points and plot the resulting curve. Finally, we will use the special symbols in
this chapter to create the title of the plot.

The title of the plot must include italic letters for ystd, tyt, and vt, and it must set
the 2tyt as a superscript. The string of symbols that will do this is

\it{y(t)} = \it{e}ˆ{-\it{t / \tau}} sin \it{\omegat}

The MATLAB code that plots this function is shown below.

% Script file: decaying_exponential.m
%
% Purpose:
% This program plots the function
% y(t) = 10*EXP(-t/tau)*SIN(omega*t)
% on linear and semilogx axes.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 11/15/14 S. J. Chapman Original code
%
% Define variables:
% tau -- Time constant, s
% omega -- Radial velocity, rad/s
% t -- Time (s)
% y -- Output of function

% Declare time constant and radial velocity
tau = 3;
omega = pi;

% Now create the plot
t = linspace(0, 10, 100);
y = 10 * exp(-t./tau) .* sin(omega .* t);
plot(t,y,'b-');
title('Plot of \it{y(t)} = \it{e}ˆ{-\it{t / \tau}} sin \it{\omegat}');

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.2 Polar Plots | 109

xlabel('\it{t}');
ylabel('\it{y(t)}');
grid on;

The resulting plot is shown in Figure 3.9.

3.2 Polar Plots

MATLAB includes a special function called polar, which plots two-dimensional
data in polar coordinates instead of rectangular coordinates. The basic form of this
function is

polar(theta,r)

where theta is an array of angles in radians, and r is an array of distances
from the center of the plot. The angle theta is the angle (in radians) of a point

Figure 3.9 Plots of the function ystd 5 10e2t/t sin vt with special symbols used to
reproduce the equation in the title.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 | Chapter 3 Two-Dimensional Plots

counterclockwise from the right-hand horizontal axis, and r is distance from the
center of the plot to the point.

This function is useful for plotting data that is intrinsically a function of angle,
as we will see in the next example.

Example 3.3—Cardioid Microphone

Most microphones designed for use on a stage are directional microphones, which
are specifically built to enhance the signals received from the singer in the front of
the microphone while suppressing the audience noise from behind the microphone.
The gain of such a microphone varies as a function of angle according to the equation

 Gain 5 2gs1 1 cos ud (3.3)

where g is a constant associated with a particular microphone, and u is the angle from
the axis of the microphone to the sound source. Assume that g is 0.5 for a particular
microphone, and make a polar plot the gain of the microphone as a function of the
direction of the sound source.

Solution We must calculate the gain of the microphone versus angle and then plot
it with a polar plot. The MATLAB code to do this is shown below.

% Script file: microphone.m
%
% Purpose:
% This program plots the gain pattern of a cardioid
% microphone.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/05/14 S. J. Chapman Original code
%
% Define variables:
% g -- Microphone gain constant
% gain -- Gain as a function of angle
% theta -- Angle from microphone axis (radians)

% Calculate gain versus angle
g = 0.5;
theta = linspace(0,2*pi,41);
gain = 2*g*(1+cos(theta));

% Plot gain
polar (theta,gain,'r-');
title ('\bfGain versus angle \it{\theta}');

The resulting plot is shown in Figure 3.10. Note that this type of microphone is called
a “cardioid microphone” because its gain pattern is heart-shaped.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Annotating and Saving Plots | 111

3.3 Annotating and Saving Plots

Once a plot has been created by a MATLAB program, a user can edit and annotate
the plot using the GUI-based tools available from the plot toolbar. Figure 3.11 shows
the tools available, which allow the user to edit the properties of any objects on the
plot or to add annotations to the plot. When the editing button () is selected from
the toolbar, the editing tools become available for use. When the button is depressed,
clicking any line or text on the figure will cause it to be selected for editing, and
double-clicking the line or text will open a Property Editor window that allows you to
modify any or all of the characteristics of that object. Figure 3.12 shows Figure 3.10
after a user has clicked on the red line to change it to a 3-pixel-wide solid blue line.

The figure toolbar also includes a Plot Browser button (). When this button is
depressed, the Plot Browser is displayed. This tool gives the user complete control
over the figure. He or she can add axes, edit object properties, modify data values,
and add annotations such as lines and text boxes.

If it is not otherwise displayed, the user can enable a Plot Edit Toolbar by select-
ing the View/Plot Edit Toolbar menu item. This toolbar allows a user to add lines,
arrows, text, rectangles, and ellipses to annotate and explain a plot. Figure 3.13 shows
a Figure Window with the Plot Edit Toolbar enabled.

Figure 3.14 shows the plot in Figure 3.10 after the Plot Browser and the Plot Edit
Toolbar have been enabled. In this figure, the user has used the controls on the Plot
Edit Toolbar to add an arrow and a comment to the plot.

Figure 3.10 Gain of a cardioid microphone. [See color insert.]

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 | Chapter 3 Two-Dimensional Plots

Figure 3.11 The editing tools on the figure toolbar.

Figure 3.12 Figure 3.10 after the line has been modified using the editing
tools built into the figure toolbar. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Annotating and Saving Plots | 113

Figure 3.13 A figure window showing the Plot Edit Toolbar.

Figure 3.14 Figure 3.10 after the Plot Browser has been used to add an
arrow and annotation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 | Chapter 3 Two-Dimensional Plots

Quiz 3.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 3.5. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

1. Write the MATLAB statements required to plot sin x versus cos 2x from 0
to 2p in steps of p/10. The points should be connected by a 2-pixel-wide
red line, and each point should be marked with a 6-pixel-wide blue circular
marker.

2. Use the Figure editing tools to change the markers on the previous plot into
black squares. Add an arrow and annotation pointing to the location x 5 p
on the plot.

Write the MATLAB text string that will produce the following expressions:

3. f sxd 5 sin u cos 2f

4. Plot of ox2 versus x

Write the expression produced by the following text strings:
5. '\tau\it_{m}'
6. '\bf\itx_{1}ˆ{ 2} + x_{2}ˆ{ 2} \rm(units:

 \bfmˆ{2}\rm)'
7. Plot the function r 5 10* cos s3ud for 0 # u # 2p is steps of 0.01 p using

a polar plot.

8. Plot the function ysxd 5
1

2x2
 for 0 .01 # x # 100 on a linear and a loglog

plot. Take advantage of linspace and logspace when creating the
plots. What is the shape of this function on a loglog plot?

When the plot has been edited and annotated, you can save the entire plot in a
modifiable form using the File/Save As menu item from the Figure Window. The
resulting figure file (*.fig) contains all the information required to re-create the
figure plus annotations at any time in the future.

3.4 Additional Types of Two-Dimensional Plots

In addition to the two-dimensional plots that we have already seen, MATLAB sup-
ports many other more specialized plots. In fact, the MATLAB help system lists more
than 20 types of two-dimensional plots! Examples include stem plots, stair plots,
bar plots, pie plots, and compass plots. A stem plot is a plot in which each data
value is represented by a marker and a line connecting the marker vertically to the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Additional Types of Two-Dimensional Plots | 115

x-axis. A stair plot is a plot in which each data point is represented by a horizontal
line, and successive points are connected by vertical lines, producing a stair-step
effect. A bar plot is a plot in which each point is represented by a vertical bar or hor-
izontal bar. A pie plot is a plot represented by “pie slices” of various sizes. [See color
insert] Finally, a compass plot is a type of polar plot in which each value is repre-
sented by an arrow whose length is proportional to its value. These types of plots are
summarized in Table 3.3, and examples of all of the plots are shown in Figure 3.15.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to plot,
and they are used in the same manner. For example, the following code produces the
stem plot shown in Figure 3.15a.

x = [1 2 3 4 5 6];
y = [2 6 8 7 8 5];
stem(x,y);
title('\bfExample of a Stem Plot');
xlabel('\bf\itx');
ylabel('\bf\ity');
axis([0 7 0 10]);

Stair, bar, and compass plots can be created by substituting stairs, bar,
barh, or compass for stem in the above code. The details of all of these plots,
including any optional parameters, can be found in the MATLAB online help
system.

Function pie behaves differently than the other plots described above. To
create a pie plot, an engineer passes an array x containing the data to be plotted,
and function pie determines the percentage of the total pie that each element of
x represents. For example, if the array x is [1 2 3 4], then pie will calculate

Table 3.3: Additional Two-Dimensional Plotting Functions

Function Description

bar(x,y) This function creates a vertical bar plot, with the values in x used to label each
bar and the values in y used to determine the height of the bar.

barh(x,y) This function creates a horizontal bar plot, with the values in x used to label
each bar and the values in y used to determine the horizontal length of the bar.

compass(x,y) This function creates a polar plot, with an arrow drawn from the origin to the
location of each (x, y) point. Note that the locations of the points to plot are
specified in Cartesian coordinates, not polar coordinates.

pie(x)
pie(x,explode)

This function creates a pie plot. This function determines the percentage of
the total pie corresponding to each value of x, and plots pie slices of that size.
The optional array explode controls whether or not individual pie slices are
separated from the remainder of the pie.

stairs(x,y) This function creates a stair plot, with each stair step centered on an (x, y) point.

stem(x,y) This function creates a stem plot, with a marker at each (x, y) point and a stem
drawn vertically from that point to the x-axis.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 | Chapter 3 Two-Dimensional Plots

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Additional Types of Two-Dimensional Plots | 117

(c)

(d)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 | Chapter 3 Two-Dimensional Plots

(e)

(f)

Figure 3.15 Additional types of 2D plots: (a) stem plot; (b) stair plot; (c) vertical bar
plot; (d) horizontal bar plot; (e) pie plot; (f) compass plot. [See color insert for (e).]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 | 119

that the first element x(1) is 1/10 or 10% of the pie, the second element x(2) is
2/10 or 20% of the pie, and so forth. The function then plots those percentages as
pie slices.

Function pie also supports an optional parameter, explode. If present,
explode is a logical array of 1’s and 0’s, with an element for each element in array
x. If a value in explode is 1, then the corresponding pie slice is drawn slightly
separated from the pie. For example, the code shown below produces the pie plot in
Figure 3.15e. Note that the second slice of the pie is “exploded.”

data = [10 37 5 6 6];
explode = [0 1 0 0 0];
pie(data,explode);
title('\bfExample of a Pie Plot');
legend('One','Two','Three','Four','Five');

3.5 Using the plot Function with Two-Dimensional Arrays

In all of the previous examples in this book, we have plotted data one vector at a time.
What would happen if, instead of a vector of data, we had a two-dimensional array of
data? The answer is that MATLAB treats each column of the 2D array as a separate
line, and it plots as many lines as there are columns in the data set. For example,
suppose that we create an array containing the function f sxd 5 sin x in column 1,
f sxd 5 cos x in column 2, f sxd 5 sin2x in column 3, and f sxd 5 cos2x in column 4,
each for x 5 0 to 10 in steps of 0.1. This array can be created using the following
statements

x = 0:0.1:10;
y = zeros(length(x),4);
y(:,1) = sin(x);
y(:,2) = cos(x);
y(:,3) = sin(x).ˆ2;
y(:,4) = cos(x).ˆ2;

If this array is plotted using the plot(x,y) command, the results are as shown in
Figure 3.16. Note that each column of array y has become a separate line on the plot.

The bar and barh plots can also take two-dimensional array arguments. If an
array argument is supplied to these plots, the program will display each column as a
separately colored bar on the plot. For example, the following code produces the bar
plot shown in Figure 3.17.

x = 1:5;
y = zeros(5,3);
y(1,:) = [1 2 3];
y(2,:) = [2 3 4];
y(3,:) = [3 4 5];
y(4,:) = [4 5 4];
y(5,:) = [5 4 3];

3.5 Using the plot Function with Two-Dimensional Arrays

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 | Chapter 3 Two-Dimensional Plots

Figure 3.16 The result of plotting the two-dimensional array y.
Note that each column is a separate line on the plot.

Figure 3.17 A bar plot created from a two-dimensional array y.
Note that each column is a separate colored bar on the plot.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.6 Summary | 121

bar(x,y);
title('\bfExample of a 2D Bar Plot');
xlabel('\bf\itx');
ylabel('\bf\ity');

3.6 Summary

Chapter 3 extended our knowledge of two-dimensional plots, which were introduced
in Chapter 2. Two-dimensional plots can take many different forms, as summarized
in Table 3.4.

The axis command allows an engineer to select the specific range of x and
y data to be plotted. The hold command allows later plots to be plotted on top of
earlier ones, so that elements can be added to a graph a piece at a time. The figure
command allows an engineer to create and select among multiple Figure Windows,

Table 3.4: Summary of Two-Dimensional Plots

Function Description

plot(x,y) This function plots points or lines with a linear scale on the x- and y-axes.

semilogx(x,y) This function plots points or lines with a logarithmic scale on the x-axis and a
linear scale on the y-axis.

semilogy(x,y) This function plots points or lines with a linear scale on the x-axis and a
logarithmic scale on the y-axis.

loglog(x,y) This function plots points or lines with a logarithmic scale on the x-axis and a
logarithmic scale on the y-axis.

polar(theta,r) This function plots points or lines on a polar plot, where theta is the angle
(in radians) of a point counterclockwise from the right-hand horizontal axis,
and r is distance from the center of the plot to the point.

barh(x,y) This function creates a horizontal bar plot, with the values in x used to label
each bar and the values in y used to determine the horizontal length of the bar.

bar(x,y) This function creates a vertical bar plot, with the values in x used to label each
bar and the values in y used to determine the height of the bar.

compass(x,y) This function creates a polar plot, with an arrow drawn from the origin to the
location of each (x, y) point. Note that the locations of the points to plot are
specified in Cartesian coordinates, not polar coordinates.

pie(x)
pie(x,explode)

This function creates a pie plot. This function determines the percentage of
the total pie corresponding to each value of x, and plots pie slices of that size.
The optional array explode controls whether or not individual pie slices are
separated from the remainder of the pie.

stairs(x,y) This function creates a stair plot, with each stair step centered on an (x, y)
point.

stem(x,y) This function creates a stem plot, with a marker at each (x, y) point and a
stem drawn vertically from that point to the x-axis.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 | Chapter 3 Two-Dimensional Plots

so that a program can create multiple plots in separate windows. The subplot
command allows an engineer to create and select among multiple plots within a
single Figure Window.

We also learned how to control additional characteristics of our plots, such as
the line width and marker color. These properties may be controlled by specifying
'PropertyName', value pairs in the plot command after the data to be plotted.

Text strings in plots may be enhanced with stream modifiers and escape
sequences. Stream modifiers allow an engineer to specify features like bold face,
italic, superscripts, subscripts, font size, and font name. Escape sequences allow the
engineer to include special characters such as Greek and mathematical symbols in
the text string.

3.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Consider the type of data you are working with when determining how
to best plot it. If the range of the data to plot covers many orders of
magnitude, use a logarithmic scale to represent the data properly. If the range
of the data to plot is an order of magnitude or less, then use a linear scale.

2. Use stream modifiers to create effects such as bold, italics, superscripts,
subscripts, and special characters in your plot titles and labels.

3.6.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

axis (a) Set the x and y limits of the data to be plotted.
(b) Get the x and y limits of the data to be plotted.
(c) Set other axis-related properties.

bar(x,y) Create a vertical bar plot.

barh(x,y) Create a horizontal bar plot.

compass(x,y) Create a compass plot.

figure Select a Figure Window to be the current Figure Window. If the
selected Figure Window does not exist, it is automatically created.

hold Allows multiple plot commands to write on top of each other.

linspace Create an array of samples with equal spacing on a linear scale.

loglog(x,y) Create a log/log plot.

logspace Create an array of samples with equal spacing on a logarithmic
scale.

pie(x) Create a pie plot.
(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.7 Exercises | 123

polar(theta,r) Create a polar plot.

semilogx(x,y) Create a log/linear plot.

semilogy(x,y) Create a linear/log plot.

stairs(x,y) Create a stair plot.

stem(x,y) Create a stem plot.

subplot Select a subplot in the current Figure Window. If the selected
subplot does not exist, it is automatically created. If the new
subplot conflicts with a previously existing set of axes, they are
automatically deleted.

3.7 Exercises

3.1 Plot the function ysxd 5 e20 .5x sin 2x for 100 values of x between 0 and 10.
Use a 2-point-wide solid blue line for this function. Then plot the function
ysxd 5 e20 .5x cos 2x on the same axes. Use a 3-point-wide dashed red line for
this function. Be sure to include a legend, title, axis labels, and grid on the plots.

3.2 Use the MATLAB plot editing tools to modify the plot in Exercise 3.1. Change
the line representing the function ysxd 5 e20 .5x sin 2x to be a black dashed line
that is 1-point-wide.

3.3 Plot the functions in Exercise 3.1 on a log/linear plot. Be sure to include a legend,
title, axis labels, and grid on the plots.

3.4 Plot the function ysxd 5 e20 .5x sin 2x on a bar plot. Use 100 values of x between
0 and 10 in the plot. Be sure to include a legend, title, axis labels, and grid on
the plots.

3.5 Create a polar plot of the function rsud 5 sin s2ud cos u for 0 # u # 2p.
3.6 Plot the function f sxd 5 x4 2 3x3 1 10x2 2 x 2 2 for 26 # x # 6. Draw the

function as a solid black 2-point-wide line, and turn on the grid. Be sure to
include a title and axis labels, and include the equation for the function being
plotted in the title string. (Note that you will need steam modifiers to get the
italics and the superscripts in the title string.)

3.7 Plot the function f sxd 5
x2 2 6x 1 5

x 2 3
 using 200 points over the range

22 # x # 8. Note that there is an asymptote at x 5 3, so the function will tent
to infinity near to that point. In order to see the rest of the plot properly, you will
need to limit the y-axis to a reasonable size, so use the axis command to limit
the y-axis to the range 210 to 10.

3.8 Suppose that George, Sam, Betty, Charlie, and Suzie contributed $15, $5, $10,
$5, and $15 respectively to a colleague’s going-away present. Create a pie chart
of their contributions. What percentage of the cost was paid by Sam?

3.9 Plot the function ysxd 5 e2x sin x for x between 0 and 4 in steps of 0.1. Create
the following plot types: (a) linear plot; (b) log/linear plot; (c) stem plot; (d) stair
plot; (e) bar plot; (f) horizontal bar plot; (g) compass plot. Be sure to include
titles and axis labels on all plots.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124 | Chapter 3 Two-Dimensional Plots

3.10 Why does it not make sense to plot the function ysxd 5 e2x sin x from the
previous exercise on a linear/log or a log/log plot?

3.11 Assume that the complex function f (t) is defined by the equation

 f std 5 s1 1 0.25id t 2 2.0 (3.4)

Plot the amplitude and phase of function f for 0 # t # 4 on two separate
subplots within a single figure. Be sure to provide appropriate titles and axis
labels. [NOTE: You can calculate the amplitude of the function using the
MATLAB function abs and the phase of the function using the MATLAB
function phase.]

3.12 Create an array of 100 input samples in the range 1 to 100 using the linspace
function, and plot the equation

 ysxd 5 20 log
10

s2xd (3.5)

on a semilogx plot. Draw a solid blue line of width 2, and label each point
with a red circle. Now create an array of 100 input samples in the range 1 to 100
using the logspace function, and plot Equation (3.5) on a semilogx plot.
Draw a solid red line of width 2, and label each point with a black star. How
does the spacing of the points on the plot compare when using linspace
and logspace?

3.13 Error Bars When plots are made from real measurements recorded in the labo-
ratory, the data that we plot is often the average of many separate measurements.
This kind of data has two important pieces of information: the average value of
the measurement and the amount of variation in the measurements that went into
the calculation.

It is possible to convey both pieces of information on the same plot by
adding error bars to the data. An error bar is a small vertical line that shows
the amount of variation that went into the measurement at each point. The
MATLAB function errorbar supplies this capability for MATLAB plots.

Look up errorbar in the MATLAB documentation, and learn how to
use it. Note that there are two versions of this call, one that shows a single error
that is applied equally on either side of the average point, and one that allows
you to specify upper limits and lower limits separately.

Suppose that you wanted to use this capability to plot the mean high
temperature at a location by month, as well as the minimum and maximum
extremes. The data might take the form of the following table:

(continued)

Temperatures at Location (8F)

Month
Average Daily
High Extreme High Extreme Low

January 66 88 16

February 70 92 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.7 Exercises | 125

March 75 100 25

April 84 105 35

May 93 114 39

June 103 122 50

July 105 121 63

August 103 116 61

September 99 116 47

October 88 107 34

November 75 96 27

December 66 87 22

Create a plot of the mean high temperature by month at this location, showing
the extremes as error bars. Be sure to label your plot properly.

3.14 The Spiral of Archimedes The spiral of Archimedes is a curve described in
polar coordinates by the equation

 r 5 ku (3.6)

where r is the distance of a point from the origin, and u is the angle of that point
in radians with respect to the origin. Plot the spiral of Archimedes for 0 # u # 6p
when k 5 0.5. Be sure to label you plot properly.

3.15 Output Power from a Motor The output power produced by a rotating motor
is given by the equation

 P 5 t
IND

 v
m
 (3.7)

where t
IND

 is the induced torque on the shaft in newton-meters, v
m
 is the

rotational speed of the shaft in radians per second, and P is in watts. Assume
that the rotational speed of a particular motor shaft is given by the equation

 v
m

5 188.5s1 2 e20 .2td rad/s (3.8)

and the induced torque on the shaft is given by

 t
IND

5 10e20 .2t N ? m (3.9)

Plot the torque, speed, and power supplied by this shaft versus time in three
subplots aligned vertically within a single figure for 0 # t # 10 s. Be sure
to label your plots properly with the symbols t

IND
 and v

m
 where appropriate.

Create two separate plots, one with the power and torque displayed on a linear
scale and one with the output power displayed on a logarithmic scale. Time
should always be displayed on a linear scale.

3.16 Plotting Orbits When a satellite orbits the Earth, the satellite’s orbit will form
an ellipse with the Earth located at one of the focal points of the ellipse. The
satellite’s orbit can be expressed in polar coordinates as

 r 5
p

1 2 « cos u
 (3.10)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126 | Chapter 3 Two-Dimensional Plots

where r and u are the distance and angle of the satellite from the center of the
Earth, p is a parameter specifying the size of the orbit, and « is a parameter
representing the eccentricity of the orbit. A circular orbit has an eccentricity
« of 0. An elliptical orbit has an eccentricity of 0 # « , 1. If « . 1, the satellite
follows a hyperbolic path and escapes from the Earth’s gravitational field.

Consider a satellite with a size parameter p 5 1000 km. Plot the orbit of
this satellite if (a) « 5 0; (b) « 5 0.25; (c) « 5 0.5. How close does each orbit
come to the Earth? How far away does each orbit get from the Earth? Compare
the three plots you created. Can you determine what the parameter p means
from looking at the plots?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

127

4Chapter

Branching Statements
and Program Design

In Chapter 2, we developed several complete working MATLAB programs. However,
all of the programs were very simple, consisting of a series of MATLAB statements
that were executed one after another in a fixed order. Such programs are called
sequential programs. They read input data, process it to produce a desired answer,
print out the answer, and quit. There is no way to repeat sections of the program
more than once, and there is no way to selectively execute only certain portions of
the program depending on values of the input data.

In the next two chapters, we will introduce a number of MATLAB statements that
allow us to control the order in which statements are executed in a program. There are
two broad categories of control statements: branches, which select specific sections of
the code to execute; and loops, which cause specific sections of the code to be repeated.
Branches will be discussed in this chapter, and loops will be discussed in Chapter 5.

With the introduction of branches and loops, our programs are going to become
more complex, and it will get easier to make mistakes. To help avoid programming
errors, we will introduce a formal program design procedure based upon the technique
known as top-down design. We will also introduce a common algorithm development
tool known as pseudocode.

We will also study the MATLAB logical data type before discussing branches,
because branches are controlled by logical values and expressions.

4.1 Introduction to Top-Down Design Techniques

Suppose that you are an engineer working in industry and need to write a program to
solve some problem. How do you begin?

When given a new problem, there is a natural tendency to sit down at a keyboard
and start programming without “wasting” a lot of time thinking about the problem first.
It is often possible to get away with this “on the fly” approach to programming for very

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128 | Chapter 4 Branching Statements and Program Design

small problems, such as many of the examples in this book. In the real world, however,
problems are larger, and an engineer attempting this approach will become hopelessly
bogged down. For larger problems, it pays to completely think out the problem and the
approach you are going to take to it before writing a single line of code.

We will introduce a formal program design process in this section and then apply
that process to every major application developed in the remainder of the book. For
some of the simple examples that we will be doing, the design process will seem like
overkill. However, as the problems that we solve get larger and larger, the process
becomes more and more essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying, “Pro-
gramming is easy. It’s knowing what to program that’s hard.” His point was forcefully
driven home to me after I left university and began working in industry on larger-scale
software projects. I found that the most difficult part of my job was to understand the
problem I was trying to solve. Once I really understood the problem, it became easy to
break it apart into smaller, more easily manageable pieces with well-defined functions
and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it
down into smaller, more easily understandable pieces (sub-tasks), which perform
a portion of the desired task. Each sub-task may in turn be subdivided into smaller
sub-tasks if necessary. Once the program is divided into small pieces, each piece
can be coded and tested independently. We do not attempt to combine the sub-tasks
into a complete task until each of the sub-tasks has been verified to work properly
by itself.

The concept of top-down design is the basis of our formal program design process.
We will now introduce the details of the process, which is illustrated in Figure 4.1. The
steps involved are:

1. Clearly state the problem that you are trying to solve.
Programs are usually written to fill some perceived need but that need may
not be articulated clearly by the person requesting the program. For example,
a user may ask for a program to solve a system of simultaneous linear
equations. This request is not clear enough to allow an engineer to design
a program to meet the need; he or she must first know much more about
the problem to be solved. Is the system of equations to be solved real or
complex? What is the maximum number of equations and unknowns that
the program must handle? Are there any symmetries in the equations which
might be exploited to make the task easier? The program designer will have
to talk with the user requesting the program, and the two of them will have to
come up with a clear statement of exactly what they are trying to accomplish.
A clear statement of the problem will prevent misunderstandings, and it will
also help the program designer to properly organize his or her thoughts. In
the example we were describing, a proper statement of the problem might
have been:

Design and create a program to solve a system of simultaneous linear
equations having real coefficients and with up to 20 equations in 20
unknowns.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Introduction to Top-Down Design Techniques | 129

2. Define the inputs required by the program and the outputs to be produced
by the program.
The inputs to the program and the outputs produced by the program must be
specified so that the new program will properly fit into the overall processing
scheme. In the above example, the coefficients of the equations to be solved
are probably in some pre-existing order, and our new program needs to be
able to read them in that order. Similarly, it needs to produce the answers
required by the programs that may follow it in the overall processing scheme
and to write out those answers in the format needed by those programs.

Figure 4.1 The program design process used in this book.

Finished!

Start

State the problem you
are trying to solve

De�ne required inputs
and outputs

Design the algorithm

Convert algorithm into
Fortran statements

Test the resulting
Fortran program

Decomposition

Stepwise re�nement

Top-down design process

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

130 | Chapter 4 Branching Statements and Program Design

3. Design the algorithm that you intend to implement in the program.
An algorithm is a step-by-step procedure for finding the solution to a problem.
It is at this stage in the process that top-down design techniques come into
play. The designer looks for logical divisions within the problem and divides
it up into sub-tasks along those lines. This process is called decomposition.
If the sub-tasks are themselves large, the designer can break them up into
even smaller sub-sub-tasks. This process continues until the problem has
been divided into many small pieces, each of which does a simple, clearly
understandable job.

After the problem has been decomposed into small pieces, each piece
is further refined through a process called stepwise refinement. In stepwise
refinement, a designer starts with a general description of what the piece
of code should do and then defines the functions of the piece in greater and
greater detail until they are specific enough to be turned into MATLAB state-
ments. Stepwise refinement is usually done with pseudocode, which will be
described in the next section.

It is often helpful to solve a simple example of the problem by hand during
the algorithm development process. If the designer understands the steps that
he or she went through in solving the problem by hand, then he or she will be
better able to apply decomposition and stepwise refinement to the problem.

4. Turn the algorithm into MATLAB statements.
If the decomposition and refinement process was carried out properly, this step
will be very simple. All the engineer will have to do is to replace pseudocode
with the corresponding MATLAB statements on a one-for-one basis.

5. Test the resulting MATLAB program.
This step is the real killer. The components of the program must first be tested
individually, if possible, and then the program as a whole must be tested. When
testing a program, we must verify that it works correctly for all legal input data
sets. It is very common for a program to be written, tested with some standard
data set, and released for use, only to find that it produces the wrong answers
(or crashes) with a different input data set. If the algorithm implemented in a
program includes different branches, we must test all of the possible branches to
confirm that the program operates correctly under every possible circumstance.
This exhaustive testing can be almost impossible in really large programs, so
bugs can be discovered after the program has been in regular use for years.

Because the programs in this book are fairly small, we will not go through the
sort of extensive testing described above. However, we will follow the basic princi-
ples in testing all of our programs.

Good Programming Practice

Follow the steps of the program design process to produce reliable, understandable
MATLAB programs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 The Logical Data Type | 131

In a large programming project, the time actually spent programming is surprisingly
small. In his book The Mythical Man-Month1, Frederick P. Brooks Jr. suggests that in
a typical large software project, 1/3 of the time is spent planning what to do (steps 1
through 3), 1/6 of the time is spent actually writing the program (step 4), and fully 1/2
of the time is spent in testing and debugging the program! Clearly, anything that we can
do to reduce the testing and debugging time will be very helpful. We can best reduce the
testing and debugging time by doing a very careful job in the planning phase and by using
good programming practices. Good programming practices will reduce the number of
bugs in the program and will make the ones that do creep in easier to find.

4.2 Use of Pseudocode

As a part of the design process, it is necessary to describe the algorithm that you intend to
implement. The description of the algorithm should be in a standard form that is easy for
both you and other people to understand, and the description should aid you in turning
your concept into MATLAB code. The standard forms that we use to describe algo-
rithms are called constructs (or sometimes structures), and an algorithm described using
these constructs is called a structured algorithm. When the algorithm is implemented in a
MATLAB program, the resulting program is called a structured program.

The constructs used to build algorithms can be described in a special way called
pseudocode. Pseudocode is a hybrid mixture of MATLAB and English. It is structured
like MATLAB, with a separate line for each distinct idea or segment of code, but the
descriptions on each line are in English. Each line of the pseudocode should describe its
idea in plain, easily understandable English. Pseudocode is very useful for developing
algorithms, since it is flexible and easy to modify. It is especially useful since pseudocode
can be written and modified with the same editor or word processor used to write the
MATLAB program—no special graphical capabilities are required.

For example, the pseudocode for the algorithm in Example 2-3 is:

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp_f)
temp_k in kelvins <− (5/9) * (temp_f - 32) + 273.15
Write temperature in kelvins

Notice that a left arrow (<−) is used instead of an equal sign (=) to indicate that
a value is stored in a variable, since this avoids any confusion between assignment and
equality. Pseudocode is intended to aid you in organizing your thoughts before converting
them into MATLAB code.

4.3 The Logical Data Type

The logical data type is a special type of data that can have one of only two possible
values: true or false. These values are produced by the two special functions true
and false. They are also produced by two types of MATLAB operators: relational
operators and logic operators.

1The Mythical Man-Month, Anniversary Edition, by Frederick P. Brooks Jr., Addison-Wesley, 1995.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132 | Chapter 4 Branching Statements and Program Design

Logical values are stored in a single byte of memory, so they take up much less
space than numbers, which usually occupy 8 bytes.

The operation of many MATLAB branching constructs is controlled by logical
variables or expressions. If the result of a variable or expression is true, then one section
of code is executed. If not, then a different section of code is executed.

To create a logical variable, just assign a logical value to it in an assignment
statement. For example, the statement

a1 = true;

creates a logical variable a1 containing the logical value true. If this variable is
examined with the whos command, we can see that it has the logical data type:

» whos a1
Name Size Bytes Class
a1 1x1 1 logical array

Unlike programming languages such as Java, C11, and Fortran, it is legal in
MATLAB to mix numerical and logical data in expressions. If a logical value is used
in a place where a numerical value is expected, true values are converted to 1 and
false values are converted to 0, and then used as numbers. If a numerical value is
used in a place where a logical value is expected, non-zero values are converted to
true and 0 values are converted to false, and then used as logical values.

It is also possible to explicitly convert numerical values to logical values, and
vice versa. The logical function converts numerical data to logical data, and the
real function converts logical data to numerical data.

4.3.1 Relational and Logic Operators

Relational and logic operators are operators that produce a true or false result.
These operators are very important, because they control which code gets executed
in some MATLAB branching structures.

Relational operators are operators that compare two numbers and produce a
true or false result. For example, a > b is a relational operator that compares the
numbers in variables a and b. If the value in a is greater than the value in b, then this
operator returns a true result. Otherwise, the operator returns a false result.

Logic operators are operators that compare one or two logical values, and pro-
duce a true or false result. For example, && is a logical AND operator. The operation
a && b compares the logical values stored in variables a and b. If both a and b are
true (nonzero), then the operator returns a true result. Otherwise, the operator returns
a false result.

4.3.2 Relational Operators

Relational operators are operators with two numerical or string operands that return
true (1) or false (0), depending on the relationship between the two operands. The
general form of a relational operator is

a
1
 op a

2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 The Logical Data Type | 133

where a
1
 and a

2
 are arithmetic expressions, variables, or strings, and op is one of the

following relational operators:

Table 4.1: Relational Operators

Operator Operation

== Equal to

~= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

If the relationship between a
1
 and a

2
 expressed by the operator is true, then the

operation returns a true value; otherwise, the operation returns false.
Some relational operations and their results are given below:

Operation Result

3 < 4 true (1)

3 <= 4 true (1)

3 == 4 false (0)

3 > 4 false (0)

4 <= 4 true (1)

 ' A' < 'B' true (1)

The last relational operation is true because characters are evaluated in alphabetical
order.

Relational operators may be used to compare a scalar value with an array. For

example, if a 5 3 1 0

22 14 and b 5 0, then the expression a > b will yield the array

31 0

0 14. Relational operators may also be used to compare two arrays, as long as

both arrays have the same size. For example, if a 5 3 1 0

22 14 and b 5 3 0 2

22 214,

then the expression a >= b will yield the array 31 0

1 14. If the arrays have different

sizes, a runtime error will result.
Note that since strings are really arrays of characters, relational operators can

only compare two strings if they are of equal lengths. If they are of unequal lengths,
the comparison operation will produce an error. We will learn of a more general way
to compare strings in Chapter 9.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

134 | Chapter 4 Branching Statements and Program Design

The equivalence relational operator is written with two equal signs, while the assign-
ment operator is written with a single equal sign. These are very different operators that
beginning engineers often confuse. The == symbol is a comparison operation that returns
a logical (0 or 1) result, while the = symbol assigns the value of the expression to the right
of the equal sign to the variable on the left of the equal sign. It is a very common mistake
for beginning engineers to use a single equal sign when trying to do a comparison.

Programming Pitfalls

Be careful not to confuse the equivalence relational operator (==) with the assign-
ment operator (=).

In the hierarchy of operations, relational operators are evaluated after all arith-
metic operators have been evaluated. Therefore, the following two expressions are
equivalent (both are true).

7 + 3 < 2 + 11
(7 + 3) < (2 + 11)

4.3.3 A Caution About the == and ~= Operators

The equivalence operator (==) returns a true value (1) when the two values being
compared are equal, and a false (0) when the two values being compared are different.
Similarly, non-equivalence operator (~=) returns a false (0) when the two values being
compared are equal, and a true (1) when the two values being compared are different.
These operators are generally safe to use for comparing strings, but they can sometimes
produce surprising results when two numeric values are compared. Due to roundoff
errors during computer calculations, two theoretically equal numbers can differ slightly,
causing an equality or inequality test to fail.

For example, consider the following two numbers, both of which should be
equal to 0.0.

a = 0;
b = sin(pi);

Since these numbers are theoretically the same, the relational operation a == b
should produce a 1. In fact, the results of this MATLAB calculation are

» a = 0;
» b = sin(pi);
» a == b
ans =

 0
MATLAB reports that a and b are different because a slight roundoff error in the
calculation of sin(pi) makes the result be 1.2246 3 10216 instead of exactly zero.
The two theoretically equal values differ slightly due to roundoff error!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 The Logical Data Type | 135

Instead of comparing two numbers for exact equality, you should set up your tests
to determine if the two numbers are nearly equal to each other within some accuracy
that takes into account the roundoff error expected for the numbers being compared.
The test

» abs(a – b) < 1.0E-14
ans =

 1

produces the correct answer, despite the roundoff error in calculating b.

4.3.4 Logic Operators

Logic operators are operators with one or two logical operands that yield a logical result.
There are five binary logic operators: AND (& and &&), inclusive OR (| and ||), and
exclusive OR (xor), and one unary logic operator: NOT (~). The general form of a
binary logic operation is

l
1
 op l

2

and the general form of a unary logic operation is

op l
1

where l
1
 and l

2
 are expressions or variables, and op is one of the following logic

operators shown in Table 4.2.

Good Programming Practice

Be cautious about testing for equality with numeric values, since roundoff errors
may cause two variables that should be equal to fail a test for equality. Instead, test
to see if the variables are nearly equal within the roundoff error to be expected on the
computer you are working with.

Table 4.2: Logic Operators

Operator Operation

& Logical AND

&& Logical AND with shortcut evaluation

| Logical Inclusive OR

|| Logical Inclusive OR with shortcut evaluation

xor Logical Exclusive OR

~ Logical NOT

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136 | Chapter 4 Branching Statements and Program Design

If the relationship between l
1
 and l

2
 expressed by the operator is true, then the oper-

ation returns a true (1); otherwise, the operation returns a false (0). Note that logic
operators treat any nonzero value as true, and any zero value as false.

The results of the operators are summarized in truth tables, which show the
result of each operation for all possible combinations of l

1
 and l

2
. Table 4.3 shows the

truth tables for all logic operators.

Logical ANDs
The result of an AND operator is true (1) if and only if both input operands are true.
If either or both operands are false, the result is false (0), as shown in Table 4.3.

Note that there are two logical AND operators: && and &. Why are there two AND
operators, and what is the difference between them? The basic difference between &&
and & is that && supports short-circuit evaluations (or partial evaluations), while &
doesn’t. That is, && will evaluate expression l

1
 and immediately return a false (0) value

if l
1
 is false. If l

1
 is false, the operator never evaluates l

2
, because the result of the operator

will be false regardless of the value of l
2
. In contrast, the & operator always evaluates

both l
1
 and l

2
 before returning an answer.

A second difference between && and & is that && only works between scalar
values, while & works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use && and when should you use & in a program? Most of the
time, it doesn’t matter which AND operation is used. If you are comparing scalars, and
it is not necessary to always evaluate l

2
, then use the && operator. The partial evaluation

will make the operation faster in the cases where the first operand is false.
Sometimes it is important to use shortcut expressions. For example, suppose that

we wanted to test for the situation where the ratio of two variables a and b is greater
than 10. The code to perform this test is:

x = a / b > 10.0

This code normally works fine, but what about the case where b is zero? In that case,
we would be dividing by zero, which produces an Inf instead of a number. The test
could be modified to avoid this problem as follows:

x = (b ~= 0) && (a/b > 10.0)

This expression uses partial evaluation, so if b 5 0, the expression a/b > 10.0
will never be evaluated, and no Inf will occur.

Table 4.3: Truth Tables for Logic Operators

Inputs and or xor not

l1 l2 l1 & l2 l1 && l2 l1 | l2 l1 || l2 xor(l1, l2) ~l1

false false false false false false false true

false true false false true true true true

true false false false true true true false

true true true true true true false false

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 The Logical Data Type | 137

Logical Inclusive ORs
The result of an inclusive OR operator is true (1) if either or both of the input operands
are true. If both operands are false, the result is false (0), as shown in Table 4.3.

Note that there are two inclusive OR operators: || and |. Why are there two
inclusive OR operators, and what is the difference between them? The basic differ-
ence between || and | is that || supports partial evaluations, while | doesn’t. That
is, || will evaluate expression l

1
 and immediately return a true value if l

1
 is true. If l

1

is true, the operator never evaluates l
2
, because the result of the operator will be true

regardless of the value of l
2
. In contrast, the | operator always evaluates both l

1
 and l

2

before returning an answer.
A second difference between || and | is that || only works between scalar

values, while | works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use || and when should you use | in a program? Most of the
time, it doesn’t matter which OR operation is used. If you are comparing scalars, and
it is not necessary to always evaluate l

2
, use the || operator. The partial evaluation

will make the operation faster in the cases where the first operand is true.

Good Programming Practice

Use the & AND operator if it is necessary to ensure that both operands are evaluated
in an expression, or if the comparison is between arrays. Otherwise, use the && AND
operator, since the partial evaluation will make the operation faster in the cases where
the first operand is false. The & operator is preferred in most practical cases.

Good Programming Practice

Use the | inclusive OR operator if it is necessary to ensure that both operands are
evaluated in an expression, or if the comparison is between arrays. Otherwise, use the
|| operator, since the partial evaluation will make the operation faster in the cases
where the first operand is true. The | operator is preferred in most practical cases.

Logical Exclusive OR
The result of an exclusive OR operator is true if and only if one operand is true and
the other one is false. If both operands are true or both operands are false, then the
result is false, as shown in Table 4.3. Note that both operands must always be evalu-
ated in order to calculate the result of an exclusive OR.

The logical exclusive OR operation is implemented as a function. For example,

a = 10;
b = 0;
x = xor(a, b);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138 | Chapter 4 Branching Statements and Program Design

The value in a is nonzero, so it is treated as true. The value in b is zero, so it is treated
as false. Since one value is true and the other is false, the result of the xor operation
will be true, and it will return a value of 1.

Logical NOT
The NOT operator (~) is a unary operator, having only one operand. The result of a
NOT operator is true (1) if its operand is zero, and false (0) if its operand is nonzero,
as shown in Table 4.3.

Hierarchy of Operations
In the hierarchy of operations, logic operators are evaluated after all arithmetic
operations and all relational operators have been evaluated. The order in which
the operators in an expression are evaluated is:

1. All arithmetic operators are evaluated first in the order previously described.
2. All relational operators (==, ~=, >, >=, <, <=) are evaluated, working from

left to right.
3. All ~ operators are evaluated.
4. All & and && operators are evaluated, working from left to right.
5. All |, ||, and xor operators are evaluated, working from left to right.

As with arithmetic operations, parentheses can be used to change the default order
of evaluation. Examples of some logic operators and their results are given below.

Example 4.1—Evaluating Logical Expressions:

Assume that the following variables are initialized with the values shown, and calcu-
late the result of the specified expressions:

value1 = 1
value2 = 0
value3 = 1
value4 = -10
value5 = 0
value6 = [1 2; 0 1]

▶

Expression Result Comment

(a) ~value1 false (0)

(b) ~value3 false (0) The number 1 is treated as true, and the
not operations is applied

(c) value1 | value2 true (1)

(d) value1 & value2 false (0)

(e) value4 & value5 false (0) 210 is treated as true and 0 is treated as
false when the AND operation is applied

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 The Logical Data Type | 139

The ~ operator is evaluated before other logic operators. Therefore, the paren-
theses in part (f) of the above example were required. If they had been absent,
the expression in part (f) would have been evaluated in the order (~value4)
& value5.

4.3.5 Logical Functions

MATLAB includes a number of logical functions that return true whenever the
condition they test for is true and return false whenever the condition they test for
is false. These functions can be used with relational and logic operators to control the
operation of branches and loops.

A few of the more important logical functions are given in Table 4.4.

(f) ~(value4 & value5) true (1) 210 is treated as true and 0 is treated
as false when the AND operation is
applied, and then the NOT operation
reverses the result

(g) value1 + value4 29

(h) value1 + (~value4) 1 The number value4 is nonzero, and so
considered true. When the NOT opera-
tion is performed, the result is false (0).
Then value1 is added to the 0, so the
final result is 1 + 0 5 1.

(i) value3 && value6 Illegal The && operator must be used with
scalar operands.

(j) value3 & value6 31 1

0 14
AND between a scalar and an array
operand. The nonzero values of array
value6 are treated as true.

▶

Table 4.4: Selected MATLAB Logical Functions

Function Purpose

false Returns a false (0) value.

ischar(a) Returns truev if a is a character array and false
otherwise.

isempty(a) Returns true if a is an empty array and false otherwise.

isinf(a) Returns true if the value of a is infinite (Inf) and
false otherwise.

isnan(a) Returns true if the value of a is NaN (not a number) and
false otherwise.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140 | Chapter 4 Branching Statements and Program Design

Function Purpose
isnumeric(a) Returns true if a is a numeric array and false

otherwise.
logical Converts numerical values to logical values: if a value is

nonzero, it is converted to true. If it is zero, it is converted
to false.

true Returns a true (1) value.

Table 4.4: Selected MATLAB Logical Functions. (Continued)

Quiz 4.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 4.3. If you have trouble with the quiz, reread the sections,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

Assume that a, b, c, and d are as defined, and evaluate the following expressions.

 a = 20; b = -2;
 c = 0; d = 1;

1. a > b
2. b > d
3. a > b && c > d
4. va == b
5. a && b > c
6. ~~b

Assume that a, b, c, and d are as defined, and evaluate the following expressions.

 a = 2; b = 31 22

0 104;

 c = 30 1

2 04; d = 322 1 2

0 1 04;
7. ~(a > b)
8. a > c && b > c
9. c <= d

10. logical(d)
11. a * b > c
12. a * (b > c)

Assume that a, b, c, and d are as defined. Explain the order in which each of the
following expressions are evaluated, and specify the results in each case:

 a = 2; b = 3;
 c = 10; d = 0;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 141

13. a*bˆ2 > a*c
14. d || b > a
15. (d | b) > a

Assume that a, b, c, and d are as defined, and evaluate the following expressions.

 a = 20; b = -2;
 c = 0; d = 'Test';

16. isinf(a/b)
17. isinf(a/c)
18. a > b && ischar(d)
19. isempty(c)
20. (~a) & b
21. (~a) + b

4.4 Branches

Branches are MATLAB statements that permit us to select and execute specific sec-
tions of code (called blocks) while skipping other sections of code. They are varia-
tions of the if construct, the switch construct, and the try/catch construct.

4.4.1 The if Construct

The if construct has the form

if control_expr_1
Statement 1

Statement 2

Á
 6 Block 1

elseif control_expr_2
Statement 1

Statement 2

Á
 6 Block 2

else
Statement 1

Statement 2

Á
 6 Block 3

end

where the control expressions are logical expressions that control the operation of
the if construct. If control_expr_1 is true (nonzero), then the program executes the
statements in Block 1, and skips to the first executable statement following the end.
Otherwise, the program checks for the status of control_expr_2. If control_expr_2 is
true (nonzero), then the program executes the statements in Block 2, and skips to the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142 | Chapter 4 Branching Statements and Program Design

first executable statement following the end. If all control expressions are zero, then
the program executes the statements in the block associated with the else clause.

There can be any number of elseif clauses (0 or more) in an if construct, but
there can be at most one else clause. The control expression in each clause will be
tested only if the control expressions in every clause above are false (0). Once one
of the expressions proves to be true and the corresponding code block is executed,
the program skips to the first executable statement following the end. If all control
expressions are false, then the program executes the statements in the block associ-
ated with the else clause. If there is no else clause, then execution continues after
the end statement without executing any part of the if construct.

Note that the MATLAB keyword end in this construct is completely different
from the MATLAB function end that we used in Chapter 2 to return the highest
value of a given subscript. MATLAB tells the difference between these two uses of
end from the context in which the word appears within an M-file.

In most circumstances, the control expressions will be some combination of rela-
tional and logic operators. As we learned earlier in this chapter, relational and logic
operators produce a true (1) when the corresponding condition is true and a false
(0) when the corresponding condition is false. When an operator is true, its result is
nonzero, and the corresponding block of code will be executed.

As an example of an if construct, consider the solution of a quadratic equation
of the form

ax2 1 bx 1 c 5 0 (4.1)

The solution to this equation is

 x 5
2b 6 Ïb2 2 4ac

2a
 (4.2)

The term b2 2 4ac is known as the discriminant of the equation. If b2 2 4ac . 0,
then there are two distinct real roots to the quadratic equation. If b2 2 4ac 5 0, then
there is a single repeated root to the equation, and if b2 2 4ac , 0, then there are two
complex roots to the quadratic equation.

Suppose that we wanted to examine the discriminant of a quadratic equation and
to tell a user whether the equation has two complex roots, two identical real roots, or
two distinct real roots. In pseudocode, this construct would take the form

if (bˆ2 - 4*a*c) < 0
Write msg that equation has two complex roots.

elseif (b**2 - 4.*a*c) == 0
Write msg that equation has two identical real roots.

else
Write msg that equation has two distinct real roots.

end

The MATLAB statements to do this are

if (bˆ2 - 4*a*c) < 0
disp('This equation has two complex roots.');

elseif (bˆ2 - 4*a*c) == 0
disp('This equation has two identical real roots.');

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 143

else
disp('This equation has two distinct real roots.');

end

For readability, the blocks of code within an if construct are usually indented
by 3 or 4 spaces, but this is not actually required.

Good Programming Practice

Always indent the body of an if construct by 3 or more spaces to improve the read-
ability of the code. Note that indentation is automatic if you use the MATLAB editor
to write your programs.

It is possible to write a complete if construct on a single line by separating the
parts of the construct by commas or semicolons. Thus the following two constructs
are identical:

if x < 0
 y = abs(x);

end

and

if x < 0; y = abs(x); end

However, this should only be done for very simple constructs.

4.4.2. Examples Using if Constructs

We will now look at two examples that illustrate the use of if constructs.

 Example 4.2—The Quadratic Equation

Write a program to solve for the roots of a quadratic equation, regardless of type.

Solution We will follow the design steps outlined earlier in the chapter.

1. State the problem
The problem statement for this example is very simple. We want to write a
program that will solve for the roots of a quadratic equation, whether they are
distinct real roots, repeated real roots, or complex roots.

2. Define the inputs and outputs
The inputs required by this program are the coefficients a, b, and c of the
quadratic equation

 ax2 1 bx 1 c 5 0 (4.1)

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

144 | Chapter 4 Branching Statements and Program Design

The output from the program will be the roots of the quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots.

3. Design the algorithm
This task can be broken down into three major sections, whose functions are
input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the above major sections into smaller, more
detailed pieces. There are three possible ways to calculate the roots,
depending on the value of the discriminant, so it is logical to implement
this algorithm with a three-branched if construct. The resulting pseu-
docode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and c
discriminant ← bˆ2 - 4 * a * c
if discriminant > 0
 x1 ← (-b + sqrt(discriminant)) / (2 * a)
 x2 ← (-b - sqrt(discriminant)) / (2 * a)
 Write msg that equation has two distinct real

roots.
 Write out the two roots.
elseif discriminant == 0
 x1 ← -b / (2 * a)
 Write msg that equation has two identical real

roots.
 Write out the repeated root.
else
 real_part ← -b / (2 * a)
 imag_part ← sqrt (abs (discriminant)) / (2 * a)
 Write msg that equation has two complex roots.
 Write out the two roots.
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below:

% Script file: calc_roots.m
%
% Purpose:
% This program solves for the roots of a quadratic equation
% of the form a*xˆ2 + b*x + c = 0. It calculates the answers
% regardless of the type of roots that the equation possesses.
%

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 145

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/02/14 S. J. Chapman Original code
%
% Define variables:
% a -- Coefficient of xˆ2 term of equation
% b -- Coefficient of x term of equation
% c -- Constant term of equation
% discriminant -- Discriminant of the equation
% imag_part -- Imag part of equation (for complex roots)
% real_part -- Real part of equation (for complex roots)
% x1 -- First solution of equation (for real roots)
% x2 -- Second solution of equation (for real roots)

% Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic');
disp ('equation of the form A*Xˆ2 + B*X + C = 0.');
a = input ('Enter the coefficient A:');
b = input ('Enter the coefficient B:');
c = input ('Enter the coefficient C:');
% Calculate discriminant
discriminant = bˆ2 - 4 * a * c;

% Solve for the roots, depending on the value of the discriminant
if discriminant > 0 % there are two real roots, so...

 x1 = (-b + sqrt(discriminant)) / (2 * a);
 x2 = (-b - sqrt(discriminant)) / (2 * a);
 disp ('This equation has two real roots:');
 fprintf ('x1 = %f\n', x1);
 fprintf ('x2 = %f\n', x2);

elseif discriminant == 0 % there is one repeated root, so...

 x1 = (-b) / (2 * a);
 disp ('This equation has two identical real roots:');
 fprintf ('x1 = x2 = %f\n',x1);

else % there are complex roots, so ...

 real_part = (-b) / (2 * a);
 imag_part = sqrt (abs (discriminant)) / (2 * a);
 disp ('This equation has complex roots:');
 fprintf('x1 = %f +i %f\n', real_part, imag_part);

fprintf('x1 = %f -i %f\n', real_part, imag_part);

end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146 | Chapter 4 Branching Statements and Program Design

5. Test the program.
Next, we must test the program using real input data. Since there are
three possible paths through the program, we must test all three paths
before we can be certain that the program is working properly. From
Equation (4.2), it is possible to verify the solutions to the equations given
below:

x2 1 5x 1 6 5 0 x 5 22 and x 5 23

x2 1 4x 1 4 5 0 x 5 22

x2 1 2x 1 5 5 0 x 5 21 6 i2

If this program is executed three times with the above coefficients, the results
are as shown below (user inputs are shown in bold face):

» calc_roots
This program solves for the roots of a quadratic
equation of the form A*Xˆ2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
This equation has two real roots:
x1 = -2.000000
x2 = -3.000000
» calc_roots
This program solves for the roots of a quadratic
equation of the form A*Xˆ2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 4
Enter the coefficient C: 4
This equation has two identical real roots:
x1 = x2 = -2.000000
» calc_roots
This program solves for the roots of a quadratic
equation of the form A*Xˆ2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5
This equation has complex roots:
x1 = -1.000000 +i 2.000000
x1 = -1.000000 -i 2.000000

The program gives the correct answers for our test data in all three pos-
sible cases.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 147

Example 4.3—Evaluating a Function of Two Variables

Write a MATLAB program to evaluate a function f(x, y) for any two user-specified
values x and y. The function f(x, y) is defined as follows.

 f sx, yd 5 5
x 1 y x $ 0 and y $ 0

x 1 y2 x $ 0 and y , 0

x2 1 y x , 0 and y $ 0

x2 1 y2 x , 0 and y , 0

Solution The function f (x, y) is evaluated differently depending on the signs of the
two independent variables x and y. To determine the proper equation to apply, it will
be necessary to check for the signs of the x and y values supplied by the user.

1. State the problem
This problem statement is very simple: Evaluate the function f (x, y) for any
user-supplied values of x and y.

2. Define the inputs and outputs
The inputs required by this program are the values of the independent vari-
ables x and y. The output from the program will be the value of the function
f (x, y).

3. Design the algorithm
This task can be broken down into three major sections, whose functions are
input, processing, and output:

Read the input values x and y
Calculate f(x,y)
Write out f(x,y)

We will now break each of the above major sections into smaller, more
detailed pieces. There are four possible ways to calculate the function f (x, y),
depending upon the values of x and y, so it is logical to implement this
algorithm with a four-branched if statement. The resulting pseudocode is:

Prompt the user for the values x and y.
Read x and y
if x ≥ 0 and y ≥ 0
 fun ← x + y
elseif x ≥ 0 and y < 0
 fun ← x + yˆ2
elseif x < 0 and y ≥ 0
 fun ← xˆ2 + y
else
 fun ← xˆ2 + yˆ2
end
Write out f(x,y)

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148 | Chapter 4 Branching Statements and Program Design

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

% Script file: funxy.m
%
% Purpose:
% This program solves the function f(x,y) for a
% user-specified x and y, where f(x,y) is defined as:
%
%
% f(x, y)=
%
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/03/14 S. J. Chapman Original code
%
% Define variables:
% x -- First independent variable
% y -- Second independent variable
% fun -- Resulting function

% Prompt the user for the values x and y
x = input ('Enter the x value: ');
y = input ('Enter the y value: ');

% Calculate the function f(x,y) based upon
% the signs of x and y.
if x >= 0 && y >= 0
 fun = x + y;
elseif x >= 0 && y < 0
 fun = x + yˆ2;
elseif x < 0 && y >= 0
 fun = xˆ2 + y;
else % x < 0 and y < 0, so
 fun = xˆ2 + yˆ2;
end

% Write the value of the function.
disp (['The value of the function is ' num2str(fun)]);

5. Test the program.
Next, we must test the program using real input data. Since there are four
possible paths through the program, we must test all four paths before we
can be certain that the program is working properly. To test all four possi-
ble paths, we will execute the program with the four sets of input values
(x, y) 5 (2, 3), (2,–3), (–2, 3), and (–2,–3). Calculating by hand, we see that

x + y x >= 0 and y >= 0
x + yˆ2 x >= 0 and y < 0
xˆ2 + y x < 0 and y >= 0
xˆ2 + yˆ2 x < 0 and y < 0
3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 149

f s2,3d 5 2 1 3 5 5

f s2,23d 5 2 1 s 2 3d2 5 11

f s 2 2,3d 5 s 2 2d2 1 3 5 7

f s 2 2,23d 5 s 2 2d2 1 s 2 3d2 5 13

If this program is compiled, and then run four times with the above values,
the results are:

 » funxy
 Enter the x coefficient: 2
 Enter the y coefficient: 3
 The value of the function is 5
 » funxy
 Enter the x coefficient: 2
 Enter the y coefficient: -3
 The value of the function is 11
 » funxy
 Enter the x coefficient: -2
 Enter the y coefficient: 3
 The value of the function is 7
 » funxy
 Enter the x coefficient: -2
 Enter the y coefficient: -3
The value of the function is 13

The program gives the correct answers for our test values in all four possible cases.

▶

4.4.3 Notes Concerning the Use of if Constructs

The if construct is very flexible. It must have one if statement and one end state-
ment. In between, it can have any number of elseif clauses, and may also have
one else clause. With this combination of features, it is possible to implement any
desired branching construct.

In addition, if constructs may be nested. Two if constructs are said to be
nested if one of them lies entirely within a single code block of the other one. The
following two if constructs are properly nested.

if x > 0
...
if y < 0
 ...
end
...

end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150 | Chapter 4 Branching Statements and Program Design

The MATLAB interpreter always associates a given end statement with the
most recent if statement, so the first end above closes the if y < 0 state-
ment, while the second end closes the if x > 0 statement. This works well
for a properly written program, but can cause the interpreter to produce confus-
ing error messages in cases where the programmer makes a coding error. For
example, suppose that we have a large program containing a construct like the
one shown below.

...
if (test1)

...
if (test2)
 ...
 if (test3)
 ...
 end
 ...
end
...

end

This program contains three nested if constructs that may span hundreds of lines
of code. Now suppose that the first end statement is accidentally deleted during
an editing session. When that happens, the MATLAB interpreter will automatically
associate the second end with the innermost if (test3) construct, and the third
end with the middle if (test2). When the interpreter reaches the end of the
file, it will notice that the first if (test1) construct was never ended, and it will
generate an error message saying that there is a missing end. Unfortunately, it can’t
tell where the problem occurred, so we will have to go back and manually search the
entire program to locate the problem.

It is sometimes possible to implement an algorithm using either multiple
elseif clauses or nested if statements. In that case, the program designer may
choose whichever style he or she prefers.

Example 4.4—Assigning Letter Grades

Suppose that we are writing a program which reads in a numerical grade and assigns
a letter grade to it according to the following table:

95 < grade A
86 < grade ≤ 95 B
76 < grade ≤ 86 C
66 < grade ≤ 76 D
 0 < grade ≤ 66 F

Write an if construct that will assign the grades as described above using (a) multi-
ple elseif clauses and (b) nested if constructs.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 151

Solution (a) One possible structure using elseif clauses is

if grade > 95.0
 disp('The grade is A.');

elseif grade > 86.0
 disp('The grade is B.');

elseif grade > 76.0
 disp('The grade is C.');

elseif grade > 66.0
 disp('The grade is D.');

else
 disp('The grade is F.');

end

(b) One possible structure using nested if constructs is

if grade > 95.0
 disp('The grade is A.');

else
 if grade > 86.0
 disp('The grade is B.');
 else
 if grade > 76.0
 disp('The grade is C.');
 else
 if grade > 66.0
 disp('The grade is D.');
 else
 disp('The grade is F.');
 end
 end
 end

end

▶

It should be clear from the above example that if there are a lot of mutually
exclusive options, a single if construct with multiple elseif clauses will be sim-
pler than a nested if construct.

Good Programming Practice

For branches in which there are many mutually exclusive options, use a single if
construct with multiple elseif clauses in preference to nested if constructs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152 | Chapter 4 Branching Statements and Program Design

4.4.4 The switch Construct

The switch construct is another form of branching construct. It permits an engineer
to select a particular code block to execute based on the value of a single integer,
character, or logical expression. The general form of a switch construct is:

switch (switch_expr)
case case_expr_1

Statement 1

Statement 2

Á
 6 Block 1

case case_expr_2

Statement 1

Statement 2

Á
 6 Block 2

...
otherwise

Statement 1

Statement 2

Á
 6 Block n

end

If the value of switch_expr is equal to case_expr_1, then the first code block will be
executed, and the program will jump to the first statement following the end of the
switch construct. Similarly, if the value of switch_expr is equal to case_expr_2,
then the second code block will be executed, and the program will jump to the first
statement following the end of the switch construct. The same idea applies for any
other cases in the construct. The otherwise code block is optional. If it is present,
it will be executed whenever the value of switch_expr is outside the range of all
of the case selectors. If it is not present and the value of switch_expr is outside
the range of all of the case selectors, then none of the code blocks will be executed.
The pseudocode for the case construct looks just like its MATLAB implementation.

If many values of the switch_expr should cause the same code to execute,
all of those values may be included in a single block by enclosing them in brackets,
as shown below. If the switch expression matches any of the case expressions in the
list, then the block will be executed.

switch (switch_expr)
case {case_expr_1, case_expr_2, case_expr_3}

Statement 1

Statement 2

Á
 6 Block 1

otherwise

Statement 1

Statement 2

Á
 6 Block n

end
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 153

The switch_expr and each case_expr may be either numerical or string values.
Note that at most one code block can be executed. After a code block is exe-

cuted, execution skips to the first executable statement after the end statement. Thus
if the switch expression matches more than one case expression, only the first one of
them will be executed.

Let’s look at a simple example of a switch construct. The following state-
ments determine whether an integer between 1 and 10 is even or odd, and print out
an appropriate message. It illustrates the use of a list of values as case selectors, and
also the use of the otherwise block.

switch (value)
case {1,3,5,7,9}
 disp('The value is odd.');
case {2,4,6,8,10}
 disp('The value is even.');
otherwise
 disp('The value is out of range.');
end

4.4.5 The try/catch Construct

The try/catch construct is a special form branching construct designed to trap
errors. Ordinarily, when a MATLAB program encounters an error while running,
the program aborts. The try/catch construct modifies this default behavior. If
an error occurs in a statement in the try block of this construct, then instead of
aborting, the code in the catch block is executed and the program keeps running.
This allows a programmer to handle errors within the program without causing the
program to stop.

The general form of a try/catch construct is:

try

Statement 1

Statement 2

Á
 6 Try Block

catch

Statement 1

Statement 2

Á
 6 Catch Block

end

When a try/catch construct is reached, the statements in the try block will be
executed. If no error occurs, the statements in the catch block will be skipped, and
execution will continue at the first statement following the end of the construct. On
the other hand, if an error does occur in the try block, the program will stop exe-
cuting the statements in the try block, and immediately execute the statements in
the catch block.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154 | Chapter 4 Branching Statements and Program Design

A catch statement can take an optional ME argument, where ME stands for
a MException (MATLAB exception) object. The ME object is created when a
failure occurs during the execution of statements in the try block. The ME object
contains details about the type of exception (ME.identifier), the error message
(ME.message), the cause of the error (ME.cause), and the stack (ME.stack),
which specifies exactly where the error occurred. This information can be displayed
to the user, or the programmer can use this information to try to recover from the
error and let the program proceed2.

An example program containing a try/catch construct follows. This pro-
gram creates an array, and asks the user to specify an element of the array to
display. The user will supply a subscript number, and the program displays the
corresponding array element. The statements in the try block will always be
executed in this program, while the statements in the catch block will only
be executed of an error occurs in the try block. If the user specifies an illegal
subscript, execution will transfer to the catch block, and the ME object will contain
data explaining what went wrong. In this simple program, this information is just
echoed to the Command Window. In more complicated programs, it could be used
to recover from the error.

% Test try/catch

% Initialize array
a = [1 -3 2 5];

try

 % Try to display an element
 index = input('Enter subscript of element to display:');
 disp(['a(' int2str(index)')=' num2str(a(index))]);

catch ME

 % If we get here, an error occurred. Display the error.
 ME
 stack = ME.stack

end

When this program is executed with a legal subscript, the results are:

» test_try_catch
Enter subscript of element to display: 3
a(3) = 2

2We will learn more about exceptions when we study object-oriented programming in Chapter 12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 155

When this program is executed with an illegal subscript, the results are:

» test_try_catch
Enter subscript of element to display: 9
ME =
 MException with properties:

 identifier: 'MATLAB:badsubscript'
 message: 'Attempted to access a(9); index out of

bounds because numel(a)=4.'
 cause: {}
 stack: [1x1 struct]
stack =
 file: 'C:\Data\book\matlab\5e\chap4\test_try_catch.m'
 name: 'test_try_catch'
 line: 10

Quiz 4.2

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 4.4. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

Write MATLAB statements that perform the functions described below.

1. If x is greater than or equal to zero, then assign the square root of x to
variable sqrt_x and print out the result. Otherwise, print out an error
message about the argument of the square root function, and set sqrt_x
to zero.

2. A variable fun is calculated as numerator/denominator. If the abso-
lute value of denominator is less than 1.0E-300, write “Divide by 0
error.” Otherwise, calculate and print out fun.

3. The cost per mile for a rented vehicle is $1.00 for the first 100 miles, $0.80
for the next 200 miles, and $0.70 for all miles in excess of 300 miles. Write
MATLAB statements that determine the total cost and the average cost per
mile for a given number of miles (stored in variable distance).

Examine the following MATLAB statements. Are they correct or incorrect?
If they are correct, what do they output? If they are incorrect, what is wrong
with them?

4. if volts > 125
disp('WARNING: High voltage on line.');

 if volts < 105
disp('WARNING: Low voltage on line.');

 else
disp('Line voltage is within tolerances.');

 end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

156 | Chapter 4 Branching Statements and Program Design

5. color = 'yellow';
 switch (color)
 case 'red',

disp('Stop now!');
 case 'yellow',

disp('Prepare to stop.');
 case 'green',

disp('Proceed through intersection.');
 otherwise,

disp('Illegal color encountered.');
 end
6. if temperature > 37

disp('Human body temperature exceeded.');
 elseif temperature > 100

disp('Boiling point of water exceeded.');
 end

Example 4.5—Electrical Engineering: Frequency Response of a
Low-Pass Filter

A simple low-pass filter circuit is shown in Figure 4.2. This circuit consists of a resis-
tor and capacitor in series, and the ratio of the output voltage Vo to the input voltage
V

i
 is given by the equation

V

0

V
i

5
1

1 1 j2pfRC
 (4.3)

where V
i
 is a sinusoidal input voltage of frequency f, R is the resistance in ohms, C

is the capacitance in farads, and j is Ï21 (electrical engineers use j instead of i for
Ï21, because the letter i is traditionally reserved for the current in a circuit).

Assume that the resistance R 5 16 kΩ, and capacitance C 5 1 mF, and plot the
amplitude and frequency response of this filter over the frequency range 0 ,5 f ,5
1000 Hz.

▶

V0Vi C

R

2

1

2

1

Figure 4.2 A simple low-pass filter circuit.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 157

Solution The amplitude response of a filter is the ratio of the amplitude of the out-
put voltage to the amplitude of the input voltage, and the phase response of the filter
is the difference between the phase of the output voltage and the phase of the input
voltage. The simplest way to calculate the amplitude and phase response of the filter
is to evaluate Equation (4.3) at many different frequencies. The plot of the magnitude
of Equation (4.3) versus frequency is the amplitude response of the filter, and the plot
of the angle of Equation (4.3) versus frequency is the phase response of the filter.

Because the frequency and amplitude response of a filter can vary over a wide
range, it is customary to plot both of these values on logarithmic scales. On the other
hand, the phase varies over a very limited range, so it is customary to plot the phase
of the filter on a linear scale. Therefore, we will use a loglog plot for the amplitude
response, and a semilogx plot for the phase response of the filter. We will display
both responses as two sub-plots within a figure.

We will also use stream modifiers to make the title and axis labels appear in bold
face, as that improves the appearance of the plots.

The MATLAB code required to create and plot the responses is shown below.

% Script file: plot_filter.m
%
% Purpose:
% This program plots the amplitude and phase responses
% of a low-pass RC filter.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/05/14 S. J. Chapman Original code
%
% Define variables:
% amp -- Amplitude response
% C -- Capacitance (farads)
% f -- Frequency of input signal (Hz)
% phase -- Phase response
% R -- Resistance (ohms)
% res -- Vo/Vi

% Initialize R & C
R = 16000; % 16 k ohms
C = 1.0E-6; % 1 uF

% Create array of input frequencies
f = 1:2:1000;

% Calculate response
res = 1 ./ (1 + j*2*pi*f*R*C);

% Calculate amplitude response
amp = abs(res);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158 | Chapter 4 Branching Statements and Program Design

% Calculate phase response
phase = angle(res);

% Create plots
subplot(2,1,1);
loglog(f, amp);
title('\bfAmplitude Response');
xlabel('\bfFrequency (Hz)');
ylabel('\bfOutput/Input Ratio');
grid on;

subplot(2,1,2);
semilogx(f, phase);
title('\bfPhase Response');
xlabel('\bfFrequency (Hz)');
ylabel('\bfOutput-Input Phase (rad)');
grid on;

The resulting amplitude and phase responses are shown in Figure 4.3. Note that
this circuit is called a low-pass filter because low frequencies are passed through with
little attenuation, while high frequencies are strongly attenuated.

▶

Frequency (Hz)

100

1021

1022

100 101

Amplitude Response

O
ut

pu
t/I

np
ut

 R
at

io

102 103

0

20.5

21

21.5

22
100 101

Frequency (Hz)

O
ut

pu
t-

In
pu

t P
ha

se
 (

ra
d)

102 103

Phase Response

Figure 4.3 The amplitude and phase response of the low-pass filter circuit.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Branches | 159

Example 4.6—Thermodynamics: The Ideal Gas Law

An ideal gas is one in which all collisions between molecules are perfectly elastic. It
is possible to think of the molecules in an ideal gas as perfectly hard billiard balls that
collide and bounce off of each other without losing kinetic energy.

Such a gas can be characterized by three quantities: absolute pressure (P),
volume (V), and absolute temperature (T). The relationship among these quantities in
an ideal gas is known as the Ideal Gas Law:

 PV 5 nRT (4.4)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas in
liters (L), n is the number of molecules of the gas in units of moles (mol), R is the
universal gas constant (8.314 L?kPa/mol?K), and T is the absolute temperature in
kelvins (K). (Note: 1 mol 5 6.02 3 1023 molecules.)

Assume that a sample of an ideal gas contains 1 mole of molecules at a temper-
ature of 273 K, and answer the following questions.

(a) How does the volume of this gas vary as its pressure varies from 1 to 1000 kPa?
Plot pressure versus volume for this gas on an appropriate set of axes. Use a
solid red line, with a width of 2 pixels.

(b) Suppose that the temperature of the gas is increased to 373 K. How does the vol-
ume of this gas vary with pressure now? Plot pressure versus volume for this gas
on the same set of axes as part (a). Use a dashed blue line, with a width of 2 pixels.

Include a bold face title and x- and y-axis labels on the plot, as well as legends
for each line.

Solution The values that we wish to plot both vary by a factor of 1000, so an ordi-
nary linear plot will not produce a particularly useful result. Therefore, we will plot
the data on a log-log scale.

Note that we must plot two curves on the same set of axes, so we must issue the
command hold on after the first one is plotted, and hold off after the plot is
complete. It will also be necessary to specify the color, style, and width of each line
and to specify that labels be in bold face.

A program that calculates the volume of the gas as a function of pressure and
creates the appropriate plot is shown below. Note that the special features controlling
the style of the plot are shown in bold face.

% Script file: ideal_gas.m
%
% Purpose:
% This program plots the pressure versus volume of an
% ideal gas.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/16/14 S. J. Chapman Original code
%

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160 | Chapter 4 Branching Statements and Program Design

% Define variables:
% n -- Number of molecules (mol)
% P -- Pressure (kPa)
% R -- Ideal gas constant (L kPa/mol K)
% T -- Temperature (K)
% V -- volume (L)

% Initialize nRT
n = 1; % Moles of atoms
R = 8.314; % Ideal gas constant
T = 273; % Temperature (K)

% Create array of input pressures. Note that this
% array must be quite dense to catch the major
% changes in volume at low pressures.
P = 1:0.1:1000;

% Calculate volumes
V = (n * R * T) ./ P;

% Create first plot
figure(1);
loglog(P,V,'r-','LineWidth', 2);
title('\bfVolume vs Pressure in an Ideal Gas);
xlabel('\bfPressure (kPa)');
ylabel('\bfVolume (L)');
grid on;
hold on;

% Now increase temperature
T = 373; % Temperature (K)

% Calculate volumes
V = (n * R * T) ./ P;

% Add second line to plot
figure(1);
loglog(P,V,'b--','LineWidth', 2);
hold off;

% Add legend
legend('T = 273 K','T = 373 k');

The resulting volume versus pressure plot is shown in Figure 4.4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 More on Debugging MATLAB Programs | 161

Figure 4.4 Pressure versus volume for an ideal gas.

4.5 More on Debugging MATLAB Programs

It is much easier to make a mistake when writing a program containing branches and
loops than it is when writing simple sequential programs. Even after going through
the full design process, a program of any size is almost guaranteed not to be com-
pletely correct the first time it is used. Suppose that we have built the program and
tested it, only to find that the output values are in error. How do we go about finding
the bugs and fixing them?

Once programs start to include loops and branches, the best way to locate an
error is to use the symbolic debugger supplied with MATLAB. This debugger is
integrated with the MATLAB editor.

To use the debugger, first open the file that you would like to debug using
the File/Open menu selection in the MATLAB Command Window. When the
file is opened, it is loaded into the editor and the syntax is automatically color-
coded. Comments in the file appear in green, variables and numbers appear
in black, character strings appear in red, and language keywords appear in

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162 | Chapter 4 Branching Statements and Program Design

blue. Figure 4.5 shows an example Edit/Debug Window containing the file
calc_roots.m. [See color insert.]

Let’s say that we would like to determine what happens when the program is exe-
cuted. To do this, we can set one or more breakpoints by clicking time mouse on the
horizontal dash mark at the left of the line(s) of interest. When a breakpoint is set, a red
dot appears to the left of that line containing the breakpoint, as shown in Figure 4.6.

Once the breakpoints have been set, execute the program as usual by typing
calc_roots in the Command Window. The program will run until it reaches the

Figure 4.5 An Edit/Debug window with a MATLAB program loaded. [See color
insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 More on Debugging MATLAB Programs | 163

first breakpoint and stop there. A green arrow will appear by the current line during
the debugging process, as shown in Figure 4.7. When the breakpoint is reached, the
programmer can examine and/or modify any variable in the workspace by typing
its name in the Command Window or by examining the values in the Workspace
Browser. When the programmer is satisfied with the program at that point, he or she
can step through the program a line at a time by repeatedly pressing the F10 key or
by clicking the Step tool () on the Toolstrip. Alternatively, the programmer can run

Figure 4.6 The window after a breakpoint has been set. Note the red dot to
the left of the line with the breakpoint. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164 | Chapter 4 Branching Statements and Program Design

to the next breakpoint by pressing the F5 key or by clicking the Continue tool (). It
is always possible to examine the values of any variable at any point in the program.

When a bug is found, the programmer can use the Editor to correct the
MATLAB program and save the modified version to disk. Note that all breakpoints
may be lost when the program is saved to disk with a new file name, so they may
have to be set again before debugging can continue. This process is repeated until the
program appears to be bug-free.

Figure 4.7 A green arrow will appear by the current line during the
debugging process. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 More on Debugging MATLAB Programs | 165

Two other very important features of the debugger are found in the Breakpoints
group on the Toolstrip (see Figure 4.8a). The first feature is Set Condition, which
sets or modifies a conditional breakpoint. A conditional breakpoint is a breakpoint
where the code stops only if some condition is true. For example, a conditional
breakpoint can be used to stop execution inside a for loop on its 200th execution.
This can be very important if a bug only appears after a loop has been executed many

Figure 4.8 (a) Options in the Breakpoint group of the toolstrip. (b) Selecting
the “Always stop if error” debugging option.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166 | Chapter 4 Branching Statements and Program Design

times. The condition that causes the breakpoint to stop execution can be modified,
and the breakpoint can be enabled or disabled during debugging.

The second feature is Stop if Errors/Warnings, which appears if the user selects
the More Error and Warning Handling option (see Figure 4.8b). If an error is occur-
ring in a program that causes it to crash or generate warning messages, the program
developer can select the “Always stop if error” or “Always stop if warning” radio
button and execute the program. It will run to the point of the error or warning and
stop there, allowing the developer to examine the values of variables and see exactly
what is causing the problem.

A final critical feature is a tool called the Code Analyzer (previously called
M-Lint). The Code Analyzer examines a MATLAB file and looks for potential prob-
lems. If it finds a problem, it shades that part of the code in the editor (see Figure 4.9).

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 More on Debugging MATLAB Programs | 167

Figure 4.9 Using the Code Analyzer: (a) A shaded area in the Editor indicates a
problem. (b) Placing the mouse over the shaded area produces a popup describ-
ing the problem. (c) A full report can also be generated using the “Tools > Show
Code Analyzer Report” menu option. (d) A sample Code Analyzer Report.

(c)

(d)

If the developer places the mouse cursor over the shaded area, a popup will appear
describing the problem, so that it can be fixed. It is also possible to display a com-
plete list of all problems in a MATLAB file by clicking on the down arrow in the
upper right-hand corner of the editor and selecting the Tools . Show Code Analyzer
Report option.

The Code Analyzer is a great tool for locating errors, poor usage, or obsolete
features in MATLAB code, including such things as variables that are defined but
never used. The Code Analyzer is run automatically over any script loaded into the
Edit/Debug Window, and the problem spots are shaded. Pay attention to its output
and fix any problems that it reports.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168 | Chapter 4 Branching Statements and Program Design

4.6 Summary

In Chapter 4 we have presented the basic types of MATLAB branches and the rela-
tional and logic operations used to control them. The principal type of branch is the
if construct. This construct is very flexible. It can have as many elseif clauses
as needed to construct any desired test. Furthermore, if constructs can be nested to
produce more complex tests. A second type of branch is the switch construct. It
may be used to select among mutually exclusive alternatives specified by a control
expression.

A third type of branch is the try/catch construct. It is used to trap errors that
might occur during execution. The catch clause can have an optional exception
object ME that provides information about the error that occurred.

The MATLAB symbolic debugger and related tools such as the Code Ana-
lyzer make debugging MATLAB code much easier. You should invest some time to
become familiar with these tools.

4.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch or
loop constructs. By following them consistently, your code will contain fewer bugs,
will be easier to debug, and will be more understandable to others who may need to
work with it in the future.

1. Follow the steps of the program design process to produce reliable,
understandable MATLAB programs.

2. Be cautious about testing for equality with numeric values, since roundoff
errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the
roundoff error to be expected on the computer you are working with.

3. Use the & AND operator if it is necessary to ensure that both operands
are evaluated in an expression, or if the comparison is between arrays.
Otherwise, use the && AND operator, since the partial evaluation will
make the operation faster in the cases where the first operand is false.
The & operator is preferred in most practical cases.

4. Use the | inclusive OR operator if it is necessary to ensure that both
operands are evaluated in an expression, or if the comparison is between
arrays. Otherwise, use the || operator, since the partial evaluation will
make the operation faster in the cases where the first operand is true.
The | operator is preferred in most practical cases.

5. Always indent code blocks in if, switch, and try/catch constructs to
make them more readable.

6. For branches in which there are many mutually exclusive options, use a
single if construct with multiple elseif clauses in preference to nested
if constructs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Exercises | 169

4.6.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

if construct Selects a block of statements to execute if a specified
condition is satisfied.

ischar(a) Returns a 1 if a is a character array and a 0 otherwise.

isempty(a) Returns a 1 if a is an empty array and a 0 otherwise.

isinf(a) Returns a 1 if the value of a is infinite (Inf) and a 0
otherwise.

isnan(a) Returns a 1 if the value of a is NaN (not a number) and
a 0 otherwise.

isnumeric(a) Returns a 1 if a is a numeric array and a 0 otherwise.

logical Converts numeric data to logical data, with nonzero
values becoming true and zero values becoming
false.

poly Convert a list of roots of a polynomial into the polyno-
mial coefficients.

root Calculate the roots of a polynomial expressed as a
series of coefficients.

switch construct Selects a block of statements to execute from a set of
mutually exclusive choices based on the result of a
single expression.

try/catch construct A special construct used to trap errors. It executes
construct the code in the try block. If an error occurs,
execution stops immediately and transfers to the code
in the catch construct.

4.7 Exercises

4.1 Evaluate the following MATLAB expressions.

(a) 5 >= 5.5
(b) 20 > 20
(c) xor(17 - pi < 15, pi < 3)
(d) true > false
(e) ~~(35 / 17) == (35 / 17)
(f) (7 <= 8) == (3 / 2 == 1)
(g) 17.5 && (3.3 > 2.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170 | Chapter 4 Branching Statements and Program Design

4.2 The tangent function is defined as tan u 5 sin u / cos u. This expression can be
evaluated to solve for the tangent as long as the magnitude of cos u is not too near
to 0. (If cos u is 0, evaluating the equation for tan u will produce the non-numerical
value Inf.) Assume that u is given in degrees, and write the MATLAB statements
to evaluate tan u as long as the magnitude of cos u is greater than or equal to 1022.
If the magnitude of cos u is less than 1022, write out an error message instead.

4.3 The following statements are intended to alert a user to dangerously high oral
thermometer readings (values are in degrees Fahrenheit). Are they correct or
incorrect? If they are incorrect, explain why and correct them.

if temp < 97.5
 disp('Temperature below normal');
elseif temp > 97.5
 disp('Temperature normal');
elseif temp > 99.5
 disp('Temperature slightly high');
elseif temp > 103.0
 disp('Temperature dangerously high');
end

4.4 The cost of sending a package by an express delivery service is $15.00 for
the first two pounds and $5.00 for each pound or fraction thereof over two
pounds. If the package weighs more than 70 pounds, a $15.00 excess weight
surcharge is added to the cost. No package over 100 pounds will be accepted.
Write a program that accepts the weight of a package in pounds and computes
the cost of mailing the package. Be sure to handle the case of overweight
packages.

4.5 In Example 4.3, we wrote a program to evaluate the function f (x, y) for any two
user-specified values x and y, where the function f (x, y) was defined as follows.

f sx, yd 5 5
x 1 y x $ 0 and y $ 0

x 1 y2 x $ 0 and y , 0

x2 1 y x , 0 and y $ 0

x2 1 y2 x , 0 and y , 0

The problem was solved by using a single if construct with four code blocks
to calculate f (x, y) for all possible combinations of x and y. Rewrite program
funxy to use nested if constructs, where the outer construct evaluates the
value of x and the inner constructs evaluate the value of y.

4.6 Write a MATLAB program to evaluate the function

y sxd 5 ln
1

1 2 x

for any user-specified value of x, where x is a number , 1.0 (note that ln is the
natural logarithm, the logarithm to the base e). Use an if structure to verify
that the value passed to the program is legal. If the value of x is legal, calculate
y(x). If not, write a suitable error message and quit.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Exercises | 171

4.7 Write a program that allows a user to enter a string containing a day of the week
(‘Sunday’, ‘Monday’, ‘Tuesday’, etc.), and uses a switch construct to convert
the day to its corresponding number, where Sunday is considered the first day
of the week, and Saturday is considered the last day of the week. Print out the
resulting day number. Also, be sure to handle the case of an illegal day name with
an otherwise statement! (Note: Be sure to use the 's' option on function
input so that the input is treated as a string.)

4.8 Suppose that a student has the option of enrolling for a single elective during a
term. The student must select a course from a limited list of options: English, His-
tory, Astronomy, or Literature. Construct a fragment of MATLAB code that will
prompt the student for his or her choice, read in the choice, and use the answer as
the case expression for a switch construct. Be sure to include a default case to
handle invalid inputs.

4.9 Ideal Gas Law The Ideal Gas Law was defined in Example 4.6. Assume that the
volume of 1 mole of this gas is 10 L, and plot the pressure of the gas as a function
of temperature as the temperature is changed from 250 to 400 kelvins. What sort
of plot (linear, semilogx, and so forth) is most appropriate for this data?

4.10 Ideal Gas Law A tank holds an amount of gas pressurized at 200 kPa in the winter
when the temperature of the tank is 08 C. What would the pressure in the tank be if it
holds the same amount of gas when the temperature is 1008 C? Create a plot showing
the expected pressure as the temperature in the tank increases from 08 C to 2008 C.

4.11 van der Waals Equation The Ideal Gas Law describes the temperature, pres-
sure, and volume of an ideal gas. It is

PV 5 nRT (4.4)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of
the gas in liters (L), n is the number of molecules of the gas in units of moles
(mol), R is the universal gas constant (8.314 L?kPa/mol?K), and T is the abso-
lute temperature in kelvins (K). (Note: 1 mol 5 6.02 3 1023 molecules.)

Real gasses are not ideal because the molecules of the gas are not perfectly
elastic—they tend to cling together a bit. The relationship between the temper-
ature, pressure, and volume of a real gas can be represented by a modification
of the ideal gas law called van der Waals Equation. It is

 1P 1
n2a

V
2 2sV 2 nbd 5 nRT (4.5)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the
gas in liters (L), a is a measure of attraction between the particles, n is the
number of molecules of the gas in units of moles (mol), and b is the volume of
one mole of the particles, R is the universal gas constant (8.314 L?kPa/mol?K),
and T is the absolute temperature in kelvins (K).

This equation can be solved for P to give pressure as a function of tem-
perature and volume.

 P 5
nRT

V 2 nb
2

n2a

V
2
 (4.6)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

172 | Chapter 4 Branching Statements and Program Design

For carbon dioxide, the value of a 5 0.396 kPa ? L and the value of
b 5 0.0427 L/mol. Assume that a sample of carbon dioxide gas contains
1 mole of molecules at a temperature of 08 C (273 K) and occupies 30 L of
volume. Answer the following questions.

(a) What is the pressure of the gas according to the Ideal Gas Law?
(b) What is the pressure of the gas according to the van der Waals equation?
(c) Plot the pressure versus volume at this temperature according to the Ideal

Gas Law and according to van der Waals equation on the same axes. Is the
pressure of a real gas higher or lower than the pressure of an ideal gas under
the same temperature conditions?

4.12 Suppose that a polynomial equation has the following 6 roots: –6, –2, 1 1 iÏ2,
1 2 iÏ2, 2, and 6. Find the coefficients of the polynomial.

4.13 Find the roots of the polynomial equation

ysxd 5 x6 2 x5 2 6x4 1 14x3 2 12x2

Plot the resulting function, and compare the observed roots to the calculated
roots. Also, plot the location of the roots on a complex plane.

4.14 Antenna Gain Pattern The gain G of a certain microwave dish antenna can be
expressed as a function of angle by the equation

 Gsud 5 usinc 4u u for 2
p

2
u

p

2
 (4.7)

where u is measured in radians from the boresight of the dish, and sinc x 5
sin x / x. Plot this gain function on a polar plot with the title “Antenna Gain
vs u” in bold face.

4.15 The author of this book now lives in Australia. In 2009, individual citizens and
residents of Australia paid the following income taxes:

Taxable Income (in A$) Tax on This Income

$0–$6,000 None

$6,001–$34,000 15¢ for each $1 over $6,000

$34,001–$80,000 $4,200 plus 30¢ for each $1 over $34,000

$80,001–$180,000 $18,000 plus 40¢ for each $1 over $80,000

Over $180,000 $58,000 plus 45¢ for each $1 over $180,000

In addition, a flat 1.5% Medicare levy is charged on all income. Write a program
to calculate how much income tax a person will owe based on this information.
The program should accept a total income figure from the user, and calculate
the income tax, Medicare levy, and total tax payable by the individual.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Exercises | 173

4.16 In 2002, individual citizens and residents of Australia paid the following
income taxes:

Taxable Income (in A$) Tax on This Income

$0–$6,000 None

$6,001–$20,000 17¢ for each $1 over $6,000

$20,001–$50,000 $2,380 plus 30¢ for each $1 over $20,000

$50,001–$60,000 $11,380 plus 42¢ for each $1 over $50,000

Over $60,000 $15,580 plus 47¢ for each $1 over $60,000

In addition, a flat 1.5% Medicare levy was charged on all income. Write a pro-
gram to calculate how much less income tax a person paid on a given amount
of income in 2009 than he or she would have paid in 2002.

4.17 Refraction When a ray of light passes from a region with an index of
refraction n

1
 into a region with a different index of refraction n

2
, the light

ray is bent (see Figure 4.10). The angle at which the light is bent is given
by Snell’s Law

 n
1
 sin u

1
5 n

2
 sin u

2
 (4.8)

where u
1
 is the angle of incidence of the light in the first region, and u

2
 is the

angle of incidence of the light in the second region. Using Snell’s Law, it is
possible to predict the angle of incidence of a light ray in Region 2 if the angle

Region 1 Index of Refraction n1

Region 2 Index of Refraction n2

�1

�1 . �2

�2

Region 1 Index of Refraction n1

Region 2 Index of Refraction n2

�1

�1 , �2

�2

Figure 4.10 A ray of light bends as it passes from one medium into another one. (a) If the ray
of light passes from a region with a low index of refraction into a region with a higher index of
refraction, the ray of light bends more towards the normal. (b) If the ray of light passes from a
region with a high index of refraction into a region with a lower index of refraction, the ray of light
bends away from the normal.

(a) (b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174 | Chapter 4 Branching Statements and Program Design

of incidence u
1
 in Region 1 and the indices of refraction n

1
 and n

2
 are known.

The equation to perform this calculation is

 u
2

5 sin21 F n
1

n
2

 sin u
1 G (4.9)

Write a program to calculate the angle of incidence (in degrees) of a light ray in
Region 2 given the angle of incidence u

1
 in Region 1 and the indices of refrac-

tion n
1
 and n

2
. (Note: If n

1
 . n

2
, then for some angles u

1
, Equation (4.9) will

have no real solution because the absolute value of the quantity F n
2

n
1

 sinu
1 Gwill

be greater than 1.0. When this occurs, all light is reflected back into Region 1,
and no light passes into Region 2 at all. Your program must be able to recog-
nize and properly handle this condition.)

The program should also create a plot showing the incident ray, the
boundary between the two regions, and the refracted ray on the other side of
the boundary.

Test your program by running it for the following two cases: (a) n
1
 5 1.0,

n
2
 5 1.7, and u

1
 5 458. (b) n

1
 5 1.7, n

2
 5 1.0, and u

1
 5 458.

4.18 High-Pass Filter Figure 4.11 shows a simple high-pass filter consisting of a
resistor and a capacitor. The ratio of the output voltage V

0
 to the input voltage V

i

is given by the equation

V

o

V
i

5
j2pfRC

1 1 j2pfRC
 (4.10)

Assume that R 5 16 kV and C 5 1 mF. Calculate and plot the amplitude and
phase response of this filter as a function of frequency.

4.19 As we saw in Chapter 2, the load command can be used to load data from a
MAT file into the MATLAB workspace. Write a script that prompts a user for the
name of a file to load, and then loads the data from that file. The script should be
in a try/catch construct to catch and display errors if the specified file cannot
be opened. Test your script file for loading both valid and invalid MAT files.

C

Vi
2

1
V0R

2

1

Figure 4.11 A simple high-pass filter circuit.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175

5Chapter

Loops and Vectorization

Loops are MATLAB constructs that permit us to execute a sequence of statements
more than once. There are two basic forms of loop constructs: while loops and
for loops. The major difference between these two types of loops is in how the
repetition is controlled. The code in a while loop is repeated an indefinite number
of times until some user-specified condition is satisfied. By contrast, the code in a
for loop is repeated a specified number of times, and the number of repetitions is
known before the loops starts.

Vectorization is an alternate and faster way to perform the same function as
many MATLAB for loops. After introducing loops, this chapter will show how to
replace many loops with vectorized code for increased speed.

MATLAB programs that use loops often process very large amounts of data, and the
programs need an efficient way to read that data in for processing. This chapter intro-
duces the textread function to make it simple to read large data sets in from disk files.

5.1 The while Loop

A while loop is a block of statements that are repeated indefinitely as long as some
condition is satisfied. The general form of a while loop is

while expression

 ...
 ... } Code block
 ...
end

The controlling expression produces a logical value. If the expression is true, the
code block will be executed, and then control will return to the while statement. If

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176 | Chapter 5 Loops and Vectorization

the expression is still true, the statements will be executed again. This process will be
repeated until the expression becomes false. When control returns to the while state
ment and the expression is false, the program will execute the first statement after
the end.

The pseudocode corresponding to a while loop is

 while expr

 ...
 ...
 ...

 end

We will now show an example statistical analysis program that is implemented
using a while loop.

Example 5.1— Statistical Analysis

It is very common in science and engineering to work with large sets of numbers,
each of which is a measurement of some particular property that we are interested
in. A simple example would be the grades on the first test in this course. Each grade
would be a measurement of how much a particular student has learned in the
course to date.

Much of the time, we are not interested in looking closely at every single measure
ment that we make. Instead, we want to summarize the results of a set of measurements
with a few numbers that tell us a lot about the overall data set. Two such numbers are
the average (or arithmetic mean) and the standard deviation of the set of measure
ments. The average, or arithmetic mean, of a set of numbers is defined as

 x 5
1

No
N

i51

x
i
 (5.1)

where x
i
 is sample i out of N samples. If all of the input values are available in an

array, the average of a set of numbers may be calculated by MATLAB function mean.
The standard deviation of a set of numbers is defined as

 s 5ÎNo
N

i51

x
i
2 2 1o

N

i51

x
i2

2

N sN 2 1d
 (5.2)

Standard deviation is a measure of the amount of scatter on the measurements; the
greater the standard deviation, the more scattered the points in the data set are.

Implement an algorithm that reads in a set of measurements and calculates the
mean and the standard deviation of the input data set.

Solution This program must be able to read in an arbitrary number of measure
ments and then calculate the mean and standard deviation of those measurements.
We will use a while loop to accumulate the input measurements before performing
the calculations.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When all of the measurements have been read, we must have some way of telling
the program that there is no more data to enter. For now, we will assume that all the
input measurements are either positive or zero, and we will use a negative input value
as a flag to indicate that there is no more data to read. If a negative value is entered,
then the program will stop reading input values and will calculate the mean and stan
dard deviation of the data set.

1. State the problem.
Since we assume that the input numbers must be positive or zero, a proper
statement of this problem would be: calculate the average and the standard
deviation of a set of measurements, assuming that all of the measurements
are either positive or zero, and assuming that we do not know in advance how
many measurements are included in the data set. A negative input value will
mark the end of the set of measurements.

2. Define the inputs and outputs.
The inputs required by this program are an unknown number of positive or
zero numbers. The outputs from this program are a printout of the mean and
the standard deviation of the input data set. In addition, we will print out the
number of data points input to the program, since this is a useful check that
the input data was read correctly.

3. Design the algorithm.
This program can be broken down into three major steps:

Accumulate the input data
Calculate the mean and standard deviation
 Write out the mean, standard deviation, and number
 of points

The first major step of the program is to accumulate the input data. To
do this, we will have to prompt the user to enter the desired numbers. When
the numbers are entered, we will have to keep track of the number of values
entered, their sum, and the sum of the squares of those values. The pseudo
code for these steps is:

Initialize n, sum_x, and sum_x2 to 0
Prompt user for first number
Read in first x
while x > = 0

n ← n + 1
sum_x ← sum_x + x
sum_x2 ← sum_x2 + xˆ2
Prompt user for next number
Read in next x

end
Note that we have to read in the first value before the while loop starts so
that the while loop can have a value to test the first time it executes.

5.1 The while Loop | 177

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178 | Chapter 5 Loops and Vectorization

Next, we must calculate the mean and standard deviation. The pseudocode
for this step is just the MATLAB versions of Equations (5.1) and (5.2).

x_bar ← sum_x / n
std_dev ← sqrt((n*sum_x2 - sum_xˆ2) / (n*(n-1)))

Finally, we must write out the results.

Write out the mean value x_bar
Write out the standard deviation std_dev
Write out the number of input data points n

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below:

% Script file: stats_1.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set containing an arbitrary number
% of input values.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/24/14 S. J. Chapman Original code
%
% Define variables:
% n -- The number of input samples
% std_dev -- The standard deviation of the input samples
% sum_x -- The sum of the input values
% sum_x2 -- The sum of the squares of the input values
% x -- An input data value
% xbar -- The average of the input samples

% Initialize sums.
n = 0; sum_x = 0; sum_x2 = 0;

% Read in first value
x = input('Enter first value:');

% While Loop to read input values.
while x >= 0

% Accumulate sums:
n = n + 1;
sum_x = sum_x + x;
sum_x2 = sum_x2 + xˆ2;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

% Read in next value
x = input('Enter next value:');

end

% Calculate the mean and standard deviation
x_bar = sum_x / n;
std_dev = sqrt((n * sum_x2 - sum_xˆ2) / (n * (n-1)));

% Tell user.
fprintf('The mean of this data set is: %f\n', x_bar);
fprintf('The standard deviation is: %f\n', std_dev);
fprintf('The number of data points is: %f\n', n);

5. Test the program.
To test this program, we will calculate the answers by hand for a simple
data set, and then compare the answers to the results of the program. If we
used three input values: 3, 4, and 5, then the mean and standard deviation
would be

x 5
1

No
N

i51

x
i
5

1

3
 s12d 5 4

s 5ÎNo
N

i51

x
i
2

2 1o
N

i51

x
i2

2

NsN 2 1d
5 1

When the above values are fed into the program, the results are

» stats_1
Enter first value: 3
Enter next value: 4
Enter next value: 5
Enter next value: -1
The mean of this data set is: 4.000000
The standard deviation is: 1.000000
The number of data points is: 3.000000

The program gives the correct answers for our test data set.

▶

In the example above, we failed to follow the design process completely. This
failure has left the program with a fatal flaw! Did you spot it?

We have failed because we did not completely test the program for all possible
types of inputs. Look at the example once again. If we enter either no numbers or
only one number, then we will be dividing by zero in the above equations! The divi
sionbyzero error will cause dividebyzero warnings to be printed, and the output

5.1 The while Loop | 179

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

180 | Chapter 5 Loops and Vectorization

values will be NaN. We need to modify the program to detect this problem, tell the
user what the problem is, and stop gracefully.

A modified version of the program called stats_2 is shown below. Here, we
check to see if there are enough input values before performing the calculations. If
not, the program will print out an intelligent error message and quit. Test the modified
program for yourself.

% Script file: stats_2.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set containing an arbitrary number
% of input values.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/24/14 S. J. Chapman Original code
% 1. 01/24/14 S. J . Chapman Correct divide-by-0 error if
% 0 or 1 input values given.
%
% Define variables:
% n -- The number of input samples
% std_dev -- The standard deviation of the input samples
% sum_x -- The sum of the input values
% sum_x2 -- The sum of the squares of the input values
% x -- An input data value
% xbar -- The average of the input samples

% Initialize sums.
n = 0; sum_x = 0; sum_x2 = 0;

% Read in first value
x = input('Enter first value: ');

% While Loop to read input values.
while x >= 0

 % Accumulate sums.
 n = n + 1;
 sum_x = sum_x + x;
 sum_x2 = sum_x2 + xˆ2;

 % Read in next value
 x = input('Enter next value:');
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

% Check to see if we have enough input data.
if n < 2 % Insufficient information

 disp('At least 2 values must be entered!');

else % There is enough information, so
 % calculate the mean and standard deviation

 x_bar = sum_x / n;
 std_dev = sqrt((n * sum_x2 - sum_xˆ2)/(n *(n-1)));

 % Tell user.
 fprintf('The mean of this data set is: %f\n', x_bar);
 fprintf('The standard deviation is: %f\n', std_dev);
 fprintf('The number of data points is: %f\n', n);

end
Note that the average and standard deviation could have been calculated with the

builtin MATLAB functions mean and std if all of the input values are saved in a vector,
and that vector is passed to these functions. You will be asked to create a version of the pro
gram that uses the standard MATLAB functions in an exercise at the end of this chapter.

5.2 The for Loop

The for loop is a loop that executes a block of statements a specified number of
times. The for loop has the form

for index = expr
...
... } Body
...

end

where index is the loop variable (also known as the loop index) and expr is the
loop control expression, whose result is an array. The columns in the array produced by
expr are stored one at a time in the variable index and then the loop body is executed,
so that the loop is executed once for each column in the array produced by expr. The
expression usually takes the form of a vector in shortcut notation first:incr:last.

The statements between the for statement and the end statement are known as
the body of the loop. They are executed repeatedly during each pass of the for loop.
The for loop construct functions as follows:

1. At the beginning of the loop, MATLAB generates an array by evaluating the
control expression.

2. The first time through the loop, the program assigns the first column of the
array to the loop variable index, and the program executes the statements
within the body of the loop.

5.2 The for Loop | 181

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182 | Chapter 5 Loops and Vectorization

3. After the statements in the body of the loop have been executed, the program
assigns the next column of the array to the loop variable index, and the
program executes the statements within the body of the loop again.

4. Step 3 is repeated over and over as long as there are additional columns in
the array.

Let’s look at a number of specific examples to make the operation of the for
loop clearer. First, consider the following example:

for ii = 1:10
 Statement 1
 ...
 Statement n
end

In this loop, the control index is the variable ii1. In this case, the control expression
generates a 1 3 10 array, so statements 1 through n will be executed 10 times. The
loop index ii will be 1 the first time, 2 the second time, and so on. The loop index
will be 10 on the last pass through the statements. When control is returned to the
for statement after the tenth pass, there are no more columns in the control expres
sion, so execution transfers to the first statement after the end statement. Note that
the loop index ii is still set to 10 after the loop finishes executing.

Second, consider the following example:

for ii = 1:2:10
 Statement 1
 ...
 Statement n
end

In this case, the control expression generates a 1 3 5 array, so statements 1 through n will
be executed 5 times. The loop index ii will be 1 the first time, 3 the second time, and
so on. The loop index will be 9 on the fifth and last pass through the statements. When
control is returned to the for statement after the fifth pass, there are no more columns
in the control expression, so execution transfers to the first statement after the end
statement. Note that the loop index ii is still set to 9 after the loop finishes executing.

Third, consider the following example:

for ii = [5 9 7]
 Statement 1
 ...
 Statement n
end

Here, the control expression is an explicitly written 1 3 3 array, so statements 1 through n
will be executed 3 times with the loop index set to 5 the first time, 9 the second time,
and 7 the final time. The loop index ii is still set to 7 after the loop finishes executing.

1By habit, programmers working in most programming languages use simple variable names like i
and j as loop indices. However, MATLAB predefines the variables i and j to be the value Ï21.
Because of this definition, the examples in the book use ii and jj as example loop indices.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finally, consider the example:

for ii = [1 2 3;4 5 6]
 Statement 1
 ...
 Statement n
end

In this case, the control expression is a 2 3 3 array, so statements 1 through n will be

executed 3 times. The loop index ii will be the column vector 31

44 the first time, 32

54the

second time, and 33

64 the third time. The loop index ii is still set to 33

64 after the loop

finishes executing. This example illustrates the fact that a loop index can be a vector.
The pseudocode corresponding to a for loop looks like the loop itself:

for index = expression
 Statement 1
 ...
 Statement n
end

Example 5.2—The Factorial Function

To illustrate the operation of a for loop, we will use a for loop to calculate the
factorial function. The factorial function is defined for any integer $ 0 as

 n! 5 51 n 5 0

n 3 sn 2 1d 3 sn 2 2d 3 Á 3 2 3 1 n . 0
 (5.3)

The MATLAB code to calculate N factorial for positive value of N would be

n_factorial = 1
for ii = 1:n
 n_factorial = n_factorial * ii;
end

Suppose that we wish to calculate the value of 5!. If n is 5, the for loop control
expression would be the row vector [1 2 3 4 5]. This loop will be executed
5 times, with the variable ii taking on values of 1, 2, 3, 4, and 5 in the successive
loops. The resulting value of n_factorial will be 1 3 2 3 3 3 4 3 5 5 120.

▶

Example 5.3—Calculating the Day of Year

The day of year is the number of days (including the current day) that have elapsed
since the beginning of a given year. It is a number in the range 1 to 365 for ordinary
years and 1 to 366 for leap years. Write a MATLAB program that accepts a day,
month, and year and calculates the day of year corresponding to that date.

▶

▶

5.2 The for Loop | 183

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

184 | Chapter 5 Loops and Vectorization

Solution To determine the day of year, this program will need to sum up the num
ber of days in each month preceding the current month plus the number of elapsed
days in the current month. A for loop will be used to perform this sum. Since the
number of days in each month varies, it is necessary to determine the correct number
of days to add for each month. A switch construct will be used to determine the
proper number of days to add for each month.

During a leap year, an extra day must be added to the day of year for any month
after February. This extra day accounts for the presence of February 29 in the leap
year. Therefore, to perform the day of year calculation correctly, we must determine
which years are leap years. In the Gregorian calendar, leap years are determined by
the following rules:

1. Years evenly divisible by 400 are leap years.
2. Years evenly divisible by 100 but not by 400 are not leap years.
3. All years divisible by 4 but not by 100 are leap years.
4. All other years are not leap years.

We will use the mod (for modulus) function to determine whether or not a year is
evenly divisible by a given number. The mod function returns the remainder after
the division of two numbers. For example, the remainder of 9/4 is 1, since 4 goes
into 9 twice with a remainder of 1. If the result of the function mod(year,4) is
zero, then we know that the year is evenly divisible by 4. Similarly, if the result
of the function mod(year,400) is zero, then we know that the year is evenly
divisible by 400.

A program to calculate the day of year is shown below. Note that the program
sums up the number of days in each month before the current month and that it uses
a switch construct to determine the number of days in each month.

% Script file: doy.m
%
% Purpose:
% This program calculates the day of year corresponding
% to a specified date. It illustrates the use of switch and
% for constructs.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/27/14 S. J. Chapman Original code
%
% Define variables:
% day -- Day (dd)
% day_of_year -- Day of year
% ii -- Loop index
% leap_day -- Extra day for leap year
% month -- Month (mm)
% year -- Year (yyyy)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

% Get day, month, and year to convert
disp('This program calculates the day of year given the');
disp('specified date.');
month = input('Enter specified month (1-12):');
day = input('Enter specified day(1-31): ');
year = input('Enter specified year(yyyy): ');

% Check for leap year, and add extra day if necessary
if mod(year,400) == 0
 leap_day = 1; % Years divisible by 400 are leap years
elseif mod(year,100) == 0
 leap_day = 0; % Other centuries are not leap years
elseif mod(year,4) == 0
 leap_day = 1; % Otherwise every 4th year is a leap year
else
 leap_day = 0; % Other years are not leap years
end

% Calculate day of year by adding current day to the
% days in previous months.
day_of_year = day;
for ii = 1:month-1

 % Add days in months from January to last month
 switch (ii)
 case {1,3,5,7,8,10,12},
 day_of_year = day_of_year + 31;
 case {4,6,9,11},
 day_of_year = day_of_year + 30;
 case 2,
 day_of_year = day_of_year + 28 + leap_day;
 end

end

% Tell user
fprintf('The date %2d/%2d/%4d is day of year %d.\n', ...
 month, day, year, day_of_year);

We will use the following known results to test the program:

1. Year 1999 is not a leap year. January 1 must be day of year 1, and
December 31 must be day of year 365.

2. Year 2000 is a leap year. January 1 must be day of year 1, and December 31
must be day of year 366.

3. Year 2001 is not a leap year. March 1 must be day of year 60, since January
has 31 days, February has 28 days, and this is the first day of March.

5.2 The for Loop | 185

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186 | Chapter 5 Loops and Vectorization

If this program is executed five times with the above dates, the results are

» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 1
Enter specified day(1-31): 1
Enter specified year(yyyy): 1999
The date 1/ 1/1999 is day of year 1.
» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year(yyyy): 1999
The date 12/31/1999 is day of year 365.
» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 1
Enter specified day(1-31): 1
Enter specified year(yyyy): 2000
The date 1/ 1/2000 is day of year 1.
» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year(yyyy): 2000
The date 12/31/2000 is day of year 366.
» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 3
Enter specified day(1-31): 1
Enter specified year(yyyy): 2001
The date 3/ 1/2001 is day of year 60.

The program gives the correct answers for our test dates in all five test cases.
▶

Example 5.4—Statistical Analysis

Implement an algorithm that reads in a set of measurements and calculates the mean
and the standard deviation of the input data set, when any value in the data set can be
positive, negative, or zero.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solution This program must be able to read in an arbitrary number of measure
ments and then calculate the mean and standard deviation of those measurements.
Each measurement can be positive, negative, or zero.

Since we cannot use a data value as a flag this time, we will ask the user for the num
ber of input values, and then use a for loop to read in those values. The modified program
that permits the use of any input value is shown below. Verify its operation for yourself by
finding the mean and standard deviation of the following 5 input values: 3, –1, 0, 1, and –2.

% Script file: stats_3.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set, where each input value can be
% positive, negative, or zero.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/27/14 S. J. Chapman Original code
%
% Define variables:
% ii -- Loop index
% n -- The number of input samples
% std_dev -- The standard deviation of the input samples
% sum_x -- The sum of the input values
% sum_x2 -- The sum of the squares of the input values
% x -- An input data value
% xbar -- The average of the input samples

% Initialize sums.
sum_x = 0; sum_x2 = 0;

% Get the number of points to input.
n = input('Enter number of points:');

% Check to see if we have enough input data.
if n < 2 % Insufficient data

 disp ('At least 2 values must be entered.');

else % we will have enough data, so let’s get it.

 % Loop to read input values.
 for ii = 1:n

 % Read in next value
 x 5 input('Enter value: ');

5.2 The for Loop | 187

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188 | Chapter 5 Loops and Vectorization

 % Accumulate sums.
 sum_x = sum_x + x;
 sum_x2 = sum_x2 + xˆ2;

 end

 % Now calculate statistics.
 x_bar = sum_x / n;
 std_dev = sqrt((n * sum_x2 - sum_xˆ2) / (n * (n-1)));

 % Tell user.
 fprintf('The mean of this data set is: %f\n', x_bar);
 fprintf('The standard deviation is: %f\n', std_dev);
 fprintf('The number of data points is: %f\n', n);

end

▶

Good Programming Practice

Always indent the body of a for loop by 3 or more spaces to improve the readability
of the code.

5.2.1 Details of Operation

Now that we have seen examples of a for loop in operation, we must examine some
important details required to use for loops properly.

1. Indent the bodies of loops. It is not necessary to indent the body of a for
loop as we have shown above. MATLAB will recognize the loop even if
every statement in it starts in column 1. However, the code is much more
readable if the body of the for loop is indented, so you should always
indent the bodies of loops.

2. Don’t modify the loop index within the body of a loop. The loop index
of a for loop should not be modified anywhere within the body of the loop.
The index variable is often used as a counter within the loop, and modify
ing its value can cause strange and hardtofind errors. The example shown
below is intended to initialize the elements of an array, but the statement
“ii = 5” has been accidentally inserted into the body of the loop. As a
result, only a (5) is initialized, and it gets the values that should have gone
into a(1), a(2), and so forth.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 for ii = 1:10
 ...
 ii = 5; % Error!
 ...
 a(ii) = <calculation>
 end

Good Programming Practice

Never modify the value of a loop index within the body of the loop.

3. Preallocating Arrays. We learned in Chapter 2 that it is possible to extend
an existing array simply by assigning a value to a higher array element. For
example, the statement

 arr = 1:4;

defines a 4element array containing the values [1 2 3 4]. If the statement

 arr(8) = 6;

is executed, the array will be automatically extended to 8 elements, and will
contain the values [1 2 3 4 0 0 0 6]. Unfortunately, each time that an
array is extended, MATLAB has to (1) create a new array, (2) copy the contents
of the old array to the new longer array, (3) add the new value to the array, and
then (4) delete the old array. This process is very timeconsuming for long arrays.

When a for loop stores values in a previously undefined array, the loop forces
MATLAB to go through this process each time the loop is executed. On the other
hand, if the array is preallocated to its maximum size before the loop starts execut
ing, no copying is required, and the code executes much faster. The code fragment
shown below shows how to preallocate an array before starting the loop.

 square = zeros(1,100);
 for ii = 1:100
 square(ii) = iiˆ2;
 end

Good Programming Practice

Always preallocate all arrays used in a loop before executing the loop. This practice
greatly increases the execution speed of the loop.

5.2.2 Vectorization: A Faster Alternative to Loops

Many loops are used to apply the same calculations over and over to the elements
of an array. For example, the following code fragment calculates the squares, square
roots, and cube roots of all integers between 1 and 100 using a for loop.

5.2 The for Loop | 189

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190 | Chapter 5 Loops and Vectorization

for ii = 1:100
 square(ii) = iiˆ2;
 square_root(ii) = iiˆ(1/2);
 cube_root(ii) = iiˆ(1/3);
end

Here, the loop is executed 100 times, and one value of each output array is calculated
during each cycle of the loop.

MATLAB offers a faster alternative for calculations of this sort: vectorization.
Instead of executing each statement 100 times, MATLAB can do the calculation for
all the elements in an array in a single statement. Because of the way MATLAB is
designed, this single statement can be much faster than the loop, and perform exactly
the same calculation.

For example, the following code fragment uses vectors to perform the same calcula
tion as the loop shown above. We first calculate a vector of the indices into the arrays and
then perform each calculation only once, doing all 100 elements in the single statement.

ii = 1:100;
square = ii.ˆ2;
square_root = ii.ˆ(1/2);
cube_root = ii.ˆ(1/3);

Even though these two calculations produce the same answers, they are not equivalent.
The version with the for loop can be more than 15 times slower than the vectorized
version! This happens because the statements in the for loop must be interpreted2 and
executed a line at a time by MATLAB during each pass of the loop. In effect, MATLAB
must interpret and execute 300 separate lines of code. In contrast, MATLAB only has to
interpret and execute 4 lines in the vectorized case. Since MATLAB is designed to imple
ment vectorized statements in a very efficient fashion, it is much faster in that mode.

In MATLAB, the process of replacing loops by vectorized statements is known
as vectorization. Vectorization can yield dramatic improvements in performance for
many MATLAB programs.

Good Programming Practice

If it is possible to implement a calculation either with a for loop or using vectors,
implement the calculation with vectors. Your program will be much faster.

2But see the next item about the MATLAB JustInTime compiler.

5.2.3 The MATLAB Just-In-Time (JIT) Compiler

A justintime (JIT) compiler was added to MATLAB 6.5 and later versions. The
JIT compiler examines MATLAB code before it is executed and, where possible,
compiles the code before executing it. Since the MATLAB code is compiled instead

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of being interpreted, it runs almost as fast as vectorized code. The JIT compiler can
often dramatically speed up the execution of for loops.

The JIT compiler is a very nice tool when it works, since it speeds up the loops
without any action by the engineer. However, the JIT compiler has some limitations
that prevent it from speeding up all loops. The JIT compiler limitations vary with
MATLAB version, with fewer limitations in later versions of the program3.

Good Programming Practice

Do not rely on the JIT compiler to speed up your code. It has limitations that vary
with the version of MATLAB you are using, and an engineer can typically do a better
job with manual vectorization.

3 Mathworks refuses to release a list of situations in which the JIT compiler works and situations in
which it doesn’t work, saying that it is complicated and that it varies between different versions
of MATLAB. They suggest that you write your loops and then time them to see if they are fast or
slow! The good news is that the JIT compiler works properly in more and more situations with each
release, but you never know….

Example 5.5—Comparing Loops and Vectors

To compare the execution speeds of loops and vectors, perform and time the following
four sets of calculations.

1. Calculate the squares of every integer from 1 to 10000 in a for loop
without initializing the array of squares first.

2. Calculate the squares of every integer from 1 to 10000 in a for loop,
using the zeros function to preallocate the array of squares first and
calculating the square of the number inline. (This will allow the JIT
compiler to function.)

3. Calculate the squares of every integer from 1 to 10000 with vectors.

Solution This program must calculate the squares of the integers from 1 to 10000
in each of the three ways described above, timing the executions in each case. The
timing can be accomplished using the MATLAB functions tic and toc. Function
tic resets the builtin elapsed time counter, and function toc returns the elapsed
time in seconds since the last call to function tic.

Since the realtime clocks in many computers have a fairly coarse granularity, it may
be necessary to execute each set of instructions multiple times to get a valid average time.

A MATLAB program to compare the speeds of the three approaches is shown below:

% Script file: timings.m
%
% Purpose:
% This program calculates the time required to

▶

5.2 The for Loop | 191

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192 | Chapter 5 Loops and Vectorization

% calculate the squares of all integers from 1 to
% 10,000 in three different ways:
% 1. Using a for loop with an uninitialized output
% array.
% 2. Using a for loop with a preallocated output
% array and the JIT compiler.
% 3. Using vectors.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/29/14 S. J. Chapman Original code
%
% Define variables:
% ii, jj -- Loop index
% average1 -- Average time for calculation 1
% average2 -- Average time for calculation 2
% average3 -- Average time for calculation 3
% maxcount -- Number of times to loop calculation
% square -- Array of squares

% Perform calculation with an uninitialized array
% “square ”. This calculation is done only 10 times
% because it is so slow.
maxcount = 10; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount
 clear square % Clear output array
 for ii = 1:10000
 square(ii) = iiˆ2; % Calculate square
 end
end
average1 = (toc)/maxcount; % Calculate average time

% Perform calculation with a preallocated array
% “square ”. This calculation is averaged over 1000
% loops.
maxcount = 1000; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount
 clear square % Clear output array
 square = zeros(1,10000); % Pre-initialize array
 for ii = 1:10000
 square(ii) = iiˆ2; % Calculate square
 end
end
average2 = (toc)/maxcount; % Calculate average time

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

% Perform calculation with vectors. This calculation
% averaged over 1000 executions.
maxcount = 1000; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount
 clear square % Clear output array
 ii = 1:10000; % Set up vector
 square = ii.ˆ2; % Calculate square
end
average3 = (toc)/maxcount; % Calculate average time

% Display results
fprintf('Loop / uninitialized array = %8.5f\n', average1);
fprintf('Loop / initialized array / JIT = %8.5f\n', average2);
fprintf('Vectorized = %8.5f\n', average3);

When this program is executed using MATLAB 2014B on my computer, the
results are:

» timings
Loop / uninitialized array = 0.00275
Loop / initialized array / JIT = 0.00012
Vectorized = 0.00003

The loop with the uninitialized array was very slow compared the loop executed
with the JIT compiler or the vectorized loop. The vectorized loop was fastest way
to perform the calculation, but if the JIT compiler works for your loop, you get
most of the acceleration without having to do anything! As you can see, designing
loops to allow the JIT compiler to function or replacing the loops with vectorized
calculations can make an incredible difference in the speed of your MATLAB code.

▶

The Code Analyzer code checking tool can help you identify problems with
uninitialized arrays that can slow the execution of a MATLAB program. For exam
ple, if we run the Code Analyzer on program timings.m, the code checker will
identify the uninitialized array and write out a warning message (see Figure 5.1).

5.2.4 The break and continue Statements

There are two additional statements that can be used to control the operation of
while loops and for loops: the break and continue statements. The break
statement terminates the execution of a loop and passes control to the next statement
after the end of the loop, and the continue statement terminates the current pass
through the loop and returns control to the top of the loop.

If a break statement is executed in the body of a loop, the execution of the body
will stop and control will be transferred to the first executable statement after the
loop. An example of the break statement in a for loop is shown below.

5.2 The for Loop | 193

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194 | Chapter 5 Loops and Vectorization

Figure 5.1 The Code Analyzer can identify some problems that will slow down the
execution of MATLAB loops: (a) Running the Code Analyzer on programs timings.m.
(b) The Code Analyzer report identifies the uninitalized array in the program.

(a)

(b)

for ii = 1:5
 if ii == 3
 break;
 end
 fprintf('ii = %d\n',ii);
end
disp(['End of loop!']);

When this program is executed, the output is:

» test_break
ii = 1
ii = 2
End of loop!

Note that the break statement was executed on the iteration when ii was 3, and
control transferred to the first executable statement after the loop without executing
the fprintf statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If a continue statement is executed in the body of a loop, the execution of the
current pass through the loop will stop and control will return to the top of the loop. The
controlling variable in the for loop will take on its next value, and the loop will be exe
cuted again. An example of the continue statement in a for loop is shown below.

for ii = 1:5
 if ii = = 3
 continue;
 end
 fprintf('ii = %d\n',ii);
end
disp(['End of loop!']);

When this program is executed, the output is:

» test_continue
ii = 1
ii = 2
ii = 4
ii = 5
End of loop!

Note that the continue statement was executed on the iteration when ii was 3, and
control transferred to the top of the loop without executing the fprintf statement.

The break and continue statements work with both while loops and
for loops.

5.2.5 Nesting Loops

It is possible for one loop to be completely inside another loop. If one loop is completely
inside another one, the two loops are called nested loops. The following example shows
two nested for loops used to calculate and write out the product of two integers.

for ii = 1:3

 for jj = 1:3
 product = ii * jj;
 fprintf('%d * %d = %d\n',ii,jj,product);
 end
end

In this example, the outer for loop will assign a value of 1 to index variable ii and
then the inner for loop will be executed. The inner for loop will be executed 3
times with index variable jj having values 1, 2, and 3. When the entire inner for
loop has been completed, the outer for loop will assign a value of 2 to index vari
able ii, and the inner for loop will be executed again. This process repeats until
the outer for loop has executed 3 times, and the resulting output is

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
2 * 1 = 2

5.2 The for Loop | 195

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196 | Chapter 5 Loops and Vectorization

2 * 2 = 4
2 * 3 = 6
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9

Note that the inner for loop executes completely before the index variable of the
outer for loop is incremented.

When MATLAB encounters an end statement, it associates that statement
with the innermost currently open construct. Therefore, the first end statement
above closes the “for jj = 1:3” loop, and the second end statement above
closes the “for ii = 1:3” loop. This fact can produce hardtofind errors
if an end statement is accidentally deleted somewhere within a nested loop
construct.

If for loops are nested, they should have independent loop index variables. If
they have the same index variable, then the inner loop will change the value of the
loop index that the outer loop just set.

If a break or continue statement appears inside a set of nested loops, then
that statement refers to the innermost of the loops containing it. For example, con
sider the following program

for ii = 1:3
 for jj = 1:3
 if jj == 3
 break;
 end
 product = ii * jj;
 fprintf('%d * %d = %d\n',ii,jj,product);
 end
 fprintf('End of inner loop\n');
end
fprintf('End of outer loop\n');

If the inner loop counter jj is equal to 3, then the break statement will be exe
cuted. This will cause the program to exit the innermost loop. The program will
print out “End of inner loop”, the index of the outer loop will be increased by 1,
and execution of the innermost loop will start over. The resulting output values are

1 * 1 = 1
1 * 2 = 2
End of inner loop
2 * 1 = 2
2 * 2 = 4
End of inner loop
3 * 1 = 3
3 * 2 = 6
End of inner loop
End of outer loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.3 Logical Arrays and Vectorization | 197

5.3 Logical Arrays and Vectorization

We learned about logical data in Chapter 4. Logical data can have one of two possible
values: true (1) or false (0). Scalars and arrays of logical data are created as the
output of relational and logic operators.

For example, consider the following statements:

a = [1 2 3; 4 5 6; 7 8 9];
b = a > 5;

These statements produced two arrays a and b. Array a is a double array contain

ing the values 31 2 3
4 5 6
7 8 94 , while array b is a logical array containing the values

30 0 0
0 0 1
1 1 14 . When the whos command is executed, the results are as shown below.

» whos
 Name Size Bytes Class

 a 3x3 72 double array
 b 3x3 9 logical array

Grand total is 18 elements using 81 bytes

Logical arrays have a very important special property—they can serve as a mask
for arithmetic operations. A mask is an array that selects the elements of another
array for use in an operation. The specified operation will be applied to the selected
elements, and not to the remaining elements.

For example, suppose that arrays a and b are as defined above. Then the
statement a(b)= sqrt(a(b)) will take the square root of all elements for which
the logical array b is true and leave all the other elements in the array unchanged.

» a(b) = sqrt(a(b))
a =
 1.0000 2.0000 3.0000
 4.0000 5.0000 2.4495
 2.6458 2.8284 3.0000

This is a very fast and very clever way of performing an operation on a subset of an
array without needing loops and branches.

The following two code fragments both take the square root of all elements in
array a whose value is greater than 5, but the vectorized approach is more compact,
elegant, and faster than the loop approach.

for ii = 1:size(a,1)
 for jj = 1:size(a,2)
 if a(ii,jj) > 5
 a(ii,jj) = sqrt(a(ii,jj));
 end
 end
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198 | Chapter 5 Loops and Vectorization

b = a > 5;
a(b) = sqrt(a(b));

5.3.1 Creating the Equivalent of if/else Constructs
with Logical Arrays

Logical arrays can also be used to implement the equivalent of an if/else con-
struct inside a set of for loops. As we saw in the last section, it is possible to apply
an operation to selected elements of an array using a logical array as a mask. It is also
possible to apply a different set of operations to the unselected elements of the array
by simply adding the not operator (~) to the logical mask. For example, suppose that
we wanted to take the square root of any elements in a two-dimensional array whose
value is greater than 5, and to square the remaining elements in the array. The code
for this operation using loops and branches is

for ii = 1:size(a,1)
 for jj = 1:size(a,2)
 if a(ii,jj) > 5
 a(ii,jj) = sqrt(a(ii,jj));
 else
 a(ii,jj) = a(ii,jj)ˆ2;
 end
 end
end

The vectorized code for this operation is

b = a > 5;
a(b) = sqrt(a(b));
a(~b) = a(~b).ˆ2;

The vectorized code is significantly faster than the loops-and-branches version.

Quiz 5.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 5.1 through 5.3. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

Examine the following for loops and determine how many times each loop
will be executed.
1. for index = 7:10
2. for jj = 7:-1:10
3. for index = 1:10:10
4. for ii = -10:3:-7
5. for kk = [0 5 ; 3 3]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.4 The MATLAB Profiler | 199

Examine the following loops and determine the value in ires at the end of
each of the loops.
6. ires = 0;
 for index = 1:10
 ires = ires + 1;
 end

7. ires = 0;
 for index = 1:10
 ires = ires + index;
 end

8. ires = 0;
 for index1 = 1:10
 for index2 = index1:10
 if index2 = = 6
 break;
 end
 ires = ires + 1;
 end
 end

9. ires = 0;
 for index1 = 1:10
 for index2 = index1:10
 if index2 = = 6
 continue;
 end
 ires = ires + 1;
 end
 end

10. Write the MATLAB statements to calculate the values of the function

f std 5 5 sin t for all t where sin t . 0

0 elsewhere

 for 26p # t # 6p at intervals of p/10. Do this twice, once using loops and
 branches and once using vectorized code.

5.4 The MATLAB Profiler

MATLAB includes a profiler, which can be used to identify the parts of a program
that consume the most execution time. The profiler can identify “hot spots,” where
optimizing the code will result in major increases in speed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

200 | Chapter 5 Loops and Vectorization

The MATLAB profiler is started by selecting the Run and Time tool
() from the Code section of the Home Tab. A Profiler Window opens,
with a field in which to enter the name of the program to profile and a pushbutton to
start the profile process running4 (see Figure 5.2).

After the profiler runs, a Profile Summary is displayed, showing how much time
is spent in each function being profiled (see Figure 5.3a). Clicking on any profiled
function brings up a more detailed display showing exactly how much time was
spent on each line when that function was executed (see Figure 5.3b). With this

4There is also a “Run and Time” tool on the Editor tab. Clicking that tool automatically profiles the
current displayed Mfile.

Figure 5.2 (a) The MATLAB Profiler is opened using the “Desktop/Profiler”
menu option on the MATLAB Desktop. (b) The profiler has a box in which to
type the name of the program to execute and a pushbutton to start profiling.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.4 The MATLAB Profiler | 201

Figure 5.3 (a) The MATLAB Profiler is opened using the “Run and Time” tool
in the Code section of the Home tab on the toolstrip. (b) The profiler has a box
in which to type the name of the program to execute, and a pushbutton to
start profiling.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202 | Chapter 5 Loops and Vectorization

information, the engineer can identify the slow portions of the code and work to speed
them up with vectorization and similar techniques. For example, the profiler will
highlight loops that run slowly because they can’t be handled by the JIT compiler.

Normally, the profiler should be run after a program is working properly. It is a
waste of time to profile a program before it is working.

Good Programming Practice

Use the MATLAB Profiler to identify the parts of programs that consume the most
CPU time. Optimizing those parts of the program will speed up the overall execution
of the program.

5.5 Additional Examples

Example 5.6—Fitting a Line to a Set of Noisy Measurements

The velocity of a falling object in the presence of a constant gravitational field is
given by the equation

 vstd 5 at 1 v
0
 (5.4)

where v(t) is the velocity at any time t, a is the acceleration due to gravity, and v
0
 is

the velocity at time 0. This equation is derived from elementary physics—it is known
to every freshman physics student. If we plot velocity versus time for the falling
object, our (v, t) measurement points should fall along a straight line. However, the
same freshman physics student also knows that if we go out into the laboratory and
attempt to measure the velocity versus time of an object, our measurements will not
fall along a straight line. They may come close, but they will never line up perfectly.
Why not? This happens because we can never make perfect measurements. The mea
surements always include some noise, which distorts them.

There are many cases in science and engineering where there are noisy sets of
data such as this, and we wish to estimate the straight line that “best fits” the data. This
problem is called the linear regression problem. Given a noisy set of measurements
(x, y) that appear to fall along a straight line, how can we find the equation of the line

 y 5 mx 1 b (5.5)

that “best fits” the measurements? If we can determine the regression coefficients m
and b, then we can use this equation to predict the value of y at any given x by eval
uating Equation (5.5) for that value of x.

A standard method for finding the regression coefficients m and b is the method
of least squares. This method is named “least squares” because it produces the line
y 5 mx 1 b for which the sum of the squares of the differences between the observed
y values and the predicted y values is as small as possible. The slope of the least
squares line is given by

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 203

 m 5
_oxy+ 2 _ox+y

_ox2+ 2 _ox+x
 (5.6)

and the intercept of the least squares line is given by

 b 5 y 2 mx (5.7)

where

Sx is the sum of the x values

Sx2 is the sum of the squares of the x values

Sxy is the sum of the products of the corresponding x and y values
x2 is the mean (average) of the x values
y
_
 is the mean (average) of the y values

Write a program that will calculate the leastsquares slope m and yaxis intercept
b for a given set of noisy measured data points (x, y). The data points should be read
from the keyboard, and both the individual data points and the resulting leastsquares
fitted line should be plotted.

Solution

1. State the problem.
Calculate the slope m and intercept b of a leastsquares line that best fits an
input data set consisting of an arbitrary number of (x, y) pairs. The input (x, y)
data is read from the keyboard. Plot both the input data points and the fitted
line on a single plot.

2. Define the inputs and outputs.
The inputs required by this program are the number of points to read, plus the
pairs of points (x, y).

The outputs from this program are the slope and intercept of the least
squares fitted line, the number of points going into the fit, and a plot of the
input data and the fitted line.

3. Describe the algorithm.
This program can be broken down into six major steps

Get the number of input data points
Read the input statistics
Calculate the required statistics
Calculate the slope and intercept
Write out the slope and intercept
Plot the input points and the fitted line

The first major step of the program is to get the number of points to read
in. To do this, we will prompt the user and read his or her answer with an
input function. Next, we will read the input (x,y) pairs one pair at a time
using an input function in a for loop. Each pair of input value will be
placed in an array ([x y]), and the function will return that array to the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204 | Chapter 5 Loops and Vectorization

calling program. Note that a for loop is appropriate because we know in
advance how many times the loop will be executed.

The pseudocode for these steps is shown below.

Print message describing purpose of the program
n_points ← input('Enter number of [x y] pairs:');
for ii = 1:n_points
 temp ← input('Enter [x y] pair:');
 x(ii) ← temp(1)
 y(ii) ← temp(2)
end

Next, we must accumulate the statistics required for the calculation.

These statistics are the sums Sx, Sy, Sx2, and Sxy. The pseudocode for these
steps is:

Clear the variables sum_x, sum_y, sum_x2, and sum_y2
for ii = 1:n_points
 sum_x ← sum_x + x(ii)
 sum_y ← sum_y + y(ii)
 sum_x2 ← sum_x2 + x(ii)ˆ2
 sum_xy ← sum_xy + x(ii)*y(ii)
end

Next, we must calculate the slope and intercept of the leastsquares line.
The pseudocode for this step is just the MATLAB versions of Equations (5.6)
and (5.7).

x_bar ← sum_x / n_points
y_bar ← sum_y / n_points
slope ← (sum_xy-sum_x * y_bar)/(sum_x2 - sum_x * x_bar)
y_int ← y_bar - slope * x_bar

Finally, we must write out and plot the results. The input data points
should be plotted with circular markers and without a connecting line, while
the fitted line should be plotted as a solid 2pixelwide line. To do this, we
will need to plot the points first, set hold on, plot the fitted line, and set
hold off. We will add titles and a legend to the plot for completeness.

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below:

%
% Purpose:
% To perform a least-squares fit of an input data set
% to a straight line and print out the resulting slope
% and intercept values. The input data for this fit
% comes from a user-specified input data file.
%

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 205

% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/30/14 S. J. Chapman Original code
%
% Define variables:
% ii -- Loop index
% n_points -- Number in input [x y] points
% slope -- Slope of the line
% sum_x -- Sum of all input x values
% sum_x2 -- Sum of all input x values squared
% sum_xy -- Sum of all input x*y values
% sum_y -- Sum of all input y values
% temp -- Variable to read user input
% x -- Array of x values
% x_bar -- Average x value
% y -- Array of y values
% y_bar -- Average y value
% y_int -- y-axis intercept of the line

disp('This program performs a least-squares fit of an');
disp('input data set to a straight line.');
n_points = input('Enter the number of input [x y] points:');

% Read the input data
for ii = 1:n_points
 temp = input('Enter [x y] pair:');
 x(ii) = temp(1);
 y(ii) = temp(2);
end

% Accumulate statistics
sum_x = 0;
sum_y = 0;
sum_x2 = 0;
sum_xy = 0;
for ii = 1:n_points
 sum_x = sum_x + x(ii);
 sum_y = sum_y + y(ii);
 sum_x2 = sum_x2 + x(ii)ˆ2;
 sum_xy = sum_xy 1 x(ii) * y(ii);
end

% Now calculate the slope and intercept.
x_bar = sum_x / n_points;
y_bar = sum_y / n_points;
slope = (sum_xy - sum_x * y_bar) / (sum_x2 - sum_x * x_bar);
y_int = y_bar - slope * x_bar;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206 | Chapter 5 Loops and Vectorization

% Tell user.
disp('Regression coefficients for the least-squares line:');
fprintf('Slope (m) = %8.3f\n', slope);
fprintf('Intercept (b) = %8.3f\n', y_int);
fprintf('No. of points = %8d\n', n_points);

% Plot the data points as blue circles with no
% connecting lines.
plot(x,y,'bo');
hold on;

% Create the fitted line
xmin = min(x);
xmax = max(x);
ymin = slope * xmin + y_int;
ymax = slope * xmax + y_int;

% Plot a solid red line with no markers
plot([xmin xmax],[ymin ymax],'r-','LineWidth',2);
hold off;

% Add a title and legend
title ('\bfLeast-Squares Fit');
xlabel('\bf\itx');
ylabel('\bf\ity');
legend('Input data','Fitted line');
grid on

5. Test the program.
To test this program, we will try a simple data set. For example, if every point
in the input data set falls exactly along a line, then the resulting slope and inter
cept should be exactly the slope and intercept of that line. Thus the data set

[1.1 1.1]
[2.2 2.2]
[3.3 3.3]
[4.4 4.4]
[5.5 5.5]
[6.6 6.6]
[7.7 7.7]

should produce a slope of 1.0 and an intercept of 0.0. If we run the program
with these values, the results are:

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 207

Enter the number of input [x y] points: 7
Enter [x y] pair: [1.1 1.1]
Enter [x y] pair: [2.2 2.2]
Enter [x y] pair: [3.3 3.3]
Enter [x y] pair: [4.4 4.4]
Enter [x y] pair: [5.5 5.5]
Enter [x y] pair: [6.6 6.6]
Enter [x y] pair: [7.7 7.7]
Regression coefficients for the least-squares line:
 Slope (m) = 1.000
 Intercept (b) = 0.000
 No. of points = 7

Now let’s add some noise to the measurements. The data set becomes

[1.1 1.01]
[2.2 2.30]
[3.3 3.05]
[4.4 4.28]
[5.5 5.75]
[6.6 6.48]
[7.7 7.84]

If we run the program with these values, the results are:

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line.
Enter the number of input [x y] points: 7
Enter [x y] pair: [1.1 1.01]
Enter [x y] pair: [2.2 2.30]
Enter [x y] pair: [3.3 3.05]
Enter [x y] pair: [4.4 4.28]
Enter [x y] pair: [5.5 5.75]
Enter [x y] pair: [6.6 6.48]
Enter [x y] pair: [7.7 7.84]
Regression coefficients for the least-squares line:
 Slope (m) = 1.024
 Intercept (b) = -0.120
 No. of points = 7

If we calculate the answer by hand, it is easy to show that the program gives
the correct answers for our two test data sets. The noisy input data set and the
resulting leastsquares fitted line are shown in Figure 5.4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208 | Chapter 5 Loops and Vectorization

This example uses several of the plotting capabilities that we introduced in
Chapter 3. It uses the hold command to allow multiple plots to be placed on the
same axes, the LineWidth property to set the width of the leastsquares fitted
line, and escape sequences to make the title bold face and the axis labels bold italic.

Example 5.7—Physics—The Flight of a Ball

If we assume negligible air friction and ignore the curvature of the Earth, a ball that
is thrown into the air from any point on the Earth’s surface will follow a parabolic
flight path (see Figure 5.5a). The height of the ball at any time t after it is thrown is
given by Equation (5.8)

 ystd 5 y
0

1 v
y 0

t 1
1

2
 gt2 (5.8)

where y
0
 is the initial height of the object above the ground, v

y0
 is the initial vertical velocity

of the object, and g is the acceleration due to the Earth’s gravity. The horizontal distance
(range) traveled by the ball as a function of time after it is thrown is given by Equation (5.9)

 xstd 5 x
0

1 v
x0

t (5.9)

where x
0
 is the initial horizontal position of the ball on the ground, and v

x0
 is the initial

horizontal velocity of the ball.

▶

Least-Squares Fit
8

7

6

5

y

4

3

2

1
1 2 3 4 5 6 7 8

x

Input Data
Fitted Line

Figure 5.4 A noisy data set with a least-squares fitted line.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 209

If the ball is thrown with some initial velocity v
0
 at an angle of u degrees with

respect to the Earth’s surface, then the initial horizontal and vertical components of
velocity will be

 v
x 0

5 v
0
 cos � (5.10)

 v
y 0

5 v
0
 sin � (5.11)

Assume that the ball is initially thrown from position sx
0
, y

0
d 5 (0, 0) with an

initial velocity v
0
 of 20 meters per second at an initial angle of u degrees. Write a

program that will plot the trajectory of the ball and also determine the horizontal
distance traveled before it touches the ground again. The program should plot the tra
jectories of the ball for all angles u from 5 to 85° in 10° steps, and should determine
the horizontal distance traveled for all angles u from 0 to 90° in 1° steps. Finally, it
should determine the angle u that maximizes the range of the ball and plot that par
ticular trajectory in a different color with a thicker line.

Solution To solve this problem, we must determine an equation for the time that the
ball returns to the ground. Then, we can calculate the (x, y) position of the ball using

Figure 5.5 (a) When a ball is thrown upwards, it follows a parabolic
trajectory. (b) The horizontal and vertical components of a velocity vector v
at an angle u with respect to the horizontal.

y

Origin Impact
x

y

vy

vx

� x

v

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210 | Chapter 5 Loops and Vectorization

Equations (5.8) through (5.11). If we do this for many times between 0 and the time
that the ball returns to the ground, we can use those points to plot the ball’s trajectory.

The time that the ball will remain in the air after it is thrown may be calculated from
Equation (5.8). The ball will touch the ground at the time t for which y(t) 5 0. Remem
bering that the ball will start from ground level (y(0) 5 0), and solving for t, we get:

 ystd 5 y
0

1 v
y 0

t 1
1

2
 gt2 (5.8)

0 5 0 1 v
y 0

t 1
1

2
 gt2

0 5 1v
y 0

1
1

2
 gt2t

so the ball will be at ground level at time t
1
 5 0 (when we threw it) and at time

 t
2

5 2
2v

y 0

g
 (5.12)

From the problem statement, we know that the initial velocity v
0
 is 20 meters

per second, and that the ball will be thrown at all angles from 0° to 90° in 1° steps.
Finally, any elementary physics textbook will tell us that the acceleration due to the
Earth’s gravity is –9.81 meters per second squared.

Now let’s apply our design technique to this problem.

1. State the problem.
A proper statement of this problem would be: Calculate the range that a
ball would travel when it is thrown with an initial velocity of v

0
 of 20 m/s at

an initial angle u. Calculate this range for all angles between 0° and 90°,
in 1° steps. Determine the angle u that will result in the maximum range for
the ball. Plot the trajectory of the ball for angles between 5° and 85°, in 10°
increments. Plot the maximum-range trajectory in a different color and with
a thicker line. Assume that there is no air friction.

2. Define the inputs and outputs.
As the problem is defined above, no inputs are required. We know from the prob
lem statement what v

0
 and u will be, so there is no need to input them. The outputs

from this program will be a table showing the range of the ball for each angle u, the
angle u for which the range is maximum, and a plot of the specified trajectories.

3. Design the algorithm.
This program can be broken down into the following major steps

Calculate the range of the ball for u between 0 and 90º
Write a table of ranges
Determine the maximum range and write it out
Plot the trajectories for u between 5 and 85º
Plot the maximum-range trajectory

Since we know the exact number of times that the loops will be repeated,
for loops are appropriate for this algorithm. We will now refine the pseu
docode for each of the major steps above.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 211

To calculate the maximum range of the ball for each angle, we will first
calculate the initial horizontal and vertical velocity from Equations (5.10)
and (5.11). Then we will determine the time when the ball returns to Earth
from Equation (5.12). Finally, we will calculate the range at that time
from Equation (5.8). The detailed pseudocode for these steps is shown
below. Note that we must convert all angles to radians before using the trig
functions!

Create and initialize an array to hold ranges
for ii = 1:91
 theta ← ii - 1
 vxo ← vo * cos(theta*conv)
 vyo ← vo * sin(theta*conv)
 max_time ← -2 * vyo / g
 range(ii) ← vxo * max_time
end

Next, we must write a table of ranges. The pseudocode for this step is:

Write heading
for ii = 1:91
 theta ← ii - 1
 print theta and range
end

The maximum range can be found with the max function. Recall that
this function returns both the maximum value and its location. The pseudocode
for this step is:

[maxrange index] ← max(range)
Print out maximum range and angle (=index-1)

We will use nested for loops to calculate and plot the trajectories. To
get all of the plots to appear on the screen, we must plot the first trajectory
and then set hold on before plotting any other trajectories. After plotting
the last trajectory, we must set hold off. To perform this calculation, we
will divide each trajectory into 21 time steps, and find the x and y positions
of the ball for each time step. Then, we will plot those (x, y) positions. The
pseudocode for this step is:

for ii = 5:10:85

 % Get velocities and max time for this angle
 theta ← ii - 1
 vxo ← vo * cos(theta*conv)
 vyo ← vo * sin(theta*conv)
 max_time ← -2 * vyo / g

 Initialize x and y arrays
 for jj = 1:21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212 | Chapter 5 Loops and Vectorization

 time ← (jj-1) * max_time/20
 x(time) ← vxo * time
 y(time) ← vyo * time + 0.5 * g * timeˆ2
 end
 plot(x,y) with thin green lines
 Set “ hold on“ after first plot
end
Add titles and axis labels

Finally, we must plot the maximum range trajectory in a different color
and with a thicker line.

vxo ← vo * cos(max_angle*conv)
vyo ← vo * sin(max_angle*conv)
max_time ← -2 * vyo / g

Initialize x and y arrays
for jj = 1:21
 time ← (jj-1) * max_time/20
 x(jj) ← vxo * time
 y(jj) ← vyo * time + 0.5 * g * timeˆ2
end
plot(x,y) with a thick red line
hold off

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below.

% Script file: ball.m
%
% Purpose:
% This program calculates the distance traveled by a ball
% thrown at a specified angle “ theta“ and a specified
% velocity “ vo“ from a point on the surface of the Earth,
% ignoring air friction and the Earth's curvature. It
% calculates the angle yielding maximum range and also
% plots selected trajectories.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 01/30/14 S. J. Chapman Original code
%
% Define variables:
% conv -- Degrees-to-radians conv factor
% g -- Accel. due to gravity (m/sˆ2)
% ii, jj -- Loop index
% index -- Location of maximum range in array
% maxangle -- Angle that gives maximum range (deg)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 213

% maxrange -- Maximum range (m)
% range -- Range for a particular angle (m)
% time -- Time (s)
% theta -- Initial angle (deg)
% traj_time -- Total trajectory time (s)
% vo -- Initial velocity (m/s)
% vxo -- X-component of initial velocity (m/s)
% vyo -- Y-component of initial velocity (m/s)
% x -- X-position of ball (m)
% y -- Y-position of ball (m)

% Constants
conv = pi / 180; % Degrees-to-radians conversion factor
g = -9.81; % Accel. due to gravity
vo = 20; % Initial velocity

%Create an array to hold ranges
range = zeros(1,91);

% Calculate maximum ranges
for ii = 1:91
 theta = ii -1;
 vxo = vo * cos(theta*conv);
 vyo = vo * sin(theta*conv);
 max_time = -2 * vyo / g;
 range(ii) = vxo * max_time;
end

% Write out table of ranges
fprintf ('Range versus angle theta:\n');
for ii = 1:91
 theta = ii -1;
 fprintf(' %2d %8.4f\n',theta, range(ii));
end

% Calculate the maximum range and angle
[maxrange index] = max(range);
maxangle = index - 1;
fprintf ('\nMax range is %8.4f at %2d degrees.\n',...
 maxrange, maxangle);

% Now plot the trajectories
for ii = 5:10:85

 % Get velocities and max time for this angle
 theta = ii;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214 | Chapter 5 Loops and Vectorization

 vxo = vo * cos(theta*conv);
 vyo = vo * sin(theta*conv);
 max_time = -2 * vyo / g;

 % Calculate the (x,y) positions
 x = zeros(1,21);
 y = zeros(1,21);
 for jj = 1:21
 time = (jj-1) * max_time/20;
 x(jj) = vxo * time;
 y(jj) = vyo * time + 0.5 * g * timeˆ2;
 end
 plot(x,y,'b');
 if ii == 5
 hold on;
 end
end

% Add titles and axis labels
title ('\bfTrajectory of Ball vs Initial Angle \theta');
xlabel ('\bf\itx \rm\bf(meters)');
ylabel ('\bf\ity \rm\bf(meters)');
axis ([0 45 0 25]);
grid on;

% Now plot the max range trajectory
vxo = vo * cos(maxangle*conv);
vyo = vo * sin(maxangle*conv);
max_time = -2 * vyo / g;

% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21
 time = (jj-1) * max_time/20;
 x(jj) = vxo * time;
 y(jj) = vyo * time + 0.5 * g * timeˆ2;
end
plot(x,y,'r','LineWidth',3.0);
hold off

The acceleration due to gravity at sea level can be found in any physics text.
It is about 9.81 m/s2, directed downward.

5. Test the program.
To test this program, we will calculate the answers by hand for a few of the
angles, and compare the results with the output of the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Additional Examples | 215

�
 vx0 5 v0 cos �

 vy0 5 v0 sin �
 t2 5 2

2vyo

g x 5 vx0t2

0° 20 m/s 0 m/s 0 s 0 m

5° 19.92 m/s 1.74 m/s 0.355 s 7.08 m

40° 15.32 m/s 12.86 m/s 2.621 s 40.15 m

45° 14.14 m/s 14.14 m/s 2.883 s 40.77 m

When program ball is executed, a 91line table of angles and ranges is
produced. To save space, only a portion of the table is reproduced below.

» ball
Range versus angle theta:
 0 0.0000
 1 1.4230
 2 2.8443
 3 4.2621
 4 5.6747
 5 7.0805
...
 40 40.1553
 41 40.3779
 42 40.5514
 43 40.6754
 44 40.7499
 45 40.7747
 46 40.7499
 47 40.6754
 48 40.5514
 49 40.3779
 50 40.1553
...
 85 7.0805
 86 5.6747
 87 4.2621
 88 2.8443
 89 1.4230
 90 0.0000

Max range is 40.7747 at 45 degrees.

The resulting plot is shown in Figure 5.6. The program output matches our
hand calculation for the angles calculated above to the 4digit accuracy of the
hand calculation. Note that the maximum range occurred at an angle of 45°.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216 | Chapter 5 Loops and Vectorization

This example uses several of the plotting capabilities that we introduced in
Chapter 3. It uses the axis command to set the range of data to display, the hold
command to allow multiple plots to be placed on the same axes, the LineWidth
property to set the width of the line corresponding to the maximumrange trajectory,
and escape sequences to create the desired title and x and yaxis labels.

However, this program is not written in the most efficient manner, since there are a
number of loops that could have been better replaced by vectorized statements. You will
be asked to rewrite and improve ball.m in Exercise 5.11 at the end of this chapter.

5.6 The textread Function

In the leastsquares fit problem in Example 5.6, we had to enter each sx,yd pair of data
point from the keyboard and include them in an array constructor ([]). This would
be a very tedious process if we wanted to enter large amounts of data into a program,
so we need a better way to load data into our programs. Large data sets are almost
always stored in files, not typed at the command line, so what we really need is an
easy way to read data from a file and use it in a MATLAB program. The textread
function serves that purpose.

Trajectory of Ball vs Initial Angle �
25

20

15

y
(m

et
er

s)

10

5

0
0 5 10 15 20 25 30 4535 40

x (meters)

Figure 5.6 Possible trajectories for the ball.
▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The textread function reads ASCII files that are formatted into columns of
data, where each column can be of a different type, and stores the contents of each
column in a separate output array. This function is very useful for importing large
amounts of data printed out by other applications.

The form of the textread function is

[a,b,c,...] = textread(filename,format,n)

where filename is the name of the file to open, format is a string containing
a description of the type of data in each column, and n is the number of lines to
read. (If n is missing, the function reads to the end of the file.) The format string
contains the same types of format descriptors as function fprintf. Note that
the number of output arguments must match the number of columns that you
are reading.

For example, suppose that file test_input.dat contains the following data:

James Jones O+ 3.51 22 Yes
Sally Smith A+ 3.28 23 No

The first three columns in this file contain character data, the next two contain num
bers, and the last column contains character data. This data could be read into a series
of arrays with the following function:

[first,last,blood,gpa,age,answer] = ...
textread('test_input.dat','%s %s %s %f %d %s')

Note the string descriptors %s for the columns where there is string data, and the numeric
descriptors %f and %d for the columns where there is floating point and integer data.
String data is returned in a cell array (which we will learn about in Chapter 10), and
numeric data is always returned in a double array.

When this command is executed, the results are:

» [first,last,blood,gpa,age,answer] = ...
textread('test_input.dat','%s %s %s %f %d %s')

first =
 'James'
 'Sally'
last =
 'Jones'
 'Smith'
blood =
 'O1'
 'A1'
gpa 5
 3.5100
 3.2800
age =
 42
 28

5.6 The textread Function | 217

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218 | Chapter 5 Loops and Vectorization

answer=
 'Yes'
 'No'

This function can also skip selected columns by adding an asterisk to the corre
sponding format descriptor (for example, %*s). The following statement reads only
the first, last, and gpa from the file:

» [first,last,gpa] = ...
 textread('test_input.dat','%s %s %*s %f

%*d %*s')

first =
 'James'
 'Sally'
last =
 'Jones'
 'Smith'
gpa =
 3.5100
 3.2800

Function textread is much more useful and flexible than the load com
mand. The load command assumes that all of the data in the input file is of a single
type—it cannot support different types of data in different columns. In addition, it
stores all of the data into a single array. In contrast, the textread function allows
each column to go into a separate variable, which is much more convenient when
working with columns of mixed data.

Function textread has a number of additional options that increase its flexi
bility. Consult the MATLAB online help system for details of these options.

5.7 Summary

There are two basic types of loops in MATLAB, the while loop and the for loop.
The while loop is used to repeat a section of code in cases where we do not know
in advance how many times the loop must be repeated. The for loop is used to
repeat a section of code in cases where we know in advance how many times the
loop should be repeated. It is possible to exit from either type of loop at any time
using the break statement.

A for loop can often be replaced by vectorized code, which performs the same
calculations in single statements instead of in a loop. Because of the way MATLAB
is designed, vectorized code is faster than loops, so it pays to replace loops with vec
torized code whenever possible.

The MATLAB JustinTime (JIT) compiler also speeds up loop execution in
some cases, but the exact cases that it works for vary in different versions of
MATLAB. If it works, the JIT compiler will produce code that is almost as fast as
vectorized statements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.7 Summary | 219

The textread function can be used to read selected columns of an ASCII data
file into a MATLAB program for processing. This function is quite flexible, making
it easy to read output files created by other programs.

5.7.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with loop con
structs. By following them consistently, your code will contain fewer bugs, will be
easier to debug, and will be more understandable to others who may need to work
with it in the future.

1. Always indent code blocks in while and for constructs to make them
more readable.

2. Use a while loop to repeat sections of code when you don’t know in
advance how often the loop will be executed.

3. Use a for loop to repeat sections of code when you know in advance how
often the loop will be executed.

4. Never modify the values of a for loop index while inside the loop.
5. Always preallocate all arrays used in a loop before executing the loop. This

practice greatly increases the execution speed of the loop.
6. If it is possible to implement a calculation either with a for loop or using

vectors, implement the calculation with vectors. Your program will be
much faster.

7. Do not rely on the JIT compiler to speed up your code. It has many
limitations, and an engineer can typically do a better job with manual
vectorization.

8. Use the MATLAB Profiler to identify the parts of programs that consume
the most CPU time. Optimizing those parts of the program will speed up the
overall execution of the program.

5.7.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

break Stop the execution of a loop and transfer control to the first
statement after the end of the loop.

continue Stop the execution of a loop and transfer control to the top of the
loop for the next iteration.

factorial Calculate the factorial function.

for loop Loops over a block of statements a specified number of times.

tic Resets elapsed time counter.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220 | Chapter 5 Loops and Vectorization

5.8 Exercises

5.1 Write the MATLAB statements required to calculate y(t) from the equation

ystd 5 523t2 1 5 t $ 0

3t2 1 5 t , 0

 for values of t between 29 and 9 in steps of 0.5. Use loops and branches to
perform this calculation.

5.2 Rewrite the statements required to solve Exercise 5.1 using vectorization.
5.3 Write the MATLAB statements required to calculate and print out the squares of

all the even integers between 0 and 50. Create a table consisting of each integer
and its square, with appropriate labels over each column.

5.4 Write an Mfile to evaluate the equation ysxd 5 x2 2 3x 1 2 for all values of x
between –1 and 3, in steps of 0.1. Do this twice, once with a for loop and once
with vectors. Plot the resulting function using a 3pointthick dashed red line.

5.5 Write an Mfile to calculate the factorial function N!, as defined in Example 5.2.
Be sure to handle the special case of 0! Also, be sure to report an error if N is
negative or not an integer.

5.6 Examine the following for statements and determine how many times each
loop will be executed.

(a) for ii = -32768:32767
(b) for ii = 32768:32767
(c) for kk = 2:4:3
(d) for jj = ones(5,5)

5.7 Examine the following for loops and determine the value of ires at the end of
each of the loops and also the number of times each loop executes.

(a) ires = 0;
 for index = -10:10
 ires = ires + 1;
 end

(b) ires = 0;
 for index = 10:-2:4
 if index == 6
 continue;
 end
 ires = ires + index;
 end

textread Reads text data from a file into one or more input variables.

toc Returns elapsed time since last call to tic.

while loop Loops over a block of statements until a test condition becomes 0 (false).

Commands and Functions (Continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.8 Exercises | 221

(c) ires = 0;
 for index = 10:-2:4
 if index == 6
 break;
 end
 ires = ires + index;
 end

(d) ires = 0;
 for index1 = 10:-2:4
 for index2 = 2:2:index1
 if index2 == 6
 break
 end
 ires = ires + index2;
 end
 end

5.8 Examine the following while loops and determine the value of ires at the end
of each of the loops, and the number of times each loop executes.

(a) ires = 1;
 while mod(ires,10) ~= 0
 ires = ires + 1;
 end

(b) ires = 2;
 while ires <= 200
 ires = iresˆ2;
 end

(c) ires = 2;
 while ires > 200
 ires = iresˆ2;
 end

5.9 What is contained in array arr1 after each of the following sets of statements
is executed?

(a) arr1 = [1 2 3 4; 5 6 7 8; 9 10 11 12];
 mask = mod(arr1,2) == 0;
 arr1(mask) = -arr1(mask);

(b) arr1 = [1 2 3 4; 5 6 7 8; 9 10 11 12];
 arr2 = arr1 <= 5;
 arr1(arr2) = 0;
 arr1(~arr2) = arr1(~arr2).ˆ2;

5.10 How can a logical array be made to behave as a logical mask for vector operations?
5.11 Modify program ball from Example 5.7 by replacing the inner for loops with

vectorized calculations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222 | Chapter 5 Loops and Vectorization

5.12 Modify program ball from Example 5.7 to read in the acceleration due to grav
ity at a particular location, and to calculate the maximum range of the ball for that
acceleration. After modifying the program, run it with accelerations of –9.8 m/s2,
–9.7 m/s2, and –9.6 m/s2. What effect does the reduction in gravitational attrac
tion have on the range of the ball? What effect does the reduction in gravitational
attraction have on the best angle u at which to throw the ball?

5.13 Modify program ball from Example 5.7 to read in the initial velocity with
which the ball is thrown. After modifying the program, run it with initial veloci
ties of 10 m/s, 20 m/s, and 30 m/s. What effect does changing the initial velocity
v

0
 have on the range of the ball? What effect does it have on the best angle u at

which to throw the ball?
5.14 Program lsqfit from Example 5.6 required the user to specify the number of

input data points before entering the values. Modify the program so that it reads
an arbitrary number of data values using a while loop and stops reading input
values when the user presses the Enter key without typing any values. Test your
program using the same two data sets that were used in Example 5.6. (Hint: The
input function returns an empty array ([]) if a user presses Enter without sup
plying any data. You can use function isempty to test for an empty array, and
stop reading data when one is detected.)

5.15 Modify program lsqfit from Example 5.6 to read its input values from an
ASCII file named input1.dat. The data in the file will be organized in rows,
with one pair of (x, y) values on each row, as shown below:

 1.1 2.2
 2.2 3.3
 ...

 Use the load function to read the input data. Test your program using the same
two data sets that were used in Example 5.6.

5.16 Modify program lsqfit from Example 5.6 to read its input values from a
userspecified ASCII file named input1.dat. The data in the file will be orga
nized in rows, with one pair of (x, y) values on each row, as shown below:

 1.1 2.2
 2.2 3.3
 ...

 Use the textread function to read the input data. Test your program using
the same two data sets that were used in Example 5.6.

5.17 Factorial Function MATLAB includes a standard function called factorial
to calculate the factorial function. Use the MATLAB help system to look up this
function, and then calculate 5!, 10!, and 15! using both the program in Example 5.2
and the factorial function. How do the results compare?

5.18 Running Average Filter Another way of smoothing a noisy data set is with a
running average filter. For each data sample in a running average filter, the pro
gram examines a subset of n samples centered on the sample under test, and it
replaces that sample with the average value from the n samples. (Note: For points
near the beginning and the end of the data set, use a smaller number of samples

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.8 Exercises | 223

in the running average, but be sure to keep an equal number of samples on either
side of the sample under test.)

Write a program that allows the user to specify the name of an input data
set and the number of samples to average in the filter and then performs a run
ning average filter on the data. The program should plot both the original data
and the smoothed curve after the running average filter.

Test your program using the data in the file input3.dat, which is avail
able from the book’s website.

5.19 Median Filter Another way of smoothing a noisy data set is with a median
filter. For each data sample in a median filter, the program examines a subset of
n samples centered on the sample under test, and it replaces that sample with the
median value from the n samples. (Note: For points near the beginning and the
end of the data set, use a smaller number of samples in the median calculation,
but be sure to keep an equal number of samples on either side of the sample
under test.) This type of filter is very effective against data sets containing iso
lated “wild” points that are very far away from the other nearby points.

Write a program that allows the user to specify the name of an input data
set and the number of samples to use in the filter and then performs a median
filter on the data. The program should plot both the original data and the
smoothed curve after the median filter.

Test your program using the data in the file input3.dat, which is avail
able from the book’s website. Is the median filter better or worse than the run
ning average filter for smoothing this data set? Why?

5.20 Fourier Series A Fourier series is an infinite series representation of a periodic
function in terms of sines and cosines at a fundamental frequency (matching
the period of the waveform) and multiples of that frequency. For example, con
sider a square wave function of period L, whose amplitude is 1 for [0 L/2), 21
for [L/2 L), 1 for [L 3L/2), and so forth. This function is plotted in Figure 5.7.
This function can be represented by the Fourier series

 f sxd 5 o
`

n51,3,5,Á

1
n

 sin 1n�x

L 2 (5.13)

Plot the original function assuming L 5 1, and calculate and plot Fourier series
approximations to that function containing 3, 5, and 10 terms.

Figure 5.7 A square wave waveform.

f (x)

21

1

L/2 L 3L/2 2L
x

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224 | Chapter 5 Loops and Vectorization

5.21 Program doy in Example 5.3 calculates the day of year associated with any given
month, day, and year. As written, this program does not check to see if the data
entered by the user is valid. It will accept nonsense values for months and days and
do calculations with them to produce meaningless results. Modify the program
so that it checks the input values for validity before using them. If the inputs are
invalid, the program should tell the user what is wrong and quit. The year should be
a number greater than zero, the month should be a number between 1 and 12, and
the day should be a number between 1 and a maximum that depends on the month.
Use a switch construct to implement the bounds checking performed on the day.

5.22 Write a MATLAB program to evaluate the function

 ysxd 5 ln
1

1 2 x
 (5.14)

for any userspecified value of x, where ln is the natural logarithm (logarithm to
the base e). Write the program with a while loop, so that the program repeats
the calculation for each legal value of x entered into the program. When an
illegal value of x is entered, terminate the program. (Any x $ 1 is considered
an illegal value.)

5.23 Fibonacci Numbers The nth Fibonacci number is defined by the following
recursive equations:

f s1d 5 1

f s2d 5 2

f snd 5 f sn 2 1d 1 f sn 2 2d n . 2

Therefore, f s3d 5 f s2d 1 f s1d 5 2 1 1 5 3, and so forth for higher numbers.
Write an Mfile to calculate and write out the nth Fibonacci number for n . 2,
where n is input by the user. Use a while loop to perform the calculation.

5.24 Current through a Diode The current flowing through the semiconductor diode
shown in Figure 5.8 is given by the equation

 i
D

5 I
0_e

qv
D

kT 2 1+ (5.15)

where i
D
 5 the voltage across the diode, in volts

 v
D
 5 the current flow through the diode, in amps

 I
0
 5 the leakage current of the diode, in amps

 q 5 the charge on an electron, 1.602 3 10219 coulombs
 k 5 Boltzmann’s constant, 1.38 3 10223 joule/K

 T 5 temperature, in kelvins (K)

Figure 5.8 A semiconductor diode.

iD

vD

1

2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.8 Exercises | 225

The leakage current I
0
 of the diode is 2.0 mA. Write a program to calculate the

current flowing through this diode for all voltages from 21.0 V to 1 0.6 V, in
0.1 V steps. Repeat this process for the following temperatures: 75 °F, 100 °F,
and 125 °F. Create a plot of the current as a function of applied voltage, with
the curves for the three different temperatures appearing as different colors.

5.25 Tension on a Cable A 100kg object is to be hung from the end of a rigid
2meter horizontal pole of negligible weight, as shown in Figure 5.9. The pole is
attached to a wall by a pivot and is supported by a 2meter cable that is attached
to the wall at a higher point. The tension on this cable is given by the equation

 T 5
W . lc . lp

dÏlp2 2 d2
 (5.16)

where T is the tension on the cable, W is the weight of the object, lc is the length
of the cable, lp is the length of the pole, and d is the distance along the pole at
which the cable is attached. Write a program to determine the distance d at which
to attach the cable to the pole in order to minimize the tension on the cable. To
do this, the program should calculate the tension on the cable at regular 0.1 m
intervals from d 5 0.3 m to d 5 1.8 m, and should locate the position d that
produces the minimum tension. Also, the program should plot the tension on
the cable as a function of d, with appropriate titles and axis labels.

5.26 Modify the program created in Exercise 5.25 to determine how sensitive the
tension on the cable is to the precise location d at which the cable is attached.
Specifically, determine the range of d values that will keep the tension on the
cable within 10% of its minimum value.

5.27 Area of a Parallelogram The area of a parallelogram with two adjacent sides
defined by vectors A and B can be found from Equation (5.17) (see Figure 5.10).

 area 5 uA 3 B u (5.17)

Figure 5.9 A 100 kg weight suspended from a rigid bar supported by a cable.

lc 5 2 m

d

lp 5 2 m

W 5 100 kg

Cable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 | Chapter 5 Loops and Vectorization

Write a program to read vectors A and B from the user, and calculate the result
ing area of the parallelogram. Test your program by calculating the area of a
parallelogram bordered by vectors A 5 10 i

⁄
 and B 5 5 i

⁄
1 8.66 j

⁄
 .

5.28 Area of a Rectangle The area of the rectangle in Figure 5.11 is given by Equ
ation (5.18) and the perimeter of the rectangle is given by Equation (5.19).

 area 5 W 3 H (5.18)

 perimeter 5 2W 1 2H (5.19)

Assume that the total perimeter of a rectangle is limited to 10, and write a
program that calculates and plots the area of the rectangle as its width is varied
from the smallest possible value to the largest possible value. At what width is
the area of the rectangle maximized?

5.29 Bacterial Growth Suppose that a biologist performs an experiment in which
he or she measures the rate at which a specific type of bacterium reproduces
asexually in different culture media. The experiment shows that in medium A
the bacteria reproduce once every 60 minutes, and in medium B the bacteria
reproduce once every 90 minutes. Assume that a single bacterium is placed
on each culture medium at the beginning of the experiment. Write a program
that calculates and plots the number of bacteria present in each culture at
intervals of three hours from the beginning of the experiment until 24 hours
have elapsed. Make two plots, one a linear xy plot and the other a linearlog
(semilogy) plot. How do the numbers of bacteria compare on the two media
after 24 hours?

5.30 Decibels Engineers often measure the ratio of two power measurements in deci-
bels, or dB. The equation for the ratio of two power measurements in decibels is

 dB 5 10 log
10

P
2

P
1

 (5.20)

where P
2
 is the power level being measured, and P

1
 is some reference power

level. Assume that the reference power level P
1
 is 1 watt, and write a program

Figure 5.10 A parallelogram.

x

y

B

A

H

L

Figure 5.11 A rectangle.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.8 Exercises | 227

that calculates the decibel level corresponding to power levels between 1 and
20 watts, in 0.5 W steps. Plot the dBversuspower curve on a loglinear scale.

5.31 Geometric Mean The geometric mean of a set of positive numbers x
1
 through

x
n
 is defined as the nth root of the product of the numbers:

 geometric mean 5
nÏx

1
x

2
x

3
...x

n
 (5.21)

Write a MATLAB program that will accept an arbitrary number of positive
input values and calculate both the arithmetic mean (i.e., the average) and the
geometric mean of the numbers. Use a while loop to get the input values,
and terminate the inputs when a user enters a negative number. Test your
program by calculating the average and geometric mean of the four numbers
10, 5, 2, and 5.

5.32 RMS Average The root-mean-square (rms) average is another way of calculat
ing a mean for a set of numbers. The rms average of a series of numbers is the
square root of the arithmetic mean of the squares of the numbers:

 rms average 5Î1

No
N

i51

x
i
2 (5.22)

Write a MATLAB program that will accept an arbitrary number of positive
input values and calculate the rms average of the numbers. Prompt the user
for the number of values to be entered, and use a for loop to read in the num
bers. Test your program by calculating the rms average of the four numbers
10, 5, 2, and 5.

5.33 Harmonic Mean The harmonic mean is yet another way of calculating a mean
for a set of numbers. The harmonic mean of a set of numbers is given by the
equation:

 harmonic mean 5
N

1
x

1

1
1
x

2

1 ? ? ?1
1
x

n

 (5.23)

Write a MATLAB program that will read in an arbitrary number of positive
input values and calculate the harmonic mean of the numbers. Use any method
that you desire to read in the input values. Test your program by calculating the
harmonic mean of the four numbers 10, 5, 2, and 5.

5.34 Write a single program that calculates the arithmetic mean (average), rms aver
age, geometric mean, and harmonic mean for a set of positive numbers. Use any
method that you desire to read in the input values. Compare these values for each
of the following sets of numbers:

(a) 4, 4, 4, 4, 4, 4, 4
(b) 4, 3, 4, 5, 4, 3, 5
(c) 4, 1, 4, 7, 4, 1, 7
(d) 1, 2, 3, 4, 5, 6, 7

5.35 Mean Time Between Failure Calculations The reliability of a piece of elec
tronic equipment is usually measured in terms of Mean Time Between Failures
(MTBF), where MTBF is the average time that the piece of equipment can
operate before a failure occurs in it. For large systems containing many pieces

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228 | Chapter 5 Loops and Vectorization

of electronic equipment, it is customary to determine the MTBFs of each com
ponent and to calculate the overall MTBF of the system from the failure rates
of the individual components. If the system is structured like the one shown
in Figure 5.12, every component must work in order for the whole system to
work, and the overall system MTBF can be calculated as

 MTBF
sys

5
1

1

MTBF
1

1
1

MTBF
2

1 Á 1
1

MTBF
n

 (5.24)

Write a program that reads in the number of series components in a system
and the MTBFs for each component and then calculates the overall MTBF
for the system. To test your program, determine the MTBF for a radar system
consisting of an antenna subsystem with an MTBF of 2000 hours, a transmitter
with an MTBF of 800 hours, a receiver with an MTBF of 3000 hours, and a
computer with an MTBF of 5000 hours.

Overall System

MTBF 1 MTBF 2

MTBF

MTBF 3

Subsystem 1 Subsystem 2 Subsystem 3

Figure 5.12 An electronic system containing three subsystems with
known MTBFs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229

6Chapter

Basic User -Defined
Functions

In Chapter 4, we learned the importance of good program design. The basic technique
that we employed was top-down design. In top-down design, the engineer starts
with a statement of the problem to be solved and the required inputs and outputs.
Next, he or she describes the algorithm to be implemented by the program in
broad outline and applies decomposition to break the algorithm down into logical
subdivisions called sub-tasks. Then, the engineer breaks down each sub-task until he
or she winds up with many small pieces, each of which does a simple, clearly under-
standable job. Finally, the individual pieces are turned into MATLAB code.

Although we have followed this design process in our examples, the results have
been somewhat restricted, because we have had to combine the final MATLAB code
generated for each sub-task into a single large program. There has been no way to code,
verify, and test each sub-task independently before combining them into the final program.

Fortunately, MATLAB has a special mechanism designed to make sub-tasks easy
to develop and debug independently before building the final program. It is possible
to code each sub-task as a separate function, and each function can be tested and
debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large pro-
gramming project. Their benefits include:

1. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit. The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is known as unit testing. It eliminates a major source of
problems before the final program is even built.

2. Reusable code. In many cases, the same basic sub-task is needed in
many parts of a program. For example, it may be necessary to sort a list
of values into ascending order many different times within a program, or
even in other programs. It is possible to design, code, test, and debug a

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230 | Chapter 6 Basic User -Defined Functions

single function to do the sorting and then to reuse that function whenever
sorting is required. This reusable code has two major advantages: it
reduces the total programming effort required, and it simplifies debugging,
since the sorting function only needs to be debugged once.

3. Isolation from unintended side effects. Functions receive input data
from the program that invokes them through a list of variables called
an input argument list, and return results to the program through
an output argument list. Each function has its own workspace with
its own variables, independent of all other functions and of the calling
program. The only variables in the calling program that can be seen by the
function are those in the input argument list, and the only variables in the
function that can be seen by the calling program are those in the output
argument list. This is very important, since accidental programming mis-
takes within a function can only affect the variables within the function in
which the mistake occurred.

Once a large program is written and released, it has to be maintained. Program
maintenance involves fixing bugs and modifying the program to handle new and unfore-
seen circumstances. The engineer who modifies a program during maintenance is often
not the person who originally wrote it. In poorly written programs, it is common for
the engineer modifying the program to make a change in one region of the code and
to have that change cause unintended side effects in a totally different part of the
program. This happens because variable names are re-used in different portions of the
program. When the engineer changes the values left behind in some of the variables,
those values are accidentally picked up and used in other portions of the code.

The use of well-designed functions minimizes this problem by data hiding. The
variables in the main program are not visible to the function (except for those in the
input argument list), and the variables in the main program cannot be accidentally
modified by anything occurring in the function. Therefore, mistakes or changes in the
function’s variables cannot accidentally cause unintended side effects in the other
parts of the program.

Good Programming Practice

Break large program tasks into functions whenever practical to achieve the impor-
tant benefits of independent component testing, reusability, and isolation from
undesired side effects.

6.1 Introduction to MATLAB Functions

All of the M-files that we have seen so far have been script files. Script files are
just collections of MATLAB statements that are stored in a file. When a script file
is executed, the result is the same as it would be if all of the commands had been

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.1 Introduction to MATLAB Functions | 231

typed directly into the Command Window. Script files share the Command Window’s
workspace, so any variables that were defined before the script file starts are visible
to the script file, and any variables created by the script file remain in the workspace
after the script file finishes executing. A script file has no input arguments and returns
no results, but script files can communicate with other script files through the data
left behind in the workspace.

In contrast, a MATLAB function is a special type of M-file that runs in its own
independent workspace. It receives input data through an input argument list and
returns results to the caller through an output argument list. The general form of a
MATLAB function is

function [outarg1, outarg2, ...] = fname(inarg1, inarg2, ...)
% H1 comment line
% Other comment lines
...
(Executable code)
...
(return)
end

The function statement marks the beginning of the function. It specifies the
name of the function and the input and output argument lists. The input argument list
appears in parentheses after the function name, and the output argument list appears
in brackets to the left of the equal sign. (If there is only one output argument, the
brackets can be dropped.)

Each ordinary MATLAB function should be placed in a file with the same name
(including capitalization) as the function, and the file extension “.m”. For example,
if a function is named My_fun, then that function should be placed in a file named
My_fun.m.

The input argument list is a list of names representing values that will be passed
from the caller to the function. These names are called dummy arguments. They are
just placeholders for actual values that are passed from the caller when the function is
invoked. Similarly, the output argument list contains a list of dummy arguments that are
placeholders for the values returned to the caller when the function finishes executing.

A function is invoked by naming it in an expression together with a list of actual
arguments. A function can be invoked by typing its name directly in the Command
Window or by including it in a script file or another function. The name in the calling
program must exactly match the function name (including capitalization)1. When the
function is invoked, the value of the first actual argument is used in place of the first
dummy argument, and so forth for each other actual argument/dummy argument pair.

Execution begins at the top of the function and ends when a return statement,
an end statement, or the end of the function is reached. Because execution stops at
the end of a function anyway, the return statement is not actually required in most

1 For example, suppose that a function has been declared with the name My_Fun, and placed in file
My_Fun.m. Then this function should be called with the name My_Fun, not my_fun or MY_FUN. If the
capitalization fails to match, this will produce an error on Linux and Macintosh computers, and a warning
on Windows-based computers.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232 | Chapter 6 Basic User -Defined Functions

functions and is rarely used. Each item in the output argument list must appear on
the left side of a least one assignment statement in the function. When the function
returns, the values stored in the output argument list are returned to the caller and
may be used in further calculations.

The use of an end statement to terminate a function is a new feature as of
MATLAB 7.0. It is optional unless a file includes nested functions, which are
described in Chapter 7. We will not use the end statement to terminate a function
unless it is actually needed, so you will rarely see it used in this book.

The initial comment lines in a function serve a special purpose. The first com-
ment line after the function statement is called the H1 comment line. It should
always contain a one-line summary of the purpose of the function. The special sig-
nificance of this line is that it is searched and displayed by the lookfor command.
The remaining comment lines from the H1 line until the first blank line or the first
executable statement are displayed by the help command. They should contain a
brief summary of how to use the function.

A simple example of a user-defined function is shown below. Function dist2
calculates the distance between points sx

1
, y

1
d and sx

2
, y

2
d in a Cartesian coordinate

system.

function distance = dist2 (x1, y1, x2, y2)
%DIST2 Calculate the distance between two points
% Function DIST2 calculates the distance between
% two points (x1,y1) and (x2,y2) in a Cartesian
% coordinate system.
%
% Calling sequence:
% distance = dist2(x1, y1, x2, y2)

% Define variables:
% x1 –– x-position of point 1
% y1 –– y-position of point 1
% x2 –– x-position of point 2
% y2 –– y-position of point 2
% distance –– Distance between points

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/14 S. J. Chapman Original code
% Calculate distance.
distance = sqrt((x2-x1).ˆ2 + (y2-y1).ˆ2);

This function has four input arguments and one output argument. A simple script file
using this function is shown below.

% Script file: test_dist2.m
%
% Purpose:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.1 Introduction to MATLAB Functions | 233

% This program tests function dist2.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/14 S. J. Chapman Original code
%
% Define variables:
% ax -- x-position of point a
% ay -- y-position of point a
% bx -- x-position of point b
% by -- y-position of point b
% result -- Distance between the points

% Get input data.
disp('Calculate the distance between two points:');
ax = input('Enter x value of point a:');
ay = input('Enter y value of point a:');
bx = input('Enter x value of point b:');
by = input('Enter y value of point b:');

% Evaluate function
result = dist2 (ax, ay, bx, by);

% Write out result.
fprintf('The distance between points a and b is %f\n',result);

When this script file is executed, the results are:

» test_dist2
Calculate the distance between two points:
Enter x value of point a: 1
Enter y value of point a: 1
Enter x value of point b: 4
Enter y value of point b: 5
The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.
Function dist2 also supports the MATLAB help subsystem. If we type “help

dist2”, the results are:

» help dist2
DIST2 Calculate the distance between two points
 Function DIST2 calculates the distance between
 two points (x1,y1) and (x2,y2) in a Cartesian
 coordinate system.

 Calling sequence:
 res = dist2(x1, y1, x2, y2)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234 | Chapter 6 Basic User -Defined Functions

Similarly, “lookfor distance” produces the result

» lookfor distance
DIST2 Calculate the distance between two points
MAHAL Mahalanobis distance.
DIST Distances between vectors.
NBDIST Neighborhood matrix using vector distance.
NBGRID Neighborhood matrix using grid distance.
NBMAN Neighborhood matrix using Manhattan-distance.

To observe the behavior of the MATLAB workspace before, during, and
after the function is executed, we will load function dist2 and the script file
test_dist2 into the MATLAB debugger, and set breakpoints before, during, and
after the function call (see Figure 6.1). When the program stops at the breakpoint
before the function call, the workspace is as shown in Figure 6.2 (a). Note that

Figure 6.1 M-file test_dist2 and function dist2 are loaded into the
debugger, with breakpoints set before, during, and after the function call.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.1 Introduction to MATLAB Functions | 235

(a)

Figure 6.2 (a) The workspace before the function call.
(b) The workspace during the function call.
(c) The workspace after the function call.

(c)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236 | Chapter 6 Basic User -Defined Functions

variables ax, ay, bx, and by are defined in the workspace, with the values that
we have entered. When the program stops at the breakpoint within the function call,
the function’s workspace is active. It is as shown in Figure 6.2 (b). Note that variables
x1, x2, y1, y2, and distance are defined in the function’s workspace, and the
variables defined in the calling M-file are not present. When the program stops in the
calling program at the breakpoint after the function call, the workspace is as shown in
Figure 6.2 (c). Now the original variables are back, with the variable result added
to contain the value returned by the function. These figures show that the workspace
of the function is different than the workspace of the calling M-file.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme

MATLAB programs communicate with their functions using a pass-by-value
scheme. When a function call occurs, MATLAB makes a copy of the actual arguments
and passes them to the function. This copying is very significant, because it means
that even if the function modifies the input arguments, it won’t affect the original
data in the caller. This feature helps to prevent unintended side effects, in which an
error in the function might unintentionally modify variables in the calling program.

This behavior is illustrated in the function shown below. This function has two
input arguments: a and b. During its calculations, it modifies both input arguments.

function out = sample(a, b)
fprintf('In sample: a = %f, b = %f %f\n',a,b);
a = b(1) + 2*a;
b = a .* b;
out = a + b(1);
fprintf('In sample: a = %f, b = %f %f\n',a,b);

A simple test program to call this function is shown below.

a = 2; b = [6 4];
fprintf('Before sample: a = %f, b = %f %f\n',a,b);
out = sample(a,b);
fprintf('After sample: a = %f, b = %f %f\n',a,b);
fprintf('After sample: out = %f\n',out);

When this program is executed, the results are:

» test_sample
Before sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 10.000000, b = 60.000000 40.000000
After sample: a = 2.000000, b = 6.000000 4.000000
After sample: out = 70.000000

Note that a and b were both changed inside function sample, but those changes had
no effect on the values in the calling program.

Users of the C language will be familiar with the pass-by-value scheme, since C
uses it for scalar values passed to functions. However C does not use the pass-by-value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 237

scheme when passing arrays, so an unintended modification to a dummy array in a
C function can cause side effects in the calling program. MATLAB improves on this
by using the pass-by-value scheme for both scalars and arrays2.

Example 6.1—Rectangular-to-Polar Conversion

The location of a point in a Cartesian plane can be expressed in either the rectangular
coordinates (x, y) or the polar coordinates (r, θ), as shown in Figure 6.3. The
relationships among these two sets of coordinates are given by the following
equations:

 x 5 r cos � (6.1)

 x 5 r sin � (6.2)

 r 5 Ïx
2 1 y

2 (6.3)

 � 5 tan21
y

x
 (6.4)

Write two functions rect2polar and polar2rect that convert coordinates from
rectangular to polar form, and vice versa, where the angle θ is expressed in degrees.

▶

2 The implementation of argument passing in MATLAB is actually more sophisticated than this discussion
indicates. As pointed out above, the copying associated with pass-by-value takes up a lot of time, but it
provides protection against unintended side effects. MATLAB actually uses the best of both approaches:
it analyzes each argument of each function and determines whether or not the function modifies that
argument. If the function modifies the argument, then MATLAB makes a copy of it. If it does not modify
the argument, then MATLAB simply points to the existing value in the calling program. This practice
increases speed while still providing protection against side effects!

x

y

r

�

Py

x

Figure 6.3 A point P in a Cartesian plane can be located by either the rectangular
coordinates (x, y) or the polar coordinates (r, θ).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238 | Chapter 6 Basic User -Defined Functions

Solution We will apply our standard problem-solving approach to creating these
functions. Note that MATLAB’s trigonometric functions work in radians, so we must
convert from degrees to radians and vice versa when solving this problem. The basic
relationship between degrees and radians is

 1808 5 � radians (6.5)

1. State the problem
A succinct statement of the problem is:

Write a function that converts a location on a Cartesian plane expressed
in rectangular coordinates into the corresponding polar coordinates,
with the angle θ expressed in degrees. Also, write a function that con-
verts a location on a Cartesian plane expressed in polar coordinates with
the angle θ expressed in degrees into the corresponding rectangular
coordinates.

2. Define the inputs and outputs
The inputs to function rect2polar are the rectangular (x, y) location of
a point. The outputs of the function are the polar (r, θ) location of the point.
The inputs to function polar2rect are the polar (r, θ) location of a point.
The outputs of the function are the rectangular (x, y) location of the point.

3. Describe the algorithm
These functions are very simple, so we can directly write the final pseudoc-
ode for them. The pseudocode for function polar2rect is:

x ← r * cos(theta * pi/180)
y ← r * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function atan2,
because that function works over all four quadrants of the Cartesian plane.
(Look that function up in the MATLAB Help Browser!)

r ← sqrt(x.ˆ2 + y.ˆ2)
theta ← 18/pi * atan2(y,x)

4. Turn the algorithm into MATLAB statements
The MATLAB code for the selection polar2rect function is shown below.

function [x, y] = polar2rect(r,theta)
%POLAR2RECT Convert rectangular to polar coordinates
% Function POLAR2RECT accepts the polar coordinates
% (r,theta), where theta is expressed in degrees,
% and converts them into the rectangular coordinates
% (x,y).
%
% Calling sequence:
% [x, y] = polar2rect(r,theta)

% Define variables:
% r -- Length of polar vector

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 239

% theta -- Angle of vector in degrees
% x -- x-position of point
% y -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/14 S. J. Chapman Original code

x = r * cos(theta * pi/180);
y = r * sin(theta * pi/180);

The MATLAB code for the selection rect2polar function is shown below.

function [r, theta] = rect2polar(x,y)
%RECT2POLAR Convert rectangular to polar coordinates
% Function RECT2POLAR accepts the rectangular coordinates
% (x,y) and converts them into the polar coordinates
% (r,theta), where theta is expressed in degrees.
%
% Calling sequence:
% [r, theta] = rect2polar(x,y)

% Define variables:
% r -- Length of polar vector
% theta -- Angle of vector in degrees
% x -- x-position of point
% y -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/14 S. J. Chapman Original code

r = sqrt (x.ˆ2 + y .ˆ2);
theta = 180/pi * atan2(y,x);

Note that these functions both include help information, so they will
work properly with MATLAB’s help subsystem and with the lookfor
command.

5. Test the program.
To test these functions, we will execute them directly in the MATLAB
Command Window. We will test the functions using the 3-4-5 triangle, which
is familiar to most people from secondary school. The smaller angle within
a 3-4-5 triangle is approximately 36.87°. We will also test the function in
all four quadrants of the Cartesian plane to ensure that the conversions are
correct everywhere.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240 | Chapter 6 Basic User -Defined Functions

» [r, theta] = rect2polar(4,3)
r =
 5
theta =
 36.8699
» [r, theta] = rect2polar(-4,3)
r =
 5
theta =
 143.1301
» [r, theta] = rect2polar(-4,-3)
r =
 5
theta =
 -143.1301
» [r, theta] = rect2polar(4,-3)
r =
 5
theta =
 -36.8699
» [x, y] = polar2rect(5,36.8699)
x =
 4.0000
y =
 3.0000
» [x, y] = polar2rect(5,143.1301)
x =
 -4.0000
y =
 3.0000
» [x, y] = polar2rect(5,-143.1301)
x =
 -4.0000
y =
 -3.0000
» [x, y] = polar2rect(5,-36.8699)
x =
 4.0000
y =
 -3.0000
»

These functions appear to be working correctly in all quadrants of the
Cartesian plane.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 241

Example 6.2—Sorting Data

In many scientific and engineering applications, it is necessary to take a random
input data set and to sort it so that the numbers in the data set are either all in
ascending order (lowest-to-highest) or all in descending order (highest-to-lowest).
For example, suppose that you were a zoologist studying a large population of
animals, and that you wanted to identify the largest 5% of the animals in the popu-
lation. The most straightforward way to approach this problem would be to sort the
sizes of all of the animals in the population into ascending order and take the top 5%
of the values.

 Sorting data into ascending or descending order seems to be an easy job. After
all, we do it all the time. It is a simple matter for us to sort the data (10, 3, 6, 4, 9)
into the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data list (10,
3, 6, 4, 9) to find the smallest value in the list (3) and then scan the remaining input
data (10, 6, 4, 9) to find the next smallest value (4), and so forth, until the complete
list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be
sorted increases, the time required to perform the simple sort described above
increases rapidly, since we must scan the input data set once for each value sorted.
For very large data sets, this technique just takes too long to be practical. Even
worse, how would we sort the data if there were too many numbers to fit into the
main memory of the computer? The development of efficient sorting techniques
for large data sets is an active area of research and is the subject of whole courses
all by itself.

In this example, we will confine ourselves to the simplest possible algorithm to
illustrate the concept of sorting. This simplest algorithm is called the selection sort.
It is just a computer implementation of the mental math described above. The basic
algorithm for the selection sort is:

1. Scan the list of numbers to be sorted to locate the smallest value in the
list. Place that value at the front of the list by swapping it with the value
currently at the front of the list. If the value at the front of the list is already
the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next smallest
value in the list. Place that value in position 2 of the list by swapping it with
the value currently at that position. If the value in position 2 is already the
next smallest value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third
smallest value in the list. Place that value in position 3 of the list by
swapping it with the value currently at that position. If the value in
position 3 is already the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached. After
the next-to-last position in the list has been processed, the sort is complete.

Note that if we are sorting N values, this sorting algorithm requires N 2 1 scans
through the data to accomplish the sort.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242 | Chapter 6 Basic User -Defined Functions

This process is illustrated in Figure 6.4. Since there are five values in the data set
to be sorted, we will make four scans through the data. During the first pass through
the entire data set, the minimum value is 3, so the 3 is swapped with the 10 which
was in position 1. Pass 2 searches for the minimum value in positions 2 through 5.
That minimum is 4, so the 4 is swapped with the 10 in position 2. Pass 3 searches for
the minimum value in positions 3 through 5. That minimum is 6, which is already
in position 3, so no swapping is required. Finally, pass 4 searches for the minimum
value in positions 4 through 5. That minimum is 9, so the 9 is swapped with the 10 in
position 4, and the sort is completed.

Programming Pitfalls

The selection-sort algorithm is the easiest sorting algorithm to understand, but it is
computationally inefficient. It should never be applied to sort large data sets (say,
sets with more than 1000 elements). Over the years, computer scientists have devel-
oped much more efficient sorting algorithms. The sort and sortrows functions
built into MATLAB are extremely efficient and should be used for all real work.

We will now develop a program to read in a data set from the Command
Window, sort it into ascending order, and display the sorted data set. The sorting will
be done by a separate user-defined function.

Solution This program must be able to ask the user for the input data, sort
the data, and write out the sorted data. The design process for this problem is
given below.

10

3

6

4

9

3

10

6

4

9

3

4

6

10

9

3

4

6

10

9

3

4

6

9

10

Swap Swap No Swap Swap

Figure 6.4 An example problem demonstrating the selection sort algorithm.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 243

1. State the problem
We have not yet specified the type of data to be sorted. If the data is numeric,
then the problem may be stated as follows:

Develop a program to read an arbitrary number of numeric input values
from the Command Window, sort the data into ascending order using
a separate sorting function, and write the sorted data to the Command
Window.

2. Define the inputs and outputs
The inputs to this program are the numeric values typed in the Command
Window by the user. The outputs from this program are the sorted data values
written to the Command Window.

3. Describe the algorithm
This program can be broken down into three major steps

Read the input data into an array
Sort the data in ascending order
Write the sorted data

The first major step is to read in the data. We must prompt the user for
the number of input data values and then read in the data. Since we will know
how many input values there are to read, a for loop is appropriate for read-
ing in the data. The detailed pseudocode is shown below:

Prompt user for the number of data values
Read the number of data values (nvals)
Preallocate an input array
for ii = 1:nvals
 Prompt for next value
 Read value
end

Next, we have to sort the data in a separate function. We will need to make
nvals-1 passes through the data, finding the smallest remaining value each
time. We will use a pointer to locate the smallest value in each pass. Once
the smallest value is found, it will be swapped to the top of the list if it is not
already there. The detailed pseudocode is shown below:

for ii = 1:nvals-1

 % Find the minimum value in a(ii) through a(nvals)
 iptr ← ii
 for jj = ii+1 to nvals
 if a(jj) < a(iptr)
 iptr ← jj
 end
 end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244 | Chapter 6 Basic User -Defined Functions

 % iptr now points to the min value, so swap a(iptr)
 % with a(ii) if iptr ~= ii.
 if ii ~= iptr
 temp ← a(ii)
 a(ii) ← a(iptr)
 a(iptr) ← temp
 end
end

The final step is writing out the sorted values. No refinement of the pseudo-
code is required for that step. The final pseudocode is the combination of the
reading, sorting and writing steps.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is shown below.

function out = ssort(a)
%SSORT Selection sort data in ascending order
% Function SSORT sorts a numeric data set into
% ascending order. Note that the selection sort
% is relatively inefficient. DO NOT USE THIS
% FUNCTION FOR LARGE DATA SETS. Use MATLAB’s
% “sort” function instead.

% Define variables:
% a -- Input array to sort
% ii -- Index variable
% iptr -- Pointer to min value
% jj -- Index variable
% nvals -- Number of values in “a”
% out -- Sorted output array
% temp -- Temp variable for swapping

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/14 S. J. Chapman Original code

% Get the length of the array to sort
nvals = length(a);

% Sort the input array
for ii = 1:nvals-1
 % Find the minimum value in a(ii) through a(n)
 iptr = ii;
 for jj = ii+1:nvals
 if a(jj) < a(iptr)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 245

 iptr = jj;
 end
 end

 % iptr now points to the minimum value, so swap a(iptr)
 % with a(ii) if ii ~= iptr.
 if ii ~= iptr
 temp = a(ii);
 a(ii) = a(iptr);
 a(iptr) = temp;
 end
end

% Pass data back to caller
out = a;

The program to invoke the selection sort function is shown below.

% Script file: test_ssort.m
%
% Purpose:
% To read in an input data set, sort it into ascending
% order using the selection sort algorithm, and to
% write the sorted data to the Command Window. This
% program calls function “ssort” to do the actual
% sorting.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/14 S. J. Chapman Original code
%
% Define variables:
% array -- Input data array
% ii -- Index variable
% nvals -- Number of input values
% sorted -- Sorted data array

% Prompt for the number of values in the data set
nvals = input('Enter number of values to sort: ');

% Preallocate array
array = zeros(1,nvals);

% Get input values
for ii = 1:nvals

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246 | Chapter 6 Basic User -Defined Functions

 % Prompt for next value
 string = ['Enter value ' int2str(ii) ': '];
 array(ii) = input(string);

end

% Now sort the data
sorted = ssort(array);

% Display the sorted result.
fprintf('\nSorted data:\n');
for ii = 1:nvals
 fprintf(' %8.4f\n',sorted(ii));
end

5. Test the program.
To test this program, we will create an input data set and run the program
with it. The data set should contain a mixture of positive and negative num-
bers as well as at least one duplicated value to see if the program works
properly under those conditions.

» test_ssort
Enter number of values to sort: 6
Enter value 1: -5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: -2
Enter value 6: 0

Sorted data:
 -5.0000
 -2.0000
 -2.0000
 0.0000
 3.0000
 4.0000

The program gives the correct answers for our test data set. Note that it works
for both positive and negative numbers as well as for repeated numbers.

▶

6.3 Optional Arguments

Many MATLAB functions support optional input arguments and output arguments.
For example, we have seen calls to the plot function with as few as two or as
many as seven input arguments. On the other hand, the function max supports either
one or two output arguments. If there is only one output argument, max returns the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3 Optional Arguments | 247

maximum value of an array. If there are two output arguments, max returns both
the maximum value and the location of the maximum value in an array. How do
MATLAB functions know how many input and output arguments are present, and
how do they adjust their behavior accordingly?

There are eight special functions that can be used by MATLAB functions to get
information about their optional arguments and to report errors in those arguments.
Six of these functions are introduced here, and the remaining two will be introduced
in Chapter 10 after we learn about the cell array data type. The functions introduced
now are:

■■ nargin—This function returns the number of actual input arguments that
were used to call the function.

■■ nargout—This function returns the number of actual output arguments that
were used to call the function.

■■ nargchk—This function returns a standard error message if a function is
called with too few or too many arguments.

■■ error—Display error message and abort the function producing the error.
This function is used if the argument errors are fatal.

■■ warning—Display warning message and continue function execution.
This function is used if the argument errors are not fatal, and execution can
continue.

■■ inputname—This function returns the actual name of the variable that cor-
responds to a particular argument number.

When functions nargin and nargout are called within a user-defined
function, these functions return the number of actual input arguments and the
number of actual output arguments that were used when the user-defined function
was called.

Function nargchk generates a string containing a standard error message
if a function is called with too few or too many arguments. The syntax of this
function is

message = nargchk(min_args,max_args,num_args);

where min_args is the minimum number of arguments, max_args is the maxi-
mum number of arguments, and num_args is the actual number of arguments. If
the number of arguments is outside the acceptable limits, a standard error message
is produced. If the number of arguments is within acceptable limits, then an empty
string is returned.

Function error is a standard way to display an error message and abort
the user-defined function causing the error. The syntax of this function is error
('msg'), where msg is a character string containing an error message. When
error is executed, it halts the current function and returns control to the keyboard,
displaying the error message in the Command Window. If the message string is
empty, error does nothing, and execution continues. This function works well with
nargchk, which produces a message string when an error occurs and an empty
string when there is no error.

Function warning is a standard way to display a warning message that includes
the function and line number where the problem occurred but let execution continue.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248 | Chapter 6 Basic User -Defined Functions

The syntax of this function is warning('msg'), where msg is a character string
containing a warning message. When warning is executed, it displays the warning
message in the Command Window, and lists the function name and line number
where the warning came from. If the message string is empty, warning does noth-
ing. In either case, execution of the function continues.

Function inputname returns the name of the actual argument used when a
function is called. The syntax of this function is

name = inputname(argno);

where argno is the number of the argument. If argument is a variable, then its name
is returned. If the argument is an expression, then this function will return an empty
string. For example, consider the function

function myfun(x,y,z)
name = inputname(2);
disp(['The second argument is named' name]);

When this function is called, the results are

» myfun(dog,cat)
The second argument is named cat
» myfun(1,2+cat)
The second argument is named

Function inputname is useful for displaying argument names in warning and error
messages.

Example 6.3—Using Optional Arguments

We will illustrate the use of optional arguments by creating a function that accepts
an (x, y) value in rectangular coordinates and produces the equivalent polar repre-
sentation, consisting of a magnitude and an angle in degrees. The function will be
designed to support two input arguments, x and y. However, if only one argument
is supplied, the function will assume that the y value is zero and proceed with the
calculation. The function will normally return both the magnitude and the angle in
degrees, but if only one output argument is present, it will return only the magnitude.
This function is shown below:

function [mag, angle] = polar_value(x,y)
%POLAR_VALUE Converts (x,y) to (r,theta)
% Function POLAR_VALUE converts an input (x,y)
% value into (r,theta), with theta in degrees.
% It illustrates the use of optional arguments.

% Define variables:
% angle -- Angle in degrees
% msg -- Error message

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3 Optional Arguments | 249

% mag -- Magnitude
% x -- Input x value
% y -- Input y value (optional)

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/03/14 S. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(1,2,nargin);
error(msg);

% If the y argument is missing, set it to 0.
if nargin < 2
 y = 0;
end

% Check for (0,0) input arguments, and print out
% a warning message.
if x == 0 & y == 0
 msg = 'Both x any y are zero: angle is meaningless!';
 warning(msg);
end

% Now calculate the magnitude.
mag = sqrt(x.ˆ2 + y.ˆ2);

% If the second output argument is present, calculate
% angle in degrees.
if nargout == 2
 angle = atan2(y,x) * 180/pi;
end

We will test this function by calling it repeatedly from the Command Window. First,
we will try to call the function with too few or too many arguments.

» [mag angle] = polar_value
??? Error using ==> polar_value
Not enough input arguments.

» [mag angle] = polar_value(1,-1,1)
??? Error using ==> polar_value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to call
the function with one or two input arguments.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

250 | Chapter 6 Basic User -Defined Functions

» [mag angle] = polar_value(1)
mag =
 1
angle =
 0
» [mag angle] = polar_value(1,-1)
mag =
 1.4142
angle =
 -45

The function provides the correct answer in both cases. Next, we will try to call the
function with one or two output arguments.

» mag = polar_value(1,-1)
mag =
 1.4142
» [mag angle] = polar_value(1,-1)
mag =
 1.4142
angle =
 -45

The function provides the correct answer in both cases. Finally, we will try to call the
function with both x and y equal to zero.

» [mag angle] = polar_value(0,0)

Warning: Both x any y are zero: angle is meaningless!
> In d:\book\matlab\chap6\polar_value.m at line 32
mag =
 0
angle =
 0

In this case, the function displays the warning message, but execution continues.
▶

Note that a MATLAB function may be declared to have more output arguments
than are actually used, and this is not an error. The function does not actually have
to check nargout to determine if an output argument is present. For example, con-
sider the following function:

function [z1, z2] = junk(x,y)
z1 = x + y;
z2 = x - y;
end % function junk

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3 Optional Arguments | 251

This function can be called successfully with one or two output arguments.

» a = junk(2,1)
a =
 3
» [a b] = junk(2,1)
a =
 3
b =
 1

The reason for checking nargout in a function is to prevent useless work. If a result
is going to be thrown away anyway, why bother to calculate it in the first place? An
engineer can speed up the operation of a program by not bothering with useless
calculations.

Quiz 6.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 6.1 through 6.3. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

1. What are the differences between a script file and a function?
2. How does the help command work with user-defined functions?
3. What is the significance of the H1 comment line in a function?
4. What is the pass-by-value scheme? How does it contribute to good program

design?
5. How can a MATLAB function be designed to have optional arguments?

For questions 6 and 7, determine whether the function calls are correct or not.
If they are in error, specify what is wrong with them.

6. out = test1(6);

function res = test1(x,y)
res = sqrt(x.ˆ2 + y.ˆ2);

7. out = test2(12);

function res = test2(x,y)
error(nargchk(1,2,nargin));
if nargin == 2
 res = sqrt(x.ˆ2 + y.ˆ2);
else
 res = x;
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252 | Chapter 6 Basic User -Defined Functions

6.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through their
argument lists. When a function is called, each actual argument is copied, and the
copy is used by the function.

In addition to the argument list, MATLAB functions can exchange data with
each other and with the base workspace through global memory. Global memory
is a special type of memory that can be accessed from any workspace. If a variable
is declared to be global in a function, then it will be placed in the global memory
instead of the local workspace. If the same variable is declared to be global in another
function, then that variable will refer to the same memory location as the variable in
the first function. Each script file or function that declares the global variable will
have access to the same data values, so global memory provides a way to share data
between functions.

A global variable is declared with the global statement. The form of a
global statement is

global var1 var2 var3 ...

where var1, var2, var3, and so forth are the variables to be placed in global
memory. By convention, global variables are declared in all capital letters, but this is
not actually a requirement.

Good Programming Practice

Declare global variables in all capital letters to make them easy to distinguish from
local variables.

Each global variable must be declared to be global before it is used for the
first time in a function—it is an error to declare a variable to be global after it has
already been created in the local workspace3. To avoid this error, it is customary to
declare global variables immediately after the initial comments and before the first
executable statement in a function.

3 If a variable is declared global after it has already been defined in a function, MATLAB will issue a
warning message and then change the local value to match the global value. You should never rely on this
capability, though, because future versions of MATLAB will not allow it.

Good Programming Practice

Declare global variables immediately after the initial comments and before the first
executable statement in each function that uses them.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.4 Sharing Data Using Global Memory | 253

Global variables are especially useful for sharing very large volumes of data
among many functions, because the entire data set does not have to be copied each
time that a function is called. The downside of using global memory to exchange
data among functions is that the functions will only work for that specific data
set. A function that exchanges data through input arguments can be reused by
simply calling it with different arguments, but a function that exchanges data
through global memory must actually be modified to allow it to work with a
different data set.

Global variables are also useful for sharing hidden data among a group of related
functions while keeping it invisible from the invoking program unit.

Good Programming Practice

You may use global memory to pass large amounts of data among functions within
a program.

Example 6.4—Random Number Generator

It is impossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes, refineries, and nuclear reactors. A good engineer-
ing design must take these measurement errors into account, so that the noise in
the measurements will not lead to unstable behavior (no plane crashes, refinery
explosions, or meltdowns!).

Most engineering designs are tested by running simulations of the operation of
the system before it is ever built. These simulations involve creating mathematical
models of the behavior of the system and feeding the models a realistic string of
input data. If the models respond correctly to the simulated input data, then we can
have reasonable confidence that the real-world system will respond correctly to the
real-world input data.

The simulated input data supplied to the models must be corrupted by a
simulated measurement noise, which is just a string of random numbers added to
the ideal input data. The simulated noise is usually produced by a random number
generator.

A random number generator is a function that will return a different and appar-
ently random number each time it is called. Since the numbers are in fact generated
by a deterministic algorithm, they only appear to be random4. However, if the algo-
rithm used to generate them is complex enough, the numbers will be random enough
to use in the simulation.

▶

4For this reason, some people refer to these functions as pseudorandom number generators.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254 | Chapter 6 Basic User -Defined Functions

One simple random number generator algorithm is described below5. It relies on
the unpredictability of the modulo function when applied to large numbers. Recall
from Chapter 2 that the modulus function mod returns the remainder after the divi-
sion of two numbers. Consider the following equation:

 n
i11

5 mods8121n
i
1 28411, 134456d (6.6)

Assume that n
i
 is a non-negative integer. Then because of the modulo function,

n
i 1 1

 will be a number between 0 and 134455 inclusive. Next, n
i 1 1

 can be fed
into the equation to produce a number n

i 1 2
 that is also between 0 and 134455.

This process can be repeated forever to produce a series of numbers in the range
[0,134455]. If we didn’t know the numbers 8121, 28411, and 134456 in advance,
it would be impossible to guess the order in which the values of n would be pro-
duced. Furthermore, it turns out that there is an equal (or uniform) probability
that any given number will appear in the sequence. Because of these properties,
Equation (6.6) can serve as the basis for a simple random number generator with
a uniform distribution.

We will now use Equation (6.6) to design a random number generator whose
output is a real number in the range [0.0, 1.0)6.

Solution We will write a function that generates one random number in the range
0 ≤ ran , 1.0 each time that it is called. The random number will be based on the
equation

 ran
i
5

n
i

134456
 (6.7)

where n
i
 is a number in the range 0 to 134455 produced by Equation (6.7).

The particular sequence produced by Equations (6.6) and (6.7) will depend on
the initial value of n

0
 (called the seed) of the sequence. We must provide a way for the

user to specify n
0
 so that the sequence may be varied from run to run.

1. State the problem
Write a function random0 that will generate and return an array ran
containing one or more numbers with a uniform probability distribution in
the range 0 ≤ ran , 1.0, based on the sequence specified by Equations (6.6)
and (6.7). The function should have one or two input arguments (m and n
specifying the size of the array to return. If there is one argument, the func-
tion should generate a square array of size m × m. If there are two arguments,
the function should generate an array of size m × n. The initial value of the
seed n

0
 will be specified by a call to a function called seed.

2. Define the inputs and outputs
There are two functions in this problem: seed and random0. The input to
function seed is an integer to serve as the starting point of the sequence.

5 This algorithm is adapted from the discussion found in Chapter 7 of Numerical Recipes: The Art of
Scientific Programming, by Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1986.

6 The notation [0.0,1.0) implies that the range of the random numbers is between 0.0 and 1.0, including the
number 0.0, but excluding the number 1.0.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.4 Sharing Data Using Global Memory | 255

There is no output from this function. The input to function random0 is
one or two integers specifying the size of the array of random numbers to
be generated. If only argument m is supplied, the function should generate
a square array of size m × m. If both arguments m and n are supplied, the
function should generate an array of size n × m. The output from the function
is the array of random values in the range [0.0, 1.0).

3. Describe the algorithm
The pseudocode for function random0 is:

function ran = random0 (m, n)
Check for valid arguments
Set n ← m if not supplied
Create output array with "zeros" function
for ii = 1:number of rows
 for jj = 1:number of columns
 ISEED ← mod (8121 * ISEED + 28411, 134456)
 ran(ii,jj) ← iseed / 134456
 end
end

where the value of ISEED is placed in global memory so that it is saved
between calls to the function. The pseudocode for function seed is trivial:

function seed (new_seed)
new_seed ← round(new_seed)
ISEED ← abs(new_seed)

The round function is used in case the user fails to supply an integer,
and the absolute value function is used in case the user supplies a negative
seed. The user will not have to know in advance that only positive integers
are legal seeds.

The variable ISEED will be placed in global memory so that it may be
accessed by both functions.

4. Turn the algorithm into MATLAB statements.
Function random0 is shown below.

function ran = random0(m,n)
%RANDOM0 Generate uniform random numbers in [0,1)
% Function RANDOM0 generates an array of uniform
% random numbers in the range [0,1). The usage
% is:
%
% random0(m) -- Generate an m x m array
% random0(m,n) -- Generate an m x n array

% Define variables:
% ii -- Index variable
% ISEED -- Random number seed (global)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

256 | Chapter 6 Basic User -Defined Functions

% jj -- Index variable
% m -- Number of columns
% msg -- Error message
% n -- Number of rows
% ran -- Output array
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/14 S. J. Chapman Original code

% Declare global values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(1,2,nargin);
error(msg);

% If the n argument is missing, set it to m.
if nargin < 2
 n = m;
end

% Initialize the output array
ran = zeros(m,n);

% Now calculate random values
for ii = 1:m
 for jj = 1:n
 ISEED = mod(8121*ISEED + 28411, 134456);
 ran(ii,jj) = ISEED / 134456;
 end
end

Function seed is shown below.

function seed(new_seed)
%SEED Set new seed for function RANDOM0
% Function SEED sets a new seed for function
% RANDOM0. The new seed should be a positive
% integer.

% Define variables:
% ISEED -- Random number seed (global)
% new_seed -- New seed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.4 Sharing Data Using Global Memory | 257

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/14 S. J. Chapman Original code
%
% Declare global values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(1,1,nargin);
error(msg);

% Save seed
new_seed = round(new_seed);
ISEED = abs(new_seed);

5. Test the resulting MATLAB programs.
If the numbers generated by these functions are truly uniformly distributed
random numbers in the range 0 ≤ ran , 1.0, then the average of many
numbers should be close to 0.5 and the standard deviation of the numbers

should be close to
1

Ï12
.

Furthermore, if the range between 0 and 1 is divided into a number of
equal-size bins, the number of random values falling in each bin should be
about the same. A histogram is a plot of the number of values falling in each
bin. MATLAB function hist will create and plot a histogram from an input
data set, so we will use it to verify the distribution of random numbers gen-
erated by random0.

To test the results of these functions, we will perform the following
tests:

1. Call seed with new_seed set to 1024.
2. Call random0(4) to see that the results appear random.
3. Call random0(4) to verify that the results differ from call to call.
4. Call seed again with new_seed set to 1024.
5. Call random0(4) to see that the results are the same as in (2) above.

This verifies that the seed is properly being reset.
6. Call random0(2,3) to verify that both input arguments are being

used correctly.
7. Call random0(1,100000) and calculate the average and standard

deviation of the resulting data set using MATLAB functions mean

and std. Compare the results to 0.5 and
1

Ï12
 .

8. Create a histogram of the data from (7) to see if approximately equal
numbers of values fall in each bin.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

258 | Chapter 6 Basic User -Defined Functions

We will perform these tests interactively, checking the results as we go.

» seed(1024)
» random0(4)
ans =
 0.0598 1.0000 0.0905 0.2060
 0.2620 0.6432 0.6325 0.8392
 0.6278 0.5463 0.7551 0.4554
 0.3177 0.9105 0.1289 0.6230
» random0(4)
ans =
 0.2266 0.3858 0.5876 0.7880
 0.8415 0.9287 0.9855 0.1314
 0.0982 0.6585 0.0543 0.4256
 0.2387 0.7153 0.2606 0.8922
» seed(1024)
» random0(4)
ans =
 0.0598 1.0000 0.0905 0.2060
 0.2620 0.6432 0.6325 0.8392
 0.6278 0.5463 0.7551 0.4554
 0.3177 0.9105 0.1289 0.6230
» random0(2,3)
ans =
 0.2266 0.3858 0.5876
 0.7880 0.8415 0.9287
» arr = random0(1,100000);
» mean(arr)
ans =
 0.5001
» std(arr)
ans =
 0.2887
» hist(arr,10)
» title('\bfHistogram of the Output of random0');
» xlabel('Bin');
» ylabel('Count');

The results of these tests look reasonable, so the function appears
to be working. The average of the data set was 0.5001, which is quite
close to the theoretical value of 0.5000, and the standard deviation
of the data set was 0.2887, which is equal to the theoretical value of
0.2887 to the accuracy displayed. The histogram is shown in Figure 6.5,
and the distribution of the random values is roughly even across all of
the bins.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.5 Preserving Data Between Calls to a Function | 259

6.5 Preserving Data Between Calls to a Function

When a function finishes executing, the special workspace created for that function
is destroyed, so the contents of all local variables within the function will disappear.
The next time that the function is called, a new workspace will be created, and all of
the local variables will be returned to their default values. This behavior is usually
desirable, since it ensures that MATLAB functions behave in a repeatable fashion
every time they are called.

However, it is sometimes useful to preserve some local information within a
function between calls to the function. For example, we might which to create a counter
to count the number of times that the function has been called. If such a counter were
destroyed every time the function exited, the count would never exceed 1!

MATLAB includes a special mechanism to allow local variables to be preserved
between calls to a function. Persistent memory is a special type of memory that can
only be accessed from within the function, but is preserved unchanged between calls
to the function.

A persistent variable is declared with the persistent statement. The form
of a global statement is

persistent var1 var2 var3 ...

where var1, var2, var3, and so forth are the variables to be placed in persistent
memory.

12000
Histogram of the Output of Random0

10000

8000

6000

C
ou

nt

4000

2000

0
0 0.1 0.2 0.3 0.4 0.5

Bin

0.6 0.7 0.8 10.9

Figure 6.5 Histogram of the output of function random0.
▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

260 | Chapter 6 Basic User -Defined Functions

Example 6.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on-the-fly as
the values are being entered. The built-in MATLAB functions mean and std could
perform this function, but we would have to pass the entire data set to them for
recalculation after each new data value is entered. A better result can be achieved by
writing a special function that keeps track of the appropriate running sums between
calls and only needs the latest value to calculate the current average and standard
deviation.

The average, or arithmetic mean, of a set of numbers is defined as

 x 5
1

N
 o

N

i51

x
i
 (6.8)

where x
i
 is sample i out of N samples. The standard deviation of a set of numbers is

defined as

 s 5ÎNo
N

i51

x 2
i 2 1o

N

i51

xi2
2

NsN 2 1d

(6.9)

Standard deviation is a measure of the amount of scatter on the measurements—the
greater the standard deviation, the more scattered the points in the data set are. If we
can keep track of the number of values N, the sum of the values Σx, and the sum of
the squares of the values Sx2, then we can calculate the average and standard devia-
tion at any time from Equations (6.8) and (6.9).

Write a function to calculate the running average and standard deviation of a
data set as it is being entered.

Solution This function must be able to accept input values one at a time and keep
running sums of N, Sx, and Sx2, which will be used to calculate the current average
and standard deviation. It must store the running sums in global memory so that
they are preserved between calls. Finally, there must be a mechanism to reset the
running sums.

1. State the problem
Create a function to calculate the running average and standard deviation of
a data set as new values are entered. The function must also include a feature
to reset the running sums when desired.

▶

Good Programming Practice

Use persistent memory to preserve the values of local variables within a function
between calls to the function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.5 Preserving Data Between Calls to a Function | 261

2. Define the inputs and outputs
There are two types of inputs required by this function:

1. The character string 'reset' to reset running sums to zero.
2. The numeric values from the input data set, present one value per

function call.

The outputs from this function are the mean and standard deviation of the
data supplied to the function so far.

3. Design the algorithm
This function can be broken down into four major steps

Check for a legal number of arguments
Check for a 'reset', and reset sums if present
Otherwise, add current value to running sums
Calculate and return running average and std dev
 if enough data is available. Return zeros if
 not enough data is available.

The detailed pseudocode for these steps is:

Check for a legal number of arguments
if x == 'reset'
 n ← 0
 sum_x ← 0
 sum_x2 ← 0
else
 n ← n + 1
 sum_x ← sum_x + x
 sum_x2 ← sum_x2 + xˆ2
end

% Calculate ave and sd
if n == 0
 ave ← 0
 std ← 0
elseif n == 1
 ave ← sum_x
 std ← 0
else
 ave ← sum_x / n
 std ← sqrt((n*sum_x2 – sum_xˆ2) / (n*(n-1)))
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown below.

function [ave, std] = runstats(x)
%RUNSTATS Generate running ave & std deviation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

262 | Chapter 6 Basic User -Defined Functions

% Function RUNSTATS generates a running average
% and standard deviation of a data set. The
% values x must be passed to this function one
% at a time. A call to RUNSTATS with the argument
% 'reset' will reset the running sums.

% Define variables:
% ave -- Running average
% msg -- Error message
% n -- Number of data values
% std -- Running standard deviation
% sum_x -- Running sum of data values
% sum_x2 -- Running sum of data values squared
% x -- Input value
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/14 S. J. Chapman Original code

% Declare persistent values
persistent n % Number of input values
persistent sum_x % Running sum of values
persistent sum_x2 % Running sum of values squared

% Check for a legal number of input arguments.
msg = nargchk(1,1,nargin);
error(msg);

% If the argument is 'reset', reset the running sums.
if x == 'reset'
 n = 0;
 sum_x = 0;
 sum_x2 = 0;
else
 n = n + 1;
 sum_x = sum_x + x;
 sum_x2 = sum_x2 + xˆ2;
end

% Calculate ave and sd
if n == 0
 ave = 0;
 std = 0;
elseif n == 1
 ave = sum_x;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.5 Preserving Data Between Calls to a Function | 263

 std = 0;
else
 ave = sum_x / n;
 std = sqrt((n*sum_x2 - sum_xˆ2) / (n*(n-1)));
end

5. Test the program.
To test this function, we must create a script file that resets runstats,
reads input values, calls runstats, and displays the running statistics. An
appropriate script file is shown below:

% Script file: test_runstats.m
%
% Purpose:
% To read in an input data set and calculate the
% running statistics on the data set as the values
% are read in. The running stats will be written
% to the Command Window.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/14 S. J. Chapman Original code
%
% Define variables:
% array -- Input data array
% ave -- Running average
% std -- Running standard deviation
% ii -- Index variable
% nvals -- Number of input values
% std -- Running standard deviation

% First reset running sums
[ave std] = runstats('reset');

% Prompt for the number of values in the data set
nvals = input('Enter number of values in data set: ');

% Get input values
for ii = 1:nvals

 % Prompt for next value
 string = ['Enter value ' int2str(ii) ': '];
 x = input(string);

 % Get running statistics
 [ave std] = runstats(x);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

264 | Chapter 6 Basic User -Defined Functions

 % Display running statistics
 fprintf('Average = %8.4f; Std dev = %8.4f\n',ave,std);

end

To test this function, we will calculate running statistics by hand for a set of 5
numbers and compare the hand calculations to the results from the program.
If a data set is created with the following 5 input values

3., 2., 3., 4., 2.8

then the running statistics calculated by hand would be:

Value n Sx Sx2 Average Std_dev

3.0 1 3.0 9.0 3.00 0.000
2.0 2 5.0 13.0 2.50 0.707
3.0 3 8.0 22.0 2.67 0.577
4.0 4 12.0 38.0 3.00 0.816
2.8 5 14.8 45.84 2.96 0.713

The output of the test program for the same data set is:

» test_runstats
Enter number of values in data set: 5
Enter value 1: 3
Average = 3.0000; Std dev = 0.0000
Enter value 2: 2
Average = 2.5000; Std dev = 0.7071
Enter value 3: 3
Average = 2.6667; Std dev = 0.5774
Enter value 4: 4
Average = 3.0000; Std dev = 0.8165
Enter value 5: 2.8
Average = 2.9600; Std dev = 0.7127

so the results check to the accuracy shown in the hand calculations.

▶

6.6 Built-in MATLAB Functions: Sorting Functions

MATLAB includes two built-in sorting functions that are extremely efficient and
should be used instead of the simple sort function we created in Example 6.2. These
functions are enormously faster than the sort we created in Example 6.2, and the
speed difference increases rapidly as the size of the data set to sort increases.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.6 Built-in MATLAB Functions: Sorting Functions | 265

Function sort sorts a data set into ascending or descending order. If the data is
a column or row vector, the entire data set is sorted. If the data is a two-dimensional
matrix, the columns of the matrix are sorted separately.

The most common forms of the sort function are

res = sort(a); % Sort in ascending order
res = sort(a,'ascend'); % Sort in ascending order
res = sort(a,'descend'); % Sort in descending order

If a is a vector, the data set is sorted in the specified order. For example,

» a = [1 4 5 2 8];
» sort(a)
ans =
 1 2 4 5 8
» sort(a,'ascend')
ans =
 1 2 4 5 8
» sort(a,'descend')
ans =
 8 5 4 2 1

If b is a matrix, the data set is sorted independently by column. For example,

» b = [1 5 2; 9 7 3; 8 4 6]
b =
 1 5 2
 9 7 3
 8 4 6
» sort(b)
ans =
 1 4 2
 8 5 3
 9 7 6

Function sortrows sorts a matrix of data into ascending or descending order
according to one or more specified columns.

The most common forms of the sortrows function are

res = sortrows(a); % Ascending sort of col 1
res = sortrows(a,n); % Ascending sort of col n
res = sortrows(a,-n); % Descending order of col n

It is also possible to sort by more than one column. For example, the statement

res = sortrows(a,[m n]);

would sort the rows by column m and if two or more rows have the same value in
column m, further sort those rows by column n.

For example, suppose b is a matrix as defined below. Then sortrows(b) will
sort the rows in ascending order of column 1, and sortrows(b,[2 3]) will sort
the row in ascending order of columns 2 and 3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

266 | Chapter 6 Basic User -Defined Functions

» b = [1 7 2; 9 7 3; 8 4 6]
b =
 1 7 2
 9 7 3
 8 4 6
» sortrows(b)
ans =
 1 7 2
 8 4 6
 9 7 3
» sortrows(b,[2 3])
ans =
 8 4 6
 1 7 2
 9 7 3

6.7 Built-in MATLAB Functions: Random Number Functions

MATLAB includes two standard functions that generate random values from differ-
ent distributions. They are

■■ rand—Generates random values from a uniform distribution on the range
[0,1)

■■ randn—Generates random values from a standard normal distribution

Both of them are much faster and much more “random” than the simple function that
we have created. If you really need random numbers in your programs, use one of
these functions.

In a uniform distribution, every number in the range [0,1) has an equal probability
of appearing. In contrast, the normal distribution is a classic “bell shaped curve” with
the most likely number being 0.0 and a standard deviation of 1.0.

Functions rand and randn have the following calling sequences:

■■ rand() or randn()—Generates a single random value
■■ rand(n) or randn(n)—Generates an n × n array of random values
■■ rand(m,n) or randn(m,n)—Generates an m × n array of random values

6.8 Summary

In Chapter 6, we presented an introduction to user-defined functions. Functions are
special types of M-files that receive data through input arguments and return results
through output arguments. Each function has its own independent workspace. Each
function should appear in a separate file with the same name as the function, includ-
ing capitalization.

Functions are called by naming them in the Command Window or another M-file.
The names used should match the function name exactly, including capitalization.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.8 Summary | 267

Arguments are passed to functions using a pass-by-value scheme, meaning that
MATLAB copies each argument and passes the copy to the function. This copying
is important, because the function can freely modify its input arguments without
affecting the actual arguments in the calling program.

MATLAB functions can support varying numbers of input and output arguments.
Function nargin reports the number of actual input arguments used in a function
call, and function nargout reports the number of actual output arguments used in
a function call.

Data can also be shared between MATLAB functions by placing the data in
global memory. Global variables are declared using the global statement. Global
variables may be shared by all functions that declare them. By convention, global
variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that function
by placing the data in persistent memory. Persistent variables are declared using the
persistent statement.

6.8.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Declare global variables in all capital letters to make them easy to distin-
guish from local variables.

3. Declare global variables immediately after the initial comments and before
the first executable statement in each function that uses them.

4. You may use global memory to pass large amounts of data among functions
within a program.

5. Use persistent memory to preserve the values of local variables within a
function between calls to the function.

6.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

error Displays error message and aborts the function producing the error. This function is used if
the argument errors are fatal.

global Declares global variables.

nargchk Returns a standard error message if a function is called with too few or too many arguments.

nargin Returns the number of actual input arguments that were used to call the function.

nargout Returns the number of actual output arguments that were used to call the function.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

268 | Chapter 6 Basic User -Defined Functions

6.9 Exercises

6.1 What is the difference between a script file and a function?
6.2 When a function is called, how is data passed from the caller to the function, and

how are the results of the function returned to the caller?
6.3 What are the advantages and disadvantages of the pass-by-value scheme used in

MATLAB?
6.4 Modify the selection sort function developed in this chapter so that it accepts a

second optional argument that may be either 'up' or 'down'. If the argument
is 'up', sort the data in ascending order. If the argument is 'down', sort the
data in descending order. If the argument is missing, the default case is to sort the
data in ascending order. (Be sure to handle the case of invalid arguments, and be
sure to include the proper help information in your function.)

6.5 The inputs to MATLAB functions sin, cos, and tan are in radians, and the
output of functions asin, acos, atan, and atan2 are in radians. Create a
new set of functions sin_d, cos_d, and so forth, whose inputs and outputs are
in degrees. Be sure to test your functions. (Note: Recent versions of MATLAB
have built-in functions sind, cosd, and so forth, which work with inputs in
degrees instead of radians. You can evaluate your functions and the correspond-
ing built-in functions with the same input values to verify the proper operation
of your functions.)

6.6 Write a function f_to_c that accepts a temperature in degrees Fahrenheit and
returns the temperature in degrees Celsius. The equation is

 T sin 8Cd 5
5

9
 fTsin 8Fd 2 32.0g (6.10)

6.7 Write a function c_to_f that accepts a temperature in degrees Celsius and
returns the temperature in degrees Fahrenheit. The equation is

 T sin 8Fd 5
9

5
 T sin 8Cd 1 32 (6.11)

 Demonstrate that this function is the inverse of the one in Exercise 6.6. In other
words, demonstrate that the expression c_to_f(f_to_c(temp)) is just the
original temperature temp.

Commands and Functions (Continued)

persistent Declares persistent variables.

rand Generates random values from a uniform distribution.

randn Generates random values from a standard normal distribution.

return Stop executing a function and return to caller.

sort Sort data in ascending or descending order.

sortrows Sort rows of a matrix in ascending or descending order based on a specified column.

warning Displays a warning message and continues function execution. This function is used if the
argument errors are not fatal, and execution can continue.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.9 Exercises | 269

6.8 The area of a triangle whose three vertices are points sx
1
, y

1
d, sx

2
, y

2
d, and sx

3
, y

3
d

(see Figure 6.6) can be found from the equation

 A 5
1

2
 *

 x
1

 x
2

 x
3

y
1

y
2

y
3

 1 1 1 * (6.12)

 where u u is the determinant operation. The area returned will be positive if the
points are taken in counterclockwise order, and negative if the points are taken
in clockwise order. This determinant can be evaluated by hand to produce the
following equation

 A 5
1

2
 fx1

s

y
2
2y

3
d 2 x

2
s

y
1
2y

3
d 1 x

3
s

y
1
2y

2
dg (6.13)

 Write a function area2d that calculates the area of a triangle given the three
bounding points sx

1
, y

1
d, sx

2
, y

2
d, and sx

3
, y

3
d using Equation (6.13). Then test

your function by calculating the area of a triangle bounded by the points (0, 0),
(10, 0), and (15, 5).

6.9 The area inside any polygon can be broken down into a series of triangles, as
shown in Figure 6.7. If this is an n-sided polygon, then it can be divided into n – 2
triangles. Create a function that calculates the perimeter of the polygon and the
area enclosed by the polygon. Use function area2d from the previous exercise
to calculate the area of the polygon. Write a program that accepts an ordered list
of points bounding a polygon and calls your function to return the perimeter and
area of the polygon. Then test your function by calculating the perimeter and
area of a polygon bounded by the points (0, 0), (10, 0), (8, 8), (2, 10), and (– 4, 5).

(x3, y3)

(x2, y2)(x1, y1)

Figure 6.6 A triangle bounded by points (x1, y1), (x2, y2), and (x3, y3).

(x2, y2)(x1, y1)

(x6, y6)

(x5, y5)
(x4, y4)

(x3, y3)

Figure 6.7 An arbitrary polygon can be divided up into a series of triangles.
If there are n sides to the polygon, then it can be divided into n – 2 triangles.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

270 | Chapter 6 Basic User -Defined Functions

6.10 Inductance of a Transmission Line The inductance per meter of a single-phase
two-wire transmission line is given by the equation

 L 5
µ

0

�
 31

4
 11n 1D

r 24 (6.14)

 where L is the inductance in henrys per meter of line, �
0

5 4� 3 1027 H/m is
the permeability of free space, D is the distance between the two conductors,
and r is the radius of each conductor. Write a function that calculates the total
inductance of a transmission line as a function of its length in kilometers, the
spacing between the two conductors, and the diameter of each conductor. Use
this function to calculate the inductance of a 100 km transmission line with con-
ductors of radius r 5 2 cm and distance D 5 1.5 m.

6.11 Based on Equation (6.14), would the inductance of a transmission line increase
or decrease if the diameter of its conductors increases? How much would the
inductance of the line change if the diameter of each conductor were doubled?

6.12 Capacitance of a Transmission Line The capacitance per meter of a single-
phase two-wire transmission line is given by the equation

 C 5
�«

1n1D2r
r 2

(6.15)

 where C is the capacitance in farads per meter of line, «
0

5 4� 31027 F/m is
the permittivity of free space, D is the distance between the two conductors,
and r is the radius of each conductor. Write a function that calculates the total
capacitance of a transmission line as a function of its length in kilometers, the
spacing between the two conductors, and the diameter of each conductor. Use
this function to calculate the capacitance of a 100 km transmission line with
conductors of radius r 5 2 cm and distance D 5 1.5 m.

6.13 What happens to the inductance and capacitance of a transmission line as the
distance between the two conductors increases?

6.14 Use function random0 to generate a set of 100,000 random values. Sort this
data set twice, once with the ssort function of Example 6.2, and once with
MATLAB’s built-in sort function. Use tic and toc to time the two sort
functions. How do the sort times compare? (Note: Be sure to copy the original
array and present the same data to each sort function. To have a fair comparison,
both functions must get the same input data set.)

6.15 Try the sort functions in Exercise 6.14 for array sizes of 10,000, 100,000, and
200,000. How does the sorting time increase with data set size for the sort
function of Example 6.2? How does the sorting time increase with data set size
for the built-in sort function? Which function is more efficient?

6.16 Modify function random0 so that it can accept 0, 1, or 2 calling arguments. If it
has no calling arguments, it should return a single random value. If it has 1 or 2
calling arguments, it should behave as it currently does.

6.17 As function random0 is currently written, it will fail if function seed is not
called first. Modify function random0 so that it will function properly with
some default seed even if function seed is never called.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.9 Exercises | 271

6.18 Dice Simulation It is often useful to be able to simulate the throw of a fair
die. Write a MATLAB function dice that simulates the throw of a fair die by
returning some random integer between 1 and 6 every time that it is called.
(Hint: Call random0 to generate a random number. Divide the possible values
out of random0 into six equal intervals, and return the number of the interval
that a given random value falls into.)

6.19 Road Traffic Density Function random0 produces a number with a uniform
probability distribution in the range [0.0, 1.0). This function is suitable for
simulating random events if each outcome has an equal probability of occur-
ring. However, in many events, the probability of occurrence is not equal for
every event, and a uniform probability distribution is not suitable for simulating
such events.

 For example, when traffic engineers studied the number of cars passing a
given location in a time interval of length t, they discovered that the probability
of k cars passing during the interval is given by the equation

 Psk, td 5 e2�t

s�tdk

k !
 for t $ 0, l . 0, and k 5 0, 1, 2,… (6.16)

 This probability distribution is known as the Poisson distribution; it occurs in
many applications in science and engineering. For example, the number of calls k
to a telephone switchboard in time interval t, the number of bacteria k in a
specified volume t of liquid, and the number of failures k of a complicated system
in time interval t all have Poisson distributions.

 Write a function to evaluate the Poisson distribution for any k, t, and l.
Test your function by calculating the probability of 0, 1, 2, …, 5 cars passing a
particular point on a highway in 1 minute, given that l is 1.6 per minute for that
highway. Plot the Poisson distribution for t 5 1 and l 5 1.6.

6.20 Write three MATLAB functions to calculate the hyperbolic sine, cosine, and
tangent functions:

sinhsxd 5
ex 2 e2x

2
 coshsxd 5

ex 1 e2x

2
 tanhsxd 5

ex 2 e2x

ex 1 e2x

 Use your functions to plot the shapes of the hyperbolic sine, cosine, and tangent
functions.

6.21 Write a MATLAB function to perform a running average filter on a data set, as
described in Exercise 5.18. Test your function using the same data set used in
Exercise 5.18.

6.22 Write a MATLAB function to perform a median filter on a data set, as
described in Exercise 5.19. Test your function using the same data set used in
Exercise 5.19.

6.23 Sort with Carry It is often useful to sort an array arr1 into ascending order,
while simultaneously carrying along a second array arr2. In such a sort, each
time an element of array arr1 is exchanged with another element of arr1,
the corresponding elements of array arr2 are also swapped. When the sort is
over, the elements of array arr1 are in ascending order, while the elements
of array arr2 that were associated with particular elements of array arr1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

272 | Chapter 6 Basic User -Defined Functions

are still associated with them. For example, suppose we have the following
two arrays:
 Element arr1 arr2
 1. 6. 1.
 2. 1. 0.
 3. 2. 10.

 After sorting array arr1 while carrying along array arr2, the contents of the
two arrays will be:

 Element arr1 arr2
 1. 1. 0.
 2. 2. 10.
 3. 6. 1.

 Write a function to sort one real array into ascending order while carrying along
a second one. Test the function with the following two 9-element arrays:

a = [1, 11, -6, 17, -23, 0, 5, 1, -1];
b = [31, 101, 36, -17, 0, 10, -8, -1, -1];

6.24 The sort-with-carry function of Exercise 6.23 is a special case of the built-in
function sortrows, where the number of columns is two. Create a single
matrix c with two columns consisting of the data in vectors a and b in the pre-
vious exercise, and sort the data using sortrows. How does the sorted data
compare to the results of Exercise 6.23?

6.25 Compare the performance of sortrows with the sort-with-carry function
created in Exercise 6.23. To do this, create two copies of a 10,000 3 2 element
array containing random values, and sort column 1 of each array while carrying
along column 2 using both functions. Determine the execution times of each sort
function using tic and toc. How does the speed of your function compare with
the speed of the standard function sortrows?

6.26 Figure 6.8 shows two ships steaming on the ocean. Ship 1 is at position sx
1
, y

1
d

and steaming on heading �
1
. Ship 2 is at position sx

2
, y

2
d and steaming on

Ship 2
(x2, y2, �2)

Ship 1
(x1, y1, �1)

Object

r2

r1
�1

�2

Figure 6.8 Two ships at positions sx1, y1d and sx2, y2d respectively. Ship 1 is
traveling at heading θ1, and Ship 2 is traveling at heading θ2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.9 Exercises | 273

heading �
2
. Suppose that Ship 1 makes radar contact with an object at range r

1

and bearing �
1
. Write a MATLAB function that will calculate the range r

2
 and

bearing �
2
 at which Ship 2 should see the object.

6.27 Linear Least Squares Fit Develop a function that will calculate slope m and
intercept b of the least-squares line that best fits an input data set. The input
data points (x, y) will be passed to the function in two input arrays, x and y.
(The equations describing the slope and intercept of the least-squares line are in
Example 5.6 in the previous chapter.) Test your function using a test program and
the following 20-point input data set:

Sample Data to Test Least Squares Fit Routine

No. x y No. x y

1 24.91 28.18 11 20.94 0.21
2 23.84 27.49 12 0.59 1.73
3 22.41 27.11 13 0.69 3.96
4 22.62 26.15 14 3.04 4.26
5 23.78 26.62 15 1.01 6.75
6 20.52 23.30 16 3.60 6.67
7 21.83 22.05 17 4.53 7.70
8 22.01 22.83 18 6.13 7.31
9 0.28 21.16 19 4.43 9.05

10 1.08 0.52 20 4.12 10.95

6.28 Correlation Coefficient of Least Squares Fit Develop a function that will
calculate both the slope m and intercept b of the least-squares line that best fits
an input data set and also the correlation coefficient of the fit. The input data
points (x, y) will be passed to the function in two input arrays, x and y. The
equations describing the slope and intercept of the least-squares line are given in
Example 5.1, and the equation for the correlation coefficient is

 r 5
n _ox y+ 2 _ox+ _oy+

Îf_nox2+ 2 _ox+2gf_noy2+2_oy+2g
 (6.17)

 where

 Sx is the sum of the x values
 Sy is the sum of the y values
 Sx2 is the sum of the squares of the x values
 Sy2 is the sum of the squares of the y values
 Sxy is the sum of the products of the corresponding x and y values
 n is the number of points included in the fit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

274 | Chapter 6 Basic User -Defined Functions

 Test your function using a test driver program and the 20-point input data set
given in the previous problem.

6.29 Create a function random1 that uses function random0 to generate uniform
random values in the range [21, 1). Test your function by calculating and dis-
playing 20 random samples.

6.30 Gaussian (Normal) Distribution Function random0 returns a uniformly-
distributed random variable in the range [0, 1), which means that there is an equal
probability of any given number in the range occurring on a given call to the func-
tion. Another type of random distribution is the Gaussian distribution, in which
the random value takes on the classic bell-shaped curve shown in Figure 6.9.
A Gaussian distribution with an average of 0.0 and a standard deviation of 1.0
is called a standard normal distribution, and the probability of any given value
occurring in the standardized normal distribution is given by the equation

 psxd 5
1

Ï2�
 e2x2 /2 (6.18)

 It is possible to generate a random variable with a standard normal distribution
starting from a random variable with a uniform distribution in the range [–1, 1)
as follows:

1. Select two uniform random variables x
1
 and x

2
 from the range [–1, 1) such

that x
1
2 1 x2

2
, 1. To do this, generate two uniform random variables in the

range [–1, 1), and see if the sum of their squares happens to be less than 1.
If so, use them. If not, try again.

2. Then, each of the values y
1
 and y

2
 in the equations below will be a normally

distributed random variable.

 y
1

5Î221n r
r

 x
1
 (6.19)

Normal Distribution

Value

Pr
ob

ab
ili

ty
 o

f
O

cc
ur

re
nc

e

0.4

0
24 22 0 2 4

0.1

0.2

0.3

Figure 6.9 A normal probability distribution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.9 Exercises | 275

 y
2

5Î221n r
r

 x
2
 (6.20)

where psxd 5
1

Ï2�
 e2x2 /2 (6.21)

 Write a function that returns a normally distributed random value each time that
it is called. Test your function by getting 1000 random values, calculating the
standard deviation, and plotting a histogram of the distribution. How close to 1.0
was the standard deviation?

 6.31 Gravitational Force The gravitational force F between two bodies of masses
m

1
 and m

2
 is given by the equation

 F 5
Gm

1
m

2

r2
 (6.22)

 where G is the gravitational constant (6.672 3 10211 N m2 / kg2), m
1
 and m

2
 are the

masses of the bodies in kilograms, and r is the distance between the two bodies.
Write a function to calculate the gravitational force between two bodies given
their masses and the distance between them. Test you function by determining
the force on an 800 kg satellite in orbit 38,000 km above the Earth. (The mass
of the Earth is 6.98 3 1024 kg and the radius of the Earth is 6 .371 3 106 m.)

 6.32 Rayleigh Distribution The Rayleigh distribution is another random number
distribution that appears in many practical problems. A Rayleigh-distributed
random value can be created by taking the square root of the sum of the
squares of two normally distributed random values. In other words, to generate
a Rayleigh-distributed random value r, get two normally distributed random
values (n

1
 and n

2
), and perform the following calculation:

 r 5 Ïn
1

2 1 n
2

2 (6.23)

(a) Create a function rayleigh(n,m) that returns an n × m array of Rayleigh-
distributed random numbers. If only one argument is supplied [rayleigh(n)],
the function should return an n × n array of Rayleigh-distributed random
numbers. Be sure to design your function with input argument checking and
with proper documentation for the MATLAB help system.

(b) Test your function by creating an array of 20,000 Rayleigh-distributed
random values and plotting a histogram of the distribution. What does the
distribution look like?

(c) Determine the mean and standard deviation of the Rayleigh distribution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

277

7Chapter

Advanced Features of
User-Defined Functions

In Chapter 6, we introduced the basic features of user-defined functions. This chapter
continues the discussion with a selection of more advanced features.

7.1 Function Functions

“Function function” is the rather awkward name that MATLAB gives to a func-
tion whose input arguments include the names or handles of other functions. The
functions that are passed to the “function function” are normally used during that
function’s execution.

For example, MATLAB contains a function function called fzero. This
function locates a zero of the function that is passed to it. For example, the statement
fzero('cos',[0 pi]) locates a zero of the function cos between 0 and p,
and fzero('exp(x)-2',[0 1]) locates a zero of the function “exp(x)-2”
between 0 and 1. When these statements are executed, the result is:

» fzero('cos',[0 pi])
ans =

 1.5708
» fzero('exp(x)-2',[0 1])
ans =
 0.6931

The keys to the operation of function functions are two special MATLAB
functions, eval and feval. Function eval evaluates a character string as though
it had been typed in the Command Window, while function feval evaluates a
named function at a specific input value.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

278 | Chapter 7 Advanced Features of User-Defined Functions

Function eval evaluates a character string as though it has been typed
in the Command Window. This function gives MATLAB functions a chance
to construct executable statements during execution. The form of the eval
function is

eval(string)

For example, the statement x = eval('sin(pi/4)') produces the result

» x = eval('sin(pi/4)')
x =

 0.7071

An example in which a character string is constructed and evaluated using the eval
function is shown below:

x = 1;
str = ['exp(' num2str(x) ') –1'];
res = eval(str);

In this case, str contains the character string 'exp(1) –1', which eval evalu-
ates to get the result 1.7183.

Function feval evaluates a named function defined by an M-file at a specified
input value. The general form of the feval function is

feval(fun,value)

For example, the statement x = feval('sin',pi/4) produces the result

» x = feval('sin',pi/4)
x =
 0.7071

Some of the more common MATLAB function functions are listed in Table 7.1.
Type help fun_name to learn how to use each of these functions.

Table 7.1: Common MATLAB Function Functions
Function Name Description

fminbnd Minimize a function of one variable.

fzero Find a zero of a function of one variable.

quad Numerically integrate a function.

ezplot Easy to use function plotter.

fplot Plot a function by name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.1 Function Functions | 279

Example 7.1—Creating a Function Function

Create a function function that will plot any MATLAB function of a single variable
between specified starting and ending values.

Solution This function has two input arguments, the first one containing the name
of the function to plot and the second one containing a two-element vector with the
range of values to plot.

1. State the problem
Create a function to plot any MATLAB function of a single variable between
two user-specified limits.

2. Define the inputs and outputs
There are two inputs required by this function:
(a) A character string containing the name of a function.
(b) A two-element vector containing the first and last values to plot.

The output from this function is a plot of the function specified in the first
input argument.

3. Design the algorithm
This function can be broken down into four major steps

Check for a legal number of arguments
Check that the second argument has two elements
Calculate the value of the function between the
 start and stop points
Plot and label the function

The detailed pseudocode for the evaluation and plotting steps is:

n_steps ← 100
step_size ← (xlim(2) – xlim(1)) / n_steps
x ← xlim(1):step_size:xlim(2)
y ← feval(fun,x)
plot(x,y)
title(['\bfPlot of function ' fun '(x)'])
xlabel('\bfx')
ylabel(['\bf' fun '(x)'])

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown below.

function quickplot(fun,xlim)
%QUICKPLOT Generate quick plot of a function
% Function QUICKPLOT generates a quick plot
% of a function contained in a external m-file,
% between user-specified x limits.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

280 | Chapter 7 Advanced Features of User-Defined Functions

% Define variables:
% fun -- Name of function to plot in a char string
% msg -- Error message
% n_steps -- Number of steps to plot
% step_size -- Step size
% x -- X-values to plot
% y -- Y-values to plot
% xlim -- Plot x limits
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/07/14 S. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Check the second argument to see if it has two
% elements. Note that this double test allows the
% argument to be either a row or a column vector.
if (size(xlim,1) == 1 && size(xlim,2) == 2) | ...
 (size(xlim,1) == 2 && size(xlim,2) == 1)

 % Ok--continue processing.
 n_steps = 100;
 step_size = (xlim(2) - xlim(1)) / n_steps;
 x = xlim(1):step_size:xlim(2);
 y = zeros(size(x));
 h = str2func(fun)

 for ii = 1:length(x)
 y(ii) = feval(h,x(ii));
 end

 plot(x,y);
 title(['\bfPlot of function ' fun '(x)']);
 xlabel('\bfx');
 ylabel(['\bf' fun '(x)']);

else
 % Else wrong number of elements in xlim.
 error('Incorrect number of elements in xlim.');
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.1 Function Functions | 281

5. Test the program.
To test this function, we must call it with correct and incorrect input argu-
ments, verifying that it handles both correct inputs and errors properly. The
results are shown below:

» quickplot('sin')
??? Error using ==> quickplot
Not enough input arguments.

» quickplot('sin',[-2*pi 2*pi],3)
??? Error using ==> quickplot
Too many input arguments.

» quickplot('sin',-2*pi)
??? Error using ==> quickplot
Incorrect number of elements in xlim.

» quickplot('sin',[-2*pi 2*pi])

The last call was correct, and it produced the plot shown in Figure 7.1.

Figure 7.1 Plot of sin x versus x generate by function quickplot.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

282 | Chapter 7 Advanced Features of User-Defined Functions

7.2 Local Functions, Private Functions, and Nested Functions

MATLAB includes several special types of functions that behave differently than
the ordinary functions we have used so far. Ordinary functions can be called by any
other function, as long as they are in the same directory or in any directory on the
MATLAB path.

The scope of a function is defined as the locations within MATLAB from which
the function can be accessed. The scope of an ordinary MATLAB function is the cur-
rent working directory. If the function lies in a directory on the MATLAB path, then
the scope extends to all MATLAB functions in a program, because they all check the
path when trying to find a function with a given name.

In contrast, the scope of the other function types that we will discuss in the rest
of this chapter is more limited in one way or another.

7.2.1 Local Functions

It is possible to place more than one function in a single file. If more than one func-
tion is present in a file, the top function is a normal or primary function, while
the ones below it are called local functions or subfunctions. The primary function
should have the same name as the file it appears in. Local functions look just like
ordinary functions, but they are only accessible to the other functions within the same
file. In other words, the scope of a local function is the other functions within the
same file (see Figure 7.2).

Local functions are often used to implement “utility” calculations for a main
function. For example, the file mystats.m shown below contains a primary

mystats

mean

median

Functions mean and median
are only accessible from inside
the �le.

Function mystats is
accessible from outside the �le.

Figure 7.2 The first function in a file is called the primary function. It should have
the same name as the file it appears in, and it is accessible from outside the file.
The remaining functions in the file are subfunctions; they are only accessible from
within the file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.2 Local Functions, Private Functions, and Nested Functions | 283

function mystats and two local functions mean and median. Function mystats
is a normal MATLAB function, so it can be called by any other MATLAB function
in the same directory. If this file is in a directory included in the MATLAB search
path, it can be called by any other MATLAB function, even if the other function is
not in the same directory. By contrast, the scope of functions mean and median is
restricted to other functions within the same file. Function mystats can call them
and they can call each other, but a function outside of the file cannot. They are “utility”
functions that perform a part of the job of the main function mystats.

function [avg, med] = mystats(u)
%MYSTATS Find mean and median with internal functions.
% Function MYSTATS calculates the average and median
% of a data set using local functions.

n = length(u);
avg = mean(u,n);
med = median(u,n);

function a = mean(v,n)
% Subfunction to calculate average.
a = sum(v)/n;

function m = median(v,n)
% Subfunction to calculate median.
w = sort(v);
if rem(n,2) == 1
 m = w((n+1)/2);
else
 m = (w(n/2)+w(n/2+1))/2;
end

7.2.2 Private Functions

Private functions are functions that reside in subdirectories with the special name
private. They are only visible to other functions in the private directory or
to functions in the parent directory. In other words, the scope of these functions is
restricted to the private directory and to the parent directory that contains it.

For example, assume the directory testing is on the MATLAB search path.
A subdirectory of testing called private can contain functions that only the
functions in testing can call. Because private functions are invisible outside of
the parent directory, they can use the same names as functions in other directories.
This is useful if you want to create your own version of a particular function while
retaining the original in another directory. Because MATLAB looks for private func-
tions before standard M-file functions, it will find a private function named test.m
before a non-private function named test.m.

You can create your own private directories simply by creating a subdirectory
called private under the directory containing your functions. Do not place these
private directories on your search path.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

284 | Chapter 7 Advanced Features of User-Defined Functions

When a function is called from within an M-file, MATLAB first checks the file
to see if the function is a local function defined in the same file. If not, it checks for
a private function with that name. If it is not a private function, MATLAB checks
current directory for the function name. If it is not in the current directory, MATLAB
checks the standard search path for the function.

If you have special-purpose MATLAB functions that should only be used
by other functions and never be called directly by the user, consider hiding them
as local functions or private functions. Hiding the functions will prevent their
accidental use and will also prevent conflicts with other public functions of the
same name.

7.2.3 Nested Functions

Nested functions are functions that are defined entirely within the body of another
function, called the host function. They are only visible to the host function in which
they are embedded and to other nested functions embedded at the same level within
the same host function.

A nested function has access to any variables defined with it, plus any variables
defined within the host function (see Figure 7.3). In other words, the scope of the
variables declared in the host function includes both the host function and any nested
functions within it. The only exception occurs if a variable in the nested function has
the same name as a variable within the host function. In that case, the variable within
the host function is not accessible.

Note that if a file contains one or more nested functions, then every function
in the file must be terminated with an end statement. This is the only time when
the end statement is required at the end of a function—at all other times it is
optional.

host_function

nested_function_2

nested_function_1

Variables de�ned in the host
function are visible inside any
nested functions.

end % host_function

end % nested_function_1

end % nested_function_2

Variables de�ned within nested
functions are not visible in the
host function.

nested_function_2 can be
called from within
host_function or
nested_function_1.

nested_function_1 can be
called from within
host_function or
nested_function_2.

Figure 7.3 Nested functions are defined within a host function, and they inherit
variables defined within the host function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.2 Local Functions, Private Functions, and Nested Functions | 285

The following program illustrates the use of variables in nested functions. It
contains a host function test_nested_1 and a nested function fun1. When the
program starts, variables a, b, x, and y are initialized as shown in the host function,
and their values are displayed. Then the program calls fun1. Since fun1 is nested,
it inherits a, b, and x from the host function. Note that it does not inherit y, because
fun1 defines a local variable with that name. When the values of the variables are
displayed at the end of fun1, we see that a has been increased by 1 (due to the
assignment statement) and that y is set to 5. When execution returns to the host func-
tion, a is still increased by 1, showing that the variable a in the host function and the
variable a in the nested function are really the same. On the other hand, y is again 9,
because the variable y in the host function is not the same as the variable y in the
nested function.

function res = test_nested_1

% This is the top level function.
% Define some variables.
a = 1; b = 2; x = 0; y = 9;

% Display variables before call to fun1
fprintf('Before call to fun1:\n');
fprintf('a, b, x, y = %2d %2d %2d %2d\n', a, b, x, y);

% Call nested function fun1
x = fun1(x);

% Display variables after call to fun1
fprintf('\nAfter call to fun1:\n');
fprintf('a, b, x, y = %2d %2d %2d %2d\n', a, b, x, y);

 % Declare a nested function
 function res = fun1(y)

 % Display variables at start of call to fun1
 fprintf('\nAt start of call to fun1:\n');
 fprintf('a, b, x, y = %2d %2d %2d %2d\n', a, b, x, y);

 y = y + 5;
 a = a + 1;
 res = y;

Programming Pitfalls

If a file contains one or more nested functions, then every function in the file
must be terminated with an end statement. It is an error to omit end statements
in this case.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

286 | Chapter 7 Advanced Features of User-Defined Functions

 % Display variables at end of call to fun1
 fprintf('\nAt end of call to fun1:\n');
 fprintf('a, b, x, y = %2d %2d %2d %2d\n', a, b, x, y);

 end % function fun1
end % function test_nested_1

When this program is executed, the results are:

» test_nested_1
Before call to fun1:
a, b, x, y = 1 2 0 9

At start of call to fun1:
a, b, x, y = 1 2 0 0

At end of call to fun1:
a, b, x, y = 2 2 0 5

After call to fun1:
a, b, x, y = 2 2 5 9

Like local functions, nested functions can be used to perform special-purpose
calculations within a host function.

Good Programming Practice

Use local functions, private functions, or nested functions to hide special-purpose
calculations that should not be generally accessible to other functions. Hiding the
functions will prevent their accidental use and will also prevent conflicts with other
public functions of the same name.

7.2.4 Order of Function Evaluation

In a large program, there could possibly be multiple functions (local functions, pri-
vate functions, nested functions, and public functions) with the same name. When a
function with a given name is called, how do we know which copy of the function
will be executed?

The answer to this question is that MATLAB locates functions in a specific order
as follows:

1. MATLAB checks to see if there is a nested function within the current func-
tion with the specified name. If so, it is executed.

2. MATLAB checks to see if there is a local function within the current file
with the specified name. If so, it is executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 287

3. MATLAB checks for a private function with the specified name. If so, it is
executed.

4. MATLAB checks for a function with the specified name in the current
directory. If so, it is executed.

5. MATLAB checks for a function with the specified name on the MATLAB
path. MATLAB will stop searching and execute the first function with the
right name found on the path.

7.3 Function Handles

A function handle is a MATLAB data type that holds information to be used in ref-
erencing a function. When you create a function handle, MATLAB captures all the
information about the function that it needs to execute it later on. Once the handle is
created, it can be used to execute the function at any time.

Function handles are key to the operation of MATLAB functions that use other
functions.

7.3.1 Creating and Using Function Handles

A function handle can be created either of two possible ways: the @ operator or the
str2func function. To create a function handle with the @ operator, just place it in
front of the function name. To create a function handle with the str2func function,
call the function with the function name in a string. For example, suppose that function
my_func is defined as follows:

function res = my_func(x)
res = x.ˆ2 - 2*x + 1;

Then either of the following lines will create a function handle for function my_func:

hndl = @my_func
hndl = str2func('my_func');

Once a function handle has been created, the function can be executed by nam-
ing the function handle followed by any calling parameters. The result will be exactly
the same as if the function itself were named.

» hndl = @my_func
hndl =
 @my_func
» hndl(4)
ans =
 9
» my_func(4)
ans =
 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

288 | Chapter 7 Advanced Features of User-Defined Functions

If a function has no calling parameters, then the function handle must be followed by
empty parentheses when it is used to call the function:

» h1 = @randn;
» h1()
ans =
 -0.4326

After a function handle is created, it appears in the current workspace with the data
type “function handle”:

» whos
Name Size Bytes Class Attributes

ans 1x1 8 double
h1 1x1 16 function_handle
hndl 1x1 16 function_handle

A function handle can also be executed using the feval function. This provides
a convenient way to execute function handles within a MATLAB program.

» feval(hndl,4)
ans =
 9

It is possible to recover the function name from a function handle using the
func2str function.

» func2str(hndl)
ans =
my_func

This feature is very useful when we want to create descriptive messages, error mes-
sages, or labels inside a function that accepts and evaluates function handles. For
example, the function shown below accepts a function handle in the first argument
and plots the function at the points specified in the second argument. It also prints out
a title containing the name of the function being plotted.

function plotfunc(fun,points)
% PLOTFUNC Plots a function between the specified points.
% Function PLOTFUNC accepts a function handle and
% plots the function at the points specified.

% Define variables:
% fun -- Function handle
% msg -- Error message
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/05/14 S. J. Chapman Original code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 289

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Get function name
fname = func2str(fun);

% Plot the data and label the plot
plot(points,fun(points));
title(['\bfPlot of ' fname '(x) vs x']);
xlabel('\bfx');
ylabel(['\bf' fname '(x)']);
grid on;

For example, this function can be used to plot the function sin x from 22p to 2p with
the following statement:

plotfunc(@sin,[-2*pi:pi/10:2*pi])

The resulting function is shown in Figure 7.4.

Figure 7.4 Plot of function sin x from 22p to 2p, created using function
plotfunc.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

290 | Chapter 7 Advanced Features of User-Defined Functions

Table 7.2: MATLAB Functions that manipulate
Function Handles

Function Description

@ Create a function handle.

feval Evaluates a function using a function handle.

func2str Recover the function name associated with a given function handle.

functions Recover miscellaneous information from a function handle. The data
is returned in a structure.

str2func Create a function handle from a specified string.

Note that the function functions such as feval and fzero accept function
handles as well as function names in their calling arguments. For example, the fol-
lowing two statements are equivalent and produce the same answer:

» res = feval('sin',3*pi/2)
res =
 -1
» res = feval(@sin,3*pi/2)
res =
 -1

Some common MATLAB functions used with function handles are summarized
in Table 7.2.

7.3.2 The Significance of Function Handles

Either function names or function handles can be used to execute most functions.
However, function handles have certain advantages over function names. These
advantages include:

1. Passing Function Access Information to Other Functions. As we saw in
the previous section, you can pass a function handle as an argument in a call to
another function. The function handle enables the receiving function to call the
function attached to the handle. You can execute a function handle from within
another function even if the handle’s function is not in the scope of the evaluat-
ing function. This is because the function handle has a complete description of
the function to execute—the calling function does not have to search for it.

2. Improved Performance in Repeated Operations. MATLAB performs a
search for a function at the time that you create a function handle and then
stores this access information in the handle itself. Once defined, you can use
this handle over and over, without having to look it up again. This makes
function execution faster.

3. Allow Wider Access to Local Functions (Subfunctions) and Private
Functions. All MATLAB functions have a certain scope. They are visible to

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 291

other MATLAB entities within that scope but not visible outside of it. You
can call a function directly from another function that is within its scope but
not from a function outside that scope. Local functions, private functions,
and nested functions are limited in their visibility to other MATLAB
functions. You can invoke a local function only from another function that is
defined within the same M-file. You can invoke a private function only from a
function in the directory immediately above the private subdirectory. You
can invoke a nested function only from within the host function or another
nested function at the same level. However, when you create a handle to a
function that has limited scope, the function handle stores all the information
MATLAB needs to evaluate the function from any location in the MATLAB
environment. If you create a handle to a local function within the M-file that
defines the local function, you can then pass the handle to code that resides
outside of that M-file and evaluate the local function from beyond its usual
scope. The same holds true for private functions and nested functions.

4. Include More Functions per M-File for Easier File Management. You
can use function handles to help reduce the number of M-files required to
contain your functions. The problem with grouping a number of functions
in one M-file has been that this defines them as local functions and thus
reduces their scope in MATLAB. Using function handles to access these
local functions removes this limitation. This enables you to group functions
as you want and reduce the number of files you have to manage.

7.3.3 Function Handles and Nested Functions

When MATLAB invokes an ordinary function, a special workspace is created to
contain the function’s variables. The function executes to completion, and then the
workspace is destroyed. All the data in the function workspace is lost, except for any
values labeled persistent. If the function is executed again, a completely new
workspace is created for the new execution.

By contrast, when a host function creates a handle for a nested function and
returns that handle to a calling program, the host function’s workspace is created and
remains in existence for as long as the function handle remains in existence. Since
the nested function has access to the host function’s variables, MATLAB has to pre-
serve the host’s function’s data as long as there is any chance that the nested function
will be used. This means that we can save data in a function between uses.

This idea is illustrated in the function shown below. When function
count_calls is executed, it initializes a local variable current_count to
a user-specified initial count and then creates and returns a handle to the nested
function increment_count. When increment_count is called using that
function handle, the count is increased by one and the new value is returned.

function fhandle = count_calls(initial_value)

% Save initial value in a local variable
% in the host function.
current_count = initial_value;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

292 | Chapter 7 Advanced Features of User-Defined Functions

% Create and return a function handle to the
% nested function below.
fhandle = @increment_count;

 % Define a nested function to increment counter
 function count = increment_count
 current_count = current_count + 1;
 count = current_count;
 end % function increment_count

end % function count_calls

When this program is executed, the results are as shown below. Each call to the func-
tion handle increments the count by one.

» fh = count_calls(4);
» fh()
ans =
 5
» fh()
ans =
 6
» fh()
ans =
 7

Even more importantly, each function handle created for a function has its own
independent workspace. If we create two different handles for this function, each one
will have its own local data, and they will be independent of each other. As you can
see, we can increment either counter independently by calling the function with the
proper handle.

» fh1 = count_calls(4);
» fh2 = count_calls(20);
» fh1()
ans =
 5
» fh1()
ans =
 6
» fh2()
ans =
 21
» fh1()
ans =
 7

You can use this feature to run multiple counters and so forth within a program with-
out them interfering with each other.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 293

7.3.4 An Example Application: Solving Ordinary
Differential Equations

One very important application of function handles occurs in the MATLAB func-
tions designed to solve ordinary differential equations. MATLAB includes a plethora
of functions to solve differential equations under various conditions, but the most all-
round useful of them is ode45. This function solves ordinary differential equations
of the form

 y9 5 f st,yd (7.1)

using a Runge-Kutta (4,5) integration algorithm, and it works well for many types of
equations with many different input conditions.

The calling sequence for this function is

[t,y] = ode45(odefun_handle,tspan,y0,options)

where the calling parameters are:

odefun_handle A handle to a function f (t,y) that calculates the derivative
y9 of the differential equation.

tspan A vector containing the times to integrate. If this is a
two-element array [t0 tend], then the values are
interpreted as the starting and ending times to integrate.
The integrator applies the initial conditions at time
t0 and integrates the equation until time tend. If the
array has more than two elements, then the integrator
returns the values of the differential equation at exactly
the specified times.

y0 The initial conditions for the variable at time t0

options A structure of optional parameters that change the default
integration properties. (We will not use this parameter in
this book.)

and the results are:

t A column vector of time points at which the differential
equation was solved.

y The solution array. Each row of y contains the solutions
to all variables at the time specified in the same row of t.

This function also works well for systems of simultaneous first order differential
equations, where there are vectors of dependent variables y

1
, y

2
, and so forth.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

294 | Chapter 7 Advanced Features of User-Defined Functions

We will try a few example differential equations to get a better understanding of
this function. First, consider the simple first order linear time-invariant differential
equation

dy

dt
1 2y 5 0 (7.2)

with the initial condition ys0d 5 1. The function that would specify the derivative of
the differential equation is

dy

dt
5 22y (7.3)

This function could be programmed in MATLAB as follows:

function yprime = fun1(t,y)
yprime = -2 * y;

Function ode45 could be used to solve Equation (7.2) for ystd

% Script file: ode45_test1.m
%
% Purpose:
% This program solves a differential equation of the
% form dy/dt + 2 * y = 0, with the initial condition
% y(0) = 1.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/15/14 S. J. Chapman Original code
%
% Define variables:
% odefun_handle -- Handle to function that defines the derivative
% tspan -- Duration to solve equation for
% yo -- Initial condition for equation
% t -- Array of solution times
% y -- Array of solution values

% Get a handle to the function that defines the
% derivative.
odefun_handle = @fun1;

% Solve the equation over the period 0 to 5 seconds
tspan = [0 5];

% Set the initial conditions
y0 = 1;

% Call the differential equation solver.
[t,y] = ode45(odefun_handle,tspan,y0);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 295

% Plot the result
figure(1);
plot(t,y,'b-','LineWidth',2);
grid on;
title('\bfSolution of Differential Equation');
xlabel('\bfTime (s)');
ylabel('\bf\ity''');

When this script file is executed, the resulting output is shown in Figure 7.5. This
sort of exponential decay is exactly what would be expected for a first-order linear
differential equation.

Figure 7.5 Solution to the differential equation dy/dt 1 2y 5 0 with the initial
condition y(0) 5 1.

Example 7.2—Radioactive Decay Chains

The radioactive isotope thorium-227 decays into radium-223 with a half-life of
18.68 days, and radium-223 in turn decays into radon-219 with a half-life of 11.43
days. The radioactive decay constant for thorium 227 is l

th
5 0.03710638/day,

and the radioactive decay constant for radon is l
ra

5 0.0606428/day. Assume

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

296 | Chapter 7 Advanced Features of User-Defined Functions

that initially we have 1 million atoms of thorium-227 and calculate and plot
the amount of thorium-227 and radium-223 that will be present as a function
of time.

Solution The rate of decrease in thorium-227 is equal to the amount of thorium-227
present at a given moment times the decay constant for the material.

dn

th

dt
5 2l

th
n

th
 (7.4)

where n
th
 is the amount of thorium-227 and l

th
 is the decay rate per day. The

rate of decrease in radium-223 is equal to the amount of radium-223 present at a
given moment times the decay constant for the material. However, the amount of
radium-223 is increased by the number of atoms of thorium-227 that have decayed,
so the total change in the amount of radium-223 is

dn

ra

dt
5 2l

ra
n

ra
2

dn
th

dt

dn

ra

dt
5 2l

ra
n

ra
1 l

th
n

th
 (7.5)

where n
ra

 is the amount of radon-219 and l
ra

 is the decay rate per day. Equations (7.4)
and (7.5) must be solved simultaneously to determine the amount of thorium-227 and
radium-223 present at any given time.

1. State the problem
Calculate and plot the amount of thorium-227 and radium-223 present
as a function of time, given that there were initially 1,000,000 atoms of
thorium-227 and no radium-223.

2. Define the inputs and outputs
There are no inputs to this program. The outputs from this program are the
plots of thorium-227 and radium-223 as a function of time.

3. Describe the algorithm
This program can be broken down into three major steps

Create a function to describe the derivatives of
thorium-227 and radium-223
Solve the differential equations using ode45
Plot the resulting data

The first major step is to create a function that calculates the rate of change
of thorium-227 and radium-223. This is just a direct implementation of
Equations (7.4) and (7.5). The detailed pseudocode is shown below:

function yprime = decay1(t,y)
yprime(1) = -lambda_th * y(1);
yprime(2) = -lambda_ra * y(2) + lambda_th * y(1);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Function Handles | 297

Next we have to solve the differential equation. To do this, we need to set
the initial conditions and the duration, and then call ode45. The detailed
pseudocode is shown below:

% Get a function handle.
odefun_handle = @decay1;

% Solve the equation over the period 0 to 100 days
tspan = [0 100];

% Set the initial conditions
y0(1) = 1000000; % Atoms of thorium-227
y0(2) = 0; % Atoms of radium-223

% Call the differential equation solver.
[t,y] = ode45(odefun_handle,tspan,y0);

The final step is writing and plotting the results. Each result appears in
its own column, so y(:,1) will contain the amount of thorium-227 and
y(:,2) will contain the amount radium-223.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is shown below.

% Script file: calc_decay.m
%
% Purpose:
% This program calculates the amount of thorium-227 and
% radium-223 left as a function of time, given an initial
% concentration of 1000000 atoms of thorium-227
% and no atoms 0 radium-223.%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/15/14 S. J. Chapman Original code
%
% Define variables:
% odefun_handle -- Handle to function that defines the derivative
% tspan -- Duration to solve equation for
% yo -- Initial condition for equation
% t -- Array of solution times
% y -- Array of solution values

% Get a handle to the function that defines the derivative.
odefun_handle = @decay1;

% Solve the equation over the period 0 to 100 days
tspan = [0 100];

% Set the initial conditions
y0(1) = 1000000; % Atoms of thorium-227
y0(2) = 0; % Atoms of radium-223

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

298 | Chapter 7 Advanced Features of User-Defined Functions

% Call the differential equation solver.
[t,y] = ode45(odefun_handle,tspan,y0);

% Plot the result
figure(1);
plot(t,y(:,1),'b-','LineWidth',2);
hold on;
plot(t,y(:,2),'k--','LineWidth',2);
title('\bfAmount of Thorium-227 and Radium-223 vs Time');
xlabel('\bfTime (days)');
ylabel('\bfNumber of Atoms');
legend('Thorium-227','Radium-223');
grid on;
hold off;

The function to calculate the derivatives is shown below.

function yprime = decay1(t,y)
%DECAY1 Calculates the decay rates of thorium-227 and radium-223.
% Function DECAY1 Calculates the rates of change of thorium-227
% and radium-223 (yprime) for a given current concentration y.

% Define variables:
% t -- Time (in days)
% y -- Vector of current concentrations
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/15/07 S. J. Chapman Original code

% Set decay constants.
lambda_th = 0.03710636;
lambda_ra = 0.0606428;

% Calculate rates of decay
yprime = zeros(2,1);
yprime(1) = -lambda_th * y(1);
yprime(2) = -lambda_ra * y(2) + lambda_th * y(1);

5. Test the program.
When this program is executed, the results are as shown in Figure 7.6.
These results look reasonable. The initial amount of thorium-227 starts
high and decreases exponentially with a half-life of about 18 days. The
initial amount of radium-223 starts at zero and rises rapidly due to the
decay of thorium-227 and then starts decreasing as the amount of increase
from the decay of thorium 227 becomes less than the rate of decay of
radium-223.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.4 Anonymous Functions | 299

Figure 7.6 Plot of radioactive decay of thorium-227 and radium-223 versus time.

7.4 Anonymous Functions

An anonymous function is a function “without a name”1. It is a function that is
declared in a single MATLAB statement that returns a function handle, which can
then be used to execute the function. The form of an anonymous function is

fhandle = @ (arglist) expr

where fhandle is a function handle used to reference the function, arglist is a
list of calling variables, and expr is an expression involving the argument list that
evaluates the function. For example, we can create a function to evaluate the expres-
sion f sxd 5 x2 2 2x 2 2 as follows:

myfunc = @ (x) x.ˆ2 - 2*x - 2

1This is the meaning of the word “anonymous”!

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

300 | Chapter 7 Advanced Features of User-Defined Functions

The function can then be invoked using the function handle. For example, we can
evaluate f s2d as follows:

» myfunc(2)
ans =
 -2

Anonymous functions are a quick way to write short functions that can then
be used in function functions. For example, we can find a root of the function
f sxd 5 x2 2 2x 2 2 by passing the anonymous function to fzero as follows:

» root = fzero(myfunc,[0 4])
root =
 2.7321

7.5 Recursive Functions

A function is said to be recursive if the function calls itself. The factorial function
is a good example of a recursive function. In Chapter 5, we defined the factorial
function as

 n! 5 51 n 5 0

n 3 sn 2 1d 3 sn 2 2d 3 Á 3 2 3 1 n . 0
 (7.6)

This definition can also be written as

 n! 5 5 1 n 5 0

n 3 sn 2 1d! n . 0
 (7.7)

where the value of the factorial function n! is defined using the factorial function
itself. MATLAB functions are designed to be recursive, so Equation (7.7) can be
implemented directly in MATLAB.

Example 7.3—The Factorial Function

To illustrate the operation of a recursive function, we will implement the factorial
function using the definition in Equation (7.7). The MATLAB code to calculate n
factorial for positive value of n would be

function result = fact(n)
%FACT Calculate the factorial function
% Function FACT calculates the factorial function
% by recursively calling itself.

% Define variables:
% n -- Non-negative integer input
%

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.6 Plotting Functions | 301

7.6 Plotting Functions

In all previous plots, we have created arrays of data to plot and passed those arrays to
the plotting function. MATLAB also includes two functions that will plot a function
directly, without the necessity of creating intermediate data arrays. These functions
are ezplot and fplot.

Function ezplot takes one of the following forms.

ezplot(fun);
ezplot(fun, [xmin xmax]);
ezplot(fun, [xmin xmax], figure);

The argument fun is either a function handle, the name of an M-file function, or a
character string containing the functional expression to be evaluated. The optional
parameter [xmin xmax] specifies the range of the function to plot. If it is absent,
the function will be plotted between –2p and 2p. The optional parameter figure
specifies the figure number to plot the function on.

For example, the following statements plot the function f sxd 5 sin xyx
between 24p and 4p. The output of these statements is shown in Figure 7.72.

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 07/07/14 S. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(1,1,nargin);
error(msg);

% Calculate function
if n == 0
 result = 1;
else
 result = n * fact(n-1);
end

When this program is executed, the results are as expected.

» fact(5)
ans =
 120
» fact(0)
ans =
 1

▶

2Note that the value of the function at exactly zero will be 0/0, which is undefined, and returns the value NaN
(not a number). MATLAB ignores NaNs when it plots a vector, so the resulting plot appears continuous.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

302 | Chapter 7 Advanced Features of User-Defined Functions

ezplot('sin(x)/x',[-4*pi 4*pi]);
title('Plot of sin x / x');
grid on;

Function fplot is similar to but more sophisticated than ezplot. This func-
tion takes the following forms.

fplot(fun);
fplot(fun, [xmin xmax]);
fplot(fun, [xmin xmax], LineSpec);
[x, y] = fplot(fun, [xmin xmax], ...);

The argument fun is either a function handle, the name of an M-file function, or a char-
acter string containing the functional expression to be evaluated. The optional parame-
ter [xmin xmax] specifies the range of the function to plot. If it is absent, the function
will be plotted between 22p and 2p. The optional parameter LineSpec specifies the
line color, line style, and marker style to use when displaying the function. The Line-
Spec values are the same as for the plot function. The final version of the fplot
function returns the x and y values of the line without actually plotting the function.

Function fplot has the following advantages over ezplot:

1. Function fplot is adaptive, meaning that it calculates and displays more
data points in the regions where the function being plotted is changing most

Figure 7.7 The function f (x) 5 sin x/x, plotted with function ezplot.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.6 Plotting Functions | 303

rapidly. The resulting plot is more accurate at locations where a function’s
behavior changes suddenly.

2. Function fplot supports user-defined line specifications (color, line style,
and marker style).

In general, you should use fplot in preference to ezplot whenever you plot functions.
The following statements plot the function f sxd 5 sin xyx between 24p and

4p using function fplot. Note that they specify a dashed red line with circular
markers. The output of these statements is shown in Figure 7.8. [See color insert.]

fplot('sin(x)/x',[-4*pi 4*pi],'-or');
title('Plot of sin x / x');
grid on;

Figure 7.8 The function f (x) 5 sinx/x, plotted with function fplot. [See
color insert.]

Good Programming Practice

Use function fplot to plot functions directly without having to create intermediate
data arrays.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

304 | Chapter 7 Advanced Features of User-Defined Functions

7.7 Histograms

A histogram is a plot showing the distribution of values within a data set. To create a
histogram, the range of values within the data set is divided into evenly spaced bins,
and the number of data values falling into each bin is determined. The resulting count
can then be plotted as a function of bin number.

The standard MATLAB histogram function is hist. The forms of this function
are shown below:

hist(y)
hist(y,nbins)
hist(y,x)
[n,xout] = hist(y,...)

The first form of the function creates and plots a histogram with 10 equally spaced
bins, while the second form creates and plots a histogram with nbins equally spaced
bins. The third form of the function allows the user to specify the bin centers to use
in an array x; the function creates a bin centered on each element in the array. In all
three of these cases, the function both creates and plots the histogram. The last form
of the function creates a histogram and returns the bin centers in array xout and the
count in each bin in array n, without actually creating a plot.

For example, the following statements create a data set containing 10,000
Gaussian random values, and generate a histogram of the data using 15 evenly spaced
bins. The resulting histogram is shown in Figure 7.9.

Figure 7.9 A histogram.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.7 Histograms | 305

y = randn(10000,1);
hist(y,15);

MATLAB also includes a function rose to create and plot a histogram on radial
axes. It is especially useful for distributions of angular data. You will be asked to use
this function in an end-of-chapter exercise.

Example 7.4—Radar Target Processing

Some modern radars use coherent integration, allowing them to determine both
the range and the velocity of detected targets. Figure 7.10 shows the output of an
integration interval from such a radar. This is a plot of amplitude (in dB milliwatts)
versus relative range and velocity. Two targets are present in this data set—one
at a relative range of about 0 meters and moving at about 80 meters per second,
and a second one at a relative range of about 20 meters and moving at about
60 m/s. The remainder of the range and velocity space is filled with sidelobes and
background noise.

To estimate the strength of the targets detected by this radar, we need to calcu-
late the signal to noise ratio (SNR) of the targets. It is easy to find the amplitudes
of each target, but how can we determine the noise level of the background? One
common approach relies in recognizing that most of the range/velocity cells in the
radar data contain only noise. If we can find the most common amplitude amongst
the range/velocity cells, then that should correspond to the level of the noise. A

▶

Figure 7.10 A radar range-velocity space containing two targets and background
noise. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

306 | Chapter 7 Advanced Features of User-Defined Functions

good way to do this is to make a histogram of the amplitudes of all samples in
the range/velocity space and then look for the amplitude bin containing the most
samples.

Find the background noise level in this sample of processed radar data.

Solution

1. State the problem
Determine the background noise level in a given sample of range/velocity
radar data, and report that value to the user.

2. Define the inputs and outputs
The input for this problem is a sample of radar data stored in file
rd_space.mat. This MAT file contains a vector of range data called
range, a vector of velocity data called velocity, and an array of ampli-
tude values called amp. The output from this program is the amplitude of
the largest bin in a histogram of data samples, which should correspond to
the noise level.

3. Describe the algorithm
This task can be broken down into four major sections:

Read the input data set
Calculate the histogram of the data
Locate the peak bin in the data set
Report the noise level to the user

The first step is to read the data, which is trivial. The pseudocode for this
step is:

% Load the data
load rd_space.mat

Next, we must calculate the histogram of the data. Using the MATLAB
help system, we can see that the histogram function requires a vector of input
data, not a 2D array. We can convert the 2D array amp into a 1D vector of
data using the form amp(:), as we described in Chapter 2. The form of the
histogram function that specifies output parameters will return an array of
bin counts and bin centers. The number of bins to use must also be chosen
carefully. If there are too few bins, the estimate of the noise level will be
coarse. If there are too many bins, there will not be enough samples in the
range/velocity space to fill them properly. As a compromise, we will try
31 bins. The pseudocode for this step is:

% Calculate histogram
[nvals, amp_levels] = hist(amp(:), 31)

where nvals is an array of the counts in each bin, and amp_levels is an
array containing the central amplitude value for each bin.

Now we must locate the peak bin in the output array nvals. The
best way to do this is using the MATLAB function max, which returns the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.7 Histograms | 307

maximum value (and optionally the location of that maximum value) in an
array. Use the MATLAB help system to look this function up. The form of
this function that we need is:

[max_val, max_loc] = max(array)

where max_val is the maximum value in the array and max_loc is the
array index of that maximum value. Once the location of the maximum
amplitude is known, the signal strength of that bin can be found by looking
at location max_loc in the amp_levels array. The pseudocode for this
step is:

% Calculate histogram
[nvals, amp_levels] = hist(amp, 31)

% Get location of peak
[max_val, max_loc] = max(nvals)

% Get the power level of that bin
noise_power = amp_levels(max_loc)

The final step is to tell the user. This is trivial.

Tell user.

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

% Script file: radar_noise_level.m
%
% Purpose:
% This program calculates the background noise level
% in a buffer of radar data.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 05/29/14 S. J. Chapman Original code
%
% Define variables:
% amp_levels -- Amplitude level of each bin
% noise_power -- Power level of peak noise
% nvals -- Number of samples in each bin

% Load the data
load rd_space.mat

% Calculate histogram
[nvals, amp_levels] = hist(amp(:), 31);

% Get location of peak
[max_val, max_loc] = max(nvals);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

308 | Chapter 7 Advanced Features of User-Defined Functions

% Get the power level of that bin
noise_power = amp_levels(max_loc);

% Tell user
fprintf('The noise level in the buffer is %6.2f dBm.\n', noise_power);

5. Test the program.
Next, we must test the function using various strings.

» radar_noise_level
The noise level in the buffer is -104.92 dBm.

To verify this answer, we can plot the histogram of the data calling hist without
output arguments.

hist(amp(:), 31);
xlabel('\bfAmplitude (dBm)');
ylabel('\bfCount');
title('\bfHistogram of Cell Amplitudes');

The resulting plot is shown in Figure 7.11. The target power appears to be about –20 dBm,
and the noise power does appear to be about –105 dBm. This program appears to be
working properly.

Histogram of Cell Amplitudes

Amplitude (dBm)

Peak Noise

Target Amplitude

450

400

350

300

250

C
ou

nt

200

150

100

50

2150 2100 250 0
0

Figure 7.11 A histogram showing the power of the background noise and the
power of the detected targets.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.8 Summary | 309

7.8 Summary

In Chapter 7, we presented advanced features of user-defined functions.
Function functions are MATLAB functions whose input arguments include the

names of other functions. The functions whose names are passed to the function
function are normally used during that function’s execution. Examples are some
root-solving and plotting functions.

Local functions are additional functions placed within a single file. Local func-
tions are only accessible from other functions within the same file. Private functions
are functions placed in a special subdirectory called private. They are only acces-
sible to functions in the parent directory. Local functions and private functions can
be used to restrict access to MATLAB functions.

Function handles are a special data type containing all the information required
to invoke a function. Function handles are created with the @ operator or the
str2func function, and are used by naming the handle following by parentheses
and the required calling arguments.

Anonymous functions are simple functions without a name, which are created in
a single line and called by their function handles.

Functions ezplot and fplot are function functions that can directly plot a
user-specified function without having to create output data first.

Histograms are plots of the number of samples from a data set that fall into each
of a series of amplitude bins.

Quiz 7.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 7.1 through 7.7. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.
1. What is a local function? How does it differ from an ordinary function?
2. What is meant by the term “scope”?
3. What is a private function? How does it differ from an ordinary function?
4. What are nested functions? What is the scope of a variable in the parent

function of a nested function?
5. In what order does MATLAB decide search for a function to execute?
6. What is a function handle? How do you create a function handle? How do

you call a function using a function handle?
7. What will be returned by the following function, if it is called with the

expression myfun(@cosh)?

 function res = myfun(x)
 res = func2str(x);
 end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

310 | Chapter 7 Advanced Features of User-Defined Functions

7.8.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Use local functions or private functions to hide special-purpose calculations
that should not be generally accessible to other functions. Hiding the func-
tions will prevent their accidental use and will also prevent conflicts with
other public functions of the same name.

2. Use function fplot to plot functions directly without having to create
intermediate data arrays.

7.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

@ Creates a function handle (or an anonymous function).

eval Evaluates a character string as though it had been typed in
the Command Window.

ezplot Easy-to-use function plotter.

feval Calculates the value of a function f(x) defined by an M-file
at a specific x.

fminbnd Minimizes a function of one variable.

fplot Plots a function by name.

functions Recovers miscellaneous information from a function handle.

func2str Recovers the function name associated with a given
function handle.

fzero Finds a zero of a function of one variable.

global Declares global variables.

hist Calculates and plots a histogram of a data set.

inputname Returns the actual name of the variable that corresponds to
a particular argument number.

nargchk Returns a standard error message if a function is called with
too few or too many arguments.

nargin Returns the number of actual input arguments that were
used to call the function.

nargout Returns the number of actual output arguments that were
used to call the function.

ode45 Function to solve ordinary differential equations using a
Runge-Kutta (4,5) technique.

quad Numerically integrate a function.

str2func Creates a function handle from a specified string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.9 Exercises | 311

7.9 Exercises

7.1 Write a function that uses function random0 from Chapter 6 to generate a
random value in the range [21.0,1.0). Make random0 a local function of your
new function.

7.2 Write a function that uses function random0 to generate a random value in
the range [low, high), where low and high are passed as calling arguments.
Make random0 a private function called by your new function.

7.3 Write a single MATLAB function hyperbolic to calculate the hyperbolic sine,
cosine, and tangent functions as defined in Exercise 6.20. The function should have
two arguments. The first argument will be a string containing the function names
'sinh', 'cosh', or 'tanh', and the second argument will be the value of x
at which to evaluate the function. The file should also contain three local functions
sinh1, cosh1, and tanh1 to perform the actual calculations, and the primary
function should call the proper local function depending on the value in the string.
(Note: Be sure to handle the case of an incorrect number of arguments and also
the case of an invalid string. In either case, the function should generate an error.)

7.4 Write a program that creates three anonymous functions representing the func-
tions f sxd 5 10 cos x, gsxd 5 5 sin x, and hsa,bd 5 Ïa2 1 b2. Plot hsfsxd, gsxdd
over the range 210 # x # 10 .

7.5 Plot the function fsxd 5 1yÏx over the range 0.1 # x # 10.0 using function
fplot. Be sure to label your plot properly.

7.6 Minimizing a Function of One Variable Function fminbnd can be used to
find the minimum of a function over a user-defined interval. Look up the details
of this function in the MATLAB help, and find the minimum of the function
ysxd 5 x4 2 3x2 1 2x over the interval (0.5 1.5). Use an anonymous function
for ysxd .

7.7 Plot the function ysxd 5 x4 2 3x2 1 2x over the range (22, 2). Then use function
fminbnd to find the minimum value over the interval (21.5, 0.5). Did the func-
tion actually find the minimum value over that region? What is going on here?

7.8 Histogram Create an array of 100,000 samples from function randn, the
built-in MATLAB Gaussian random number generator. Plot a histogram of these
samples over 21 bins.

7.9 Rose Plot Create an array of 100,000 samples from function randn, the built-in
MATLAB Gaussian random number generator. Create a histogram of these
samples over 21 bins, and plot them on a rose plot. (Hint: Look up rose plots in
the MATLAB help subsystem.)

7.10 Minima and Maxima of a Function Write a function that attempts to locate the
maximum and minimum values of an arbitrary function f(x) over a certain range.
The function handle of the function being evaluated should be passed to the func-
tion as a calling argument. The function should have the following input arguments:

first_value -- The first value of x to search
last_value -- The last value of x to search
num_steps -- The number of steps to include in the search
func -- The name of the function to search

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

312 | Chapter 7 Advanced Features of User-Defined Functions

The function should have the following output arguments:

xmin -- The value of x at which the minimum was found
min_value -- The minimum value of f(x) found
xmax -- The value of x at which the maximum was found
max_value -- The maximum value f(x) found

Be sure to check that there are a valid number of input arguments and that the
MATLAB help and lookfor commands are properly supported.

7.11 Write a test program for the function generated in the previous exercise. The
test program should pass to the function function the user-defined function
f sxd 5 x3 2 5x2 1 5x 1 2, and search for the minimum and maximum in 200
steps over the range 21 # x # 3. It should print out the resulting minimum and
maximum values.

7.12 Write a program that locates the zeros of the function fsxd 5 cos2x 2 0.25
between 0 and 2p. Use the function fzero to actually locate the zeros of this
function. Plot the function over that range and show that fzero has reported the
correct values.

7.13 Write a program that evaluates the function f sxd 5 tan2x 1 x 2 2 between 22p
and 2p in steps of py10 and plots the results. Create a function handle for your
function, and use function feval to evaluate your function at the specified points.

7.14 Write a program that locates and reports the positions of each radar target in
the range-velocity space of Example 7.4. For each target, report range, velocity,
amplitude, and signal-to-noise ratio (SNR).

7.15 Derivative of a Function The derivative of a continuous function f(x) is defined
by the equation

d

dx
 f sxd 5 lim

Dx S 0

f sx 1 Dxd 2 f sxd
Dx

 (7.8)

In a sampled function, this definition becomes

 f 9sx
i
d 5

f sx
i 1 1

d 2 f sx
i
d

Dx
 (7.9)

where Dx 5 x
i 1 1

 2 xi
. Assume that a vector vect contains nsamp samples

of a function taken at a spacing of dx per sample. Write a function that will
calculate the derivative of this vector from Equation (7.9). The function should
check to make sure that dx is greater than zero to prevent divide-by-zero errors
in the function.
 To check your function, you should generate a data set whose derivative is
known, and compare the result of the function with the known correct answer.
A good choice for a test function is sin x. From elementary calculus, we know

that
d

dx
ssinxd 5 cosx. Generate an input vector containing 100 values of the

function sin x starting at x 5 0 and using a step size Dx of 0.05. Take the deriv-
ative of the vector with your function, and then compare the resulting answers
to the known correct answer. How close did your function come to calculating
the correct value for the derivative?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.9 Exercises | 313

7.16 Derivative in the Presence of Noise We will now explore the effects of input
noise on the quality of a numerical derivative. First, generate an input vec-
tor containing 100 values of the function sin x starting at x 5 0 and using a
step size Dx of 0.05, just as you did in the previous problem. Next, use func-
tion random0 to generate a small amount of random noise with a maximum
amplitude of 60.02, and add that random noise to the samples in your input
vector. Figure 7.12 shows an example of the sinusoid corrupted by noise. Note
that the peak amplitude of the noise is only 2% of the peak amplitude of your
signal, since the maximum value of sin x is 1. Now take the derivative of the
function using the derivative function that you developed in the last problem.
How close to the theoretical value of the derivative did you come?

Sin(x) Corrupted by Random Noise1.5

0.5

21.5

20.5

0 1 2
x

3 4 5

A
m

pl
itu

de

Figure 7.12 (a) A plot of sin x as a function of x with no noise added
to the data. (b) A plot of sin x as a function of x with a 2% peak amplitude
uniform random noise added to the data.

Plot of Sin(x) Without Added Noise

1

0

21

0 1 2
x

3 4 5

A
m

pl
itu

de

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

314 | Chapter 7 Advanced Features of User-Defined Functions

7.17 Create an anonymous function to evaluate the expression
y(x) 5 2e20 .5x cos x 2 0.2, and find the roots of that function with fzero
between 0 and 7.

7.18 The factorial function created in Example 7.4 does not check to ensure that
the input values are non-negative integers. Modify the function to perform this
check, and to write out an error if an illegal value is passed as a calling argument.

7.19 Fibonacci Numbers A function is said to be recursive if the function calls itself.
MATLAB functions are designed to allow recursive operation. To test this fea-
ture, write a MATLAB function that derives the Fibonacci numbers. The nth
Fibonacci number is defined by the equation:

 F
n

5 5F
n 2 1

1 F
n 2 2

n . 1

1 n 5 1

0 n 5 0

 (7.10)

where n is a non-negative integer. The function should check to make sure that
there is a single argument n, and that n is a non-negative integer. If it is not,
generate an error using the error function. If the input argument is a non-
negative integer, the function should evaluate F

n
 using Equation (7.10). Test your

function by calculating the Fibonacci numbers for n 5 1, n 5 5, and n 5 10.
7.20 The Birthday Problem The Birthday Problem is: if there are a group of n people

in a room, what is the probability that two or more of them have the same birthday
(month and day, ignoring the year)? It is possible to determine the answer to this
question by simulation. Write a function that calculates the probability that two
or more of n people will have the same birthday, where n is a calling argument.
(Hint: To do this, the function should create an array of size n and generate n
birthdays in the range 1 to 365 randomly. It should then check to see if any of the n
birthdays are identical. The function should perform this experiment at least 5000
times and calculate the fraction of those times in which two or more people had
the same birthday.) Write a test program that calculates and prints out the proba-
bility that 2 or more of n people will have the same birthday for n 5 2, 3, …, 40.

7.21 Constant False Alarm Rate (CFAR) A simplified radar receiver chain is shown
in Figure 7.13a. When a signal is received in this receiver, it contains both the
desired information (returns from targets) and thermal noise. After the detection
step in the receiver, we would like to be able to pick out received target returns
from the thermal noise background. We can do this by setting a threshold level
and then declaring that we see a target whenever the signal crosses that threshold.
Unfortunately, it is occasionally possible for the receiver noise to cross the detec-
tion threshold even if no target is present. If that happens, we will declare the
noise spike to be a target, creating a false alarm. The detection threshold needs
to be set as low as possible so that we can detect weak targets, but it must not be
set too low, or we get many false alarms.
 After video detection, the thermal noise in the receiver has a Rayleigh dis-
tribution. Figure 7.13b shows 100 samples of a Rayleigh-distributed noise with
a mean amplitude of 10 volts. Note that there would be one false alarm even
if the detection threshold were as high as 26! The probability distribution of
these noise samples is shown in Figure 7.13c.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.9 Exercises | 315

Figure 7.13 (a) A typical radar receiver. (b) Thermal noise with a mean of
10 volts output from the detector. The noise sometimes crosses the detection
threshold. (c) Probability distribution of the noise out of the detector.

RF Ampli�er Display
Video

Detector

(a)

0

10

20

3

0 20 40 60 80 100

Detection Threshold

Sample Number

A
m

pl
itu

de
 (

vo
lts

)
Rayleigh Noise with a Mean Amplitude of 10 Volts

(b)

Noise Distribution After Detection

Amplitude (volts)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Pr
ob

ab
ili

ty

0 5 10 15 20 25 30 35
0

Noise Probability Distribution
Mean Noise
Detection Threshold

(c)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

316 | Chapter 7 Advanced Features of User-Defined Functions

 Detection thresholds are usually calculated as a multiple of the mean noise
level so that if the noise level changes, the detection threshold will change with
it to keep false alarms under control. This is known as constant false alarm
rate (CFAR) detection. A detection threshold is typically quoted in decibels.
The relationship between the threshold in dB and the threshold in volts is

 Threshold svoltsd 5 Mean Noise Level svoltsd 3 10
dB
20 (7.11)

or dB 5 20 log
10

 1 Threshold svoltsd
Mean Noise Level svoltsd2 (7.12)

The false alarm rate for a given detection threshold is calculated as:

 P
fa

5
Number of False Alarms

Total Number of Samples
 (7.13)

 Write a program that generates 1,000,000 random noise samples with a
mean amplitude of 10 volts and a Rayleigh noise distribution. Determine the
false alarm rates when the detection threshold is set to 5, 6, 7, 8, 9, 10, 11, 12,
and 13 dB above the mean noise level. At what level should the threshold be
set to achieve a false alarm rate of 1024?

7.22 Function Generators Write a nested function that evaluates a polynomial of the
form y 5 ax2 1 bx 1 c. The host function gen_func should have three calling
arguments a, b, and c to initialize the coefficients of the polynomial. It should
also create and return a function handle for the nested function eval_func.
The nested function eval_func(x) should calculate a value of y for a given
value of x, using the values of a, b, and c stored in the host function. This is
effectively a function generator, since each combination of a, b, and c values
produces a function handle that evaluates a unique polynomial. Then perform
the following steps:

(a) Call gen_func(1,2,1) and save the resulting function handle in variable
h1. This handle now evaluates the function y 5 x2 1 2x 1 1.

(b) Call gen_func(1,4,3) and save the resulting function handle in variable
h2. This handle now evaluates the function y 5 x2 1 4x 1 3.

(c) Write a function that accepts a function handle and plots the specified
function between two specified limits.

(d) Use this function to plot the two polynomials generated in parts (a) and (b)
above.

7.23 RC Circuits Figure 7.14a shows a simple series RC circuit with the output
voltage taken across the capacitor. Assume that there is no voltage or power in
this circuit before time t 5 0, and that the voltage v

in
std is applied at time t $ 0.

Calculate and plot the output voltage of this circuit for time 0 # t # 10 s.
(Hint: The output voltage from this circuit can be found by writing a Kirchoff’s
Current Law (KCL) equation at the output, and solving for v

out
std. The KCL

equation is

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.9 Exercises | 317

v

out
std 2 v

in
std

R
1 C

dv
out

std
dt

5 0 (7.14)

Collecting terms in this equation produces the result

dv

out
std

dt
1

1

RC
 v

out
std 5

1

RC
 v

in
std (7.15)

Solve this equation for v
out

std.

7.24 Calculate and plot the output v of the following differential equation:

dvstd

dt
1 vstd 5 5 t 0 # t # 5

0 elsewhere
 (7.16)

Figure 7.14 (a) A simple series RC circuit. (b) The input voltage to this circuit as
a function of time. Note that the voltage is 0 for all times before zero and all times
after t = 6 s.

�out(t)�in(t) C

R

R 5 1 MV C 5 1 �F

2

1

2

1

�in(t)

1 V

21 V

...
t, s1 20 3 4 5

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

319

8Chapter

Complex Numbers
and 3D Plots

In this chapter, we will learn how to work with complex numbers and about the
types of three-dimensional plots available in MATLAB.

8.1 Complex Data

Complex numbers are numbers with both a real and an imaginary component.
Complex numbers occur in many problems in science and engineering. For
example, complex numbers are used in electrical engineering to represent alter-
nating current voltages, currents, and impedances. The differential equations that
describe the behavior of most electrical and mechanical systems also give rise to
complex numbers. Because they are so ubiquitous, it is impossible to work as an
engineer without a good understanding of the use and manipulation of complex
numbers.

A complex number has the general form

 c 5 a 1 bi (8.1)

where c is a complex number, a and b are both real numbers, and i is Ï21 . The
number a is called the real part and b is called the imaginary part of the complex
number c. Since a complex number has two components, it can be plotted as
a point on a plane (see Figure 8.1). The horizontal axis of the plane is the real
axis, and the vertical axis of the plane is the imaginary axis, so that any complex
number a 1 bi can be represented as a single point a units along the real axis
and b units along the imaginary axis. A complex number represented this way is
said to be in rectangular coordinates, since the real and imaginary axes define
the sides of a rectangle.

A complex number can also be represented as a vector of length z and angle u,
where u is the counterclockwise angle between the positive real (x) axis and the line

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

320 | Chapter 8 Complex Numbers and 3D Plots

from the origin to the point c on the complex plane (see Figure 8.2). A complex num-
ber represented this way is said to be in polar coordinates.

 c 5 a 1 bi 5 z/u (8.2)

The relationships among the rectangular and polar coordinate terms a, b, z, and u are:

 a 5 z cos u (8.3)

P
a 1 bi

real axis

imaginary axis

b

a

Figure 8.1 Representing a complex number in rectangular coordinates.

Figure 8.2 Representing a complex number in polar coordinates.

P
a 1 bi

real axis

imaginary axis

z

�

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 321

 b 5 z sin u (8.4)

 z 5 Ïa2 1 b2 (8.5)

 u 5 tan21
b
a

 (8.6)

where tan21s d is the two-argument inverse tangent function atan2(y, x), whose
output is defined over the range 2p # u # p.

MATLAB uses rectangular coordinates to represent complex numbers. Each
complex number consists of a pair of real numbers (a,b). The first number (a) is the
real part of the complex number, and the second number (b) is the imaginary part of
the complex number.

If complex numbers c
1
 and c

2
 are defined as c

1
 5 a

1
 1 b

1
i and c

2
 5 a

2
 1 b

2
i,

then the addition, subtraction, multiplication, and division of c
1
 and c

2
 are defined as:

 c
1

1 c
2

5 sa
1

1 a
2
d 1 sb

1
1 b

2
di (8.7)

 c
1

2 c
2

5 sa
1

2 a
2
d 1 sb

1
2 b

2
di (8.8)

 c
1

3 c
2

5 sa
1
a

2
2 b

1
b

2
d 1 sa

1
b

2
2 b

1
a

2
di (8.9)

c

1

c
2

5
a

1
a

2
1 b

1
b

2

a2
2

1 b
2
2

1
b

1
a

2
2 a

1
b

2

a2
2

1 b2
2

i (8.10)

Note that additions and subtractions are very simple in rectangular form,
but multiplications and divisions are relatively complex. If complex numbers
are expressed in polar form instead, multiplication and division are much sim-
pler. In polar form, the multiplication of two complex numbers is performed by
multiplying the magnitudes of the two numbers and adding the angles of the two
numbers:

 c
1

3 c
2

5 z
1
z

2
/u

1
1 u

2
 (8.11)

Similarly, division is performed by dividing the magnitudes of the two numbers and
subtracting the angles of the two numbers:

c

1

c
2

5
z

1

z
2

/u
1

2 u
2
 (8.12)

When two complex numbers appear in a binary operation, MATLAB performs the
required additions, subtractions, multiplications, or divisions between the two com-
plex numbers using versions of the above formulas.

8.1.1 Complex Variables

A complex variable is created automatically when a complex value is assigned to a
variable name. The easiest way to create a complex value is to use the intrinsic values
i or j, both of which are pre-defined to be Ï21. For example, the following state-
ment stores the complex value 4 1 i3 into variable c1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

322 | Chapter 8 Complex Numbers and 3D Plots

» c1 = 4 + i*3
c1 =
 4.0000 + 3.0000i

Alternately, the imaginary part can be specified by simply appending an i or j to the
end of a number:

» c1 = 4 + 3i
c1 =
 4.0000 + 3.0000i

The function isreal can be used to determine whether a given array is real or
complex. If any element of an array has an imaginary component, then the array is
complex, and isreal(array) returns a 0.

8.1.2 Using Complex Numbers with Relational Operators

It is possible to compare two complex numbers with the == relational operator to see
if they are equal to each other and to compare them with the ~= operator to see if
they are not equal to each other. Both of these operators produce the expected results.
For example, if c

1
5 4 1 i3 and c

2
5 4 2 i3, then the relational operation c

1
==c

2

produces a 0 and the relational operation c
1
~=c

2
 produces a 1.

However, comparisons with the >, <, >=, or <= operators do not produce
the expected results. When complex numbers are compared with these relational
operators, only the real parts of the numbers are compared. For example, if
c

1
5 4 1 i3 and c

2
5 3 1 i8, then the relational operation c

1
>c

2
 produces a true (1)

even though the magnitude of c
1
 is really smaller than the magnitude of c

2
.

If you ever need to compare two complex numbers with these operators, you will
probably be more interested in the total magnitude of the number than in the magni-
tude of only its real part. The magnitude of a complex number can be calculated with
the abs intrinsic function (see below), or directly from Equation (8.5).

 ucu 5 Ïa2 1 b2 (8.5)

If we compare the magnitudes of c
1
 and c

2
 above, the results are more reasonable:

abs(c
1
) > abs(c

2
) produces a 0, since the magnitude of c

2
 is greater than the

magnitude of c
1
.

Programming Pitfalls

Be careful when using the relational operators with complex numbers. The relational
operators >, >=, <, and <= only compare the real parts of complex numbers, not
their magnitudes. If you need these relational operators with complex number, it will
probably be more sensible to compare the total magnitudes rather than only the real
components.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 323

8.1.3 Complex Functions

MATLAB includes many functions that support complex calculations. These
functions fall into three general categories:

1. Type conversion functions These functions convert data from the
complex data type to the real (double) data type. Function real
returns the real part of a complex number as a double data type and
throws away the imaginary part of the complex number. Function imag
returns the imaginary part of a complex number as a double precision
data type.

2. Absolute value and angle functions These functions convert a com-
plex number to its polar representation. Function abs(c) calculates the
 absolute value of a complex number using the equation

absscd 5 Ïa2 1 b2

where c 5 a 1 bi. Function angle(c) calculates the angle of a complex
number using the equation

angle(c) = atan2(imag(c),real(c))

producing an answer in the range 2p # u # p.
3. Mathematical functions Most elementary mathematical functions are

defined for complex values. These functions include exponential functions,
logarithms, trigonometric functions, and square roots. The functions sin,
cos, log, sqrt, and so forth will work as well with complex data as they
will with real data.

Some of the intrinsic functions that support complex numbers are listed in
Table 8.1.

Function Description

conj(c) Computes the complex conjugate of a number c. If c 5 a 1 bi, then
conj(c) 5 a 2 bi.

real(c) Returns the real part of the complex number c.

imag(c) Returns the imaginary part of the complex number c.

isreal(c) Returns true (1) if no element of array c has an imaginary component.
Therefore, ~isreal(c) returns true (1) if any element ofarray c has an
imaginary component.

abs(c) Returns the magnitude of the complex number c.

angle(c) Returns the angle of the complex number c in radians, computed from the
expression atan2(imag(c),real(c)).

Table 8.1: Some Functions that Support Complex Numbers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

324 | Chapter 8 Complex Numbers and 3D Plots

Example 8.1—The Quadratic Equation (Revisited)

The availability of complex numbers often simplifies the calculations required
to solve problems. For example, when we solved the quadratic equation in
 Example 4.2, it was necessary to take three separate branches through the program
depending on the sign of the discriminant. With complex numbers available, the
square root of a negative number presents no difficulties, so we can greatly sim-
plify these calculations.

Write a general program to solve for the roots of a quadratic equation, regardless
of type. Use complex variables so that no branches will be required based on the
value of the discriminant.

Solution

1. State the problem
Write a program that will solve for the roots of a quadratic equation, whether
they are distinct real roots, repeated real roots, or complex roots, without
requiring tests on the value of the discriminant.

2. Define the inputs and outputs
The inputs required by this program are the coefficients a, b, and c of the
quadratic equation

 ax2 1 bx 1 c 5 0 (8.13)

The output from the program will be the roots of the quadratic equation,
whether they are real, repeated, or complex.

3. Describe the algorithm
This task can be broken down into three major sections, whose functions are
input, processing, and output:

Read the input data
 Calculate the roots
 Write out the roots

We will now break each of the above major sections into smaller, more
detailed pieces. In this algorithm, the value of the discriminant is unimportant
in determining how to proceed. The resulting pseudocode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and c
discriminant ← b^2 - 4 * a * c

x1 ← (-b + sqrt(discriminant)) / (2 * a)
x2 ← (-b - sqrt(discriminant)) / (2 * a)
Print 'The roots of this equation are: '
Print 'x1 = ', real(x1), ' +i ', imag(x1)
Print 'x2 = ', real(x2), ' +i ', imag(x2)

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 325

% Script file: calc_roots2.m
%
% Purpose:
% This program solves for the roots of a quadratic equation
% of the form a*x^2 + b*x + c = 0. It calculates the answers
% regardless of the type of roots that the equation possesses.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 02/24/14 S. J. Chapman Original code
%
% Define variables:
% a -- Coefficient of x^2 term of equation
% b -- Coefficient of x term of equation
% c -- Constant term of equation
% discriminant -- Discriminant of the equation
% x1 -- First solution of equation
% x2 -- Second solution of equation

% Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic');
disp ('equation of the form A*X^2 + B*X + C = 0.');
a = input ('Enter the coefficient A:');
b = input ('Enter the coefficient B:');
c = input ('Enter the coefficient C:');

% Calculate discriminant
discriminant = b^2 - 4 * a * c;

% Solve for the roots
x1 = (-b + sqrt(discriminant)) / (2 * a);
x2 = (-b - sqrt(discriminant)) / (2 * a);

% Display results
disp ('The roots of this equation are:');
fprintf ('x1 = (%f) +i (%f)\n', real(x1), imag(x1));
fprintf ('x2 = (%f) +i (%f)\n', real(x2), imag(x2));

5. Test the program.
Next, we must test the program using real input data. We will test cases
in which the discriminant is greater than, less than, and equal to 0 to be
certain that the program is working properly under all circumstances. From
Equation (4.2), it is possible to verify the solutions to the equations given
below:

x2 1 5x 1 6 5 0 x 5 22, and x 5 23
x2 1 4x 1 4 5 0 x 5 22
x2 1 2x 1 5 5 0 x 5 21 6 2i

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

326 | Chapter 8 Complex Numbers and 3D Plots

When the above coefficients are fed into the program, the results are

» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
The roots of this equation are:
x1 = (-2.000000) +i (0.000000)
x2 = (-3.000000) +i (0.000000)
» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 4
Enter the coefficient C: 4
The roots of this equation are:
x1 = (-2.000000) +i (0.000000)
x2 = (-2.000000) +i (0.000000)
» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5
The roots of this equation are:
x1 = (-1.000000) +i (2.000000)
x2 = (-1.000000) +i (-2.000000)

The program gives the correct answers for our test data in all three possible cases.
Note how much simpler this program is compared to the quadratic root solver found
in Example 4.2. The complex data type has greatly simplified our program.

▶

Example 8.2—Series RC Circuit

Figure 8.3 shows a resistor and capacitor connected in series and driven by a 100-volt
AC power source. The output voltage of this circuit can be found from the voltage
divider rule:

 V
out

5
Z

2

Z
1

1 Z
2

V
in
 (8.14)

where V
in
 is the input voltage, Z

1
5 Z

R
 is the impedance of the resistor, and Z

2
5 Z

C

is the impedance of the capacitor. If the input voltage is V
in

5 100/08V, the imped-
ance of the resistor Z

R
5 100 V, and the impedance of the capacitor Z

C
5 2 j100 V,

what is the output voltage of this circuit?

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 327

Solution We will need to calculate the output voltage of this circuit in polar coordi-
nates in order to get the magnitude output voltage. The output voltage in rectangular
coordinates can be calculated from Equation (8.14), and then the magnitude of the
output voltage can be found from Equation (8.5). The code to perform these calcu-
lations is

% Script file: voltage_divider.m
%
% Purpose:
% This program calculates the output voltage across an
% AC voltage divider circuit.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/28/14 S. J. Chapman Original code
%
% Define variables:
% vin -- Input voltage
% vout -- Output voltage across z2
% z1 -- Impedance of first element
% z2 -- Impedance of second element

% Prompt the user for the coefficients of the equation
disp ('This program calculates the output voltage across
a voltage divider.');
vin = input ('Enter input voltage:');
z1 = input ('Enter z1:');
z2 = input ('Enter z2:');

% Calculate the output voltage
vout = z2 / (z1 + z2) * vin;

% Display results
disp ('The output voltage is:');
fprintf ('vout = %f at an angle of %f degrees\n',
abs(vout), angle(vout)*180/pi);

Vout

i(t)

VC

ZR 5 100 V

Vin 5 100/08 V

ZC 5 2j100 V

2

1
1

2

1

2

2

1

Figure 8.3 An AC voltage divider circuit.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

328 | Chapter 8 Complex Numbers and 3D Plots

When this program is executed, the results are

» This program calculates the output voltage across a
voltage divider.
Enter input voltage: 100
Enter z1: 100
Enter z2: -100j
The output voltage is:
vout = 70.710678 at an angle of -45.000000 degrees

The program uses complex numbers to calculate the output voltage from this circuit.
▶

8.1.4 Plotting Complex Data

Complex data has both real and imaginary components, and plotting complex data with
MATLAB is a bit different than plotting real data. For example, consider the function

 ystd 5 e20.2t scos t 1 i sin td (8.15)

If this function is plotted with the conventional plot function, only the real data will
be plotted—the imaginary part will be ignored. The following statements produce
the plot shown in Figure 8.4, together with a warning message that the imaginary part
of the data is being ignored.

Figure 8.4 Plot of ystd 5 e20.2t scos t 1 i sin td using the command plot(t,y).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 329

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(t,y,'LineWidth',2);
title('\bfPlot of Complex Function vs Time');
xlabel('\bf\itt');
ylabel('\bf\ity(t)');

If both the real and imaginary parts of the function are of interest, then the user
has several choices. Both parts can be plotted as a function of time on the same axes
using the statements shown below (see Figure 8.5).

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(t,real(y),'b-','LineWidth',2);
hold on;
plot(t,imag(y),'r--','LineWidth',2);
title('\bfPlot of Complex Function vs Time');
xlabel('\bf\itt');
ylabel('\bf\ity(t)');
legend ('real','imaginary');
hold off;

Figure 8.5 Plot of real and imaginary parts of y(t) versus time.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

330 | Chapter 8 Complex Numbers and 3D Plots

Alternatively, the real part of the function can be plotted versus the imag-
inary part. If a single complex argument is supplied to the plot function, it
automatically generates a plot of the real part versus the imaginary part. The
statements to generate this plot are shown below, and the result is shown in
Figure 8.6.

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(y,'b-','LineWidth',2);
title('\bfPlot of Complex Function');
xlabel('\bfReal Part');
ylabel('\bfImaginary Part');

Finally, the function can be plotted as a polar plot showing magnitude versus
angle. The statements to generate this plot are shown below, and the result is shown
in Figure 8.7.

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
polar(angle(y),abs(y));
title('\bfPlot of Complex Function');

Figure 8.6 Plot of real versus imaginary parts of y(t).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Complex Data | 331

Figure 8.7 Polar plot of magnitude of y(t) versus angle.

Quiz 8.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Section 8.1. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.
1. What is the value of result in the following statements?

(a) x = 12 + i*5;
y = 5 – i*13;
result = x > y;

(b) x = 12 + i*5;
y = 5 – i*13;
result = abs(x) > abs(y);

(c) x = 12 + i*5;
y = 5 – i*13;
result = real(x) – imag(y);

2. If array is a complex array, what does the function plot(array) do?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

332 | Chapter 8 Complex Numbers and 3D Plots

8.2 Multidimensional Arrays

MATLAB also supports arrays with more than two dimensions. These multi-
dimensional arrays are very useful for displaying data that intrinsically has more
than two dimensions or for displaying multiple versions of 2-D data sets. For example,
measurements of pressure and velocity throughout a three-dimensional volume are
very important in such studies as aerodynamics and fluid dynamics. These sorts of
areas naturally use multidimensional arrays.

Multidimensional arrays are a natural extension of two-dimensional arrays.
Each additional dimension is represented by one additional subscript used to address
the data.

It is very easy to create a multidimensional array. They can be created either by
assigning values directly in assignment statements or by using the same functions
that are used to create one- and two-dimensional arrays. For example, suppose that
you have a two-dimensional array created by the assignment statement

» a = [1 2 3 4; 5 6 7 8]
a =
 1 2 3 4
 5 6 7 8

This is a 2 3 4 array, with each element addressed by two subscripts. The array can
be extended to be a three-dimensional 2 3 4 3 3 array with the following assignment
statements.

» a(:,:,2) = [9 10 11 12; 13 14 15 16];
» a(:,:,3) = [17 18 19 20; 21 22 23 24]
a(:,:,1) =
 1 2 3 4
 5 6 7 8
a(:,:,2) =
 9 10 11 12
 13 14 15 16
a(:,:,3) =
 17 18 19 20
 21 22 23 24

Individual elements in this multidimensional array can be addressed by the array
name followed by three subscripts, and subsets of the data can be created using the
colon operators. For example, the value of a(2,2,2) is

» a(2,2,2)
ans =
 14

and the vector a(1,1,:) is

» a(1,1,:)
ans(:,:,1) =
 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.2 Multidimensional Arrays | 333

ans(:,:,2) =
 9
ans(:,:,3) =
 17

Multidimensional arrays can also be created using the same functions as other
arrays, for example:

» b = ones(4,4,2)
b(:,:,1) =
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
b(:,:,2) =
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
» c = randn(2,2,3)
c(:,:,1) =
 -0.4326 0.1253
 -1.6656 0.2877
c(:,:,2) =
 -1.1465 1.1892
 1.1909 -0.0376
c(:,:,3) =
 0.3273 -0.1867
 0.1746 0.7258

The number of dimensions in a multidimensional array can be found using the
ndims function, and the size of the array can be found using the size function.

» ndims(c)
ans =
 3
» size(c)
ans =
 2 2 3

If you are writing applications that need multidimensional arrays, see the
 MATLAB Users Guide for more details on the behavior of various MATLAB func-
tions with multidimensional arrays.

Good Programming Practice

Use multidimensional arrays to solve problems that are naturally multivariate in
nature, such as aerodynamics and fluid flows.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

334 | Chapter 8 Complex Numbers and 3D Plots

8.3 Three-Dimensional Plots

MATLAB also includes a rich variety of three-dimensional plots that can be useful
for displaying certain types of data. In general, three-dimensional plots are useful for
displaying two types of data:

1. Two variables that are functions of the same independent variable, when
you wish emphasize the importance of the independent variable.

2. A single variable that is a function of two independent variables.

8.3.1 Three-Dimensional Line Plots

A three-dimensional line plot can be created with the plot3 function. This function
is exactly like the two-dimensional plot function, except that each point is repre-
sented by x, y, and z values instead of just x and y values. The simplest form of this
function is

plot(x,y,z);

where x, y, and z are equal-sized arrays containing the locations of data points to
plot. Function plot3 supports all the same line size, line style, and color options
as plot, and you can use it immediately with the knowledge acquired in earlier
chapters.

As an example of a three-dimensional line plot, consider the following
functions

x std 5 e20.2t cos 2t

 y std 5 e20.2t sin 2t
(8.16)

These functions might represent the decaying oscillations of a mechanical sys-
tem in two dimensions, so x and y together represent the location of the system
at any given time. Note that x and y are both functions of the same independent
variable t.

We could create a series of (x,y) points and plot them using the two-
dimensional function plot (see Figure 8.10a), but if we do so, the importance of
time to the behavior of the system will not be obvious in the graph. The following
statements create the two-dimensional plot of the location of the object shown in
Figure 8.8a. It is not possible from this plot to tell how rapidly the oscillations
are dying out.

t = 0:0.1:10;
x = exp(-0.2*t) .* cos(2*t);
y = exp(-0.2*t) .* sin(2*t);
plot(x,y);
title('\bfTwo-Dimensional Line Plot');
xlabel('\bfx');
ylabel('\bfy');
grid on;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Three-Dimensional Plots | 335

20.8
20.8 20.6 20.4 20.2 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

20.2

20.4

20.6

x

y

Two-Dimensional Line Plot

(a)

Three-Dimensional Line Plot

10

8

T
im

e

6

4

2

0
1

0.5

0

20.5

21 21
20.5

0.5
1

0
x

y

Figure 8.8 (a) A two-dimensional line plot showing the motion in (x,y) space
of a mechanical system. This plot reveals nothing about the time behavior of the
system. (b) A three-dimensional line plot showing the motion in (x,y) space versus
time for the mechanical system. This plot clearly shows the time behavior of the
system.

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

336 | Chapter 8 Complex Numbers and 3D Plots

Instead, we could plot the variables with plot3 to preserve the time informa-
tion as well as the two-dimensional position of the object. The following statements
will create a three-dimensional plot of Equations (8.16).

t = 0:0.1:10;
x = exp(-0.2*t) .* cos(2*t);
y = exp(-0.2*t) .* sin(2*t);
plot3(x,y,t);
title('\bfThree-Dimensional Line Plot');
xlabel('\bfx');
ylabel('\bfy');
zlabel('\bftime');
grid on;

The resulting plot is shown in Figure 8.8b. Note how this plot emphasizes time
dependence of the two variables x and y.

8.3.2 Three-Dimensional Surface, Mesh, and Contour Plots

Surface, mesh, and contour plots are convenient ways to represent data that is a
function of two independent variables. For example, the temperature at a point is
a function of both the East-West location (x) and the North-South (y) location of
the point. Any value that is a function of two independent variables can be dis-
played on a three-dimensional surface, mesh, or contour plot. The more common
types of plots are summarized in Table 8.2, and examples of each plot are shown
in Figure 8.91.

To plot data using one of these functions, a user must first create three equal-
sized arrays. The three arrays must contain the x, y, and z values of every point to be
plotted. The number of columns in each array will be equal to the number of x values

1There are many variations on these basic plot types. Consult the MATLAB Help Browser documentation
for a complete description of these variations.

Function Description

mesh(x,y,z) This function creates a mesh or wireframe plot, where x is a two-
dimensional array containing the x values of every point to display, y
is a two-dimensional array containing the y values of every point to
display, and z is a two-dimensional array containing the z values of
every point to display.

surf(x,y,z) This function creates a surface plot. Arrays x, y, and z have the same
meaning as for a mesh plot.

contour(x,y,z) This function creates a contour plot. Arrays x, y, and z have the same
meaning as for a mesh plot.

Table 8.2: Selected Mesh, Surface, and Contour Plot Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Three-Dimensional Plots | 337

(a)

Figure 8.9 (a) A mesh plot of the function zsx, yd 5 e20.5[x210.5sx2yd2]. (b) A surface
plot of the same function. [See color insert.]

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

338 | Chapter 8 Complex Numbers and 3D Plots

to be plotted, and the number of rows in each array will be equal to the number of y
values to be plotted. The first array will contain the x values of each (x,y,z) point to be
plotted, the second array will contain the y values of each (x,y,z) point to be plotted,
and third array will contain the z values of each (x,y,z) point to be plotted2.

To understand this better, suppose that we wanted to plot the function

 zsx,yd 5 Ïx2 1 y2 (8.17)

for x 5 0, 1, and 2, and for y 5 0, 1, 2, and 3. Note that there are three values for x and
four values for y, so we will need to calculate and plot a total of 3 3 4 5 12 values
of z. These data points need to be organized as three columns (the number of x values)
and four rows (the number of y values). Array 1 will contain the x values of each point
to calculate, with the same value for all points in a given column, so array 1 will be:

 array1 5 3
1 2 3

1 2 3

1 2 3

1 2 3
4

2This is a very confusing aspect of MATLAB that usually causes trouble for new engineers. When we
access arrays, we expect the first argument to specify the row number and the second argument to specify
the column number. For some reason MATLAB has reversed this—the array of x arguments specify the
number of columns and the array of y arguments specify the number of rows. This reversal has caused
countless hours of frustration for beginning MATLAB users over the years.

Figure 8.9 (continued) (c) A contour plot of the same function. [See color insert.]

(c)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Three-Dimensional Plots | 339

Array 2 will contain the y values of each point to calculate, with the same value for
all points in a given row, so array 2 will be:

 array2 5 3
1 1 1

2 2 2

3 3 3

4 4 4
4

Array 3 will contain the z values of each point based in the supplied x and y values.
It can be calculated using Equation (8.17) for the supplied values.

 array3 5 3
1.4142 2.2361 3.1623

2.2361 2.8284 3.6056

3.1624 3.6056 4.2426

4.1231 4.4721 5.0000
4

The resulting function could then be plotted with the surf function as

surf(array1,array2,array3);

and the result will be as shown in Figure 8.10.
The arrays required for 3D plots can be created manually by using nested loops,

or they can be created more easily using built-in MATLAB helper functions. To illus-
trate this, we will plot the same function twice, once using loops to create the arrays
and once using the built-in MATLAB helper functions.

Figure 8.10 A surface plot of the function zsx,yd 5 Ïx2 1 y2 for x 5 0, 1, and 2,
and for y 5 0, 1, 2, and 3. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

340 | Chapter 8 Complex Numbers and 3D Plots

Suppose that we wish to create a mesh plot of the function

 zsx,yd 5 e20.5[x210.5sx2yd2] (8.18)

over the interval –4 # x # 4 and –3 # y # 3 in steps of 0.1. To do this, we will
need to calculate the value of z for all combinations of 61 different x values and 81
different y values. In 3D MATLAB plots, the number of x values corresponds to the
number of columns in the z matrix of calculated data, and the number of y values
corresponds to the number of rows in the z matrix, so the z matrix must contain 61
columns × 81 rows for a total 4941 values. The code to create the three arrays neces-
sary for a mesh plot with nested loops is a follows:

% Get x and y values to calculate
x = -4:0.1:4;
y = -3:0.1:3;

% Preallocate the arrays for speed
array1 = zeros(length(y),length(x));
array2 = zeros(length(y),length(x));
array3 = zeros(length(y),length(x));

% Populate the arrays
for jj = 1:length(x)
 for ii = 1:length(y)
 array1(ii,jj) = x(jj); % x value in columns
 array2(ii,jj) = y(ii); % y value in rows
 array3(ii,jj) = ...
 exp(-0.5*(array1(ii,jj)^2+0.5*(array1(ii,jj)-array2(ii,jj))^2));
 end
end

% Plot the data
mesh(array1, array2, array3);
title('\bfMesh Plot');
xlabel('\bfx');
ylabel('\bfy');
zlabel('\bfz');

The resulting plot is shown in Figure 8.9a.
The MATLAB function meshgrid makes it much easier to create the arrays of

x and y values required for these plots. The form of this function is

[arr1,arr2] = meshgrid(xstart:xinc:xend, ...
 ystart:yinc:yend);

where xstart:xinc:xend specifies the x values to include in the grid, and
ystart:yinc:yend specifies the y values to be included in the grid.

To create a plot, we can use meshgrid to create the arrays of x and y values
and then evaluate the function to plot at each of those (x,y) locations. Finally, we call
function mesh, surf, or contour to create the plot.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Three-Dimensional Plots | 341

If we use meshgrid, it is much easier to create the 3D mesh plot shown in
Figure 8.9a.

[array1,array2] = meshgrid(-4:0.1:4,-3:0.1:3);
array3 = exp(-0.5*(array1.^2+0.5*(array1-array2).^2));
mesh(array1, array2, array3);
title('\bfMesh Plot');
xlabel('\bfx');
ylabel('\bfy');
zlabel('\bfz');

Surface and contour plots may be created by substituting the appropriate function for
the mesh function.

Good Programming Practice

Use the meshgrid function to simplify the creation of 3D mesh, surf, and
contour plots.

The mesh, surf, and contour plots also have an alternative input syntax
where the first argument is a vector of x values, the second argument is a vector
of y values, and the third argument is a 2D array of data whose number of columns
is equal to the number of elements in the x vector and whose number of rows
is equal to the number of elements in the y vector. In this case, the plot function calls
meshgrid internally to create the three 2D arrays instead of the engineer having
to do so.

This is the way that the range-velocity space plot in Figure 7.10 was created.
The range and velocity data were vectors, so the plot was created with the following
commands:

load rd_space;
surf(range,velocity,amp);
xlabel('\bfRange (m)');
ylabel('\bfVelocity (m/s)');
zlabel('\bfAmplitude (dBm)');
title('\bfProcessed radar data containing targets and noise');

8.3.3 Creating Three-Dimensional Objects using
Surface and Mesh Plots

Surface and mesh plots can be used to create plots of closed objects such as a sphere.
To do this, we need to define a set of points representing the entire surface of the
object and then plot those points using the surf or mesh function. For example,
consider a simple object like a sphere. A sphere can be defined as the locus of all

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

342 | Chapter 8 Complex Numbers and 3D Plots

points that are a given distance r from the center, regardless of azimuth angle u and
elevation angle f. The equation is

 r 5 a (8.19)

where a is any positive number. In Cartesian space, the points on the surface of the
sphere are defined by the following equations3

x 5 r cos f cos u

y 5 r cos f sin u

z 5 r sin f

 (8.20)

where the radius r is a constant, the elevation angle f varies from 2p/2 to p/2,
and the azimuth angle u varies from 2p to p. A program to plot the sphere is
shown below:

% Script file: sphere.m
%
% Purpose:
% This program plots the sphere using the surf function.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 06/02/14 S. J. Chapman Original code
%
% Define variables:
% n -- Number of points in az and el to plot
% r -- Radius of sphere
% phi -- meshgrid list of elevation values
% Phi -- Array of elevation values to plot
% theta -- meshgrid list of azimuth values
% Theta -- Array of azimuth values to plot
% x -- Array of x point to plot
% y -- Array of y point to plot
% z -- Array of z point to plot

% Define the number of angles on the sphere to plot
% points at
n = 20;

% Calculate the points on the surface of the sphere
r = 1;
theta = linspace(-pi,pi,n);
phi = linspace(-pi/2,pi/2,n);
[theta,phi] = meshgrid(theta,phi);

3These are the equations that convert from spherical to rectangular coordinates, as we saw in Exercise 2.15.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Three-Dimensional Plots | 343

% Convert to (x,y,z) values
x = r * cos(phi) .* cos(theta);
y = r * cos(phi) .* sin(theta);
z = r * sin(phi);

% Plot the sphere
figure(1)
surf (x,y,z);
title ('\bfSphere');

The resulting plot is shown in Figure 8.11.
The transparency of surface and patch objects on the current axes can be con-

trolled with the alpha function. The alpha function takes the form

alpha(value);

where value is a number between 0 and 1. If the value is 0, all surfaces are trans-
parent. If the value is 1, all surfaces are opaque. For any other value, the surfaces are
partially transparent. For example, Figure 8.12 shows the sphere object after an alpha
of 0.5 is selected. Note that we can now see through the outer surface of the sphere
to the back side.

Figure 8.11 Three-dimensional plot of a sphere. [See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

344 | Chapter 8 Complex Numbers and 3D Plots

8.4 Summary

MATLAB supports complex numbers as an extension of the double data type.
They can be defined using the i or j, both of which are predefined to be Ï21.
Using complex numbers is straightforward, except that the relational opera-
tors >, >=, <, and <= only compare the real parts of complex numbers, not
their magnitudes. They must be used with caution when working with complex
values.

Multidimensional arrays are arrays with more than two dimensions. They may
be created and used in a fashion similar to one-and two-dimensional arrays. Multi-
dimensional arrays appear naturally in certain classes of physical problems.

MATLAB includes a rich variety of two- and three-dimensional plots. In
this chapter, we introduced three-dimensional plots, including mesh, surface, and
 contour plots.

8.4.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Use multidimensional arrays to solve problems that are naturally
 multivariate in nature, such as aerodynamics and fluid flows.

2. Use the meshgrid function to simplify the creation of 3D mesh, surf,
and contour plots.

Figure 8.12 A partially transparent sphere, created with an alpha value of 0.5.
[See color insert.]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.5 Exercises | 345

8.4.2. MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

abs Returns absolute value (magnitude) of a number

alpha Sets the transparency level of surface plots and patches.

angle Returns the angle of a complex number in radians.

conj Computes complex conjugate of a number.

contour Creates a contour plot.

find Finds indices and values of non-zero elements in a matrix.

imag Returns the imaginary part of a complex number.

mesh Creates a mesh plot.

meshgrid Creates the (x, y) grid required for mesh, surface, and contour plots.

nonzeros Returns a column vector containing the nonzero elements in a matrix.

plot(c) Plots the real versus the imaginary part of a complex array.

real Returns the real part of a complex number.

surf Creates a surface plot.

8.5 Exercises

8.1 Write a function to_polar that accepts a complex number c and returns
two output arguments containing the magnitude mag and angle theta of the
complex number. The output angle should be in degrees.

8.2 Write a function to_complex that accepts two input arguments containing the
magnitude mag and angle theta of a complex number c in degrees and returns
the complex number c in rectangular form.

8.3 In a sinusoidal steady-state AC circuit, the voltage across a passive element (see
Figure 8.13) is given by Ohm’s law:

 V 5 IZ (8.21)

Figure 8.13 The voltage and current relationship on a passive
AC circuit element.

Z

2

1

I

V

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

346 | Chapter 8 Complex Numbers and 3D Plots

where V is the voltage across the element, I is the current through the element,
and Z is the impedance of the element. Note that all three of these values are
complex and that these complex numbers are usually specified in the form of
a magnitude at a specific phase angle expressed in degrees. For example, the
voltage might be V 5 120/308 V.

Write a program that reads the voltage across an element and the
impedance of the element and calculates the resulting current flow. The input
values should be given as magnitudes and angles expressed in degrees, and the
resulting answer should be in the same form. Use the function to_complex
from Exercise 8.2 to convert the numbers to rectangular form for the actual
computation of the current, and the function to_polar from Exercise 8.1 to
convert the answer into polar form for display.

8.4 Two complex numbers in polar form can be multiplied by calculating the
 product of their amplitudes and the sum of their phases. Thus, if A

1
5 A

1
/u

1

and A
2

5 A
2
/u

2
, then A

1
A

2
5 A

1
A

2
/u

1
1 u

2
. Write a program that accepts

two complex numbers in rectangular form and multiplies them using the above
formula. Use the function to_polar from Exercise 8.1 to convert the num-
bers to polar form for the multiplication and the function to_complex from
Exercise 8.2 to convert the answer into rectangular form for display. Com-
pare the result with the answer calculated using MATLAB’s built-in complex
mathematics.

8.5 Series RLC Circuit Figure 8.14 shows a series RLC circuit driven by a
sinusoidal AC voltage source whose value is 120/0° volts. The impedance of
the inductor in this circuit is Z

L
5 j2pfL, where j is Ï21, f is the frequency of

the voltage source in hertz, and L is the inductance in henrys. The impedance

of the capacitor in this circuit is Z
C

5 2j

1

2pfC
, where C is the capacitance in

farads. Assume that R 5 100 V, L 5 0.1 mH, and C 5 0.25 nF.

Figure 8.14 A series RLC circuit driven by a sinusoidal AC voltage source.

120/08 V

R L

C

I

2

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.5 Exercises | 347

The current I flowing in this circuit is given by Kirchhoff’s voltage law to be

 I 5
120/08 V

R 1 j2pfL 2 j
1

2pfC

 (8.22)

(a) Calculate and plot the magnitude of this current as a function of frequency
as the frequency changes from 100 kHz to 10 MHz. Plot this information on
both a linear and a log-linear scale. Be sure to include a title and axis labels.

(b) Calculate and plot the phase angle in degrees of this current as a function
of frequency as the frequency changes from 100 kHz to 10 MHz. Plot this
information on both a linear and a log-linear scale. Be sure to include a title
and axis labels.

(c) Plot both the magnitude and phase angle of the current as a function of fre-
quency on two sub-plots of a single figure. Use log-linear scales.

8.6 Write a function that will accept a complex number c, and plot that point on a
Cartesian coordinate system with a circular marker. The plot should include both
the x and y axes, plus a vector drawn from the origin to the location of c.

8.7 Plot the function vstd 5 10es20.21jpdt for 0 # t # 10 using the function
plot(t,v). What is displayed on the plot?

8.8 Plot the function vstd 5 10es20.21jpdt for 0 # t # 10 using the function plot(v).
What is displayed on the plot this time?

8.9 Create a polar plot of the function vstd 5 10es20.2 1 jpdt for 0 # t # 10.
8.10 Plot of the function vstd 5 10es20.21jpdt for 0 # t # 10 using function plot3,

where the three dimensions to plot are the real part of the function, the imaginary
part of the function, and time.

8.11 Euler’s Equation Euler’s equation defines e raised to an imaginary power in
terms of sinusoidal functions as follows:

 eiu 5 cos u 1 j sin u (8.23)

Create a two-dimensional plot of this function as u varies from 0 to 2p. Create a
three-dimensional line plot using function plot3 as u varies from 0 to 2p (the
three dimensions are the real part of the expression, the imaginary part of the
expression, and u).

8.12 Create a mesh, surface plot, and contour plot of the function z 5 ex1iy for the
interval –1 # x # 1 and 22p # y # 2p. In each case, plot the real part of z
versus x and y.

8.13 Electrostatic Potential The electrostatic potential (“voltage”) at a point a dis-
tance r from a point charge of value q is given by the equation

 V 5
1

4p«
0

q

r
 (8.24)

where V is in volts, «
0
 is the permeability of free space (8.85 3 10212 farads/m),

q is the charge in coulombs, and r is the distance from the point charge in meters.
If q is positive, the resulting potential is positive; if q is negative, the resulting

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

348 | Chapter 8 Complex Numbers and 3D Plots

potential is negative. If more than one charge is present in the environment, the
total potential at a point is the sum of the potentials from each individual charge.

Suppose that four charges are located in a three-dimensional space as follows:

 q
1

5 10213 coul at point s1,1,0d

 q
2

5 10213 coul at point s1,21,0d

 q
3

5 210213 coul at point s21,21,0d

 q
4

5 10213 coul at point s21, 1,0d

Calculate the total potential due to these charges at regular points on the plane
z 5 1 with the bounds (10,10,1), (10,210,1), (210,210,1), and (210,10,1). Plot
the resulting potential three times using functions surf, mesh, and contour.

8.14 An ellipsoid of revolution is the solid analog of a two-dimensional ellipse. The
equations for an ellipsoid of revolution rotated around the x axis are

x 5 a cos f cos u

y 5 b cos f sin u

z 5 b sin f

 (8.25)

where a is radius along the x-axis, and b is the radius along the y- and z-axes. Plot
an ellipsoid of revolution for a 5 2 and b 5 1.

8.15 Plot a sphere of radius 2 and an ellipsoid of revolution for a 5 1 and b 5 0.5 on
the same axes. Make the sphere partially transparent so that the ellipsoid can be
seen inside it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

349

9Chapter

Additional Data Types

In earlier chapters, we were introduced to four fundamental MATLAB data types:
double, logical, char, and function handles. In this chapter, we will learn addi-
tional details about some of these data types, and then we will study some additional
MATLAB data types.

First, we will learn more about using the char data type and how to use strings
in MATLAB programs.

Next, we will learn about some additional data types. The most common MATLAB
data types are shown in Figure 9.1. We will learn about the single and integer types
in this chapter and discuss the remaining ones on the figure later in this book.

MATLAB Data Types

function
handles

charlogicalsingledouble int8, uint8
int16, uint16
int32, unit32
int64, uint64

user
classes

cell structure

Figure 9.1 Common MATLAB data types.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

350 | Chapter 9 Additional Data Types

9.1 Strings and String Functions

A MATLAB string is an array of type char. Each character is stored in two
bytes of memory. By default, MATLAB uses the UTF-8 character set. The first
128 characters of this set are the same as the familiar ASCII character set, and the
characters above that represent characters found in additional languages. Since
MATLAB stores characters in two bytes of memory, it can represent the first
65,536 (5 2^16) characters of the UTF-8 character set, which covers most of the
world’s major languages.

A character variable is automatically created when a string is assigned to it. For
example, the statement

str = 'This is a test';

creates a 14-element character array. The output of whos for this array is

» whos str
 Name Size Bytes Class Attributes
 str 1x14 28 char

A special function ischar can be used to check for character arrays. If a given vari-
able is of type character, then ischar returns a true (1) value. If it is not, ischar
returns a false (0) value.

The following subsections describe MATLAB functions useful for manipulating
character strings.

9.1.1 String Conversion Functions

Variables may be converted from the char data type to the double data type using
the double function. The output of the function is an array of double values, with
each one containing the numerical value n. Thus if str is defined as

str = 'This is a test';

the statement double(str) yields the result:

» x = double(str)
x =
 Columns 1 through 12
 84 104 105 115 32 105 115 32 97 32 116 101
 Columns 13 through 14
 115 116

Variables can also be converted from the double data type to the char data
type using the char function. If x is the 14-element array created above, then the
statement char(x) yields the result:

» z = char(x)
z =
This is a test

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 351

This also works for non-English characters. For example, if x is defined as:

x = [945 946 947 1488];

then the statement char(x) yields the Greek characters a, b, and g, followed by
the Hebrew letter : (aleph):

» z = char(x)
z =
abg:

9.1.2 Creating Two-Dimensional Character Arrays

It is possible to create two-dimensional character arrays, but each row of such an
array must have exactly the same length. If one of the rows is shorter than the other
rows, the character array is invalid and will produce an error. For example, the fol-
lowing statements are illegal because the two rows have different lengths.

name = ['Stephen J. Chapman';'Senior Engineer'];

The easiest way to produce two-dimensional character arrays is with the char
function. This function will automatically pad all strings to the length of the largest
input string.

» name = char('Stephen J. Chapman','Senior Engineer')
name =
Stephen J. Chapman
Senior Engineer

Two-dimensional character arrays can also be created with function strvcat,
which is described below.

Good Programming Practice

Use the char function to create two-dimensional character arrays without worrying
about padding each row to the same length.

9.1.3 Concatenating Strings

Function strcat concatenates two or more strings horizontally, ignoring any
trailing blanks but preserving blanks within the strings. This function produces the
result shown below

» result = strcat('String 1 ','String 2')
result =
String 1String 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

352 | Chapter 9 Additional Data Types

The result is 'String 1String 2'. Note that the trailing blanks in the first
string were ignored.

Function strvcat concatenates two or more strings vertically, automatically
padding the strings to make a valid two-dimensional array. This function produces
the result shown below

» result = strvcat('Long String 1 ','String 2')
result =
Long String 1
String 2

9.1.4 Comparing Strings

Strings and substrings can be compared in several ways:

■■ Two strings, or parts of two strings, can be compared for equality.
■■ Two individual characters can be compared for equality.
■■ Strings can be examined to determine whether each character is a letter or
whitespace.

Comparing Strings for Equality
You can use four MATLAB functions to compare two strings as a whole for equality.
They are:

■■ strcmp —determines if two strings are identical.
■■ strcmpi—determines if two strings are identical ignoring case.
■■ strncmp—determines if the first n characters of two strings are identical
■■ strncmpi—determines if the first n characters of two strings are identical
ignoring case.

Function strcmp compares two strings, including any leading and trailing blanks,
and returns a true (1) if the strings are identical1. Otherwise, it returns a false (0).
Function strcmpi is the same as strcmp, except that it is not case sensitive (that
is, it treats 'a' as equal to 'A').

Function strncmp compares the first n characters of two strings, including
any leading blanks, and returns a true (1) if the characters are identical. Otherwise,
it returns a false (0). Function strncmpi is the same as strncmp, except that it is
not case sensitive.

To understand these functions, consider the two strings:

str1 = 'hello';
str2 = 'Hello';
str3 = 'help';

1Caution: The behavior of this function is different from that of the strcmp in C. C programmers can be
tripped up by this difference.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 353

Strings str1 and str2 are not identical, but they differ only in the case of one let-
ter. Therefore, strcmp returns false (0), while strcmpi returns true (1).

» c = strcmp(str1,str2)
c =
 0
» c = strcmpi(str1,str2)
c =
 1

Strings str1 and str3 are also not identical, and both strcmp and strcmpi will
return a false (0). However, the first three characters of str1 and str3 are identi-
cal, so invoking strncmp with any value up to 3 returns a true (1):

» c = strncmp(str1,str3,2)
c =
1

Comparing Individual Characters for Equality and Inequality
You can use MATLAB relational operators on character arrays to test for equality
one character at a time, as long as the arrays you are comparing have equal dimen-
sions, or one is a scalar. For example, you can use the equality operator (==) to
determine which characters in two strings match:

» a = 'fate';
» b = 'cake';
» result = a == b
result =
0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the numerical position
of the corresponding characters in the current character set.

Unlike C, MATLAB does not have an intrinsic function to define a “greater
than” or “less than” relationship between two strings taken as a whole. We will create
such a function in an example at the end of this section.

Categorizing Characters within a String
There are three functions for categorizing characters on a character-by-character
basis inside a string:

■■ isletter determines if a character is a letter.
■■ isspace determines if a character is whitespace (blank, tab, or new line).
■■ isstrprop('str', 'category') is a more general function. It deter-
mines if a character falls into a user-specified category, such as alphabetic,
alphanumeric, upper case, lower case, numeric, control, and so forth.

To understand these functions, let’s create a string named mystring:

mystring = 'Room 23a';

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

354 | Chapter 9 Additional Data Types

We will use this string to test the categorizing functions.
Function isletter examines each character in the string, producing a

logical output vector of the same length as mystring that contains a true (1)
in each location corresponding to a letter of the alphabet, and a false (0) in the other
locations. For example,

» a = isletter(mystring)
a =
1 1 1 1 0 0 0 1

The first four and the last elements in a are true (1) because the corresponding char-
acters of mystring are letters of the alphabet.

Function isspace also examines each character in the string, producing a
logical output vector of the same length as mystring that contains a true (1)
in each location corresponding to whitespace, and a false (0) in the other locations.
“Whitespace” is any character that separates tokens in MATLAB: tab, line feed, ver-
tical tab, form feed, carriage return, and space, in addition to a number of other
Unicode characters. For example,

» a = isspace(mystring)
a =
0 0 0 0 1 0 0 0

The fifth element in a is true (1) because the corresponding character of mystring
is a space.

Function isstrprop is a more flexible replacement for isletter,
isspace, and several other functions. This function has two arguments, 'str'
and 'category'. The first argument is the string to characterize, and the second
argument is the type of category to check for. Some possible categories are given
in Table 9.1.

This function examines each character in the string, producing a logical
output vector of the same length as the input string that contains a true (1) in
each location that matches the category, and a false (0) in the other locations. For
example, the following function checks to see which characters in mystring are
numbers:

» a = isstrprop(mystring,'digit')
a =
0 0 0 0 0 1 1 0

Also, the following function checks to see which characters in mystring are
lowercase letters:

» a = isstrprop(mystring,'lower')
a =
0 1 1 1 0 0 0 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 355

Table 9.1: Selected Categories for Function isstrprop

Category Description

'alpha' Returns true (1) for each character of the string that is alphabetic and false (0) otherwise.

'alphanum' Returns true (1) for each character of the string that is alphanumeric and false (0) otherwise.
[Note: This category is equivalent to function isletter.]

'cntrl' Returns true (1) for each character of the string that is a control character and false (0) otherwise.

'digit' Returns true (1) for each character of the string that is a number and false (0) otherwise.

'graphic' Returns true (1) for each character of the string that is a graphic character and false (0) other-
wise. Examples of non-graphic characters include space, line separator, paragraph separator,
control characters, and certain other Unicode characters. All other characters return true for
this category.

'lower' Returns true (1) for each character of the string that is a lowercase letter and false (0)
otherwise.

'print' Returns true (1) for each character of the string that is either a graphic character or a space
and false (0) otherwise.

'punct' Returns true (1) for each character of the string that is a punctuation character and false (0)
otherwise.

'wspace' Returns true (1) for each character of the string that is whitespace and false (0) otherwise.
[Note: This category replaces function isspace.]

'upper' Returns true (1) for each character of the string that is an uppercase letter and false (0)
otherwise.

'xdigit' Returns true (1) for each character of the string that is a hexadecimal digit and false (0) otherwise.

9.1.5 Searching/Replacing Characters within a String

MATLAB provides several functions for searching and replacing characters in a
string. Consider a string named test:

test = 'This is a test!';

Function strfind(text,pattern) returns the starting position of all
occurrences of the characters in pattern within the string in text. For example,
to find all occurrences of the string 'is' inside test,

» position = strfind(test,'is')
position =
 3 6

The string 'is' occurs twice within test, starting at positions 3 and 6.
Function strmatch is another matching function. This one looks at the

beginning characters of the rows of a 2-D character array and returns a list of
those rows that start with the specified character sequence. The form of this
function is

result = strmatch(str,array);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

356 | Chapter 9 Additional Data Types

For example, suppose that we create a 2-D character array with the function
strvcat:

array = strvcat('maxarray','min value','max value');

Then the following statement will return the row numbers of all rows beginning with
the letters 'max':

» result = strmatch('max',array)
result =

 1
 3

Function strrep performs the standard search-and-replace operation. It finds
all occurrences of one string within another one and replaces them by a third string.
The form of this function is

result = strrep(str,srch,repl)

where str is the string being checked, srch is the character string to search for, and
repl is the replacement character string. For example,

» test = 'This is a test!'
» result = strrep(test,'test','pest')
result =
This is a pest!

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are the set
of whitespace characters. The form of strtok is

[token,remainder] = strtok(string,delim)

where string is the input character string, delim is the (optional) set of delimiting
characters, token is the first set of characters delimited by a character in delim,
and remainder is the rest of the line. For example,

» [token,remainder] = strtok('This is a test!')
token =
This
remainder =
is a test!

You can use the strtok function to parse a sentence into words; for
example:

function all_words = words(input_string)
remainder = input_string;
all_words = ' ';
while (any(remainder))
 [chopped,remainder] = strtok(remainder);
 all_words = strvcat(all_words,chopped);
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 357

9.1.6 Uppercase and Lowercase Conversion

Functions upper and lower convert all of the alphabetic characters within a string
to uppercase and lowercase respectively. For example,

» result = upper('This is test 1!')
result =
THIS IS TEST 1!
» result = lower('This is test 2!')
result =
this is test 2!

Note that the alphabetic characters were converted to the proper case, while the num-
bers and punctuation were unaffected.

9.1.7 Trimming Whitespace from Strings

There are two functions that trim leading and/or trailing whitespace from a string.
Whitespace characters consists of the spaces, newlines, carriage returns, tabs, verti-
cal tabs, and formfeeds.

Function deblank removes any extra trailing whitespace from a string, and
function strtrim removes any extra leading and trailing whitespace from a
string.

For example, the following statements create a 21-character string with leading
and trailing whitespace. Function deblank trims the trailing whitespace characters
in the string only, while function strtrim trims both the leading and the trailing
whitespace characters.

» test_string = 'This is a test.'
test_string =
 This is a test.
» length(test_string)
ans =
 21
» test_string_trim1= deblank(test_string)
test_string_trim1 =
 This is a test.
» length(test_string_trim1)
ans =
 18
» test_string_trim2 = strtrim(test_string)
test_string_trim2 =
This is a test.
» length(test_string_trim2)
ans =
 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

358 | Chapter 9 Additional Data Types

9.1.8 Numeric-to-String Conversions

MATLAB contains several functions to convert numeric values into character strings.
We have already seen two such functions, num2str and int2str. Consider a sca-
lar x:

x = 5317;

By default, MATLAB stores the number x as a 1 3 1 double array containing the
value 5317. The int2str (integer to string) function converts this scalar into a
1 3 4 char array containing the string '5317':

» x = 5317;
» y = int2str(x);
» whos
 Name Size Bytes Class Attributes

 x 1x1 8 double
 y 1x4 8 char

Function num2str converts a double value into a string, even if it does
not contain an integer. It provides more control of the output string format than
int2str. An optional second argument sets the number of digits in the output
string or specifies an actual format to use. The format specifications in the second
argument are similar to those used by fprintf. For example,

» p = num2str(pi)
p =
3.1416
» p = num2str(pi,7)
p =
3.141593
» p = num2str(pi,'%10.5e')
p =
3.14159e+000

Both int2str and num2str are handy for labeling plots. For example,
the following lines use num2str to prepare automated labels for the x-axis of
a plot:

function plotlabel(x,y)
plot(x,y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from' str1 'to' str2];
xlabel(out);

There are also conversion functions designed to change numeric values into
strings representing a decimal value in another base, such as a binary or hexadecimal

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 359

representation. For example, the dec2hex function converts a decimal value into
the corresponding hexadecimal string:

dec_num = 4035;
hex_num = dec2hex(dec_num)
hex_num =
FC3

Other functions of this type include hex2num, hex2dec, bin2dec, dec2bin,
base2dec, and dec2base. MATLAB includes online help for all of these
functions.

MATLAB function mat2str converts an array to a string that MATLAB can
evaluate. This string is useful input for a function such as eval, which evaluates
input strings just as if they were typed at the MATLAB command line. For example,
if we define array a as

» a = [1 2 3; 4 5 6]
a =
 1 2 3
 4 5 6

then the function mat2str will return a string containing the result

» b = mat2str(a)
b =
[1 2 3; 4 5 6]

Finally, MATLAB includes a special function sprintf that is identical to
function fprintf, except that the output goes into a character string instead of the
Command Window. This function provides complete control over the formatting of
the character string. For example,

» str = sprintf('The value of pi = %8.6f.',pi)
str =
The value of pi = 3.141593.

This function is extremely useful in creating complex titles and labels for plots.

9.1.9 String-to-Numeric Conversions

MATLAB also contains several functions to change character strings into numeric
values. The most important of these functions are eval, str2double, and
sscanf.

Function eval evaluates a string containing a MATLAB expression and
returns the result. The expression can contain any combination of MATLAB func-
tions, variables, constants, and operations. For example, the string a containing the
characters '2 * 3.141592' can be converted to numeric form by the following
statements:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360 | Chapter 9 Additional Data Types

» a = '2 * 3.141592';
» b = eval(a)
b =
 6.2832
» whos
 Name Size Bytes Class Attributes

 a 1x12 24 char
 b 1x1 8 double

Function str2double converts character strings into an equivalent double
value2. For example, the string a containing the characters '3.141592' can be
converted to numeric form by the following statements:

» a = '3.141592';
» b = str2double(a)
b =
 3.1416

Strings can also be converted to numeric form using the function sscanf. This
function converts a string into a number according to a format conversion character.
The simplest form of this function is

value = sscanf(string,format)

where string is the string to scan, and format specifies the type of conversion to
occur. The two most common conversion specifiers for sscanf are '%d' for dec-
imals and '%g' for floating-point numbers. This function will be covered in much
greater detail in Chapter 11.

The following examples illustrate the use of sscanf.

» a = '3.141592';
» value1 = sscanf(a,'%g')
value1 =
 3.1416
» value2 = sscanf(a,'%d')
value2 =
 3

9.1.10 Summary

The common MATLAB string functions are summarized in Table 9.2.

2MATLAB also contains a function str2num that can convert a string into a number. For a
variety of reasons mentioned in the MATLAB documentation, function str2double is better than
function str2num. You should recognize function str2num when you see it, but always use function
str2double in any new code that you write.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 361

Table 9.2: Common MATLAB String Functions

Category Function Description

General char (1) Converts numbers to the corresponding character values.
(2) Creates a 2D character array from a series of strings.

double Converts characters to the corresponding numeric codes.

blanks Creates a string of blanks.

deblank Removes trailing whitespace from a string.

strtrim Removes leading and trailing whitespace from a string.

String tests ischar Returns true (1) for a character array.

isletter Returns true (1) for letters of the alphabet.

isspace Returns true (1) for whitespace.

isstrprop Returns true (1) for characters matching the specified property.

String operations strcat Concatenates strings.

strvcat Concatenates strings vertically.

strcmp Returns true (1) if two strings are identical.

strcmpi Returns true (1) if two strings are identical, ignoring case.

strncmp Returns true (1) if first n characters of two strings are identical.

strncmpi Returns true (1) if first n characters of two strings are
identical, ignoring case.

findstr Finds one string within another one.

strjust Justifies string.

strmatch Finds matches for string.

strrep Replaces one string with another.

strtok Finds token in string.

upper Converts string to uppercase.

lower Converts string to lowercase.

Number to string conversion int2str Converts integer to string.

num2str Converts number to string.

mat2str Converts matrix to string.

sprintf Writes formatted data to string.

String to number conversion eval Evaluates the result of a MATLAB expression.

str2double Converts string to a double value.

str2num Converts string to number.

sscanf Reads formatted data from string.

Base Number Conversion hex2num Converts IEEE hexadecimal string to double.

hex2dec Converts hexadecimal string to decimal integer.

dec2hex Converts decimal to hexadecimal string.

bin2dec Converts binary string to decimal integer.

dec2bin Converts decimal integer to binary string.

base2dec Converts base-B string to decimal integer.

dec2base Converts decimal integer to base-B string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

362 | Chapter 9 Additional Data Types

Example 9.1—String Comparison Function

In C, function strmcp compares two strings according to the order of their characters in
the UTF-8 character table (called the lexicographic order of the characters), and returns
a 21 if the first string is lexicographically less than the second string, a 0 if the strings
are equal, and a 11 if the first string is lexicographically greater than the second string.
This function is extremely useful for such purposes as sorting strings in alphabetic order.

Create a new MATLAB function c_strcmp that compares two strings in a
similar fashion to the C function and returns similar results. The function should
ignore trailing blanks in doing its comparisons. Note that the function must be able
to handle the situation where the two strings are of different lengths.

Solution

1. State the problem
Write a function that will compare two strings str1 and str2 and return
the following results:

■■ 21 if str1 is lexicographically less than str2.
■■ 0 if str1 is lexicographically equal to str2.
■■ 11 if str1 is lexicographically greater than str2.

The function must work properly if str1 and str2 do not have the same
length, and the function should ignore trailing blanks.

2. Define the inputs and outputs
The inputs required by this function are two strings, str1 and str2. The
output from the function will be a 21, 0, or 1, as appropriate.

3. Describe the algorithm
This task can be broken down into four major sections:

Verify input strings
Pad strings to be equal length
Compare characters from beginning to end, looking
 for the first difference
Return a value based on the first difference

We will now break each of the above major sections into smaller, more
detailed pieces. First, we must verify that the data passed to the function is
correct. The function must have exactly two arguments, and the arguments
must both be strings. The pseudocode for this step is:

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin)
error(msg)
% Check to see if the arguments are strings
if either argument is not a string
 error('str1 and str2 must both be strings')
else

 (add code here)
end

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 363

Next, we must pad the strings to equal lengths. The easiest way to do this
is to combine both strings into a 2D array using strvcat. Note that this
step effectively results in the function ignoring trailing blanks, because
both strings are padded out to the same length. The pseudocode for this
step is:

 % Pad strings
 strings = strvcat(str1,str2)

Now we must compare each character until we find a difference and return a
value based on that difference. One way to do this is to use relational opera-
tors to compare the two strings, creating an array of 0’s and 1’s. We can then
look for the first 1 in the array, which will correspond to the first difference
between the two strings. The pseudocode for this step is:

 % Compare strings
 diff = strings(1,:) ~= strings(2,:)
 if sum(diff) == 0
 % Strings match
 result = 0
 else
 % Find first difference
 ival = find(diff)
 if strings(1,ival) > strings(2,ival)
 result = 1
 else
 result = -1
 end
 end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

function result = c_strcmp(str1,str2)
%C_STRCMP Compare strings like C function “strcmp”
% Function C_STRCMP compares two strings and returns
% a -1 if str1 < str2, a 0 if str1 == str2, and a
% +1 if str1 > str2.

% Define variables:
% diff -- Logical array of string differences
% msg -- Error message
% result -- Result of function
% str1 -- First string to compare
% str2 -- Second string to compare
% strings -- Padded array of strings

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/25/14 S. J. Chapman Original code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

364 | Chapter 9 Additional Data Types

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Check to see if the arguments are strings
if ~(isstr(str1) & isstr(str2))
 error('Both str1 and str2 must be strings!')
else

 % Pad strings
 strings = strvcat(str1,str2);

 % Compare strings
 diff = strings(1,:) ~= strings(2,:);
 if sum(diff) == 0

 % Strings match, so return a zero!
 result = 0;
 else
 % Find first difference between strings
 ival = find(diff);
 if strings(1,ival(1)) > strings(2,ival(1))
 result = 1;
 else
 result = -1;
 end
 end
end

5. Test the program.
Next, we must test the function using various strings.

» result = c_strcmp('String 1','String 1')
result =

 0
» result = c_strcmp('String 1','String 1')
result =

 0
» result = c_strcmp('String 1','String 2')
result =

 -1
» result = c_strcmp('String 1','String 0')
result =

 1
» result = c_strcmp('String','str')
result =

 -1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 Strings and String Functions | 365

The first test returns a zero, because the two strings are identical. The second
test also returns a zero, because the two strings are identical except for trailing
blanks, and trailing blanks are ignored. The third test returns a 21, because
the two strings first differ in position 8, and '1' < '2' at that position. The
fourth test returns a 1, because the two strings first differ in position 8, and
'1' > '0' at that position. The fifth test returns a 21, because the two strings
first differ in position 1, and 'S' < 's' in the UTF-8 character sequence.
This function appears to be working properly.

▶

Quiz 9.1

This quiz provides a quick check to see if you have understood the concepts intro-
duced in Section 9.1. If you have trouble with the quiz, reread the section, ask your
instructor, or discuss the material with a fellow student. The answers to this quiz are
found in the back of the book.

For questions 1 through 9, determine whether these statements are correct. If
they are, what is produced by each set of statements?

1. str1 = 'This is a test! ';
 str2 = 'This line, too.';
 res = strcat(str1,str2);

2. str1 = 'Line 1';
 str2 = 'line 2';
 res = strcati(str1,str2);

3. str1 = 'This is another test!';
 str2 = 'This line, too.';
 res = [str1; str2];

4. str1 = 'This is another test!';
 str2 = 'This line, too.';
 res = strvcat(str1,str2);

5. str1 = 'This is a test! ';
 str2 = 'This line, too.';
 res = strncmp(str1,str2,5);

6. str1 = 'This is a test! ';
 res = findstr(str1,'s');

7. str1 = 'This is a test! ';
 str1(isspace(str1)) = 'x';

8. str1 = 'aBcD 1234 !?';
 res = isstrprop(str1,'alphanum');

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

366 | Chapter 9 Additional Data Types

9. str1 = 'This is a test! ';
 str1(4:7) = upper(str1(4:7));

10. str1 = ' 456 '; % Note: Three blanks before & after
 str2 = ' abc '; % Note: Three blanks before & after
 str3 = [str1 str2];
 str4 = [strtrim(str1) strtrim(str2)];
 str5 = [deblank(str1) deblank(str2)];
 l1 = length(str1);
 l2 = length(str2);
 l3 = length(str3);
 l4 = length(str4);
 l5 = length(str4);

11. str1 = 'This way to the egress.';
 str2 = 'This way to the egret.'
 res = strncmp(str1,str2);

9.2 The single Data Type

Variables of type single are scalars or arrays of 32-bit single-precision
floating-point numbers. They can hold real, imaginary, or complex values. Vari-
ables of type single occupy half the memory of variables of type double,
but they have lower precision and a more limited range. The real and imaginary
components of each single variable can be positive or negative numbers in
the range 10238 to 1038, with 6 to 7 significant decimal digits of accuracy, plus
the value 0.

The single function creates a variable of type single. For example, the
following statement creates a variable of type single containing the value 3.1:

» var = single(3.1)
var =
 3.1000
» whos
 Name Size Bytes Class Attributes

 var 1x1 4 single

Once a single variable is created, it can be used in MATLAB operations just
like a double variable. In MATLAB, an operation performed between a single
value and a double value has a single result3, so the result of the following state-
ments will be of type single:

3CAUTION: This is unlike the behavior of any other computer language that the author has ever encoun-
tered. In every other language (Fortran, C, C11, Java, Basic, and so forth), the result of an operation
between a single and a double would be of type double.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 Integer Data Types | 367

» b = 7;
» c = var * b
c =
 21.7000
» whos
 Name Size Bytes Class Attributes

 b 1x1 8 double
 c 1x1 4 single
 var 1x1 4 single

Values of type single can be used just like values of type double in most
MATLAB operations. Built-in functions such as sin, cos, exp, and so forth all
support the single data type, but some M-file functions may not support single
values yet. As a practical matter, you will probably never use this data type. Its more
limited range and precision make the results more sensitive to cumulative round-off
errors or to exceeding the available range. You should only consider using this data
type if you have enormous arrays of data that could not fit into your computer mem-
ory if they were saved in double precision.

Some MATLAB functions do no support the single data type. If you wish to,
you can implement your own version of a function that supports single data. If
you place this function in a directory named @single inside any directory on the
MATLAB path, that function will be automatically used when the input arguments
are of type single.

9.3 Integer Data Types

MATLAB also includes 8-, 16-, 32-, and 64-bit signed and unsigned integers. The
data types are int8, uint8, int16, uint16, int32, uint32, int64, and
uint64. The difference between a signed and an unsigned integer is the range of
numbers represented by the data type. The number of values that can be represented
by an integer depends on the number of bits in the integer:

 number of values 5 2n (9.1)

where n is the number of bits. An 8-bit integer can represent 256 values (28), a 16-bit
integer can represent 65,536 values (216), and so forth. Signed integers use half of the
available values to represent positive numbers and half for negative numbers, while
unsigned integers use all of the available values to represent positive numbers. There-
fore, the range of values that can be represented in the int8 data type is 2128 to 127
(a total of 256), while the range of values that can be represented in the uint8 data
type is 0 to 255 (a total of 256). Similarly, the range of values that can be represented
in the int16 data type is 232,768 to 32,767 (a total of 65,536), while the range of
values that can be represented in the uint16 data type is 0 to 65,535. The same idea
applies to larger integer sizes.

Integer values are created by the int8(), uint8(), int16(), uint16(),
int32(), uint32(), int64(), or uint64() functions. For example, the fol-
lowing statement creates a variable of type int8 containing the value 3:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

368 | Chapter 9 Additional Data Types

» var = int8(3)
var =
 3
» whos
 Name Size Bytes Class Attributes

 var 1x1 1 int8

Integers can also be created using the standard array creation functions, such as
zeros, ones, and so forth, by adding a separate type option to the function.
For example, we can create a 1000 3 1000 array of signed 8-bit integers as
follows:

» array = zeros(1000,1000, 'int8');
» whos
 Name Size Bytes Class Attributes

 array 1000x1000 1000000 int8

Integers can be converted to other data types using the double, single, and char
functions.

An operation performed between an integer value and a double value has an
integer result4, so the result of the following statements will be of type int8:

» b = 7;
» c = var * b
c =
 21
» whos
 Name Size Bytes Class Attributes

 b 1x1 8 double
 c 1x1 1 int8
 var 1x1 1 int8

MATLAB actually calculates this answer by converting the int8 to a double,
doing the math in double precision, then rounding the answer to the nearest integer,
and converting that value back to an int8. The same idea works for all types of
integers.

MATLAB uses saturating integer arithmetic. If the result of an integer math
operation would be larger than the largest possible value that can be represented
in that data type, then the result will be the largest possible value. Similarly, if the
result of an integer math operation would be smaller than the smallest possible value
that can be represented in that data type, then the result will be the smallest possible

4CAUTION: This is unlike the behavior of any other computer language that the author has ever encoun-
tered. In every other language (Fortran, C, C11, Java, Basic, and so forth), the result of an operation
between an integer and a double would be of type double.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.4 Limitations of the single and Integer Data Types | 369

value. For example, the largest possible value that can be represented in the int8
data type is 127. The result of the operation int8(100) 1 int8(50) will be
127, because 150 is larger than 127, the maximum value that can be represented in
the data type.

Some MATLAB functions do not support the various integer data types. If you
wish to, you can implement your own version of a function that supports an integer
data type. If you place this function in a directory named @int8, @uint16, and so
forth inside any directory on the MATLAB path, that function will be automatically
used when the input arguments are of the specified type.

It is unlikely that you will need to use the integer data type unless you are work-
ing with image data. If you do need more information, please consult the MATLAB
documentation.

9.4 Limitations of the single and Integer Data Types

The single data type and integer data types have been around in MATLAB for
a while, but they have been mainly used for purposes such as storing image data.
MATLAB allows mathematical operations between values of the same type or
between scalar double values and those types but not between different types
of integers or between integers and single values. For example, you can add
a single and a double or an integer and a double, but you cannot add a
single and an integer.

» a = single(2.1)
a =
 2.1000
» b = int16(4)
b =
 4
» c = a + b
Error using +
Integers can only be combined with integers of the
same class, or scalar doubles.

Unless you have some special need to manipulate images, you will probably never
need to use either of these data types.

Good Programming Practice

Do not use the single or integer data types, unless you have a special need such
as image processing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

370 | Chapter 9 Additional Data Types

9.5 Summary

String functions are functions designed to work with strings, which are arrays of type
char. These functions allow a user to manipulate strings in a variety of useful ways,
including concatenation, comparison, replacement, case conversion, and numeric-to-
string and string-to-numeric type conversions.

The single data type consists of single-precision floating-point numbers.
They are created using the single function. A mathematical operation between a
single and a scalar double value produces a single result.

MATLAB includes signed and unsigned 8-, 16-, 32-, and 64-bit integers. The
integer data types are the int8, uint8, int16(), uint16, int32, uint32,
int64, and uint64. Each of these types is created using the corresponding
function: int8(), uint8(), int16(), uint16(), int32(), uint32(),
int64(), or uint64(). Mathematical operations (1, 2, and so forth) can be
performed on these data types; the result of an operation between an integer and a
double has the same type as the integer. If the result of a mathematical operation is
too large or too small to be expressed by an integer data type, the result is either the
largest or smallest possible integer for that type.

9.5.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Use the char function to create two-dimensional character arrays without
worrying about padding each row to the same length.

Quiz 9.2

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 9.2 through 9.4. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

Determine whether the following statements are correct. If they are, what is
produced by each set of statements?

1. a = uint8(12);
 b = int8(13);
 c = a + b;
2. a = single(1000);
 b = int8(10);
 c = a * b;
3. a = single([1 0;0 1]);
 b = [3 2; -2 3];
 c = a * b;
4. a = single([1 0;0 1]);
 b = [3 2; -2 3];
 c = a .* b;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.5 Summary | 371

2. Use function isstrprop to determine the characteristics of each charac-
ter in a string array.

3. Use multidimensional arrays to solve problems that are naturally multivari-
ate in nature, such as aerodynamics and fluid flows.

4. Do not use the single or integer data types, unless you have a special
need such as image processing.

9.5.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

base2dec Converts base-B string to decimal integer.

bin2dec Converts binary string to decimal integer.

blanks Creates a string of blanks.

char (1) Converts numbers to the corresponding character values.
(2) Creates a 2D character array from a series of strings.

deblank Removes trailing whitespace from a string.

dec2base Converts decimal integer to base-B string.

dec2bin Converts decimal integer to binary string.

double Converts characters to the corresponding numeric codes.

findstr Finds one string within another one.

hex2num Converts hexadecimal string to double.

hex2dec Converts hexadecimal string to decimal integer.

int2str Converts integer to string.

ischar Returns true (1) for a character array.

isletter Returns true (1) for letters of the alphabet.

isreal Returns true (1) if no element of array has an imaginary
component.

isstrprop Returns true (1) if a character has the specified property.

isspace Returns true (1) for whitespace.

lower Converts string to lowercase.

mat2str Converts matrix to string.

num2str Converts number to string.

sscanf Reads formatted data from string.

str2double Converts string to double value.

str2num Converts string to number.

strcat Concatenates strings.

strcmp Returns true (1) if two strings are identical.

strcmpi Returns true (1) if two strings are identical ignoring case.

strjust Justifies string.

strncmp Returns true (1) if first n characters of two strings are
identical.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

372 | Chapter 9 Additional Data Types

strncmpi Returns true (1) if first n characters of two strings are
identical ignoring case.

strmatch Finds matches for string.

strtrim Removes leading and trailing whitespace from a string.

strrep Replaces one string with another.

strtok Finds token in string.

strvcat Concatenates strings vertically.

upper Converts string to uppercase.

9.6 Exercises

9.1 Write a program that accepts an input string from the user and determines how
many times a user-specified character appears within the string. (Hint: Look
up the 's' option of the input function using the MATLAB Help Browser.)

9.2 Modify the previous program so that it determines how many times a user-
specified character appears within the string without regard to the case of the
character.

9.3 Write a program that accepts a string from a user with the input function,
chops that string into a series of tokens, sorts the tokens into ascending order,
and prints them out.

9.4 Write a program that accepts a series of strings from a user with the input
function, sorts the strings into ascending order, and prints them out.

9.5 Write a program that accepts a series of strings from a user with the input func-
tion, sorts the strings into ascending order disregarding case, and prints them out.

9.6 MATLAB includes functions upper and lower, which shift a string to upper-
case and lowercase respectively. Create a new function called caps, which cap-
italizes the first letter in each word, and forces all other letters to be lower case.
(Hint: Take advantage of functions upper, lower, and strtok.)

9.7 Write a function that accepts a character string and returns a logical array
with true values corresponding to each printable character that is not alphanu-
meric or whitespace (for example, $, %, #), and false values everywhere else.

9.8 Write a function that accepts a character string and returns a logical array
with true values corresponding to each vowel and false values everywhere else.
Be sure that the function works properly for both lower case and upper case
characters.

9.9 By default, it is not possible to multiply a single value by an int16 value.
Write a function that accepts a single argument and an int16 argument and
multiplies them together, returning the resulting value as a single.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

373

10Chapter

Sparse Arrays, Cell Arrays,
and Structures

This chapter deals with a very useful feature of MATLAB: sparse arrays. Sparse arrays
are a special type of array in which memory is only allocated for the non-zero ele-
ments in the array. They are an extremely useful and compact way to represent large
arrays containing many zero values without wasting memory.

The chapter also includes an introduction to two additional data types: cell
arrays and structures. A cell array is very a flexible type of array that can hold any
sort of data. Each element of a cell array can hold any type of MATLAB data, and
different elements within the same array can hold different types of data. They are
used extensively in MATLAB Graphical User Interface (GUI) functions.

A structure is a special type of array with named subcomponents. Each struc-
ture can have any number of subcomponents, each with its own name and data type.
Structures are the basis of MATLAB objects.

10.1 Sparse Arrays

We learned about ordinary MATLAB arrays in Chapter 2. When an ordinary array
is declared, MATLAB creates a memory location for every element in the array. For
example, the function a = eye(10) creates 100 elements arranged as a 10 3 10
structure. In this array, 90 of those elements are zero! This matrix requires 100 ele-
ments, but only 10 of them contain non-zero data. This is an example of a sparse
array or sparse matrix. A sparse matrix is a large matrix in which the vast majority
of the elements are zero.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

374 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

» a = 2 * eye(10);
a =
 2 0 0 0 0 0 0 0 0 0
 0 2 0 0 0 0 0 0 0 0
 0 0 2 0 0 0 0 0 0 0
 0 0 0 2 0 0 0 0 0 0
 0 0 0 0 2 0 0 0 0 0
 0 0 0 0 0 2 0 0 0 0
 0 0 0 0 0 0 2 0 0 0
 0 0 0 0 0 0 0 2 0 0
 0 0 0 0 0 0 0 0 2 0
 0 0 0 0 0 0 0 0 0 2

Now suppose that we create another 10 3 10 matrix b defined as follows:

b =
 1 0 0 0 0 0 0 0 0 0
 0 2 0 0 0 0 0 0 0 0
 0 0 2 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 5 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1

If these two matrices are multiplied together, the result is

» c = a * b
c =
 2 0 0 0 0 0 0 0 0 0
 0 4 0 0 0 0 0 0 0 0
 0 0 4 0 0 0 0 0 0 0
 0 0 0 2 0 0 0 0 0 0
 0 0 0 0 10 0 0 0 0 0
 0 0 0 0 0 2 0 0 0 0
 0 0 0 0 0 0 2 0 0 0
 0 0 0 0 0 0 0 2 0 0
 0 0 0 0 0 0 0 0 2 0
 0 0 0 0 0 0 0 0 0 2

The process of multiplying these two sparse matrices together requires 1900
multiplications and additions, but most of the terms being added and multiplied are
zeros, so it was largely wasted effort.

This problem gets worse rapidly as matrix size increases. For example, suppose
that we were to generate two 200 3 200 sparse matrices a and b as follows:

a = 5 * eye(200);
b = 3 * eye(200);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Sparse Arrays | 375

Each matrix now contains 40,000 elements, of which 39,800 are zero! Furthermore,
multiplying these two matrices together requires 15,960,000 additions and
multiplications.

It should be apparent that storing and working with large sparse matrices, most
of whose elements are zero, is a serious waste of both computer memory and CPU
time. Unfortunately, many real-world problems naturally create sparse matrices, so
we need some efficient way to solve problems involving them.

A large electric power system is an excellent example of a real-world problem
involving sparse matrices. Large electric power systems can have a thousand or more
electrical busses at generating plants and transmission and distribution substations. If
we wish to know the voltages, currents, and power flows in the system, we must first
solve for the voltage at every bus. For a 1000-bus system, this involves the simulta-
neous solution of 1000 equations in 1000 unknowns, which is equivalent to inverting
a matrix with 1,000,000 elements. Solving this matrix requires millions of floating
point operations.

However, each bus in the power system is probably connected to an average
of only two or three other busses. Therefore, 996 of the 1000 terms in each row of
the matrix will be zeros, and most of the operations involved in inverting the matrix
will be additions and multiplications by zeros. The calculation of the voltages and
currents in this power system would be much simpler and more efficient if the zeros
could be ignored in the solution process.

10.1.1 The sparse Attribute

MATLAB has a special version of the double data type that is designed to work
with sparse arrays. In this special version of the double data type, only the non-zero
elements of an array are allocated memory locations, and the array is said to have
the “sparse” attribute. An array with the sparse attribute actually saves three values
for each non-zero element: the value of the element itself, and the row and column
numbers where the element is located. Even though three values must be saved for
each non-zero element, this approach is much more memory efficient than allocating
full arrays if a matrix has only a few non-zero elements.

To illustrate the use of sparse matrices, we will create a 10 3 10 identity
matrix:

» a = eye(10)
a =
 1 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

376 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

If this matrix is converted to a sparse matrix using the sparse function, the
results are:

» as = sparse(a)
as =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1
 (6,6) 1
 (7,7) 1
 (8,8) 1
 (9,9) 1
 (10,10) 1

Note that the data in the sparse matrix is a list of row and column addresses, followed
by the non-zero data value at that point. This is a very efficient way to store data as
long as most of the matrix is zero. However, if there are many non-zero elements,
it can take up even more space than the full matrix because of the need to store the
addresses.

If we examine arrays a and as with the whos command, the results are:

» whos
 Name Size Bytes Class Attributes

 a 10x10 800 double
 as 10x10 248 double sparse

The a array occupies 800 bytes because there are 100 elements with 8 bytes of
storage each. The as array occupies 248 bytes because there are 10 non-zero
elements with 8 bytes of storage each plus 20 array indices occupying 8 bytes each
and 8 bytes of overhead. Note that the sparse array occupies much less memory than
the full array.

The issparse function can be used to determine whether or not a given array
is sparse. If an array is sparse, then issparse(array) returns true (1).

The power of the sparse data type can be seen by considering a 1000 3 1000
matrix z with an average of 4 non-zero elements per row. If this matrix is stored as
a full matrix, it will require 8,000,000 bytes of space. On the other hand, if it is con-
verted to a sparse matrix, the memory usage will drop dramatically.

» zs = sparse(z);
» whos
 Name Size Bytes Class Attributes

 z 1000x1000 8000000 double
 zs 1000x1000 72008 double sparse

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Sparse Arrays | 377

Generating Sparse Matrices
MATLAB can generate sparse matrices by converting a full matrix into a sparse
matrix with the sparse function or by directly generating sparse matrices with
the MATLAB functions speye, sprand, and sprandn, which are the sparse
equivalents of eye, rand, and randn. For example, the expression a = speye(4)
generates a 4 3 4 sparse matrix.

» a = speye(4)
a =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1

The expression b = full(a) converts the sparse matrix into a full matrix.

» b = full(a)
b =
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Working with Sparse Matrices
Once a matrix is sparse, individual elements can be added to it or deleted from it,
using simple assignment statements. For example, the following statement generates
a 4 3 4 sparse matrix and then adds another non-zero element to it.

» a = speye(4)
a =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1

» a(2,1) = -2
a =
 (1,1) 1
 (2,1) -2
 (2,2) 1
 (3,3) 1
 (4,4) 1

MATLAB allows full and sparse matrices to be freely mixed and used in any
combination. The result of an operation between a full matrix and a sparse matrix
may be either a full matrix or a sparse matrix, depending on which result is the most
efficient. Essentially any matrix technique that is supported for full matrices is also
available for sparse matrices.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

378 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

Example 10.1—Solving Simultaneous Equations with Sparse Matrices

To illustrate the ease with which sparse matrices can be used in MATLAB, we will
solve the following simultaneous system of equations with both full and sparse
matrices.

1 .0x
1

1 0.0x
2

1 1.0x
3

1 0.0x
4

1 0.0x
5

1 2.0x
6

1 0.0x
7

2 1.0x
8

5 3.0

0.0x
1

1 1.0x
2

1 0.0x
3

1 0.4x
4

1 0.0x
5

1 0.0x
6

1 0.0x
7

1 0.0x
8

5 2.0

 0 .5x
1

1 0.0x
2

1 2.0x
3

1 0.0x
4

1 0.0x
5

1 0.0x
6

2 1.0x
7

1 0.0x
8

5 21.5

0.0x
1

1 0.0x
2

1 0.0x
3

1 2.0x
4

1 0.0x
5

1 1.0x
6

1 0.0x
7

1 0.0x
8

5 1.0

 0 .0x
1

1 0.0x
2

1 1.0x
3

1 1.0x
4

1 1.0x
5

1 0.0x
6

1 0.0x
7

1 0.0x
8

5 22.0

0.0x
1

1 0.0x
2

1 0.0x
3

1 1.0x
4

1 0.0x
5

1 1.0x
6

1 0.0x
7

1 0.0x
8

5 1.0

0.5x
1

1 0.0x
2

1 0.0x
3

1 0.0x
4

1 0.0x
5

1 0.0x
6

1 1.0x
7

1 0.0x
8

5 1.0

0.0x
1

1 1.0x
2

1 0.0x
3

1 0.0x
4

1 0.0x
5

1 0.0x
6

1 0.0x
7

1 1.0x
8

5 1.0

▶

Table 10.1: Common MATLAB Sparse Matrix Functions

Function Description

Create Sparse Matrices

speye Creates a sparse identity matrix.

sprand Creates a sparse uniformly distributed random matrix.

sprandn Creates a sparse normally distributed random matrix.

Full-to-Sparse Conversion Functions

sparse Converts a full matrix into a sparse matrix.

full Converts a sparse matrix into a full matrix.

find Finds indices and values of non-zero elements in a matrix.

Working with Sparse Matrices

nnz Number of nonzero matrix elements.

nonzeros Returns a column vector containing the nonzero elements in a matrix.

nzmax Returns the number of nonzero storage elements in an array.

spones Replaces nonzero sparse matrix elements with ones.

spalloc Allocates space for a sparse matrix.

issparse Returns 1 (true) for sparse matrix.

spfun Applies function to non-zero matrix elements.

spy Visualizes sparsity pattern as a plot.

A few of the common sparse matrix functions are listed in Table 10.1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Sparse Arrays | 379

Solution To solve this problem, we will create full matrices of the equation
coefficients and then convert them to sparse form using the sparse function.
Then we will solve the equation both ways, comparing the results and the memory
required.

The script file to perform these calculations is shown below.

% Script file: simul.m
%
% Purpose:
% This program solves a system of 8 linear equations in 8
% unknowns (a*x = b), using both full and sparse matrices.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/03/14 S. J. Chapman Original code
%
% Define variables:
% a -- Coefficients of x (full matrix)
% as -- Coefficients of x (sparse matrix)
% b -- Constant coefficients (full matrix)
% bs -- Constant coefficients (sparse matrix)
% x -- Solution (full matrix)
% xs -- Solution (sparse matrix)

% Define coefficients of the equation a*x = b for
% the full matrix solution.
a = [1.0 0.0 1.0 0.0 0.0 2.0 0.0 -1.0; ...
 0.0 1.0 0.0 0.4 0.0 0.0 0.0 0.0; ...
 0.5 0.0 2.0 0.0 0.0 0.0 -1.0 0.0; ...
 0.0 0.0 0.0 2.0 0.0 1.0 0.0 0.0; ...
 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0; ...
 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0; ...
 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0; ...
 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0];

b = [3.0 2.0 -1.5 1.0 -2.0 1.0 1.0 1.0]';

% Define coefficients of the equation a*x = b for
% the sparse matrix solution.
as = sparse(a);
bs = sparse(b);

% Solve the system both ways
disp ('Full matrix solution:');
x = a\b

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

380 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

disp ('Sparse matrix solution:');
xs = as\bs

% Show workspace
disp('Workspace contents after the solutions:')
whos

When this program is executed, the results are:

» simul
Full matrix solution:
x =
 0.5000
 2.0000
 -0.5000
 -0.0000
 -1.5000
 1.0000
 0.7500
 -1.0000
Sparse matrix solution:
xs =
 (1,1) 0.5000
 (2,1) 2.0000
 (3,1) -0.5000
 (5,1) -1.5000
 (6,1) 1.0000
 (7,1) 0.7500
 (8,1) -1.0000

Workspace contents after the solutions:

 Name Size Bytes Class Attributes

 a 8x8 512 double
 as 8x8 392 double sparse
 b 8x1 64 double
 bs 8x1 144 double sparse
 x 8x1 64 double
 xs 8x1 128 double sparse

The answers are the same for both solutions. Note that the sparse solution does
not contain a solution for x

4
 because that value is zero, and zeros aren’t carried in

a sparse matrix! Also, note that the sparse form of matrix b actually takes up more
space than the full form. This happens because the sparse representation must store
the indices as well as the values in the arrays, so it is less efficient if most of the
elements in an array are non-zero.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 381

10.2 Cell Arrays

A cell array is a special MATLAB array whose elements are cells, containers that
can hold other MATLAB arrays. For example, one cell of a cell array might contain
an array of real numbers, another an array of strings, and yet another a vector of
complex numbers (see Figure 10.1).

In programming terms, each element of a cell array is a pointer to another
data structure, and those data structures can be of different types. Figure 10.2
illustrates this concept. Cell arrays are great ways to collect information about
a problem since all of the information can be kept together and accessed by a
single name.

Cell arrays use braces “{}” instead of parentheses “()” for selecting and display-
ing the contents of cells. This difference is due to the fact that cell arrays contain
data structures instead of data. Suppose that the cell array a is defined as shown in
Figure 10.2. Then the contents of element a(1,1) is a data structure containing a
3 3 3 array of numeric data, and a reference to a(1,1) displays the contents of the
cell, which is the data structure.

» a(1,1)
ans =
 [3x3 double]

By contrast, a reference to a{1,1} displays the contents of the data item contained
in the cell.

cell 1,1 cell 1,2

cell 2,1 cell 2,2

'This is a text string.'

2531i4

32i42i10

150

602

2731

F G

Figure 10.1 The individual elements of a cell array may point to real arrays,
complex arrays, string, other cell arrays, or even empty arrays.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

382 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

» a{1,1}
ans =
 1 3 -7
 2 0 6
 0 5 1

In summary, the notation a(1,1) refers to the contents of cell a(1,1) (which
is a data structure), while the notation a{1,1} refers to the contents of the data
structure within the cell.

a(1,1) a(1,2)

a(2,2)a(2,1)

'This is a
text string.'

F G

150

602

2731

25314i

324i210i

Figure 10.2 Each element of a cell array holds a pointer to another data structure,
and different cells in the same cell array can point to different types of data structures.

Programming Pitfalls

Be careful not to confuse “()” with “{}” when addressing cell arrays. They are very
different operations!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 383

10.2.1 Creating Cell Arrays

Cell arrays can be created in two ways:

■■ By using assignment statements.
■■ By preallocating a cell array using the cell function.

The simplest way to create a cell array is to directly assign data to individual
cells, one cell at a time. However, preallocating cell arrays is more efficient, so you
should preallocate really large cell arrays.

Allocating Cell Arrays Using Assignment Statements
You can assign values to cell arrays one cell at a time using assignment statements.
There are two ways to assign data to cells, known as content indexing and cell
indexing.

Content indexing involves placing braces “{}” around the cell subscripts, together
with cell contents in ordinary notation. For example, the following statements create
the 2 3 2 cell array in Figure 10.2:

a{1,1} = [1 3 –7; 2 0 6; 0 5 1];
a{1,2} = 'This is a text string.';
a{2,1} = [3+4*i –5; -10*i 3 – 4*i];
a{2,2} = [];

This type of indexing defines the contents of the data structure contained in a cell.
Cell indexing involves placing braces “{}” around the data to be stored in a cell,

together with cell subscripts in ordinary subscript notation. For example, the follow-
ing statements create the 2 3 2 cell array in Figure 10.2:

a(1,1) = {[1 3 -7; 2 0 6; 0 5 1]};
a(1,2) = {'This is a text string.'};
a(2,1) = {[3+4*i -5; -10*i 3 - 4*i]};
a(2,2) = {[]};

This type of indexing creates a data structure containing the specified data and then
assigns that data structure to a cell.

These two forms of indexing are completely equivalent, and they may be freely
mixed in any program.

Programming Pitfalls

Do not attempt to create a cell array with the same name as an existing numeric array.
If you do this, MATLAB will assume that you are trying to assign cell contents to
an ordinary array, and it will generate an error message. Be sure to clear the numeric
array before trying to create a cell array with the same name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

384 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

Preallocating Cell Arrays with the cell Function
The cell function allows you to preallocate empty cell arrays of the specified size.
For example, the following statement creates an empty 2 3 2 cell array.

a = cell(2,2);

Once a cell array is created, you can use assignment statements to fill values in
the cells.

10.2.2 Using Braces {} as Cell Constructors

It is possible to define many cells at once by placing all of the cell contents between
a single set of braces. Individual cells on a row are separated by commas, and rows
are separated by semicolons. For example, the following statement creates a 2 3 3
cell array:

b = {[1 2], 17, [2;4]; 3-4*i, 'Hello', eye(3)}

10.2.3 Viewing the Contents of Cell Arrays

MATLAB displays the data structures in each element of a cell array in a condensed
form that limits each data structure to a single line. If the entire data structure can be
displayed on the single line, it is. Otherwise, a summary is displayed. For example,
cell arrays a and b would be displayed as:

» a
a =
 [3x3 double] [1x22 char]
 [2x2 double] []
» b
b =
 [1x2 double] [17] [2x1 double]
 [3.0000- 4.0000i] 'Hello' [3x3 double]

Note that MATLAB is displaying the data structures, complete with brackets or
apostrophes, not the entire contents of the data structures.

If you would like to see the full contents of a cell array, use the celldisp
function. This function displays the contents of the data structures in each cell.

» celldisp(a)
a{1,1} =
 1 3 -7
 2 0 6
 0 5 1
a{2,1} =
 3.0000 + 4.0000i -5.0000
 0 -10.0000i 3.0000 - 4.0000i

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 385

a{1,2} =
This is a text string.
a{2,2} =
 []

For a high-level graphical display of the structure of a cell array, use function
cellplot. For example, the cellplot(b) function produces the plot shown in
Figure 10.3.

10.2.4 Extending Cell Arrays

If a value is assigned to a cell array element that does not currently exist, the element
will be automatically created, and any additional cells necessary to preserve the
shape of the array will be automatically created. For example, suppose that array a
has been defined to be a 2 3 2 cell array as shown in Figure 10.1. If the following
statement is executed,

a{3,3} = 5

the cell array will be automatically extended to 3 3 3, as shown in Figure 10.4.
Preallocating cell arrays with the cell function is much more efficient than

extending the arrays elements one at a time using assignment statements. When a
new element is added to an existing array as we did above, MATLAB must create a

Figure 10.3 The structure of cell array b is displayed as a nested series of boxes
by function cellplot.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

386 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

new array large enough to include this new element, copy the old data into the new
array, add the new value to the array, and then delete the old array. This can cost extra
time. Instead, you should always allocate the largest size cell array that you will need
and then add values to it, an element at a time. If you do that, only the new element
needs to be added—the rest of the array can remain undisturbed.

The program shown below illustrates the advantages of preallocation. It creates
a cell array containing 200,000 strings added one at a time, with and without
preallocation.

% Script file: test_preallocate.m
%
% Purpose:
% This program tests the creation of cell arrays with and
% without preallocation.
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 03/04/14 S. J. Chapman Original code

cell 1,1 cell 1,2

cell 2,1 cell 2,2

cell 1,3

cell 2,3

cell 3,1 cell 3,2 cell 3,3

150

602

2731

2531i4

32i42i10

F G

F GF G

F G F G

'This is a text string.'

F G5

Figure 10.4 The result of assigning a value to a{3,3}. Note that four other
empty cells were created to preserve the shape of the cell array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 387

%
% Define variables:
% a -- Cell array
% maxvals -- Maximum values in cell array

% Create array without preallocation
clear all
maxvals = 200000;
tic
for ii = 1:maxvals
 a{ii} = ['Element ' int2str(ii)];
end
disp(['Elapsed time without preallocation = ' num2str(toc)]);

% Create array with preallocation
clear all
maxvals = 200000;
tic
a = cell(1,maxvals);
for ii = 1:maxvals
 a{ii} = ['Element ' int2str(ii)];
end
disp(['Elapsed time with preallocation = ' num2str(toc)]);

When this program is executed on my computer, the results are as shown below. The
advantages of preallocation are visible1.

» test_preallocate
Elapsed time without preallocation = 8.0332
Elapsed time with preallocation = 7.6763

Good Programming Practice

Always preallocate all cell arrays before assigning values to the elements of the array.
This practice greatly increases the execution speed of a program.

1 In earlier versions of MATLAB, the difference in performance was much more dramatic. This operation
has been improved in recent versions of MATLAB by allocating extra variables in chunks instead of one
at a time.

10.2.5 Deleting Cells in Arrays

To delete an entire cell array, use the clear command. Subsets of cells may be
deleted by assigning an empty array to them. For example, assume that a is the 3 3 3
cell array defined above.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

388 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

» a
a =
 [3x3 double] [1x22 char] []
 [2x2 double] [] []
 [] [] [5]

It is possible to delete the entire third row with the statement

» a(3,:) = []
a =
 [3x3 double] [1x22 char] []
 [2x2 double] [] []

10.2.6 Using Data in Cell Arrays

The data stored inside the data structures within a cell array may be used at any time,
with either content indexing or cell indexing. For example, suppose that a cell array
c is defined as

c = {[1 2;3 4], 'dogs'; 'cats', i}

The contents of the array stored in cell c(1,1) can be accessed as follows

» c{1,1}
ans =
 1 2
 3 4

and the contents of the array in cell c(2,1) can be accessed as follows

» c{2,1}
ans =
cats

Subsets of a cell’s contents can be obtained by concatenating the two sets of
subscripts. For example, suppose that we would like to get the element (1, 2) from the
array stored in cell c(1,1) of cell array c. To do this, we would use the expression
c{1,1}(1,2), which says: select element (1, 2) from the contents of the data
structure contained in cell c(1,1).

» c{1,1}(1,2)
ans =
 2

10.2.7 Cell Arrays of Strings

It is often convenient to store groups of strings in a cell array instead of storing
them in rows of a standard character array, because each string in a cell array can
have a different length, while every row of a standard character array must have an
identical length. This fact means that strings in cell arrays do not have to be padded
with blanks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 389

Cell arrays of strings can be created in one of two ways. Either the individual
strings can be inserted into the array with brackets, or else function cellstr can be
used to convert a 2-D string array into a cell array of strings.

The following example creates a cell array of strings by inserting the strings
into the cell array one at a time, and displays the resulting cell array. Note that the
individual strings can be of different lengths.

» cellstring{1} = 'Stephen J. Chapman';
» cellstring{2} = 'Male';
» cellstring{3} = 'SSN 999-99-9999';
» cellstring
 'Stephen J. Chapman' 'Male' 'SSN 999-99-9999'

Function cellstr creates a cell array of strings from a 2-D string array. Con-
sider the character array

» data = ['Line 1 ';'Additional Line']
data =
Line 1
Additional Line

This 2 3 15 character array can be converted into a cell array of strings with the
cellstr function as follows:

» c = cellstr(data)
c =
 'Line 1'
 'Additional Line'

and it can be converted back to a standard character array using function char

» newdata = char(c)
newdata =
Line 1
Additional Line

The iscellstr function tests to see if a cell array is a cell array of strings.
This function returns true (1) if every element of a cell array is either empty or
contains a string, and returns false (0) otherwise.

10.2.8 The Significance of Cell Arrays

Cell arrays are extremely flexible since any amount of any type of data can be stored
in each cell. As a result, cell arrays are used in many internal MATLAB data struc-
tures. We must understand them in order to use many features of Handle Graphics
and the Graphical User Interfaces.

In addition, the flexibility of cell arrays makes them regular features of functions
with variable numbers of input arguments and output arguments. A special input
argument, varargin, is available within user-defined MATLAB functions to sup-
port variable numbers of input arguments. This argument appears as the last item in
an input argument list, and it returns a cell array, so a single dummy input argument

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

390 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

can support any number of actual arguments. Each actual argument becomes one
element of the cell array returned by varargin. If it is used, varargin must be
the last input argument in a function—after all of the required input arguments.

For example, suppose that we are writing a function that may have any number
of input arguments. This function could be implemented as shown:

function test1(varargin)
disp(['There are' int2str(nargin) 'arguments.']);
disp('The input arguments are:');
disp(varargin);

end % function test1

When this function is executed with varying numbers of arguments, the results are:

» test1
There are 0 arguments.
The input arguments are:
» test1(6)
There are 1 arguments.
The input arguments are:
 [6]
» test1(1,'test 1',[1 2;3 4])
There are 3 arguments.
The input arguments are:
 [1] 'test 1' [2x2 double]

As you can see, the arguments become a cell array within the function.
A sample function making use of variable numbers of arguments is shown below.

Function plotline accepts an arbitrary number of 1 3 2 row vectors, with each
vector containing the (x, y) position of one point to plot. The function plots a line
connecting all of the (x, y) values together. Note that this function also accepts an
optional line specification string and passes that specification on to the plot function.

function plotline(varargin)
%PLOTLINE Plot points specified by [x,y] pairs.
% Function PLOTLINE accepts an arbitrary number of
% [x,y] points and plots a line connecting them.
% In addition, it can accept a line specification
% string and pass that string on to function plot.

% Define variables:
% ii -- Index variable
% jj -- Index variable
% linespec -- String defining plot characteristics
% msg -- Error message
% varargin -- Cell array containing input arguments
% x -- x values to plot
% y -- y values to plot

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 391

% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 03/18/14 S. J. Chapman Original code

% Check for a legal number of input arguments.
% We need at least 2 points to plot a line...
msg = nargchk(2,Inf,nargin);
error(msg);

% Initialize values
jj = 0;
linespec = '';

% Get the x and y values, making sure to save the line
% specification string, if one exists.
for ii = 1:nargin

 % Is this argument an [x,y] pair or the line
 % specification?
 if ischar(varargin{ii})

 % Save line specification
 linespec = varargin{ii};

 else

 % This is an [x,y] pair. Recover the values.
 jj = jj + 1;
 x(jj) = varargin{ii}(1);
 y(jj) = varargin{ii}(2);

 end
end

% Plot function.
if isempty(linespec)
 plot(x,y);
else
 plot(x,y,linespec);
end

When this function is called with the arguments shown below, the resulting plot
is shown in Figure 10.5. Try the function with different numbers of arguments and
see for yourself how it behaves.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

392 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

plotline([0 0],[1 1],[2 4],[3 9],'k--');

There is also a special output argument, varargout, to support variable
numbers of output arguments. This argument appears as the last item in an output
argument list, and it returns a cell array. Therefore, a single dummy output argument
can support any number of actual arguments. Each actual argument becomes one
element of the cell array stored in varargout.

If it is used, varargout must be the last output argument in a function, after all
of the required input arguments. The number of values to be stored in varargout
can be determined from function nargout, which specifies the number of actual
output arguments for any given function call.

A sample function, test2, is shown below. This function detects the number
of output arguments expected by the calling program, using the function nargout.
It returns the number of random values in the first output argument and then fills
the remaining output arguments with random numbers taken from a Gaussian
distribution. Note that the function uses varargout to hold the random numbers,
so that there can be an arbitrary number of output values.

function [nvals,varargout] = test2(mult)
% nvals is the number of random values returned
% varargout contains the random values returned

Figure 10.5 The plot produced by function plotline.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2 Cell Arrays | 393

nvals = nargout – 1;
for ii = 1:nargout-1
 varargout{ii} = randn * mult;
end

When this function is executed, the results are as shown below.

» test2(4)
ans =
 -1
» [a b c d] = test2(4)
a =
 3
b =
 -1.7303
c =
 -6.6623
d =
 0.5013

Good Programming Practice

Use cell array arguments varargin and varargout to create functions that sup-
port varying numbers of input and output arguments.

10.2.9 Summary of cell Functions

The common MATLAB cell functions are summarized in Table 10.2.

Table 10.2: Common MATLAB Cell Functions

Function Description

cell Predefines a cell array structure.

celldisp Displays contents of a cell array.

cellplot Plots the structure of a cell array.

cellstr Converts a 2D character array to a cell array of strings.

char Converts a cell array of strings into a 2D character array.

iscellstr Function that returns true of a cell array is a cell array
of strings.

strjoin Combines the elements of a cell array of strings into
a single string, with a single space between each
input string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

394 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

10.3 Structure Arrays

An array is a data type in which there is a name for the whole data structure, but
individual elements within the array are only known by number. Thus the fifth
element in the array named arr would be accessed as arr(5). All of the individual
elements in an array must be of the same type.

A cell array is a data type in which there is a name for the whole data structure,
but individual elements within the array are only known by number. However, the
individual elements in the cell array may be of different types.

In contrast, a structure is a data type in which each individual element has
a name. The individual elements of a structure are known as fields, and each
field in a structure may have a different type. The individual fields are addressed
by combining the name of the structure with the name of the field, separated by
a period.

Figure 10.6 shows a sample structure named student. This structure has five
fields, called name, addr1, city, state, and zip. The field called “name”
would be addressed as student.name.

A structure array is an array of structures. Each structure in the array will have
identically the same fields, but the data stored in each field can differ. For example,
a class could be described by an array of the structure student. The first student’s
name would be addressed as student(1).name, the second student’s city would
be addressed as student(2).city, and so forth.

10.3.1 Creating Structure Arrays

Structure arrays can be created in two ways.

■■ A field at a time using assignment statements
■■ All at once using the struct function

Building a Structure with Assignment Statements
You can build a structure, one field at a time, using assignment statements.
Each time that data is assigned to a field, that field is automatically created. For
example, the structure shown in Figure 10.6 can be created with the following
statements.

» student.name = 'John Doe';
» student.addr1 = '123 Main Street';
» student.city = 'Anytown';
» student.state = 'LA';
» student.zip = '71211'
student =
 name: 'John Doe'
 addr1: '123 Main Street'
 city: 'Anytown'
 state: 'LA'
 zip: '71211'

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 395

A second student can be added to the structure by adding a subscript to the
structure name (before the period).

» student(2).name = 'Jane Q. Public'
student =
1x2 struct array with fields:
 name
 addr1
 city
 state
 zip

student

123 Main
Street

John Doe

71211

LA

Anytown

name

addr1

city

state

zip

Figure 10.6 A sample structure. Each element within the structure is called a
field, and each field is addressed by name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

396 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

student is now a 1 3 2 array. Note that when a structure array has more than one
element, only the field names are listed, not their contents. The contents of each
element can be listed by typing the element separately in the Command Window:

» student(1)
ans =
 name: 'John Doe'
 addr1: '123 Main Street'
 city: 'Anytown'
 state: 'LA'
 zip: '71211'
» student(2)
ans =
 name: 'Jane Q. Public'
 addr1: []
 city: []
 state: []
 zip: []

Note that all of the fields of a structure are created for each array element when-
ever that element is defined, even if they are not initialized. The uninitialized fields
will contain empty arrays, which can be initialized with assignment statements at
a later time.

The field names used in a structure can be recovered at any time, using the
fieldnames function. This function returns a list of the field names in a cell array
of strings and is very useful for working with structure arrays within a program.

Creating Structures with the struct Function
The struct function allows you to preallocate a structure or an array of structures.
The basic form of this function is

str_array = struct('field1',val1,'field2',val2, ...)

where the arguments are field names and their initial values. With this syntax,
function struct initializes every field to the specified value.

To preallocate an entire array with the struct function, simply assign the
output of the struct function to the last value in the array. All of the values before
that will be automatically created at the same time. For example, the statements
shown below create an array containing 1000 structures of type student.

student(1000) = struct('name',[],'addr1',[], ...
 'city',[],'state',[],'zip',[])
student =
1x1000 struct array with fields:
 name
 addr1
 city
 state
 zip

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 397

All of the elements of the structure are preallocated, which will speed up any program
using the structure.

There is another version of the struct function that will preallocate an array
and at the same time assign initial values to all of its fields. You will be asked to do
this in an end-of-chapter exercise.

10.3.2 Adding Fields to Structures

If a new field name is defined for any element in a structure array, the field is
automatically added to all of the elements in the array. For example, suppose that we
add some exam scores to Jane Public’s record:

» student(2).exams = [90 82 88]
student =
1x2 struct array with fields:
 name
 addr1
 city
 state
 zip
 exams

There is now a field called exams in every record of the array, as shown below. This
field will be initialized for student(2) and will be an empty array for all other
students until appropriate assignment statements are issued.

» student(1)
ans =
 name: 'John Doe'
 addr1: '123 Main Street'
 city: 'Anytown'
 state: 'LA'
 zip: '71211'
 exams: []
» student(2)
ans =
 name: 'Jane Q. Public'
 addr1: []
 city: []
 state: []
 zip: []
 exams: [90 82 88]

10.3.3 Removing Fields from Structures

A field may be removed from a structure array using the rmfield function. The
form of this function is:

struct2 = rmfield(str_array,'field')

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

398 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

where str_array is a structure array, 'field' is the field to remove, and
struct2 is the name of a new structure with that field removed. For example, we
can remove the 'zip' field from structure array student with the following
statement:

» stu2 = rmfield(student,'zip')
stu2 =
1x2 struct array with fields:
 name
 addr1
 city
 state
 exams

10.3.4 Using Data in Structure Arrays

Now let’s assume that structure array student has been extended to include three
students, and all data has been filled in as shown in Figure 10.7. How do we use the
data in this structure array?

To access the information in any field of any array element, just name the array
element followed by a period and the field name:

» student(2).addr1
ans =
P. O. Box 17
» student(3).exams
ans =
 65 84 81

To access an individual item within a field, add a subscript after the field name. For
example, the second exam of the third student is

» student(3).exams(2)
ans =
 84

The fields in a structure array can be used as arguments in any function that
supports that type of data. For example, to calculate student(2)’s exam average,
we could use the function

» mean(student(2).exams)
ans =
 86.6667
To extract the values from a given field across multiple array elements, simply

place the structure and field name inside a set of brackets. For example, we can get
access to an array of zip codes with the expression [student.zip]:

» [student.zip]
ans =
 71211 68888 10018

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 399

Similarly, we can get the average of all exams from all students with the function
mean([student.exams]).

» mean([student.exams])
ans =
 83.2222

10.3.5 The getfield and setfield Functions

Two MATLAB functions are available to make structure arrays easier to use in pro-
grams. The getfield function gets the current value stored in a field, and the
setfield function inserts a new value into a field. The structure of the getfield
function is

f = getfield(array,{array_index},'field',{field_index})

where the field_index is optional, and array_index is optional for a 1 3 1
structure array. The function call corresponds to the statement

f = array(array_index).field(field_index);

but it can be used, even if the engineer doesn’t know the names of the fields in the
structure array at the time the program is written.

.name

.city

.state

.zip

.addr1

.exams

.name

.city

.state

.zip

.addr1

.exams

.name

.city

.state

.zip

.addr1

.exams

'John Doe' 'Big Bird''Jane Q. Public'

'123 Sesame Street''P. O. Box 17''123 Main Street'

'Nowhere' 'New York''Anytown'

'NY''MS''LA'

'68888' '10018''71211'

[65 84 81][90 82 88][80 95 84]

student(1) student(2)

student

student(3)

Figure 10.7 The student array with three elements and all fields filled in.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

400 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

For example, suppose that we needed to write a function to read and manipulate
the data in an unknown structure array. This function could determine the field names
in the structure, using a call to fieldnames, and then it could read the data using
the getfield function. To read the zip code of the second student, the function
would be

» zip = getfield(student,{2},'zip')
zip =
 68888

Similarly, a program could modify values in the structure using function setfield.
The structure of function setfield is

f = setfield(array,{array_index},'field',{field_index},value)

where f is the output structure array, the field_index is optional, and
array_index is optional for a 1 3 1 structure array. The function call corresponds
to the statement

array(array_index).field(field_index) = value;

10.3.6 Dynamic Field Names

There is an alternate way to access the elements of a structure: dynamic field names.
A dynamic field name is a string enclosed in parentheses at a location where a field
name is expected. For example, the name of student 1 can be retrieved with either
static or dynamic field names as shown below:

» student(1).name % Static field name
ans =
John Doe
» student(1).('name') % Dynamic field name
ans =
John Doe

Dynamic field names perform the same function as static field names, but dynamic
field names can be changed during program execution. This allows a user to access
different information in the same function within a program.

For example, the following function accepts a structure array and a field name,
calculating the average of the values in the specified field for all elements in the
structure array. It returns that average (and optionally the number of values averaged)
to the calling program.

function [ave, nvals] = calc_average(structure,field)
%CALC_AVERAGE Calculate the average of values in a field.
% Function CALC_AVERAGE calculates the average value
% of the elements in a particular field of a structure
% array. It returns the average value and (optionally)
% the number of items averaged.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 401

% Define variables:
% arr -- Array of values to average
% ave -- Average of arr
% ii -- Index variable
%
% Record of revisions:
% Date Engineer Description of change
% ==== ========== =====================
% 03/04/14 S. J. Chapman Original code
%
% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Create an array of values from the field
arr = [];
for ii = 1:length(structure)
 arr = [arr structure(ii).(field)];
end

% Calculate average
ave = mean(arr);

% Return number of values averaged
if nargout == 2
 nvals = length(arr);
end

A program can average the values in different fields by simply calling this
function multiple times with different structure names and different field names. For
example, we can calculate the average values in fields exams and zip as follows:

» [ave,nvals] = calc_average(student,'exams')
ave =
 83.2222
nvals =
 9
» ave = calc_average(student,'zip')
ave =
 50039

10.3.7 Using the size Function with Structure Arrays

When the size function is used with a structure array, it returns the size of the
structure array itself. When the size function is used with a field from a particular
element in a structure array, it returns the size of that field instead of the size of the
whole array. For example,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

402 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

» size(student)
ans =
 1 3
» size(student(1).name)
ans =
 1 8

10.3.8 Nesting Structure Arrays

Each field of a structure array can be of any data type, including a cell array or a
structure array. For example, the following statements define a new structure array as
a field under array student to carry information about each class that the student
in enrolled in.

student(1).class(1).name = 'COSC 2021'
student(1).class(2).name = 'PHYS 1001'
student(1).class(1).instructor = 'Mr. Jones'
student(1).class(2).instructor = 'Mrs. Smith'

After these statements are issued, student(1) contains the following data. Note
the technique used to access the data in the nested structures.

» student(1)
ans =
 name: 'John Doe'
 addr1: '123 Main Street'
 city: 'Anytown'
 state: 'LA'
 zip: '71211'
 exams: [80 95 84]
 class: [1x2 struct]
» student(1).class
ans =
1x2 struct array with fields:
 name
 instructor
» student(1).class(1)
ans =
 name: 'COSC 2021'
 instructor: 'Mr. Jones'
» student(1).class(2)
ans =
 name: 'PHYS 1001'
 instructor: 'Mrs. Smith'
» student(1).class(2).name
ans =
PHYS 1001

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 403

Quiz 10.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 10.1 through 10.3. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1. What is a sparse array? How does it differ from a full array? How can you
convert from a sparse array to a full array and vice versa?

2. What is a cell array? How does it differ from an ordinary array?
3. What is the difference between content indexing and cell indexing?
4. What is a structure? How does it differ from ordinary arrays and cell arrays?
5. What is the purpose of varargin? How does it work?
6. Given the definition of array a shown below, what will be produced by each

of the following sets of statements? (Note: some of these statements may be
illegal. If a statement is illegal, explain why.)

 a{1,1} = [1 2 3; 4 5 6; 7 8 9];
 a(1,2) = {'Comment line'};
 a{2,1} = j;
 a{2,2} = a{1,1} – a{1,1}(2,2);

 (a) a(1,1)
 (b) a{1,1}

 (c) 2*a(1,1)
 (d) 2*a{1,1}
 (e) a{2,2}

(f) a(2,3) = {[-17; 17]}
(g) a{2,2}(2,2)

7. Given the definition of structure array b shown below, what will be produced
by each of the following sets of statements? (Note: some of these statements
may be illegal. If a statement is illegal, explain why.)

 b(1).a = -2*eye(3);
 b(1).b = 'Element 1';

Table 10.3: Common MATLAB Structure Functions

fieldnames Returns a list of field names in a cell array of strings.

getfield Gets current value from a field.

rmfield Removes a field from a structure array.

setfield Sets a new value into a field.

struct Predefines a structure array.

10.3.9 Summary of structure Functions

The common MATLAB structure functions are summarized in Table 10.3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

404 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

 b(1).c = [1 2 3];
 b(2).a = [b(1).c' [-1; -2; -3] b(1).c'];
 b(2).b = 'Element 2';
 b(2).c = [1 0 –1];

(a) b(1).a – b(2).a
(b) strncmp(b(1).b,b(2).b,6)
(c) mean(b(1).c)
(d) mean(b.c)
(e) b
(f) b(1).('b')
(g) b(1)

Example 10.2—Polar Vectors

A vector is a mathematical quantity that has both a magnitude and a direction. It can
be represented as a displacement along the x and y axes in rectangular coordinates or
by a distance r at an angle u in polar coordinates (see Figure 10.8). The relationships
among x, y, r, and u are given by the following equations:

 x 5 r cos � (10.1)

 y 5 r sin � (10.2)

 r 5 Ïx
2 1 y 2 (10.3)

▶

y

x

y P

r

x

�

i

j

Figure 10.8 Relationship between the rectangular (x, y) description and the
polar (r, θ) description of a vector.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 405

 � 5 tan21
y

x
 (10.4)

where tan21s d is the two-argument inverse tangent function atan2(y, x), whose
output is defined over the range 2� # � # �.

A vector in rectangular format can be represented as a structure having the fields
x and y, for example

rect.x = 3;
rect.y = 4;

and a vector in polar format can be represented as a structure having the fields r and
theta (where theta is in degrees), for example

polar.r = 5;
polar.theta = 36.8699;

Write a pair of functions that convert a vector in rectangular format to a vector in
polar format, and vice versa.

Solution We will create two functions, to_rect, and to_polar.
Function to_rect must accept a vector in polar format and convert it into

rectangular format, using Equations (10.1) and (10.2). This function will identify
a vector in polar format because it will be stored in a structure having fields r and
theta. If the input parameter is not a structure having fields r and theta, the
function should generate an error and quit. The output from the function will be a
structure having fields x and y.

The to_polar function must accept a vector in rectangular format and convert
it into rectangular format, using Equations (10.3) and (10.4). This function will
identify a vector in rectangular format because it will be stored in a structure having
fields x and y. If the input parameter is not a structure having fields x and y, the
function should generate an error and quit. The output from the function will be a
structure having fields r and theta.

The calculation for r can use Equation (10.3) directly, but the calculation for
theta needs to use the MATLAB function atan2(y,x), because Equation (10.4)

only produces output over the range 2
�

2
, � ,

�

2
, while the atan2 function is valid

in all four quadrants of the circle. Consult the MATLAB Help System for details of
the operation of function atan2.

1. State the problem
Assume that a polar vector is stored in a structure having fields r and theta
(where theta is in degrees), and a rectangular vector is stored in a structure
having fields x and y. Write a to_rect function to convert a polar vector
to rectangular format, and a to_polar function to convert a rectangular
vector into polar format.

2. Define the inputs and outputs
The input to function to_rect is a vector in polar format stored in a structure
with elements r and theta, and the output is a vector in rectangular format
stored in a structure with elements x and y.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

406 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

The input to function to_polar is a vector in rectangular format stored
in a structure with elements x and y, and the output is a vector in rectangular
format stored in a structure with elements r and theta.

3. Design the algorithm
The pseudocode for function to_rect is

Check to see that elements r and theta exist
out.x ← in.r * cos(in.theta * pi/180)
out.y ← in.r * sin(in.theta * pi/180)

Note that we have to convert the angle in degrees into an angle in radians
before applying the sine and cosine functions.

The pseudocode for the to_polar function is

Check to see that elements r and theta exist
out.r ← sqrt(in.x.ˆ2 + in.y.ˆ2)
out.theta ← atan2(in.y,in.x) * 180/pi

Note that we have to convert the angle in radians into an angle in degrees
before saving it in theta.

4. Turn the algorithm into MATLAB statements.
The final MATLAB functions are shown below.

function out = to_rect(in)
%TO_RECT Convert a vector from polar to rect
% Function TO_RECT converts a vector from polar
% coordinates to rectangular coordinates.
%
% Calling sequence:
% out = to_rect(in)

% Define variables:
% in -- Structure containing fields r and theta (in degrees)
% out -- Structure containing fields x and y

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 09/01/14 S. J. Chapman Original code

% Check for valid input
if ~isfield(in,'r') || ~isfield(in,'theta')
 error('Input argument does not contain fields ''r'' and
''theta''')
else

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Structure Arrays | 407

 % Calculate output.
 out.x = in.r * cos(in.theta * pi/180);
 out.y = in.r * sin(in.theta * pi/180);
end

function out = to_polar(in)
%TO_POLAR Convert a vector from rect to polar
% Function TO_POLAR converts a vector from rect
% coordinates to polar coordinates.
%
% Calling sequence:
% out = to_rect(in)

% Define variables:
% in -- Structure containing fields x and y
% out -- Structure containing fields r and theta (in degrees)

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 09/10/14 S. J. Chapman Original code

% Check for valid input
if ~isfield(in,'x') || ~isfield(in,'y')
 error('Input argument does not contain fields ''x'' and ''y''')
else

 % Calculate output.
 out.r = sqrt(in.x .ˆ2 + in.y .ˆ2);
 out.theta = atan2(in.y,in.x) * 180/pi;
end

5. Test the program.
To test this program, we will use the example of a 3-4-5 right triangle. If the
rectangular coordinates of the vector are (x, y) 5 (3,4), then the polar form
of the vector is

 r 5 Ï32 1 42 5 5

 � 5 tan21

4

3
5 53.138

When this program is executed, the results are.

» v.x = 3;
» v.y = 4;
» out1 = to_polar(v)
out1 =
 r: 5
 theta: 53.1301

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

408 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

» out2 = to_rect(out1)
out2 =
 x: 3
 y: 4

Going to polar coordinates and then back to rectangular coordinates produced
the same results that we started with.

▶

10.4 Summary

Sparse arrays are special arrays in which memory is allocated only for non-zero
elements. Three values are saved for each non-zero element—a row number, a
column number, and the value itself. This form of storage is much more efficient
than arrays for the situation where only a tiny fraction of the elements are non-zero.
MATLAB includes functions and intrinsic calculations for sparse arrays, so they can
be freely and transparently mixed with full arrays.

Cell arrays are arrays whose elements are cells, containers that can hold other
MATLAB arrays. Any sort of data may be stored in a cell, including structure arrays
and other cell arrays. They are a very flexible way to store data and are used in many
internal MATLAB Graphical User Interface functions.

Structure arrays are a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and each field in a
structure may have a different type. The individual fields are addressed by combining
the name of the structure with the name of the field, separated by a period. Structure
arrays are useful for grouping together all of the data related to a particular person or
thing into a single location.

10.4.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Always preallocate all cell arrays before assigning values to the elements of
the array. This practice greatly increases the execution speed of a program.

2. Use cell array arguments varargin and varargout to create functions
that support varying numbers of input and output arguments.

10.4.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

cell Predefines a cell array structure.

celldisp Displays contents of a cell array.

cellplot Plots structure of a cell array.

cellstr Converts a 2-D character array to a cell array of strings.
(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.5 Exercises | 409

10.5 Exercises

10.1 Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order, according to the lexicographic order of the UTF-8
character set. (Hint: Look up function strcmp in the MATLAB Help System.)

10.2 Write a MATLAB function that will accept a cell array of strings and sort them
into ascending order according to alphabetical order. (This implies that you
must treat A and a as the same letter.) (Hint: Look up function strcmpi in the
MATLAB Help System.)

10.3 Create a function that accepts any number of numeric input arguments and
sums up all of individual elements in the arguments. Test your function by

passing it the four arguments a 5 10, b 5 3
4

22

2
4, c 5 3

1 0 3

25 1 2

1 2 0
4, and

d 5 f1 5 2 2g.
10.4 Modify the function of the previous exercise so that it can accept either ordinary

numeric arrays or cell arrays containing numeric values. Test your function by

passing it the two arguments a and b, where a 5 3 1 4

22 34, b h1j 5 f1 5 2g,

and b h2j 5 31 22

2 14.

10.5 Create a structure array containing all of the information needed to plot a data
set. At a minimum, the structure array should have the following fields:

■■ x_data x-data (one or more data sets in separate cells)
■■ y_data y-data (one or more data sets in separate cells)
■■ type linear, semilogx, and so forth
■■ plot_title plot title
■■ x_label x-axis label
■■ y_label y-axis label
■■ x_range x-axis range to plot
■■ y_range y-axis range to plot

 You may add additional fields that would enhance your control of the final plot.

char Converts a cell array of strings into a 2-D character array.

fieldnames Returns a list of field names in a cell array of strings.

figure Creates a new figure/makes figure current.

iscellstr Function that returns true of a cell array is a cell array of strings.

getfield Gets current value from a field.

rmfield Removes a field from a structure array.

setfield Sets new value into a field.

strjoin Combines the elements of a cell array of strings into a single string,
with a single space between each input string.

uiimport Imports data to MATLAB from a file created by an external program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

410 | Chapter 10 Sparse Arrays, Cell Arrays, and Structures

After this structure array is created, create a MATLAB function that
accepts an array of this structure and produces one plot for each structure in
the array. The function should apply intelligent defaults if some data fields are
missing. For example, if the plot_title field is an empty matrix, then the
function should not place a title on the graph. Think carefully about the proper
defaults before starting to write your function!

To test your function, create a structure array containing the data for three
plots of three different types, and pass that structure array to your function.
The function should correctly plot all three data sets in three different figure
windows.

10.6 Define a structure point containing two fields x and y. The x field will contain
the x-position of the point, and the y field will contain the y-position of the point.
Then write a function dist3 that accepts two points and returns the distance
between the two points on the Cartesian plane. Be sure to check the number of
input arguments in your function.

10.7 Write a function that will accept a structure as an argument, and return two cell
arrays containing the names of the fields of that structure and the data types of
each field. Be sure to check that the input argument is a structure, and generate
an error message if it is not.

10.8 Write a function that will accept a structure array of student as defined in
this chapter, and calculate the final average of each one assuming that all exams
have equal weighting. Add a new field to each array to contain the final average
for that student, and return the updated structure to the calling program. Also,
calculate and return the final class average.

10.9 Write a function that will accept two arguments, the first a structure array and
the second a field name stored in a string. Check to make sure that these input
arguments are valid. If they are not valid, print out an error message. If they
are valid and the designated field is a string, concatenate all of the strings in
the specified field of each element in the array and return the resulting string
to the calling program.

10.10 Calculating Directory Sizes Function dir returns the contents of a specified
directory. The dir command returns a structure array with four fields, as
shown below:

» d = dir('chap10')
d =
36x1 struct array with fields:
 name
 date
 bytes
 isdir

 The name field contains the names of each file, date contains the last modifi-
cation date for the file, bytes contains the size of the file in bytes, and isdir
is 0 for conventional files and 1 for directories. Write a function that accepts a
directory name and path and returns the total size of all files in the directory,
in bytes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.5 Exercises | 411

10.11 Recursion A function is said to be recursive if the function calls itself. Modify
the function created in Problem 10.10 so that it calls itself when it finds a
subdirectory and sums up the size of all files in the current directory plus all
subdirectories.

10.12 Look up function struct in the MATLAB Help Browser, and learn how to pre-
allocate a structure and simultaneously initialize all of the elements in the structure
array to the same value. Then create a 2000 element array of type student, with
the values in every array element initialized with the fields shown below:

 name: 'John Doe'
 addr1: '123 Main Street'
 city: 'Anytown'
 state: 'LA'
 zip: '71211'

10.13 Vector Addition Write a function that will accept two vectors defined in either
rectangular or polar coordinates (as defined in Example 10.2), add them, and
save the result in rectangular coordinates.

10.14 Vector Subtraction Write a function that will accept two vectors defined in
either rectangular or polar coordinates (as defined in Example 10.2), subtract
them, and save the result in rectangular coordinates.

10.15 Vector Multiplication If two vectors are defined in polar coordinates
so that v

1
5 r

1
/�

1
 and v

2
5 r

2
/�

2
, then the product of the two vectors

v
1
v

2
5 r

1
r

2
/�

1
1�

2
. Write a function that will accept two vectors defined in

either rectangular or polar coordinates (as defined in Example 10.2), perform the
multiplication, and save the result in polar coordinates.

10.16 Vector Division If two vectors are defined in polar coordinates so that

v
1

5 r
1
/�

1
 and v

2
5 r

2
/�

2
, then

v
1

v
2

5
r

1

r
2

/�
1
2�

2
. Write a function that will

accept two vectors defined in either rectangular or polar coordinates (as defined
in Example 10.2), perform the division, and save the result in polar coordinates.

10.17 Distance Between Two Points If v
1
 is the distance from the origin to point P

1

and v
2
 is the distance from the origin to point P

2
, then the distance between the

two points will be uv
1
2v

2
u. Write a function that will accept two vectors defined

in either rectangular or polar coordinates (as defined in Example 10.2) and that
returns the distance between the two.

10.18 Function Generators Generalize the function generator of Exercise 7.22 to
handle polynomials of arbitrary dimension. Test it by creating function handles
and plots the same way that you did in Exercise 7.22. (Hint: Use varagrin.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

413

11Chapter

Input/Output Functions

In Chapter 2, we learned how to load and save MATLAB data using the load and
save commands, and how to write out formatted data using the fprintf function.
In this chapter we will learn more about MATLAB’s input/output capabilities. First,
we will learn about textread and textscan, two very useful functions for
reading text data from a file. Then, we will spend a bit more time examining the
load and save commands. Finally, we will look at the other file I/O options
available in MATLAB.

Those readers familiar with C will find much of this material very familiar. How-
ever, be careful—there are subtle differences between MATLAB and C functions
that can trip you up.

11.1 The textread Function

The textread function reads text files that are formatted into columns of data,
where each column can be of a different type, and stores the contents of each column
in a separate output array. This function is very useful for importing tables of data
printed out by other applications.

The form of the textread function is

[a,b,c,...] = textread(filename,format,n)

where filename is the name of the file to open, format is a string containing a
description of the type of data in each column, and n is the number of lines to read.
(If n is missing, the function reads to the end of the file.) The format string contains
the same types of format descriptors as function fprintf. Note that the number of
output arguments must match the number of columns that you are reading.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

414 | Chapter 11 Input/Output Functions

For example, suppose that file test_input.dat contains the following data:

James Jones O+ 3.51 22 Yes
Sally Smith A+ 3.28 23 No

This data could be read into a series of arrays with the following function:

[first,last,blood,gpa,age,answer] = ...
 textread('test_input.dat','%s %s %s %f %d %s')

When this command is executed, the results are:

» [first,last,blood,gpa,age,answer] = ...
 textread('test_input.dat','%s %s %s %f %d %s')

first =
 'James'
 'Sally'
last =
 'Jones'
 'Smith'
blood =
 'O+'
 'A+'
gpa =
 3.5100
 3.2800
age =
 42
 28
answer =
 'Yes'
 'No'

This function can also skip selected columns by adding an asterisk to the corre-
sponding format descriptor (for example, %*s). The following statement reads only
the first, last, and gpa from the file:

» [first,last,gpa] = ...
 textread('test_input.dat','%s %s %*s %f %*d %*s')

first =
 'James'
 'Sally'
last =
 'Jones'
 'Smith'
gpa =
 3.5100
 3.2800

The textread function is much more useful and flexible than the load com-
mand. The load command assumes that all of the data in the input file is of a single

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

type—it cannot support different types of data in different columns. In addition, it
stores all of the data into a single array. In contrast, the textread function allows
each column to go into a separate variable, which is much more convenient when
working with columns of mixed data.

Function textread has a number of additional options that increase its flexibility.
Consult the MATLAB on-line documentation for details of these options.

11.2 More about the load and save Commands

The save command saves MATLAB workspace data to disk, and the load com-
mand loads data from disk into the workspace. The save command can save data
either in a special binary format called a MAT file or in an ordinary text file. The form
of the save command is

save filename [content] [options]

where content specifies the data to be saved and options specifies how to save it.
The save command all by itself saves all of the data in the current work-

space to a file named matlab.mat in the current directory. If a file name is
included, the data will be saved in file “filename.mat”. If a list of variables
is included at the content position, then only those particular variables will
be saved.

For example, suppose that a workspace contains a 1000-element double array x
and a character string str. We can save these two variables to a MAT file with the
following command:

save test_matfile x str

This command creates a MAT file with the name test_matfile.mat. The con-
tents of this file can be examined with –file option of the whos command:

» whos -file test_matfile.mat
 Name Size Bytes Class Attributes

 str 1x11 22 char
 x 1x1000 8000 double

The content to be saved can be specified in several ways, as described in
Table 11.1.

The more important options supported by the save command are shown in
Table 11.2; a complete list can be found in the MATLAB on-line documentation.

The load command can load data from MAT files or from ordinary text files.
The form of the load command is

load filename [options] [content]

The command load all by itself loads all of the data in file matlab.mat into the
current workspace. If a file name is included, the data will be loaded from that file

11.2 More about the load and save Commands | 415

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

416 | Chapter 11 Input/Output Functions

Table 11.1: Ways of Specifying save Command Content

Values for content Description

<nothing> Saves all data in current workspace.

varlist Saves only the values in the variable list.

-regexp exprlist Saves all variables that match any of the
regular expressions in the expression list.

-struct s Saves as individual variables all fields of the
scalar structure s.

-struct s fieldlist Saves as individual variables only the specified
fields of structure s.

Table 11.2: Selected save Command Options

Option Description

 '-mat' Saves data in MAT-file format (default).

 '-ascii' Saves data in space-separated text format with 8 digits of precision.

 '-ascii','-tabs' Saves data in tab-separated text format with 8 digits of precision.

 '-ascii','-double' Saves data in tab-separated text format with 16 digits of precision.

-append Adds the specified variables to an existing MAT file.

-v4 Saves the MAT file in a format readable by MATLAB
version 4 or later.

-v6 Saves the MAT file in a format readable by MATLAB
versions 5 and 6 or later.

-v7 Saves the MAT file in a format readable by MATLAB
versions 7 through 7.2 or later.

-v7.3 Saves the MAT file in a format readable by MATLAB
versions 7.3 or later.

name. If specific variables are included in the content list, then only those variables
will be loaded from the file. For example,

load % Loads entire content of matlab.mat
load mydat.mat % Loads entire content of mydat.mat
load mydat.mat a b c % Loads only a, b, and c from mydat.mat

The options supported by the load command are shown in Table 11.3.
Although it is not immediately obvious, the save and load commands are the

most powerful and useful I/O commands in MATLAB. Among their advant ages are:

1. These commands are very easy to use.
2. MAT files are platform independent. A MAT file written on any type of

computer that supports MATLAB can be read on any other computer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

supporting MATLAB. This format transfers freely among PCs, Macs, and
Linux. Also, the Unicode character encoding ensures that character strings
will be preserved properly across platforms.

3. MAT files are efficient users of disk space, using only the amount of
memory required for each data type. They store the full precision of every
variable—no precision is lost due to conversion to and from text format.
MAT files can also be compressed to save even more disk space.

4. MAT files preserve all of the information about each variable in the
workspace, including its class, name, and whether or not it is global.
All of this information is lost in other types of I/O. For example, suppose
that the workspace contains the following information:

» whos
 Name Size Bytes Class Attributes

 a 10x10 800 double
 b 10x10 800 double
 c 2x2 32 double
 string 1x14 28 char
 student 1x3 888 struct

If this workspace is saved with the command save workspace.mat, a
file named workspace.mat will be created. When this file is loaded, all of
the information will be restored, including the type of each item and whether
or not it is global.

A disadvantage of these commands is that the MAT file format is unique to
MATLAB and cannot be used to share data with other programs. The –ascii option
can be used if you wish to share data with other programs, but it has serious limitations1.

Table 11.3: load Command Options

Option Description

-mat Treats file as a MAT file (default if file extension is mat).

-ascii Treats file as a space-separated text file (default if file extension is not mat).

1This statement is only partially true. Modern MAT files are in HDF5 format, which is an industry standard,
and there are free tools and packages in C11, Java, and so forth that can read data in this format.

Good Programming Practice

Unless you must exchange data with non-MATLAB programs, always use the load
and save commands to save data sets in MAT file format. This format is efficient
and transportable across MATLAB implementations, and it preserves all details of
all MATLAB data types.

11.2 More about the load and save Commands | 417

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

418 | Chapter 11 Input/Output Functions

The save –ascii command will not save cell or structure array data at
all, and it converts string data to numbers before saving it. The load –ascii
command will only load space- or tab-separated data with an equal number of
elements on each row, and it will place all of the data into a single variable with
the same name as the input file. If you need anything more elaborate (saving and
loading strings, cells, structure arrays, and so on in formats suitable for exchanging
with other programs), then it will be necessary to use the other file I/O commands
described in this chapter.

If the file name and the names of the variables to be loaded or saved are in
strings, then you should use the function forms of the load and save commands.
For example, the following fragment of code asks the user for a file name and saves
the workspace in that file.

filename = input('Enter save file name:','s');
save (filename,'-mat');

11.3 An Introduction to MATLAB File Processing

To use files within a MATLAB program, we need some way to select the desired
file and to read from or write to it. MATLAB has a very flexible method to read and
write files, whether they are on disk, memory stick, or some other device attached
to the computer. This mechanism is known as the file id (sometimes known as fid).
The file id is a number assigned to a file when it is opened, and is used for all read-
ing, writing, and control operations on that file. The file id is a positive integer. Two
file id’s are always open—file id 1 is the standard output device (stdout) and file
id 2 is the standard error (stderr) device for the computer on which MATLAB
is executing. Additional file id’s are assigned as files are opened, and released as
files are closed.

Several MATLAB functions may be used to control disk file input and output.
The file I/O functions are summarized in Table 11.4.

File id’s are assigned to disk files or devices using the fopen statement, and
are detached from them using the fclose statement. Once a file is attached to a file
id using the fopen statement, we can read and write to that file using MATLAB
file input and output statements. When we are through with the file, the fclose
statement closes the file and makes the file id invalid. The frewind and fseek
statements may be used to change the current reading or writing position in a file
while it is open.

Data can be written to and read from files in two possible ways: as binary data
or as formatted character data. Binary data consists of the actual bit patterns that are
used to store the data in computer memory. Reading and writing binary data is very
efficient, but a user cannot read the data stored in the file. Data in formatted files is
translated into characters that can be read directly by a user. However, formatted I/O
operations are slower and less efficient than binary I/O operations. We will discuss
both types of I/O operations later in this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.4 File Opening and Closing | 419

11.4 File Opening and Closing

The file opening and closing functions, fopen and fclose, are described below.

11.4.1 The fopen Function

The fopen function opens a file and returns a file id number for use with the file.
The basic forms of this statement are

fid = fopen(filename,permission)
[fid, message] = fopen(filename,permission)
[fid, message] = fopen(filename,permission,format)
[fid, message] = fopen(filename,permission,format,encoding)

where filename is a string specifying the name of the file to open, permission is a
character string specifying the mode in which the file is opened, format is an optional
string specifying the numeric format of the data in the file, and encoding is the char-
acter encoding to use for subsequent read and write operations. If the open is successful,
fid will contain a positive integer after this statement is executed, and message will be

Table 11.4: MATLAB Input/Output Functions

Category Function Description

Load/Save Workspace load Loads workspace

save Saves workspace

File Opening and Closing fopen Opens file

fclose Closes file

Binary I/O fread Reads binary data from file

fwrite Writes binary data to file

Formatted I/O fscanf Reads formatted data from file

fprintf Writes formatted data to file

fgetl Reads line from file, discards newline character

fgets Reads line from file, keeps newline character

File Positioning, Status,
and Miscellaneous

delete Deletes file

exist Checks for the existence of a file

ferror Inquires file I/O error status

feof Tests for end-of-file

fseek Sets file position

ftell Checks file position

frewind Rewinds file

Temporary Files tempdir Gets temporary directory name

tempname Gets temporary file name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

420 | Chapter 11 Input/Output Functions

an empty string. If the open fails, fid will contain a –1after this statement is executed,
and message will be a string explaining the error. If a file is opened for reading and it is
not in the current directory, MATLAB will search for it along the MATLAB search path.

The possible permission strings are shown in Table 11.5.
On some platforms, such as PCs, it is important to distinguish between text files

and binary files. If a file is to be opened in text mode, then a t should be added to the
permissions string (for example, 'rt' or 'rt+'). If a file is to be opened in binary
mode, a b may be added to the permissions string (for example, 'rb'), but this is not
actually required since files are opened in binary mode by default. This distinction
between text and binary files does not exist on UNIX or Linux computers, so the
t or b is never needed on those systems.

The format string in the fopen function specifies the numeric format of the
data stored in the file. This string is only needed when transferring files between
computers with incompatible numeric data formats, so it is rarely used. A few of
the possible numeric formats are shown in Table 11.6; see the MATLAB Language
Reference Manual for a complete list of possible numeric formats.

The encoding string in the fopen function specifies the type of character
encoding to be used in the file. This string is only needed when not using the
default character encoding, which is UTF-8. Examples of legal character encodings
include 'UTF-8', 'ISO-8859-1', and 'windows-1252'. See the MATLAB
Language Reference Manual for a complete list of possible encodings.

There are also two forms of this function that provide information rather than
open files. The function

fids = fopen('all')

returns a row vector containing a list of all file id’s for currently open files (except
for stdout and stderr). The number of elements in this vector is equal to the
number of open files. The function

[filename, permission, format] = fopen(fid)

Table 11.5: fopen File Permissions

File Permission Meaning

 'r' Opens an existing file for reading only (default)

 'r+' Opens an existing file for reading and writing

 'w' Deletes the contents of an existing file (or creates a new file) and opens it for
writing only

 'w+' Deletes the contents of an existing file (or creates a new file) and opens it for
reading and writing

 'a' Opens an existing file (or creates a new file) and opens it for writing only,
appending to the end of the file.

 'a+' Opens an existing file (or creates a new file) and opens it for reading and
writing, appending to the end of the file.

 'W' Writes without automatic flushing (special command for tape drives)

 'A' Appends without automatic flushing (special command for tape drives)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.4 File Opening and Closing | 421

returns the file name, permission string, and numeric format for an open file specified
by file id.

Some examples of correct fopen functions are shown below.

Case 1: Opening a Binary File for Input
The function below opens a file named example.dat for binary input only.

fid = fopen('example.dat','r')

The permission string is 'r', indicating that the file is to be opened for reading only.
The string could have been 'rb', but this is not required because binary access is
the default case.

Case 2: Opening a File for Text Output
The functions below open a file named outdat for text output only.

fid = fopen('outdat','wt')

or

fid = fopen('outdat','at')

The 'wt' permissions string specifies that the file is a new text file; if it already exists,
then the old file will be deleted and a new empty file will be opened for writing. This is the
proper form of the fopen function for an output file if we want to replace preexisting data.

The 'at' permissions string specifies that we want to append to an existing text
file. If it already exists, then it will be opened and new data will be appended to the
currently existing information. This is the proper form of the fopen function for an
output file if we don’t want to replace preexisting data.

Case 3: Opening a Binary File for Read/Write Access
The function below opens a file named junk for binary input and output.

fid = fopen('junk','r+')

The function below also opens the file for binary input and output.

fid = fopen('junk','w+')

Table 11.6: fopen Numeric Format Strings

File Permission Meaning

 'native' or 'n' Numeric format for the machine MATLAB is executing on (default)

 'ieee-le' or 'l' IEEE floating point with little-endian byte ordering

 'ieee-be' or 'b' IEEE floating point with big-endian byte ordering

 'ieee-le.l64' or 'a' IEEE floating point with little-endian byte ordering and 64-bit-long
data type

 'ieee-le.b64' or 's' IEEE floating point with big-endian byte ordering and 64-bit-long
data type

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

422 | Chapter 11 Input/Output Functions

The difference between the first and the second statements is that the first statement
requires the file to exist before it is opened, while the second statement will delete
any preexisting file.

Good Programming Practice

Always be careful to specify the proper permissions in fopen statements, depending
on whether you are reading from or writing to a file. This practice will help prevent
errors, such as accidentally overwriting data files that you want to keep.

Good Programming Practice

Always check the status after a file open operation to make sure that it is successful.
If the file open fails, tell the user and provide a way to recover from the problem.

It is important to check for errors after you attempt to open a file. If the fid is 21,
then the file failed to open. You should report this problem to the user, and allow him
or her to either select another file or else quit the program.

11.4.2 The fclose Function

The fclose function closes a file. Its form is

status = fclose(fid)
status = fclose('all')

where fid is a file id and status is the result of the operation. If the operation is
successful, status will be 0, and if it is unsuccessful, status will be 21.

The form status = fclose('all') closes all open files except for stdout
(fid = 1) and stderr (fid = 2). It returns a status of 0 if all files close success-
fully, and –1 otherwise.

11.5 Binary I/O Functions

The binary I/O functions, fwrite and fread, are described below.

11.5.1 The fwrite Function

The fwrite function writes binary data in a user-specified format to a file. Its form is

count = fwrite(fid,array,precision)
count = fwrite(fid,array,precision,skip)
count = fwrite(fid,array,precision,skip,format)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Binary I/O Functions | 423

where fid is the file id of a file opened with the fopen function, array is the array
of values to write out, and count is the number of values written to the file.

MATLAB writes out data in column order, which means that the entire first column
is written out, followed by the entire second column, and so forth. For example, if

array 5 3
1 2

3 4

5 6
4, then the data will be written out in the order 1, 3, 5, 2, 4, 6.

The optional precision string specifies the format in which the data will
be output. MATLAB supports both platform-independent precision strings, which
are the same for all computers that MATLAB runs on, and platform-dependent
precision strings that vary among different types of computers. You should only
use the platform-independent strings, and those are the only forms presented in
this book.

For convenience, MATLAB accepts some C and Fortran data type equivalents
for the MATLAB precision strings. If you are a C or Fortran programmer, you may
find it more convenient to use the names of the data types in the language that you
are most familiar with.

The possible platform-independent precisions are presented in Table 11.7. All
of these precisions work in units of bytes, except for 'bitN' or 'ubitN', which
work in units of bits.

Table 11.7: Selected MATLAB Precision Strings

MATLAB
Precision
String

C/Fortran
Equivalent Meaning

 'char' 'char*1' 8-bit characters

 'schar' 'signed char' 8-bit signed character

 'uchar' 'unsigned char' 8-bit unsigned character

 'int8' 'integer*1' 8-bit integer

 'int16' 'integer*2' 16-bit integer

 'int32' 'integer*4' 32-bit integer

 'int64' 'integer*8' 64-bit integer

 'uint8' 'integer*1' 8-bit unsigned integer

 'uint16' 'integer*2' 16-bit unsigned integer

 'uint32' 'integer*4' 32-bit unsigned integer

 'uint64' 'integer*8' 64-bit unsigned integer

 'float32' 'real*4' 32-bit floating point

 'float64' 'real*8' 64-bit floating point

 'bitN' N-bit signed integer, 1 # N # 64

 'ubitN' N-bit unsigned integer, 1 # N # 64

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

424 | Chapter 11 Input/Output Functions

The optional argument skip specifies the number of bytes to skip in the output
file before each write. This option is useful for placing values at certain points in
fixed-length records. Note that if precision is a bit format like 'bitN' or
 'ubitN', skip is specified in bits instead of bytes.

The optional argument format is an optional string specifying the numeric
format of the data in the file, as shown in Table 11.6.

11.5.2 The fread Function

The fread function reads binary data in a user-specified format from a file, and
returns the data in a (possibly different) user-specified format. Its form is

[array,count] = fread(fid,size,precision)
[array,count] = fread(fid,size,precision,skip)
[array,count] = fread(fid,size,precision,skip,format)

where fid is the file id of a file opened with the fopen function, size is the
number of values to read, array is the array to contain the data, and count is the
number of values read from the file.

The optional argument size specifies the amount of data to be read from the
file. There are three versions of this argument:

■■ n—Read exactly n values. After this statement, array will be a column
vector containing n values read from the file.

■■ Inf—Read until the end of the file. After this statement, array will be a
column vector containing all of the data until the end of the file.

■■ [n m]—Read exactly n × m values, and format the data as an n × m array.

If fread reaches the end of the file and the input stream does not contain
enough bits to write out a complete array element of the specified precision, fread
pads the last byte or element with zero bits until the full value is obtained. If an error
occurs, reading is done up to the last full value.

The precision argument specifies both the format of the data on the disk and
the format of the data array to be returned to the calling program. The general form
of the precision string is

'disk_precision => array_precision'

where disk_precision and array_precision are both one of the precision
strings found in Table 11.7. The array_precision value can be defaulted. If
it is missing, then the data is returned in a double array. There is also a shortcut
form of this expression if the disk precision and the array precision are the same:
 '*disk_precision'.

A few examples of precision strings are shown below:

 'single' Reads data in single precision format from disk and
returns it in a double array.

 'single=>single' Reads data in single precision format from disk and
returns it in a single array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.5 Binary I/O Functions | 425

The optional argument skip specifies the number of bytes to skip in the out-
put file before each write. This option is useful for placing values at certain points
in fixed-length records. Note that if precision is a bit format like v'bitN' or
 'ubitN', skip is specified in bits instead of bytes.

The optional argument format is an optional string specifying the numeric
format of the data in the file, as shown in Table 11.6.

 '*single ' Reads data in single precision format from disk and
returns it in a single array (a shorthand version of
the previous string).

 'double=>real*4' Reads data in double precision format from disk and
returns it in a single array.

Example 11.1—Writing and Reading Binary Data

The example script file shown below creates an array containing 10,000 random
values, opens a user-specified file for writing only, writes the array to disk in 64-bit
floating-point format, and closes the file. It then opens the file for reading and reads
the data back into a 100 3 100 array. It illustrates the use of binary I/O operations.

% Script file: binary_io.m
%
% Purpose:
% To illustrate the use of binary i/o functions.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/21/14 S. J. Chapman Original code
%
% Define variables:
% count -- Number of values read / written
% fid -- File id
% filename -- File name
% in_array -- Input array
% msg -- Open error message
% out_array -- Output array
% status -- Operation status

% Prompt for file name
filename = input('Enter file name:','s');

% Generate the data array
out_array = randn(1,10000);

% Open the output file for writing.
[fid,msg] = fopen(filename,'w');

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

426 | Chapter 11 Input/Output Functions

% Was the open successful?
if fid > 0

 % Write the output data.
 count = fwrite(fid,out_array,'float64');

 % Tell user
 disp([int2str(count)'values written...']);

 % Close the file
 status = fclose(fid);

else

 % Output file open failed. Display message.
 disp(msg);

end

% Now try to recover the data. Open the
% file for reading.
[fid,msg] = fopen(filename,'r');

% Was the open successful?
if fid > 0

 % Write the output data.
 [in_array, count] = fread(fid,[100 100],'float64');

 % Tell user
 disp([int2str(count) 'values read...']);

 % Close the file
 status = fclose(fid);

else

 % Input file open failed. Display message.
 disp(msg);

end
When this program is executed, the results are

» binary_io
Enter file name: testfile
10000 values written...
10000 values read...

An 80,000-byte file named testfile was created in the current directory. This
file is 80,000 bytes long because it contains 10,000 64-bit values, and each value
occupies 8 bytes.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Formatted I/O Functions | 427

QUIZ 11.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 11.1 through 11.5. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a fellow stu-
dent. The answers to this quiz are found in the back of the book.

1. Why is the textread function especially useful for reading data created
by programs written in other languages?

2. What are the advantages and disadvantages of saving data in a MAT file?
3. What MATLAB functions are used to open and close files? What is the dif-

ference between opening a binary file and opening a text file?
4. Write the MATLAB statement to open a preexisting file named

myinput.dat for appending new text data.
5. Write the MATLAB statements required to open an unformatted input file

for reading only. Check to see if the file exists and generate an appropriate
error message if it doesn’t.

For questions 6 and 7, determine whether the MATLAB statements are correct
or not. If they are in error, specify what is wrong with them.

6. fid = fopen('file1','rt');
 array = fread(fid,Inf)
 fclose(fid);

7. fid = fopen('file1','w');
 x = 1:10;
 count = fwrite(fid,x);
 fclose(fid);
 fid = fopen('file1','r');
 array = fread(fid,[2 Inf])
 fclose(fid);

11.6 Formatted I/O Functions

The formatted I/O functions are described below.

11.6.1 The fprintf Function

The fprintf function writes formatted data in a user-specified format to a file. Its form is

count = fprintf(fid,format,val1,val2,...)
fprint(format,val1,val2,...)

where fid is the file id of a file to which the data will be written, and format is
the format string controlling the appearance of the data. If fid is missing, the data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

428 | Chapter 11 Input/Output Functions

is written to the standard output device (the Command Window). This is the form of
fprintf that we have been using since Chapter 2.

The format string specifies the alignment, significant digits, field width, and other
aspects of output format. It can contain ordinary alphanumeric characters along with
special sequences of characters that specify the exact format in which the output data
will be displayed. The structure of a typical format string is shown in Figure 11.1.
A single % character always marks the beginning of a format—if an ordinary % sign
is to be printed out, then it must appear in the format string as %%. After the % char-
acter, the format can have a flag, a field width and precision specifier, and a conversion
specifier. The % character and the conversion specifier are always required in any for-
mat, while the field and field width and precision specifier are optional.

The possible conversion specifiers are listed in Table 11.8, and the possible flags
are listed in Table 11.9. If a field width and precision are specified in a format, then
the number before the decimal point is the field width, which is the number of charac-
ters used to display the number. The number after the decimal point is the precision,
which is the minimum number of significant digits to display after the decimal point.

The Components of a Format Speci�er

Marker
(Required)

Field Width
(Optional)

Precision
(Optional)

Format Descriptor
(Required)

Modifier
(Optional)

%212.5e

Figure 11.1 The structure of a typical format specifier.

Table 11.8: Format Conversion Specifiers for fprintf

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1416e+00)

%E Exponential notation (using an uppercase E as in 3.1416E+00)

%f Fixed-point notation

%g The more compact of %e or %f. Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Formatted I/O Functions | 429

In addition to ordinary characters and formats, certain special escape characters
can be used in a format string. These special characters are listed in Table 11.10.

Table 11.9: Format Flags

Flag Description

Minus sign (-) Left-justifies the converted argument in its field (Example:
%-5.2d). If this flag is not present, the argument is right-justified.

+ Always print a + or - sign (Example: %+5.2d).

0 Pad argument with leading zeros instead of blanks (Example:
%05.2d).

Table 11.10: Escape Characters in Format Strings

Escape Sequences Description

\n New line

\t Horizontal tab

\b Backspace

\r Carriage return

\f Form feed

\\ Print an ordinary backslash (\) symbol

\'' or '' Print an apostrophe or single quote

%% Print an ordinary percent (%) symbol

11.6.2 Understanding Format Conversion Specifiers

The best way to understand the wide variety of format conversion specifiers is by
example, so we will now present several examples along with their results.

Case 1: Displaying Decimal Data
Decimal (integer) data is displayed with the %d format conversion specifier. The d
may be preceded by a flag and a field width and precision specifier, if desired. If used,
the precision specifier sets a minimum number of digits to display. If there are not
enough digits, leading zeros will be added to the number.

If a non-decimal number is displayed with the %d conversion specifier, the spec-
ifier will be ignored and the number will be displayed in exponential format. For
example,

fprintf('%6d\n',123.4)

produces the result 1.234000e+002.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

430 | Chapter 11 Input/Output Functions

Case 2: Displaying Floating-Point Data
Floating-point data can be displayed with the %e, %f, or %g format conversion spec-
ifiers. They may be preceded by a flag and a field width and precision specifier, if
desired. If the specified field width is too small to display the number, it is ignored.
Otherwise, the specified field width is used.

Function Result Comment

fprintf('%d\n',123) ----|----|
123

Displays the number using as many characters
as required. For the number 123, three characters
are required.

fprintf('%6d\n',123) ----|----|
 123

Displays the number in a 6-character- wide
field. By default the number is right justified in
the field.

fprintf('%6.4d\n',123) ----|----|
 0123

Displays the number in a 6-character- wide
field using a minimum of 4 characters.
By default the number is right justified in
the field.

fprintf('%-6.4d\n',123) ----|----|
0123

Displays the number in a 6-character- wide
field using a minimum of 4 characters. The
number is left justified in the field.

fprintf('%+6.4d\n',123) ----|----|
 +0123

Displays the number in a 6-character- wide
field using a minimum of 4 characters plus a
sign character. By default the number is right
justified in the field.

Function Result Comment

fprintf('%f\n',123.4) ----|----|
123.400000

Displays the number using as many characters
as required. The default case for %f is to
display 6 digits after the decimal place.

fprintf('%8.2f\n',123.4) ----|----|
 123.40

Displays the number in an 8-character-wide
field, with two places after the decimal point.
The number is right justified in the field.

fprintf('%4.2f\n',123.4) ----|----|
123.40

Displays the number in a 6-character-wide field.
The width specification was ignored because it
was too small to display the number.

fprintf('%10.2e\n',123.4) ----|----|
 1.23e+002

Displays the number in exponential format in a
10-character-wide field using 2 decimal places.
By default the number is right justified in the
field.

fprintf('%10.2E\n',123.4) ----|----|
 1.23E+002

The same but with a capital E for the exponent.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Formatted I/O Functions | 431

Case 3: Displaying Character Data
Character data may be displayed with the %c or %s format conversion specifiers.
They may be preceded by field width specifier, if desired. If the specified field width
is too small to display the number, it is ignored. Otherwise, the specified field width
is used.

Function Result Comment

fprintf('%c\n','s') ----|----|
s

Displays a single character.

fprintf('%s\n','string') ----|----|
string

Displays the character string.

fprintf('%8s\n','string') ----|----|
 string

Displays the character string in an
8-character-wide field. By default the
string is right justified in the field.

fprintf('%-8s\n','string') ----|----|
string

Displays the character string in an
8-character-wide field. The string is
left justified in the field.

11.6.3 How Format Strings Are Used

The fprintf function contains a format string followed by zero or more values to
print out. When the fprintf function is executed, the list of output values associ-
ated with the fprintf function is processed together with the format string. The
function begins at the left end of the variable list and the left end of the format string,
and scans from left to right, associating the first value in the output list with the first
format descriptor in the format string, and so on. The variables in the output list must
be of the same type and in the same order as the format descriptors in the format, or
unexpected results may be produced. For example, if we attempt to display a floating -
point number such as 123.4 with a %c or %d descriptor, the descriptor is ignored
totally and the number is printed in exponential notation.

As the program moves from left to right through the variable list of an fprintf
function, it also scans from left to right through the associated format string. Format
strings are scanned according to the following rules:

Programming Pitfalls

Make sure that there is a one-to-one correspondence between the types of the data in
an fprintf function and the types of the format conversion specifiers in the asso-
ciated format string, or your program will produce unexpected results.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

432 | Chapter 11 Input/Output Functions

1. Format strings are scanned in order from left to right. The first format
conversion specifier in the format string is associated with the first value
in the output list of the fprintf function, and so forth. The type of each
format conversion specifier must match the type of the data being output.
In the example shown below, specifier %d is associated with variable a, %f
with variable b, and %s with variable c. Note that the specifier types match
the data types.

 a = 10; b = pi; c = 'Hello';
 fprintf('Output: %d %f %s\n',a,b,c);

2. If the scan reaches the end of the format string before the fprintf
function runs out of values, the program starts over at the beginning of the
format string. For example, the statements

 a = [10 20 30 40];
 fprintf('Output = %4d %4d\n',a);

will produce the output

 ----|----|----|----|
 Output = 10 20
 Output = 30 40

When the function reaches the end of the format string after printing a(2), it
starts over at the beginning of the string to print a(3) and a(4).

3. If the fprintf function runs out of variables before the end of the format
string, the use of the format string stops at the first format conversion
specifier without a corresponding variable or at the end of the format string,
whichever comes first. For example, the statements

 a = 10; b = 15; c = 20;
 fprintf('Output = %4d\nOutput = %4.1f\n',a,b,c);

will produce the output

 Output = 10
 Output = 15.0
 Output = 20
 Output = »

The use of the format string stops at %4.1f, which is the first unmatched
format conversion specifier. On the other hand, the statements

 voltage = 20;
 fprintf('Voltage = %6.2f kV.\n',voltage);

will produce the output

 Voltage = 20.00 kV,

since there are no unmatched format conversion specifiers, and the use of the
format stops at the end of the format string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Formatted I/O Functions | 433

11.6.4 The sprintf Function

The sprintf function is exactly like fprintf, except that it writes formatted
data to a character string instead of a file. Its form is

string = sprint(format,val1,val2,...)

where fid is the file id of a file to which the data will be written and format is the
format string controlling the appearance of the data. This function is very useful for
creating formatted data that can be displayed within a program.

Example 11.2— Generating a Table of Information

A good way to illustrate the use of fprintf functions is to generate and print
out a table of data. The example script file shown below generates the square roots,
squares, and cubes of all integers between 1 and 10 and presents the data in a table
with appropriate headings.

% Script file: create_table.m
%
% Purpose:
% To create a table of square roots, squares, and
% cubes.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/22/14 S. J. Chapman Original code
%
% Define variables:
% cube -- Cubes
% ii -- Index variable
% square -- Squares
% square_roots -- Square roots
% out -- Output array

% Print the title of the table.
fprintf('Table of Square Roots, Squares, and Cubes\n\n');

% Print column headings
fprintf('Number Square Root Square Cube\n');
fprintf('====== =========== ====== ====\n');

% Generate the required data
ii = 1:10;
square_root = sqrt(ii);
square = ii.ˆ2;
cube = ii.ˆ3;

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

434 | Chapter 11 Input/Output Functions

% Create the output array
out = [ii' square_root' square' cube'];

% Print the data
for ii = 1:10
 fprintf ('%2d %11.4f %6d %8d\n',out(ii,:));
end

When this program is executed, the result is

» table

Table of Square Roots, Squares, and Cubes

Number Square Root Square Cube
====== =========== ====== ====
 1 1.0000 1 1
 2 1.4142 4 8
 3 1.7321 9 27
 4 2.0000 16 64
 5 2.2361 25 125
 6 2.4495 36 216
 7 2.6458 49 343
 8 2.8284 64 512
 9 3.0000 81 729
 10 3.1623 100 1000

▶

11.6.5 The fscanf Function

The fscanf function reads formatted data in a user-specified format from a file. Its
form is

array = fscanf(fid,format)
[array, count] = fscanf(fid,format,size)

where fid is the file id of a file from which the data will be read, format is
the format string controlling how the data is read, and array is the array that
receives the data. The output argument count returns the number of values read
from the file.

The optional argument size specifies the amount of data to be read from the
file. There are three versions of this argument:

■■ n—Read exactly n values. After this statement, array will be a column vec-
tor containing n values read from the file.

■■ Inf—Read until the end of the file. After this statement, array will be a
column vector containing all of the data until the end of the file.

■■ [n m]—Read exactly n × m values, and format the data as an n × m array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Formatted I/O Functions | 435

The format string specifies the format of the data to be read. It can contain ordi-
nary characters along with format conversion specifiers. The fscanf function com-
pares the data in the file with the format conversion specifiers in the format string. As
long as the two match, fscanf converts the value and stores it in the output array.
This process continues until the end of the file or until the amount of data in size
has been read, whichever comes first.

If the data in the file does not match the format conversion specifiers, the opera-
tion of fscanf stops immediately.

The format conversion specifiers for fscanf are basically the same as those for
fprintf. The most common specifiers are shown in Table 11.11.

To illustrate the use of fscanf, we will attempt to read a file called x.dat
containing the following values on two lines:

10.00 20.00
30.00 40.00

1. If the file is read with the statement
 [z, count] = fscanf(fid,'%f');

variable z will be the column vector 3
10

20

30

40
4 and count will be 4.

Table 11.11: Format Conversion Specifiers for fscanf

Specifier Description

%c Reads a single character. This specifier reads any character
including blanks, new lines, and so on.

%Nc Reads N characters.

%d Reads a decimal number (ignores blanks).

%e %f %g Reads a floating-point number (ignores blanks).

%i Reads a signed integer (ignores blanks).

%s Reads a string of characters. The string is terminated by blanks
or other special characters such as new lines.

2. If the file is read with the statement

 [z, count] = fscanf(fid,'%f',[2 2]);

variable z will be the array 310 30

20 404 and count will be 4.

3. Next, let’s try to read this file as decimal values. If the file is read with the
statement

 [z, count] = fscanf(fid,'%d',Inf);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

436 | Chapter 11 Input/Output Functions

variable z will be the single value 10 and count will be 1. This happens
because the decimal point in the 10.00 does not match the format
conversion specifier, and fscanf stops at the first mismatch.

4. If the file is read with the statement

 [z, count] = fscanf(fid,'%d.%d',[1 Inf]);

variable z will be the row vector f10 0 20 0 30 0 40 0g and
count will be 8. This happens because the decimal point is now matched
in the format conversion specifier and the numbers on either side of the
decimal point are interpreted as separate integers.

5. Now let’s try to read the file as individual characters. If the file is read with
the statement

 [z, count] = fscanf(fid,'%c');

variable z will be a row vector containing every character in the file,
including all spaces and newline characters! Variable count will be equal
to the number of characters in the file.

6. Finally, let’s try to read the file as a character string. If the file is read with
the statement

 [z, count] = fscanf(fid,'%s');

variable z will be a row vector containing the 20 characters
10.0020.0030.0040.00, and count will be 4. This happens because
the string specifier ignores white space, and the function found four separate
strings in the file.

11.6.6 The fgetl Function

The fgetl function reads the next line excluding the end-of-line characters from a
file as a character string. Its form is

line = fgetl(fid)

where fid is the file id of a file from which the data will be read, and line is the
character array that receives the data. If fgetl encounters the end of a file, the value
of line is set to 21.

11.6.7 The fgets Function

The fgets function reads the next line including the end-of-line characters from a
file as a character string. Its form is

line = fgets(fid)

where fid is the file id of a file from which the data will be read, and line is the
character array that receives the data. If fgets encounters the end of a file, the value
of line is set to 21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.7 Comparing Formatted and Binary I/O Functions | 437

11.7 Comparing Formatted and Binary I/O Functions

Formatted I/O operations produce formatted files. A formatted file contains recog-
nizable characters, numbers, and so forth that are stored as ordinary text. These files
are easy to distinguish, because we can see the characters and numbers in the file
when we display them on the screen or print them on a printer. However, to use data
in a formatted file, a MATLAB program must translate the characters in the file into
the internal data format used by the computer. Format conversion specifiers provide
the instructions for this translation.

Formatted files have the advantages that we can readily see what sort of data
they contain, and it is easy to exchange data between different types of programs
using them. However, they also have disadvantages. A program must do a good
deal of work to convert a number between the computer’s internal representation
and the characters contained in the file. All of this work is just wasted effort if
we are going to be reading the data back into another MATLAB program. Also,
the internal representation of a number usually requires much less space than the
corresponding representation of the number found in a formatted file. For example,
the internal representation of a 64-bit floating-point value requires 8 bytes of space.
The character representation of the same value would be 6d.ddddddddddddddE6ee,
which requires 21 bytes of space (one byte per character). Thus, storing data in
character format is inefficient and wasteful of disk space.

Unformatted files (or binary files) overcome these disadvantages by copying
the information from the computer’s memory directly to the disk file with no conver-
sions at all. Since no conversions occur, no computer time is wasted formatting the
data. In MATLAB, binary I/O operations are much faster than formatted I/O opera-
tions because there is no conversion. Furthermore, the data occupies a much smaller
amount of disk space. On the other hand, unformatted data cannot be examined and
interpreted directly by humans. In addition, it usually cannot be moved between dif-
ferent types of computers, because those types of computers have different internal
ways to represent integers and floating-point values.

Formatted and unformatted files are compared in Table 11.12. In general, for-
matted files are best for data that people must examine, or data that may have to be

Table 11.12: Comparison of Formatted and Unformatted Files

Formatted Files Unformatted Files

Can display data on output devices. Cannot display data on output
devices.

Can easily transport data between different
computers.

Cannot easily transport data
between computers with different
internal data representations.

Requires a relatively large amount of disk space. Requires relatively little disk space.

Slow: requires a lot of computer time. Fast: requires little computer time.

Truncation or rounding errors possible in formatting. No truncation or rounding errors.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

438 | Chapter 11 Input/Output Functions

moved between different programs on different computers. Unformatted files are
best for storing information that will not need to be examined by human beings, and
that will be created and used on the same type of computer. Under those circum-
stances, unformatted files are both faster and occupy less disk space.

Good Programming Practice

Use formatted files to create data that must be readable by humans or that must be
transferable between programs on computers of different types. Use unformatted files
to efficiently store large quantities of data that do not have to be directly examined
and that will remain on only one type of computer. Also, use unformatted files when
I/O speed is critical.

Example 11.3—Comparing Formatted and Binary I/O

The program shown below compares the time required to read and write a 10,000 ele-
ment array, using both formatted and binary I/O operations. Note that each operation
is repeated 10 times and the average time is reported.

% Script file: compare.m
%
% Purpose:
% To compare binary and formatted I/O operations.
% This program generates an array of 10,000 random
% values and writes it to disk both as a binary and
% as a formatted file.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/22/14 S. J. Chapman Original code
%
% Define variables:
% count -- Number of values read / written
% fid -- File id
% in_array -- Input array
% msg -- Open error message
% out_array -- Output array
% status -- Operation status
% time -- Elapsed time in seconds

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.7 Comparing Formatted and Binary I/O Functions | 439

%%
% Generate the data array.
%%
out_array = randn(1,100000);

%%
% First, time the binary output operation.
%%
% Reset timer
tic;

% Loop for 10 times
for ii = 1:10

 % Open the binary output file for writing.
 [fid,msg] = fopen('unformatted.dat','w');

 % Write the data
 count = fwrite(fid,out_array,'float64');

 % Close the file
 status = fclose(fid);

end

% Get the average time
time = toc / 10;
fprintf ('Write time for unformatted file = %6.3f\n',time);

%%
% Next, time the formatted output operation.
%%
% Reset timer
tic;

% Loop for 10 times
for ii = 1:10

 % Open the formatted output file for writing.
 [fid,msg] = fopen('formatted.dat','wt');

 % Write the data
 count = fprintf(fid,'%23.15e\n',out_array);

 % Close the file
 status = fclose(fid);
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

440 | Chapter 11 Input/Output Functions

% Get the average time
time = toc / 10;
fprintf ('Write time for formatted file = %6.3f\n',time);

%%
% Time the binary input operation.
%%
% Reset timer
tic;

% Loop for 10 times
for ii = 1:10

 % Open the binary file for reading.
 [fid,msg] = fopen('unformatted.dat','r');

 % Read the data
 [in_array, count] = fread(fid,Inf,'float64');

 % Close the file
 status = fclose(fid);

end

% Get the average time
time = toc / 10;
fprintf ('Read time for unformatted file = %6.3f\n',time);

%%
% Time the formatted input operation.
%%

% Reset timer
tic;

% Loop for 10 times
for ii = 1:10

 % Open the formatted file for reading.
 [fid,msg] = fopen('formatted.dat','rt');

 % Read the data
 [in_array, count] = fscanf(fid,'%f',Inf);

 % Close the file
 status = fclose(fid);

end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.7 Comparing Formatted and Binary I/O Functions | 441

% Get the average time
time = toc / 10;
fprintf ('Read time for formatted file = %6.3f\n',time);

When this program is executed in MATLAB R2014b, the results are:

» compare
Write time for unformatted file = 0.001
Write time for formatted file = 0.095
Read time for unformatted file = 0.002
Read time for formatted file = 0.139

The files written to disk are shown below.

D:\book\matlab\chap8>dir *.dat
Volume in drive C is SYSTEM
Volume Serial Number is 0866-1AC5

Directory of c:\book\matlab\5e\rev1\chap11

09/09/2014 07:01 PM <DIR> .
09/09/2014 07:01 PM <DIR> ..
09/09/2014 07:01 PM 250,000 formatted.dat
09/09/2014 07:01 PM 80,000 unformatted.dat
 4 File(s) 330,000 bytes
 2 Dir(s) 181,243,170,816 bytes free

Note that the write time for the formatted file was almost 100 times slower than the
write time for the unformatted file, and the read time for the formatted file was about
70 times slower than the read time for the unformatted file. Furthermore, the format-
ted file was 3 times larger than the unformatted file.

It is clear from these results that unless you really need formatted data, binary
I/O operations are the preferred way to save data in MATLAB.

▶

QUIZ 11.2

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 11.6 and 11.7. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow student. The
answers to this quiz are found in the back of the book.

1. What is the difference between unformatted (binary) and formatted I/O
operations?

2. When should formatted I/O be used? When should unformatted I/O be used?
3. Write the MATLAB statements required to create a table that contains the

sine and cosine of x for x 5 0, 0.1p, …, p. Be sure to include a title and
label on the table.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

442 | Chapter 11 Input/Output Functions

For questions 4 and 5, determine whether the MATLAB statements are correct
or not. If they are in error, specify what is wrong with them.

4. a = 2*pi;
 b = 6;
 c = 'hello';
 fprintf(fid,'%s %d %g\n',a,b,c);

5. data1 = 1:20;
 data2 = 1:20;
 fid = fopen('xxx','w+');
 fwrite(fid,data1);
 fprintf(fid,'%g\n',data2);

11.8 File Positioning and Status Functions

As we stated previously, MATLAB files are sequential—they are read in order from
the first record in the file to the last record in the file. However, we sometimes need to
read a piece of data more than once or to process a whole file more than once during
a program. How can we skip around within a sequential file?

The MATLAB function exist can determine whether or not a file exists before
it is opened. There are two functions to tell us where we are within a file once it is
opened: feof and ftell. In addition, there are two functions to help us move
around within the file: frewind and fseek.

Finally, MATLAB includes a function, ferror, that provides a detailed description
of cause of I/O errors when they occur. We will now explore these five functions, looking
at ferror first because it can be used with all of the other functions.

11.8.1 The exist Function

The MATLAB function exist checks for the existence of a variable in a workspace,
a built-in function, or a file in the MATLAB search path. The forms of the ferror
function are:

ident = exist('item');
ident = exist('item','kind');

If 'item' exists, this function returns a value based on its type. The possible results
are shown in Table 11.13.

The second form of the exist function restricts the search for an item to a
specified kind. The legal types are 'var', 'file', 'builtin', and 'dir'.

The exist function is very important because we can use it to check for the
existence of a file before it is overwritten by fopen. The permissions 'w' and 'w+'
delete the contents in an existing file when they open it. Before a programmer allows
fopen to delete an existing file, he or she should check with the user to confirm that
the file really should be deleted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.8 File Positioning and Status Functions | 443

Example 11.4—Opening an Output File

The program shown gets an output file name from the user and checks to see if it
exists. If it exists, the program checks to see if the user wants to delete the existing
file or to append the new data to it. If the file does not exist, then the program simply
opens the output file.

% Script file: output.m
%
% Purpose:
% To demonstrate opening an output file properly.
% This program checks for the existence of an output
% file. If it exists,the program checks to see if
% the old file should be deleted, or if the new data
% should be appended to the old file.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/24/14 S. J. Chapman Original code
%
% Define variables:
% fid -- File id
% out_filename -- Output file name
% yn -- Yes/No response

% Get the output file name.
out_filename = input('Enter output filename: ','s');

▶

Table 11.13: Values Returned by the exist Function

Value Meaning

0 Item not found

1 Item is a variable in the current workspace

2 Item is an M-file or a file of unknown type

3 Item is a MEX file

4 Item is a MDL file

5 Item is a built-in function

6 Item is a P file

7 Item is a directory

8 Item is a Java class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

444 | Chapter 11 Input/Output Functions

% Check to see if the file exists.
if exist(out_filename,'file')

 % The file exists
 disp('Output file already exists.');
 yn = input('Keep existing file? (y/n) ','s');

 if yn == 'n'
 fid = fopen(out_filename,'wt');
 else
 fid = fopen(out_filename,'at');
 end

else

 % File doesn't exist
 fid = fopen(out_filename,'wt');

end

% Output data
fprintf(fid,'%s\n',date);

% Close file
fclose(fid);

When this program is executed, the results are:

» output
Enter output filename: xxx (Non-existent file)
» type xxx

23-Mar-2014

» output
Enter output filename: xxx
Output file already exists.
Keep existing file? (y/n) y (Keep current file)
» type xxx

23-Mar-2014
23-Mar-2014 (Note new data added)

» output
Enter output filename: xxx
Output file already exists.
Keep existing file? (y/n) n (Replace current file)
» type xxx

23-Mar-2014

The program appears to be functioning correctly in all three cases.
▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.8 File Positioning and Status Functions | 445

11.8.2 The ferror Function

The MATLAB I/O system has several internal variables, including a special error
indicator that is associated with each open file. This error indicator is updated by every
I/O operation. The ferror function gets the error indicator and translates it into an
easy-to-understand character message. The forms of the ferror function are:

message = ferror(fid)
message = ferror(fid,'clear')
[message,errnum] = ferror(fid)

This function returns the most recent error message (and optionally error number)
associated with the file attached to fid. It may be called at any time after any I/O oper-
ation to get a more detailed description of what went wrong. If this function is called
after a successful operation, the message will be '..' and the error number will be 0.

The 'clear' argument clears the error indicator for a particular file id.

11.8.3 The feof Function

The feof function tests to see if the current file position is at the end of the file. The
form of the feof function is:

eofstat = feof(fid)

This function returns a logical true (1) if the current file position is at the end of the
file, and logical false (0) otherwise.

11.8.4 The ftell Function

The ftell function returns the current location of the file position indicator for the
file specified by fid. The position is a nonnegative integer specified in bytes from
the beginning of the file. A returned value of –1 for position indicates that the query
was unsuccessful. If this happens, use ferror to determine why the request failed.
The form of the ftell function is:

position = ftell(fid)

11.8.5 The frewind Function

The frewind function allows a programmer to reset a file’s position indicator to the
beginning of the file. The form of the frewind function is:

Good Programming Practice

Do not overwrite an output file without confirming that the user would like to delete
the preexisting information.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

446 | Chapter 11 Input/Output Functions

frewind(fid)

This function does not return status information.

11.8.6 The fseek Function

The fseek function allows a programmer to set a file’s position indicator to an arbitrary
location within a file. The form of the fseek function is:

status = fseek(fid,offset,origin)

This function repositions the file position indicator in the file with the given fid to
the byte with the specified offset relative to origin. The offset is measured
in bytes, with a positive number indicating motion towards the end of the file and a
negative number indicating motion towards the head of the file. The origin is a
string that can have one of three possible values.

■■ 'bof'—This is the beginning of the file.
■■ 'cof'—This is the current position within the file.
■■ 'eof'—This is the end of the file.

The returned status is zero if the operation is successful and 21 if the operation
fails. If the returned status is 21, use ferror to determine why the request failed.

As an example of using fseek and ferror together, consider the following
statements.

[fid,msg] = fopen('x','r');
status = fseek(fid,-10,'bof');
if status ~= 0
 msg = ferror(fid);
 disp(msg);
end

These commands open a file and attempt to set the file pointer 10 bytes before the
beginning of the file. Since this is impossible, fseek returns a status of 21, and
ferror gets an appropriate error message. When these statements are executed, the
result is an informative error message:

Offset is bad - before beginning-of-file.

Example 11.5—Fitting a Line to a Set of Noisy Measurements

In Example 5.6, we learned how to perform a fit of a noisy set of measurements (x,y)
to a line of the form

 y 5 mx 1 b (11.1)

The standard method for finding the regression coefficients m and b is the method
of least squares. This method is named “least squares” because it produces the line
y 5 mx 1 b for which the sum of the squares of the differences between the observed

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.8 File Positioning and Status Functions | 447

y values and the predicted y values is as small as possible. The slope of the least
squares line is given by

 m 5
_oxy+ 2 _ox+ y

_ox2+ 2 _ox+ x
 (11.2)

and the intercept of the least squares line is by

 b 5 y 2 mx (11.3)

where
Sx is the sum of the x values
Sx2 is the sum of the squares of the x values
Sxy is the sum of the products of the corresponding x and y values
x
_

 is the mean (average) of the x values
y
_

 is the mean (average) of the y values

Write a program that will calculate the least-squares slope m and y-axis inter-
cept b for a given set of noisy measured data points (x,y) that are to be found in an
input data file.

Solution

1. State the problem
Calculate the slope m and intercept b of a least-squares line that best fits
an input data set consisting of an arbitrary number of (x,y) pairs. The in-
put (x,y) data resides in a user-specified input file.

2. Define the inputs and outputs
The inputs required by this program are pairs of points (x,y), where x
and y are real quantities. Each pair of points will be located on a separate
line in the input disk file. The number of points in the disk file is not
known in advance.

The outputs from this program are the slope and intercept of the least-
squares fitted line, plus the number of points going into the fit.

3. Describe the algorithm
This program can be broken down into four major steps:

Get the name of the input file and open it
Accumulate the input statistics
Calculate the slope and intercept
Write out the slope and intercept

The first major step of the program is to get the name of the input file and to
open the file. To do this, we will have to prompt the user to enter the name
of the input file. After the file is opened, we must check to see that the open
was successful. Next, we must read the file and keep track of the number
of values entered, plus the sums Sx, Sy, Sx2, and Sxy. The pseudocode for
these steps is:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

448 | Chapter 11 Input/Output Functions

Initialize n, sum_x, sum_x2, sum_y, and sum_xy to 0
Prompt user for input file name
Open file 'filename'
Check for error on open
if no error
 Read x, y from file 'filename'
 while not at end-of-file
 n ← n + 1
 sum_x ← sum_x + x
 sum_y ← sum_y + y
 sum_x2 ← sum_x2 + xˆ2
 sum_xy ← sum_xy + x*y
 Read x, y from file 'filename'
 end
 (further processing)
end

Next, we must calculate the slope and intercept of the least-squares line.
The pseudocode for this step is just the MATLAB versions of Equations (11.2)
and (11.3).

x_bar ← sum_x / n
y_bar ← sum_y / n
slope ← (sum_xy - sum_x*y_bar) / (sum_x2 - sum_x*x_bar)
y_int ← y_bar - slope * x_bar

Finally, we must write out the results.
Write out slope 'slope' and intercept 'y_int'.

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below.

% Script file: lsqfit.m
%
% Purpose:
% To perform a least-squares fit of an input data set
% to a straight line, and print out the resulting slope
% and intercept values. The input data for this fit
% comes from a user-specified input data file.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 03/24/14 S. J. Chapman Original code
%
% Define variables:
% count -- number of values read
% filename -- Input file name
% fid -- File id

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.8 File Positioning and Status Functions | 449

% msg -- Open error message
% n -- Number of input data pairs (x,y)
% slope -- Slope of the line
% sum_x -- Sum of all input X values
% sum_x2 -- Sum of all input X values squared
% sum_xy -- Sum of all input X*Y values
% sum_y -- Sum of all input Y values
% x -- An input X value
% x_bar -- Average X value
% y -- An input Y value
% y_bar -- Average Y value
% y_int -- Y-axis intercept of the line

% Initialize sums
n = 0; sum_x = 0; sum_y = 0; sum_x2 = 0; sum_xy = 0;

% Prompt user and get the name of the input file.
disp('This program performs a least-squares fit of an');
disp('input data set to a straight line. Enter the name');
disp('of the file containing the input (x,y) pairs: ');
filename = input(' ','s');

% Open the input file
[fid,msg] = fopen(filename,'rt');

% Check to see if the open failed.
if fid < 0

 % There was an error--tell user.
 disp(msg);

else

 % File opened successfully. Read the (x,y) pairs from
 % the input file. Get first (x,y) pair before the
 % loop starts.
 [in,count] = fscanf(fid,'%g %g',2);

 while ~feof(fid)
 x = in(1);
 y = in(2);
 n = n + 1; %
 sum_x = sum_x + x; % Calculate
 sum_y = sum_y + y; % statistics
 sum_x2 = sum_x2 + x.ˆ2; %
 sum_xy = sum_xy + x * y; %

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

450 | Chapter 11 Input/Output Functions

 % Get next (x,y) pair
 [in,count] = fscanf(fid,'%f',[1 2]);

 end

 % Close the file
 fclose(fid);

 % Now calculate the slope and intercept.
 x_bar = sum_x / n;
 y_bar = sum_y / n;
 slope = (sum_xy - sum_x*y_bar) / (sum_x2 - sum_x*x_bar);
 y_int = y_bar - slope * x_bar;

 % Tell user.
 fprintf('Regression coefficients for the least-squares line:\n');
 fprintf(' Slope (m) = %12.3f\n',slope);
 fprintf(' Intercept (b) = %12.3f\n',y_int);
 fprintf(' No of points = %12d\n',n);

end

5. Test the program.
To test this program, we will try a simple data set. For example, if every
point in the input data set actually falls along a line, then the resulting slope
and intercept should be exactly the slope and intercept of that line. Thus the
data set

1.1 1.1
2.2 2.2
3.3 3.3
4.4 4.4
5.5 5.5
6.6 6.6
7.7 7.7

should produce a slope of 1.0 and an intercept of 0.0. If we place these values
in a file called input1, and run the program, the results are:

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line. Enter the name
of the file containing the input (x,y) pairs:
input1
Regression coefficients for the least-squares line:
 Slope (m) = 1.000
 Intercept (b) = 0.000
 No of points = 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.8 File Positioning and Status Functions | 451

Now let’s add some noise to the measurements. The data set becomes

1.1 1.01
2.2 2.30
3.3 3.05
4.4 4.28
5.5 5.75
6.6 6.48
7.7 7.84

If these values are placed in a file called input2 and the program is run on
that file, the results are:

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line. Enter the name
of the file containing the input (x,y) pairs:
input2
Regression coefficients for the least-squares line:
 Slope (m) = 1.024
 Intercept (b) = -0.120
 No of points = 7

If we calculate the answer by hand, it is easy to show that the program gives the
correct answers for our two test data sets. The noisy input data set and the resulting
least-squares fitted line are shown in Figure 11.2.

▶
Figure 11.2 A noisy input data set and the resulting least-squares fitted line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

452 | Chapter 11 Input/Output Functions

11.9 The textscan Function

The textscan function reads text files that are formatted into columns of data, where
each column can be of a different type, and stores the contents into the columns of a cell
array. This function is very useful for importing tables of data printed out by other appli-
cations. It is basically similar to textread, except that it is faster and more flexible.

The form of the textscan function is

a = textscan(fid, 'format')
a = textscan(fid, 'format', N)
a = textscan(fid, 'format', param, value, ...)
a = textscan(fid, 'format', N, param, value, ...)

where fid is the file id of a file that has already been opened with fopen, format
is a string containing a description of the type of data in each column, and n is the
number of times to use the format specifier. (If n is 21 or is missing, the function
reads to the end of the file.) The format string contains the same types of format
descriptors as the fprintf function. Note that there is only one output argument,
with all of the values returned in a cell array. The cell array will contain a number of
elements equal to the number of format descriptors to read.

For example, suppose that file test_input1.dat contains the following data:

James Jones O+ 3.51 22 Yes
Sally Smith A+ 3.28 23 No
Hans Carter B- 2.84 19 Yes
Sam Spade A+ 3.12 21 Yes

This data could be read into a cell array with the following function:

fid = fopen('test_input1.dat','rt');
a = textscan(fid,'%s %s %s %f %d %s',-1);
fclose(fid);

When this command is executed, the results are:

» fid = fopen('test_input1.dat','rt');
» a = textscan(fid,'%s %s %s %f %d %s',-1)
a =
 {4x1 cell} {4x1 cell} {4x1 cell} [4x1 double]
 [4x1 int32] {4x1 cell}
» a{1}
ans =
 'James'
 'Sally'
 'Hans'
 'Sam'
» a{2}
ans =
 'Jones'
 'Smith'
 'Carter'
 'Spade'

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

» a{3}
ans =
 'O+'
 'A+'
 'B-'
 'A+'
>> a{4}
ans =
 3.5100
 3.2800
 2.8400
 3.1200
» fclose(fid);

This function can also skip selected columns by adding an asterisk to the corre-
sponding format descriptor (for example, %*s). For example, the following statements
read only the first name, last name, and gpa from the file:

fid = fopen('test_input1.dat','rt');
a = textscan(fid,'%s %s %*s %f %*d %*s',-1);
fclose(fid);

Function textscan is similar to function textread, but it is more flexible
and faster. The advantages of textscan include:

1. The textscan function offers better performance than textread,
making it a better choice when reading large files.

2. With textscan, you can start reading at any point in the file. When the
file is opened with fopen, you can move to any position in the file with
fseek and begin the textscan at that point. The textread function
requires that you start reading from the beginning of the file.

3. Subsequent textscan operations start reading the file at a point where the
last textscan left off. The textread function always begins at the start
of the file, regardless of any prior textread operations.

4. Function textscan returns a single cell array regardless of how many fields
you read. With textscan, you don’t need to match the number of output
arguments with the number of fields being read, as you would with textread.

5. Function textscan offers more choices in how the data being read is
converted.

Function textscan has a number of additional options that increase its flexibility.
Consult the MATLAB online documentation for details of these options.

Good Programming Practice

Use function textscan in preference to textread to import text data in column
format from programs written in other languages or exported from applications, such
as spreadsheets.

11.9 The textscan Function | 453

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

454 | Chapter 11 Input/Output Functions

11.10 Function uiimport

Function uiimport is a GUI-based way to import data from a file or from the clip-
board. This command takes the forms

uiimport
structure = uiimport;

In the first case, the imported data is inserted directly into the current MATLAB
workspace. In the second case, the data is converted into a structure and saved in
variable structure.

When the command uiimport is typed, the Import Wizard is displayed in
a window (see Figure 11.3). The user can then select the file that he or she would
like to import from and the specific data within that file. Many different formats are
supported—a partial list is given in Table 11.14. In addition, data can be imported
from almost any application by saving the data on the clipboard. This flexibility can
be very useful when you are trying to get data into MATLAB for analysis.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table 11.14: Selected File Formats Supported by uiimport

File Extension Meaning

*.gif
*.jpg
*.jpeg
*.jp2
*.jpf
*.jpx
*.j2c
*.j2k
*.ico
*.png
*.pcx
*.tif
*.tiff
*.bmp

Image files

*.mat MATLAB data files

*.cur Cursor format

*.hdf
*.h5

Hierarchical Data Format file

(continued)

Figure 11.3 Using uiimport: (a) The Import Wizard first prompts the user to select
a data source. (b) The Import Wizard after a file is selected but not yet loaded. (c) After a
data file has been selected, one or more data arrays are created, and their contents can
be examined. The user selects the ones to import, and clicks Import Selection.

(c)

11.10 Function uiimport | 455

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

456 | Chapter 11 Input/Output Functions

11.11 Summary

In Chapter 11, we presented an introduction file I/O operations. Many MATLAB I/O
functions are quite similar to C functions, but there are differences in some details.

The textread and textscan functions can be used to import text data in
column format from programs written in other languages or exported from applica-
tions such as spreadsheets. Of these two functions, textscan is preferred, because
it is more flexible and faster than textread.

The load and save commands using MAT files are very efficient, are trans-
portable across MATLAB implementations, and preserve full precision, data types, and
global status for all variables. MAT files should be used as the first-choice method of I/O,
unless data must be shared with other applications or must be readable by humans.

There are two types of I/O statements in MATLAB: binary and formatted. Binary
I/O statements store or read data in unformatted files, and formatted I/O statements
store or read data in formatted files.

MATLAB files are opened with the fopen function and closed with the fclose
function. Binary reads and writes are performed with the fread and fwrite
functions, while formatted reads and writes are performed with the fscanf and
fprintf functions. Functions fgets and fgetl simply transfer a line of text
from a formatted file into a character string.

Table 11.14: Selected File Formats Supported by uiimport
(Continued)

File Extension Meaning

*.au
*.flac
*.ogg
*.snd
*.wav

Sound files

*.avi
*.mov
*.mpg
*.mp4
*.wmv

Video files

*.xml XML files

*.csv
*.xls
*.xlsx
*.xlsm
*.wk1

Spreadsheet files

*.txt
*.dat
*.dlm
*.tab

Text files

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.11 Summary | 457

The exist function can be used to determine if a file exists before it is opened.
This is useful to ensure that existing data is not accidentally overwritten.

It is possible to move around within a disk file using the frewind and fseek
functions. The frewind function moves the current file position to the beginning of
the file, while the fseek function moves the current file position to a point a speci-
fied number of bytes ahead or behind a reference point. The reference point may be
the current file position, the beginning of the file, or the end of the file.

MATLAB includes a GUI-based tool called uiimport, which allows users
to import data into MATLAB from files created by many other programs in a wide
variety of formats.

11.11.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB I/O
functions.

1. Unless you must exchange data with non-MATLAB programs, always use
the load and save commands to save data sets in MAT file format. This
format is efficient and transportable across MATLAB implementations, and it
preserves all details of all MATLAB data types.

2. Always be careful to specify the proper permissions in fopen statements,
dep en ding on whether you are reading from or writing to a file. This practice
will help prevent errors such as accidentally overwriting data files that you
want to keep.

3. Always check the status after a file open operation to make sure that it is
successful. If the file open fails, tell the user and provide a way to recover
from the problem.

4. Use formatted files to create data that must be readable by humans or that
must be transferable between programs on computers of different types.
Use unformatted files to efficiently store large quantities of data that do
not have to be directly examined and that will remain on only one type of
computer. Also, use unformatted files when I/O speed is critical.

5. Do not overwrite an output file without confirming that the user would like
to delete the preexisting information.

6. Use function textscan in preference to textread to import text data in
column format from programs written in other languages or exported from
applications, such as spreadsheets.

11.11.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

exist Checks for the existence of a file

fclose Closes file

feof Tests for end-of-file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

458 | Chapter 11 Input/Output Functions

11.12 Exercises

11.1 What is the difference between binary and formatted I/O? Which MATLAB
functions perform each type of I/O?

11.2 Table of Logarithms Write a MATLAB program to generate a table of the base-10
logarithms between 1 and 10 in steps of 0.1.

 Table of Logarithms

 X.0 X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9

 1.0 0.000 0.041 0.079 0.114 ...

 2.0 0.301 0.322 0.342 0.362 ...

 3.0 ...

 4.0 ...

 5.0 ...

 6.0 ...

 7.0 ...

 8.0 ...

 9.0 ...

 10.0 ...

11.3 Write a MATLAB program that reads the time in seconds since the start of the
day (this value will be somewhere between 0 and 86400.) and prints a character
string containing time in the form HH:MM:SS using the 24-hour clock conven-
tion. Use the proper format converter to ensure that leading zeros are preserved
in the MM and SS fields. Also, be sure to check the input number of seconds for
validity, and write an appropriate error message if an invalid number is entered.

ferror Inquires file I/O error status

fgetl Reads a line from file and discards newline character

fgets Reads a line from file and keeps newline character

fopen Opens file

fprintf Writes formatted data to file

fread Reads binary data from file

frewind Rewinds file

fscanf Reads formatted data from file

fseek Sets file position

ftell Checks file position

fwrite Writes binary data to a file

sprintf Writes formatted data to a character string

textread Reads data of various types organized in column format from a
text file, and store the data in each column in separate variables

textscan Reads data of various types organized in column format
from a text file and stores the data in a cell array

uiimport Starts a GUI tool for importing data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.12 Exercises | 459

11.4 Gravitational Acceleration The acceleration due to the Earth’s gravity at any
height h above the surface of the Earth is given by the equation

 g 5 2G

M

sR 1 hd2
 (11.4)

 where G is the gravitational constant (6.672 3 10211 N m2 / kg2), M is the mass
of the Earth (5.98 3 1024 kg), R is the mean radius of the Earth (6371 km), and
h is the height above the Earth’s surface. If M is measured in kg and R and h
in meters, then the resulting acceleration will be in units of meters per second
squared. Write a program to calculate the acceleration due to the Earth’s gravity in
500 km increments at heights from 0 km to 40,000 km above the surface of the
Earth. Print out the results in a table of height versus acceleration with appropriate
labels, including the units of the output values. Plot the data as well.

11.5 The program in Example 11.5 illustrated the use of formatted I/O commands
to read (x,y) pairs of data from disk. However, this could also be done with the
load –ascii function. Rewrite this program to use load instead of the for-
matted I/O functions. Test your rewritten program to confirm that it gives the
same answers as Example 11.5.

11.6 Rewrite the program in Example 11.5 to use the textread function instead of
the formatted I/O functions.

11.7 Rewrite the program in Example 11.5 to use the textscan function instead of
the formatted I/O functions. How difficult was it to use textscan, compared to
using textread, load –ascii, or the formatted I/O functions?

11.8 Write a program that reads an arbitrary number of real values from a user-specified
input data file, rounds the values to the nearest integer, and writes the integers
out to a user-specified output file. Make sure that the input file exists, and if not,
tell the user and ask for another input file. If the output file exists, ask the user
whether or not to delete it. If not, prompt for a different output file name.

11.9 Table of Sines and Cosines Write a program to generate a table containing the
sine and cosine of θ for θ between 0° and 90°, in 1° increments. The program
should properly label each of the columns in the table.

11.10 File int.dat (available at the book’s website) contains 25 integer values in
 'int8' format. Write a program that reads these values into a single array
using the function fread.

11.11 Interest Calculations Suppose that you have a sum of money P in an interest -
bearing account at a local bank (P stands for present value). If the bank pays you
interest on the money at a rate of i percent per year and compounds the interest
monthly, the amount of money that you will have in the bank after n months is
given by the equation

 F 5 P 11 1
i

12002
n

 (11.5)

 where F is the future value of the account and
i

12
 is the monthly percentage

interest rate (the extra factor of 100 in the denominator converts the interest rate
from percentages to fractional amounts). Write a MATLAB program that will
read an initial amount of money P and an annual interest rate i, and will calculate

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

460 | Chapter 11 Input/Output Functions

and write out a table showing the future value of the account every month for the
next 5 years. The table should be written to an output file called 'interest'.
Be sure to properly label the columns of your table.

11.12 Write a program to read a set of integers from an input data file, and locate the
largest and smallest values within the data file. Print out the largest and smallest
values, together with the lines on which they were found. Assume that you do not
know the number of values in the file before the file is read.

11.13 Create a 400 3 400 element double array x, and fill it with random data using
the function rand. Save this array to a MAT file x1.dat, and then save it again
to a second MAT file x2.dat using the –compress option. How do the sizes
of the two files compare?

11.14 Means In Exercise 5.34, we wrote a MATLAB program that calculated the
arithmetic mean (average), rms average, geometric mean, and harmonic mean
for a set of numbers. Modify that program to read an arbitrary number of values
from an input data file, and calculate the means of those numbers. To test the
program, place the following values into an input data file and run the program
on that file: 1.0, 2.0, 5.0, 4.0, 3.0, 2.1, 4.7, 3.0.

11.15 Converting Radians to Degrees/Minutes/Seconds Angles are often measured in
degrees (°), minutes ('), and seconds ("), with 360 degrees in a circle, 60 minutes in
a degree, and 60 seconds in a minute. Write a program that reads angles in radians
from an input disk file and converts them into degrees, minutes, and seconds. Test
your program by placing the following four angles expressed in radians into an
input file, and reading that file into the program: 0.0, 1.0, 3.141593, 6.0.

11.16 Create a data set in some other program on your computer, such as Microsoft
Word, Microsoft Excel, a text editor, and so on. Copy the data set to the clipboard
using the Windows or UNIX copy function, and then use the function uiimport
to load the data set into MATLAB.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

461

12Chapter

User -Defined Classes
and Object-Oriented
Programming

Since the beginning of this book, we have been using MATLAB to write procedural
programs. In procedural programs, the programmer breaks a problem down into
a set of functions (or procedures), where each function is a recipe (an algorithm)
to perform some part of the total problem. These functions work together to solve
the total problem. The key idea in procedural programming is the procedure, the
description of how a task is accomplished. Data is passed to the procedure as input
arguments, and the results of the calculation are returned as output arguments. For
example, we might write a procedure to solve a set of simultaneous linear equations,
and then use that procedure over and over again with different input data sets.

The other major programming paradigm is called object-oriented program-
ming. In object-oriented programming, the problem is broken down into a series
of objects that interact with other objects to solve the total problem. Each object
contains a series of properties, which are the characteristics of the object, and a
set of methods, which define the behaviors of the object.

This chapter introduces MATLAB user-defined classes and object-oriented
programming. It teaches the basic concepts behind object-oriented programming,
and then shows how MATLAB implements those features1.

This chapter is an appropriate lead-in to the following chapters on handle
graphics and graphical user interfaces, since all graphics in MATLAB are implemented
as objects.

1 MATLAB does not provide a full implementation of object-oriented programming in the traditional
computer science sense. Such key object-oriented concepts as polymorphism are not implemented in
MATLAB, so people with prior object-oriented programming experience will find that some familiar
features are missing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

462 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.1 An Introduction to Object-Oriented Programming

Object-oriented programming (OOP) is the process of programming by modeling
objects in software. The principal features of OOP are described in the subsections
of Section 12.1, and then the MATLAB implementation of these features is described
in subsequent sections of the chapter.

12.1.1 Objects

The physical world is full of objects: cars, pencils, trees, and so on. Any real object
can be characterized by two different aspects: its properties and its behavior. For
example, a car can be modeled as an object. A car has certain properties (color, speed,
direction of motion, available fuel, and so forth) and certain behaviors (starting,
stopping, turning, and so forth).

In the software world, an object is a software component whose structure is like
that of objects in the real world. Each object consists of a combination of data (called
properties or instance variables) and behaviors (called methods). The properties
are variables describing the essential characteristics of the object, while the methods
describe how the object behaves and how the properties of the object can be modi-
fied. Thus, a software object is a bundle of variables and related methods.

A software object is often represented as shown in Figure 12.1. The object can
be thought of as a cell, with a central nucleus of variables (properties) and an outer
layer of methods that form an interface between the object’s variables and the outside
world. The nucleus of data is hidden from the outside world by the outer layer of
methods. The object’s variables are said to be encapsulated within the object, mean-
ing that no code outside of the object can see or directly manipulate them. Any access
to the object’s data must be through calls to the object’s methods.

The ordinary methods in a MATLAB object are formally known as instance
methods to distinguish them from static methods (described later in Section 12.1.4).

Typically, encapsulation is used to hide the implementation details of an object
from other objects in the program. If the other objects in the program cannot see or

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

properties

Figure 12.1 An object may be represented as a nucleus of data (properties)
surrounded and protected by methods, which implement the object’s behavior
and form an interface between the properties and the outside world.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.1 An Introduction to Object-Oriented Programming | 463

change the internal state of an object, they cannot introduce bugs by accidentally
modifying the object’s state. If other objects want to change the value of a property,
they have to call one of the object’s methods to make that change. The method can
verify that the new data is valid before it is used to update the property.

In addition, changes to the internal operation of the object will not affect the
operation of the other objects in a program. As long as the interface to the outer world
is unchanged, the implementation details of an object can change at any time without
affecting other parts of the program.

Encapsulation provides two primary benefits to software developers:

Modularity—An object can be written and maintained independently of the
source code for other objects. Therefore, the object can be easily re-used and
passed around in the system.

Information Hiding—An object has a public interface (the calling sequence
of its methods) that other objects can use to communicate with it. However,
the object’s instance variables are not directly accessible to other objects.
Therefore, if the public interface is not changed, an object’s variables and
methods can be changed at any time without introducing side-effects in the
other objects that depend on it.

12.1.2 Messages

Objects communicate by passing messages back and forth among themselves. These
messages are the method calls. For example, if object A wants object B to perform
some action for it, it calls one of object B’s methods. This method can then perform
some act to either modify or use the properties stored in object B (see Figure 12.2).

Each message has three components, which provide all the information neces-
sary for the receiving object to perform the desired action:

1. A reference pointing to the object to which the message is addressed. In
MATLAB, this reference is known as a handle.

2. The name of the method to perform on that object.
3. Any parameters needed by the method.

An object’s behavior is expressed through its methods, so message passing supports
all possible interactions between objects.

12.1.3 Classes

Classes are the software blueprints from which objects are made. A class is a soft-
ware construct that specifies the number and type of properties to be included in an
object, and the methods that will be defined for the object. Each component of a class
is known as a member. The two types of members are properties, which specify the
data values defined by the class, and methods, which specify the operations on those
properties. For example, suppose that we wish to create a class to represent students
in a university. Such a class could have three properties describing a student, one
for the student’s name, one for the student’s social security number, and one for the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

464 | Chapter 12 User -Defined Classes and Object-Oriented Programming

student’s address. In addition, it could have methods allowing a program to use or
modify the student’s information, or to use the student’s information in other ways.
If there were 1000 students in the university, we could create 1000 objects from class
Student, with each object having its own unique copy of the properties (name, ssn,
address) but with all objects sharing a common set of methods describing how to use
the properties.

Note that a class is a blueprint for an object, not an object itself. The class
describes what an object will look and behave like once it is created. Each object is
created or instantiated in memory from the blueprint provided by a class, and many
different objects can be instantiated from the same class. For example, Figure 12.3
shows a class Student, together with three objects a, b, and c created from that
class. Each of the three objects has its own copies of the properties name, ssn, and
address, while sharing a single set of methods to modify them.

12.1.4 Static Methods

As we described above, each object created from a class receives its own copies of
all the instance variables defined in the class, but they all share the same methods.

call: B.method4(1,2)
A

B

method2

m
e
t
h
o
d
3

m
e
t
h
o
d
1

method4

Instance
Variables

method2

m
e
t
h
o
d
3

m
e
t
h
o
d
1

method4

Instance
Variables

Object
to use

Required
Parameters

Method
Name

Figure 12.2 If object A wants object B to perform some action for it, it calls one
of object B’s methods. The call contains three parts: a reference to the object to
use, the name of the method within the object which will do the work, and any
required parameters. Note that the names of the object and method are separated
by a period.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.1 An Introduction to Object-Oriented Programming | 465

When a method is used with object a, it modifies the data in object a. When the same
method is used with object b, it modifies the data in object b, and so forth.

It is also possible to define static methods. Static methods are methods that exist
independently of any objects defined from the class. These methods do not access
instance variables or invoke instance methods.

Static methods are declared using the Static attribute in the method definition.
Static methods can be used without ever instantiating (creating) an object from the
class in which they are defined. They are used by typing the class name followed by
a period and followed by the method name. Static methods are often used for utility
calculations that are independent of the data in any particular object.

Object a

Object b

Object c

class Student

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

name
ssn

address

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

name
ssn

address

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

name
ssn

address

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

name
ssn

address

Figure 12.3 Many objects can be instantiated from a single class. In this example,
three objects a, b, and c have been instantiated from class Student.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

466 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.1.5 Class Hierarchy and Inheritance

All classes in an object-oriented language are organized in a class hierarchy, with
the highest level classes being very general in behavior and lower-level ones becom-
ing more specific. Each lower-level class is based on and derived from a higher-level
class, and the lower-level classes inherit both the properties and the methods of
the class from which it is derived. A new class starts with all of the non-private
properties and methods of the class on which it is based, and the programmer then
adds the additional variables and methods necessary for the new class to perform
its function.

The class on which a new class is based is referred to as a superclass, and
the new class is referred to as a subclass. The new subclass can itself become the
superclass for another new subclass. A subclass normally adds instance variables and
instance methods of its own, so a subclass is generally larger than its superclass. In
addition, it can override some methods of its superclass, replacing the method in the
superclass with a different one having the same name. This changes the subclass’s
behavior from that of its superclass. Because a subclass is more specific than its
superclass, it represents a smaller group of objects.

For example, suppose that we define a class called Vector2D to contain
two-dimensional vectors. Such a class would have two instance variables x and y
to contain the x and y components of the 2D vectors, and it would need methods
to manipulate the vectors such as adding two vectors, subtracting two vectors, cal-
culating the length of a vector, and so forth. Now suppose that we need to create a
class called Vector3D to contain three-dimensional vectors. If this class is based
on Vector2D, then it will automatically inherit instance variables x and y from its
superclass, so the new class will only need to define a variable z (see Figure 12.4).
The new class will also override the methods used to manipulate 2D vectors to allow
them to work properly with 3D vectors.

12.1.6 Object-Oriented Programming

Object-oriented programming (OOP) is the process of programming by modeling
objects in software. In OOP, a programmer examines the problem to be solved
and tries to break it down into identifiable objects, each of which contains cer-
tain data and has certain behaviors. Sometimes these objects will correspond to
physical objects in nature, and sometimes that will be purely abstract software
constructs. The data identified by the programmer will become the properties of
corresponding classes, and the behaviors of the objects will become the methods
of the classes.

Once the objects making up the problem have been identified, the programmer
identifies the type of data to be stored as properties in each object and the exact
calling sequence of each method needed to manipulate the data.

The programmer can then develop and test the classes in the model one at a time.
As long as the interfaces between the classes (the calling sequence of the methods)
are unchanged, each class can be developed and tested without needing to change
any other part of the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 467

12.2 The Structure of a MATLAB Class

The major components (class members) of a MATLAB class are (see Figure 12.5):

1. Properties. Properties define the instance variables that will be created
when an object is instantiated from a class. Instance variables are the data
encapsulated inside an object. A new set of instance variables is created
each time that an object is instantiated from the class.

2. Methods. Methods implement the behaviors of a class. Some methods may
be explicitly defined in a class, while other methods may be inherited from
superclasses of the class.

3. Constructor. Constructors are special methods that specify how to initialize
an object when it instantiated. The arguments of the constructor include
values to use in initializing the properties. Constructors are easy to identify

class Vector3D

Inherited
Method

I
n
h
e
r
i
t
e
d

M
e
t
h
o
d

I
n
h
e
r
i
t
e
d

M
e
t
h
o
d

New Method

Inherited:
x,y
New:
z

class Vector2D

Method

M
e
t
h
o
d

M
e
t
h
o
d

Method

x,y

subclass

superclass

Inheritance

Figure 12.4 An example of inheritance. Class Vector2D has been defined to
handle two-dimensional vectors. When class Vector3D is defined as a subclass
of Vector2D, it inherits the instance variables x and y, as well as many methods.
The programmer then adds a new instance variable z and new methods to the
ones inherited from the superclass.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

468 | Chapter 12 User -Defined Classes and Object-Oriented Programming

because they have the same name as the class that they are initializing, and
the only output argument is the object constructed.

4. Destructor. Destructors are special methods that clean up the resources
(open files, etc.) used by an object just before it is destroyed. Just before an
object is destroyed, it makes a call to a special method named delete if it
exists. The only input argument is the object to be destroyed, and there must
be no output argument. Many classes do not need a delete method at all.

The members of a class, whether variables or methods, are accessed by referring
to an object created from the class with the access operator, also known as the dot
operator. For example, suppose that a class MyClass contains an instance variable
a and a method processA. If a reference to object of this class is named obj, then
the instance variable in obj would be accessed as obj.a, and the method would be
accessed as obj.processA().

12.2.1 Creating a Class

In MATLAB, a class is declared using a classdef keyword. The class definition
starts with a classdef keyword and ends with an end statement. Inside the class
definition are one or more blocks defining the properties and methods associated
with the class. Properties are defined in one or more blocks that begin with a
properties keyword and end with an end statement. Methods are defined in one
or more blocks that begin with a methods keyword and end with an end statement.

The simplest form of a class definition is

classdef (Attributes) ClassName < SuperClass

 properties (Attributes)
 PropertyName1
 PropertyName2
 ...
 end

Constructor

M
e
t
h
o
d

M
e
t
h
o
d

Destructor

properties

Figure 12.5 A MATLAB class contains properties to store information, methods
to modify and perform calculations with the properties, a constructor to initialize
the object when it is created, and (optionally) a destructor to release resources
when it is deleted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 469

 methods (Attributes)
 function [obj =] methodName(obj,arg1,arg2, ...)
 ...
 end

end

Here, ClassName is the name of the new class, and the optional value
SuperClass is the name of the superclass it is derived from (if the class has a
superclass). The properties blocks declare properties, which will be instance
variables when an object is created from the class. The methods blocks declare the
names and calling arguments for the methods associated with the class. (Note that
for some types of methods, the body of the methods can be further down the file, or
even in another file.)

For example, the following code declares a very simple class called vector
containing two properties x and y, and no methods:

classdef vector

 properties
 x; % X value of vector
 y; % Y value of vector
 end

end

This class is saved in a file named vector.m.
An object of class vector is instantiated by the following assignment statement:

» a = vector
a =
 vector with properties:

 x: []
 y: []

This assignment created an object of class vector, containing two instance variables
corresponding to the properties x and y, which are initially empty. Values can be
assigned to the properties using the dot operator:

» a.x = 2;
» a.y = 3;
» a
a =
 vector with properties:

 x: 2
 y: 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

470 | Chapter 12 User -Defined Classes and Object-Oriented Programming

Values can also be accessed through the dot operator:

» a.x
ans =
 2

If another object of class vector is instantiated, the instance variables x and y in
the new object are completely different from the ones in the first object, and they can
hold different values.

» b = point;
» b.x = -2;
» b.y = 9;
» a
a =
 point with properties:

 x: 2
 y: 3
» b
b =
 point with properties:

 x: -2
 y: 9

12.2.2 Adding Methods to a Class

Methods can be added to a class by defining them in a methods block within the
class definition. We will now add three methods to class vector: a constructor and
two ordinary instance methods.

A constructor is a method that initializes objects of the class when they are
instantiated. Note that when the objects of class vector were created earlier, their
instance variables (properties) were empty. A constructor allows objects to be created
with initial data stored in the instance variables.

A constructor is a method that has the same name as the class. There can
be any number of input arguments to a constructor, but the single output of the
constructor is an object of the type being created. An example constructor for the
vector class is:

% Declare the constructor
function v = vector(a,b)
 v.x = a;
 v.y = b;
end

This constructor accepts two input values a and b, and uses them to initialize the
instance variables x and y when the object is instantiated.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 471

It is important to design the constructor for a class so that it can work as a
default constructor as well as a constructor with input arguments. Some MATLAB
functions can call class constructors with no arguments under certain circumstances,
and this will cause a crash unless the constructor is designed to deal with that case.
We normally do this by using the nargin function to check for the presence of
input arguments, and using default values if the input arguments are missing. A
version of the vector class constructor that also supports the default case is shown
below:

% Declare the constructor
function v = vector(a,b)
 if nargin < 2
 v.x = 0;
 v.y = 0;
 else
 v.x = a;
 v.y = b;
 end
end

Good Programming Practice

Define a constructor for a class to initialize the data in objects of that class when they
are instantiated. Be sure to support a default case (one without arguments) in the
constructor design.

Instance methods are methods that use or modify the instance variables stored
in objects created from the class. They are functions with a special syntax. The first
argument of each function must be the object that the instance methods are defined
in. In object-oriented programming, the current object passed in as the first argument
is often called this, meaning “this object.” If the methods modify the data in the
object, they also must return the modified object as an output2.

We will now add two sample instance methods to this class. Method length
returns the length of the vector, calculated from the equation

 length 5 Ïx2 1 y2 (12.1)

where x and y are the instance variables in the class. This is an example of a method
that works with the instance variables but does not modify them. Since the instance
variables were not modified, the object is not returned as an output from the
function.

2 The requirement to return modified objects is true if the objects are created from value classes, and not
true if they are created from handle classes. Both of these class types will be defined later in the chapter,
and this distinction will become clear then.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

472 | Chapter 12 User -Defined Classes and Object-Oriented Programming

% Declare a method to calculate the length
% of the vector.
function result = length(this)
 result = sqrt(this.x.ˆ2 + this.y.ˆ2);
end

Method add sums the contents of the current vector object this and another
vector object obj2, with the result stored in output object obj. This is an example
of a method that creates a new vector object, which is returned as an output from
the function. Note that this method uses the default constructor to create the output
vector object before performing the addition.

% Declare a method to add two vectors together
function this = add(this,obj2)
 obj = vector();
 obj.x = this.x + obj2.x;
 obj.y = this.y + obj2.y;
end

The vector class with these methods added is:

classdef vector

 properties
 x; % X value of vector
 y; % Y value of vector
 end

 methods

 % Declare the constructor
 function v = vector(a,b)
 if nargin < 2
 v.x = 0;
 v.y = 0;
 else
 v.x = a;
 v.y = b;
 end
 end

 % Declare a method to calculate the length
 % of the vector.
 function result = length(this)
 result = sqrt(this.x.ˆ2 + this.y.ˆ2);
 end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 473

 % Declare a method to add two vectors together
 function obj = add(this,obj2)
 obj = vector();
 obj.x = this.x + obj2.x;
 obj.y = this.y + obj2.y;
 end

 end

end

When an instance method in a MATLAB object is called, the hidden object this
is not included in the calling statement. It is understood that the object named before
the dot is the one to be passed to the method. For example, the method length above
is defined to take an object of class vector as an input argument. However, that object
is not explicitly included when the method is called. If ob is an object of type vector,
then the length would be calculated as ob.length or ob.length(). The object
itself is not included as an explicit input argument in the method call.

Good Programming Practice

When an instance method is invoked, do not include the object in the method’s list
of calling arguments.

The following examples show how to create three objects of type vector using
the new constructor. Note that the objects are now instantiated with the initial data in
the instance variables instead of being empty.

» a = vector(3,4)
a =
 vector with properties:

 x: 3
 y: 4
» b = vector(-12,5)
b =
 vector with properties:

 x: -12
 y: 5
» c = vector
c =
 vector with properties:

 x: 0
 y: 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

474 | Chapter 12 User -Defined Classes and Object-Oriented Programming

The length method calculates the length of each vector from the data in the
instance variables:

» a.length
ans =
 5
» b.length()
ans =
 13
» c.length()
ans =
 0

Note that the method can be invoked either with or without the empty parentheses.
Finally, the add method adds two objects of the vector type according to the

definition defined in the method:

» c = a.add(b)
c =
 vector with properties:

 x: -9
 y: 9

12.2.3 Listing Class Types, Properties, and Methods

The class, properties, and methods functions can be used to get the type
of a class and a list of all the public properties and methods declared in the class.
For example, if a is the vector object declared in the previous section, then the
class function will return the class of the object, the properties function
will return the list of public properties in the class, and the methods function will
return the list of public methods in the class. Note that the constructor also appears
in the method list.

» class(a)
ans =
vector
» properties(a)
Properties for class vector:
 x
 y
» methods(a)

Methods for class vector:

add length vector

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 475

12.2.4 Attributes

Attributes are modifiers that change the behavior of classes, properties, or methods.
They are defined in parentheses after the classdef, properties, and methods
statements in the class definition. We will discuss property and method attributes in
this section; class attributes are discussed in later sections.

Property attributes modify the behavior of properties defined in a class. The
general form of a properties declaration with attributes is

properties (Attribute1 = value1, Attribute2 = value2, ...)
 ...
end

The attributes will affect the behavior of all properties defined within the code block.
Note that sometimes some properties need different attributes than others in the
same class. In that case, just define two or more properties blocks with different
attributes, and declare each property in the block containing its required attributes.

properties (Attribute1 = value1)
 ...
end

properties (Attribute2 = value2)
 ...
end

A list of some selected property attributes is given in Table 12.1. These attributes
will all be discussed later on in the chapter.

The following example class contains three properties: a, b, and c. Properties a
and b are declared to have public access, and property c is declared to have public
read access and private write access. This means that when an object is instantiated
from this class, it will be possible to both examine and modify instance variables a
and b from outside the object. However, instance variable c can be examined but not
modified from outside the object.

classdef test1

 % Sample class illustrating access control using attributes

 properties (Access=public)
 a; % Public access
 b; % Public access
 end

 properties (GetAccess=public, SetAccess=private)
 c; % Read only
 end
 (This listing continues on page 477)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

476 | Chapter 12 User -Defined Classes and Object-Oriented Programming

Table 12.1: Selected property Attributes

Property Type Description

Access Enumeration: Possible values are
public, protected, or private

This property controls access to this
property, as follows:
■   public—This property can be read

and written from any part of the program.
■   private—This property can be read

and written only by methods within the
current class.

■   protected—This property can be
read and written only by methods within
the current class or one of its subclasses.

Setting this attribute is equivalent to setting
both GetAccess and SetAccess for a
property.

Constant Logical: default 5 false If true, then the corresponding properties
are constants, defined once. Every object
instantiated from this class inherits the
same constants.

GetAccess Enumeration: Possible values are
public, protected, or private

This property controls read access to this
property, as follows:
■   public—This property can be read

and written from any part of the program.
■   private—This property can be read

and written only by methods within the
current class.

■   protected—This property can be
read and written only by methods within
the current class or one of its subclasses.

Hidden Logical: default 5 false If true, this property will not be displayed
in a property list.

SetAccess Enumeration: Possible values are
public, protected, or private

This property controls write access to this
property, as follows:
■   public—This property can be read and

written from any part of the program.
■   private—This property can be read

and written only by methods within the
current class.

■   protected—This property can be read
and written only by methods within the
current class or one of its subclasses.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.2 The Structure of a MATLAB Class | 477

 methods

 % Declare the constructor
 function obj = test1(a,b,c)
 obj.a = a;
 obj.b = b;
 obj.c = c;
 end
 end

end

When we create an object of this class, the constructor initializes all of its instance
variables.

» obj1 = test1(1,2,3)
obj1 =
 test1 with properties:

 a: 1
 b: 2
 c: 3

It is possible to examine and modify the value of a from outside the object.

» obj1.a
ans =
 1
» obj1.a = 10
obj1 =
 test1 with properties:

 a: 10
 b: 2
 c: 3

It is possible to examine but not to modify the value of c from outside the object.

» obj1.c
ans =
 3
» obj1.c = -2
You cannot set the read-only property 'c' of test1.

This is a very important feature of objects. If the properties of a class are set to have
private access, then those properties can be modified only by instance methods inside
the class. These methods can be used to check input values for validity before allowing
them to be used, making sure that no illegal values are assigned to the properties.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

478 | Chapter 12 User -Defined Classes and Object-Oriented Programming

Method attributes modify the behavior of methods defined in a class. The general
form a methods declaration with attributes is

methods (Attribute1 = value1, Attribute2 = value2, ...)
 ...
end

The attributes will affect the behavior of all methods defined within the code block.
Note that sometimes some methods need different attributes than others in the same
class. In that case, just define two or more methods blocks with different attributes,
and declare each property in the block containing its required attributes.

methods (Attribute1 = value1)
 ...
end

methods (Attribute2 = value2)
 ...
end

A list of some selected property attributes is given in Table 12.2. These attributes
will all be discussed later on in the chapter.

Good Programming Practice

Use the access control attributes to protect properties from being set to invalid values.

Table 12.2: Selected method Attributes

Property Type Description

Access Enumeration: Possible values
are public, protected, or
private

This property controls access to this property, as
follows:
■   public—This property can be read and written

from any part of the program.
■   private—This property can be read and written

only by methods within the current class.
■   protected—This property can be read and written

only by methods within the current class or one of its
subclasses.

Hidden Logical: default 5 false If true, this property will not be displayed in a property
list.

Sealed Logical: default 5 false If true, this method cannot be redefined in a subclass.

Static Logical: default 5 false If true, these methods do not depend on objects of this
class and do not require the object as an input argument.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.3 Value Classes versus Handle Classes | 479

12.3 Value Classes versus Handle Classes

MATLAB supports two kinds of classes: value classes and handle classes. If one
object of a value class type is assigned to another variable, MATLAB copies the
original object, and there are now two objects in memory. Each of the two objects can
be changed separately without affecting each other (see Figure 12.6a). By contrast,
if an object of a handle class is assigned to another variable, MATLAB copies a
reference (a handle) to the class, and the two variables contain handles that point to
the same object in memory (see Figure 12.6b). With a handle class, a change made
using one handle will also be seen when using the other one, because they both point
to the same object in memory.

Figure 12.6 (a) When an object of a value class is assigned to a new variable,
MATLAB makes an independent copy of the object and assigns it to the new
variable. Variables a and b point to independent objects. (b) When an object of
a handle class is assigned to a new variable, MATLAB copies the reference (or
handle) of the object, and assigns it to the new variable. Both variables a and b
point to the same object.

a

b

3, 4

3, 4

.. b 5 a

(a)

a

b

3, 4

.. b 5 a

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

480 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.3.1 Value Classes

The vector class that we developed in Section 12.2.2 is an example of a value
class. If we create a vector and then assign it to a new variable, MATLAB makes a
copy of the object and assigns it to the new variable.

» a = vector(3,4)
a =
 vector with properties:

 x: 3
 y: 4
» b = a
b =
 vector with properties:

 x: 3
 y: 4

We can show that these two variables are different by assigning different values to
one of them.

» b.x = -1;
» b.y = 0;
» a
a =
 vector with properties:

 x: 3
 y: 4
» b
b =
 vector with properties:

 x: -1
 y: 0

Note that changing variables in one of the objects did not affect the other one at all.
If one object of a value class type is assigned to another variable, MATLAB copies

the original object, and there are now two objects in memory. Each of the two objects can
be changed separately without affecting each other (see Figure 12.6a). Furthermore, if one
of the objects is deleted, the other one is unaffected because it is an independent object.

In MATLAB, we create value classes by defining a class that is not a subclass of
the handle object. The vector class is a value class because the class definition
does not inherit from handle.

Value classes are typically used to store data values for use in calculations. For
example, the double, single, int32, and other standard MATLAB data types
are all really value classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.3 Value Classes versus Handle Classes | 481

Objects made from value classes can be deleted when they are no longer needed
using the clear command. For example, when the statements described earlier in
this section have been executed, objects a and b are in memory:

» whos
 Name Size Bytes Class Attributes

 a 1x1 120 vector
 b 1x1 120 vector

If we now issue the command clear a, object a will be removed from memory:

» clear a
» whos
 Name Size Bytes Class Attributes

 b 1x1 120 vector

The command clear all would have removed all of the objects from memory.

12.3.2 Handle Classes

A handle class is a class that inherits directly or indirectly from the handle super-
class. These classes use a reference (a handle) to point to the object in memory. When
a variable of a handle class is assigned to another variable, the handle is copied, not
the object itself. Thus, after copying we have two handles both pointing to the same
object in memory (see Figure 12.6b).

A handle to a handle class object can be used to access or modify that object.
Since the handle can be copied and passed to various functions, multiple parts of a
program can have access to the object at the same time.

A handle class version of the vector class is shown below. This class is a
handle class because the new class is a subclass of the superclass handle. Note
that the superclass that a class is based on is specified in the classdef statement
by a < symbol followed by the superclass name. This syntax means that the new
class being defined is a subclass of the specified superclass, and it inherits the
superclass’s properties and methods. Here, vector_handle is a subclass of
class handle.

% The vector as a handle class
classdef vector_handle < handle

 properties
 x; % X value of vector
 y; % Y value of vector
 end

 methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

482 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 % Declare the constructor
 function this = handle_vector(a,b)
 this.x = a;
 this.y = b;
 end

 % Declare a method to calculate the length
 % of the vector.
 function result = length(this)
 result = sqrt(this.x.ˆ2 + this.y.ˆ2);
 end

 % Declare a method to add two vectors together
 function add(this,obj2)
 this.x = this.x + obj2.x;
 this.y = this.y + obj2.y;
 end

 end

end

There are two key differences in the handle version of this class. First, the class is
declared to be a subclass of handle in the class definition. Second, methods modifying
an object of this class do not return the modified object as a calling argument.

The value class version of the add method was:

% Declare a method to add two vectors together
function obj = add(this,obj2)
 obj = vector();
 obj.x = this.x + obj2.x;
 obj.y = this.y + obj2.y;
end

This method receives copies of two objects as input arguments, the current object and
another object of the same class. The method creates a new output object and uses the
two input objects to calculate the output values. When the method ends, only the new
output argument obj is returned from the function. Note that the values of the input
vectors this and obj2 are not modified by this operation.

In contrast, the handle class version of the add method is:

% Declare a method to add two vectors together
function add(this,obj2)
 this.x = this.x + obj2.x;
 this.y = this.y + obj2.y;
end

This method receives handles to the two objects as input arguments, the current
object and another object of the same class. The method performs calculations using

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.3 Value Classes versus Handle Classes | 483

the handles, which point to the original objects, not copies of the objects. The two
vectors are added together, with the result stored in the original vector object (this).
The results of those calculations are automatically saved in the original object, so no
output argument needs to be returned from the function. Unlike the value class case,
the value of the original vector is modified here.

If we create a vector using the vector_handle class, and then assign it to a
new variable, MATLAB makes a copy of the object handle and assigns it to the new
variable.

» a = vector_handle(3,4)
a =
 vector_handle with properties:

 x: 3
 y: 4
» b = a
b =
 vector with properties:

 x: 3
 y: 4

We can show that these two variables are the same by assigning different values to
one of them and seeing that the new values also show up in the other one.

» b.x = -1;
» b.y = 0;
» a
a =
 vector_handle with properties:

 x: -1
 y: 0
» b
b =
 vector_handle with properties:

 x: -1
 y: 0

Changing the instance variables using one of the handles has affected the results seen
using all handles because they all point to the same physical object in memory.

Objects made from handle classes are automatically deleted by MATLAB when
there are no handles left that point to them. For example, following two statements
create two vector_handle objects:

» a = vector_handle(3,4);
» b = vector_handle(-4,3);
» whos

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

484 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 Name Size Bytes Class Attributes

 a 1x1 112 vector_handle
 b 1x1 112 vector_handle

If we now execute the statement

» a = b;

both handles a and b now point to the original object allocated using handle b. The
object that was originally allocated using handle a is no longer accessible, because
no handle to it exists anymore, and MATLAB will automatically delete that object.

A user can delete a handle object at any time using the delete function with
any handle pointing to that object. After the delete function is called, all the handles
that pointed to that object are still in memory, but they no longer point to any object.
The object that they had pointed to has been removed.

» delete(a)
» whos
 Name Size Bytes Class Attributes

 a 1x1 104 vector_handle
 b 1x1 104 vector_handle

» a
a =
 handle to deleted vector_handle
» b
b =
 handle to deleted vector_handle

The handles themselves can be removed using the clear command.
Handle classes are traditionally used for objects that perform some function in

a program, such as writing to a file. There can be only one object that opens and
writes to the file, because the file can only be opened once. However, many parts of
the program can have handles to that object, and so they can pass data to the object
to write to the file.

Handle classes are the type of classes traditionally meant by the term “object-
oriented programming,” and the special features of object-oriented programming
such as exceptions, listeners, and so forth are only applicable to handle classes. Most
of the discussions in the remainder of this chapter refer to handle classes only.

12.4 Destructors: The delete Method

If a class includes a method called delete with a single input argument of the
object’s type, MATLAB will call this method to clean up resources used by the object
just before it is deleted. For example, if the object has a file open, the delete
method would be designed to close the file before the object is deleted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We can use this fact to observe when objects are deleted from memory. If we
create a class with a delete method and write a message to the command window
from that method, we can tell exactly when an object is destroyed. For example,
suppose that we add a delete method to the vector_handle class.

% Modified vector_handle class
classdef vector_handle < handle

 properties
 x; % X value of vector
 y; % Y value of vector
 end

 methods

 ...

 % Declare a destructor
 function delete(this)
 disp('Object destroyed.');
 end

 end

end

Note that the delete method is optional and is not present in most classes. It
is normally included if a class has some resources (such as files) open that need to be
released before the object is destroyed.

The clear command deletes the handle to an object, not the object itself.
However, the object is sometimes destroyed automatically in this case. If we create
an object of the vector_handle class, and then clear the handle to it, the object
will be automatically destroyed because there is no longer a reference to it.

» a = vector_handle(1,2);
» clear a
Object destroyed.

On the other hand, if we create an object of this class and assign its handle to another
variable, there will be two handles to the object. In this case, clearing one will not
cause the object to be destroyed because there is still a valid handle to it.

» a = vector_handle(1,2);
» b = a;
» clear a

We can now see the difference between clear and delete. The clear
command deletes a handle, whereas the delete command deletes an object. The
clear command may cause the object to be deleted, too, but only if there is no other
handle to the object.

12.4 Destructors: The delete Method | 485

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

486 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.5 Access Methods and Access Controls

In object-oriented programming, it is normally a good idea to prevent the parts of
a program outside of an object from seeing or modifying the object’s instance vari-
ables. If the outside parts of the program could directly modify an instance variable,
they might assign improper or illegal values to the variable, and that could break the
program. For example, we could define a vector as follows:

» a = vector_handle(3,4)
a =
 vector_handle with properties:

 x: 3
 y: 4

It would be perfectly possible for some part of the program to assign a string to the
numeric instance variable x:

» a.x = 'junk'
a =
 vector_handle with properties:

 x: 'junk'
 y: 4

The vector class is depending on the x and y properties containing double
values. If a string is assigned instead, the methods associated with the class will fail.
Thus, something done in another part of the program could break this vector object!

To prevent this from happening, we want to ensure that other parts of the program
cannot modify the instance variables in a method. MATLAB supports two ways to
accomplish this:

1. Access Methods
2. Access Controls

Both techniques are described in the following sections.

12.5.1 Access Methods

It is possible to protect properties from being modified inappropriately by using spe-
cial access methods to save and retrieve data from the properties. If they are defined,
MATLAB will always call access methods whenever attempts are made to use or

Good Programming Practice

Define a delete method to close files or delete other resources before an object is
destroyed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.5 Access Methods and Access Controls | 487

change the properties in an object3, and the access methods can verify the data before
allowing it to be used. It appears to the user as if the properties can be freely read and
written, but in fact a “hidden” method is run in each case that can check to make sure
that the data is valid.

Access methods can be written to ensure that only valid data is set or retrieved,
thus preventing other parts of the program from breaking the object. For example,
they can ensure that the data is of the right type, that it is in the right range, and that
any specified subscripts are within the valid range of the data.

Access methods have special names that allow MATLAB to identify them. The
name is always get or set followed by a period and the property name to access. To
save a value in property PropertyName, we would create a special method called
set.PropertyName. To get a value from property PropertyName, we would
create a special method called get.PropertyName. If methods with these names
are defined in a methods block without attributes, then the corresponding method
will be called automatically whenever a property is accessed. The access method will
perform checks on the data before it is used.

For example, let’s create a set method for the x property of the vector_handle
class. This set method will check to see if the input value is of type double using
the isa function. (The isa function checks to see if the first argument is of the type
specified in the second argument and returns true if it is.) In this case, if the input value
is of type double, the function will return true, and the value will be assigned to x.
Otherwise, a warning will be printed out, and x will be unchanged. The method is:

methods % no attributes

 function set.x(this,value)
 if isa(value,'double')
 this.x = value;
 else
 disp('Invalid value assigned to x ignored');
 end
 end

end

If this set method is included in the class vector_handle, the attempt to assign a
string to variable x will cause an error, and the assignment will not occur:

» a = vector_handle(3,4)
a =
 vector_handle with properties:

 x: 3
 y: 4

3 There are a few exceptions. The access methods are not called for changes within the access methods
(to prevent recursion), are not called for assignments in the constructor, and are not called when setting
a property to its default value.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

488 | Chapter 12 User -Defined Classes and Object-Oriented Programming

» a.x = 'junk'
Invalid value assigned to x ignored
a =
 vector_handle with properties:

 x: 3
 y: 4

Good Programming Practice

Use access methods to protect class properties from being modified in inappropriate
ways. The access methods should check for valid data types, subscript ranges, and so
forth before allowing a property to be modified.

Good Programming Practice

Set the access controls to restrict access to properties that should be private in
a class.

12.5.2 Access Controls

In object-oriented programming, it is often customary to declare some important
class properties to have private or protected access, so that they cannot be
modified directly by any parts of the program outside of the class. This will force
other parts of the program to use the class’s methods to interact with it, instead of
trying to directly modify the class properties. The methods thus serve as an interface
between the object and the rest of the program, hiding the internals of the class.

This idea of information hiding is one key to object-oriented programming. If
the internals of a class are hidden from the rest of the program and are accessible
only through interface methods, the internals of the class can be modified without
breaking the rest of the program, as long as the calling sequences of the interface
methods remain unchanged.

A good example of a private property would be the file id in a file writer
class. If a file writer object has opened a file, the file id used to write to that file should
be hidden so that no other part of the program can see it and use it to write to the file
independently.

Note that defining an access method is almost equivalent to setting a class prop-
erty access to private or protected and can serve the same purpose. If an
access method is defined for a property, then the method will filter access to the
property, which is the key goal of declaring private or protected access.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.5 Access Methods and Access Controls | 489

12.5.3 Example: Creating a Timer Class

To consolidate the lessons we have learned so far, we will now create a class that
serves as a stopwatch or elapsed timer.

Example 12.1—Timer Class

When developing software, it is often useful to be able to determine how long a partic-
ular part of a program takes to execute. This measurement can help us locate the “hot
spots” in the code, the places where the program is spending most of its time, so that
we can try to optimize them. This is usually done with an elapsed time calculator4. This
object measures the time difference between now and when the object was created or last
reset. Create a sample class called MyTimer to implement an elapsed time calculator.

Solution An elapsed time calculator makes a great sample class, because it is so
simple. It is analogous to a physical stopwatch. A stopwatch is an object that mea-
sures the elapsed time between a push on a start button and a push on a stop button
(often they are the same physical button). The basic actions (methods) performed on
a physical stopwatch are:

1. A button push to reset and start the timer.
2. A button push to stop the timer and display the elapsed time.

Internally, the stopwatch must remember the time of the first button push in order to
calculate the elapsed time.

Similarly, an elapsed time class needs to contain the following components:

1. A method to store the start time of the timer (startTime). This method
will not require any input parameters from the calling program, and will not
return any results to the calling program.

2. A method to return the elapsed time since the last start (elapsedTime).
This method will not require any input parameters from the calling program,
but it will return the elapsed time in seconds to the calling program.

3. A property to store the time that the timer started running, for use by the
elapsed time method.

In addition, the class must have a constructor to initialize the instance variable when
an object is instantiated. The constructor will initialize the startTime to be the
time when the object was created.

The timer class must be able to determine the current time whenever one of its
methods is called. In MATLAB, the function clock returns the date and time as an
array of 6 integers, corresponding to the current year, month, day, hour, minute, and
second, respectively. We will convert the last three of these values into the number
of seconds since the start of the day and use that value in the timer calculations. The
basic equation is

 second_in_day 5 3600h 1 60m 1 s (12.2)

▶

4MATLAB includes the built-in functions tic and toc for this purpose.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

490 | Chapter 12 User -Defined Classes and Object-Oriented Programming

where h is the number of hours, m is the number of minutes, and s is the number of
seconds at the current time.

We will implement the timer class in a series of steps, defining the properties,
constructor, and methods in succession.

1. Define the properties
The timer class must contain a single property called savedTime, which
contains the time at which the object was created or the last time at which
startTimer method was called. This property will have private access,
so that no code outside the class can modify it.

The property is declared in a property block with private access, as
follows:

classdef MyTimer < handle

 properties (Access = private)
 savedTime; % Time of creation or last reset
 end

 (methods)

end

2. Create the constructor
The constructor for a class is automatically called by MATLAB when
an object is instantiated from the class. The constructor must initialize
the instance variables of the class, and may perform other functions as
well (such as opening files, etc.). In this class, the constructor will initial-
ize the savedTime value to the time at which the MyTimer object is
created.

A constructor is created within a methods block. The constructor
looks just like any other method, except that it has exactly the same name
(including capitalization) as the class that it is defined in and has only one
output argument—the object created. The constructor for the Timer class is
shown below:

 % Constructor
 function this = MyTimer()
 % Initialize object to current time
 timvec = clock;
 this.savedTime = 3600*timvec(4) + 60*timvec(5) + timvec(6);
 end

3. Create the methods
The class must also include two methods to reset the timer and to read the
elapsed time. Method resetTimer() simply resets the start time in the
instance variable savedTime.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.5 Access Methods and Access Controls | 491

 % Reset timer
 function resetTimer(this)
 % Reset object to current time
 timvec = clock;
 this.savedTime = 3600*timvec(4) + 60*timvec(5) + timvec(6);
 end

Method elapsedTime() returns the elapsed time since the start of the
timer in seconds.

 % Calculate elapsed time
 function dt = elapsedTime (this)
 % Get the current time
 timvec = clock;
 timeNow = 3600*timvec(4) + 60*timvec(5) + timvec(6);

 % Now calculate elapsed time
 dt = timeNow – this.savedTime;
 end

The resulting MyTimer class is shown in Figure 12.7, and the final code
for this class is shown below:

classdef MyTimer < handle
 % Timer to measure elapsed time since object creation or last reset

 properties (Access = private)
 savedTime; % Time of creation or last reset
 end

 methods (Access = public)

 % Constructor
 function this = MyTimer()
 % Initialize object to current time
 timvec = clock;
 this.savedTime = 3600*timvec(4) + 60*timvec(5) + timvec(6);
 end

Constructor:
Timer()

m
e
t
h
o
d
:

e
l
a
p
s
e
d
T
i
m
e
(
)

I
n
h
e
r
i
t
e
d

M
e
t
h
o
d
(
s
)

method:
resetTime()

property:
savedTime

Figure 12.7 The Timer class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

492 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 % Reset timer
 function resetTimer(this)
 % Reset object to current time
 timvec = clock;
 this.savedTime = 3600*timvec(4) + 60*timvec(5) + timvec(6);
 end

 % Calculate elapsed time
 function dt = elapsedTime(this)
 % Get the current time
 timvec = clock;
 timeNow = 3600*timvec(4) + 60*timvec(5) + timvec(6);

 % Now calculate elapsed time
 dt = timeNow - this.savedTime;
 end
 end
end

4. Test the class.
To test this class, we will write a script file that creates a MyTimer object,
performs some calculations, and measures the resulting elapsed time. In this
case we will create and solve a 1000 3 1000 system of simultaneous equations
and a 10,000 3 10,000 system of simultaneous equations, timing each solution
with a MyTimer object. The MyTimer object will be created just before the
first set of equations is solved. After the first solution, the script will call method
elapsedTime() to determine the time taken to solve the system of equations.

Next, the timer will be reset using method resetTimer(), the second
set of equations will be solved, and the script will again use elapsedTime()
to determine the time taken.

% Program to test the MyTimer class

% Create the timer object
t = MyTimer();

% Solve a 1000 x 1000 set of simultaneous equations
A = rand(1000,1000);
b = rand(1000,1);
x = A\b;

% Get the elapsed time
disp(['The time to solve a 1000 x 1000 set of equations is ' ...
 num2str(t.elapsedTime())]);

% Reset the timer
t.resetTimer();

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.5 Access Methods and Access Controls | 493

% Solve a 10000 x 10000 set of simultaneous equations
A = rand(10000,10000);
b = rand(10000,1);
x = A\b;

% Get the elapsed time
disp(['The time to solve a 10000 x 10000 set of equations is ' ...
 num2str(t.elapsedTime())]);

When this script is executed, the results are

» test_timer
The time to solve a 1000 x 1000 set of equations is 0.063
The time to solve a 10000 x 10000 set of equations is 13.026

The timer class appears to be working as desired.
▶

12.5.4 Notes on the MyTimer Class

This section contains a few notes about the operation of the MyTimer class, and of
classes in general.

First, note that the MyTimer class saves its start time in the property
savedTime. Each time that an object is instantiated from a class, it receives its
own copy of all instance variables defined in the class. Therefore, many MyTimer
objects could be instantiated and used simultaneously in a program, and they will not
interfere with each other because each timer has its own private copy of the instance
variable savedTime.

Also, notice that the blocks defining the properties and methods in the class
are all declared with either a public or private attribute. Any property or
method declared with the public attribute can be accessed from other classes in
the program. Any property or method declared with the private attribute is only
accessible to methods of the object in which it is defined.

In this case, the property savedTime is declared private, so it cannot be
seen or modified by any method outside of the object in which it is defined. Since
no method outside of MyTimer can see savedTime, it is not possible for some
other part of the program to accidentally modify the value stored there and so mess
up the elapsed time measurement. The only way that a program can utilize the
elapsed time measurement is through the public methods resetTimer()and
elapsedTime(). You should normally declare all properties within your classes
to be private (or otherwise protect them with access methods).

Also, note that the formula that calculates elapsed time in seconds in this class
[Equation (12.2)] resets at midnight each day, so this timer would fail if it ran over
midnight. You will be asked in an end-of-chapter problem to modify this equation so
that the timer works properly over longer periods of time.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

494 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.6 Static Methods

Static methods are methods within a class that do not perform calculations on
individual objects instantiated from the class. They typically perform “utility”
calculations that might be needed by the instance methods within the class, or that
might be needed in other parts of the program. Because these methods do not modify
the properties of the class, they do not include an object of the class as the first input
argument the way that instance methods do.

The static methods defined within a class can be used without instantiating an
object from the class first, so they can be called from the class constructor while an
object is being created. If the static methods have public access, they can also be
called from other parts of the program without creating an object first.

Static methods are declared by adding a Static attribute to the methods
block in which they are declared. They can be accessed without creating an
instance to the class first by naming the class name followed by a period and
the method name. Alternately, if an object created from the class exists, then the
static methods can be accessed by the object reference followed by a period and
the method name.

As an example, suppose that we are creating a class that works with angles
and, as a part of this class, we would like to have methods that convert from
degrees to radians and from radians to degrees. These methods do not involve the
properties defined in the class, and they could be declared as static methods as
follows:

classdef Angle
 ...
 methods(Static, Access = public)
 function out = deg2Rad(in)
 out = in * pi / 180;
 end

 function out = rad2Deg(in)
 out = in * 180 / pi;
 end
 end
 ...
end

These static methods could be accessed from inside and outside the class
because their access is public. They would be invoked using the class
name followed by a dot and the method name: Angle.deg2Rad() and
Angle.rad2Deg().

If an object of the Angle class is created as follows:

a = Angle();

then the static methods could also be called using the instance object name:
a.deg2Rad() and a.rad2Deg().

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.7 Defining Class Methods in Separate Files | 495

12.7 Defining Class Methods in Separate Files

So far, we have defined all of the methods in a class within a methods block in
the class definition. This certainly works, but if the methods are very large and there
are many of them, the class definition could be thousands of lines long! MATLAB
supports an alternate way to declare the methods in a class without having to force
all the methods to be in a single file.

Suppose that we wanted to create a class called MyClass. If we create a directory
called @MyClass and place it in a directory on the MATLAB path, MATLAB will
assume that all of the contents of that directory are components of class MyClass.

The directory must contain a file called MyClass.m that contains the class
definition. The class definition must contain the definition of the properties and
methods in the class but does not have to contain all of the method implementations.
The signature of each method (the calling sequence and return values) must be declared
in a methods block, but the actual functions can be declared in separate files.

The following example defines a class MyClass with three properties a, b,
and c, and two instance methods calc1 and calc2. The methods block contains
the signature of the two methods (the number of input arguments and output
arguments), but not the methods themselves.

classdef MyClass
 ...
 Properties (Access = private)
 a;
 b;
 c;
 End

 methods(Access = public)
 function output = calc1(this);
 function output = calc2(this, arg1, arg2);
 end
end

There must then be two separate files calc1.m and calc2.m in the same directory
that would contain the function definitions to implement the methods. File calc1.m
would contain the definition of function calc1:

function output = calc1(this);
 ...
 ...
end

Good Programming Practice

Use static methods to implement utility calculations within a class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

496 | Chapter 12 User -Defined Classes and Object-Oriented Programming

and file calc2.m would contain the definition of function calc2:

function output = calc2(this, arg1, arg2);
 ...
 ...
end

The directory @MyClass would contain the following files:

@MyClass\MyClass.m
@MyClass\calc1.m
@MyClass\calc2.m

Note that certain methods must be in the file with the class definition. These
methods include

1. The constructor method
2. The destructor method (delete)
3. Any method that has a dot in the method name, such as get and set

access methods.

All other methods can be declared in a class definition methods block, but actually
defined in separate files in the same subdirectory.

12.8 Overriding Operators

MATLAB implements the standard mathematical operators such as addition,
subtraction, multiplication, and division as methods with special names defined
in the class that defines a data type. For example, double is a built-in MATLAB
class that contains a single double-precision floating point property. This class
includes a set of methods to implement addition, subtraction, and so forth for two
objects of this class. When a user defines two double variables a and b and then
adds them together, MATLAB really calls the method plus(a,b) defined in the
double class.

MATLAB allows programmers to define operators for their own user- defined
classes as well. As long as a method with the right name and number of calling
arguments is defined in the class, MATLAB will call that method when it encounters
the appropriate operation between two objects of the class. If the class includes
a plus(a,b) method, then that method will be automatically called when the
expression a + b is evaluated with a and b being objects of that class. This is
sometimes called operator overloading, because we are giving the standard
operators a new definition.

User-defined classes have a higher precedence than built-in MATLAB classes,
so mixed operations between user-defined classes and built-in classes are evaluated
by the method defined in the user-defined class. For example, if a is a double vari-
able and b is an object of a user-defined class, then the expression a + b will be
evaluated by the plus(a,b) method in the user-defined class. Be aware of this—
you must be sure that your methods can handle both objects of the defined class and
built-in classes like double.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.8 Overriding Operators | 497

Table 12.3 lists the names and signatures of each method associated with a
MATLAB operator. Each method defined in the table accepts objects of the class it
is defined in (plus possibly double objects as well), and returns an object of the same
class. Note that a user-defined class does not need to implement all of these operators. It
can implement none, all, or any subset that makes sense for the problem being solved.

Table 12.3: Selected MATLAB Operators and Associated Functions

Operation Method to Define Description

a + b plus(a,b) Binary addition

a – b minus(a,b) Binary subtraction

-a uminus(a) Unary minus

+1 uplus(a) Unary plus

a .* b times(a,b) Element-wise multiplication

a * b mtimes(a,b) Matrix multiplication

a ./ b rdivide(a,b) Right element-wise division

a .\ b ldivide(a,b) Left element-wise division

a / b mrdivide(a,b) Matrix right division

a \ b mldivide(a,b) Matrix left division

a .ˆ b power(a,b) Element-wise power

a ˆ b mpower(a,b) Matrix power

a < b lt(a,b) Less than

a > b gt(a,b) Greater than

a <= b le(a,b) Less than or equal to

a >= b ge(a,b) Greater than or equal to

a ~= b ne(a,b) Not equal

a == b eq(a,b) Equal

a & b and(a,b) Logical AND

a | b or(a,b) Logical OR

~a not(a) Logical NOT

a:d:b
a:b

colon(a,d,b)
colon(a,b)

Colon operator

a’ ctranspose(a) Complex conjugate transpose

a.’ transpose(a) Matric transpose

command window output display(a) Display method

[a b] horzcat(a,b,…) Horizontal concatenation

[a; b] vertcat(a,b,…) Vertical concatenation

a(s1,s2,…,sn) subsref(a,s) Subscripted reference

a(a1,…sn) = b subsasgn(a,s,b) Subscripted assignment

b(a) subsindx(a) Subscript index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

498 | Chapter 12 User -Defined Classes and Object-Oriented Programming

Example 12.2—Vector Class

Create a handle class called Vector3D that holds a three-dimensional vector. The
class will define properties x, y, and z, and should implement a constructor and the
plus, minus, equal, and not equal operators for objects of this class.

Solution This class will have the three properties x, y, and z, with public access.
(Note that this is not a good idea for serious classes—we should implement access
methods for the class. We will keep this as simple as possible in this example and then
make the class better in end-of-chapter exercises.) It will implement a constructor
and the operators plus, minus, equal, and not equal operators for objects of this class.

The constructor for this class will implement both a default constructor and one
that provides initial values.

1. Define the properties
The Vector3D class must contain three properties called x, y, and z. The
properties are declared in a property block with public access, as
follows:

% Declare the Vector 3D class
classdef Vector3D < handle

 properties (Access = public)
 x; % X value of vector
 y; % Y value of vector
 z; % Z value of vector
 end

end

2. Create the constructor
The constructor for this class must initialize a Vector3D object with the
supplied input data, and it must also be able to function as a default constructor
if no arguments are supplied. We will use the nargin function to distinguish
these two cases. The constructor for the Vector3D class is shown below:

 % Declare the constructor
 function this = Vector3D(a,b,c)
 if nargin < 3

 % Default constructor
 this.x = 0;
 this.y = 0;
 this.z = 0;
 else

 % Constructor with input variables
 this.x = a;

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.8 Overriding Operators | 499

 this.y = b;
 this.z = c;
 end
 end

3. Create the methods
The class must also include four methods to implement the operators +,
-, ==, and ~=. The plus and minus methods will return an object of the
Vector3D type, and the equal and not equal methods will return a logical
result. The plus and minus methods are implemented by defining an output
vector and then adding or subtracting the two vectors term-by-term, saving
the result in the output vector. The equal and not equal methods consist of
comparing the two vectors term-by-term. The resulting Vector3D class is
shown below:

% Declare the Vector 3D class
classdef Vector3D < handle

 properties (Access = public)
 x; % X value of vector
 y; % Y value of vector
 z; % Z value of vector
 end

 methods (Access = public)

 % Declare the constructor
 function this = Vector3D(a,b,c)
 if nargin < 3

 % Default constructor
 this.x = 0;
 this.y = 0;
 this.z = 0;

 else

 % Constructor with input variables
 this.x = a;
 this.y = b;
 this.z = c;
 end
 end

 % Declare a method to add two vectors
 function obj = plus(objA,objB)
 obj = Vector3D;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

500 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 obj.x = objA.x + objB.x;
 obj.y = objA.y + objB.y;
 obj.z = objA.z + objB.z;
 end

 % Declare a method to subtract two vectors
 function obj = minus(objA,objB)
 obj = Vector3D;
 obj.x = objA.x - objB.x;
 obj.y = objA.y - objB.y;
 obj.z = objA.z - objB.z;
 end

 % Declare a method to check for equivalence
 function result = eq(objA,objB)
 result = (objA.x == objB.x) && ...
 (objA.y == objB.y) && ...
 (objA.z == objB.z);
 end

 % Declare a method to check for non-equivalence
 function result = ne(objA,objB)
 result = (objA.x ~= objB.x) || ...
 (objA.y ~= objB.y) || ...
 (objA.z ~= objB.z);
 end
 end

end

4. Test the class.
To test this class, we will create two Vector3D objects, and then add them,
subtract them, and compare them for equality and inequality.

» a = Vector3D(1,2,3)
a =
 Vector3D with properties:

 x: 1
 y: 2
 z: 3
» b = Vector3D(-3,2,-1)
b =
 Vector3D with properties:

 x: -3
 y: 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.9 Events and Listeners | 501

 z: -1
» c = a + b
c =
 Vector3D with properties:

 x: -2
 y: 4
 z: 2
» d = a - b
d =
 Vector3D with properties:

 x: 4
 y: 0
 z: 4
» eq = a == b
eq =
 0
» ne = a ~= b
ne =
 1
» whos
 Name Size Bytes Class Attributes

 a 1x1 112 Vector3D
 b 1x1 112 Vector3D
 c 1x1 112 Vector3D
 d 1x1 112 Vector3D
 eq 1x1 1 logical
 ne 1x1 1 logical

Note from the output of the whos statement that the sum and difference of
vectors a and b are also vectors of the same type, and the equality/inequality
tests yield logical results.

▶

12.9 Events and Listeners

Events are notices that an object broadcasts when something happens, such as a
property value changing or a user entering data on the keyboard or clicking a button
with a mouse. Listeners are objects that execute a callback method when notified
that an event of interest has occurred. Programs use events to communicate things
that happen to objects, and respond to these events by executing the listener’s call-
back function. They are used extensively to create callbacks in Graphical User Inter-
faces (GUIs), as we shall see in Chapter 14.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

502 | Chapter 12 User -Defined Classes and Object-Oriented Programming

Only handle classes can define events and listeners—they do not work for value
classes.

The events produced by a class are defined in an events block as a part of
the class definition, similar to the properties and methods blocks. Events are
triggered by calling the notify function in a method. The calling syntax for this
function is

notify(obj,'EventName');
notify(obj,'EventName',data);

This function notifies listeners that the event 'EventName' is occurring
in the specified object. The optional argument 'data' is an object of class
event.EventData containing additional information about the event. By
default, it contains the source of the event and the name of the event, but this
information can be extended as described in the MATLAB documentation.

Listeners are MATLAB functions that listen for specific events and then trigger
a specified callback function when the event occurs. Listeners can be created and
associated with an event using the addlistener method.

lh = addlistener(obj,'EventName',@CallbackFunction)

where obj is a handle to the object creating the event, 'EventName' is the name
of the event, and @CallbackFunction is a handle to the function to call when the
event occurs. The return argument lh is a handle to the listener object.

A simple example of declaring events in a class is shown below. This is a ver-
sion of the Vector3D class that defines a CreateEvent and a DestroyEvent.
The CreateEvent is published in the constructor when an object is created,
and the DestroyEvent is published in the delete method when the object is
destroyed.

Note that listener objects are created for each event in the constructor when the
object is created.

% Declare the Vector 3D class that generates events
classdef Vector3D < handle

 properties (Access = public)
 x; % X value of vector
 y; % Y value of vector
 z; % Z value of vector
 end

 events
 CreateEvent; % Create object event
 DestroyEvent; % Destroy object event
 end

 methods (Access = public)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.9 Events and Listeners | 503

 % Declare the constructor
 function this = Vector3D(a,b,c)

 % Add event listeners when the object is created
 addlistener(this,'CreateEvent',@createHandler);
 addlistener(this,'DestroyEvent',@destroyHandler);

 % Notify about the create event
 notify(this,'CreateEvent');

 if nargin < 3

 % Default constructor
 this.x = 0;
 this.y = 0;
 this.z = 0;

 else

 % Constructor with input variables
 this.x = a;
 this.y = b;
 this.z = c;
 end
 end

 ...
 ...
 ...

 % Declare the destructor
 function delete(this);
 notify(this,'DestroyEvent');
 end

 end

end

The callback functions specified in the listeners are shown below:

function createHandler(eventSrc,eventData)
 disp('In callback createHandler:');
 disp(['Object of type ' class(eventData.Source) ' created.']);
 disp(['eventData.EventName = ' eventData.EventName]);
 disp(' ');
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

504 | Chapter 12 User -Defined Classes and Object-Oriented Programming

function destroyHandler(eventSrc,eventData)
 disp('In callback destroyHandler:');
 disp(['Object of type ' class(eventData.Source) ' destroyed.']);
 disp(['eventData.EventName = ' eventData.EventName]);
 disp(' ');
end

When objects of this type are created and destroyed, we will see corresponding
callbacks occurring:

» a = Vector3D(1,2,3);
In callback createHandler:
Object of type Vector3D created.
eventData.EventName = CreateEvent

» b = Vector3D(3,2,1);
In callback createHandler:
Object of type Vector3D created.
eventData.EventName = CreateEvent

» a = b;
In callback destroyHandler:
Object of type Vector3D destroyed.
eventData.EventName = DestroyEvent

If it is saved, the handle to the listener object can be used to temporarily
disable or permanently remove the callback. If lh is the handle to the listener
object, the callback can be temporarily disabled by setting the enable property
to false.

lh.enable = false;

The callback can be permanently removed by deleting the listener object entirely

delete(lh);

12.9.1 Property Events and Listeners

All handle classes have four special events associated with each property: PreSet,
PostSet, PreGet, and PostGet. The PreSet property is set just before a property
is updated, and the PostSet property is set just after the property is updated. The
PreGet property is set just before a property is read, and the PostGet property is
set just after the property is read.

These events are enabled if the SetObservable attribute is enabled and
disabled if it is not present. For example, if a property is declared as

properties (SetObservable)
 myProp; % My property
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.10 Exceptions | 505

then the four events described above will be declared before and after that property is
read or written. If listeners are attached to these properties, the callbacks will occur
before and after the property is accessed.

12.10 Exceptions

Exceptions are interruptions to the normal flow of program execution due to
errors in the code. When an error occurs that a method cannot recover from by itself,
it collects information about the error (what the error was, what line it occurred on,
and the calling stack describing how program execution got to that point). It bundles
this information into a MException object, and then throws the exception.

A MException object contains the following properties:

 ■ identifier—The identifier is a string describing the error in a hierarchical
way, with the component causing the error followed by a mnemonic string
describing the error, separated by colons. Combining the component name
with the mnemonic guarantees that the identifier for each error will be unique.

 ■ message—This is a string containing a text description of the error.
 ■ stack—This property contains an array of structures specifying the calling
path to the location of the error, the name of the function, and the line number
where the error occurred.

 ■ cause—If there are secondary exceptions related to the main one, the additional
information about the other exceptions is stored in the cause property.

As an example of an exception, let’s create a set of functions, with the first one
calling the second one, and the second one calling the plot command surf without
calling arguments. This is illegal, so surf will throw an exception.

function fun1()
 try
 fun2;
 catch ME

 id = ME.identifier
 msg = ME.message
 stack = ME.stack
 cause = ME.cause

 % Display the stack
 for ii = 1:length(stack)
 stack(ii)
 end
 end
end

function fun2;
 surf;
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

506 | Chapter 12 User -Defined Classes and Object-Oriented Programming

When this function is executed, the results are:

» fun1
id =
MATLAB:narginchk:notEnoughInputs
msg =
Not enough input arguments.
stack =
3x1 struct array with fields:
 file
 name
 line
cause =
 {}
ans =
 file: 'C:\Program Files\MATLAB\R2014b\toolbox\matlab\graph3...'
 name: 'surf'
 line: 49
ans =
 file: 'C:\Data\book\matlab\5e\chap12\fun1.m'
 name: 'fun2'
 line: 22
ans =
 file: 'C:\Data\book\matlab\5e\chap12\fun1.m'
 name: 'fun1'
 line: 3

Note that the id string combines the component and the specific error mnemonic.
The message contains a plain English description of the error, and the stack contains
a structure array of the files, names, and line numbers that lead to the error. The cause
is not used because there were no other errors.

This error message can be displayed in a convenient form using the
getReport() method of the MException class. This will return a brief text
summary of the error.

» ME.getReport()

Error using surf (line 49)
Not enough input arguments.
Error in fun1>fun2 (line 22)
 surf;
Error in fun1 (line 3)
 fun2;

12.10.1 Creating Exceptions in Your Own Programs

If you write a MATLAB function that cannot function properly (perhaps it doesn’t have
all the data required) and you can detect the error, you should create a MException

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.10 Exceptions | 507

object describing the error and throwing an exception. The MException object
would be created using the constructor

ME = MException(identifier,string);

where the identifier is a string of the form component:mnemonic and the string
is a text string describing the error. When the data is stored in ME, then the function
should throw the error using the command

throw(ME);

This command will terminate the currently running function and return control to
the calling function. The throw function sets the stack field of the exception object
before returning to the caller, so the exception contains the complete stack trace to
the location where the error occurred.

12.10.2 Catching and Fixing Exceptions

If an exception is thrown in a function, execution will stop and return to the caller. If
the caller does not handle the exception, execution will stop and return to that func-
tion’s caller, and so forth, all the way back to the command window. If the exception
is still not handled, the error will be printed out in the command window using the
MException.last method, and the program will stop executing. The output of
MException.last looks like the output of the MException.getReport()
method that we saw earlier.

An exception can be handled at any level in the calling stack by a try / catch
structure. If the error occurs in a try clause of a function and an exception occurs,
then control will transfer to the catch clause with the exception argument. If the
function can fix the error, it should do so. If it cannot fix the error, it should pass the
exception on to the next higher caller in the calling tree using a rethrow(ME)
function. This function is similar to the original throw function, except that it does
not modify the stack trace. This leaves the stack still pointing at the lower level where
the error really occurred.

The following example shows the same two functions calling surf, but with
try / catch structures in fun1 and fun2.

function fun1()
 try
 fun2;
 catch ME
 disp('Catch in fun1:');
 ME.getReport()
 rethrow(ME);
 end
end

function fun2
 try

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

508 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 surf;
 catch ME
 disp('Catch in fun2:');
 ME.getReport()
 rethrow(ME);
 end
end

When fun1 is executed, we can see that fun2 catches and displays the error and
then rethrows it. Then fun1 catches and displays the error and then rethrows it.
After that the error reaches the command window, and the program stops.

» fun1
Catch in fun2:
ans =
Error using surf (line 49)
Not enough input arguments.
Error in fun1>fun2 (line 13)
 surf;
Error in fun1 (line 3)
 fun2;
Catch in fun1:
ans =
Error using surf (line 49)
Not enough input arguments.
Error in fun1>fun2 (line 13)
 surf;
Error in fun1 (line 3)
 fun2;
Error using surf (line 49)
Not enough input arguments.
Error in fun1>fun2 (line 13)
 surf;
Error in fun1 (line 3)
 fun2;

12.11 Superclasses and Subclasses

All handle classes form a part of a class hierarchy. Every handle class except handle
is a subclass of some other class, and the class inherits both properties and methods
from its parent class. The class can add additional properties and methods and can
also override the behavior of methods inherited from its parent class.

Any class above a specific class in the class hierarchy is known as a superclass
of that class. The class just above a specific class in the hierarchy is known as the
immediate superclass of the class. Any class below a specific class in the class
hierarchy is known as a subclass of that class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 509

Any subclass inherits the public properties and methods of the parent class. The
methods defined in a parent class can be overridden in a subclass, and the behavior
of the modified method will be used for objects of that subclass. If a method is defined
in a superclass and is not overridden in the subclass, then the method defined in the
superclass will be used by objects of the subclass whenever the method is called.

12.11.1 Defining Superclasses and Subclasses

For example, suppose that we were to create a class Shape, describing the character-
istics of a two-dimensional shape. This class would include properties containing the
area and perimeter of the shape. However, there are many different types of shapes, with
different ways to calculate the area and perimeter for each shape. For example, we could
create two subclasses of Shape called EquilateralTriangle and Square, with
different methods for calculating the shape properties (see Figure 12.8). Both of these
subclasses would inherit all of the common information and methods from Shape
(area, perimeter, etc.), but would override the methods used to calculate the properties.

Objects of either the EquilateralTriangle or Square classes may be
treated as objects of the Shape class, and so forth for any additional classes up the
inheritance hierarchy. An object of the EquilateralTriangle class is also an
object of the Shape class.

The MATLAB code for the Shape class is shown in Figure 12.9. This class
includes two instance variables, area and perimeter. The class also defines
a constructor, methods for calculating the area and perimeter of the shape, and a
string method for providing a text description of the object.

Note that this class and the following subclasses also include debugging disp
statements in each method, so that we can see exactly what code is executed when
an object of a given class is created and used. These statements are labeled “For
debugging only” in the following three figures.

EquilateralTriangle Square

Shape

Figure 12.8 A simple inheritance hierarchy. Both EquilateralTriangle
and Square inherit from Shape, and an object of either of their classes is also an
object of the Shape class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

510 | Chapter 12 User -Defined Classes and Object-Oriented Programming

classdef Shape < handle

 properties
 area; % Area of shape
 perimeter; % Perimeter of shape
 end

 methods

 % Declare the constructor
 function this = Shape()

 % For debugging only
 disp('In Shape constructor...');

 this.area = 0;
 this.perimeter = 0;

 end

 % Declare a method to calculate the area
 % of the shape.
 function calc_area(this)

 % For debugging only
 disp('In Shape method calc_area...');

 this.area = 0;
 end

 % Declare a method to calculate the perimeter
 % of the shape.
 function calc_perimeter(this)

 % For debugging only
 disp('In Shape method calc_perimeter...');

 this.perimeter = 0;
 end

 % Declare a method that returns info about
 % the shape.
 function string(this)

 % For debugging only
 disp('In Shape method string...');

Figure 12.9 The Shape class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 511

 str = ['Shape of class " ' class(this) ...
 ' ", area ' num2str(this.area) ...
 ', and perimeter ' num2str(this.perimeter)];
 disp(str);
 end

 end

end

Figure 12.9 (continued)

Notice that the methods calc_area and calc_perimeter produce zero
values instead of valid results because the method of calculating the values will
depend on the type of shape, and we don’t know that information yet in this class.

The MATLAB code for the EquilateralTriangle subclass is shown in
Figure 12.10. This class inherits the two instance variables, area and perimeter,
and adds an additional instance variable len. It also overrides methods calc_area
and calc_perimeter from the superclass so that they perform the proper calcu-
lations for an equilateral triangle.

 area 5
Ï3

4
3 len2 (12.3)

 perimeter 5 3 3 len (12.4)

classdef EquilateralTriangle < Shape

 properties
 len; % Length of side
 end

 methods

 % Declare the constructor
 function this = EquilateralTriangle(len)

 % For debugging only
 disp('In EquilateralTriangle constructor...');

 if nargin > 0
 this.len = len;
 end
 this.calc_area();
 this.calc_perimeter();

 end

Figure 12.10 The EquilateralTriangle class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

512 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 % Declare a method to calculate the area
 % of the shape.
 function calc_area(this)

 % For debugging only
 disp('In EquilateralTriangle method calc_area...');

 this.area = sqrt(3) / 4 * this.len.ˆ2;
 end

 % Declare a method to calculate the perimeter
 % of the shape.
 function calc_perimeter(this)

 % For debugging only
 disp('In EquilateralTriangle method calc_perimeter...');

 this.perimeter = 3 * this.len;
 end

 end

end

Figure 12.10 (continued)

A class is declared as a subclass of another class by including an < symbol
followed by the superclass name. In this case, class EquilateralTriangle is
a subclass of class Shape because of the < Shape clause on the classdef line.
Therefore, this class inherits all of the non-private instance variables and methods
from class Shape.

Class EquilateralTriangle defines a constructor to build objects of this
class. When an object of a subclass is instantiated, a constructor for its superclass
is called either implicitly or explicitly before any other initialization is performed.
In the constructor of class EquilateralTriangle, the superclass constructor is
called implicitly in the first line to initialize area and perimeter to their default
values. (Any implicit call to a superclass constructor is always performed with no
input parameters. If you need to pass parameters to the superclass constructor, then
an explicit call must be used.) The superclass must be initialized either implicitly or
explicitly before any subclass initialization can occur.

Good Programming Practice

When writing a subclass, call the superclass’s constructor either implicitly or
explicitly as the first action in the subclass constructor.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 513

Note that both the constructor in Shape and the constructor in
EquilateralTriangle contain disp statements that are printed out when
the code is executed, so it will be possible to see that the superclass constructor is
executed before the subclass constructor is executed.

This class also defines new methods calc_area and calc_perimeter that
override the definitions given in the superclass. Since the method string is not
re-defined, the one in the superclass Shape will also apply to any objects of the
subclass EquilateralTriangle.

The MATLAB code for the Square subclass is shown in Figure 12.11. This class
inherits the two instance variables, area and perimeter, and adds an additional
instance variable len. It also overrides methods calc_area and calc_perimeter
from the superclass so that they perform the proper calculations for a square.

 area 5 len2 (12.5)

 perimeter 5 4 3 len (12.6)

classdef Square < Shape

 properties
 len; % Length of side
 end

 methods

 % Declare the constructor
 function this = Square(len)

 % For debugging only
 disp('In Square constructor...');

 this = this@Shape();
 if nargin > 0
 this.len = len;
 end
 this.calc_area();
 this.calc_perimeter();

 end

 % Declare a method to calculate the area
 % of the shape.
 function calc_area(this)

 % For debugging only
 disp('In Square method calc_area...');
 Figure 12.11 The Square class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

514 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 this.area = this.len.ˆ2;
 end

 % Declare a method to calculate the perimeter
 % of the shape.
 function calc_perimeter(this)

 % For debugging only
 disp('In Square method calc_perimeter...');

 this.perimeter = 4 * this.len;
 end

 end

end

Figure 12.11 (continued)

Class Square defines a constructor to build objects of this class. In the construc-
tor of class Square, the superclass constructor is called explicitly in the first line
to initialize area and perimeter to their default values. If additional arguments
were needed to initialize the Shape class, they could be added to the explicit call:
this = this@Shape(arg1, arg2, ...).

12.11.2 Example Using Superclasses and Subclasses

To illustrate the use of these classes, we will create an object of the
EquilateralTriangle class with sides of length 2:

» a = EquilateralTriangle(2)
In Shape constructor...
In EquilateralTriangle constructor...
In EquilateralTriangle method calc_area...
In EquilateralTriangle method calc_perimeter...
a =
 EquilateralTriangle with properties:

 len: 2
 area: 1.7321
 perimeter: 6

Notice that the superclass Shape constructor was called first to perform its initial-
ization, followed by the EquilateralTriangle constructor. That constructor
called methods calc_area and calc_perimeter from class Equilateral-
Triangle to initialize the object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 515

The methods defined in this class can be found using the methods function:

» methods(a)

Methods for class EquilateralTriangle:

EquilateralTriangle calc_perimeter
calc_area string

Note that the methods defined in this class include the unique constructor
EquilateralTriangle, the overridden methods calc_area and
calc_perimeter, and the inherited method string.

The properties defined in this class can be found using the properties
function:

» properties(a)
Properties for class EquilateralTriangle:
 len
 area
 perimeter

Note that the properties defined in this class include the inherited properties area
and perimeter, plus the unique property len.

The class of this object is EquilateralTriangle:

» class(a)
ans =
EquilateralTriangle

However, a is also an object of any class that is a superclass of the object, as we can
see using the isa function:

» isa(a,'EquilateralTriangle')
ans =
 1
» isa(a,'Shape')
ans =
 1
» isa(a,'handle')
ans =
 1

If the calc_area or calc_perimeter methods are called on the new
object, the methods defined in class EquilateralTriangle will be used
instead of the methods defined in class Shape because the ones defined in class
EquilateralTriangle have overridden the superclass method.

» a.calc_area
In EquilateralTriangle method calc_area...

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

516 | Chapter 12 User -Defined Classes and Object-Oriented Programming

In contrast, if method string is called on the new object, the method defined
in class Shape will be used because it is inherited by the subclass:

» a.string
In Shape method string...
Shape of class "EquilateralTriangle", area 1.7321, and perimeter 6

Similarly, we can create an object of the Square class with sides of length 2:

» b = Square(2)
In Square constructor...
In Shape constructor...
In Square method calc_area...
In Square method calc_perimeter...
b =
 Square with properties:

 len: 2
 area: 4
 perimeter: 8

This object is of class Square, which is a subclass of Shape, so the string
method will also work with it.

» b.string
In Shape method string...
Shape of class "Square", area 4, and perimeter 8

Example 12.3—File Writer Class

Create a FileWriter class that opens a file when an object is created, includes
a method to write string data to the file, and automatically closes and saves the file
when the object is destroyed. Include a feature that counts the number of times data
has been written to the file, and a method to report that count. Use good programming
practices in your design, including hiding the properties to make them inaccessible
from outside the object. The class should throw exceptions in the event of errors, so
that a program using the class could trap and respond to the errors.

Solution This class will require two properties, a file ID to access the file and a
count to keep track of the number of writes to the file. The class will require four
methods, as follows:

1. A constructor to create the object and open the file. The constructor must
accept two arguments: a file name and an access mode (write or append).

2. A method to write an input string to a line in the file.
3. A method to return the number of writes so far.
4. delete (destructor) method to close and save the file when the object is

destroyed. This method must have a single argument that is the type of the
object to be destroyed.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 517

The class should throw exceptions if it encounters errors during execution. These
exceptions should cover the following errors:

1. There should be an exception in the constructor if no file name is supplied
when the object is created.

2. There should be an exception in the constructor if the file name data is not a
character string.

3. There should be an exception in the write method if the data to be written is
not a character string.

Note that there can be no exceptions in the delete method—it is not allowed to
throw anything.

1. Define the properties
The FileWriter class must contain two properties called fid and
numberOfWrites, which contain the file ID of the open file and the
number of writes to that file so far. These properties will have private
access, so that no code outside the class can modify them.

The properties are declared in a property block with private access,
as follows:

classdef FileWriter < handle

 % Property data is private to the class
 properties (Access = private)
 fid % File ID
 numberOfWrites % Number of writes to file
 end % properties

 (methods)

end

2. Create the constructor
The constructor for this class will check to see that a file name has been
provided and that the value of the file name is a character string. It will also
check to see if the file access type (w for write or a for append) is provided,
and assume append mode if no value is supplied. If not, it should throw
appropriate exceptions. Then it will open the file, checking that the open was
valid. If not, it should throw an exception.

The constructor for the FileWriter class is shown below:

% Constructor
function this = FileWriter(filename,access)

 % Check arguments
 if nargin == 0

 % No file name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

518 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 ME = MException('FileWriter:noFileName', ...
 'No file name supplied');
 throw(ME);

 elseif nargin < 2

 % Assume append access by default
 access = 'a';

 end

 % Validate that filename contains a string
 if ~isa(filename,'char')

 % The input data is of an invalid type
 ME = MException('FileWriter:invalidFileNameString', ...
 'Input filename is not a valid string');
 throw(ME);

 else

 % Open file and save File ID
 this.fid = fopen(filename,access);

 % Did the file open successfully?
 if this.fid <= 0

 % The input data is of an invalid type
 ME = MException('FileWriter:openFailed', ...
 'Input file cannot be opened');
 throw(ME);

 end

 % Zero the number of writes
 this.numberOfWrites = 0;

 end

end

3. Create the methods
The class must also include two methods to write a string to the disk and to
return the number of writes so far. Method writeToFile tests to see if a
valid string has been supplied and writes it to the file. Otherwise, it throws
an exception.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 519

% Write string to file
function writeToFile(this,text_str)

 % Validate that the input parameter is a string
 if ~isa(text_str,'char')

 % The input data is of an invalid type
 ME = MException('FileWriter:writeToFile:invalidString', ...
 'Input parameter is not a valid string');
 throw(ME);

 else

 % Open file and save File ID
 fprintf(this.fid,'%s\n',text_str);
 this.numberOfWrites = this.numberOfWrites + 1;

 end

end

Method getNumberOfWrites returns the number of writes to the file so far.

% Get method for numberOfWrites
function count = getNumberOfWrites(this)
 count = this.numberOfWrites;
end

Finally, we need a destructor method delete to close the file when the object
is destroyed.

% Destructor method to close file when object is destroyed
function delete(this)
 fclose(this.fid);
end

The resulting class is shown in Figure 12.12.

Figure 12.12 The FileWriter class.

 classdef FileWriter < handle

 % Property data is private to the class
 properties (Access = private)
 fid % File ID
 numberOfWrites % Number of writes to file
 end % properties

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

520 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 % Declare methods in class
 methods (Access = public)

 % Constructor
 function this = FileWriter(filename,access)

 % Check arguments
 if nargin == 0

 % No file name
 ME = MException('FileWriter:noFileName', ...
 'No file name supplied');
 throw(ME);

 elseif nargin < 2

 % Assume append access by default
 access = 'a';

 end

 % Validate that filename contains a string
 if ~isa(filename,'char')

 % The input data is of an invalid type
 ME = MException('FileWriter:invalidFileNameString', ...
 'Input filename is not a valid string');
 throw(ME);

 else

 % Open file and save File ID
 this.fid = fopen(filename,access);

 % Did the file open successfully?
 if this.fid <= 0

 % The input data is of an invalid type
 ME = MException('FileWriter:openFailed', ...
 'Input file cannot be opened');
 throw(ME);

 end

Figure 12.12 (continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 521

 % Zero the number of writes
 this.numberOfWrites = 0;

 end

 end

 % Write string to file
 function writeToFile(this,text_str)

 % Validate that the input parameter is a string
 if ~isa(text_str,'char')

 % The input data is of an invalid type
 ME = MException('FileWriter:writeToFile:invalidString', ...
 'Input parameter is not a valid string');
 throw(ME);

 else

 % Open file and save File ID
 fprintf(this.fid,'%s\n',text_str);
 this.numberOfWrites = this.numberOfWrites + 1;

 end

 end

 % Get method for numberOfWrites
 function count = getNumberOfWrites(this)
 count = this.numberOfWrites;
 end

 % Finalizer method to close file when object is destroyed
 function delete(this)
 fclose(this.fid);
 end

 end % methods

 end % class

Figure 12.12 (continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

522 | Chapter 12 User -Defined Classes and Object-Oriented Programming

4. Test the class.
To test this class, we will write a series of scripts that use the class to write to
a file correctly and that illustrate various failure modes. The first test is of the
class writing to a file and deleting any pre-existing file.

% This script tests the FileWriter in 'w', which
% deletes any pre-existing file.

% Create object
a = FileWriter('newfile.txt','w');

% Write three lines of text
a.writeToFile('Line 1');
a.writeToFile('Line 2');
a.writeToFile('Line 3');

% How many lines have been written?
disp([int2str(a.getNumberOfWrites()) ' lines have been written.']);

% Destroy the object
a.delete();

% Display data
type 'newfile.txt'

When this script is executed, the results are

» testFileWriter1
3 lines have been written.

Line 1
Line 2
Line 3

These results are correct.
The second test is of the class writing to a file appending to any pre-existing data.

% This script tests the FileWriter in 'a', which
% preserves any pre-existing file.

% Create object
a = FileWriter('newfile.txt','a');

% Write three lines of text
a.writeToFile('Line 1');
a.writeToFile('Line 2');
a.writeToFile('Line 3');

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.11 Superclasses and Subclasses | 523

% How many lines have been written?
disp([int2str(a.getNumberOfWrites()) ' lines have been written.']);

% Destroy the object
a.delete();

% Display data
type 'newfile.txt'

When this script is executed, the results are

» testFileWriter2
3 lines have been written.

Line 1
Line 2
Line 3
Line 1
Line 2
Line 3

The three new lines were appending to the existing ones.
Now let’s try a few error cases:

» a = FileWriter()
Error using FileWriter (line 21)
No file name supplied

» a = FileWriter(123)
Error using FileWriter (line 36)
Input filename is not a valid string

» a = FileWriter('newfile.txt');
» a.writeToFile(123);
Error using FileWriter/writeToFile (line 69)
Input parameter is not a valid string

This class appears to be working as desired.
▶

Quiz 12.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Chapter 12. If you have trouble with the quiz, reread the section,
ask your instructor, or discuss the material with a fellow student. The answers to
this quiz are found in the back of the book.

1. What is a class? What is an object? Explain the difference between the two.
2. How do you create a user-defined class in MATLAB?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

524 | Chapter 12 User -Defined Classes and Object-Oriented Programming

3. What are the principal components of a class?
4. What is a constructor? How can you distinguish a constructor from other

methods in a class?
5. What is a destructor method? If it exists, when is a destructor executed?
6. What are events? What triggers an event? How can a program listen to and

respond to events?
7. What are exceptions? When are exceptions thrown? How are they created?

How are they handled by a program?
8. What is a subclass? Explain how a subclass is created from another class.

12.12 Summary

In Chapter 12, we have introduced the basics of object-oriented programming in
MATLAB. An object is a software component whose structure is like that of objects
in the real world. Each object consists of a combination of data (called properties)
and behaviors (called methods). The properties are variables describing the essential
characteristics of the object, while the methods describe how the object behaves and
how the properties of the object can be modified.

Classes are the software blueprints from which objects are made. A class is a
software construct that specifies the number and type of properties to be included
in an object and the methods that will be defined for the object. Methods come in
two varieties: instance methods and static methods. Instance methods perform cal-
culations involving the properties of an object. In contrast, static methods perform
calculations that do not involve the properties of an object. They can be used without
creating objects from the class first, if desired.

Each class contains four types of components:

1. Properties. Properties define the instance variables that will be created
when an object is instantiated from a class.

2. Methods. Methods implement the behaviors of a class.
3. Constructor. Constructors are special methods that specify how to initialize

an object when it instantiated. They always have the same name as the class
in which they are defined.

4. Destructor. Destructors are special methods that clean up the resources
(open files, etc.) used by an object just before it is destroyed. They always
have the name delete.

Classes are created using a classdef structure, and properties and methods are
defined within properties and methods blocks within the classdef structure.
There can be more than one properties and methods block within a class defini-
tion, with each one specifying properties or methods that have different attributes.

The behavior of classes, properties, and methods can be modified by specifying
attributes associated with the block in which they are defined. Some of the more
important possible attributes are given in Tables 12.1 and 12.2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.12 Summary | 525

MATLAB supports two kinds of classes: value classes and handle classes. If
one object of a value class type is assigned to another variable, MATLAB copies the
original object, and there are now two objects in memory. In contrast, if an object of a
handle class is assigned to another variable, MATLAB copies a reference (a handle)
to the class, and the two variables contain handles that point to the same object in
memory. Value classes are used to store and manipulate numeric and string data in
MATLAB. Handle classes behave more like objects in other programming languages
such as C11 and Java.

The data stored in the properties of a class can be protected from improper mod-
ification by using access methods and/or access controls. Access methods intercept
assignment statements, using the properties, and check that the data is valid before
allowing the assignment to occur. Access controls hide access to properties so that
methods outside of an object cannot modify the properties directly.

It is possible to create custom definitions of operators such as 1, 2, *, and / so
that they work with user-defined classes. This is done by defining methods in the
class with standard names. If a method of the appropriate name is found within a
class, it will be called when the corresponding operator is encountered in a program.
For example, if the method plus(a,b) is defined in a class, then it will be called
whenever two objects of that class are added together using the operator a + b.

Events are notices that an object broadcasts when something happens, such as a
property value changing or a user entering data on the keyboard or clicking a button
with a mouse. Listeners are objects that execute a callback method when notified that an
event of interest has occurred. Programs use events to communicate things that happen
to objects and respond to these events by executing the listener’s callback function.

Exceptions are interruptions to the normal flow of program execution due to
errors in the code. When an error occurs that a method cannot recover from by itself, it
collects information about the error (what the error was, what line it occurred on, and
the calling stack describing how program execution got to that point). It bundles this
information into a MException object and then throws the exception. try / catch
structures are used to capture and handle exceptions when they occur.

12.12.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB classes.

1. Define a constructor for a class to initialize the data in objects of that class
when they are instantiated. Be sure to support a default case (one without
arguments) in the constructor design.

2. When an instance method is invoked, do not include the object in the
method’s list of calling arguments.

3. Use access methods to protect class properties from being modified in
inappropriate ways. The access methods should check for valid data types,
subscript ranges, and so forth before allowing a property to be modified.

4. Define a delete method to close files or delete other resources before an
object is destroyed.

5. Use static methods to implement utility calculations within a class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

526 | Chapter 12 User -Defined Classes and Object-Oriented Programming

12.12.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

class Returns the class of the input argument.

classdef Keyword to mark the start of a class definition.

clear Function to remove a reference to a handle object from memory.
If there is no other reference to the object, the object will also be
deleted.

delete Function to remove an object of a handle class from memory.

delete Method in a class that is called when the object is about to be
destroyed.

events Keyword to mark the start of an events block, which defined the
events produced by a class.

isa Function that tests to see if an object belongs to a particular class.

methods Function that lists the non-hidden methods defined in a class.

methods Keyword to mark the start of a methods block, which declares
methods in a class.

MException MATLAB exception class, which is created when an error occurs
during MATLAB execution.

properties Function that lists the non-hidden properties defined in a class.

properties Keyword to mark the start of a properties block, which declares
variables in a class.

try / catch block Code structure used to track exceptions in MATLAB code.

12.13 Exercises

12.1 Demonstrate that multiple copies of the Timer class of Example 12.1 can
function independently without interfering with each other. Write a program
that creates a random 50 3 50 set of simultaneous equations and then solves
the equations. Create three Timer objects as follows: one to time the equation
creation process, one to time the equation solution process, and one to time
the entire process (creation plus solution). Show that the three objects are
functioning independently without interfering with each other.

12.2 Improve the Timer class of Example 12.1 so that it does not fail if it is timing
objects over midnight. To do this, you will need to use function datenum,
which converts a date and time into a serial date number that represents the years
since year zero, including fractional parts. To calculate the elapsed time, represent
the start time and elapsed time as serial date numbers and subtract the two values.
The result will be elapsed time in years, which then needs to be converted to
seconds for use in the Timer class. Create a static method to convert a date
number in years into a date number in seconds, and use that method to convert
both the start time and elapsed time in your calculations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.13 Exercises | 527

12.3 Create a handle class called PolarComplex containing a complex number
represented in polar coordinates. The class should contain two properties called
magnitude and angle, where angle is specified in radians. The class should
include access methods to allow controlled access to the property values, as well
as methods to add, subtract, multiply, and divide two PolarComplex objects.

 PolarComplex objects can be converted to rectangular form using the
following equations:

 c 5 a 1 bi 5 z/� (12.7)

 a 5 z cos � (12.8)

 b 5 z sin � (12.9)

 z 5 Ïa2 1 b2 (12.10)

 � 5 tan21

b
a

 (12.11)

 Complex numbers are best added and subtracted in rectangular form.

 c
1

1 c
2

5 sa
1

1 a
2
d 1 sb

1
1 b

2
di (12.12)

 c
1

2 c
2

5 sa
1

2 a
2
d 1 sb

1
2 b

2
di (12.13)

 Complex numbers are best multiplied and divided in polar form.

 c
1

3 c
2

5 z
1
z

2
/�

1
1 �

2
 (12.14)

c

1

c
2

5
z

1

z
2

/�
1

2 �
2
 (12.15)

P
a 1 bi

real axis

imaginary axis

z

�

Figure 12.13 Representing a complex number in polar coordinates.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

528 | Chapter 12 User -Defined Classes and Object-Oriented Programming

 Create methods that add, subtract, multiply, and divide PolarComplex numbers
based on Equations (12.12) through (12.15), designing them so that two objects
can be manipulated with ordinary math symbols. Include static methods to convert
back and forth from rectangular to polar form for use with these calculations.

12.4 Three-Dimensional Vectors The study of the dynamics of objects in motion
in three dimensions is an important area of engineering. In the study of dynamics,
the position and velocity of objects, forces, torques, and so forth are usually

represented by three-component vectors v 5 x i
⁄

1 y j
⁄

1 z k
⁄
, where the three

components (x, y, z) represent the projection of the vector v along the x, y, and

z axes respectively, and i
⁄

, j
⁄

, and k
⁄
 are the unit vectors along the x, y, and z

axes (see Figure 12.14). The solutions of many mechanical problems involve
manipulating these vectors in specific ways.

 The most common operations performed on these vectors are:

1. Addition. Two vectors are added together by separately adding their x, y,

and z components. If v
1

5 x
1
 i
⁄

1 y
1
 j
⁄

1 z
1
 k

⁄
 and v

2
5 x

2
 i
⁄

1 y
2
 j
⁄

1 z
2
 k

⁄
,

then v
1

1 v
2

5 sx
1

1 x
2
d i

⁄
1 s y

1
1 y

2
d j

⁄
1 sz

1
1 z

2
d k

⁄
.

2. Subtraction. Two vectors are subtracted by separately subtracting their x,

y, and z components. If v
1

5 x
1
 i
⁄

1 y
1
 j
⁄

1 z
1
 k

⁄
 and v

2
5 x

2
 i
⁄

1 y
2
 j
⁄

1 z
2
 k

⁄
,

then v
1

2 v
2

5 sx
1

2 x
2
d i

⁄
1 s y

1
2 y

2
d j

⁄
1 sz

1
2 z

2
d k

⁄
.

3. Multiplication by a Scalar. A vector is multiplied by a scalar by separately

multiplying each component by the scalar. If v 5 x i
⁄

1 y j
⁄

1 z k
⁄
, then

av 5 ax i
⁄

1 ay j
⁄

1 az k
⁄
.

4. Division by a Scalar. A vector is divided by a scalar by separately

dividing each component by the scalar. If v 5 x i
⁄

1 y j
⁄

1 z k
⁄
, then

v
a

5
x
a

 i
⁄

1
y
a

 j
⁄

1
z
a

 k
⁄
.

Figure 12.14 A three-dimensional vector.

k

z

v

y

x

i

j

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12.13 Exercises | 529

5. The Dot Product. The dot product of two vectors is one form of multi-
plication operation performed on vectors. It produces a scalar that is the
sum of the products of the vector’s components. If v

1
5 x

1
 i
⁄

1 y
1
 j
⁄

1 z
1
 k

⁄

and v
2

5 x
2
 i
⁄

1 y
2
 j
⁄

1 z
2
 k

⁄
, then the dot product of the vectors is

v
1
?v

2
5 x

1
x

2
1 y

1
y

2
1 z

1
z

2
.

6. The Cross Product. The cross product is another multiplication oper-
ation that appears frequently between vectors. The cross product of
two vectors is another vector whose direction is perpendicular to the
plane formed by the two input vectors. If v

1
5 x

1
 i
⁄

1 y
1
 j
⁄

1 z
1
 k

⁄
 and

v
2

5 x
2
 i
⁄

1 y
2
 j
⁄

1 z
2
 k

⁄
, then the cross product of the two vectors is defined

as v
1

3 v
2

5 s y
1
z

2
2 y

2
z

1
d i

⁄
1 sz

1
x

2
2 z

2
x

1
d j

⁄
1 sx

1
y

2
2 x

2
y

1
d k

⁄
.

7. Magnitude. The magnitude of a vector is defined as v 5 Ïx2 1 y2 1 z2.

 Create a value class called Vector3D, having three properties x, y, and
z. Define a constructor to create vector objects from three input values.
Define get and put access methods for each property, and define methods
to perform the seven vector operations defined above. Be sure to design the
methods so that they work with operator overloading when possible. Then,
create a program to test all of the functions of your new class.

 12.5 If no exceptions are thrown within a try block, where does execution continue
after the try block is finished? If an exception is thrown within a try block and
caught in a catch block, where does execution continue after the catch block
is finished?

 12.6 Modify the FileWriter class by adding new methods to write numeric data
to the file as text strings, with one numeric value per line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

531

13Chapter

Handle Graphics
and Animation

In this chapter we will learn about a low-level way to manipulate MATLAB plots
(called handle graphics), and about how to create animations and movies in
MATLAB.

13.1 Handle Graphics

Handle graphics is the name of a set of low-level graphics functions that control the
characteristics of graphical objects generated by MATLAB. The “handles” referred
to are handles to objects from MATLAB graphical classes. These graphical classes
are handle classes because they are subclasses of handle, and most of what we
learned in Chapter 12 about handle classes applies to them.

The MATLAB graphics system has been replaced in Release 2014b. The new
graphics system is sometimes referred to as “H2 Graphics”; it generally produces
better quality plots than the older system. The discussion in this chapter will be about
the new H2 Graphics system, but it will also describe those features of the new sys-
tem that are backward compatible with older versions of MATLAB.

Handle graphics objects correspond to graphical features, such as figures, axes,
lines, text boxes, and so forth. Each object has its own set of properties, which con-
trol when and how the object will be displayed on a plot. The various properties can
be modified using the handles, as we will discuss in this chapter.

We have actually been using handle graphics indirectly since almost the begin-
ning of the book. For example, we learned in Chapter 3 how to set extra properties
when plotting lines, such as setting the line width:

plot(x,y,'LineWidth',2);

The 'LineWidth' here was actually a property of the handle graphics object
representing the line we are plotting, and the 2 is the value to be stored in that property.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

532 | Chapter 13 Handle Graphics and Animation

Handle graphics properties and functions are very important to programmers
since they allow them to have fine control of the appearance of the plots and graphs
that they create. For example, it is possible to use handle graphics to turn on a grid
on the x-axis only, or to choose a line color like orange, which is not supported by
the standard LineSpec option of the plot command. In addition, handle graphics
enable a programmer to create graphical user interfaces (GUIs) for programs, as we
will see in the next chapter.

This chapter introduces the structure of the MATLAB graphics system, and
explains how to control the properties of graphical objects to create a desired display.

13.2 The MATLAB Graphics System

The MATLAB graphics system is based on a hierarchical system of core graphics
objects, each of which can be accessed by a handle that refers to the object1. Each
graphics object is derived from a handle class, and each class represents some feature
of a graphical plot, such as a figure, a set of axes, a line, a text string, and so forth.
Each class includes special properties that describe the object, and changing those
properties changes how the particular object will be displayed. For example, a line
is one type of graphical class. The properties defined in a line class include: x-data,
y-data, color, line style, line width, marker type, and so forth. Modifying any of these
properties will change the way that the line is displayed in a Figure Window.

Every component of a MATLAB graph is a graphical object. For example, each
line, axes, and text string is a separate object with its own unique handle and charac-
teristics. All graphical objects are arranged in a hierarchy with parent objects and
child objects, as shown in Figure 13.1. In general, a child object is one that appears
embedded within the parent object. For example, an axes object is embedded within
a figure, and one or more line objects could be embedded within the axes object.
When a child object is created, it inherits many of its properties from its parent.

The highest-level graphics object in MATLAB is the root, which can be thought
of as the entire computer screen. A handle to the root object can be obtained from
function groot, which stands for “Graphics Root Object.” The graphics root object
is created automatically when MATLAB starts up, and it is always present until the
program is shut down. The properties associated with the root object are the defaults
that apply to all MATLAB windows.

Under the root object, there can be one or more Figure Windows, or just
figures. Each figure is a separate window on the computer screen that can dis-
play graphical data, and each figure has its own properties. The properties associated
with a figure include color, color map, paper size, paper orientation, pointer type,
and so forth.

1Before MATLAB R2014b, graphical object handles were double values returned from functions that
created the objects. The root was object 0, figures were objects 1, 2, 3, and so forth, and other graphical
objects had handles with non-integer values. In MATLAB R2014b and later, the new “H2 graphics” sys-
tem has been enabled. In this system, graphical object handles are actual handles to MATLAB classes,
with access to the public properties of the class. This chapter describes the new graphics system, but much
of it will work in the older versions of MATLAB as well for backward compatibility.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.3 Object Handles | 533

Each figure can contain eight types of objects: uimenus, uicontextmenus,
uicontrols, uitoolbars, uipanels, uitables, uibuttongroups,
and axes. Uimenus, uicontextmenus, uicontrols, uitoolbars,
uipanels, uitables, and uibuttongroups are special graphics objects used
to create graphical user interfaces—they will be described in the next chapter. Axes
are regions within a figure where data is actually plotted. There can be more than one
set of axes in a single figure.

Each set of axes can contain as many lines, text strings, patches, and so
forth as necessary to create the plot of interest.

13.3 Object Handles

When a graphics object is created, the creating function returns a handle to the object.
For example, the function call

» hndl = figure;

creates a new figure and returns the handle of that figure in variable hndl. The key
public properties of the object can be displayed by typing its name in the Command
Window.

» hndl
hndl =
 Figure (1) with properties:

Root
(Computer Screen)

Figure Figure

Uimenu Uicontextmenu Uicontrol Uitable

Patch TextLine SurfaceImage Rectangle Light

Uitoolbar Uipanel Uibuttongroup Axes

UitoggletoolUipushtool

Parent

Children

Figure 13.1 The hierarchy of handle graphics objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

534 | Chapter 13 Handle Graphics and Animation

 Number: 1
 Name: ''
 Color: [0.940000000000000 0.940000000000000 0.940000000000000]
Position: [680 678 560 420]
 Units: ' pixels'

 Show all properties

If the user then clicks on the Show all properties line, the full list of 64 public prop-
erties for this figure object will be displayed.

Notice that one of the properties of the figure object is Number. This property
contains the figure number, which is the value that was called a “handle” on the older pre-
Release 2014b graphics system. The number of the root object is always 0, and the
number of each figure object is normally a small positive integer, such as 1, 2, 3, ….
The num bers associated with all other graphics objects are arbitrary floating-point values.

The handle graphics system includes many functions to get and set properties
in objects. These functions are all designed to accept either the actual handle to an
object or the number property from that handle. This makes the H2 Graphics system
backward compatible with older MATLAB programs.

There are MATLAB functions available to get the handles of figures, axes, and
other objects. For example, the function gcf returns the handle of the currently
selected figure, gca returns the handle of the currently selected axes within the cur-
rently selected figure, and gco returns the handle of the currently selected object.
These functions will be discussed in more detail later.

By convention, handles are usually stored in variables that begin with the letter h.
This practice helps us to recognize handles in MATLAB programs.

13.4 Examining and Changing Object Properties

Object properties describe the data stored in a graphics object when it is instantiated.
These properties control aspects of how that object behaves. Each property has a
property name and an associated value. The property names are strings that are typ-
ically displayed in mixed case with the first letter of each word capitalized.

13.4.1 Changing Object Properties at Creation Time

When an object is created, all of its properties are automatically initialized to
default values. These default values can be overridden at creation time by including
 'PropertyName ', value pairs in the object creation function2. For example, we
saw in Chapter 3 that the width of a line could be modified in the plot command
as follows.

plot(x,y,'LineWidth',2);

2Examples of object creation functions include figure, which creates a new figure, axes, which creates
a new set of axes within a figure, and line, which creates a line within a set of axes. High-level functions
such as plot are also object creation functions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.4 Examining and Changing Object Properties | 535

This function overrides the default LineWidth property with the value 2 at the time
that the line object is created.

13.4.2 Changing Object Properties after Creation Time

The public properties of any object can be examined or modified at any time using
one of three techniques:

1. Directly accessing the properties using standard object syntax, which is the
object handle followed by a dot and the property name: hndl.property.
(This technique only works for the new H2 Graphics system.)

2. Accessing the properties through get and set functions. (This technique
works for both the old and the new graphics systems.)

3. Using the Property Editor.

The first two approaches are almost identical in operation.

13.4.3 Examining and Changing Properties Using
Object Notation

Object properties can be examined using the object reference handle.property.
If the command ”handle.property ” is typed at the command line, the cor-
responding property will be displayed. If only the object handle is typed in the
Command Window, then MATLAB will display all the public properties of
the object.

Object properties can also be changed using the object reference
handle.property. The command

handle.property = value;

will set the property to the specified value if it is a legal selection for that property.
For example, suppose that we plotted the function ysxd 5 x2 from 0 to 2 with the

following statements:

x = 0:0.1:2;
y = x.^2;
hndl = plot(x,y);

The resulting plot is shown in Figure 13.2a. The handle of the plotted line is stored
in hndl, and we can use it to examine or modify the properties of the line. Typing
hndl on the command line will return a list of the object’s properties.

» hndl
hndl =
 Line with properties:

 Color: [0 0.447000000000000 0.741000000000000]
 LineStyle: '-'

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

536 | Chapter 13 Handle Graphics and Animation

(a)

Figure 13.2 (a) Plot of the function y 5 x2 using the default linewidth. (b) Plot of
the function after modifying the LineWidth and LineStyle properties.

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.4 Examining and Changing Object Properties | 537

 LineWidth: 0.500000000000000
 Marker: 'none'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [1x21 double]
 YData: [1x21 double]
 ZData: []

Note that the current line width is 0.5 pixels, and the current line style is a solid line.
We can change the line width and the line style with the following sets of commands:

» hndl.LineWidth = 4;
» hndl.LineStyle = '--';

The plot after either command is issued is shown in Figure 13.2b.
Note that the property to be examined or set must be capitalized exactly as

defined in the class, or it will not be recognized.

13.4.4 Examining and Changing Properties Using
get/set Functions

Object properties can also be examined using the get function. The get function
will also display the property. This function takes the form

value = get(handle,'PropertyName')
value = get(handle)

where value is the value contained in the specified property of the object whose
handle is supplied. If only the handle is included in the get function call, the func-
tion returns a structure array in which the property names and values of all of the
public properties are shown.

Object properties can be changed using the set function. The set function
takes the form

set(handle,'PropertyName1',value1,...);

where there can be any number of 'PropertyName',value pairs in a single
function.

For example, suppose that we plotted the function ysxd 5 x2 from 0 to 2 with the
following statements:

x = 0:0.1:2;
y = x.^2;
hndl = plot(x,y);

The resulting plot is shown in Figure 13.2a. The handle of the plotted line is stored in
hndl, and we can use it to examine or modify the properties of the line. Calling the
function get(hndl) will return all of the properties of this line in a structure, with
each property name being an element of the structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

538 | Chapter 13 Handle Graphics and Animation

» result = get(hndl)
result =

 AlignVertexCenters: 'off'
 Annotation: [1x1 matlab.graphics.eventdata.Annotation]

 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: "
 Children: []
 Clipping: 'on'
 Color: [0 0.447000000000000 0.741000000000000]
 CreateFcn: "
 DeleteFcn: "
 DisplayName: "
 HandleVisibility: 'on'
 HitTest: 'on'
 Interruptible: 'on'
 LineStyle: '-'
 LineWidth: 0.500000000000000
 Marker: 'none'
 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'
 MarkerSize: 6
 Parent: [1x1 Axes]
 Selected: 'off'
 SelectionHighlight: 'on'
 Tag: "
 Type: 'line'
 UIContextMenu: []
 UserData: []
 Visible: 'on'
 XData: [1x21 double]
 XDataMode: 'manual'
 XDataSource: "
 YData: [1x21 double]
 YDataSource: "
 ZData: []
 ZDataSource: "

Note that the current line width is 0.5 pixels, and the current line style is a solid line.
We can change the line width and the line style with the following set function:

» set(hndl,'LineWidth',4,'LineStyle','--')

The plot after either command is issued is shown in Figure 13.2b; it is identical
regardless of the method used to modify the line’s properties.

The get/set functions have three significant advantages over object notation
for examining and modifying graphics properties:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.4 Examining and Changing Object Properties | 539

1. The get/set functions work with both the old and new graphics systems,
so programs written using them will work in older versions of MATLAB.

2. The get/set functions will locate the proper properties and display or
modify them even if the capitalization of a property is incorrect. This is not
true for object notation. For example, the property 'LineWidth' must
be capitalized exactly that way in object notation, but 'lineWidth'
or 'linewidth' would also work in a get or set function.

3. When a property has an enumerated list of legal values, the function
set(hndl,'property') will return a list of all possible legal values.
The object notation will not do this. For example, the legal line styles of a
line object are:

» set(hndl,'LineStyle')
 '-'
 '--'
 ':'
 '-.'
 'none'

13.4.5 Examining and Changing Properties Using
the Property Editor

Either the direct access to object properties or the get and set functions can be
very useful for programmers, because they can be directly inserted into MATLAB
programs to modify a figure, based on a user’s input. As we shall see in the next
chapter, these functions are used extensively in GUI programming.

For the end user, however, it is often easier to change the properties of a
MATLAB object interactively. The Property Editor is a GUI-based tool designed for
this purpose. The Property Editor is started by first selecting the Edit button () on
the figure toolbar and then clicking on the object that you want to modify with the
mouse. Alternately, the property editor can be started from the command line with or
without a list of objects to edit:

propedit(HandleList);
propedit;

For example, the following statements will create a plot containing the line y 5 x2
over the range 0 to 2, and open the Property Editor to allow the user to interactively
change the properties of the line.

figure(2);
x = 0:0.1:2;
y = x.^2;
hndl = plot(x,y);
propedit(hndl);

The Property Editor invoked by these statements is shown in Figure 13.3. The
Property Editor contains a series of panes that vary depending on the type of object
being modified.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

540 | Chapter 13 Handle Graphics and Animation

Figure 13.3 The Property Editor when editing a line object. Changes in style are
immediately displayed on the figure as the object is edited.

Example 13.1— Using Low-Level Graphics Commands

The function sinc(x) is defined by the equation

sinc x 5 5

 sin x
x

x Þ 0

1 x 5 0
 (13.1)

Plot this function from x 5 23p to x 5 3p. Use handle graphics functions to cus-
tomize the plot as follows:

1. Make the figure background pink.
2. Use y-axis grid lines only (no x-axis grid lines).
3. Plot the function as a 2-point-wide solid orange line.

Solution To create this graph, we need to plot the function sinc x from x 5 23p to
x 5 3p using the plot function. The plot function will return a handle for the line
that we can save and use later.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.4 Examining and Changing Object Properties | 541

After plotting the line, we need to modify the color of the figure object, the
grid status of the axes object, and the color and width of the line object. These
modifications require us to have access to the handles of the figure, axes, and
line objects. The handle of the figure object is returned by the gcf function,
the handle of the axes object is returned by the gca function, and the handle of the
line object is returned by the plot function that created it.

The low-level graphics properties that need to be modified can be found by
referring to the on-line MATLAB Help Browser documentation, under the topic Handle
Graphics. They are the 'Color' property of the current figure, the 'YGrid' property
of the current axes, and the 'LineWidth' and 'Color' properties of the line.

1. State the problem
Plot the function sinc x from x 5 23p to x 53p using a figure with a pink
background, y-axis grid lines only, and a 2-point-wide solid orange line.

2. Define the inputs and outputs
There are no inputs to this program, and the only output is the specified figure.

3. Describe the algorithm
This program can be broken down into three major steps.

Calculate sinc(x)
Plot sinc(x)
Modify the required graphics object properties

The first major step is to calculate sinc x from x 5 23p to x 5 3p.
This can be done with vectorized statements, but the vectorized statements
will produce a NaN at x 5 0, since the division of 0/0 is undefined. We
must replace the NaN with a 1.0 before plotting the function. The detailed
pseudocode for this step is:

% Calculate sinc(x)
x = -3*pi:pi/10:3*pi
y = sin(x) ./ x

% Find the zero value and fix it up. The zero is
% located in the middle of the x array.
index = fix(length(y)/2) + 1
y(index) = 1

Next, we must plot the function, saving the handle of the resulting line
for further modifications. The detailed pseudocode for this step is:

hndl = plot(x,y);

Now we must use handle graphics commands to modify the figure
background, y-axis grid, and line width and color. Remember that the fig-
ure handle can be recovered with the function gcf, and the axis handle can
be recovered with the function gca. The color pink can be created with the
RGB vector [1 0.8 0.8], and the color orange can be created with
the RGB vector [1 0.5 0]. The detailed pseudocode for this step is:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

542 | Chapter 13 Handle Graphics and Animation

set(gcf,'Color',[1 0.8 0.8])
set(gca,'YGrid','on')
set(hndl,'Color',[1 0.5 0],'LineWidth',2)

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below.

% Script file: plotsinc.m
%
% Purpose:
% This program illustrates the use of handle graphics
% commands by creating a plot of sinc(x) from -3*pi to
% 3*pi, and modifying the characteristics of the figure,
% axes, and line using the "set" function.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 04/02/14 S. J. Chapman Original code
%
% Define variables:
% hndl -- Handle of line
% x -- Independent variable
% y -- sinc(x)

% Calculate sinc(x)
x = -3*pi:pi/10:3*pi;
y = sin(x) ./ x;

% Find the zero value and fix it up. The zero is
% located in the middle of the x array.
index = fix(length(y)/2) + 1;
y(index) = 1;

% Plot the function.
hndl = plot(x,y);

% Now modify the figure to create a pink background,
% modify the axis to turn on y-axis grid lines, and
% modify the line to be a 2-point-wide orange line.
set(gcf,'Color',[1 0.8 0.8]);
set(gca,'YGrid','on');
set(hndl,'Color',[1 0.5 0],'LineWidth',2);

5. Test the program.
Testing this program is very simple—we just execute it and examine the
resulting plot. The plot created is shown in Figure 13.4, and it does have the
characteristics that we wanted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.5 Using set to List Possible Property Values | 543

You will be asked to modify this program to use object property notation in an
end-of-chapter exercise.

13.5 Using set to List Possible Property Values

The set function can be used to provide lists of possible property values. If a
set function call contains a property name but not a corresponding value, set
returns a list of all of the legal choices for that property. For example, the command
set(hndl,'LineStyle') will return a list of all legal line styles:

» set(hndl,'LineStyle')
ans =
 '-'
 '--'
 ':'
 '-.'
 'none'

This function shows that the legal line styles are '-', '--', ':', '-.', and
'none', with the first choice as the default.

Figure 13.4 Plot of sinc x versus x.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

544 | Chapter 13 Handle Graphics and Animation

If the property does not have a fixed set of values, MATLAB returns an empty
cell array:

» set(hndl,'LineWidth')
ans =
 {}

The function set(hndl) will return all of the possible choices for all of the
properties of an object.

» xxx = set(hndl)
xxx =
 Color: {}
 EraseMode: {4x1 cell}
 LineStyle: {5x1 cell}
 LineWidth: {}
 Marker: {14x1 cell}
 MarkerSize: {}
 MarkerEdgeColor: {2x1 cell}
 MarkerFaceColor: {2x1 cell}
 XData: {}
 YData: {}
 ZData: {}
 ButtonDownFcn: {}
 Children: {}
 Clipping: {2x1 cell}
 CreateFcn: {}
 DeleteFcn: {}
 BusyAction: {2x1 cell}
 HandleVisibility: {3x1 cell}
 HitTest: {2x1 cell}
 Interruptible: {2x1 cell}
 Selected: {2x1 cell}
 SelectionHighlight: {2x1 cell}
 Tag: {}
 UIContextMenu: {}
 UserData: {}
 Visible: {2x1 cell}
 Parent: {}
 DisplayName: {}
 XDataMode: {2x1 cell}
 XDataSource: {}
 YDataSource: {}
 ZDataSource: {}

Any of the items in this list can be expanded to see the available list of options.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.6 User-Defined Data | 545

» xxx.EraseMode
ans =
 'normal'
 'background'
 'xor'
 'none'

13.6 User-Defined Data

In addition to the standard properties defined for a GUI object, a programmer can define
special properties to hold program-specific data. These extra properties are a convenient
way to store any kind of data that the programmer might wish to associate with the GUI
object. Any amount of any type of data can be stored and used for any purpose.

User-defined data is stored in a manner similar to standard properties. Each
data item has a name and a value. Data values are stored in an object with the
setappdata function and retrieved from the object using the getappdata function.

The general form of setappdata is

setappdata(hndl,'DataName',DataValue);

where hndl is the handle of the object to store the data into, 'DataName' is the
name given to the data, and DataValue is the value assigned to that name. Note
that the data value can be either numeric or a character string.

For example, suppose that we wanted to define two special data values, one con-
taining the number of errors that have occurred on a particular figure, and the other
containing a string describing the last error detected. Such data values could be given
the names 'ErrorCount' and 'LastError'. If we assume that h1 is the handle
of the figure, then command to create these data items and initialize them would be:

setappdata(h1,'ErrorCount',0);
setappdata(h1,'LastError','No error');

Application data can be retrieved at any time using the function getappdata.
The two forms of getappdata are

value = getappdata(hndl,'DataName');
struct = getappdata(hndl);

where hndl is the handle of the object containing the data, and 'DataName' is the
name of the data to be retrieved. If a 'DataName' is specified, then the value asso-
ciated with that data name will be returned. If it is not specified, then all user-defined
data associated with that object will be returned in a structure. The names of the data
items will be structure element names in the returned structure.

For the example given above, getappdata will produce the following results:

» value = getappdata(h1,'ErrorCount')
value =
 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

546 | Chapter 13 Handle Graphics and Animation

» struct = getappdata(h1)
struct =
 ErrorCount: 0
 LastError: 'No error'

The functions associated with user-defined data are summarized in Table 13.1.

13.7 Finding Objects

Each new graphics object that is created has its own handle, and that handle is returned
by the creating function. If you intend to modify the properties of an object that you
create, then it is a good idea to save the handle for later use with get and set.

Good Programming Practice

If you intend to modify the properties of an object that you create, save the handle of
that object so that its properties can be examined and modified later.

However, sometimes we might not have access to the handle. Suppose that we
lost a handle for some reason. How can we examine and modify the graphics objects?

MATLAB provides four special functions to help find the handles of objects.

■■ gcf—Returns the handle of the current figure.
■■ gca—Returns the handle of the current axes in the current figure.
■■ gco—Returns the handle of the current object.
■■ findobj—Finds a graphics object with a specified property value.

Table 13.1: Functions for Manipulating User-Defined Data
Function Description

setappdata(hndl,'DataName',DataValue) Stores DataValue in an item named
 'DataName' within the object specified by the
handle hndl.

value = getappdata(hndl,'DataName')
struct = getappdata(hndl)

Retrieves user-defined data from the object specified
by the handle hndl. The first form retrieves the
value associated with 'DataName' only, and the
second form retrieves all user-defined data.

isappdata(hndl,'DataName') A logical function that returns a 1 if 'DataName'
is defined within the object specified by the handle
hndl, and 0 otherwise.

rmappdata(hndl,'DataName') Removes the user-defined data item named
 'DataName' from the object specified by the
handle hndl.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.7 Finding Objects | 547

The function gcf returns the handle of the current figure. If no figure exists,
gcf will create one and return its handle. The function gca returns the handle of the
current axes within the current figure. If no figure exists or if the current figure exists
but contains no axes, gca will create a set of axes and return its handle. The function
gco has the form

h_obj = gco;
h_obj = gco(h_fig);

where h_obj is the handle of the object and h_fig is the handle of a figure. The
first form of this function returns the handle of the current object in the current
figure, while the second form of the function returns the handle of the current object
in a specified figure.

The current object is defined as the last object clicked on with the mouse.
This object can be any graphics object except the root. There will not be a current
object in a figure until a mouse click has occurred within that figure. Before the first
mouse click, function gco will return an empty array []. Unlike gcf and gca, gco
does not create an object if it does not exist.

Once the handle of an object is known, we can determine the type of the object
by examining its 'Type' property. The 'Type' property will be a character string,
such as 'figure', 'line', 'text', and so forth.

h_obj = gco;
type = get(h_obj,'Type')

The easiest way to find an arbitrary MATLAB object is with the findobj func-
tion. The basic form of this function is

hndls = findobj('PropertyName1',value1,...)

This command starts at the root object, and searches the entire tree for all objects
that have the specified values for the specified properties. Note that multiple prop-
erty/value pairs may be specified, and findobj will only return the handles of
objects that match all of them.

For example, suppose that we have created Figures 1 and 3. Then the function
findobj('Type','figure') will return the results:

» h_fig = findobj('Type','figure')
h_fig =
 2x1 Figure array:

 Figure (1)
 Figure (3)

This form of the findobj function is very useful, but it can be slow since it
must search through the entire object tree to locate any matches. If you must use an
object multiple times, make only one call to findobj and save the handle for re-use.

Restricting the number of objects that must be searched can increase the execu-
tion speed of this function. This can be done with the following form of the function:

hndls = findobj(Srchhndls,'PropertyName1',value1,...)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

548 | Chapter 13 Handle Graphics and Animation

Here, only the handles listed in array Srchhndls and their children will be searched
to find the object. For example, suppose that you wanted to find all of the dashed lines
in Figure 1. The command to do this would be:

hndls = findobj(1,'Type','line','LineStyle','--');

Good Programming Practice

If possible, restrict the scope of your searches with findobj to make them faster.

13.8 Selecting Objects with the Mouse

Function gco returns the handle of the current object, which is the last object clicked
on by the mouse. Each object has a selection region associated with it, and any
mouse click within that selection region is assumed to be a click on that object. This
is very important for thin objects like lines or points—the selection region allows
the user to be slightly sloppy in mouse position and still select the line. The width of
and shape of the selection region varies for different types of objects. For instance,
the selection region for a line is 5 pixels on either side of the line, while the selection
region for a surface, patch, or text object is the smallest rectangle that can contain
the object.

The selection region for an axes object is the area of the axes plus the area of
the titles and labels. However, lines or other objects inside the axes have a higher
priority, so to select the axes you must click on a point within the axes that is not
near lines or text. Clicking on a figure outside of the axes region will select the figure
itself.

What happens if a user clicks on a point that has two or more objects, such as the
intersection of two lines? The answer depends on the stacking order of the objects.
The stacking order is the order in which MATLAB selects objects. This order is
specified by the order of the handles listed in the 'Children' property of a figure.
If a click is in the selection region of two or more objects, the one with the highest
position in the 'Children' list will be selected.

MATLAB includes a function called waitforbuttonpress that is some-
times used when selecting graphics objects. The form of this function is:

k = waitforbuttonpress

When this function is executed, it halts the program until either a key is pressed or
a mouse button is clicked. The function returns 0 if it detects a mouse button click
or 1 if it detects a key press.

The function can be used to pause a program until a mouse click occurs. After
the mouse click occurs, the program can recover the handle of the selected object
using the gco function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.8 Selecting Objects with the Mouse | 549

Example 13.2—Selecting Graphics Objects

The program shown below explores the properties of graphics objects and, inciden-
tally, shows how to select objects using waitforbuttonpress and gco. The
program allows objects to be selected repeatedly until a key press occurs.

% Script file: select_object.m
%
% Purpose:
% This program illustrates the use of waitforbuttonpress
% and gco to select graphics objects. It creates a plot
% of sin(x) and cos(x) and then allows a user to select
% any object and examine its properties. The program
% terminates when a key press occurs.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 04/02/14 S. J. Chapman Original code
%
% Define variables:
% details -- Object details
% h1 -- handle of sine line
% h2 -- handle of cosine line
% handle -- handle of current object
% k -- Result of waitforbuttonpress
% type -- Object type
% x -- Independent variable
% y1 -- sin(x)
% y2 -- cos(x)
% yn -- Yes/No

% Calculate sin(x) and cos(x)
x = -3*pi:pi/10:3*pi;
y1 = sin(x);
y2 = cos(x);

% Plot the functions.
h1 = plot(x,y1);
set(h1,'LineWidth',2);
hold on;
h2 = plot(x,y2);

set(h2,'LineWidth',2,'LineStyle',':','Color','r');
title('\bfPlot of sin \itx \rm\bf and cos \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx \rm\bf and cos \itx');
legend('sine','cosine');
hold off;

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

550 | Chapter 13 Handle Graphics and Animation

% Now set up a loop and wait for a mouse click.
k = waitforbuttonpress;

while k == 0
 % Get the handle of the object
 handle = gco;

 % Get the type of this object.
 type = get(handle,'Type');

 % Display object type
 disp (['Object type = ' type '.']);

 % Do we display the details?
 yn = input('Do you want to display details? (y/n) ','s');

 if yn == 'y'
 details = get(handle);
 disp(details);
 end

 % Check for another mouse click
 k = waitforbuttonpress;
end

When this program is executed, it produces the plot shown in Figure 13.5. Exper-
iment by clicking on various objects on the plot and seeing the resulting characteristics.

Figure 13.5 Plot of sin x and cos x.
▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.9 Position and Units | 551

13.9 Position and Units

Many MATLAB objects have a 'position' property, which specifies the size
and position of the object on the computer screen. This property differs slightly for
different kinds of objects, as described below.

13.9.1 Positions of figure Objects

The 'position' property for a figure specifies the location of that figure on
the computer screen using a four-element row vector. The values in this vector
are [left bottom width height], where left is the leftmost edge of the fig-
ure, bottom is the bottom edge of the figure, width is the width of the figure, and
height is the height of the figure. These position values are in the units specified in
the 'Units' property for the object. For example, the position and units associated
with a the current figure can be found as follows:

» get(gcf,'Position')
ans =
 176 204 672 504
» get(gcf,'Units')
ans =
pixels

This information specifies that the lower left corner of the current figure window is
176 pixels to the right and 204 pixels above the lower left corner of the screen, and
the figure is 672 pixels wide by 504 pixels high. This is the drawable region of the
figure, excluding borders, scrollbars, menus, and the figure title area.

The 'units' property of a figure defaults to pixels, but it can be inches, centi-
meters, points, characters, or normalized coordinates. Pixels are screen pixels, which
are the smallest rectangular shape that can be drawn on a computer screen. Typical
computer screens will be at least 640 pixels wide 3 480 pixels high, and screens
can have more than 1000 pixels in each direction. Since the number of pixels varies
from computer screen to computer screen, the size of an object specified in pixels
will also vary.

Normalized coordinates are coordinates in the range 0 to 1, where the lower left
corner of the screen is at (0,0) and the upper right corner of the screen is at (1,1).
If an object position is specified in normalized coordinates, it will appear in the
same relative position on the screen regardless of screen resolution. For example,
the following statements create a figure and place it into the upper left quadrant of the
screen on any computer, regardless of screen size3.

h1 = figure(1)
set(h1,'units','normalized','position',[0 .5 .5 .45])

3The normalized height of this figure is reduced to 0.45 to allow room for the figure title and menu bar,
both of which are above the drawing area.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

552 | Chapter 13 Handle Graphics and Animation

13.9.2 Positions of axes and uicontrol Objects

The position of axes and uicontrol objects is also specified by a four-element
vector, but the object position is specified relative to the lower left-hand corner of the
figure instead of the position of the screen. In general, the 'Position' property of
a child object is relative to the position of its parent.

By default, the positions of axes objects are specified in normalized units within
a figure, with (0,0) representing the lower left-hand corner of the figure, and (1,1)
representing the upper right-hand corner of the figure.

13.9.3 Positions of text Objects

Unlike other objects, text objects have a position property containing only two or
three elements. These elements correspond to the x, y, and z values of the text object
within an axes object. Note that these values are in the units being displayed on the
axes themselves.

The position of the text object with respect to the specified point is controlled
by the object’s HorizontalAlignment and VerticalAlignment prop-
erties. The HorizontalAlignment can be {Left}, Center, or Right;
and the VerticalAlignment can be Top, Cap, {Middle}, Baseline, or
Bottom.

The size of text objects is determined by the font size and the number of
characters being displayed, so there are no height and width values associated
with them.

Good Programming Practice

If you would like to place a window in a specific location, it is easier to place the
window at the desired location using normalized coordinates, and the results will be
the same regardless of the computer’s screen resolution.

Example 13.3—Positioning Objects within a Figure

As we mentioned earlier, axes positions are defined relative to the lower left-hand
corner of the frame that they are contained in, while text object positions are defined
within axes in the data units being displayed on the axes.

To illustrate the positioning of graphics objects within a figure, we will write
a program that creates two overlapping sets of axes within a single figure. The first
set of axes will display sin x versus x and will have a text comment attached to the

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.9 Position and Units | 553

display line. The second set of axes will display cos x versus x and will have a text
comment in the lower left-hand corner.

A program to create the figure is shown below. Note that we are using the
figure function to create an empty figure, and then we will use two axes
functions to create the two sets of axes within the figure. The position of the
axes functions is specified in normalized units within the figure, so the first
set of axes, which starts at (0.05,0.05), is in the lower left-hand corner of the
figure, and the second set of axes, which starts at (0.45,0.45), is in the upper
right-hand corner of the figure. Each set of axes has the appropriate function
plotted on it.

The first text object is attached to the first set of axes at position (2p, 0),
which is a point on the curve. The 'HorizontalAlignment','right' prop-
erty is selected, so the attachment point (2p, 0) is on the right hand side of the text
string. As a result, the text appears to the left of the attachment point in the final
figure. (This can be confusing for new programmers!)

The second text object is attached to the second set of axes at position
(27.5, 20.9), which is near the lower left-hand corner of the axes. This string
uses the default horizontal alignment, which is 'left', so the attachment point
(27.5, 20.9) is on the left-hand side of the text string. As a result, the text appears to
the right of the attachment point in the final figure.

% Script file: position_object.m
%
% Purpose:
% This program illustrates the positioning of graphics
% graphics objects. It creates a figure, and then places
% two overlapping sets of axes on the figure. The first
% set of axes is placed in the lower left-hand corner of
% the figure, and contains a plot of sin(x). The second
% set of axes is placed in the upper right hand corner of
% the figure, and contains a plot of cos(x). Then two
% text strings are added to the axes, illustrating the
% positioning of text within axes.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 04/03/14 S. J. Chapman Original code
%
% Define variables:
% h1 -- Handle of sine line
% h2 -- Handle of cosine line
% ha1 -- Handle of first axes
% ha2 -- Handle of second axes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

554 | Chapter 13 Handle Graphics and Animation

% x -- Independent variable
% y1 -- sin(x)
% y2 -- cos(x)

% Calculate sin(x) and cos(x)
x = -2*pi:pi/10:2*pi;
y1 = sin(x);
y2 = cos(x);

% Create a new figure
figure;

% Create the first set of axes and plot sin(x).
% Note that the position of the axes is expressed
% in normalized units.
ha1 = axes('Position',[.05 .05 .5 .5]);
h1 = plot(x,y1);
set(h1,'LineWidth',2);
title('\bfPlot of sin \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx');
axis([-8 8 -1 1]);

% Create the second set of axes and plot cos(x).
% Note that the position of the axes is expressed
% in normalized units.
ha2 = axes('Position',[.45 .45 .5 .5]);
h2 = plot(x,y2);
set(h2,'LineWidth',2,'Color','r','LineStyle','--');
title('\bfPlot of cos \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx');
axis([-8 8 -1 1]);

% Create a text string attached to the line on the first
% set of axes.
axes(ha1);
text(-pi,0.0,'sin(x)\rightarrow','HorizontalAlignment','right');

% Create a text string in the lower left-hand corner
% of the second set of axes.
axes(ha2);
text(-7.5,-0.9,'Test string 2');

When this program is executed, it produces the plot shown in Figure 13.6. You should
execute this program again on your computer, changing the size and/or location of
the objects being plotted, and observing the results.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.10 Printer Positions | 555

13.10 Printer Positions

The 'Position' and 'Units' properties specify the location of a figure on the com-
puter screen. There are also five other properties that specify the location of a figure on a
sheet of paper when it is printed. These properties are summarized in Table 13.2 below.

Table 13.2: Printing-related Figure Properties

Option Description

PaperUnits Units for paper measurements:
[{inches} | centimeters | normalized | points]

PaperOrientation [{portrait} | landscape]

PaperPosition A position vector of the form [left, bottom, width, height]
where all units are as specified in PaperUnits.

PaperSize A two-element vector containing the power size, for example [8.5 11]

PaperType Sets paper type. Note that setting this property automatically updates the
PaperSize property.
 [{usletter} | uslegal | A0 | A1 | A2 | A3 | A4 |
A5 | B0 | B1 | B2 | B3 | B4 | B5 | arch-A | arch-B |
arch-C | arch-D | arch-E | A | B | C | D | E |
tabloid | <custom>]

Figure 13.6 The output of program position_object.
▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

556 | Chapter 13 Handle Graphics and Animation

For example, to set a plot to print out in landscape mode, on A4 paper, in nor-
malized units, we could set the following properties:

set(hndl,'PaperType','A4')
set(hndl,'PaperOrientation','landscape')
set(hndl,'PaperUnits','normalized');

13.11 Default and Factory Properties

MATLAB assigns default properties to each object when it is created. If those prop-
erties are not what you want, then you must use set to select the desired values. If
you needed to change a property in every object that you create, this process could
become very tedious. For those cases, MATLAB allows you to modify the default
property itself, so that all objects will inherit the correct value of the property when
they are created.

When a graphics object is created, MATLAB looks for a default value for each
property by examining the object’s parent. If the parent sets a default value, that
value is used. If not, MATLAB examines the parent’s parent to see if that object sets
a default value, and so on, back to the root object. MATLAB uses the first default
value that it encounters when working back up the tree.

Default properties may be set at any point in the graphics object hierarchy that is
higher than the level at which the object is created. For example, a default figure
color would be set in the root object, and then all figures created after that time
would have the new default color. On the other hand, a default axes color could be
set in either the root object or the figure object. If the default axes color is set in
the root object, it will apply to all new axes in all figures. If the default axes color
is set in the figure object, it will apply to all new axes in the current figure only.

Default values are set using a string consisting of 'default' followed by the
object type and the property name. Thus the default figure color would be set with the
property 'defaultFigureColor' and the default axes color would be set with
the property 'defaultAxesColor'. Some examples of setting default values are
shown below:

set(groot,'defaultFigureColor','y') Yellow figure background—all new figures

set(groot,'defaultAxesColor','r') Red axes background—all new axes in all figures

set(gcf,'defaultAxesColor','r') Red axes background—all new axes in current
figure only

set(gca,'defaultLineLineStyle',':') Set default line style to dashed, in current axes only.

If you are working with existing objects, it is always a good idea to restore them
to their existing condition after they are used. If you change the default properties of
an object in a function, save the original values and restore them before exiting the
function. For example, suppose that we wish to create a series of figures in normal-
ized units. We could save and restore the original units as follows:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.11 Default and Factory Properties | 557

saveunits = get(groot,'defaultFigureUnits');
set(groot,'defaultFigureUnits','normalized');
...
<MATLAB statements>
...

set(groot,'defaultFigureUnits',saveunits);

If you want to customize MATLAB to use different default values at all times,
then you should set the defaults in the root object every time that MATLAB starts
up. The easiest way to do this is to place the default values into the startup.m file,
which is automatically executed every time MATLAB starts. For example, suppose
you always use A4 paper and you always want a grid displayed on your plots. Then
you could set the following lines into startup.m:

set(groot,'defaultFigurePaperType','A4');
set(groot,'defaultFigurePaperUnits','centimeters');
set(groot,'defaultAxesXGrid','on');
set(groot,'defaultAxesYGrid','on');
set(groot,'defaultAxesZGrid','on');

There are three special value strings that are used with handle graphics:
'remove', 'factory ', and 'default'. If you have set a default value for a
property, the 'remove' value will remove the default that you set. For example,
suppose that you set the default figure color to yellow:

set(groot,'defaultFigureColor','y');

The following function call will cancel this default setting and restore the previous
default setting.

set(groot,'defaultFigureColor','remove');

The string 'factory ' allows a user to temporarily override a default value and use
the original MATLAB default value instead. For example, the following figure is created
with the factory default color despite a default color of yellow being previously defined.

set(groot,'defaultFigureColor','y');
figure('Color','factory ')

The string 'default' forces MATLAB to search up the object hierarchy until
it finds a default value for the desired property. It uses the first default value that it
finds. If it fails to find a default value, it uses the factory default value for that prop-
erty. This use is illustrated below:

% Set default values
set(groot,'defaultLineColor','k'); % root default = black
set(gcf,'defaultLineColor','g'); % figure default = green

% Create a line on the current axes. This line is green.
hndl = plot(randn(1,10));
set(hndl,'Color','default');
pause(2);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

558 | Chapter 13 Handle Graphics and Animation

% Now clear the figure's default and set the line color to the new
% default. The line is now black.
set(gcf,'defaultLineColor','remove');
set(hndl,'Color','default');

13.12 Graphics Object Properties

There are hundreds of different graphics object properties—far too many to discuss
in detail here. The best place to find a complete list of graphics object properties is in
the Help Browser distributed with MATLAB.

We have mentioned a few of the most important properties for each type of
graphics object as we have needed them ('LineStyle', 'Color', and so forth).
A complete set of properties is given in the MATLAB Help Browser documentation
under the descriptions of each type of object.

13.13 Animations and Movies

Handle graphics can be used to create animations in MATLAB. There are two possi-
ble approaches to this task:

1. Erasing and redrawing
2. Creating a movie

In the first case, the user draws a figure, and then updates the data in the figure reg-
ularly using handle graphics. Each time that the data is updated, the program will
redraw the object with the new data, producing an animation. In the second case, the user
draws a figure, captures a copy of the figure as a frame in a movie, redraws the figure,
captures the new figure as the next frame in the movie, and so forth until the entire
movie has been created.

13.13.1 Erasing and Redrawing

To create an animation by erasing and redrawing, the user first creates a plot, and
then changes the data displayed in the plot by updating the line objects and so forth,
using handle graphics. To see how this works, consider the function

 f sx,td 5 Astd sin x (13.2)

where

 Astd 5 cos t (13.3)

For any given time t, this function will be the plot of a sine wave. However the amplitude
of the sine wave will vary with time, so the plot will look different at different times.

The key to creating an animation is to save the handle associated with the line
plotting the sine wave and then to update the 'YData' property of that handle at
each time step with the new y-axis data. Note that we won’t have to change the x data
because the x limits of the plot will be the same at any time.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.13 Animations and Movies | 559

An example program creating the sine wave that varies with time is shown
below. In this program, we create the sine wave plot at time t 5 0 and capture a han-
dle hndl to the line object when it is created. Then the plot data is recalculated in a
loop at each time step, and the line is updated using handle graphics.

Note the drawnow command in the update loop. This command causes the
graphics to be rendered at the moment it is executed, which ensures that the display
is updated each time new data is loaded into the line object.

Also, note that we have set the y-axis limits to be 21 to 1 using the handle
graphics command set(gca,'YLim',[-1 1]). If the y-axis limits are not set,
the scale of the plot will change with each update and the user will not be able to tell
that the sine wave is getting larger and smaller.

Finally, note that there is a pause(0.1) command commented out in the pro-
gram. If executed, this command would pause for 0.1 second after each update of the
drawing. The pause command can be used in a program if the updates are occurring
too fast when it executes (because a particular computer is very fast), and adjusting
the delay time will allow the user to adjust the update rate.

% Script file: animate_sine.m
%
% Purpose:
% This program illustrates the animation of a plot
% by updating the data in the plot with time.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 05/02/14 S. J. Chapman Original code
%
% Define variables:
% h1 -- Handle of line
% a -- Amplitude of sine function at an instant
% x -- Independent variable
% y -- a * cos(t) * sin(x)

% Calculate the times at which to plot the sine function
t = 0:0.1:10;

% Calculate sin(x) for the first time
a = cos(t(1));
x = -3*pi:pi/10:3*pi;
y = a * sin(x);

% Plot the function.
figure(1);
hndl = plot(x,y);
xlabel('\bfx');
ylabel('\bfAmp');
title(['\bfSine Wave Animation at t = ' num2str(t(1),'%5.2f')]);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

560 | Chapter 13 Handle Graphics and Animation

 % Set the size of the y axes
 set(gca,'YLim',[-1 1]);

 % Now do the animation
 for ii = 2:length(t)

 % Pause for a moment
 drawnow;
 %pause(0.1);

 % Calculate sin(x) for the new time
 a = cos(t(ii));
 y = a * sin(x);

 % Update the line
 set(hndl, 'YData', y);

 % Update the title
 title(['\bfSine Wave Animation at t = ' num2str(t(ii),'%5.2f')]);

end

Figure 13.7 One snapshot from the sine wave animation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.13 Animations and Movies | 561

When this program executes, the amplitude of the sine wave rises and falls. One
snapshot from the animation is shown in Figure 13.7.

It is also possible to do animations of three-dimensional plots, as shown in the
next example.

Example 13.4—Animating a Three-Dimensional Plot

Create a three-dimensional animation of the function

 f sx,y,td 5 Astd sin x sin y (13.4)

where

 Astd 5 cos t (13.5)

for time t 5 0 s to t 5 10 s in steps of 0.1 s.

Solution For any given time t, this function will be the plot of a two-dimensional
sine wave varying in both x and y. However the amplitude of the sine wave will vary
with time, so the plot will look different at different times.

This program will be similar to the variable sine wave example above, except
that the plot itself will be a 3D surface plot, and the z data needs to be updated at
each time step instead of the y data. The original 3D surf plot is created by using
meshgrid to create the arrays of x and y values, evaluating Equation (13.4) at all
the points on the grid and plotting the surf function. After that, Equation (13.4)
is reevaluated at each time step, and the ‘ZData’ property of the surf object is
updated using handle graphics.

% Script file: animate_sine_xy.m
%
% Purpose:
% This program illustrates the animation of a 3D plot
% by updating the data in the plot with time.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 06/02/14 S. J. Chapman Original code
%
% Define variables:
% h1 -- Handle of line
% a -- Amplitude of sine function at an instant
% array1 -- Meshgrid output for x values

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

562 | Chapter 13 Handle Graphics and Animation

% array2 -- Meshgrid output for y values
% x -- Independent variable
% y -- Independent variable
% z -- cos(t) * sin(x) * sin(y)

% Calculate the times at which to plot the sine function
t = 0:0.1:10;

% Calculate sin(x)*sin(y) for the first time
a = cos(t(1));
[array1,array2] = meshgrid(-3*pi:pi/10:3*pi,-3*pi:pi/10:3*pi);
z = a .* sin(array1) .* sin(array2);

% Plot the function.
figure(1);
hndl = surf(array1,array2,z);
xlabel('\bfx');
ylabel('\bfy');
zlabel('\bfAmp');
title(['\bfSine Wave Animation at t = ' num2str(t(1),'%5.2f')]);

% Set the size of the z axes
set(gca,'ZLim',[-1 1]);

% Now do the animation
for ii = 2:length(t)

 % Pause for a moment
 drawnow;
 %pause(0.1);

 % Calculate sine(x) for the new time
 a = cos(t(ii));
 z = a .* sin(array1) .* sin(array2);

 % Update the line
 set(hndl, 'ZData', z);

 % Update the title
 title(['\bfSine Wave Animation at t = ' num2str(t(ii),'%5.2f')]);

end

When this program executes, the amplitude of the 2D sine waves on the
surface rises and falls with time. One snapshot from the animation is shown in
Figure 13.8.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.13 Animations and Movies | 563

13.13.2 Creating a Movie

The second approach to animations is to create a MATLAB movie. A MATLAB
movie is a set of images of a figure that have been captured in a movie object, which
can be saved to disk and played back at some future time without actually having
to redo all of the calculations that created the plots in the first place. Because the
calculations do not have to be performed again, the movie can sometimes run faster
and with less jerkiness than the original program that did the calculations and plots4.

A movie is stored in a MATLAB structure array, with each frame of the movie
being one element of the structure array. Each frame of a movie is captured using a
special function called getframe after the data in the plot has been updated, and it
is played back using the movie command.

Figure 13.8 One snapshot from the 3D sine wave animation. [See color
insert.]

4Sometimes the erase and redraw method is faster than the movie—it depends on how much calculation is
required to create the data to be displayed.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

564 | Chapter 13 Handle Graphics and Animation

A version of the 2D sine plotting program that creates a MATLAB movie is shown
below. The statements that create and play back the movie are highlighted in bold face.

% Script file: animate_sine_xy_movie.m
%
% Purpose:
% This program illustrates the animation of a 3D plot
% by creating and playing back a movie.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 06/02/14 S. J. Chapman Original code
%
% Define variables:
% h1 -- Handle of line
% a -- Amplitude of sine function at an instant
% array1 -- Meshgrid output for x values
% array2 -- Meshgrid output for y values
% m -- Index of movie frames
% movie -- The movie
% x -- Independent variable
% y -- Independent variable
% z -- cos(t) * sin(x) * sin(y)

% Clear out any old data
clear all;

% Calculate the times at which to plot the sine function
t = 0:0.1:10;

% Calculate sin(x)*sin(y) for the first time
a = cos(t(1));
[array1,array2] = meshgrid(-3*pi:pi/10:3*pi,-3*pi:pi/10:3*pi);
z = a .* sin(array1) .* sin(array2);

% Plot the function.
figure(1);
hndl = surf(array1,array2,z);
xlabel('\bfx');
ylabel('\bfy');
zlabel('\bfAmp');
title(['\bfSine Wave Animation at t = ' num2str(t(1),'%5.2f')]);

% Set the size of the z axes
set(gca,'ZLim',[-1 1]);

% Capture the first frame of the movie
m = 1
M(m) = getframe;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.14 Summary | 565

% Now do the animation
for ii = 2:length(t)

 % Pause for a moment
 drawnow;
 %pause(0.1);

 % Calculate sine(x) for the new time
 a = cos(t(ii));
 z = a .* sin(array1) .* sin(array2);

 % Update the line
 set(hndl, 'ZData', z);

 % Update the title
 title(['\bfSine Wave Animation at t = ' num2str(t(ii),'%5.2f')]);

 % Capture the next frame of the movie
 m = m + 1;
 M(m) = getframe;

end

% Now we have the movie, so play it back twice
movie(M,2);

When this program is executed, you will see the scene played three times. The first time is
while the movie is being created, and the next two times are while it is being played back.

13.14 Summary

Every element of a MATLAB plot is a graphics object. Each object is identified by a
unique handle, and each object has many properties associated with it, which affect
the way the object is displayed.

MATLAB objects are arranged in a hierarchy with parent objects and child
objects. When a child object is created, it inherits many of its properties from its parent.

The highest-level graphics object in MATLAB is the root, which can be thought of
as the entire computer screen. This object is accessed using function groot. Under the
root there can be one or more Figure Windows. Each figure is a separate window on
the computer screen that can display graphical data, and each figure has its own properties.

Each figure can contain seven types of objects: uimenus, uicontextmenus,
uicontrols, uitoolbars, uipanels, uitables, uibuttongroups, and
axes. Uimenus, uicontextmenus, uicontrols, uitoolbars, uipanels,
and uibuttongroups are special graphics objects used to create graphical user
interfaces—they will be described in the next chapter. Axes are regions within a figure
where data is actually plotted. There can be more than one set of axes in a single figure.

Each set of axes can contain as many lines, text strings, patches, and so
forth as necessary to create the plot of interest.

Public graphics object properties can be accessed and changed, using either the
object syntax (object.property) or get and set methods. The object syntax

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

566 | Chapter 13 Handle Graphics and Animation

only works for MATLAB Release R2014b and later. The get and set methods
work for earlier versions of MATLAB, as well.

The handles of the current figure, current axes, and current object may be recov-
ered with the gcf, gca, and gco functions, respectively. The properties of any
object may be examined and modified using the get and set functions.

There are literally hundreds of properties associated with MATLAB graphics
functions, and the best place to find the details of these functions is the MATLAB
online documentation.

MATLAB animations can be created by erasing and redrawing objects using
handle graphics to update the contents of the objects, or else by creating movies.

13.14.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB handle
graphics.

1. If you intend to modify the properties of an object that you create, save the
handle of that object so that its properties can be examined and modified later.

2. If possible, restrict the scope of your searches with findobj to make them
faster.

3. If you would like to place a window in a specific location, it is easier to
place the window at the desired location using normalized coordinates, and
the results will be the same regardless of the computer’s screen resolution.

13.14.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

axes Creates a new axes/makes axes current.

figure Creates a new figure/makes figure current.

findobj Finds an object based on one or more property values.

gca Gets handle of current axes.

gcf Gets handle of current figure.

gco Gets handle of current object.

get Gets object properties.

getappdata Gets user-defined data in an object.

groot Returns a handle to the root object.

isappdata Tests to see if an object contains user-defined data with the
specified name.

rmappdata Removes user-defined data from an object.

set Sets object properties.

setappdata Stores user-defined data in an object.

waitforbuttonpress Pauses program, waiting for a mouse click or keyboard input.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.15 Exercises | 567

13.15 Exercises

13.1 What is meant by the term “handle graphics”?
13.2 Use the MATLAB Help System to learn about the Name and NumberTitle

properties of a figure object. Create a figure containing a plot of the function
ysxd 5 ex for 22 # x # 2. Change the properties mentioned above to suppress
the figure number and to add the title “Plot Window” to the figure.

13.3 Write a program that modifies the default figure color to orange and the default
line width to 3.0 points. Then create a figure plotting the ellipse defined by the
equations

xstd 5 10 cos t

ystd 5 6 sin t
 (13.6)

from t 5 0 to t 5 2p. What color and width was the resulting line?
13.4 Use the MATLAB Help System to learn about the CurrentPoint property

of an axes object. Use this property to create a program that creates an axes
object and that plots a line connecting the locations of successive mouse clicks
within the axes. Use the function waitforbuttonpress to wait for mouse
clicks and update the plot after each click. Terminate the plot when a keyboard
press occurs.

13.5 Modify the program created in Example 13.1 to specify properties using
MATLAB object syntax instead of get/set functions.

13.6 Use the MATLAB Help System to learn about the CurrentCharacter
property of a figure object. Modify the program created in Exercise 13.4
by testing the CurrentCharacter property when a keyboard press occurs.
If the character typed on the keyboard is a “c” or “C,” change the color of the
line being displayed. If the character typed on the keyboard is an “s” or “S,”
change the line style of the line being displayed. If the character typed on the
keyboard is a “w” or “W,” change the width of the line being displayed. If the
character typed on the keyboard is an “x” or “X,” terminate the plot. (Ignore all
other input characters.)

13.7 Create a MATLAB program that plots the functions

xstd 5 cos
t
p

xstd 5 2 sin
t

2p

 (13.7)

for the range 22 # t # 2. The program should then wait for mouse clicks, and
if the mouse has clicked on one of the two lines, the program should change the
line’s color randomly from a choice of red, green, blue, yellow, cyan, magenta,
or black. Use the function waitforbuttonpress to wait for mouse clicks,
and update the plot after each click. Use the function gco to determine the
object clicked on, and use the Type property of the object to determine if the
click was on a line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

568 | Chapter 13 Handle Graphics and Animation

13.8 The plot function plots a line and returns a handle to that line. This handle can
be used to get or set the line’s properties after it has been created. Two of a line’s
properties are XData and YData, which contain the x- and y-values currently
plotted. Write a program that plots the function

 xstd 5 cos s2pt 2 ud (13.8)

between the limits 21.0 # t # 1.0, and saves the handle of the resulting
line. The angle u is initially 0 radians. Then, re-plot line over and over with
u 5 py10 rad, u 5 2py10 rad, u 5 3py10 rad, and so forth up to u 5 2p rad.
To re-plot the line, use a for loop to calculate the new values of x and t, and
update the line’s XData and YData properties using MATLAB object syntax.
Pause 0.5 seconds between each update, using MATLAB’s pause command.

13.9 Create a data set in some other program on your computer, such as Microsoft
Word, Microsoft Excel, a text editor, and so on. Copy the data set to the clipboard
using the Windows or Unix copy function, and then use function uiimport to
load the data set into MATLAB.

13.10 Wave Patterns In the open ocean under circumstances where the wind is blow-
ing steadily in the direction of wave motion, successive wavefronts tend to be
parallel. The height of the water at any point might be represented by the equation

 hsx,y,td 5 A cos 12p

T
t 2

2p

L
x2 (13.9)

where T is the period of the waves in seconds, L is the spacing between wave
peaks, and t is current time. Assume that the wave period is 4 s and the spac-
ing between wave peaks is 12 m. Create an animation of this wave pattern for
a region of 2300 m # x # 300 m and 2300 m # y # 300 m over a time of
0 # t # 20 s using erase and redraw.

13.11 Wave Patterns Create a movie of the wave patterns from Exercise 13.10, and
replay the movie.

13.12 Generating a Rotating Magnetic Field The fundamental principle of AC elec-
tric machine operation is that if a three-phase set of currents, each of equal
magnitude and differing in phase by 120°, flows in a three-phase winding, then
it will produce a rotating magnetic field of constant magnitude.” The three-
phase winding consists of three separate windings spaced 120° degrees apart
around the surface of the machine. Figure 13.9 shows three windings a-a’, b-b’,
and c-c’ in a stator, with a magnetic field B coming out of each set of windings.
The magnitude and direction of the magnetic flux density out of each set of
windings is

B
aa9

std 5 B
M
 sin vt /08 T

 B
bb9

std 5 B
M
 sin svt 2 1208d/1208 T

 B
cc9

std 5 B
M
 sin svt 2 2408d/2408 T

 (13.10)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.15 Exercises | 569

Figure 13.9 Snapshot of the total magnetic field inside a three-phase ac
motor at (a) time vt = 08; (b) vt = 908.

a9

b

c9b9

c Bcc9

Baa9

�t 5 908

Bbb9

Bnet

a

a9

b

c9b9

c

Bcc9

�t 5 08

Bbb9

Bnet

(a) (b)

a

The magnetic field from winding a-a’ is oriented to the right (at 0°). The mag-
netic field from winding b-b’ is oriented at an angle of 120°, and the magnetic
field from winding b-b’ is oriented at an angle of 240°.
The total magnetic field at any time is

 B
net

std 5 B
aa9

std 1 B
bb9

std 1 B
cc9

std (13.11)

At time vt 5 08, the magnetic fields add together as shown in Figure 13.9a so
that the net field is down. At time vt 5 908, the magnetic fields add together as
shown in Figure 13.9b so that the net field is to the right. Note that the net field
has the same amplitude but is rotated at a different angle.
Write a program that creates an animation of this rotating magnetic field,
showing that the net magnetic field is constant in amplitude but rotating in
angle with time.

13.13 Saddle Surface A saddle surface is a surface that curves upward in one dimen-
sion and downward in the orthogonal dimension so that it looks like a saddle.
The following equation defines a saddle surface

 z 5 x2 2 y2 (13.12)

Plot this function and demonstrate that it has a saddle shape.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

571

14Chapter

Graphical User Interfaces

A Graphical User Interface (GUI) is a pictorial interface to a program. A good GUI
can make programs easier to use by providing them with a consistent appearance
and with intuitive controls like pushbuttons, edit boxes, list boxes, sliders, menus, and
so forth. The GUI should behave in an understandable and predictable manner, so
that a user knows what to expect when he or she performs an action. For example,
when a mouse click occurs on a pushbutton, the GUI should initiate the action
described on the label of the button.

This chapter contains an introduction to the basic elements of the MATLAB
GUIs. It does not contain a complete description of components or GUI features,
but it does provide us with the basics required to create functional GUIs for your
programs.

14.1 How a Graphical User Interface Works

A graphical user interface provides the user with a familiar environment in which to
work. It contains pushbuttons, toggle buttons, lists, menus, text boxes, and so forth,
all of which are already familiar to the user, so that he or she can concentrate on the
purpose of the application instead of the mechanics involved in doing things. How-
ever, GUIs are harder for the programmer, because a GUI-based program must be
prepared for mouse clicks (or possibly keyboard input) for any GUI element at any
time. Such inputs are known as events, and a program that responds to events is said
to be event driven.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

572 | Chapter 14 Graphical User Interfaces

The three principal elements required to create a MATLAB Graphical User
Interface are:

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit boxes,
and so forth) is a graphical component. The types of components include graph-
ical controls (pushbuttons, toggle buttons, edit boxes, lists, sliders, and so forth)
static elements (text boxes), menus, toolbars, and axes. Graphical controls and
text boxes are created by the function uicontrol, and menus are created by
the functions uimenu, and uicontextmenu. Toolbars are created by func-
tion uitoolbar. Tables are created by function uitable. Axes, which are
used to display graphical data, are created by the function axes.

2. Containers. The components of a GUI must be arranged within a container,
which is a window on the computer screen. The most common container
is a figure. A figure is an window on the computer screen that has a title
bar along the top, and that can optionally have menus attached. In the past,
figures have been created automatically whenever we plotted data. However,
empty figures can be created with the function figure, and they can be
used to hold any combination of components and other containers.

The other types of containers are panels (created by the function uipanel)
and button groups (created by the function uibuttongroup). Panels can
contain components or other containers, but they do not have a title bar and
cannot have menus attached. Button groups are special panels that can man-
age groups of radio buttons or toggle buttons to ensure that no more than one
button in the group is on at any time.

3. Callbacks. Finally, there must be some way to perform an action if a user
clicks a mouse on a button or types information on a keyboard. A mouse click or
a key press is an event, and the MATLAB program must respond to each event
if the program is to perform its function. (We discussed events in Chapter 12.) For
example, if a user clicks on a button, then that event must cause the MATLAB
code that implements the function of the button to be executed. The code exe-
cuted in response to an event is known as a callback. There must be a callback
to implement the function of each graphical component on the GUI.

The basic GUI elements are summarized in Table 14.1, and some sample elements
are shown in Figure 14.1. We will be studying examples of these elements, and then
build working GUIs from them.

Table 14.1: Some Basic GUI Components

Component Created By Description

Containers

Figure figure Creates a figure, which is container that can hold components and
other containers. Figures are separate windows that have title bars
and can have menus.

Panel uipanel Creates a panel, which is container that can hold components and
other containers. Unlike figures, panels do not have title bars or
menus. Panels can be placed inside figures or other panels.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.1 How a Graphical User Interface Works | 573

Component Created By Description
Button Group uibuttongroup Creates a button group, which is a special kind of panel. Button groups

automatically manage groups of radio buttons or toggle buttons to
ensure that only one item of the group is on at any given time.

Graphical Controls
Pushbutton uicontrol A graphical component that implements a pushbutton. It triggers a

callback when clicked with a mouse.

Toggle Button uicontrol A graphical component that implements a toggle button. A toggle
button is either “on” or “off”, and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

Radio Button uicontrol A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on”. Groups of radio
buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

Check Box uicontrol A checkbox is a type of toggle button that appears as a small
square with a check mark in it when it is “on”. Each mouse click
on a check box triggers a callback.

Edit Box uicontrol An edit box displays a text string, and allows the user to modify the
infor mation displayed. A callback is triggered when the user presses the
Enter key, or when the user clicks on a different object with the mouse.

List Box uicontrol A list box is a graphical control that displays a series of text strings.
A user may select one of the text strings by single- or double-clicking
on them. A callback is triggered when the user selects a string.

Popup Menus uicontrol A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

Slider uicontrol A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Table uitable Creates a table of data.

Static Elements
Text Field uicontrol Creates a label, which is a text string located at a point on the

figure. Text fields never trigger callbacks.

Menus, Toolbars, Axes
Menu Items uimenu Creates a menu item. Menu items trigger a callback when a mouse

button is released over them.

Context Menus uicontextmenu Creates a context menu, which is a menu that appears over a
graphical object when a user right-clicks the mouse on that object.

Toolbar uitoolbar Creates a toolbar, which is a bar across the top of the figure
containing quick-access buttons.

Toolbar Pushbutton uipushtool Creates a pushbutton to go in a toolbar.

Toolbar Toggle Button uitoggletool Creates a toggle button to go in a toolbar.

Axes axes Creates a new set of axes to display data on. Axes never trigger
callbacks.

Table 14.1: Some Basic GUI Components (Continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

574 | Chapter 14 Graphical User Interfaces

14.2 Creating and Displaying a Graphical User Interface

MATLAB Graphical User Interfaces are created using a tool called guide, the GUI
Development Environment. This tool allows a programmer to lay out the GUI, select-
ing and aligning the GUI components to be placed in it. Once the components are in
place, the programmer can edit their properties: name, color, size, font, text to display,
and so forth. When guide saves the GUI, it creates a working program including skel-
eton functions that the programmer can modify to implement the behavior of the GUI.

When guide is executed, it creates the Layout Editor, shown in Figure 14.2.
The large grey area with grid lines is the layout area, where a programmer can lay
out the GUI. The Layout Editor window has a palate of GUI components along the
left-hand side of the layout area. A user can create any number of GUI components
by first clicking on the desired component, and then dragging its outline in the layout
area. The top of the window has a toolbar with a series of useful tools that allow
the user to distribute and align GUI components, modify the properties of GUI
components, add menus to GUIs, and so forth.

The basic steps required to create a MATLAB GUI are:

1. Decide what elements are required for the GUI, and what the function of
each element will be. Make a rough layout of the components by hand on a
piece of paper.

2. Use the MATLAB tool called guide (GUI Development Environment) to
lay out the components on a figure. The size of the figure, and the alignment
and spacing of components on the figure, can be adjusted using the tools
built into guide.

Figure 14.1 A Figure Window showing examples of MATLAB GUI elements.
From top to bottom and left to right, the elements are: (1) a pushbutton;
(2) a toggle button in the “on” state; (3) two radio buttons within a button group;
(4) a check box; (5) a label and an edit box; (6) a slider; (7) a set of axes;
(8) a list box; (9) a panel; and (10) a table.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 575

3. Use a MATLAB tool called the Property Inspector (built into guide) to
give each component a name (a “tag”), and to set the characteristics of each
component, such as its color, the text it displays, and so forth.

4. Save the figure to a file. When the figure is saved, two files will be created
on disk with the same name but different extents. The fig file contains
the GUI layout and the components of the GUI, while the M-file contains
the code to load the figure, and also skeleton callback functions for each
GUI element.

5. Write code to implement the behavior associated with each callback function.

As an example of these steps, let’s consider a simple GUI that contains a single
pushbutton and a single text string. Each time that the pushbutton is clicked, the text
string will be updated to show the total number of clicks since the GUI started.

Step 1: The design of this GUI is very simple. It contains a single pushbutton and
a single text field. The callback from the pushbutton will cause the number dis-
played in the text field to increase by one each time that the button is pressed.
A rough sketch of the GUI is shown in Figure 14.3.

Step 2: To lay out the components on the GUI, run the MATLAB function
guide. When guide is executed, it creates the window shown in Figure 14.2.

Design
Area

Tab Order
Editor

Toolbar
Editor

GUI
Components

Drag to Resize
Design Area

Align
Objects

Menu
Editor

Property
Inspector

Object
Browser

Figure 14.2 The guide tool window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

576 | Chapter 14 Graphical User Interfaces

Total Clicks: 0

Text Field

Figure

PushbuttonPushbutton

Figure 14.3 Rough layout for a GUI containing a single pushbutton and a single
text field.

First, we must set the size of the layout area, which will become the size of the
final GUI. We do this by dragging the small square on the lower right hand corner of
the layout area until it has the desired size and shape. Then, click on the “pushbutton”
button in the list of GUI components, and create the shape of the pushbutton in the
layout area. Finally, click on the “text” button in the list of GUI components, and cre-
ate the shape of the text field in the layout area. The resulting figure after these steps
is shown in Figure 14.4. We could now adjust the alignment of these two elements
using the Alignment Tool, if desired.

Step 3: To set the properties of the pushbutton, click on the button in the layout
area and then select “Property Inspector” () from the toolbar. Alternately, right-
click on the button and select “Property Inspector” from the popup menu. The
Property Inspector window, shown in Figure 14.5, will appear. Note that this window
lists every property available for the pushbutton and allows us to set each value using
a GUI interface. The Property Inspector performs the same function as the get and
set functions introduced in Chapter 13, but in a much more convenient form.

Figure 14.4 The completed GUI layout within the guide window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 577

For the pushbutton, we may set many properties such as color, size, font, text
alignment, and so forth. However, we must set two properties: the String property,
which contains the text to be displayed, and the Tag property, which is the name of
the pushbutton. In this case, the String property will be set to'Click Here',
and the Tag property will be set to MyFirstButton.

For the text field, we must set two properties: the String property, which contains
the text to be displayed, and the Tag property, which is the name of the text field. This
name will be needed by the callback function to locate and update the text field. In this
case, the String property will be set to'Total Clicks: 0', and the Tag property
defaulted to'MyFirstText'. The layout area after these steps is shown in Figure 14.6a.

It is possible to set the properties of the figure itself by clicking on a clear
spot in the Layout Editor, and using the Property Inspector to examine and set
the figure’s properties. Although not required, it is a good idea to set the figure’s
Name property. The string in the Name property will be displayed in the title bar
of the resulting GUI when it is executed. In this program, we will set the Name
to'MyFirstGUI'.

It is also a good idea to check and set the GUI options at this time. Select the
“Tools . GUI Options” menu item, and the GUI shown in Figure 14.6b will appear.
The key options settable on this GUI are:

1. Resize behavior—This popup menu allows the designer to specify whether
the GUI is fixed size or variable size. If it is variable size, all GUI elements
can scale proportionally, or else the GUI can execute a callback function to
re-layout the components when it changes size.

2. Command-line accessibility—This specifies whether this GUI becomes
the current figure when a callback is executing. The default is that it does,
so function gcf will point to the GUI during callback execution. You will
probably never need to change this option.

3. Generate FIG file and MATLAB file—This radio button specifies that
Guide should generate both a figure file with the layout of the GUI and
an M-file that would create the GUI and handle the callbacks. This option
should always be set.

Figure 14.5 The Property Inspector showing the properties of the pushbutton. Note
that the String is set to'Click Here', and the Tag is set to 'MyFirstButton'.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

578 | Chapter 14 Graphical User Interfaces

4. Generate callback function prototypes—This checkbox specifies that
Guide should generate the skeletons of all callback functions, so that the
programmer only has to fill in the functions. This option should always
be set.

Figure 14.6 (a) The design area after the properties of the pushbutton and the
text field have been modified. (b) Setting the GUI options.

(b)

(a)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 579

5. GUI allows only one instance to run—This checkbox specifies that only
a single copy of the GUI should be allowed to run at a time. If this box is
ticked, MATLAB will re-use the same GUI each time it is needed instead of
creating a new copy.

6. Use system color scheme for background—This checkbox specifies that
Guide should make the background color of the GUI match the color of
the operating system it is running on. If this switch is on, the background
color of the GUI will automatically adjust if the same program is run on
different types of computers (say, a Windows PC and a Mac). This option
should always be set.

Step 4: We will now save the layout area under the name MyFirstGUI. Select
the “File/Save As” menu item, type the name MyFirstGUI as the file name, and
click “Save”. This action will automatically create two files, MyFirstGUI.fig
and MyFirstGUI.m. The figure file contains the actual GUI that we have created.
The M-file contains code that loads the figure file and creates the GUI, plus a skele-
ton callback function for each active GUI component.

At this point, we have a complete GUI, but one that does not yet do the job
it was designed to do. You can start this GUI by typing MyFirstGUI in the
Command Window, as shown in Figure 14.7. If the button is clicked on this GUI,
nothing happens.

The M-file automatically created by guide is shown in Figure 14.8. This
file contains the main function MyFirstGUI, plus local functions to specify
the behavior of the active GUI components. The file contains a dummy callback

Figure 14.7 Typing MyFirstGUI in the Command Window starts the GUI.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

580 | Chapter 14 Graphical User Interfaces

function varargout = MyFirstGUI(varargin)
% MYFIRSTGUI MATLAB code for MyFirstGUI.fig
% MYFIRSTGUI, by itself, creates a new MYFIRSTGUI or raises the existing singleton*.
%
% H = MYFIRSTGUI returns the handle to a new MYFIRSTGUI or the handle to
% the existing singleton*.
%
% MYFIRSTGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MYFIRSTGUI.M with the given input arguments.
%
% MYFIRSTGUI('Property','Value',...) creates a new MYFIRSTGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before MyFirstGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MyFirstGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MyFirstGUI

% Last Modified by GUIDE v2.5 27-Aug-2014 16:04:03

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MyFirstGUI_OpeningFcn, ...
 'gui_OutputFcn', @MyFirstGUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

Main Function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 581

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before MyFirstGUI is made visible.
function MyFirstGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MyFirstGUI (see VARARGIN)

% Choose default command line output for MyFirstGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MyFirstGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = MyFirstGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in MyFirstButton.
function MyFirstButton_Callback(hObject, eventdata, handles)
% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Figure 14.8 The M-file for MyFirstGUI, automatically created by guide.

Figure
Opening
Function

Button Callback
Function

Data Output
Function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

582 | Chapter 14 Graphical User Interfaces

function for every active GUI component that you defined. In this case, the only active
GUI component was the pushbutton, so there is a callback function called
MyFirstButton_Callback, which is executed when the user clicks on the button.

If function MyFirstGUI is called without arguments, then the function dis-
plays the GUI contained in file MyFirstGUI.fig. If function MyFirstGUI is
called with arguments, then the function assumes that the first argument is the name
of a local function (subfunction), and it calls that local function using feval, passing
the other arguments on to that subfunction.

Each callback function handles events from a single GUI component. If a mouse
click (or keyboard input for edit fields) occurs on the GUI component, then the com-
ponent’s callback function will be automatically called by MATLAB. The name of
the callback function will be the value in the Tag property of the GUI component
plus the characters “_Callback”. Thus, the callback function for MyFirstButton
will be named MyFirstButton_Callback.

M-files created by guide contain callbacks for each active GUI component, but
these callbacks don’t do anything yet.

Step 5: Now, we need to write the callback subfunction code for the pushbutton.
This function will include a persistent variable that can be used to count
the number of clicks that have occurred. When a click occurs on the pushbutton,
MATLAB will call the function MyFirstGUI with the string 'MyFirstButton_
Callback' as the first argument. Then function MyFirstGUI will call subfunction
MyFirstButton_Callback, as shown in Figure 14.9. This function should
increase the count of clicks by one, create a new text string containing the count,
and store the new string in the String property of the text field MyFirstText.
A function to perform this step is shown below:

function MyFirstButton_Callback(hObject, eventdata, handles)
% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Declare and initialize variable to store the count
persistent count
if isempty(count)
 count = 0;
end
% Update count
count = count + 1;

% Create new string
str = sprintf('Total Clicks: %d',count);

% Update the text field
set (handles.MyFirstText,'String',str);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 583

Note that this function declares a persistent variable count, and initializes it to zero.
Each time that the function is called, it increments count by 1 and creates a new string
containing the count. Then, it updates the string displayed in the text field MyFirstText.

The resulting program is executed by typing MyFirstGUI in the Command
Window. When the user clicks on the button, MATLAB automatically calls func-
tion MyFirstGUI with MyFirstButton_Callback as the first argument, and
function MyFirstGUI calls subfunction MyFirstButton_Callback. This
function increments variable count by one, and updates the value displayed in the
text field. The resulting GUI after three button pushes is shown in Figure 14.10.

Original event:
mouse click on button

Button calls MyFirstGUI with
argument 'MyFirstGUI_Callback'

MyFirstButton_Callback

MyFirstGUI calls subfunction
MyFirstGUI_Callback

Function updates string in
MyFirstText

Total clicks: 1

MyFirstGUI

Pushbutton

Total clicks: 0

Pushbutton

Figure 14.9 Event handling in program MyFirstGUI. When a user clicks on the
button with the mouse, the function MyFirstGUI is called automatically with the
argument 'MyFirstButton_Callback'. Function MyFirstGUI in turn calls
subfunction MyFirstButton_Callback. This function increments count,
and then saves the new count in the text field on the GUI.

Good Programming Practice

Use guide to lay out a new GUI, and use the Property Inspector to set the initial
properties of each component such as the text displayed on the component, the color
of the component, and the name of the callback function, if required.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

584 | Chapter 14 Graphical User Interfaces

Good Programming Practice

After creating a GUI with guide, manually edit the resulting M-file to add com-
ments describing its purpose and components, and to implement the behavior of
callbacks.

14.2.1 A Look Under the Hood

Figure 14.8 shows the M-file that was automatically generated by guide for
MyFirstGUI. We will now examine this M-file more closely to understand how
it works.

First, let’s look at the main function declaration itself. Note that this function
uses varargin to represent its input arguments, and varargout to represent
its output results. As we learned in Chapter 10, function varargin can represent
an arbitrary number of input arguments, and function varargout can represent a
varying number of output arguments. Therefore, a user can call function MyFirstGUI
with any number of arguments.

The main function begins with a series of comments that serve as the help mes-
sage displayed when the user types “help MyFirstGUI”. You should edit these
comments to reflect the actual function of your program.

Next, the main function creates a structure called gui_State. The code to
create this structure is shown below:

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MyFirstGUI_OpeningFcn, ...
 'gui_OutputFcn', @MyFirstGUI_OutputFcn, ...

Figure 14.10 The resulting program after three button pushes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 585

 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

The structure contains some control information, plus function handles for some
of the local functions in the file. Other MATLAB GUI functions use these func-
tion handles to call the local functions from outside of the M-file. Note that the
first argument is converted into a callback function handle using str2func, if
it exists.

The value gui_Singleton specifies whether there can be one or more simul-
taneous copies of the GUI. If gui_Singleton is 1, then there can be only one
copy of the GUI. If gui_Singleton is 0, then there can be many simultaneous
copies of the GUI. Guide sets this based on the selection made in the GUI options
page, as described in Step 3 of the GUI creation process.

The main function calls the MATLAB function gui_mainfcn, and passes the
gui_State structure and all of the input arguments to it. Function gui_mainfcn
is a built-in MATLAB function. It actually does the work of creating the GUI, or
calling the appropriate local function in response to a callback.

If the user calls MyFirstGUI without arguments, function gui_mainfcn
loads the GUI from the figure file MyFirstGUI.fig. Then, function
gui_mainfcn creates a structure containing the handles of all the objects in the
current figure, and calls the file opening function MyFirstGUI_OpeningFcn,
which stores that structure as application data in the figure.

% Update handles structure
guidata(hObject, handles);

Function guihandles saves a structure containing handles to all of the objects
within the specified figure in the figure object. The element names in the struc-
ture correspond to the Tag properties of each GUI component, and the values are
the handles of each component. For example, the handle structure returned in
MyFirstGUI.m is

» handles = guihandles(fig)
handles =
 figure1: [1x1 Figure]
 MyFirstText: [1x1 UIControl]
 MyFirstButton: [1x1 UIControl]

There are three GUI components in this figure—the figure itself, plus a text
field, and a pushbutton. Function guidata saves the handles structure as appli-
cation data in the figure, using the setappdata function that we studied in
Chapter 13.

Function gui_OpeningFcn provides a way for the programmer to customize
the GUI before showing it to the user. Note the commented uiwait statement. If the
programmer uncomments this line, MATLAB will lock and wait for input from the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

586 | Chapter 14 Graphical User Interfaces

GUI before continuing. It is also possible to make other customizations here, such as
changing background colors, and so forth.

Finally, function gui_mainfcn calls the output function
MyFirstGUI_OutputFcn to return the handles structure to the M-file that cre-
ated the GUI. This structure gives the calling M-files the information required to
work with the GUI programmatically.

After the GUI is created, the user can interact with it using the mouse and (pos-
sibly) the keyboard. When the user clicks on an active GUI element, MATLAB calls
MyFirstGUI with the name of the GUI element’s callback function in the first
argument. If MyFirstGUI is called with arguments, function gui_mainfcn calls
the callback function using this function handle. The callback executes and responds
to the mouse click or keyboard input, as appropriate.

Figure 14.11 summarizes the operation of MyFirstGUI on first and subse-
quent calls.

14.2.2 The Structure of a Callback Subfunction

Every callback subfunction has the standard form

function ComponentTag_Callback(hObject, eventdata, handles)

where ComponentTag is the name of the component generating the callback (the
string in its Tag property). The arguments of this subfunction are:

■■ hObject—The handle of the parent figure.
■■ eventdata—A currently unused (in MATLAB 2014B) array.
■■ handles—The handles structure contains the handles of all
GUI components on the figure.

Note that each callback function has full access to the handles structure, and
so each callback function can modify any GUI component in the figure. We took advan-
tage of this structure in the callback function for the pushbutton in MyFirstGUI,
where the callback function for the pushbutton modified the text displayed in the
text field.

% Update the text field
set (handles.MyFirstText,'String',str);

14.2.3 Adding Application Data to a Figure

It is possible to store any application-specific information needed by a GUI program
in the handles structure instead of using global or persistent memory for that data.
The resulting GUI design is more robust, since other MATLAB programs cannot
accidentally modify the global GUI data, and since multiple copies of the same GUI
cannot interfere with each other.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.2 Creating and Displaying a Graphical User Interface | 587

Create
gui_state

structure

Create a new
�gure

gui_mainfcn:
Are there any input

arguments?

Call subfunction in
MyFirstGUI
speci�ed in �rst

argument

No Yes

Return handles
data structure to

calling program, if
requested.

Call
gui_mainfcn

The gui_state structure
contains function handles for
functions in MyFirstGUI that are
required by gui_mainfcn

Is gui_Singleton
== 1?

Bring existing
�gure to front, or
create a new one

if none exists

No Yes

This is a callback, so
execute the appropriate
callback function.

This is a request
for a new GUI.

Reuse an existing
GUI, if there is one.

Create a new GUI,
even if one already
exists.

Figure 14.11 The operation of MyFirstGUI. If there are no calling arguments, it either creates a
GUI or displays an existing GUI. If there are calling arguments, the first argument is assumed to be a
callback function name, and MyFirstGUI calls the appropriate callback function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

588 | Chapter 14 Graphical User Interfaces

To add local data to the handles structure, we must manually modify the
M-file after it is created by guide. A programmer first adds the required local data
to the handles structure, and then calls guidata to update the handles struc-
ture stored in the figure. For example, to add the number of mouse clicks count
to the handles structure, we would modify the MyFirstButton_Callback
function as follows:

function MyFirstButton_Callback(hObject, eventdata, handles)
% hObject handle to MyFirstButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Create the count field if it does not exist
if ~isfield(handles,'count')
 handles.count = 0;
end

% Update count
handles.count = handles.count + 1;

% Save the updated handles structure
guidata(hObject, handles);

% Create new string
str = sprintf('Total Clicks: %d',handles.count);

% Update the text field
set (handles.MyFirstText,'String',str);

Good Programming Practice

Store GUI application data in the handles structure, so that it will automatically be
available to any callback function.

Good Programming Practice

If you modify any of the GUI application data in the handles structure, be sure
to save the structure with a call to guidata before exiting the function where the
modifications occurred.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.3 Object Properties | 589

14.2.4 A Few Useful Functions

Three special functions are occasionally used in the design of callback functions:
gcbo, gcbf, and findobj. These functions are not actually needed with MATLAB
GUIs, because the same information is available in the handles data structure.
However, they were commonly used in earlier versions of MATLAB, and a program-
mer is sure to encounter them.

Function gcbo (get callback object) returns the handle of the object that gener-
ated the callback, while function gcbf (get callback figure) returns the handle of the
figure containing that object. These functions can be used by a callback function to
determine the object and figure producing the callback, so that it can modify objects
on that figure.

Function findobj searches through all of the child objects within a parent
object, looking for ones that have a specific value of a specified property. It returns a
handle to any objects with the matching characteristics. The most common form of
findobj is

Hndl = findobj(parent,'Property',Value);

where parent is the handle of a parent object such as a figure,'Property' is the
property to examine, and'Value' is the value to look for.

For example, suppose that a programmer would like to change the color of all
the lines in a plot on the callback figure. He or she could find the lines and change the
line colors to red with the following statements

Hndl = findobj(gcbf,'Type','Line');
for ii = 1:length(Hndl)
 set(Hndl,'Color','r');
end

14.3 Object Properties

Every GUI object includes an extensive list of properties that can be used to cus-
tomize the object. These properties are slightly different for each type of object
(figures, axes, uicontrols, and so forth). All of the properties for all types
of objects are documented on the online Help Browser, but a few of the more
important properties for figure and uicontrol objects are summarized in
Tables 14.2 and 14.3.

Object properties can be modified using either the Property Inspector or the
get and set functions. While the Property Inspector is a convenient way to adjust
properties during GUI design, we must use get and set to adjust them dynamically
from within a program, such as in a callback function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

590 | Chapter 14 Graphical User Interfaces

Table 14.2: Important figure Properties

Property Description

Color Specifies the color of the figure. The value is either a pre-defined color such
as 'r', 'g', or 'b', or else a three-element vector specifying the red,
green, and blue components of the color on a 0-1 scale. For example, the
color magenta would be specified by [1 0 1] .

CurrentCharacter Contains the character corresponding to the last key pressed in this figure.

CurrentPoint Location of the last button click in this figure, measured from the lower left-
hand corner of the figure in units specified in the Units property.

Dockable Specifies whether on not the figure can be docked to the desktop. Possible
values are 'on' or 'off'.

MenuBar Specifies whether on not the default set of menus appear on the figure. Possible
values are 'figure' to display the default menus or 'none' to delete them.

Name A string containing the name that appears in the title bar of a figure.

NumberTitle Specifies whether or not the figure number appears in the title bar. Possible
values are 'on' or 'off'.

Position Specifies the position of a figure on the screen, in the units specified by the
'units' property. This value accepts a four-element vector in which the
first two elements are the x and y positions of the lower left-hand corner of
the figure, and the next two elements are the width and height of the figure.

SelectionType Specifies the type of selection for the last mouse click on this figure.
A single click returns type 'normal', while a double click returns
type 'open'. There are additional options; see the MATLAB online
documentation.

Tag The “name” of the figure, which can be used to locate it.

Units The units used to describe the position of the figure. Possible choices
are 'inches','centimeters', 'normalized', 'points',
'pixels', or 'characters'. The default units are 'pixels'.

Visible Specifies whether or not this figure is visible. Possible values are 'on'
or 'off'.

WindowStyle Specifies whether this figure is normal or modal (see discussion of Dialog
Boxes). Possible values are 'normal' or 'modal'.

Table 14.3: Important uicontrol Properties

Property Description

BackgroundColor Specifies the background color of the object. The value is either a predefined
color such as'r','g', or'b', or else a three-element vector specifying the
red, green, and blue components of the color on a 0–1 scale. For example, the
color magenta would be specified by [1 0 1] .

Callback Specifies the name and parameters of the function to be called when the
object is activated by a keyboard or text input.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 591

14.4 Graphical User Interface Components

This section summarizes the basic characteristics of common graphical user interface
components. It describes how to create and use each component, as well as the types
of events each component can generate. The components discussed in this section are:

Property Description

Enable Specifies whether or not this object is selectable. If it not enabled, it will not
respond to mouse or keyboard input. Possible values are'on' or'off'.

FontAngle A string containing the font angle for text displayed on the object. Possible
values are'normal','italic', and'oblique'.

FontName A string containing the font name for text displayed on the object.

FontSize A number specifying the font size for text displayed on the object.

FontUnits The units in which the font size is defined. Possible choices
are'inches','centimeters','normalized','points',
and'pixels'. The default font units are'points'.

FontWeight A string containing the font weight for text displayed on the object. Possible
values are'light','normal','demi', and'bold'. The default font
weight is'normal'.

ForegroundColor Specifies the foreground color of the object.

HorizontalAlignment Specifies the horizontal alignment of a text string within the object. Possible
values are'left','center', and'right'.

Max The maximum size of the value property for this object.

Min The minimum size of the value property for this object.

Parent The handle of the figure containing this object.

Position Specifies the position of the object on the screen, in the units specified by
the'units' property. This value accepts a four-element vector in which the
first two elements are the x and y positions of the lower left-hand corner of
the object relative to the figure containing it, and the next two elements are
the width and height of the object.

Tag The “name” of the object, which can be used to locate it.

TooltipString Specifies the help text to be displayed when a user places the mouse pointer
over an object.

Units The units used to describe the position of the figure. Possible choices
are'inches','centimeters','normalized','points','pixels',
or'characters'. The default units are'pixels'.

Value The current value of the uicontrol. For toggle buttons, check boxes, and
radio buttons, the value is max when the button is on and min when the
button is off. Other controls have different meanings for this term.

Visible Specifies whether or not this object is visible. Possible values are'on'
or'off'.

Table 14.3: Important uicontrol Properties (Continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

592 | Chapter 14 Graphical User Interfaces

■■ Static text fields
■■ Edit boxes
■■ Pushbuttons
■■ Toggle buttons
■■ Checkboxes
■■ Radio buttons
■■ Popup menus
■■ List boxes
■■ Sliders
■■ Tables

14.4.1 Static Text Fields

A static text field is a graphical object that displays one or more text strings, which
are specified in the text field’s String property. The String property accepts a
string or a cell array of strings. If the input value is a string, it will be displayed on
a single line. If the input value is a cell array of strings, the first element will be dis-
played on the first line of the text box, the second element will be displayed on the
second line of the text box, and so forth. You can specify how the text is aligned in
the display area by setting the horizontal alignment property. By default, text fields
are horizontally centered. A text field is created by a uicontrol whose style prop-
erty is'text'. A text field can be added to a GUI by using the text tool () in the
Layout Editor.

Text fields do not create callbacks, but the value displayed in the text field can
be updated from another component’s callback function by changing the text field’s
String property, as shown in program MyFirstGUI in Section 14.2.

14.4.2 Edit Boxes

An edit box is a graphical object that allows a user to enter one or more text strings.
It is created by a uicontrol whose style property is'edit'. If the min property
and max property are both set to 1, then the edit box will accept a single line of text,
and it will generate a callback when the user presses the Enter key or the ESC key
after typing the text.

Figure 14.12a shows a simple GUI containing an edit box named'EditBox'
and a text field named'TextBox'. When a user presses Enter or ESC after
typing a string into the edit box, the program automatically calls the function
EditBox_Callback, which is shown in Figure 14.12b. This function locates the
edit box, using the handles structure, and recovers the string typed by the user.
Then, it locates the text field and displays the string in the text field. Figure 14.13
shows this GUI just after it had started and after the user had typed the word'Hello'
in the edit box.

If the max property is set to a number greater than the min property, then the
edit box will accept as many lines of text as the user wishes to enter. The textbox
will include a vertical scrollbar to allow the user to move up and down through the
data. Either the scrollbar or the up and down arrows can be used to move between

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 593

(a)

function EditBox_Callback(hObject, eventdata, handles)

% Find the value typed into the edit box
str = get (handles.EditBox,'String');

% Place the value into the text field
set (handles.TextBox,'String',str);

(b)

Figure 14.12 (a) Layout of a simple GUI with a single-line edit box and a text
field. (b) The callback function for this GUI.

Figure 14.13 (a) The GUI produced by program test_edit. (b) The GUI after a user
types'Hello' into the edit box and presses Enter.

(a) (b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

594 | Chapter 14 Graphical User Interfaces

the input lines. If the user presses the Enter key in a multi-line edit box, the current
line is finished and the cursor moves down to the next line for additional input. If the
user presses the ESC key or clicks a point on the figure background with the mouse,
a callback will be generated, and the data typed into the edit box will be available as
a cell array of strings in the uicontrol's String property.

Figure 14.14a shows a simple GUI containing a multi-line edit box named
 'EditBox2' and a text field named'TextBox2'. When a user presses ESC after
typing a set of lines into the edit box, the program automatically calls the function
EditBox2_Callback, which is shown in Figure 14.14b. This function locates the
edit box using the handles structure, and recovers the strings typed by the user. Then,
it locates the text field and displays the strings in the text field. Figure 14.15 shows this
GUI just after it has started, and after the user has typed four lines in the edit box.

function EditBox2_Callback(hObject, eventdata, handles)

% Find the value typed into the edit box
str = get (handles.EditBox,'String');

% Place the value into the text field
set (handles.TextBox2,'String',str);

Figure 14.14 (a) Layout of a simple GUI with a multi-line edit box and a text
field. (b) The callback function for this GUI.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 595

14.4.3 Pushbutton

A pushbutton is a component that a user can click on to trigger a specific action.
The pushbutton generates a callback when the user clicks on it with the mouse.
A pushbutton is created by creating a uicontrol whose style property
is'pushbutton'. It can be added to a GUI by using the pushbutton tool () in
the Layout Editor.

Function MyFirstGUI in Figure 14.10 illustrates the use of pushbutton.

14.4.4 Toggle Buttons

A toggle button is a type of button that has two states: on (depressed) and off (not
depressed). A toggle button switches between these two states whenever the mouse
clicks on it, and it generates a callback each time. The'Value' property of the
toggle button is set to max (usually 1) when the button is on, and min (usually 0)
when the button is off.

A toggle button is created by a uicontrol whose style property is
'togglebutton'. It can be added to a GUI by using the toggle button tool ()
in the Layout Editor.

Figure 14.16a shows a simple GUI containing a toggle button named
'ToggleButton' and a text field named'TextBox'. When a user clicks on the
toggle button, it automatically calls the function ToggleButton_Callback,
which is shown in Figure 14.16b. This function locates the toggle button, using the
handles structure, and recovers its state from the'Value' property. Then, it locates
the text field and displays the state in the text field. Figure 14.17 shows this GUI just
after it has started, and after the user has clicked on the toggle button for the first time.

Figure 14.15 (a) The GUI produced by program test_edit2. (b) The GUI after a user types
four lines into the edit box and presses ESC.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

596 | Chapter 14 Graphical User Interfaces

function ToggleButton_Callback(hObject, eventdata, handles)
% hObject handle to ToggleButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Find the state of the toggle button
state = get(handles.ToggleButton,'Value');

% Place the corect value into the text field
if state == 0
 string ='Off';
else
 string ='On';
end
set (handles.TextBox,'String',string);

Figure 14.16 (a) Layout of a simple GUI with a toggle button and a text field. (b) The callback
function for this GUI.

14.4.5 Checkboxes and Radio Buttons

Checkboxes and radio buttons are essentially identical to toggle buttons except that
they have different shapes. Like toggle buttons, they have two states: on and off. They
switch between these two states whenever the mouse clicks on them, generating a

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 597

callback each time. The'Value' property of the checkbox or radio button is set
to max (usually 1) when they are on, and min (usually 0) when they are off. Both
checkboxes and radio buttons are illustrated in Figure 14.1.

A checkbox is created by a uicontrol whose style property is'checkbox', and
a radio button is created by a uicontrol whose style property is'radiobutton'.
A checkbox can be added to a GUI by using the checkbox tool () in the Layout
Editor, and a radio button can be added to a GUI by using the radio button tool
() in the Layout Editor.

Checkboxes are traditionally used to display on/off options, while groups of
radio buttons are traditionally used to select among mutually exclusive options.

Figure 14.18a shows a simple GUI containing a checkbox named
'CheckBox' and a text field named'TextBox'. When a user clicks on the
checkbox, it automatically calls the function CheckButton_Callback,
which is shown in Figure 14.18b. This function locates the checkbox, using the
handles structure, and recovers its state from the'Value' property. Then, it
locates the text field and displays the state in the text field. Figure 14.19 shows
this GUI just after it has started and after the user has clicked on the toggle
button for the first time.

Figure 14.20a shows an example of how to create a group of mutually exclusive
options with radio buttons. The GUI in this figure creates three radio buttons, labeled
Option 1, Option 2, and Option 3, plus a text field to display the currently selected
results.

The corresponding callback functions are shown in Figure 14.20b. When the
user clicks on a radio button, the corresponding callback function is executed. That
function sets the text box to display the current option, turns on that radio button, and
turns off all other radio buttons.

Figure 14.21 shows this GUI after Option 2 has been selected.

Figure 14.17 (a) The GUI produced by program test_togglebutton when
the toggle button is off. (b) The GUI when the toggle button is on.

(a) (b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

598 | Chapter 14 Graphical User Interfaces

(a)
function CheckBox_Callback(hObject, eventdata, handles)

% Find the state of the checkbox
state = get(handles.CheckBox,'Value');

% Place the value into the text field
if state == 0
 set (handles.TextBox,'String','Off');
else
 set (handles.TextBox,'String','On');
end ;

Figure 14.18 (a) Layout of a simple GUI with a CheckBox and a text field.
(b) The callback function for this GUI.

(b)

Figure 14.19 (a) The GUI produced by program test_checkbox when the
toggle button is off. (b) The GUI when the toggle button is on.

(a) (b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 599

function Option1_Callback(hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox,'String','Option 1');

% Update all radio buttons
set (handles.Option1,'Value',1);
set (handles.Option2,'Value',0);
set (handles.Option3,'Value',0);

function Option2_Callback(hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox,'String','Option 2');

% Update all radio buttons
set (handles.Option1,'Value',0);
set (handles.Option2,'Value',1);
set (handles.Option3,'Value',0);

function Option3_Callback(hObject, eventdata, handles)

% Display the radio button clicked in the text field
set (handles.TextBox,'String','Option 3');

% Update all radio buttons
set (handles.Option1,'Value',0);
set (handles.Option2,'Value',0);
set (handles.Option3,'Value',1);

(a)

Figure 14.20 (a) Layout of a simple GUI with three radio buttons and a text
field. (b) The callback functions for this GUI. When a user clicks on a radio button,
it is set to “on” and all other radio buttons are set to “off.”

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

600 | Chapter 14 Graphical User Interfaces

14.4.6 Popup Menus

Popup menus are graphical objects that allow a user to select one of a mutually exclu-
sive list of options. The list of options that the user can select among is specified by a
cell array of strings, and the'Value' property contains an integer indicating which
of the strings is currently selected. A popup menu can be added to a GUI by using the
popup menu tool () in the Layout Editor.

Figure 14.22a shows an example of a popup menu. This GUI in this figure cre-
ates a popup menu with five options, labeled Option 1, Option 2, and so forth.

The corresponding callback function is shown in Figure 14.22b. The callback
function recovers the selected option by checking the'Value' parameter of the
popup menu, and creates and displays a string containing that value in the text field.
Figure 14.23 shows this GUI after Option 4 has been selected.

14.4.7 List Boxes

List boxes are graphical objects that display many lines of text, and allow a user to
select one or more of those lines. If there are more lines of text than can fit in the list
box, a scroll bar will be created to allow the user to scroll up and down within the list
box. The lines of text among which the user can select are specified by a cell array
of strings, and the'Value' property indicates which of the strings are currently
selected.

A list box is created by a uicontrol whose style property is'listbox'.
A list box can be added to a GUI by using the listbox tool () in the Layout
Editor.

List boxes can be used to select a single item from a selection of possible
choices. In normal GUI usage, a single mouse click on a list item selects that item

Figure 14.21 The GUI produced by program test_radio_button when
Option 2 has been selected.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 601

(a)
function PopupMenu_Callback(hObject, eventdata, handles)

% Find the value of the popup menu
value = get(handles.PopupMenu,'Value');

% Place the value into the text field
str = ['Option' num2str(value)];
set (handles.TextBox,'String',str);

(b)

Figure 14.22 (a) Layout of a simple GUI with a popup menu and a text field to
display the current selection. (b) The callback functions for this GUI.

Figure 14.23 The GUI produced by program test_popup_menu.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

602 | Chapter 14 Graphical User Interfaces

but does not cause an action to occur. Instead, the action waits on some external
trigger, such as a pushbutton. However, a mouse double-click causes an action
to happen immediately. Single-click and double-click events can be distinguished
using the SelectionType property of the figure in which the clicks occurred.
A single mouse click will place the string'normal' in the SelectionType
property, while a double mouse click will place the string'open' in the Selec-
tion Type property.

It is also possible for a list box to allow multiple selections from the list. If the
difference between the max and min properties of the list box is greater than one,
then multiple selections are allowed. Otherwise, only one item may be selected from
the list.

Figure 14.24a shows an example of a single-selection list box. The GUI in
this figure creates a list box with eight options, labeled Option 1, Option 2,
and so forth. In addition, it creates a pushbutton to perform selection and a text
field to display the selected choice. Both the list box and the pushbutton generate
callbacks.

The corresponding callback functions are shown in Figure 14.24b. If a selec-
tion is made in the list box, then function Listbox1_Callback will be exe-
cuted. This function will check the figure producing the callback (using function
gcbf) to see if the selecting action were a single-click or a double-click. If it were
a single-click, the function does nothing. If it were a double-click, then the function
gets the selected value from the listbox and writes an appropriate string into the
text field.

If the pushbutton is selected, then function Button1_Callback will be exe-
cuted. This function gets the selected value from the listbox, and writes an appropri-
ate string into the text field.

In an end-of-chapter exercise, you will be asked to modify this example to allow
multiple selections in the list box.

14.4.8 Sliders

Sliders are graphical objects that allow a user to select values from a continuous
range between a specified minimum value and a specified maximum value by mov-
ing a bar with a mouse. The'Value' property of the slider is set to a value between
min and max depending on the position of the slider.

A slider is created by a uicontrol whose style property is'slider'. A
slider can be added to a GUI by using the slider tool () in the Layout Editor.

Figure 14.26a shows the layout for a simple GUI containing a slider and a
text field. The'Min' property for this slider is set to zero, and the'Max' pro-
perty is set to one. When a user drags the slider, it automatically calls the function
Slider1_Callback, which is shown in Figure 14.26b. This function gets the
value of the slider from the'Value' property, and displays the value in the text
field. Figure 14.27 shows this GUI with the slider at some intermediate position in
its range.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 603

(a)

function Button1_Callback(hObject, eventdata, handles)

% Find the value of the popup menu
value = get(handles.Listbox1,'Value');

% Update text label
str = ['Option' num2str(value)];
set (handles.Label1,'String',str);

function Listbox1_Callback(hObject, eventdata, handles)

% If this was a double click, update the label.
selectiontype = get(gcbf,'SelectionType');
if selectiontype(1) =='o'

 % Find the value of the popup menu
 value = get(handles.Listbox1,'Value');

 % Update text label
 str = ['Option' num2str(value)];
 set (handles.Label1,'String',str);
end

(b)

Figure 14.24 (a) Layout of a simple GUI with a list box, a pushbutton, and a text
field. (b) The callback functions for this GUI.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

604 | Chapter 14 Graphical User Interfaces

(a)

function Slider1_Callback(hObject, eventdata, handles)

% Find the value of the slider
value = get(handles.Slider1,'Value');

% Place the value in the text field
str = sprintf('%.2f',value);
set (handles.Label1,'String',str);

(b)

Figure 14.26 (a) Layout of a simple GUI with a slider and a text field. (b) The
callback function for this GUI.

Figure 14.25 The GUI produced by program test_listbox.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 605

14.4.9 Tables

A table is a two-dimensional display of data with rows and columns. Sliders are
graphical objects that allow a user to select values from a continuous range between
a specified minimum value and a specified maximum value by moving a bar with a
mouse. The'Value' property of the slider is set to a value between min and max
depending on the position of the slider.

A table is created by a uitable object. A table can be added to a GUI by using
the table tool () in the Layout Editor. The uitable is different from the uicontrol
used for the other GUI elements, and it has different properties that must be set to use
it properly. The key properties needed for a uitable are:

1. Data—A two-dimensional cell array containing a collection of values to
display in the table. The types of data displayed in the table can be mixed, with
some columns being numeric, some logical, and others character. The size of the
table is usually specified to be equal to the size of the data supplied to the table.

2. ColumnName—A one-dimensional cell array containing the labels for
each column in the table.

3. ColumnFormat—A one-dimensional cell array containing the format of
the data to display in each column ('numeric', 'logical', and so forth).

4. ColumnEditable—A one-dimensional logical array of logical values
indication whether each column can be edited or not.

5. RowName—A one-dimensional cell array containing the labels for each
row in the table.

6. CellEditCallback—The specified function will be called when the
data in a cell of the table is modified.

7. CellSelectionCallback—The specified function will be called when the
cell selection is modified and will provide a list of all the currently selected cells.

Figure 14.28a shows the layout for a simple GUI containing a table and two text
fields. The table is 3 3 4, because the initializing data was the cell array {1, 2, 3, 4;
5, 6, 7, 8; 9, 10, 11, 12}. The Property Inspector was used to specify that columns 1,
3, and 4 were editable and column 2 was not. Callback functions were defined for the
CellEditCallback and the CellSelectionCallback.

Figure 14.27 The GUI produced by program test_slider.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

606 | Chapter 14 Graphical User Interfaces

function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% Get the cells selected
rows = eventdata.Indices(:,1);
columns = eventdata.Indices(:,2);

% List the (row,column) pairs selected
string = ['Selected Cells:'];
for ii = 1:length(rows)
 string = [string'(', int2str(rows(ii))',' int2str(columns(ii))')'];
end

% Set the list into the string
set (handles.TextBox1,'String', string);

% Clear the modified cell
set (handles.TextBox2,'String','Modified Cell:');

function uitable1_CellEditCallback(hObject, eventdata, handles)

% Get the cells selected
rows = eventdata.Indices(:,1);
columns = eventdata.Indices(:,2);

% Display the data change
string = ['Modified Cell: (', int2str(rows)',' int2str(columns)')'];
string = [string'; Old data =' num2str(eventdata.PreviousData)];
string = [string'; New data =' num2str(eventdata.NewData)];

% Set the list into the string
set (handles.TextBox2,'String', string);

(a)

Figure 14.28 (a) Layout of a sample table with two text fields. (b) The callback functions for this GUI.
(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 607

The eventdata structure is returned to each callback, with information such
as the cells currently selected and the old and new values when a cell is modified.
The sample GUI displays the selected cell and any modified information. The call-
back functions to create the list of selected cells and to show the modified data in
a cell are shown in Figure 14.28b. Figure 14.29 shows this GUI with selected and
modified cells.

(a)

(b)

Figure 14.29 (a) The test_table GUI with multiple cells selected; (b) The
test_table GUI with the data in cell (3,1) modified.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

608 | Chapter 14 Graphical User Interfaces

Example 14.1—Temperature Conversion

Write a program that converts temperature from degrees Fahrenheit to degrees
Celsius and vice versa over the range 0–100° C, using a GUI to accept data and
display results. The program should include an edit box for the temperature in
degrees Fahrenheit, an edit box for the temperature in degrees Celsius, and a slider to
allow for the continuous adjustment of temperature. The user should be able to enter
temperatures in either edit box or by moving the slider, and all GUI elements should
adjust to the corresponding values.
Solution To create this program, we will need a text field and an edit box for the tem-
perature in degrees Fahrenheit, another text field and an edit box for the temperature in
degrees Celsius, and a slider. We will also need a function to convert degrees Fahrenheit
to degrees Celsius, and a function to convert degrees Celsius to degrees Fahrenheit.
Finally, we will need to write callback functions to support user inputs.

The range of values to convert will be 32–212° F or 0–100° C, so it will be
convenient to set up the slider to cover the range 0–100, and to treat the value of the
slider as a temperature in degrees C.

The first step in this process is to use guide to design the GUI. We can use
guide to create the five required GUI elements and locate them in approximately
the correct positions. Then, we can use the Property Inspector to perform the follow-
ing steps:

1. Select appropriate names for each GUI element and store them in the
appropriate Tag properties. The names will be'Label1','Label2',
'Edit1','Edit2', and'Slider1'.

2. Store'Degrees F' and'Degrees C' in the String properties of the
two labels.

3. Set the slider’s minimum and maximum limits to 0 and 100, respectively.
4. Store initial values in the String property of the two edit fields and in the

Value property of the slider. We will initialize the temperature to 32° F
or 0° C, which corresponds to a slider value of 0.

5. Set the Name property of the figure containing the GUI to'Temperature
Conversion'.

Once these changes have been made, the GUI should be saved to file
temp_conversion.fig. This will produce both a figure file and a matching
M-file. The M-file will contain stubs for the three callback functions needed by the
edit fields and the slider. The resulting GUI is shown during the layout process in
Figure 14.30.

The next step in the process is to create the functions to convert degrees
Fahrenheit to degrees Celsius. Function to_c will convert temperature from degrees
Fahrenheit to degrees Celsius. It must implement the equation

 deg C 5
5

9
 sdeg F 2 32d (14.1)

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.4 Graphical User Interface Components | 609

The code for this function is

function deg_c = to_c(deg_f)

% Convert degrees Fahrenheit to degrees C.
deg_c = (5/9) * (deg_f - 32);
end % function deg_c

Function to_f will convert temperature from degrees Celsius to degrees Fahrenheit.
It must implement the equation

 deg F 5
9
5

 deg C 1 32 (14.2)

The code for this function is

function deg_f = to_f(deg_c)

% Convert degrees Celsius to degrees Fahrenheit.
deg_f = (9/5) * deg_c + 32;
end % function deg_f

Finally, we must write the callback functions to tie it all together. The functions
must respond to either edit box or to the slider, and must update all three components.
(Note that we will update even the edit box that the user types into, so that the data
can be displayed with a consistent format at all times and can correct errors if the user
types an out-of-range input value.)

There is an extra complication here since the values entered into edit boxes are strings
and we wish to treat them as numbers. If a user types the value 100 into an edit box, he or
she has really created the string'100', not the number 100. The callback function must
convert the strings into numbers so that the conversion can be calculated. This conversion
is done with the str2num function that converts a string into a numerical value.

Figure 14.30 Layout of the temperature conversion GUI.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

610 | Chapter 14 Graphical User Interfaces

Also, the callback function will have to limit user entries to the valid temperature
range, which is 0–100 °C and 32–212 °F.

The resulting callback functions are shown in Figure 14.31.

function Edit1_Callback(hObject, eventdata, handles)

% Update all temperature values
deg_f = str2num(get(hObject,'String'));
deg_f = max([32 deg_f]);
deg_f = min([212 deg_f]);
deg_c = to_c(deg_f);

% Now update the fields
set (handles.Edit1,'String',sprintf('%.1f',deg_f));
set (handles.Edit2,'String',sprintf('%.1f',deg_c));
set (handles.Slider1,'Value',deg_c);

function Edit2_Callback(hObject, eventdata, handles)

% Update all temperature values
deg_c = str2num(get(hObject,'String'));
deg_c = max([0 deg_c]);
deg_c = min([100 deg_c]);
deg_f = to_f(deg_c);

% Now update the fields
set (handles.Edit1,'String',sprintf('%.1f',deg_f));
set (handles.Edit2,'String',sprintf('%.1f',deg_c));
set (handles.Slider1,'Value',deg_c);

function Slider1_Callback(hObject, eventdata, handles)

% Update all temperature values
deg_c = get(hObject,'Value');
deg_f = to_f(deg_c);

% Now update the fields
set (handles.Edit1,'String',sprintf('%.1f',deg_f));
set (handles.Edit2,'String',sprintf('%.1f',deg_c));
set (handles.Slider1,'Value',deg_c);

Figure 14.31 Callback functions for the temperature conversion GUI.

The program is now complete. Execute it and enter several different values using
both the edit boxes and the sliders. Be sure to use some out-of-range values. Does it
appear to be functioning properly?

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.5 Additional Containers: Panels and Button Groups | 611

14.5 Additional Containers: Panels and Button Groups

MATLAB GUIs include two other types of containers: panels (created by the func-
tion uipanel) and button groups (created by the function uibuttongroup).

14.5.1 Panels

Panels are containers that can contain components or other containers, but they do
not have a title bar and cannot have menus attached. A panel can contain GUI ele-
ments such as uicontrols, tables, axes, other panels, or button groups. Any elements
placed in a panel will be positioned relative to the panel. If the panel is moved on the
GUI, then all of the elements within it are moved as well. Panels are a great way to
group related controls on a GUI.

A panel is created by a uipanel function. It can be added to a GUI by using
the panel tool () in the Layout Editor.

Each panel has a title and is usually surrounded by an etched or beveled line
marking the edges of the panel. The title of a panel can be located at the left, center,
or right side of either the top or bottom of the panel. Samples of panels with several
combinations of title positions and edge styles are shown in Figure 14.32.

Figure 14.32 Examples of various panel styles.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

612 | Chapter 14 Graphical User Interfaces

Let’s look at a simple example using panels. Suppose that we wanted to create
a GUI to plot the function y 5ax2 1bx 1 c between two specified values x

 min
 and

x
 max

. The GUI should allow the user to specify the values a, b, c, x
 min

, and x
 max

.
In addition, it should allow the user to specify the style, color, and thickness of the
line being plotted. These two sets of values (the ones specifying the line and the
ones specifying what the line looks like) are logically distinct, so we can group them
together in two panels on the GUI. One possible layout is shown in Figure 14.33.
(You will be asked to finish this GUI and create an operational program in Exercise 14.7
at the end of the chapter.)

Table 14.4 contains a list of some important uipanel properties. These prop-
erties can be modified by the Property Inspector during the design phase, or they can
be modified during execution with get and set functions.

14.5.2 Button Groups

Button groups are a special type of panel that can manage groups of radio buttons
or toggle buttons to ensure that no more than one button in the group is on at any
time. A button group is just like any other panel, except that the button group
ensures that at most one radio button or toggle button is on at any given time. If
one of them is turned on, then the button group turns off any buttons that were
already on.

Figure 14.33 Layout of the Plot Function GUI, using panels to group related
characteristics together.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.5 Additional Containers: Panels and Button Groups | 613

Table 14.4: Important uipanel and uibuttongroup Properties

Property Description

BackgroundColor Specifies the color of the uipanel background. The value is either a predefined
color such as'r','g', or'b', or else a three-element vector specifying the red,
green, and blue components of the color on a 0–1 scale. For example, the color
magenta would be specified by [1 0 1] .

BorderType Type of border around the uipanel. Options are'none','etchedin',
 'etchedout','beveledin','beveledout', or'line'. The default
border type is'etchedin'.

BorderWidth Width of border around the uipanel.

FontAngle A string containing the font angle for the title text. Possible values are'normal',
 'italic', and'oblique'.

FontName A string containing the font name for the title text.

FontSize A number specifying the font size for the title text.

FontUnits The units in which the font size is defined. Possible choices are'inches',
 'centimeters','normalized','points', and'pixels'. The default
font units are'points'.

FontWeight A string containing the font weight for the title text. Possible values are'light',
 'normal','demi', and'bold'. The default font weight is'normal'.

ForegroundColor Specifies the color of the title font and the border.

HighlightColor Specifies the 3D border highlight color.

Position Specifies the position of a panel relative to its parent figure, uipanel, or
uibuttongroup, in the units specified by the'units' property. This value
accepts a four-element vector in which the first two elements are the x and y
positions of the lower left-hand corner of the panel, and the next two elements are
the width and height of the panel.

ShadowColor Specifies the color of the 3D border shadow.

Tag The “name” of the uipanel, which can be used to access it.

Title The title string.

TitlePosition Location of the title string on the uipanel. Possible values are'lefttop',
 'centertop','righttop','leftbottom','centerbottom',
and'rightbottom'. The default value is'lefttop'.

Units The units used to describe the position of the uipanel. Possible choices
are'inches','centimeters','normalized','points','pixels',
or'characters'. The default units are'normalized'.

Visible Specifies whether or not this uipanel is visible. Possible values are'on'
or'off'.

A button group is created by a uibuttongroup function. It can be added to a
GUI by using the button group tool () in the Layout Editor.

If a radio button or a toggle button is controlled by a button group, then the
user must attach the name of the function to execute when that button is selected

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

614 | Chapter 14 Graphical User Interfaces

in a special button group property called SelectionChangedFcn. This call-
back is executed by the GUI whenever a radio button or toggle button changes
state. Do not place the function in the usual Callback property, since the button
group overwrites the callback property for every radio button or toggle button that
it controls.

Figure 14.34 shows a simple GUI containing a button group and three radio but-
tons, labeled'Option 1','Option 2', and'Option 3'. When a user clicks
on one radio button in the group, the button is turned on and all other buttons in the
group are turned off.

14.6 Dialog Boxes

A dialog box is a special type of figure that is used to display information or
to get input from a user. Dialog boxes are used to display errors, provide warn-
ings, ask questions, or get user input. They are also used to select files or printer
properties.

Dialog boxes may be modal or non-modal. A modal dialog box does not allow
any other window in the application to be accessed until it is dismissed, while a
normal dialog box does not block access to other windows. Modal dialog boxes are
typically used for warning and error messages that need urgent attention and cannot
be ignored. By default, most dialog boxes are non-modal.

MATLAB includes many types of dialog boxes, the more important of which are
summarized in Table 14.5. We will examine only a few types of dialog boxes here,
but you can consult the MATLAB online documentation for the details of the others.

Figure 14.34 A button group controlling three radio buttons.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.6 Dialog Boxes | 615

Property Description

dialog Creates a generic dialog box.

errordlg Displays an error message in a dialog box. The user must click the OK button to continue.

helpdlg Displays a help message in a dialog box. The user must click the OK button to continue.

inputdlg Displays a request for input data, and accepts the user’s input values.

listdlg Allows a user to make one or more selections from a list.

msgbox Displays a message in a dialog box.

printdlg Displays a printer selection dialog box.

questdlg Asks a question. This dialog box can contain either two or three buttons, which by default
are labeled Yes, No, and Cancel.

uigetdir Displays a file open dialog box. This box allows a user to select a directory to open.

uigetfile Displays a file open dialog box. This box allows a user to select a file to open but does not
actually open the file.

uiputfile Displays a file save dialog box. This box allows a user to select a file to save but does not
actually save the file.

uisave Save workspace variables to a file.

uisetcolor Displays a color selection dialog box.

uisetfont Displays a font selection dialog box.

waitbar Displays or updates a wait bar dialog box.

warndlg Displays a warning message in a dialog box. The user must click the OK button to continue.

14.6.1 Error and Warning Dialog Boxes

Error and warning dialog boxes have similar calling parameters and behavior. In fact,
the only difference between them is the icon displayed in the dialog box. The most
common calling sequence for these dialog boxes is

errordlg(error_string,box_title,create_mode);
warndlg(warning_string,box_title,create_mode);

The error_string or warning_string is the message to display to the user,
and the box_title is the title of the dialog box. Finally, create_mode is a
string that can be'modal' or'non-modal', depending on the type of dialog box
you wish to create.

For example, the following statement creates a modal error message that cannot be
ignored by the user. The dialog box produced by this statement is shown in Figure 14.35.

errordlg('Invalid input values!','Error Dialog Box','modal');

14.6.2 Input Dialog Boxes

Input dialog boxes prompt a user to enter one or more values that may be used by a
program. They may be created with one of the following calling sequences.

Table 14.5: Selected Dialog Boxes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

616 | Chapter 14 Graphical User Interfaces

answer = inputdlg(prompt)
answer = inputdlg(prompt,title)
answer = inputdlg(prompt,title,line_no)
answer = inputdlg(prompt,title,line_no,default_answer)

Here, prompt is a cell array of strings, with each element of the array corresponding
to one value that the user will be asked to enter. The parameter title specifies the
title of the dialog box, while line_no specifies the number of lines to be allowed
for each answer. Finally, default_answer is a cell array containing the default
answers that will be used if the user fails to enter data for a particular item. Note that
there must be as many default answers as there are prompts.

When the user clicks the OK button on the dialog box, his or her answers will be
returned as a cell array of strings in variable answer.

As an example of an input dialog box, suppose that we wanted to allow a user
to specify the position of a figure using an input dialog. The code to perform this
function would be

prompt{1} = 'Starting x position:';
prompt{2} = 'Starting y position:';
prompt{3} = 'Width:';
prompt{4} = 'Height:';
title = 'Set Figure Position';
default_ans = {'50','50','180','100'};
answer = inputdlg(prompt,title,1,default_ans);

The resulting dialog box is shown in Figure 14.36.

14.6.3 The uigetfile, uisetfile and uigetdir Dialog Boxes

The uigetfile and uisetfile dialog boxes allow a user to interactively pick
files to open or save. These functions use the standard file open or file save dialog
boxes for the particular operating system that MATLAB is running on. They return
strings containing the name and the path of the file but do not actually read or save it.
The programmer is responsible for writing additional code for that purpose.

The form of these two dialog boxes is

[filename, pathname] = uigetfile(filter_spec,title);
[filename, pathname] = uisetfile(filter_spec,title);

Figure 14.35 An error dialog box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.6 Dialog Boxes | 617

Parameter filter_spec is a string specifying the type of files to display in the
dialog box, such as'*.m','*.mat', and so forth. Parameter title is a string
specifying the title of the dialog box. After the dialog box executes, filename con-
tains the name of the selected file and pathname contains the path of the file. If the
user cancels the dialog box, filename and pathname are set to zero.

The following script file illustrates the use of these dialog boxes. It prompts the
user to enter the name of a mat-file, and then reads the contents of that file. The dialog
box created by this code on a Windows 7 system is shown in Figure 14.37. (This is
the standard open file dialog for Windows 7. It will appear slightly different on other
Windows or Linux systems).

[filename, pathname] = uigetfile('*.mat','Load MAT File');
if filename ~= 0
 load([pathname filename]);
end

The uigetdir dialog box allows a user to interactively select a directory. This
function uses the standard directory selection dialog box for the particular operating
system that MATLAB is running on. It returns the name of the directory but does not
actually do anything with it. The programmer is responsible for writing additional
code to use the directory name.

The form of this dialog box is

directoryname = uigetdir(start_path, title);

Parameter start_path is the path of the initially selected directory. If it is not
valid, then the dialog box opens with the base directory selected. Parameter title
is a string specifying the title of the dialog box. After the dialog box executes,
directoryname contains the name of the selected directory. If the user cancels
the dialog box, directoryname is set to zero.

Figure 14.36 An input dialog box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

618 | Chapter 14 Graphical User Interfaces

The following script file illustrates the use of this dialog box. It prompts the
user to select a directory starting with the current MATLAB working directory. This
dialog box created by this code on a Windows 7 system is shown in Figure 14.38.
(This is the standard open file dialog for Windows 7. It will appear slightly different
on other Windows or Linux systems).

Figure 14.37 A file open dialog box created by uigetfile.

Figure 14.38 A directory selection dialog box created by uigetdir.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 619

14.7 Menus

Menus can also be added to MATLAB GUIs. A menu allows a user to select actions
without additional components appearing on the GUI display. They are useful for select-
ing less commonly used options without cluttering up the GUI with a lot of extra buttons.

There are two types of menus in MATLAB: standard menus, which are pulled
down from the menu bar at the top of a figure, and context menus, which pop up
over the figure when a user right-clicks the mouse over a graphical object. We will
learn how to create and use both types of menus in this section.

Standard menus are created with uimenu objects. Each item in a menu is a
separate uimenu object, including items in submenus. These uimenu objects are
similar to uicontrol objects, and they have many of the same properties such as
Parent, Callback, Enable, and so forth. A list of the more important uimenu
properties is given in Table 14.6.

Each menu item is attached to a parent object, which is a figure for the top-
level menus, or another menu item for submenus. All of the uimenus connected
to the same parent appear on the same menu, and the cascade of items forms a tree
of submenus. Figure 14.39a shows a typical MATLAB menu in operation, while
Figure 14.39b shows the relationship among the objects making up the menu.

MATLAB menus are created using the Menu Editor, which can be selected by
clicking the () icon on the toolbar in the guide Layout Editor. Figure 14.39c
shows the Menu Editor with the menu items that generate this menu structure. The
additional properties in Table 14.6 that are not shown in the Menu Editor can be set
with the Property Editor (propedit).

Good Programming Practice

Use dialog boxes to provide information or request input in GUI-based programs. If
the information is urgent and should not be ignored, make the dialog boxes modal.

dir1 = uigetdir('C: \book\matlab\5e\chap14','Select a directory');
if dir1 ~= 0
 cd(dir1);
end

14.6.4 The uisetcolor and uisetfont Dialog Boxes

The uisetcolor and uisetfont dialog boxes allow a user to interactively select
colors or fonts using the standard dialog boxes for the computer on which MATLAB
is executing. The appearances of these boxes will vary for different operating sys-
tems. They provide a standard way to select colors or fonts within a MATLAB GUI.

Consult the MATLAB online documentation to learn more about these
special-purpose dialog boxes. We will use them in some of the end-of-chapter exercises.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

620 | Chapter 14 Graphical User Interfaces

Property Description

Accelerator A single character specifying the keyboard equivalent for the menu item. The keyboard
combination CTRL 1 key allows a user to activate the menu item from the keyboard.

Callback Specifies the name and parameters of the function to be called when the menu item is
activated. It the menu item has a submenu, the callback executes before the submenu
is displayed. If the menu item does not have submenus, then the callback executes
when the mouse button is released.

Checked When this property is'on', a checkmark is placed to the left of the menu item. This
property can be used to indicate the status of menu items that toggle between two
states. Possible values are'on' or'off'.

Enable Specifies whether or not this menu item is selectable. If it is not enabled, the menu item
will not respond to mouse clicks or accelerator keys. Possible values are'on' or'off'.

ForegroundColor Set color of text in the menu item.

Label Specifies the text to be displayed on the menu. The ampersand character (&) can
be used to specify a keyboard mnemonic for this menu item; it will not appear on
the label. For example, the string'&File' will create a menu item displaying the
text'File' and responding to the F key.

Parent The handle of the parent object for this menu item. The parent object could be a
figure or another menu item.

Position Specifies the position of a menu item on the menu bar or within a menu. Position 1 is the
left-most menu position for a top-level menu, and the highest position within a submenu.

Separator When this property is'on', a separating line is drawn above this menu item. Possible
values are'on' or'off'.

Tag The “name” of the menu item, which can be used to access it.

Visible Specifies whether or not this menu item is visible. Possible values are'on'
or 'off'.

Table 14.6: Important uimenu Properties

(a)

Figure 14.39 (a) A typical menu structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 621

uimenu
(Menu 1)

uimenu
(Menu 2)

figure

uimenu
(Item 1)

uimenu
(Item 2)

uimenu
(Item 3)

uimenu
(Item 1)

uimenu
(Submenu Item 2)

uimenu
(Submenu Item 1)

(b)

Figure 14.39 (Continued) (b) The relationships among the uimenu items creating
the menu. (c) The Menu Editor structure that generated these menus.

(c)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

622 | Chapter 14 Graphical User Interfaces

Top-level context menus are created by uicontextmenu objects, and the
lower level items within context menus are created by uimenu objects. Context
menus are basically the same as standard menus, except that they can be associated
with any GUI object (axes, lines, text, figures, and so forth).

14.7.1 Suppressing the Default Menu

Every MATLAB figure comes with a default set of standard menus. If you wish to
delete these menus from a figure and create your own menus, you must first turn the
default menus off. The display of default menus is controlled by the figure’s MenuBar
property. The possible values of this property are'figure' and'none'. If the
property is set to'figure', then the default menus are displayed. If the property
is set to'none', then the default menus are suppressed. You can use the Property
Inspector to set the MenuBar property for your GUIs when you create them.

14.7.2 Creating Your Own Menus

Creating your own standard menus for a GUI is basically a three-step process.

1. First, create a new menu structure with the Menu Editor. Use the Menu
Editor to define the structure, giving each menu item a Label to display
and a unique Tag value. You can also specify whether or not there is a
separator bar between menu items and whether or not each menu item
has a check mark by it. A dummy callback function will be generated
automatically for each menu item.

2. If necessary, edit the properties of each menu item using the Property
Inspector. The Property Inspector can be started by clicking the More
Options button on the Menu Editor. The most important menu item
properties (Label, Tag, Callback, Checked, and Separator) can
be set on the Menu Editor, so the Property Inspector is usually not needed.
However, if you must set any of the other properties listed in Table 14.6,
you will need to use the Property Inspector.

3. Third, implement a callback function to perform the actions required by
your menu items. The prototype function is created automatically, but you
must add the code to make each menu item behave properly.

Property Description

Callback Specifies the name and parameters of the function to be called when the context menu
is activated. The callback executes before the context menu is displayed.

Parent The handle of the parent object for this context menu.

Tag The “name” of the context menu, which can be used to access it.

Visible Specifies whether or not this context menu is visible. This property is set automatically
and should normally not be modified.

Table 14.7: Important uicontextmenu Properties

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 623

The process of building menus will be illustrated in an example at the end of
this section.

Programming Pitfalls

Only the Label, Tag, Callback, Checked, and Separator properties of a
menu item can be set from the Menu Editor. If you need to set any of the other
properties, you will have to use the Property Inspector on the figure, and select the
appropriate menu item to edit.

14.7.3 Accelerator Keys and Keyboard Mnemonics

MATLAB menus support accelerator keys and keyboard mnemonics. Accelerator
keys are “CTRL 1 key” combinations that cause a menu item to be executed without
opening the menu first. For example, the accelerator key “o” might be assigned to the
File/Open menu item. In that case, the keyboard combination CTRL 1 o will cause
the File/Open callback function to be executed.

A few CRTL 1 key combinations are reserved for the use of the host operating system.
These combinations differ between PC and Linux systems; consult the MATLAB online
documentation to determine which combinations are legal for your type of computer.

Accelerator keys are defined by setting the Accelerator property in a
uimenu object.

Keyboard mnemonics are single letters that can be pressed to cause a menu
item to execute once the menu is open. The keyboard mnemonic letter for a given
menu item is underlined1. For top-level menus, the keyboard mnemonic is executed
by pressing ALT plus the mnemonic key at the same time. Once the top level menu is
open, simply pressing the mnemonic key will cause a menu item to execute.

Figure 14.40 illustrates the use of keyboard mnemonics. The File menu is opened
with the keys ALT 1 f, and once it is opened, the Exit menu item can be executed by
simply typing “x”

Keyboard mnemonics are defined by placing the ampersand character (&) before
the desired mnemonic letter in the Label property. The ampersand will not be dis-
played, but the following letter will be underlined, and it will act as a mnemonic key.
For example, the Label property of the Exit menu item in Figure 14.40 is'E&xit'.

14.7.4 Creating Context Menus

Context menus are created in the same fashion as ordinary menus, except that the
top-level menu item is a uicontextmenu. The parent of a uicontextmenu

1On Windows, the underlines are hidden until the ALT key is held down. This behavior can be modified.
For example, the underlines can be made visible all the time in Windows 7 by selecting the “Underline
keyboard shortcuts and access keys” option in the Ease of Access Center of the Control Panel.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

624 | Chapter 14 Graphical User Interfaces

must be a figure, but the context menu can be associated with and respond to right
mouse clicks on any graphical object. Context menus are created using the “Context
Menu” selection on the Menu Editor. Once the context menu is created, any number
of menu items can be created under it.

To associate a context menu with a specific object, you must set the object’s
UIContextMenu property to the handle of the uicontextmenu. This is nor-
mally done using the Property Inspector, but it can be done with the set command
as shown below. If Hcm is the handle to a context menu, the following statements will
associate the context menu with a line created by a plot command.

H1 = plot(x,y);
set (H1,'UIContextMenu',Hcm);

We will create a context menu and associate it with a graphical object in the follow-
ing example.

Figure 14.40 An example showing keyboard mnemonics. The menu shown was
opened by typing the keys ALT+f, and the Exit option could be executed by simply
typing “x”.

Example 14.2—Plotting Data Points

Write a program that opens a user-specified data file and plots the line specified by
the points in the file. The program should include a File menu, with Open and Exit
menu items. The program should also include a context menu attached to the line,
with options to change the line style. Assume that the data in the file is in the form of
(x,y) pairs, with one pair of data values per line.

Solution This program should include a standard menu with Open and Exit menu
items, plus a set of axes on which to plot the data. It should also include a context
menu specifying various line styles, which can be attached to the line after it is
plotted. The options should include solid, dashed, dotted, and dash-dot line styles.

The first step in creating this program is to use guide to create the required
GUI, which is only a set of axes in this case (see Figure 14.41a). Then, we must use

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 625

(a)

Figure 14.41 (a) The layout for plot_line. (b) The File menu in the Menu Editor.

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

626 | Chapter 14 Graphical User Interfaces

Figure 14.41 (Continued) (c) The context menu in the Menu Editor.

(c)

the Menu Editor to create the File menu. This menu will contain Open and Exit menu
items, as shown in Figure 14.41b. Note that we must use the Menu Editor to set the
Label and Tag and strings for each of these menu items. We will also define key-
board mnemonics “F” for File, “O” for Open and “x” for Exit, and place a separator
between the Open and Exit menu items. Figure 14.41b shows the Exit menu item.
Note that “x” is the keyboard mnemonic, and that the separator switch is turned on.

Next, we must use the Menu Editor to create the context menu. This menu
starts with a uicontextmenu object, with four menu items attached to it (see
Figure 14.41c). Again, we must set the Label and Tag strings for each of these
menu items.

At this point, the GUI should be saved as plot_line.fig, and
plot_line.m will be automatically created. Dummy callback functions will be
automatically created for the menu items.

After the GUI is created, we must implement six callback functions for the Open,
Exit, and linestyle menu items. The most difficult callback function is the response
to the File/Open menu item. This callback must prompt the user for the name of the
file (using a uigetfile dialog box), open the file, read the data, save it into x
and y arrays, and close the file. Then, it must plot the line and save the line’s handle
as application data so that we can use it to modify the line style later. Finally, it must
associate the context menu with the line. The FileOpen_Callback function is
shown in Figure 14.42. Note that the function uses a dialog box to inform the user
of file open errors.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 627

function varargout = FileOpen_Callback(h, eventdata, ...
 handles, varargin)

% Get the file to open
[filename, pathname] = uigetfile ('*.dat','Load Data');
if filename ~= 0

 % Open the input file
 filename = [pathname filename];
 [fid,msg] = fopen(filename,'rt');

 % Check to see if the open failed.
 if fid < 0

 % There was an error--tell user.
 str = ['File ' filename ' could not be opened.'];
 title = 'File Open Failed';
 errordlg(str,title,'modal');

 else

 % File opened successfully. Read the (x,y) pairs from
 % the input file. Get first (x,y) pair before the
 % loop starts.
 [in,count] = fscanf(fid,'%g',2);
 ii = 0;

 while ~feof(fid)
 ii = ii + 1;
 x(ii) = in(1);
 y(ii) = in(2);
 % Get next (x,y) pair
 [in,count] = fscanf(fid,'%g',2);
 end

 % Data read in. Close file.
 fclose(fid);

 % Now plot the data.
 hline = plot(x,y,'LineWidth',3);
 xlabel('x');
 ylabel('y');
 grid on;

 % Associate the context menu with line
 set(hline,'Uicontextmenu',handles.ContextMenu1);

Figure 14.42 The File/Open callback function.

Error message
if open fails

Set context
menu

Plot line

Read data

Open file

Get file
name to open

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

628 | Chapter 14 Graphical User Interfaces

The remaining callback functions are very simple. The FileExit_Callback
function simply closes the figure, and the line style functions simply set the line
style. When the user right-clicks a mouse button over the line, the context menu
will appear. If the user selects an item from the menu, the resulting callback will use
the line’s saved handle to change its properties. These five functions are shown in
Figure 14.43.

The output of the final program is shown in Figure 14.44. Experiment with it on
your own computer to verify that it behaves properly.

function varargout = FileExit_Callback(h, eventdata, ...
 handles, varargin)
close(gcbf);

function varargout = LineSolid_Callback(h, eventdata, ...
 handles, varargin)
set(handles.hline,'LineStyle','-');

function varargout = LineDashed_Callback(h, eventdata, ...

 handles, varargin)

set(handles.hline,'LineStyle','--');

function varargout = LineDotted_Callback(h, eventdata, ...
 handles, varargin)

set(handles.hline,'LineStyle',':');

function varargout = LineDashDot_Callback(h, eventdata, ...
 handles, varargin)
set(handles.hline,'LineStyle','-.');

Figure 14.43 The remaining callback functions in plot_line.

 % Save the line's handle as application data
 handles.hline = hline;
 guidata(gcbf, handles);

 end
end

Figure 14.42 (continued)

Save handle
as app data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.7 Menus | 629

Quiz 14.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 14.1 through 14.7. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with a fellow stu-
dent. The answers to this quiz are found in the back of the book.

1. List the types of graphical components discussed in this chapter. What is the
purpose of each one?

2. List the types of containers discussed in this chapter. What are the differ-
ences among them?

3. What is a callback function? How are callback functions used in MATLAB
GUIs?

4. Describe the steps required to create a GUI-based program.
5. Describe the purpose of the handles data structure.
6. How is application data saved in a MATLAB GUI? Why would you want to

save application data in a GUI?

Figure 14.44 The GUI produced by program plot_line.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

630 | Chapter 14 Graphical User Interfaces

14.8 Tips for Creating Efficient GUIs

This section lists a few miscellaneous tips for creating efficient graphical user
interfaces.

14.8.1 Tool Tips

MATLAB GUIs support tool tips, which are small help windows that pop up beside
a uicontrol GUI object whenever the mouse is held over the object for a while.
Tool tips are used to provide a user with quick help about the purpose of each object
on a GUI.

A tool tip is defined by setting an object’s TooltipString property to the
string that you wish to display. You will be asked to create tool tips in the end-of-
chapter exercises.

7. How can you make a graphical object invisible? How can you turn a
graphical object off so that it will not respond to mouse clicks or keyboard
input?

8. Which of the GUI components described in this chapter respond to mouse
clicks? Which ones respond to keyboard inputs?

9. What are dialog boxes? How can you create a dialog box?
10. What is the difference between a modal and a non-modal dialog box?
11. What is the difference between a standard menu and a context menu? What

components are used to create these menus?
12. What are accelerator keys? What are mnemonics?

Good Programming Practice

Define tool tips to provide users with helpful hints about the functions of your GUI
components.

14.8.2 Toolbars

MATLAB GUIs can also support toolbars. A toolbar is a row of special pushbutton
or toggle buttons along the top of a figure, just below the menu bar. Each button has a
small figure or icon on it, representing its function. We have seen examples of toolbars
in most of the MATLAB figures produced in this book. For example, Figure 14.45
shows a simple plot displaying the default toolbar.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.8 Tips for Creating Efficient GUIs | 631

Every figure has a ToolBar property, which determines whether or not
the default figure toolbar is displayed. The possible values of this property
are'none','auto', and'figure'. If the property is'none', the default tool-
bar is not displayed. If the property is'figure', the default toolbar is displayed.
If the property is'auto', the default toolbar is displayed unless the user defines a
custom toolbar. If the property is'auto' and the user defines a custom toolbar, then
it will be displayed instead of the default toolbar.

A programmer can create his or her own toolbar, using the uitoolbar
function, and can add the toolbar equivalent of pushbutton and toggle buttons
to the toolbar, using the uipushtool and uitoggletool functions. The
user-defined toolbar can be displayed in addition to or instead of the default
figure toolbar.

Toolbars are created and modified in guide by clicking on the Toolbar Editor ().

Default
Toolbar

Figure 14.45 A MATLAB figure showing the default toolbar.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

632 | Chapter 14 Graphical User Interfaces

14.8.3 Additional Enhancements

GUI-based programs can be much more sophisticated than we have described
in this introductory chapter. In addition to the Callback property that we have
been using in the chapter, uicontrols support four other types of callbacks:
CreateFcn, DeleteFcn, ButtonDownFcn, and KeyPressFcn. MATLAB
figures also support three important types of callbacks: WindowButtonDownFcn,
WindowButtonMotionFcn, and WindowButtonUpFcn.

The CreateFcn property defines a callback that is automatically called when-
ever an object is created. It allows a programmer to customize his or her objects as
they are created during program execution. Since this callback is executed before the
object is completely defined, a programmer must specify the function to execute as a
default property of the root before the object is created. For example, the following
statement will cause the function function_name to be executed each time that
a uicontrol is created. The function will be called after MATLAB creates the
object’s properties, so they will be available to the function when it executes.

set(groot,'DefaultUicontrolCreateFcn','function_name')

The DeleteFcn property defines a callback that is automatically called when-
ever an object is destroyed. It is executed before the object’s properties are destroyed,

Figure 14.46 The Toolbar Editor allows a programmer to add items to the toolbar
by dragging and dropping them from the Tool Palette to the Toolbar Layout.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.8 Tips for Creating Efficient GUIs | 633

Example 14.3—Creating a Histogram GUI

Write a program that opens a user-specified data file and calculates a histogram of the data
in the file. The program should calculate the mean, median, and standard deviation of the
data in the file. It should include a File menu, with Open and Exit menu items. It should
also include a means to allow the user to change the number of bins in the histogram.

Select a color other than the default color for the figure and the text label back-
grounds, use keyboard mnemonics for menu items, and add tool tips where appropriate.

Solution This program should include a standard menu with Open and Exit menu
items, a set of axes on which to plot the histogram, and a set of six text fields for the
mean, median, and standard deviation of the data. Three of these text fields will hold
labels, and three will hold the read-only mean, median and standard deviation values.
It must also include a label and an edit field to allow the user to selected the number
of bins to display in the histogram.

We will select a light blue color [0.6 1.0 1.0] for the background of this GUI. To
make the GUI have a light blue background, this color vector must be loaded into
the'Color'property of the figure and into the'BackgroundColor' property of
each text label with the Property Inspector during the GUI layout.

The first step in creating this program is to use guide to lay out the required
GUI (see Figure 14.47a). Then, use the Property Inspector to set the properties of the
seven text fields and the edit field. The fields must be given unique tags so that we can
locate them from the callback functions. Next, use the Menu Editor to create the File
menu (see Figure 14.47b). Finally, the resulting GUI should be saved as histGUI,
creating histGUI.fig and histGUI.m.

▶

so they will be available to the function when it executes. This callback provides the
programmer with an opportunity to do custom clean-up work.

The ButtonDownFcn property defines a callback that is automatically called
whenever a mouse button is pressed within a five-pixel border around a uicontrol.
If the mouse button is pressed on the uicontrol, the Callback is executed. Oth-
erwise, if it is near the border, the ButtonDownFcn is executed. If the uicontrol
is not enabled, the ButtonDownFcn is executed even for clicks on the control.

The KeyPressFcn property defines a callback that is automatically called
whenever a key is pressed while the specified object is selected or highlighted. This
function can find out which key was pressed by checking the CurrentCharacter
property of the enclosing figure, or else by checking the contents of the event data
structure passed to the callback. It can use this information to change behavior,
depending on which key was pressed.

The figure-level callback functions WindowButtonDownFcn,
WindowButtonMotionFcn, and WindowButtonUpFcn allow a programmer
to implement features such as animations and drag-and-drop, since the callbacks
can detect the initial, intermediate, and final locations at which the mouse button
is pressed. They are beyond the scope of this book, but are well worth learning
about. Refer to the Creating Graphical User Interfaces section in the MATLAB user
documentation for a description of these callbacks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

634 | Chapter 14 Graphical User Interfaces

Figure 14.47 (a) The layout for histGUI. (b) The File menu in the Menu Editor.

(a)

(b)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.8 Tips for Creating Efficient GUIs | 635

After histGUI.m is saved, the function histGUI_OpeningFcn must be
edited to initialize the background color of the figure, and to save the initial number
of histogram bins in the handles structure. The modified code for the opening
function is:

% --- Executes just before histGUI is made visible.
function histGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to histGUI (see VARARGIN)

% Choose default command line output for histGUI
handles.output = hObject;

% Set the initial number of bins
handles.nbins = 11;

% Update handles structure
guidata(hObject, handles);

Next, we must create callback functions for the File/Open menu item, the
File/Exit menu item, and the “number of bins” edit box.

The File/Open callback must prompt the user for a file name and then read the
data from the file. It must calculate and display the histogram and update the statistics
text fields. Note that the data in the file must also be saved in the handles structure,
so that it will be available for recalculation if the user changes the number of bins in
the histogram. The callback function to perform these steps is shown below:

function Open_Callback(hObject, eventdata, handles)
% hObject handle to Open (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get file name
[filename,path] = uigetfile('*.dat','Load Data File');
if filename ~= 0

% Read data
x = textread([path filename],'%f');

% Save in handles structure
handles.x = x;
guidata(gcbf, handles);

% Create histogram
hist(handles.x,handles.nbins);

% Set axis labels
xlabel('\bfValue');
ylabel('\bfCount');

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

636 | Chapter 14 Graphical User Interfaces

% Calculate statistics
ave = mean(x);
med = median(x);
sd = std(x);
n = length(x);

% Update fields
set (handles.MeanData,'String',sprintf('%7.2f',ave));
set (handles.MedianData,'String',sprintf('%7.2f',med));
set (handles.StdDevData,'String',sprintf('%7.2f',sd));
set (handles.TitleString,'String',['Histogram (N = ' int2str(n)
')']);

end

The File/Exit callback is trivial. All it has to do is close the figure.

function Exit_Callback(hObject, eventdata, handles)
% hObject handle to Exit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcbf);
The NBins callback must read a numeric input value, round it off to the nearest

integer, display that integer in the Edit Box, and recalculate and display the histo-
gram. Note that the number of bins must also be saved in the handles structure, so
that it will be available for recalculation if the user loads a new data file. The callback
function to perform these steps is shown below:

function NBins_Callback(hObject, eventdata, handles)
% hObject handle to NBins (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get number of bins, round to integer, and update field
nbins = str2num(get(hObject,'String'));
nbins = round(nbins);
if nbins < 1
 nbins = 1;
end
set (handles.NBins,'String',int2str(nbins));

% Save in handles structure
handles.nbins = nbins;
guidata(gcbf, handles);

% Re-display data, if available
if handles.nbins > 0 & ~isempty(handles.x)

 % Create histogram
 hist(handles.x,handles.nbins);

end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.9 Summary | 637

14.9 Summary

In Chapter 14, we learned how to create MATLAB graphical user interfaces. The
three fundamental parts of a GUI are components (uicontrols, uimenus,
uicontextmenus, uitables, toolbars, and axes), containers to contain them,
and callbacks to implement actions in response to mouse clicks or keyboard inputs.

The standard GUI components created by uicontrol include text fields, edit
boxes, pushbutton, toggle buttons, checkboxes, radio buttons, popup menus, list boxes,
and sliders. The standard GUI component created by uitable is the MATLAB
table. The standard GUI components created by uimenu and uicontextmenu
are standard menus and context menus.

MATLAB containers consist of figures, panels, and button groups. Figures are
created by the figure function. They are separate windows, complete with title
bars, menus, and toolbars. Panels are created by the uipanel function. They are
containers that reside within figures or other containers, and do not have title bars,

The final program is shown in Figure 14.48. Experiment with it on your own
computer to verify that it behaves properly.

Figure 14.48 The GUI produced by program histGUI.

▶

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

638 | Chapter 14 Graphical User Interfaces

menus, or toolbars. Panels can contain uicontrol components and other panels
or button groups, and those items will be laid out with respect to the panel itself. If
the panel is moved, all of its contents move with it. Button groups are created by the
uibuttongroup function. They are special types of panels that control any radio
buttons or toggle buttons contained within them to ensure that only one of them can
be on at any time.

Any of these components and containers can be placed on a figure using guide
(the GUI Development Environment tool). Once the GUI layout has been completed,
the user must edit the object properties with the Property Inspector and then write a
callback function to implement the actions associated with each GUI object.

Dialog boxes are special figures used to display information or to get input from
a user. Dialog boxes are used to display errors, provide warnings, ask questions, or
get user input. They are also used to select files or printer properties.

Dialog boxes may be modal or non-modal. A modal dialog box does not allow
any other window in the application to be accessed until it is dismissed, while a nor-
mal (non-modal) dialog box does not block access to other windows. Modal dialog
boxes are typically used for warning and error messages that need urgent attention
and cannot be ignored.

Menus can also be added to MATLAB GUIs. A menu allows a user to select
actions without additional components appearing on the GUI display. They are use-
ful for selecting less commonly used options without cluttering up the GUI with a lot
of extra buttons. Menus are created with the Menu Editor, and then the programmer
must write a callback function to implement the actions associated with each menu
item. For each menu item, the user must use the Menu Editor to set at least the
Label and Tag properties.

Accelerator keys and keyboard mnemonics can be used to speed the operation
of windows.

Compiling MATLAB functions to pcode can speed the execution of a program.
It also protects your investment in your source code by allowing you to distribute the
program to others in the form of pcode files. They may be freely executed, but it is
not easy for someone to reengineer the files and take your ideas.

MATLAB uicontrol components have several additional properties for
specifying less common types of callbacks, including CreateFcn, DeleteFcn,
ButtonDownFcn, and KeyPressFcn. MATLAB figures also have several
properties for specifying types of callbacks, including WindowButtonDownFcn,
WindowButtonMotionFcn, and WindowButtonUpFcn. These various
callbacks allow a user to customize the appearance and response of the MATLAB
GUIs to various user inputs.

14.9.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB GUIs.

1. Use guide to lay out a new GUI, and use the Property Inspector to set the
initial properties of each component such as the text displayed on the com-
ponent, the color of the component, and the name of the callback function,
if required.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.9 Summary | 639

2. After creating a GUI with guide, manually edit the resulting function to
add comments describing its purpose and components, and to implement
the function of callbacks.

3. Store GUI application data in the handles structure, so that it will auto-
matically be available to any callback function.

4. If you modify any of the GUI application data in the handles structure,
be sure to save the structure with a call to guidata before exiting the
function where the modifications occurred.

5. Use dialog boxes to provide information or request input in GUI-based
programs. If the information is urgent and should not be ignored, make the
dialog boxes modal.

6. Define tool tips to provide users with helpful hints about the functions of
your GUI components.

14.9.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one. Also, refer to the summa-
ries of Graphical object properties in Tables 14.2, 14.3, 14.4, 14.6, and 14.7.

axes Function to create a set of axes.

dialog Creates a generic dialog box.

errordlg Displays an error message.

helpdlg Displays a help message.

findobj Finds a GUI object by matching one or more of its properties.

gcbf Gets callback figure.

gcbo Gets callback object.

guidata Saves GUI application data in a figure.

guihandles Gets the handles structure from the application data stored in a figure.

guide GUI Development Environment tool.

inputdlg Dialog to get input data from the user.

printdlg Prints dialog box.

questdlg Dialog box to ask a question.

uibuttongroup Creates a button group container.

uicontrol Function to create a GUI object.

uicontextmenu Function to create a context menu.

uigetdir Dialog box to select a directory.

uigetfile Dialog box to select an input file.

uimenu Function to create a standard menu or a menu item on either a standard menu or
a context menu.

uipanel Creates a panel.

uipushtool Creates a pushbutton on a user-defined toolbar.

uiputfile Dialog box to select an output file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

640 | Chapter 14 Graphical User Interfaces

uisetcolor Displays a color selection dialog box.

uisetfont Displays a font selection dialog box.

uitable Function to create a table.

uitoggletool Creates a toggle button on a user-defined toolbar.

uitoolbar Creates a user-defined toolbar.

warndlg Displays a warning message.

14.10 Exercises

14.1 Explain the steps required to create a GUI in MATLAB.
14.2 What types of components can be used in MATLAB GUIs? What functions cre-

ate them, and how do you select a particular component type?
14.3 What types of containers can be used in MATLAB GUIs? What function creates

each of them?
14.4 How does a callback function work? How can a callback function locate the

figures and objects that it needs to manipulate?
14.5 Create a GUI that uses a standard menu to select the background color displayed

by the GUI. Include accelerator keys and keyboard mnemonics in the menu
design. Design the GUI so that it defaults to a green background.

14.6 Create a GUI that uses a context menu to select the background color displayed
by the GUI. Design the GUI so that it defaults to a yellow background.

14.7 Write a GUI program that plots the equation ysxd 5 ax2 1 bx 1 c. The program
should include a set of axes for the plot and should include a panel containing
GUI elements to input the values of a, b, c, and the minimum and maximum x to
plot. A separate panel should contain controls to set the style, color, and thick-
ness of the line being plotted. Include tool tips for each of your GUI elements.

14.8 Modify the GUI of Exercise 14.7 to include a menu. The menu should include
two submenus to select the color and line style of the plotted line, with a check
mark beside the currently selected menu choices. The menu should also include
an Exit option. If the user selects this option, the program should create a modal
question dialog box asking “Are You Sure?” with the appropriate responses.
Include accelerator keys and keyboard mnemonics in the menu design. (Note
that the menu items duplicate some GUI elements, so if a menu item is selected,
the corresponding GUI elements must be updated as well, and vice versa.)

14.9 Modify the List Box example in Section 14.4.7 to allow for multiple selections
in the list box. The text field should be expanded to multiple lines, so that it can
display a list of all selections whenever the Select button is clicked.

14.10 Random Number Distributions Create a GUI to display the distributions of
different types of random numbers. The program should create the distributions
by generating an array of 1,000,000 random values from a distribution and using
function hist to create a histogram. Be sure to label the title and axes of the
histogram properly.

 The program should support uniform, Gaussian, and Rayleigh distributions,
with the distribution selection made by a popup menu. In addition, it should have

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.10 Exercises | 641

an edit box to allow the user to select the number of bins in the histogram. Make
sure that the values entered in the edit box are legal (the number of bins must be
a positive integer).

14.11 Modify the temperature conversion GUI of Example 14.1 to add a “ thermometer”.
The thermometer should be a set of rectangular axes with a red “fluid” level
corresponding to the current temperature in degrees Celsius. The range of the
thermometer should be 0–100 ºC.

14.12 Modify the temperature conversion GUI of Exercise 14.11 to allow you to adjust
the displayed temperature by clicking the mouse. (Warning: This exercise
requires material not discussed in this chapter. Refer to the CurrentPoint
property of axes objects in the online MATLAB documentation.)

14.13 Create a GUI that contains a title, and four pushbuttons grouped within a panel.
The pushbutton should be labeled “Title Color,” “Figure Color,” “Panel Color,”
and “Title Font”. If the Title Color button is selected, open a uisetcolor dia-
log box and change the title text to be in the selected color. If the Figure Color
button is selected, open a uisetcolor dialog box and change the figure
color and the title text background color to be the selected color. If the Panel
Color button is selected, open a uisetcolor dialog box and change the
panel background to be in the selected color. If the Title Font button is selected,
open a uisetfont dialog box and change the title text to be in the selected font.

14.14 Create a GUI that contains a title and a button group. The button group will be
titled “Style,” and it should contain four radio buttons labeled “Plain,” “Italic,”
“Bold,” and “Bold Italic”. Design the GUI so that the style in the currently
selected radio button is applied to the title text.

14.15 Least Squares Fit Create a GUI that can read an input data set from a file
and perform a least-squares fit to the data. The data will be stored in a disk file
in (x,y) format, with one x and one y value per line. Perform the least-squares fit
with the MATLAB function polyfit, and plot both the original data and the
least-squares fitted line. Include two menus: File and Edit. The File menu should
include File/Open and File/Exit menu items, and the user should receive an “Are
You Sure?” prompt before exiting. The Edit menu item should allow the user to
customize the display, including line style, line color, and grid status.

14.16 Modify the GUI of the previous exercise to include an Edit/Preferences menu
item that allows the user to suppress the “Are You Sure?” exit prompt.

14.17 Modify the GUI of the previous exercise to read and write an initialization file.
The file should contain the line style, line color, grid choice (on/off), and exit
prompt choice made by the user on previous runs. These choice should be auto-
matically written out and saved when the program exits via the File/Exit menu
item, and they should be read in and used whenever the program is started again.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

643

AAppendix

MATLAB strings use the UTF-8 character set, which contains many thousands of
characters stored in a 16-bit field. The first 128 of the characters are the same as the
ASCII character set, and they are shown in the table below. The results of MATLAB
string comparison operations depend on the relative lexicographic positions of the
characters being compared. For example, the character ‘a’ in the character set is a
position 97 in the table, while the character “A” is at position 65. Therefore, the
relational operator 'a' . 'A' will return a 1 (true), since 97 . 65.

The table below shows the ASCII character set, with the first two decimal
digits of the character number defined by the row, and the third digit defined by
the column. Thus, the letter 'R' is on row 8 and column 2, so it is character 82
in the ASCII character set.

 0 1 2 3 4 5 6 7 8 9
0 nul soh stx etx eot enq ack bel bs ht
1 nl vt ff cr so si dle dc1 dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! '' # $ % & '
4 () * 1 , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 , 5 . ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ` a b c

10 d e f g h I j k l m
11 n o p q r s t u v w
12 x y z { | } ~ del

AAppendix

UTF-8
Character Set

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

645

BAppendix

Answers
to
Quizzes

This appendix contains the answers to all of the quizzes in the book.

Quiz 1.1, page 22

1. The MATLAB Command Window is the window where a user
enters commands. A user can enter interactive commands at the
command prompt (») in the Command Window, and they will be
executed on the spot. The Command Window is also used to start
M-files executing. The Edit/Debug Window is an editor used to
create, modify, and debug M-files. The Figure Window is used to
display MATLAB graphical output.

2. You can get help in MATLAB by:

■■ Typing help <command_name> in the Command Window.
This command will display information about a command or
function in the Command Window.

■■ Typing lookfor <keyword> in the Command Window.
This command will display in the Command Window a list of
all commands or functions containing the keyword in their first
comment line.

■■ Starting the Help Browser by typing helpwin or helpdesk in
the Command Window, by selecting “Help” from the Start menu,
or by clicking on the question mark icon () on the desktop. The
Help Browser contains an extensive hypertext-based description
of all of the features in MATLAB, plus a complete copy of all
manuals online in HTML and Adobe PDF formats. It is the most
comprehensive source of help in MATLAB.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

646 | Appendix B Answers to Quizzes

3. A workspace is the collection of all the variables and arrays that can
be used by MATLAB when a particular command, M-file, or function
is executing. All commands executed in the Command Window (and
all script files executed from the Command Window) share a common
workspace, so they can all share variables. The contents of the work-
space can be examined with the whos command, or graphically with
the Workspace Browser.

4. To clear the contents of a workspace, type clear or clear
variables in the Command Window.

5. The commands to perform this calculation are:

 » t = 5;
 » x0 = 10;
 » v0 = 15;
 » a = -9.81;
 » x = x0 + v0 * t + 1/2 * a * t^2
 x =
 -37.6250

6. The commands to perform this calculation are:

 » x = 3;
 » y = 4;
 » res = x^2 * y^3 / (x - y)^2
 res =
 576

 Questions 7 and 8 are intended to get you to explore the features of
MATLAB. There is no single “right” answer for them.

Quiz 2.1, page 36

1. An array is a collection of data values organized into rows and col-
umns, and known by a single name. Individual data values within
an array are accessed by including the name of the array followed
by subscripts in parentheses that identify the row and column of the
particular value. The term “vector” is usually used to describe an
array with only one dimension, while the term “matrix” is usually
used to describe an array with two or more dimensions.

2. (a) This is a 3 3 4 array; (b) c(2, 3) 5 20.6; (c) The array elements
whose value is 0.6 are c(1, 4), c(2, 1), and c(3, 2).

3. (a) 1 3 3; (b) 3 3 1; (c) 3 3 3; (d) 3 3 2; (e) 3 3 3; (f) 4 3 3;
(g) 4 3 1.

4. w(2,1) 5 2

5. x(2,1) 5 220i

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 647

6. y(2,1) 5 0

7. v(3) 5 3

Quiz 2.2, page 44

1. (a) c(2,:)5 [0.6 1.1 20.6 3.1]

 (b) c(:, end)5 3
0.6

3.1

0.0
4

 (c) c(1:2, 2:end) 5 323.2 3.4 0.6

1.1 20.6 3.14

 (d) c(6) 5 0.6
 (e) c(4, end)5 [23.2 1.1 0.6 3.4 20.6 5.5 0.6 3.1 0.0]

 (f) c(1:2,2:4)5 323.2 3.4 0.6

1.1 20.6 3.14

 (g) c([1 3],2) 5 323.2

0.64
 (h) c([2 2],[3 3]) 5 320.6 20.6

20.6 20.64

2. (a) a 5 3
7 8 9

4 5 6

1 2 3
4 (b) a 5 3

4 5 6

4 5 6

4 5 6
4 (c) a 5 34 5 6

4 5 64

3. (a) a 5 3
1 0 0

1 2 3

0 0 1
4 (b) a 5 3

1 0 4

0 1 5

0 0 6
4 (c) a 5 3

1 0 0

0 1 0

9 7 8
4

Quiz 2.3, page 51

1. The required command is format long e.

2. (a) These statements get the radius of a circle from the user, and
calculate and display the area of the circle. (b) These statements
display the value of p as an integer, so they display the string: The
value is 3!.

3. The first statement outputs the value 12345.67 in exponential for-
mat; the second statement outputs the value in floating point format;
the third statement outputs the value in general format; and the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

648 | Appendix B Answers to Quizzes

fourth statement outputs the value in floating point format in a field
12 characters wide, with four places after the decimal point. The
results of these statements are:

 value = 1.234567e+004
 value = 12345.670000
 value = 12345.7
 value = 12345.6700

Quiz 2.4, page 58

1. (a) This operation is illegal. Array multiplication must be between
arrays of the same shape, or between an array and a scalar. (b) Legal

matrix multiplication: result 5 34 4

3 34 (c) Legal array multiplication:

result 5 3 2 1

22 44 (d) This operation is illegal. The matrix multiplica-

tion b * c yields a 1 3 2 array, and a is a 2 3 2 array, so the addition
is illegal. (e) This operation is illegal. The array multiplication b .* c
is between two arrays of different sizes, so the multiplication is illegal.

2. This result can be found from the operation x = A\B: x 5 3
20.5

1.0

20.5
4

Quiz 3.1, page 114

1.
x = 0:pi/10:2*pi;
x1 = cos(2*x);
y1 = sin(x);
plot(x1,y1,'-ro','LineWidth',2.0,'MarkerSize',6,...
 'MarkerEdgeColor','b','MarkerFaceColor','b')

2. This question has no single specific answer; any combination of
actions that changes the markers is acceptable.

3. '\itf\rm(\itx\rm) = sin \theta cos 2\phi'

4. '\bfPlot of \Sigma \itx\rm\bf^{2} versus \itx'

5. This string creates the characters: t
m

6. This string creates the characters: x2
1 1 x2

2 sunits: m2d
7.

g = 0.5;
theta = 2*pi*(0.01:0.01:1);
r = 10*cos(3*theta);
polar (theta,r,'r-')

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 649

The resulting plot is shown below:

150

120
90 10

8

6

4

2

60

30

0

330

300
270

240

210

180

8.

figure(1);
x = linspace(0.01,100,501);
y = 1 ./ (2 * x .^ 2);
plot(x,y);
figure(2);
x = logspace(0.01,100,101);
y = 1 ./ (2 * x .^ 2)
loglog(x,y);

The resulting plots are shown below. The linear plot is dominated by the
very large value at x 5 0.01, and almost nothing is visible. The function
looks like a straight line on the loglog plot.

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
1009080706050403020100

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

650 | Appendix B Answers to Quizzes

100

10250

102100

102150

102200

102250

101001080106010401020100

Quiz 4.1, page 140

 Expression Result Comment
1. a > b 1

 (logical true)
2. b > d 0
 (logical false)
3. a > b && c > d 0
 (logical false)
4. a == b 0
 (logical false)
5. a & b > c 0
 (logical false)
6. ~~b 1
 (logical true)

7. ~(a > b) 30 0

0 14
 (logical array)
8. a > c && b > c Illegal The && and || operators

only work between scalar
operands.

9. c <= d Illegal The <= operator must be
between arrays of the same
size, or between an array
and a scalar.

10. logical(d) 31 1 1

0 1 04
 (logical array)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 651

11. a * b > c 31 0

0 14 The expression a * b is
evaluated first, producing the

double array32 24

0 204,

and the logical operation
is evaluated second, produc-
ing the final answer.

12. a * (b > c) 32 0

0 24 The expression b > c pro-
duced the logical array

31 0

0 14, and multiplying

that logical array by 2
converted the results back
into a double array.

13. a*b^2 > a*c 0
 (logical false)
14. d || b > a 1
 (logical true)
15. (d | b) > a 0
 (logical false)
16. isinf(a/b) 0
 (logical false)
17. isinf(a/c) 1
 (logical true)
18. a > b && 1
 ischar(d) (logical true)
19. isempty(c) 0
 (logical false)
20. (~a) & b 0
 (logical false)
21. (~a) + b -2 ~a is a logical 0. When

added to b, the result is con-
verted back to a double
value.

Quiz 4.2, page 155

if x >= 0
 sqrt_x = sqrt(x);
else
 disp('ERROR: x < 0');
 sqrt_x = 0;
end

(logical array)

(double array)

(double value)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

652 | Appendix B Answers to Quizzes

2. if abs(denominator) < 1.0E-300
 disp('Divide by 0 error.');
else
 fun = numerator / denominator;
 disp(fun)
end

3. if distance <= 100
 cost = 0.50 * distance;
elseif distance <= 300
 cost = 50 + 0.30 * (distance – 100);
else
 cost = 110 + 0.20 * (distance – 300);
end

4. These statements are incorrect. For this structure to work, the second
if statement would need to be an elseif statement.

5. These statements are legal. They will display the message ''Prepare
to stop.''

6. These statements will execute, but they will not do what the program-
mer intended. If the temperature is 150, these statements will
print out ''Human body temperature exceeded.'' instead
of ''Boiling point of water exceeded.'', because the if
structure executes the first true condition and skips the rest. To get
proper behavior, the order of these tests should be reversed.

Quiz 5.1, page 198

1. 4 times

2. 0 times

3. 1 time

4. 2 times

5. 2 times

6. ires 5 10

7. ires 5 55

8. ires 5 25;

9. ires 5 49;

10. With loops and branches:

for ii = -6*pi:pi/10:6*pi
 if sin(ii) > 0
 res(ii) = sin(ii);
 else
 res(ii) = 0;
 end
end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 653

With vectorized code:
arr1 = sin(-6*pi:pi/10:6*pi);
res = zeros(size(arr1));
res(arr1>0) = arr1(arr1>0);

Quiz 6.1, page 251

1. Script files are collections of MATLAB statements that are stored in
a file. Script files share the Command Window’s workspace, so any
variables that were defined before the script file starts are visible to
the script file, and any variables created by the script file remain in
the workspace after the script file finishes executing. A script file has
no input arguments and returns no results, but script files can com-
municate with other script files through the data left behind in the
workspace. In contrast, each MATLAB function runs in its own inde-
pendent workspace. It receives input data through an input argument
list and returns results to the caller through an output argument list.

2. The help command displays all of the comment lines in a function until
either the first blank line or the first executable statement is reached.

3. The H1 comment line is the first comment line in the file. This line
is searched by and displayed by the lookfor command. It should
always contain a one-line summary of the purpose of a function.

4. In the pass-by-value scheme, a copy of each input argument is
passed from a caller to a function, instead of the original argument
itself. This practice contributes to good program design because
the input arguments may be freely modified in the function without
causing unintended side-effects in the caller.

5. A MATLAB function can have any number of arguments, and not
all arguments need to be present each time the function is called.
Function nargin is used to determine the number of input argu-
ments actually present when a function is called, and function
nargout is used to determine the number of output arguments
actually present when a function is called.

6. This function call is incorrect. Function test1 must be called with
two input arguments. In this case, variable y will be undefined in
function test1, and the function will abort.

7. This function call is correct. The function can be called with either
one or two arguments.

Quiz 7.1, page 309

1. A local function is a second or subsequent function defined within
a file. Local functions look just like ordinary functions, but they are
accessible only to the other functions within the same file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

654 | Appendix B Answers to Quizzes

2. The scope of a function is defined as the locations within MATLAB
from which the function can be accessed.

3. Private functions are functions that reside in subdirectories
with the special name private. They are only visible to other
functions in the private directory, or to functions in the par-
ent directory. In other words, the scope of these functions is
restricted to the private directory and to the parent directory that
contains it.

4. Nested functions are functions that are defined entirely within the
body of another function, called the host function. They are only
visible to the host function in which they are embedded, and to other
nested functions embedded at the same level within the same host
function.

5. MATLAB locates functions in a specific order as follows:

■■ MATLAB checks to see if there is a nested function within the
current function with the specified name. If so, it is executed.

■■ MATLAB checks to see if there is a local function within the cur-
rent file with the specified name. If so, it is executed.

■■ MATLAB checks for a private function with the specified name.
If so, it is executed.

■■ MATLAB checks for a function with the specified name in the
current directory. If so, it is executed.

■■ MATLAB checks for a function with the specified name on the
MATLAB path. MATLAB will stop searching and execute the
first function with the right name found on the path.

6. A function handle is a MATLAB data type that holds information to
be used in referencing a function. When a function handle is created,
MATLAB captures all the information about the function that it needs
to execute it later on. Once the handle is created, it can be used to
execute the function at any time.

7. The result returns the name of the function that the handle was
created from:
>> myfun(@cosh)
ans =
cosh

Quiz 8.1, page 331

1. (a) true (1); (b) false (0); (c) 25

2. If array is a complex array, then the function plot(array)
plots the real componets of each element in the array versus the
imaginary components of each element in the array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 655

Quiz 9.1, page 365

1. These statements concatenate the two lines together, and variable
res contains the string 'This is a test!This line, too.'

2. These statements are illegal—there is no function strcati.

3. These statements are illegal—the two strings must have the same
number of columns, and these strings are of different lengths.

4. These statements are legal—function strvcat can pad out input
values of different lengths. The result is that the two strings appear
on to different rows in the final result:
 » res = strvcat(str1,str2)
 res =
 This is another test!
 This line, too.

5. These statements return true (1), because the two strings match in
the first 5 characters.

6. These statements return the locations of every ‘s’ in the input string:
4 7 13.

7. These statements assign the character ‘x’ to every location in str1
that contains a blank. The resulting string is Thisxisxaxtest!xx.

8. These statements return an array with 12 values, corresponding to
the 12 characters in the input string. The output array contains 1 at
the locations of each alphanumeric value and 0 at all other locations:
 » str1 = 'aBcD 1234 !?';
 » res = isstrprop(str1,'alphanum')
 Columns 1 through 5
 1 1 1 1 0
 Columns 6 through 10
 1 1 1 1 0
 Columns 11 through 12
 0 0

9. These statements shift all alphabetic characters in the first seven col-
umns of str1 to uppercase. The resulting string is ABCD 1234 !?.

10. str1 contains 456 with three blanks before and after it, and str2
contains abc with three blanks before and after it. String str3
is the concatenation of the two strings, so it is 18 characters long:
 456 abc . String str4 is the concatenation of
the two strings with leading and trailing blanks removed, so it is
6 characters long: 456abc. String str5 is the concatenation of the
two strings with only trailing blanks removed, so it is 12 characters
long: 456 abc .

11. These statements will fail, because strncmp requires a length
parameter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

656 | Appendix B Answers to Quizzes

Quiz 9.2, page 370

1. These statements are illegal, since it is not possible to add objects of
these two classes.

2. These statements are illegal, since it is not possible to multiply
objects of these two classes.

3. These statements are legal, since single and double objects can
be multiplied using matrix multiplication. The result is a single array

containing 3 3 2

22 34.

4. These statements are legal, since single and double objects can
be multiplied using array multiplication. The result is a single array

containing 33 0

0 34.

Quiz 10.1, page 403

1. A sparse array is a special type of array in which memory is only
allocated for the non-zero elements in the array. Memory values are
allocated for both the subscripts and the value of each element in a
sparse array. By contrast, a memory location is allocated for every
value in a full array, whether the value is 0 or not. Sparse arrays can
be converted to full arrays using the full function, and full arrays
can be converted to sparse arrays using the sparse function.

2. A cell array is an array of “pointers,” each element of which can
point to any type of MATLAB data. It differs from an ordinary array
in that each element of a cell array can point to a different type of
data, such as a numeric array, a string, another cell array, or a struc-
ture. Also, cell arrays use braces {} instead of parentheses () for
selecting and displaying the contents of cells.

3. Content indexing involves placing braces {} around the cell sub-
scripts, together with cell contents in ordinary notation. This type
of indexing defines the contents of the data structure contained in a
cell. Cell indexing involves placing braces {} around the data to be
stored in a cell, together with cell subscripts in ordinary subscript
notation. This type of indexing creates a data structure containing
the specified data, and then assigns that data structure to a cell.

4. A structure is a data type in which each individual element is given
a name. The individual elements of a structure are known as fields,
and each field in a structure may have a different type. The indi-
vidual fields are addressed by combining the name of the structure
with the name of the field, separated by a period. Structures differ
from ordinary arrays and cell arrays in that ordinary arrays and cell

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 657

array elements are addressed by subscript, while structure elements
are addressed by name.

5. Function varargin appears as the last item in an input argument
list, and it returns a cell array containing all of the actual arguments
specified when the function is called, each in an individual element
of a cell array. This function allows a MATLAB function to support
any number of input arguments.

6. (a) a(1,1) = [3x3 double]. The contents of cell array element
a(1,1) is a 3 3 3 double array, and this data structure is displayed.

(b) a{1,1} 5 3
1 2 3

4 5 6

7 8 9
4. This statement displays the value of

the data structure stored in element a(1,1)/.
(c) These statements are illegal, since you can not multiply a data

structure by a value.
(d) These statements are legal, since you can multiply the contents

of the data structure by a value. The result is 3
2 4 6

8 10 12

14 16 18
4.

(e) a{2,2} = 3
24 23 22

21 0 1

2 3 4
4.

(f) This statement is legal. It initializes cell array element a(2,3) to

be a 2 3 1 double array containing the values 3217

174.

(g) a{2,2}(2,2) = 0.

7. (a) b(1).a - b(2).a = 3
23 1 21

22 0 22

23 3 5
4.

(b) strncmp(b(1).b,b(2).b,6) = 1, since the two structure
elements contain character strings that are identical in their first
6 characters.

(c) mean(b(1).c) = 2
(d) This statement is illegal, since you cannot treat an individual

element of a structure array as though it were an array itself.
(e) b = 1x2 struct array with fields:
 a
 b
 c
(f) b(1).('b') = 'Element 1'
(g) b(1) =
 a: [3x3 double]
 b: 'Element 1'
 c: [1 2 3]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

658 | Appendix B Answers to Quizzes

Quiz 11.1, page 427

1. The textread function is designed to read ASCII files that are
formatted into columns of data, where each column can be of a dif-
ferent type. This command is very useful for importing tables of data
printed out by other applications, since it can handle data of mixed
types within a single file.

2. MAT files are relatively efficient users of disk space, and they store
the full precision of every variable—no precision is lost due to con-
version to and from ASCII format. (If compression is used, MAT
files take up even less space.) In addition, MAT files preserve all of
the information about each variable in the workspace, including its
class, name, and whether or not it is global. A disadvantage of MAT
files is that they are unique to MATLAB and cannot be used to share
data with other programs.

3. Function fopen is used to open files, and function fclose is used
to close files. On PCs (but not on Linux or UNIX computers), there
is a difference between the format of a text file and a binary file. In
order to open files in text mode on a PC, a 't' must be appended
to the permission string in the fopen function.

4. fid = fopen('myinput.dat','at')

5. fid = fopen('input.dat','r');
if fid < 0;
 disp('File input.dat does not exist.');
end

6. These statements are incorrect. They open a file as a text file, but
then read the data in binary format. (Function fscanf should be
used to read text data, as we see later in this chapter.)

7. These statements are correct. They create a 10-element array x, open
a binary output file file1, write the array to the file, and close the
file. Next, they open the file again for reading, and read the data into
array array in a [2 Inf] format. The resulting contents of the

array are 31 3 5 7 9

2 4 6 8 104.

Quiz 11.2, page 441

1. Formatted I/O operations produce formatted files. A formatted file
contains recognizable characters, numbers, and so forth, stored as
ASCII text. Formatted files have the advantages that we can readily see
what sort of data they contain, and it is easy to exchange data between
different types of programs using them. However, formatted I/O opera-
tions take longer to read and write, and formatted files take up more

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 659

space than unformatted files. Unformatted I/O operations copy the
information from a computer’s memory directly to the disk file with
no conversions at all. These operations are much faster than formatted
I/O operations because there is no conversion. In addition, the data
occupies a much smaller amount of disk space. However, unformatted
data cannot be examined and interpreted directly by humans.

2. Formatted I/O should be used whenever we need to exchange data
between MATLAB and other programs, or when a person needs to
be able to examine and/or modify the data in the file. Otherwise,
unformatted I/O should be used.

3. fprintf(' Table of Cosines and Sines\n\n');
fprintf(' theta cos(theta) sin(theta)\n');
fprintf(' ===== ========== ==========\n');
for ii = 0:0.1:1
 theta = pi * ii;
 fprintf('%7.4f %11.5f %11.5f\n',theta,cos(theta),sin(theta));
end

4. These statements are incorrect. The %s descriptor must correspond
to a character string in the output list.

5. These statements are technically correct, but the results are undesir-
able. It is possible to mix binary and formatted data in a single file
the way that these statements do, but the file is then very hard to use
for any purpose. Normally, binary data and formatted data should be
written to separate files.

Quiz 12.1, page 523

1. A class is the software blueprint from which objects are made. It
defines the properties, which are the data in the object, and the
methods, which are the way in which the data is manipulated.
When objects are instantiated (created), each object receives its own
unique copy of the instance variables defined in the properties, but
all share the same methods.

2. A user-defined class is created using the classdef structure.
Properties and methods are declared in properties and
methods blocks within the class definition. The basic structure of
the class definition is

classdef (Attributes) ClassName < SuperClass

 properties (Attributes)
 PropertyName1
 PropertyName2
 ...
 end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

660 | Appendix B Answers to Quizzes

 methods (Attributes)
 function [obj =] methodName(obj,arg1,arg2, ...)
 ...
 end

end

3. The principal components in a class are:

■■ Properties. Properties define the instance variables that will
be created when an object is instantiated from a class. Instance
variables are the data encapsulated inside an object. A new set of
instance variables is created each time that an object is instanti-
ated from the class.

■■ Methods. Methods implement the behaviors of a class. Some
methods may be explicitly defined in a class, while other methods
may be inherited from superclasses of the class.

■■ Constructor. Constructors are special methods that specify how
to initialize an object when it instantiated.

■■ Destructor. Destructors are special methods that clean up the
resources (open files, etc.) used by an object just before it is
destroyed.

4. Constructors are special methods that specify how to initialize an
object when it instantiated. The arguments of the constructor include
values to use in initializing the properties. Constructors are easy to
identify because they have the same name as the class that they are
initializing, and the only output argument is the object constructed.
Note that constructors should always be built to accept the case with
default inputs (no arguments) as well as the case with arguments
because the constructor may be called without arguments when
objects of subclasses are created.

5. Destructors are special methods that clean up the resources (open
files, etc.) used by an object just before it is destroyed. Just before
an object is destroyed, it makes a call to a special method named
delete if it exists. The only input argument is the object to be
destroyed, and there must be no output argument. Many classes do
not need a delete method at all.

6. Events are notices that an object broadcasts when something hap-
pens, such as a property value changing or a user entering data
on the keyboard or clicking a button with a mouse. Listeners are
objects that execute a callback method when notified that an event
of interest has occurred. Programs use events to communicate things
that happen to objects and respond to these events by executing the
listener’s callback function. Events are triggered when a method
calls the notify function on the event. A program can listen
for and respond to an event by registering as a listener for that
event using the adlistener function. (Listeners are objects that

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 661

execute a callback method when notified that an event of interest
has occurred.)

7. Exceptions are interruptions to the normal flow of program
execution due to errors in the code. When an error occurs that a
method cannot recover from by itself, it collects information about
the error (what the error was, what line it occurred on, and the
calling stack describing how program execution got to that point).
It bundles this information into a MException object and then
throws the exception using the throw function. Programs handle
exceptions by using try / catch structures. Code is executed in
the try part of the structure, and errors that occur are trapped in the
catch part of the structure, where they can be examined and efforts
can be made to recover from the problem.

8. A subclass is a class that is derived from a parent class, called a
superclass. The subclass inherits all the public or protected proper-
ties and methods of the parent class, and it can add additional prop-
erties and override the methods defined in the superclass. A subclass
is created by specifying the superclass in the class definition.

classdef (Attributes) ClassName < SuperClass

end

Quiz 14.1, page 629

1. The types of graphical components discussed in this chapter are
listed below, together with their purposes.

Table B.1: GUI Components Discussed in Chapter 14

Component Created By Description

Graphical Controls

Pushbutton uicontrol A graphical component that implements a pushbutton. It triggers
a callback when clicked with a mouse.

Toggle Button uicontrol A graphical component that implements a toggle button. A toggle
button is either “on” or “off,” and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

Radio Button uicontrol A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on.” Groups of radio
buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

Check Box uicontrol A check box is a type of toggle button that appears as a small
square with a checkmark in it when it is “on.” Each mouse click
on a check box triggers a callback.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

662 | Appendix B Answers to Quizzes

Table B.1: GUI Components Discussed in Chapter 14 (Continued)

Component Created By Description

Edit Box uicontrol An edit box displays a text string and allows the user to modify
the information displayed. A callback is triggered when the user
presses the Enter key.

List Box uicontrol A list box is a graphical control that displays a series of text
strings. A user may select one of the text strings by single- or
double-clicking on them. A callback is triggered when the user
selects a string.

Popup Menus uicontrol A popup menu is a graphical control that displays a series
of text strings in response to a mouse click. When the popup
menu is not clicked on, only the currently selected string
is visible.

Slider uicontrol A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Table uitable Creates a table of data.

Static Elements

Frame uicontrol Creates a frame, which is a rectangular box within a figure.
Frames are used to group sets of controls together. Frames never
trigger callbacks. (This is a deprecated component, which should
not be used in new GUIs.)

Text Field uicontrol Creates a label, which is a text string located at a point on the
figure. Text fields never trigger callbacks.

Menus, Toolbars, Axes

Menu Items uimenu Creates a menu item. Menu items trigger a callback when a
mouse button is released over them.

Context Menus uicontextmenu Creates a context menu, which is a menu that appears over
a graphical object when a user right-clicks the mouse on
that object.

Toolbar uitoolbar Creates a toolbar, which is a bar across the top of the figure,
containing quick-access buttons.

Toolbar Pushbutton uipushtool Creates a pushbutton to go in a toolbar.

Toolbar Toggle
Button

uitoggletool Creates a toggle button to go in a toolbar.

Axes axes Creates a new set of axes to display data on. Axes never trigger
callbacks.

2. The types of containers discussed in this chapter are listed below,
together with their differences.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B Answers to Quizzes | 663

Table B.2: GUI Components Discussed in Chapter 14

Component Created By Description

Containers

Figure uicontrol Creates a figure, which is a container that can hold components
and other containers. Figures are separate windows that have
title bars and can have menus.

Panel uipanel Creates a panel, which is container that can hold components
and other containers. Unlike figures, panels do not have title bars
or menus. Panels can be placed inside figures or other panels.

Button Group uibuttongroup Creates a button group, which is a special kind of panel.
Button groups automatically manage groups of radio buttons
or toggle buttons to ensure that only one item of the group is
on at any given time.

3. A callback function is a function that is executed whenever an
action (mouse click, keyboard input, etc.) occurs on a specific GUI
component. They are used to perform an action when a user clicks
on or types in a GUI component. Callback functions are specified
by the 'Callback' property in a uicontrol, uimenu,
uicontextmenu, uipushtool, or uitoggletool. When a
new GUI is created, the callbacks are set automatically by guide to
be xxx_Callback, where xxx is the value of the Tag property
of the corresponding GUI component.

4. The basic steps required to create a MATLAB GUI are:

■■ Decide what elements are required for the GUI and what the func-
tion of each element will be. Make a rough layout of the compo-
nents by hand on a piece of paper.

■■ Use a MATLAB tool called guide (GUI Development
Environment) to lay out the components on a figure. The size of
the figure, and the alignment and spacing of components on the
figure, can be adjusted using the tools built into guide.

■■ Use a MATLAB tool called the Property Inspector (built into
guide) to give each component a name (a “tag”), and to set the
characteristics of each component, such as its color, the text it
displays, and so forth.

■■ Save the figure to a file. When the figure is saved, two files will be
created on disk with the same name but different extents. The fig
file contains the actual GUI that you have created, and the M-file
contains the code to load the figure, and also skeleton callbacks
for each GUI element.

■■ Write code to implement the behavior associated with each call-
back function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

664 | Appendix B Answers to Quizzes

5. The handles data structure is a structure containing the handles of
all components within a figure. Each structure element has the name
of a component and the value of the component’s handle. This struc-
ture is passed to every callback function, allowing each function to
have access to every component in the figure.

6. Application data can be saved in a GUI by adding it to the handles
structure, and saving that structure after it is modified using function
guidata. Since the handles structure is automatically passed to
every callback function, additional data added to the structure will
be available to any callback function in the GUI. (Each function that
modifies the handles structure must be sure to save the modified ver-
sion with a call to guidata before the function exits.)

7. A graphical object can be made invisible by setting its 'Visible'
property to 'off'. A graphical object can be disabled so that it
will not respond to mouse clicks or keyboard input by setting its
'Enable' property to 'off'.

8. Pushbuttons, toggle buttons, radio buttons, check boxes, list boxes,
popup menus, and sliders all respond to mouse clicks. Edit boxes
respond to keyboard inputs.

9. A dialog box is a special type of figure that is used to display infor-
mation or to get input from a user. Dialog boxes are used to display
errors, provide warnings, ask questions, or get user input. Dialog
boxes can be created by any of the functions listed in Table 14.5,
including errordlg, warndlg, inputdlg, uigetfile, and
so on.

10. A modal dialog box does not allow any other window in the applica-
tion to be accessed until it is dismissed, while a normal dialog box
does not block access to other windows.

11. A standard menu is tied to a menu bar running across the top of a
figure, while a context menu can be attached to any GUI component.
Standard menus are activated by normal mouse clicks on the menu
bar, while context menus are activated by mouse right-clicks over
the associated GUI component. Menus are built out of uimenu
components. Context menus are built out of both uicontextmenu
and uimenu components.

12. Accelerator keys are keys that may be typed on the keyboard to
cause a menu item to be selected. Keyboard mnemonic keys are
CTRL1key combinations that cause a menu item to be executed.
The principal difference between accelerator keys and keyboard
mnemonics is that accelerator keys only work to select a menu item
if a menu has already been opened, while keyboard mnemonics can
trigger an action even if a menu has not been opened.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

665

Index

Note: Boldface numbers indicate illustra-
tions or tables.

&, &&, logical AND operators, 136–137
!, exclamation point character, 19
%*s, format descriptor, 414
%, conversion character, 48, 428
%f, conversion characters, 48
&&, logical AND operator, 132
(), parentheses, 27, 40, 52, 57–58, 139
*, multiplication operator, 21
–, subtraction operator, 21
', transpose operator, 34–35
., access (dot) operator, 468, 469– 470
., operation distinction symbol, 53–54
/, division operator, 21
/n, escape characters, 48, 429
:, colon operator, 34, 101–102
;, semicolon character, 32–33, 143
@ operator to create function handles, 287–288
[], brackets on arrays, 32, 389
\, escape character, 106–107
ˆ, escape character, 106–107
^, exponentiation operator, 21
_, escape character, 106–107
_, underscore character, 28
{ }, braces, cell constructors, 106, 381–382,

384
|, ||, inclusive OR operators, 137
~, logical NOT operator, 138
~=, non–equivalence operator, 133, 134, 322

+, addition operator, 21
<, less than operator, 133
<, subclass declaration symbol, 512
<–, variable value (pseudocode), 131
<=, less than or equal to operator, 133
=, assignment operator, 21, 51–52, 144
==, equivalence operator, 133, 134, 322, 353
>, greater than operator, 132, 133
>, greater than operator, 132–133
>=, greater than or equal to operator, 133
>>, command prompt, 6
…, continuation character (ellipses), 7
xor, exclusive OR operator, 137–138

A
Abort (control–c) command, 18
abs(c)function, 322, 323
Absolute value functions, 323
Accelerator keys, 623
Access, 486– 493

controls, 488
instance variables and, 486
methods, 486– 488
private, 488, 493
protected, 488
public, 493
Timer class example for, 489– 493

Access (dot) operator, 468, 469– 470
add method, 472– 473

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

666 | Index

addpath function, 21
AND (&, &&) logic operator, 136–137
Angle functions, 323
angle(c) function, 323
Animation, 558–565

erasing and redrawing, 558–563
handle graphics for, 558–565
movie creation, 563–565
three-dimensional plot, 561–563

Anonymous functions, 299–300
ans command, 21–22
Application data for GUI figures, 586–588
area variable, 5
Arguments, 230, 231–232, 236–246, 246–251,

389–391, 584–586, 587
actual, 231–232, 236–246
cell array input/output, 389–391
dummy, 231
function variable independence and, 230
GUI input/output, 584–586, 587
input lists, 230, 231–232
M-files and, 231–232
main function declaration, 584–586, 587
optional, 246–251
output lists, 230, 231–232
pass-by value scheme, 236–246
varargin function, 389–391, 584–585
varargout function, 392–393, 584–585

Arrays, 4, 12–13, 27–33, 34–35, 37– 43, 51–55,
59, 181–183, 189–190, 197–199,
332–333, 350–351, 373– 411

brackets and semicolons for, 32
cell, 381–393
character, 350–351
commands and functions, 408– 409
data types as, 350–351
empty, 32
for loop results, 181–183, 189–190,

197–199
good programming practice, 408
identity matrices, 35
initializing variables in, 32–33
input using functions, 59
logical, 197–199
MATLAB environment and, 4, 12–13
matrices, 27, 52–55
multidimensional, 37– 40, 332–333
operations, 51–55
parentheses () for, 27, 40, 52, 57–58

preallocating, 189
row and column order, 28–29, 41
shortcut expressions, 34–35
size function, 35, 401– 402
size of, 27–28
sparse, 373–380
string functions and, 350–351
structure, 394– 408
subarrays, 40– 43
two-dimensional, 37–38, 351
values, 27–28, 30–33, 41– 45
variables and, 27–33
vectorization, 189–190, 197–199
vectors, 27–28
whos command for, 13

Assignment operator (=), 51–52, 134
Assignment statements, 31–34, 41– 42, 383,

394–396
cell arrays allocated using, 383
cell indexing, 383
content indexing, 383
expressions, 31
semicolon for, 33
structure arrays built with, 394–396
subarrays and, 41– 42
variables initialized using, 31–34

Attributes of classes, 475– 478
axes object positions, 552
Axes regions, 533
axis command/function, 95–97, 573

B
Bar plots, 115, 117
Binary I/O functions, 422– 427, 437– 441

formatted I/O compared to, 437– 441
fread function, 424– 425
fwrite function, 422– 424
precision strings and, 423– 425

Branches, 127, 141–161, 168–169
commands and functions for, 169
good programming practice for, 168
if construct, 141–151
logical data operators in, 142–143
program design and, 127, 141–161
switch construct, 152–153
try/catch construct, 153–161

break statements, 193–195

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 667

Breakpoints, 162–166, 234–236
conditional, 165–166
debugging with, 162–164
function calls and, 234–236

Browsers, 5–6, 14–15, 111
Built-in functions, 1, 35, 36, 58–61

array inputs using, 59
initializing variables using, 35, 36
mathematical, 60
MATLAB use of, 1, 58–61
optional results from, 59
rounding, 60
string, 61

Button groups, 572, 612–614
ButtonDownFcn property, 633
Buttons, 575–577, 595–600

GUI creation of, 575–577
properties of, 576–577
pushbuttons, 575–577, 595
radio, 596–600
toggle, 595–596, 597

C
Callback functions, 501–505, 572, 578, 579,

582–583, 586, 589, 632–633
ButtonDownFcn property, 633
CreateFcn property, 632
DeleteFcn property, 632–633
dummy functions, 579, 582–583
events for, 501–504, 572
gcbf function, 589
gcbo function, 589
graphical user interfaces (GUIs) and, 572,

578, 579, 582–583, 589, 632–633
GUI creation and, 578, 579, 582–583
handle class properties and, 504–505
KeyPressFcn property, 633
listeners for, 501–505
prototypes, 578
subfunctions, 586

Case conversion for characters, 357
Cause property, 505
Cell arrays, 381–393

arguments for input/output, 389–391
assignment statements, allocating using, 383
braces { } for construction of, 381–382, 384
brackets [] for string insertion, 389

cell function, preallocating with, 384
cell indexing, 383
content indexing, 383
creating, 383–384
data use in, 388
deleting, 387–388
displaying contents of, 384–385
extending, 385–387
good programming practice, 408
MATLAB cell functions, 389
pointers in, 381–382
significance of, 389–393
strings in, 388–389
varargin function, 389–391
varargout function, 392–393

Cell constructor braces { }, 106,
381–382, 384

Cell indexing, 383
celldisp function, 384–385
cellplot function, 385
cellstr function, 389
char variable, 30–31, 350–351
Character data, displaying, 431
Characters, 9, 47– 48, 277–278, 301–302,

351–357
arrays of, 350–351
categorizing, 353–355
comparing, 352–355
conversion (%f), 48
equality, comparing for, 352–353
escape (\n), 48
formatted output using, 47– 48
function evluation for, 277–278
inequality, comparing for, 353
plotting with strings, 301–302
searching/replacing, 355–356
strings of, 9, 277–278, 301–302, 351–356
two-dimensional arrays, 351
uppercase and lowercase conversion, 357
whitespace, 357

Check boxes, 596–600
Child objects, 532, 533
classdef keyword, 468– 469
Classes, 461–529

access (dot) operator, 468, 469– 470
access methods and controls, 486– 493
attributes, 475– 478
commands and functions for, 526
constructors, 467– 468, 470– 474, 512–514

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

668 | Index

Classes, continued
creating, 468– 470
destructors, 468, 484– 486
events, 501–505
exceptions, 505–508
files for defining methods, 495– 496
good programming practice for, 525
handle, 463, 471, 479, 481– 484
hierarchy of, 466, 508–509
inheritance, 466– 467, 511–512
instantiation, 464– 465
keywords for, 468– 469
listeners, 501–505
listing types, properties, and methods, 474
members, 463
messages, 463– 464
methods, 461– 465, 467– 468, 470– 474, 474,

478, 484– 496
object–oriented programming (OOP),

461–529
objects, 462– 465
overriding operators, 496–501
properties, 463, 467– 468, 474– 476, 504
static methods, 464– 465
subclasses, 466– 467, 508–523
superclasses, 466– 467, 508–523
value, 471, 479– 481

clear command, 14, 18, 387
clf command, 18
Code Analyzer, 166–167, 193
Code indentation, 143, 188
Colum vector, 28
Command History Window, 6, 8
Command Window, 5–7
Command/function duality, 95–96
Commands in MATLAB, 18–19, 81–83,

415– 418
Comments, 9, 232
Compass plots, 115, 118
Compilers, 3, 190–193
Complex data, 319–331. See also

Multidimensional arrays
functions, 323
imaginary, 323, 329–330
MATLAB functions for, 323
numbers, 319–321, 322–323
plotting, 319–321, 328–331
polar coordinates, 320–321

real, 323, 328–330
rectangular coordinates, 319–321
relational operators and, 322
variables, 321–322

Complex values, 30
Components, 572–573, 591–610

buttons, 576–577, 595–600
check boxes, 596–600
creation of, 575–577
edit boxes, 592–595
graphical controls for, 573
graphical user interfaces (GUIs), 572–573,

591–610
GUI containers for, 572–573
list boxes, 600–602
menus, 573, 600, 601, 602, 619–629
pushbuttons, 575–577, 595
radio buttons, 596–600
sliders, 602–605
static text fields, 573, 592
tables, 605–607
toggle buttons, 595–596, 597

Concatenating strings, 351–352
Conditional breakpoint, 165–166
Constructors, 467– 468, 470– 474, 512–514

class component of, 467– 468
default, 471
methods added to classes using, 470– 474
subclass and superclass use of, 512–514

Containers, 572–573, 611–614
button groups, 572, 612–614
figures, 572, 586–588, 590
graphical user interfaces (GUIs), 572,

611–614
GUI components and, 572–573
panels, 572, 611–612, 613
properties, 590, 613

Content indexing, 383
Context menus, 619, 623–624
continue statements, 193–195
Contour plots, 336, 338
Control statements, 127–174, 175–228

branches, 127, 141–161
commands and functions for, 169, 219–220
end keyword, 142, 196
for loops, 181–196
good programming practice for, 168, 219
if constructs, 141–151

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 669

indentation of, 143, 188
loops, 127, 175–228
program design and, 127
switch construct, 152–153
try/catch construct, 153–161
while loops, 175–181

Conversion character (%), 48, 428
Conversion functions, 61, 350–351, 358–360,

428– 431
character data display, 431
decimal data display, 429– 430
floating-point data display, 430
format specifiers, 428– 431
numeric-to-string, 358–359
MATLAB functions, 61
string-to-numeric, 359–360
strings, 61, 350–351, 358–360
uppercase and lowercase, 357
variable data, 350–357

Coordinates for plotting, 319–321
countcalls function, 291–292
CreateFcn property, 632
Current folder browser, 5–6, 15

D
Data, 45– 49, 49–51, 131–141, 230, 252–264,

319–348, 349–372, 373– 411, 422– 436,
545–546, 586–588

binary I/O functions for, 422– 427
cell arrays for, 381–393
char variable, 350–351
character arrays as, 351
character data, 431
commands and functions for, 361, 371–372,

408– 409
complex, 319–331
decimal data, 429– 430
double variable, 350–351, 375
figure addition of, 586–588
files, 49–51, 422– 436
floating–point data, 430
formatted I/O functions for, 427– 436
global memory for, 252–259
good programming practice, 370–371, 408
GUI application–specific, 586–588
handle graphics and, 545–546

handles structure for, 588
hiding, 230
integers, 367–371
load command, 50–51
logical data type, 131–141
MATLAB types of, 349
multidimensional arrays, 332–333
object properties, 545–546
output, displaying using MATLAB, 45– 49
persistent memory for, 259–264
plotting, 319–348
preserving data between calls, 259–264
save command, 49–50
sharing, 252–259
single variable, 366–367, 369
sparse arrays for, 373–380
strings, 350–366, 388–389, 431– 433
structure arrays for, 394– 408
structures, 394
user-defined functions for, 230, 252–264,

545–546
Data arrays, 32
Data dictionary, 29
Data hiding, 230
Data points, plotting, 624–629
Debugging, 77–79, 161–167

breakpoints, 162–164
Code Analyzer, 166–167
conditional breakpoint, 165–166
Edit/Debug Window, 6, 8–11, 162–167
logical error, 78
program design and, 161–167
run-time error, 77–78
Stop if Errors/Warnings, 165–166
symbolic debugger, 79, 161
syntax error, 77

Decimal data, displaying, 429– 430
Default constructor, 471
delete method, 468, 484– 486
DeleteFcn property, 632–633
Dialog boxes, 614–619

error, 615
input, 615–616
modal, 614
non-modal, 614
properties, 615
uigetdir, 617–619
uigetfile, 616–617

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

670 | Index

Dialog boxes, continued
uisetcolor, 619
uisetfile, 616–617
uisetfont, 619
warning, 615

diary command, 19
Differential equations solved using function

handles, 293–295
disp function, 47, 509
Docking and undocking windows, 12
Document Window, 6, 8–11
double variable, 30, 350–351, 375, 496
drawnow command, 559
Dummy arguments, 231
Dummy callback functions, 579, 582–583
Dynamic field names, 400– 401

E
Echoing values, 33
Edit boxes, 592–595
Edit windows, 4, 8–11
Edit/Debug Window, 6, 8–11, 162–167
editpath function, 20
Element–by–element basis for operations, 52, 74
else clauses, 142
elseif clauses, 142, 152
Empty array, 32
Encapsulation, 462– 463
end function, 41, 102–103
end statement, 142, 196, 232, 284, 468
Equivalence relational operator (==), 133–134,

322, 353
Error dialog box, 615
error function, 247
Error messages, 506, 508
Escape character sequences, 48, 106–109, 429

format strings use of, 429
formatted output and, 48
plotting text using, 106–109

eval function, 277–278
Event-driven programming, 571
eventdata structure, 607
Events, 501–505, 571, 572. See also Callbacks
events block, 502
Exceptions, 505–508

catching, 507–508

creating, 506–507
error messages, 506, 508
fixing, 507–508
object properties, 505
throwing, 505, 507
try/catch structures, 507–508

Exclusive OR (xor) logic operator, 137–138
exist function, 442– 445
explode function, 115
Expressions, 31
eye function, 35
ezplot function, 301–303

F
Factorial function examples, 183, 300–301
fclose function, 422
feof function, 445
ferror function, 445
feval function, 277–278, 288, 290
fgetl/fgets functions, 436
Fields, 394–398, 400– 401

adding to structures, 397
dynamic field names, 400– 401
removing from structures, 397–398
structure arrays and, 349–398, 400– 401
within structures, 394–396

Figure windows, 4, 6, 11–12
figures, 99, 532–533, 551–556, 572,

586–588, 590
application data added to, 586–588
GUI containers as, 572, 586–588, 590
handle graphics and, 532–533, 551–556
multiple figure selection, 99
objects, 532–533, 551–556
position of, 551–555
printer positions, 555–556
properties of, 532–533, 590
unit property for, 551

File id (fid), 418, 419– 420
Files, 49–51, 230–236, 413– 460, 495– 496

binary I/O functions for, 422– 427, 437– 441
data files, 49–51
defining class methods in, 495– 496
exist function, 442– 445
fclose function, 422
feof function, 445

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 671

ferror function, 445
fgetl function, 436
fgets function, 436
fid (file id), 418, 419– 420
fopen function, 419– 422
formatted I/O for, 427– 436, 437– 441
fprintf function, 427– 432
fread function, 424– 425
frewind function, 445– 446
fscanf function, 434– 436
fseek function, 446
ftell function, 445
fwrite function, 422– 424
input/output (I/O) functions, 413– 460
MAT commands and functions, 415– 417
MATLAB processing, 418
opening and closing, 419– 422
positioning and status, 441– 451
save command, 415– 418
script files, 230–231
sprintf function, 433
textread function, 413– 415
textscan function, 452– 453
uiimport function, 454– 456
unformatted files, 437– 441
user-defined functions and, 231–236

findobj function, 546–548, 589
Flags, formatting, 429
Floating-point data, displaying, 430
fopen function, 419– 422
for loops, 181–196

array results, 181–183, 189–190, 197–199
break statements, 193–195
continue statements, 193–195
operation details, 188–189
indentation of, 188
index variable, 181–183, 188
just-in-time (JIT) compiler for, 190–193
nesting, 195–196
preallocating arrays, 189
vectorization of, 183, 189–190

Format commands for MATLAB, 47
Format descriptor (%*s), 414
Formatted I/O functions, 427– 436, 437– 441

binary I/O compared to, 437– 441
character data display, 431
conversion character (%) specifiers, 428– 431
decimal data display, 429– 430

escape characters, 429
fgetl function, 436
fgets function, 436
flags, 429
floating-point data display, 430
fprintf function, 427– 432
fscanf function, 434– 436
sprintf function, 433
strings, 427– 429, 431– 432

fplot function, 301–303
fprintf function, 47– 49, 427– 432
fread function, 424– 425
frewind function, 445– 446
fscanf function, 434– 436
fseek function, 446
ftell function, 445
Function handles, 287–299

@ operator, 287–288
creating, 287–290
feval function, 288, 290
func2str function, 288–289
MATLAB functions for, 290
nested functions and, 291–292
radioactive decay rate using, 295–299
significance of, 290–291
solving differential equations using, 293–295
str2func function, 287

function statement, 231
Functions, 1–3, 35, 36, 41, 43– 45, 47– 49,

58–61, 81–83, 95–96, 121–123, 139–140,
229–275, 277–317, 323, 350–366,
413– 460

absolute value, 323
angle, 323
anonymous, 299–300
array inputs and, 58–61
built-in, 35, 36, 58–61
command/function duality, 95–96
complex, 323
data output display, 47– 49
function, 277–281
handles, 287–299
histograms, 304–308
host, 284
initializing variables using, 35, 36
input/output (I/O), 413– 460
local, 282–283
logical, 139–140

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

672 | Index

Functions, continued
mathematical, 60, 270
M-files and, 231–236
mathematical, 60, 323
MATLAB, 1–3, 229–236
nested, 232, 284–286, 291–292
order of evaluation, 286–287
pass-by value scheme, 236–246
plotting, 121, 122–123, 301–303
predefined, 2–3, 43– 45
primary, 282
private, 283–284
recursive, 300–301
rounding, 60
scope of, 282
strings, 60, 350–366
subarrays and, 41
subfunctions, 282–283
textread, 413– 415
type conversion, 323
user-defined, 229–275
utility, 283

fwrite function, 422– 424
fzero function, 277, 290

G
gcbf function, 589
gcbo function, 589
gcf function, 546–547
gcf function, 99
get function, 537–539
getappdata function, 545–546
getfield function, 399– 400
getframe function, 563–565
getReport() method, 506
Global memory, 252–259
Graphical controls, 572
Graphical images, exporting plots as, 63–64
Graphical user interface (GUI), 3, 571–641

application data for, 586–588
application data for, 586–588
background color, 579
button groups, 572, 612–614
buttons, 575–577, 595–600
callbacks, 572, 578, 579, 582–583, 589,

632–633

command-line accessibility, 577
commands and functions for, 639–640
components, 572–573, 591–610
containers, 572, 611–614
creating, 574–589, 630–673
dialog boxes, 614–619
edit boxes, 592–595
events, 571, 572
figures, 572, 586–588, 590
generate FIG and MATLAB files, 577–578
good programming practice, 638–639
guide tool, 574–575, 579, 582–584
handles structure for, 586–588
input/output arguments for, 584–586, 587
instances allowed to run, 579
list boxes, 600–602
main function declaration, 584–586, 587
MATLAB elements, 572–574
menus, 600, 601, 602, 619–629
object properties, 589–591
options, 577–579
panels, 572, 611–612, 613
Property Inspector, 576–577
resize behavior, 577
sliders, 602–605
tables, 605–607
tool tips, 630
toolbars, 573, 630–632

Graphics objects, 532, 558
Greek symbols, 107
grid function, 61
groot function, 532
guide tool, 574–575, 579, 582–584
guihandles function, 585

H
H1 comment line, 232
Handle classes, 463, 471, 479, 481– 484
Handle graphics, 531–569

animation, 558–565
child objects, 532, 533
commands and functions for, 566
default and factory properties, 556–558
figures, 532–533, 551–556
finding objects, 546–548
get function for, 537–539

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 673

good programming practice, 566
graphics objects, 532, 558
handles for graphic objects, 533–534
hierarchical system of, 532–533
MATLAB use of, 531–533
mouse object selection, 548–550
movie creation, 563–565
object handles, 533–534
object positions, 551–555
object properties, 532, 534–546, 556–558
parent objects, 532, 533
position property, 551–555
printer positions, 555–556
property values, 543–545
root, 532–533
set function for, 537–539, 543–545
user-defined data, 545–546

handle.property command, 535–537
handles structure, 586–588
Help browser, 6
help function, 16–17, 232
Hierarchy, 56–57, 79, 134, 138, 466– 467,

532–533
classes, 466
graphics objects, 532–533
inheritance and, 466– 467
operations, 56–57, 79, 134, 138

hist function, 304–305
Histograms, 304–308, 633–637
hold command, 98, 208
Horizontal bar plots, 115, 117
Host function, 284

I
Identifier property, 505
Identity matrices, 35
if constructs, 141–151

code indentation of, 143
else clauses, 142
elseif clauses, 142, 152
end keyword, 142
examples using, 143–149
logical data operators in, 142–143
nesting, 149–151

if/else constructs, 198
imag function, 323

Imaginary complex data, 323, 329–330
Imaginary values, 30
Inclusive OR (|, ||) logic operators, 137
incr function, 34, 102–103
index variable, 181–183, 188
Information hiding, 463
Inheritance, 466– 467, 511–512
Initializing variables, 31–36
Input dialog box, 615–616
input function, 36
Input/output (I/O) functions, 413– 460, 584–586,

587
binary, 422– 427, 437– 441
commands and functions for, 419, 457– 458
comparison of, 437– 441
file id (fid), 418, 419– 420
file opening and closing, 419– 422
file positioning and status, 441– 451
formatted, 427– 436, 437– 441
good programming practice, 457
GUI arguments, 584–586, 587
load command, 414– 418
MAT files, commands and functions for,

415– 417
MATLAB file processing, 418
method of least squares and, 446– 451
save command, 415– 418
textread, 413– 415
textscan function, 452– 453
uiimport function, 454– 456

inputname function, 248
Instance methods, 462, 471– 473
Instantiation of objects, 464– 465
Integers, 367–370

limitations of, 369–370
signed and unsigned types, 367
values, 367–369

isa function, 515
ischar variable, 350–351
isletter variable, 350–351
isspace variable, 350, 351
issparse function, 376
isstrpropvariable, 350, 351–352

J
Just–in–time (JIT) compiler, 3, 190–193

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

674 | Index

K
Keyboard input, initializing variables using,

35–36
Keyboard mnemonics, 623, 624
KeyPressFcn property, 633
Keywords, 9, 468– 469

L
Least squares, method of, 202–208, 446– 451
legend command, 66–68
length method, 471– 472, 473
Line plots, 334–336
Lines, plotting, 66–69, 105–106, 202–216

color, style, and control, 66–69, 105–106
method of least squares for, 202–208
slope, 202–208
trajectories, 208–216

linespace function, 102–103
LineWidth property, 105–106
List boxes, 600–602
Listeners, 501–505
load command, 50–51, 414– 418
Local functions, 282–283
Logarithmic scales, plotting, 69–70, 91–95
Logic operators, 132, 135–139

AND (&, &&), 136–137
exclusive OR (xor), 137–138
hierarchy of, 138
inclusive OR (|, ||), 137
NOT (~), 138
truth tables for, 136

Logical arrays, 197–199
Logical data type, 131–141, 142–143
equivalence and non–equivalence operators,

134–135
if constructs using, 142–143
logic operators, 132, 135–139
logical functions, 139–140
relational operators, 132–135
roundoff errors, 134–135
truth tables, 136

Logical error, 78
Logical functions, 139–140
loglog function, 69, 92
logspace function, 103

lookfor function, 16–17, 232
Loops, 127, 175–228

break statements, 193–195
commands and functions for, 219–220
continue statements, 193–195
examples of, 202–214
for, 181–196
good programming practice for, 219
index variable, 181–183, 188
just-in-time (JIT) compiler, 190–193
logical arrays, 197–199
nesting, 195–196
program design and, 127, 141–161
vectorization of, 175, 183, 189–190, 197–199
while, 175–181

M
M-files, 7, 8–11, 231–236
Main function declaration, 584–586, 587
Marker style and control, plotting, 66–67,

105–106
Mathematical calculations in MATLAB, 21–22
Mathematical functions, 60, 323
Mathematical symbols, 21, 24, 107
Matrices, 27–28, 35, 52–55, 373–380. See also

Arrays; Sparse arrays
arrays as, 27–28
identity, 35
MATLAB functions for, 378
operations, 52–55
sparse, 373–380

Matrix Laboratory (MATLAB), 1–25, 27–90,
95–96, 161–168, 190–193, 199–202,
216–218, 229–275, 277–317, 373– 411,
413– 460, 497, 531–533, 556–558,
571–641

advantages of, 2–3
arrays, 4, 12–13, 27–31, 37– 43, 51–55,

373– 411
browsers, 5–6, 14–15
built–in functions, 58–59, 60–61
cell arrays, 381–393
command/function duality, 95–96
Command History Window, 6, 8
Command Window, 5–7
commands in, 18–19, 81–83, 415– 418

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 675

compiler, 3, 190–193
components, 572–573, 591–610
containers, 572, 611–614
data files, 49–51
debugging programs, 77–79, 161–167
default and factory object properties,

556–558
desktop, 4–6
disadvantages of, 3– 4
docking and undocking windows, 12
Edit windows, 4, 9–11
environment, 4–21
Figure windows, 4, 6, 11–12
file processing, 418
format commands, 47
functions, 1–3, 81–83
good programming practice, 80, 168
graphic images, 63–64
graphical user interfaces (GUIs), 3, 571–641
graphics system, 531–533
GUI elements, 572–574
handle graphics, 556–558
help in, 16–17
input/output functions, 413– 460
just-in-time (JIT) compiler, 190–193
load command, 50–51, 414– 418
M-files in, 7, 8–11, 231–236
MAT files, commands and functions for,

415– 417
mathematical calculations in, 21–22
mathematical symbols in, 21, 24
operations in, 51–58, 79
operators and functions, 497
output data, displaying, 45– 49
platform independence, 2, 416– 417
plotting, 3, 61–70, 95–96
predefined special values, 43– 45
problem-solving, examples of using, 70–77
Profiler, 199–202
save command, 49–50, 415– 418
scalar operations, 43, 51–55
script files in, 230–231
search path, 19–21
sparse arrays (matrices), 373–380
special symbols, 24, 80–81
structure arrays, 394– 408
syntax in, 161–162
textread function, 216–218

user-defined functions, 229–275, 277–317
variables, 4, 12–14, 21–22, 27–37
workspace, 12–14

max function, 246–247
Members of classes, 463
Memory, 38–39, 252–259, 259–264

allocation scheme, 38–39
global, 252–259
multidimensional arrays stored in, 38–39
persistent, 259–264
preserving data between calls, 259–264
sharing data, 252–259
user-defined functions and, 252–264

Menu Editor, 619–623
Menus, 573, 600, 601, 602, 619–629

accelerator keys for, 623
context, 619, 623–624
creating, 622–624
GUI components as, 573
keyboard mnemonics for, 623, 624
popup, 600
standard, 619, 622–623
suppressing default, 622

Mesh plots, 336–337, 341–344
Message property, 505
Messages, 463– 464
method keyword, 468– 469
Methods, 461– 465, 467– 468, 470– 474, 478,

484– 497, 509
access, 486– 488
access (dot) operator for, 468
adding to classes, 470– 474
attributes, 478
class component of, 463, 467– 468
constructors, 467– 468, 470– 474
delete, 468, 484– 486
inheritance of, 466– 467
instance, 462, 471– 473
listing, 474
MATLAB operators and functions of, 497
object behavior and, 461– 463
operator overloading, 496– 497
overriding, 466– 467, 509
separate files for defining, 495– 496
static, 464– 465

methods block, 495– 496
methods function, 515
Modal dialog box, 614

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

676 | Index

Modularity, 463
Mouse selection of objects, 548–550
Movie creation, handle graphics for, 563–565
Multidimensional arrays, 37– 40, 332–333,

338–341, 351
accessing with one dimension, 39– 40
character arrays as string data, 351
column major order, 38
complex data types, 332–333
storing in memory, 38–39
three-dimensional plotting with, 338–341
two-dimensional, 37–38, 351

N
Naming variables, 28–30
nargchk function, 247
nargin function, 247, 471
nargout function, 247, 250–251
Nesting, 149–151, 195–196, 232, 284–286,

291–292, 402
function handles and, 291–292
functions, 232, 284–286
host function, 284
if constructs, 149–151
loops, 195–196
structure arrays, 402

Non-equivalence relational operator (~=), 133,
134, 322

Non-modal dialog box, 614
NOT (~) logic operator, 138
notify function, 502
Numerical data, 319–321, 322–323

complex, 319–320, 322–323
magnitude of, 322
MATLAB functions for, 323
polar coordinates, 320–321
rectangular coordinates, 319–321
relational operators and, 322

O
Object-oriented programming (OOP), 461–529

access methods and controls, 486– 493
attributes, 475– 478
classes and, 461–529

commands and functions for, 526
constructors, 467– 468
destructors, 468, 484– 486
events, 501–505
exceptions, 505–508
files, 495– 496
good programming practice for, 525
inheritance, 466– 467, 511–512
listeners, 501–505
messages, 463– 464
methods, 461– 465, 467– 468, 470– 474, 474,

478, 484– 496
objects, 462– 465
overriding operators, 496–501
properties, 463, 467– 468, 474– 476, 504
static methods, 494– 495
subclasses, 466– 467, 508–523
superclasses, 466– 467, 508–523

Object properties, 532, 534–546, 556–558,
589–591

changing after creation time, 535
changing at creation time, 534–535
default and factory, 556–558
figure, 590
get function for, 537–539
getappdata function for, 545–546
graphical user interface (GUI), 589–591
graphics, 558
handle graphics and, 532, 534–546
handle.property command,

535–537
listing values of, 543–545
low-level graphics commands, 540–543
notation for examination of, 535–537
printer positions, 555–556
Property Editor for, 539–540
set function for, 537–539, 543–545
setappdata function for, 545
uicontrol, 590–591
user-defined data, 545–546

Objects, 462– 465, 501–505, 532–555
axes positions, 552
Axes regions, 533
child, 532, 533
encapsulation, 462– 463
figures, 532–533, 551–556
finding, 546–548
handle graphics and, 532–555

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 677

handles, 533–534
instantiation, 464– 465
listeners, 501–505
message handling, 463– 464
mouse selection, 548–550
parent, 532, 533
position property for, 551–555
properties, 532, 534–546
root, 532–533
selecting, 549–550
selection region, 548
stacking order, 548
text positions, 552
uicontrol positions, 552
user-defined data for, 545–546

ode45 function, 293–294, 297–298
ones function, 35
Operations, 51–58, 79, 131–139, 496–501

arithmetic, 52, 53–54, 56
array, 51–55
assignment operator (=), 51–52
distinction symbol (.) for, 53–54
element-by-element basis for, 52, 74
hierarchy of, 56–57, 79, 134, 138
logic operators, 132, 135–139
MATLAB operators and functions, 497
matrix, 52–55
overriding operators, 496–501
parentheses (), 52, 57–58, 138–139
programming design using, 131–139
relational operators, 132–135
scalar, 51–52
true/false values from, 131–132

Operator overloading, 496– 497
Output data, 45– 49

default format for, 45– 46
disp function, 47
displaying in MATLAB, 45– 49
format commands, 47
fprintf function, 47– 49

Overriding methods, 466– 467, 509
Overriding operators, 496–501

P
Panels, 572, 611–612, 613
Parent objects, 532, 533
Pass-by value scheme, 236–246

passing arguments to functions, 236–246
rectangular–to–polar conversion, 237–240
selection sort algorithm, 241–246

Path browser, 6
path function, 21
Path tool, 20
pause command, 559
Persistent memory, 259–264
Pie plots, 115, 118–119
Plot browser, 111
plot function, 61, 66, 119–121, 328–331
plotfunc function, 289
Plotting, 3, 61–70, 91–126, 202–216, 301–308,

319–348, 624–629
axis command/function, 95–97
bar plots, 115, 117
command/function duality, 95–96
commands and functions for, 122–123, 345
compass plots, 115, 118
complex data, 319–331
contour plots, 336, 338
coordinates for, 319–321
data points, 624–629
device-independence of MATLAB, 3, 61
escape sequences for, 106–109
exporting as graphical images, 63–64
ezplot function, 301–303
figure function, 99, 304
fplot function, 301–303
functions, 121, 301–308
good programming practice, 122, 344
histograms, 304–308
hold command, 208
imaginary complex data, 329–330
legends, 66–68
line color, style, and control, 66–69, 105–106
line plots, 334–336
line slope and trajectories, 202–216
logarithmic scales, 69–70, 91–95
marker style and control, 66–67, 105–106
mesh plots, 336–337, 341–344
method of least squares for, 202–208
multiple figures, 99
multiple plots, 65, 98
pie plots, 115, 118–119
plot function, 61, 66, 119–121
polar plots, 109–111, 330–331
Portable Network Graphics (PNG) format, 63

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

678 | Index

Plotting, continued
print command, 62–64
printing, 62–63
real complex data, 328–330
saving and annotating plots, 111–114
spacing between points, 101–103
stair plots, 115–116
stem plots, 114–116
stream modifiers, 106–107
subplots, 99–101
surface plots, 336–337, 341–344
text strings, control of, 106–109
three-dimensional, 334–344
two-dimensional, 91–126
user-defined functions for, 301–308

Pointers in cell arrays, 381–382
Polar coordinates, 320–321
Polar plots, 109–111, 330–331
Popup menus, 600
Portable Network Graphics (PNG) format, 63
pos string values, 67–68
position property, 551–555
PostGet/PostSet properties, 504
precision strings, 423– 425
Predefined functions, 2–3, 43– 45
PreGet/PreSet properties, 504
Primary functions, 282
print command, 62–64
Printer postions for figures, 555–556
private access, 488, 493
private functions, 283–284
Procedural programs, 461
Program design, 127–174, 175–228, 230

branches, 127, 141–161
commands and functions for, 169, 219–220
control statements for, 127
data hiding and, 230
debugging, 161–167
good practice for, 168, 219
logical arrays, 197–199
logical data type, 131–141
loops, 127, 175–228
maintenance and, 230
MATLAB Profiler and, 199–202
pseudocode, 131
textread function, 216–218
top-down techniques, 127–131
vectorization for, 175, 183, 189–190, 197–199

Programming, see Object–oriented programming
(OOP)

properties function, 515
properties keyword, 468– 469
Properties, 463, 467– 468, 474– 476, 504–505

attributes, 475– 476
class component of, 463, 467– 468
events and listeners, 504–505
exception, 505
instance variables as, 462, 467
listing, 474

property attributes, 476
Property Editor, 539–540
Property Inspector, 576–577
protected access 488
Pseudocode, use of in program design, 131
public access, 493, 494
Pushbuttons, 575–577, 595

Q
Quadratic equation examples, 142–146,

324–326

R
Radio buttons, 596–600
Radioactive decay rate, function handles for,

295–299
rand/randn functions, 266
Random number functions, 266
Random number generators, 253–259
Real complex data, 323, 328–330
real function, 323
Real values, 30
Rectangular coordinates, 319–321
Recursive functions, 300–301
Relational operators, 132–135, 322, 353

complex numbers and, 322
equality and, 134–135
equivalence operator (==), 134, 353
non-equivalence operator (~=), 134
string character comparison using, 353
true/false values from,132–133

result variable, 236
return statement, 231–232

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 679

Reusable code, 229–230
rmfield function, 397–398
rmpath function, 21
root objects, 532–533
rose function, 305
Rounding functions, 60
Roundoff errors, 134–135
Row vector, 28
Run-time error, 77–78
Running averages, 260–264

S
save command, 49–50, 415– 418
Saving and annotating plots, 111–114
Scalar operations, 43, 51–52

arithmetic operations for, 52
assigned to subarrays, 43
assignment operator (=), 51–52

Scope of a function, 282
Script files, 7, 230–231
Search path, 19–21
Searching/replacing characters in strings,

355–356
Selecting objects, 549–550
Selection region, 548
Selection sort algorithm, 241–246
semilogx/semilogy functions, 69, 92
Sequential programs, 127
set function, 537–539, 543–545
setappdata function, 545
setfield function, 399, 400
Shortcut expressions, initializing variables using,

34–35
single variable, 366–367, 369
size function, 35, 401– 402
Size of an array, 27–28
Sliders, 602–605
sort function, 242, 265
Sorting functions, 264–266
sortrows function, 242, 265–266
Sparse arrays, 373–380

generating, 376
matrices, 373–380
MATLAB matrix functions, 378
sparse attribute, 375–376
whos command for, 376
working with matrices, 377–380

Special symbols, 24, 80–81
sprintf function, 433
Stack property, 505
Stacking order, 548
Stair plots, 115–116
Standard menus, 619, 622–623
start function, 102–103
Static methods, 464– 465
Static text fields, 573, 592
Stem plots, 114–116
Stop if Errors/Warnings, 165–166
str2func function, 287
strcat function, 351–352
strcmp function, 352–353
Stream modifiers, 106–107
strfind function, 355
String property, 592
Strings, 61, 350–366, 388–389, 423– 425,

427– 429, 431– 433
binary I/O functions and, 423– 425
brackets [] for insertion of, 389
cell arrays of, 388–389
char variable, 350–351
character arrays of, 350–351
characters categorized in, 353–355
comparing, 352–355, 362–365
concatenating, 351–352
conversion, 61, 350–351, 358–360
double variable, 350–351
equality, comparing for, 352–353
equivalence (==) operator and, 353
escape characters in, 429
format, 427– 429, 431– 433
fprintf function, 431– 432
inequality, comparing for, 353
MATLAB functions, 61, 361
numeric-to-string conversions, 358–359
precision, 423– 425
relational operators for, 353
searching/replacing characters in,

355–356
sprintf function, 433
string-to-numeric conversions, 359–360
trimming whitespace using, 357
uppercase and lowercase conversion, 357

strmatch function, 355–356
strncmp function, 352–353
Strongly typed language, 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

680 | Index

strrep function, 356
strtok function, 356
struct function, 396–397
Structure arrays, 394– 408

assignment statements for,
394–396

creating, 394–397
data used in, 398–399
dynamic field names, 400– 401
fields in, 394–398
getfield function, 399– 400
MATLAB structure functions, 403
nesting, 402
polar vector example of, 404– 408
setfield function, 399, 400
size function, 401– 402
struct function, 396–397

Structures, 394
strvcat function, 351, 352
Sub-tasks, 229–230
Subarrays, 40– 43

assignment statements and, 41– 42
end function, 41
scalars assigned to, 43
shape of values in, 41– 42

Subclasses, 466– 467, 508–523
class hierarchy of, 508–509
class inheritance and, 466– 467,

511–512
constructors for, 512–514
declaration (<) symbol for, 512
disp function for, 509
methods overridden in, 466, 509

Subfunctions, 282–283, 586
Subplots, 99–101
Superclasses, 466– 467, 508–523

class hierarchy of, 508–509
class inheritance and, 466– 467
constructors for, 512–514
disp function for, 509
isa function for, 515
methods function for, 515
properties function for, 515

Surface plots, 336–337, 341–344
switch construct, 152–153
Symbolic debugger, 79, 161
Syntax error, 77
Syntax in MATLAB, 161–162

T
Tables, 605–607
Text fields, GUI components, 573, 592
text object positions, 552
Text strings, 106–109

plotting control of, 106–109
escape sequences, 106–109
Greek symbols for, 107
mathematical symbols for, 107
stream modifiers for, 106–107

textread function, 216–218, 413– 415
textscan function, 452– 453
Three-dimensional plots, 334–344, 561–563

animation of, 561–563
contour plots, 336, 338
functions for, 336
line plots, 334–336
mesh plots, 336–337, 341–344
multidimensional arrays for, 338–341
objects created from, 341–344
surface plots, 336–337, 341–344

Throw the exception, 505, 507
title function, 61
Toggle buttons, 595–596, 597
Tool tips, GUI efficiency and, 630
Toolbars, GUI efficiency and, 573, 630–632
Toolstrip, 5–6, 7–8
Top-down design techniques, 127–131, 229
true/false statements, 131–132, 175–176.

See also Logical data type
Truth tables, 136
try/catch construct, 153–161
try/catch structures, 507
Two-dimensional arrays, 37–38, 351. See also

Multidimensional arrays
Two-dimensional plots, 91–126. See also

Plotting
Type conversion functions, 323

U
uibuttongroup function, 613–614
uicontext objects, 622
uicontrol objects, 552, 590–591
uigetdir dialog boxes, 617–619
uigetfile dialog boxes, 616–617
uiimport function, 454– 456

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index | 681

uimenu objects, 619, 620
uipanel function, 611, 613
uisetcolor dialog boxes, 619
uisetfile dialog boxes, 616–617
uisetfont dialog boxes, 619
uitable object, 605
uiwait statement, 585
Unformatted files, 437– 441. See also Binary I/O

functions
unit property for figures, 551
Unit testing, 229
User-defined classes, see Classes
User-defined functions, 229–275, 277–317,

545–546
anonymous functions, 299–300
argument lists, 230, 231–232, 236–246,

246–251
breakpoints for function calls, 234–236
commands and functions for, 267–268, 278,

290, 310
data hiding, 230
data sharing, 252–259
end statement, 232, 284
function functions, 277–281
function handles, 287–299
function statement, 231
global memory, 252–259
good programming practice, 267, 310
handle graphics and, 545–546
H1 comment line, 232
histograms, 304–308
local functions, 282–283
M-files and, 231–236
nested functions, 232, 284–286, 291–292
object properties, 545–546
order of evaluation, 286–287
pass-by value scheme, 236–246
persistent memory, 259–264
plotting with, 301–303
preserving data between calls, 259–264
private functions, 283–284
program maintenance and, 230
random number functions, 266
recursive functions, 300–301
return statement, 231–232
reusable code, 229–230
sorting functions, 264–266
subfunctions, 282–283

sub-task benefits from, 229–230
top-down design and, 229
unit testing, 229
utility functions, 283

UTF-8 character set, 643
Utility functions, 283

V
Value classes, 471, 479– 481
Values, 27–28, 30–33, 41– 45, 51–52, 131

access (dot) operator for, 469– 470
arrays as, 27–28
assignment operators for, 51–52
assignment statements for, 31–33
complex, 30
echoing, 33
end function for, 41
imaginary, 30
predefined in MATLAB, 43– 45
pseudocode notation for, 131
real, 30
shape of in subarrays, 41– 42

var variable, 30–31
varargin function, 389–391, 584–585
varargout function, 392–393, 584–585
Variables, 5, 12–14, 21–22, 27–37, 131,

181–183, 236–246, 252–253, 284–286,
321–322, 350–351

arrays and, 27–33
assignment statements, 31–34
brackets and semicolons for arrays of, 32
built-in functions, 35, 36
char, 30–31
clear command for, 14, 18
complex, 321–322
data arrays, 32
data dictionary and, 29
displayed in MATLAB, 5, 12–14
double, 30
expressions, 31
global, 252–253
initializing, 31–36
input, 36
keyboard input, 35–36
loop index, 181–183
mathematical calculations for, 21–22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

682 | Index

Variables, continued
naming, 28–30
nested functions and, 284–286
pass–by value scheme, 236–246
pseudocode value (<–), 131
shortcut expressions, 34–35
string conversion functions for, 350–351
var, 30–31
whos command for, 13

Vectorization, 175, 183, 189–190, 197–199
for loops, 183, 189–190
logical arrays and, 197–198
program design using, 175

Vectors, 27–28
Voltage divider rule, 326–328

W
waitforbuttonpress function, 548
Warning dialog box, 615
warning function, 247–248
Weakly typed language, 31
which command, 20
while loops, 175–181, 193–195

break statements, 193–195
continue statements, 193–195
true/false expressions for, 175–176
statistical analysis using, 176–181

Whitespace characters, 357
whos command, 13, 376
Windows, 4–12

Command History, 6, 8
Command, 5–7
docking and undocking, 12
Edit, 4, 8–11
Figure, 4, 6, 11–12
MATLAB desktop and, 4–12

Workspace Browser, 5–6, 14
Workspace in MATLAB, 12–14

X
xlabel function, 61
xy plots, 61–62, 95–97

Y
ylabel function, 61

Z
zeros function, 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover������������
	Half Title�����������������
	Title������������
	Statement����������������
	Copyright����������������
	Dedication�����������������
	Preface��������������
	Contents���������������
	Ch 1: Introduction to MATLAB�����������������������������������
	Ch 1: Introduction�������������������������
	1.1: The Advantages of MATLAB������������������������������������
	1.2: Disadvantages of MATLAB�����������������������������������
	1.3: The MATLAB Environment����������������������������������
	1.4: Using MATLAB as a Calculator��
	1.5: Summary�������������������
	1.6: Exercises���������������������

	Ch 2: MATLAB Basics��������������������������
	Ch 2: Introduction�������������������������
	2.1: Variables and Arrays��������������������������������
	2.2: Creating and Initializing Variables in MATLAB���
	2.3: Multidimensional Arrays�����������������������������������
	2.4: Subarrays���������������������
	2.5: Special Values��������������������������
	2.6: Displaying Output Data����������������������������������
	2.7: Data Files����������������������
	2.8: Scalar and Array Operations���������������������������������������
	2.9: Hierarchy of Operations�����������������������������������
	2.10: Built-in MATLAB Functions��������������������������������������
	2.11: Introduction to Plotting�������������������������������������
	2.12: Examples���������������������
	2.13: Debugging MATLAB Programs��������������������������������������
	2.14: Summary��������������������
	2.15: Exercises����������������������

	Ch 3: Two-Dimensional Plots����������������������������������
	Ch 3: Introduction�������������������������
	3.1: Additional Plotting Features for Two-Dimensional Plots��
	3.2: Polar Plots�����������������������
	3.3: Annotating and Saving Plots���������������������������������������
	3.4: Additional Types of Two-Dimensional Plots���
	3.5: Using the plot Function with Two-Dimensional Arrays���
	3.6: Summary�������������������
	3.7: Exercises���������������������

	Ch 4: Branching Statements and Program Design��
	Ch 4: Introduction�������������������������
	4.1: Introduction to Top-Down Design Techniques��
	4.2: Use of Pseudocode�����������������������������
	4.3: The Logical Data Type���������������������������������
	4.4: Branches��������������������
	4.5: More on Debugging MATLAB Programs���
	4.6: Summary�������������������
	4.7: Exercises���������������������

	Ch 5: Loops and Vectorization������������������������������������
	Ch 5: Introduction�������������������������
	5.1: The while Loop��������������������������
	5.2: The for Loop������������������������
	5.3: Logical Arrays and Vectorization��
	5.4: The MATLAB Profiler�������������������������������
	5.5: Additional Examples�������������������������������
	5.6: The textread Function���������������������������������
	5.7: Summary�������������������
	5.8: Exercises���������������������

	Ch 6: Basic User-Defined Functions���
	Ch 6: Introduction�������������������������
	6.1: Introduction to MATLAB Functions��
	6.2: Variable Passing in MATLAB: The Pass-By-Value Scheme��
	6.3: Optional Arguments������������������������������
	6.4: Sharing Data Using Global Memory��
	6.5: Preserving Data Between Calls to a Function���
	6.6: Built-in MATLAB Functions: Sorting Functions��
	6.7: Built-in MATLAB Functions: Random Number Functions��
	6.8: Summary�������������������
	6.9: Exercises���������������������

	Ch 7: Advanced Features of User-Defined Functions��
	Ch 7: Introduction�������������������������
	7.1: Function Functions������������������������������
	7.2: Local Functions, Private Functions, and Nested Functions��
	7.3: Function Handles����������������������������
	7.4: Anonymous Functions�������������������������������
	7.5: Recursive Functions�������������������������������
	7.6: Plotting Functions������������������������������
	7.7: Histograms����������������������
	7.8: Summary�������������������
	7.9: Exercises���������������������

	Ch 8: Complex Numbers and 3D Plots���
	Ch 8: Introduction�������������������������
	8.1: Complex Data������������������������
	8.2: Multidimensional Arrays�����������������������������������
	8.3: Three-Dimensional Plots�����������������������������������
	8.4: Summary�������������������
	8.5: Exercises���������������������

	Ch 9: Additional Data Types����������������������������������
	Ch 9: Introduction�������������������������
	9.1: Strings and String Functions��
	9.2: The single Data Type��������������������������������
	9.3: Integer Data Types������������������������������
	9.4: Limitations of the single and Integer Data Types��
	9.5: Summary�������������������
	9.6: Exercises���������������������

	Ch 10: Sparse Arrays, Cell Arrays, and Structures��
	Ch 10: Introduction��������������������������
	10.1: Sparse Arrays��������������������������
	10.2: Cell Arrays������������������������
	10.3: Structure Arrays�����������������������������
	10.4: Summary��������������������
	10.5: Exercises����������������������

	Ch 11: Input/Output Functions������������������������������������
	Ch 11: Introduction��������������������������
	11.1: The textread Function����������������������������������
	11.2: More about the load and save Commands��
	11.3: An Introduction to MATLAB File Processing��
	11.4: File Opening and Closing�������������������������������������
	11.5: Binary I/O Functions���������������������������������
	11.6: Formatted I/O Functions������������������������������������
	11.7: Comparing Formatted and Binary I/O Functions���
	11.8: File Positioning and Status Functions��
	11.9: The textscan Function����������������������������������
	11.10: Function uiimport�������������������������������
	11.11: Summary���������������������
	11.12: Exercises�����������������������

	Ch 12: User-Defined Classes and Object-Oriented Programming��
	Ch 12: Introduction��������������������������
	12.1: An Introduction to Object-Oriented Programming���
	12.2: The Structure of a MATLAB Class��
	12.3: Value Classes versus Handle Classes��
	12.4: Destructors: The delete Method���
	12.5: Access Methods and Access Controls���
	12.6: Static Methods���������������������������
	12.7: Defining Class Methods in Separate Files���
	12.8: Overriding Operators���������������������������������
	12.9: Events and Listeners���������������������������������
	12.10: Exceptions������������������������
	12.11: Superclasses and Subclasses���
	12.12: Summary���������������������
	12.13: Exercises�����������������������

	Ch 13: Handle Graphics and Animation���
	Ch 13: Introduction��������������������������
	13.1: Handle Graphics����������������������������
	13.2: The MATLAB Graphics System���������������������������������������
	13.3: Object Handles���������������������������
	13.4: Examining and Changing Object Properties���
	13.5: Using set to List Possible Property Values���
	13.6: User-Defined Data������������������������������
	13.7: Finding Objects����������������������������
	13.8: Selecting Objects with the Mouse���
	13.9: Position and Units�������������������������������
	13.10: Printer Positions�������������������������������
	13.11: Default and Factory Properties��
	13.12: Graphics Object Properties��
	13.13: Animations and Movies�����������������������������������
	13.14: Summary���������������������
	13.15: Exercises�����������������������

	Ch 14: Graphical User Interfaces���������������������������������������
	Ch 14: Introduction��������������������������
	14.1: How a Graphical User Interface Works���
	14.2: Creating and Displaying a Graphical User Interface���
	14.3: Object Properties������������������������������
	14.4: Graphical User Interface Components��
	14.5: Additional Containers: Panels and Button Groups��
	14.6: Dialog Boxes�������������������������
	14.7: Menus������������������
	14.8: Tips for Creating Efficient GUIs���
	14.9: Summary��������������������
	14.10: Exercises�����������������������

	Appendix A: UTF-8 Character Set��������������������������������������
	Appendix B: Answers to Quizzes�������������������������������������
	Index������������

		2015-05-14T18:11:46+0000
	Preflight Ticket Signature

