César Pérez López

M ATLA
 B
 PRACTICAL HANDS-ON MATLAB SOLUTIONS
 (4) Springer
 Apress ${ }^{\circ}$

For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks and Contents at a Glance links to access them.

Apress ${ }^{*}$

Contents at a Glance

About the Author ix
Chapter 1: The MATLAB Environment 1
Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions 29
Chapter 3: MATLAB Language: Development Environment Features. 83
Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and Numerical Analysis Functions 121
Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals 191

CHAPTER 1

The MATLAB Environment

Starting MATLAB on Windows. The MATLAB working environment

To start MATLAB, simply double-click on the shortcut icon to the program on the Windows desktop. Alternatively, if there is no desktop shortcut, the easiest and most common way to run the program is to choose programs from the Windows Start menu and select MATLAB. Having launched MATLAB by either of these methods, the welcome screen briefly appears, followed by the screen depicted in Figure 1-1, which provides the general environment in which the program works.

Figure 1-1.

The most important elements of the MATLAB screen are the following:

- The Command Window: This runs MATLAB functions.
- The Command History: This presents a history of the functions introduced in the Command Window and allows you to copy and execute them.
- The Launch Pad: This runs tools and gives you access to documentation for all MathWorks products currently installed on your computer.
- The Current Directory: This shows MATLAB files and execute files (such as opening and search for content operations).
- Help (support): This allows you to search and read the documentation for the complete family of MATLAB products.
- The Workspace: This shows the present contents of the workspace and allows you to make changes to it.
- The Array Editor: This displays the contents of arrays in a tabular format and allows you to edit their values.
- The Editor/Debugger: This allows you to create, edit, and check M-files (files that contain MATLAB functions).

The MATLAB Command Window

The Command Window (Figure 1-2) is the main way to communicate with MATLAB. It appears on the desktop when MATLAB starts and is used to execute all operations and functions. The entries are written to the right of the prompt >> and, once completed, they run after pressing Enter. The first line of Figure 1-3 defines a matrix and, after pressing Enter, the matrix itself is displayed as output.

Figure 1-2.

Figure 1-3.

In the Command Window, it is possible to evaluate previously executed operations. To do this, simply select the syntax you wish to evaluate, right-click, and choose the option Evaluate Selection from the resulting pop-up menu (Figures 1-4 and 1-5). Choosing Open Selection from the same menu opens in the Editor/Debugger an M-file previously selected in the Command Window (Figures 1-6 and 1-7).

Figure 1-4.

Figure 1-5.

Figure 1-6.

Figure 1-7.
MATLAB is sensitive to the use of uppercase and lowercase characters, and blank spaces can be used before and after minus signs, colons and parentheses. MATLAB also allows you to write several commands on the same line, provided they are separated by semicolons (Figure 1-8). Entries are executed sequentially in the order they appear on the line. Every command which ends with a semicolon will run, but will not display its output.

Figure 1-8.

Long entries that will not fit on one line can be continued onto a second line by placing dots at the end of the first line (Figure 1-9).

Figure 1-9.

The option Clear Command Window from the Edit menu (Figure 1-10) allows you to clear the Command Window. The command clc also performs this function (Figure 1-11). Similarly, the options Clear Command History and Clear Workspace in the Edit menu allow you to clean the history window and workspace.

Figure 1-10.

Figure 1-11.
To help you to easily identify certain elements as if/else instructions, chains, etc., some entries in the Command Window will appear in different colors. Some of the existing rules for colors are as follows:

1. Chains appear in purple while they are being typed. When they are finished properly (with a closing quote) they become brown.
2. Flow control syntax appears in blue. All lines between the opening and closing of the flow control functions are correctly indented.
3. Parentheses, brackets, and keys are briefly illuminated until their contents are properly completed. This allows the user to easily see if mathematical expressions are properly closed.
4. Comments in the Command Window, preceded by the symbol \%, appear in green.
5. System commands such as ! appear in gold.
6. Errors are shown in red.

Below is a list of keys, arrows and combinations that can be used in the Command Window.

Key	Control key	Operation
\uparrow	CTRL+ \mathbf{p}	Calls to the last entry submitted.
\downarrow	CTRL+ +	Calls to the next line.
\leftarrow	CTRL+ \mathbf{b}	Moves one character backward.
\rightarrow	CTRL+ \mathbf{f}	Moves one character forward.
$\mathbf{C T R L}+\rightarrow$	CTRL+ \mathbf{r}	Moves one word to the right.
$\mathbf{C T R L}+\leftarrow$	CTRL+1	Moves one word to the left.
Home	CTRL+ a	Moves to the beginning of the line.

(continued)

Key	Control key	Operation
End	CTRL+ \mathbf{e}	Moves the end of the line.
ESC	CTRL+ u	Deletes the line.
Delete	CTRL+d	Deletes the character where the cursor is.
BACKSPACE	CTRL+ $+\mathbf{~}$	Deletes the character before the cursor.
	CTRL+ $+\mathbf{~ D e l e t e s ~ a l l ~ t e x t ~ u p ~ t o ~ t h e ~ e n d ~ o f ~ t h e ~ l i n e . ~}$	
Shift+ home		Highlights the text from the beginning of the line.
Shift+ end		Highlights the text up to the end of the line.

To enter explanatory comments simply start them with the symbol \% anywhere in a line. The rest of the line should be used for the comment (see Figure 1-12).

Figure 1-12.

Running M-files (files that contain MATLAB code) follows the same procedure as running any other command or function. Just type the name of the M-file (with its arguments, if necessary) in the Command Window, and press Enter (Figure 1-13). To see each function of an M-file as it runs, first enter the command echo on. To interrupt the execution of an M-file use CTRL $+c$ or CTRL + break.

Figure 1-13.

Escape and exit to DOS environment commands

There are three ways to pass from the MATLAB Command Window to the MS-DOS operating system environment to run temporary assignments.

Entering the command ! dos_command in the Command Window allows you to execute the specified command dos_command in the MATLAB environment. Figure 1-14 shows the execution of the command ! dir. The same effect is achieved with the command dos dos_command (Figure 1-15).

- Command Window		-
Elo Edt Yew	Wels window	Holp
>> ! dix		-
10/08/2010	02:19	679.936 Database1.acodb
10/08/2010	02:25	348.160 Database2.accdb
18/08/2010	16:04	417.792 Database3.acodb
11/08/2010	13:00	389.120 Database4.accdb
12/08/2010	13:24	344.064 Database5.accdb
19/11/2010	21:34	344.064 Database6.accdb
>>		\checkmark
41		\square
Ready		

Figure 1-14.

-) Command Window		-
Ele Edr yow	Wel whdow	
>> dos dir		\triangle
10/08/2010	02:19	679.936 Database1.accdb
10/08/2010	02:25	348.160 Database2.accdb
18/08/2010	16:04	417.792 Database3. accdb
11/08/2010	13:00	389.120 Database4.accdb
12/08/2010	13:24	344.064 Database5.accdb
19/11/2010	21:34	344.064 Database6.accdb 」
1)		
Ready		

Figure 1-15.

The command ! dos_command \& is used to execute the DOS command in background mode. This opens a new window on top of the MATLAB Command Window and executes the command in that window (Figure 1-16). To return to the MATLAB environment simply click anywhere in the Command Window, or close the newly opened window via its close button \mathbf{X} or the Exit command.

Figure 1-16.

Not only DOS commands, but also all kinds of executable files or batch tasks can be executed with the three previous commands. To leave MATLAB simply type quit or exit in the Command Window and then press Enter. Alternatively you can select the option Exit MATLAB from the File menu (Figure 1-17).

Figure 1-17.

Preferences for the Command Window

Selecting the Preferences option from the File menu (Figure 1-18) allows you to set particular features for working in the Command Window. To do this, simply choose the desired options in the Command Window Preferences window (Figure 1-19).

Figure 1-18.

Figure 1-19.

Figure 1-20.

The first area that appears in the Command Window Preferences window is Text display. This specifies how the output will appear in the Command Window. Your options are as follows:

- Numeric format: Specifies the format of numerical values in the Command Window (Figure 1-21). This affects only the appearance of the numbers, not the calculations or how to save them. The possible formats are presented in the following table:

Figure 1-21.

Format	Result	Example
+	,+- white	+
Bank	Fixed	3.14
Compact	Removes excess lines displayed on the screen to present a more compact output.	theta $=\mathrm{pi} / 2$ theta $=1.5708$
	Hexadecimal	400921 fb 54442 d 18
long	15 digits fixed point	3.14159265358979
long e	15 digits floating-point	$3.141592653589793 \mathrm{e}+00$
long	The best of the previous two	3.14159265358979
loose	Adds lines to make the output more readable.	theta $=\mathrm{pi} / 2$ theta $=1.5708$
	The compact command does the opposite.	
rat	Ratio of small integers	$355 / 13$ (a rational approximation of pi)
short	5digits fixed point	3.1416
short e	5digits floating-point	$3.1416 \mathrm{e}+00$
short g	The best of the previous two	3.1416

- Numeric display: Regulates the spacing of the output in the Command Window. Compact is used to suppress blank lines. Loose is used to show blank lines.
- Spaces per tab: Regulates the number of spaces assigned to the tab when the output is displayed (the default value is 4).

The second zone that appears in the Command Window Preferences window is Display. This specifies the size of the buffer and allows you to choose whether to display the executions of all the commands included in M-files. Your options are as follows:

- Echo on: If you check this box, the executions of all the commands included in the M-files are displayed.
- Limit matrix display width to eighty columns: If you check this box, MATLAB will display only an 80-column dot matrix output, regardless of the width of the Command Window. If this box is not checked, the matrix output will occupy the current width of the Command Window.
- Enable up to n tab completions: Check this box if you want to use tab completion when typing functions in the Command Window. You then need to specify the maximum number of completions that will be listed. If the number of possible completions exceeds this number, MATLAB will not show the list of completions.
- Command session scroll buffer size: This sets the number of lines that are kept in the Command Window buffer. These lines can be viewed by scrolling up.

In MATLAB it is also possible to set fonts and colors for the Command Window. To do this, simply unfold the sub-option Font \& Colors hanging from Command Windows (Figure 1-21). In the fonts area select Use desktop font if you want to use the same source as specified for General Font \& Colors preferences. To use a different font click the button Use custom font and in the three boxes located immediately below choose the desired font (Figure 1-22), style (Figure 1-23) and size. The Sample area shows an example of the selected font. In the Colors area you can choose the color of the text (Text color) (Figure 1-24) and the color of the background (Background color). If the Syntax highlighting box is checked, you can choose which colors will represent various types of MATLAB commands. The Set Colors button is used to select a given color.

Figure 1-22.

Figure 1-23.

Figure 1-24.

To display the MATLAB Command Window separately simply click on the button \rceil located in the top right corner. To return the window to its site on the desktop, use the option Dock Command Window from the View menu (Figure 1-25).

Figure 1-25.

The Command History window

The Command History window (Figure 1-26) appears when you start MATLAB. It is located at the bottom right of the MATLAB desktop. The Command History window shows a list of functions used recently in the Command Window (Figure 1-26). It also shows an indicator of the beginning of the session. To display this window, separated from the MATLAB desktop, simply click on the button π located in its top right corner. To return the window to its site on the desktop, use the Dock Window Command from the View menu. This method of separation and docking is common to all MATLAB windows.

Figure 1-26.

If you select one or more lines in the Command History window and right-click on the selection, the pop-up menu of Figure 1-27 appears. This gives you options to copy the selection to the clipboard (Copy), evaluate the selection in the Command Window (Evaluate Selection), create an M-file with the selected syntax (Create M-File), delete the selection (Delete Selection), delete everything preceding the selection (Delete to Selection) and delete the entire history (Delete Entire History).

Figure 1-27.

The Launch Pad window

The Launch Pad window (located by default in the upper-left corner of the MATLAB desktop) allows you to get help, see demonstrations of installed products, go to other windows on the desktop and visit the MathWorks website (Figure 1-28).

Figure 1-28.

The Current Directory window

The Current Directory window is obtained by clicking on the Current Directory sticker located at the bottom left of the MATLAB desktop (Figure 1-29). Its function is to view, open, and make changes in the MATLAB files environment. To display this window, separated from the MATLAB desktop (Figure 1-30), just click on the button $\boldsymbol{\pi}$ located in its top right corner. To return the window to its site on the desktop, use the Dock Command Window option in the View menu.

Figure 1-29.

Figure 1-30.

It is possible to set preferences in the Current Directory window using the Preferences option from the File menu (Figure 1-31). This gives you the Current Directory Preferences window (Figure 1-32). In the History field the number of recent directories is set to save to history. In the field Browser display options file characteristics are set to display (file type, date of last modification, and descriptions and comments from the M -files).

- Current Directory		$\square \square$		
File Edit View Web Window Help				
Close Current Directory Ctrl+w		Last Modified Description		
Import Data... Save Workspace As...	Ctrl+5	```01-ene-2001 07:05 a. Financial Too^ 01-ene-2001 07:05 a. 27-ago-1999 10:30 a. ACRUBOND Accr 20-ene-1999 05:43 a. ACRUDISC Accr```		
Set Path...				
Preferences...				
Print... Ctrl +P Print Selection...		29-dic-1999 07:10 a. AMORTIZE Amor		
		$\begin{aligned} & \text { 20-ene-1999 05:43 a. ANNURATE Peri } \\ & \text { 20-ene-1999 05:43 a. ANNUTERM Numb } \\ & 20 \text {-ene-1999 05:43 a. BDTBOND Black } \\ & 20 \text {-ene-1999 05:43 a. BDTTRANS Tran } \\ & 20 \text {-ene-1999 05:43 a. BEYTBILL Bond } \\ & 29 \text {-jul-1999 03:32 a. BINPRICE Bino } \end{aligned}$		
1 D:\{...\|finance\}amortize.m $2 \mathrm{D}:$ \}...\|finance	acrubond.m 3D:\{....cdmaicdmaiccdmaweb.m			
Exit MATLAB	Ctrl+Q			
4			$\stackrel{\rightharpoonup}{*}$	
Ready				

Figure 1-31.

Figure 1-32.

If you select any file in the Current Directory window and you left－click on it，the pop－up menu of Figure 1－33 will appear．This gives you options to open the file（Open），run it（Run），view Help（View Help），open it as text（Open as Text），import data（Import Data），create new files，M－files or folders（New），rename it，delete it，cut it，copy it or paste it，pass you filters and add it to the current path．

－Current Directory			$\square \square$
File Edit View Web Window Help			
D：\matlabR12\toolbox\finance\finance－．．． t－－			
All files	File Type	Last Modified	Description
Qja	Folder	01－ene－2001 07：05	Financial Toolbox
$\square \mathrm{Gprivate}$	Folder	01－ene－2001 07：0	
且 ${ }^{2}$ acrubond．m acrudisc．m amortize．m annurate．in annuterm．In bdtbond．Im bdttrans．II beytbill．m binprice．m blkprice．m blsdelta．m blsgamma．血 blsimpv．侐	M－file Open Run View Help Open as Text Import Data．．．		
	New		
	Rename		
	Delete		
	Cut		
	Copy		
	Paste		
	File Filter		
	Add to Path		
Ready	Refresh		

Figure 1－33．

The help browser

MATLAB＇s help browser is obtained by clicking the？button on the toolbar or by using the function helpbrowser in the Command Window．

The Workspace window

The Workspace window is located in the top left corner of the MATLAB desktop and is obtained by clicking on the label Work Space under it（Figure 1－34）．Its function is to display the variables stored in memory．It shows the name， type，size and class of each variable，as shown in Figure 1－35．To display this window，separated from the MATLAB desktop（Figure 1－35），just click on the button $\boldsymbol{\pi}$ located in its upper right corner．To return the window to its site on the desktop，use the Dock Command Window option from the View menu．

Figure 1-34.

Figure 1-35.

An important element of the Workspace window is the Array editor, which allows you to edit numeric arrays and strings.

It is possible to set preferences in the Workspace window via the Preferences option from the File menu. This gives you the Preferences window shown in Figure 1-36. In the History field the number of recent directories is set to save to history. In the Font field the sources to be used in the Command Window preferences are set, and the option Confirm Deletion of Variables is checked according to whether or not you want the deletion of variables to be confirmed.

Figure 1-36.

The Editor and Debugger for M-files

To create a new M-file in the Editor/Debugger simply click the button \square in the MATLAB Tools toolbar or select File $>N e w>M$-file in the MATLAB desktop (Figure 1-37). The Editor/Debugger opens a file in which you create an M-file, i.e. a blank file for MATLAB programming code (see Figure 1-38). The Edit command in the Command Window also opens the Editor/Debugger. To open an existing M-file use File $>$ Open in the MATLAB desktop. You can also use the command Open in the Command Window.

Figure 1-37.

Figure 1-38.

You can also open the Editor/Debugger by right-clicking anywhere in the Current Directory window and choosing New $>M$-file from the resulting pop-up menu (Figure 1-39). The option Open is used to open an existing M-file. You can open several M-files simultaneously, in which case they will appear in different windows (Figure 1-40).

Figure 1-39.

Figure 1-40.

Help in MATLAB

MATLAB has a fairly efficient inline help system. The first tool to consider is browser support (Figure 1-41), which is accessed via the icon ? or by typing helpbrowser in the Command Window (the Help Browser option must be selected in the View menu). Selecting a theme in the pane on the left of the help browser will present help on the selected topic in the right pane, and you can navigate through the content via hyperlinks. The top bar of the left navigation pane features the options Content (support for content), Index (help by alphabetical index), Search (find help by subject) and Favorites (favorite help topics).

Figure 1-41.

Another very important way to obtain help in MATLAB is via its support functions. These functions are presented in the following table.

Function	Description
doc function	Displays the reference page in the browser's support for the specified function, showing syntax, description, examples and links with other related functions.
docopt	This function is used to display the location of the help files on UNIX platforms that do not support Java interfaces.
help function	Displays in the Command Window a description and the syntax of the specified function. Opens the help browser.
helpdesk	Opens the help browser. It has been replaced by doc in recent versions of MATLAB. helpwin or helpwin theme lookfor textDisplays in the help browser a list of all the MATLAB functions or those relating to the specified topic. Displays in the browser all support functions which contain the specified text as part of the function. Opens in the Web browser the URL specified by default as relative to the Web help of MATLAB.

CHAPTER 2

MATLAB Language: Variables, Numbers, Operators and Functions

Variables

MATLAB does not require a command to declare variables. A variable is created simply by directly allocating a value to it. For example:

```
>> v = 3
```

v =
3

The variable v will take the value 3 and using a new mapping will not change its value. Once the variable is declared, we can use it in calculations.

```
>> v ^ 3
```

ans =
27
>> v+5
ans =
8

The value assigned to a variable remains fixed until it is explicitly changed or if the current MATLAB session is closed.

If we now write:

```
>> v = 3 + 7
```

$\mathrm{v}=$
10
then the variable v has the value 10 from now on, as shown in the following calculation:

```
>> v ^ }
```

ans =
10000

A variable name must begin with a letter followed by any number of letters, digits or underscores. However, bear in mind that MATLAB uses only the first 31 characters of the name of the variable. It is also very important to note that MATLAB is case sensitive. Therefore, a variable named with uppercase letters is different to the variable with the same name except in lowercase letters.

Vector variables

A vector variable of n elements can be defined in MATLAB in the following ways:

$V=[v 1, v 2, v 3, \ldots, v n]$

$V=\left[\begin{array}{lll}v 1 & \mathrm{v} 2 & \mathrm{v} 3 . . \mathrm{vn}]\end{array}\right.$

When most MATLAB commands and functions are applied to a vector variable the result is understood to be that obtained by applying the command or function to each element of the vector:

```
>> vector1 = [1,4,9,2.25,1/4]
```

vector1 =
1.00004 .00009 .00002 .25000 .2500
>> sqrt (vector1)
ans =
1.00002 .00003 .00001 .50000 .5000

The following table presents some alternative ways of defining a vector variable without explicitly bracketing all its elements together, separated by commas or blank spaces.

variable $=[\mathrm{a}: \mathrm{b}]$	Defines the vector whose first and last elements are a and b, respectively, and the intermediate elements differ by one unit.
variable $=$ [a:s:b]	Defines the vector whose first and last elements are a and b, respectively, and the intermediate elements differ by an increase specified by s.
variable $=$ linespace $[\mathbf{a}, \mathrm{b}, \mathrm{n}]$	Defines the vector with n evenly spaced elements whose first and last elements are a and b respectively.
variable $=$ logspace $[\mathbf{a}, \mathrm{b}, \mathrm{n}]$	Defines the vector with n evenly logarithmically spaced elements whose first and last elements are 10^{a} and 10^{b}, respectively.

Below are some examples:

```
>> vector2 = [5:5:25]
```

vector2 $=$
510152025

This yields the numbers between 5 and 25 , inclusive, separated by 5 units.

```
>> vector3=[10:30]
```

vector3 $=$
Columns 1 through 13

10	11	12	13	14	15	16	17	18	19	20	21	22

Columns 14 through 21
2324252627282930
This yields the numbers between 10 and 30 , inclusive, separated by a unit.
>> t :Microsoft.WindowsMobile.DirectX.Vector4 $=$ linspace $(\mathbf{1 0 , 3 0}, \mathbf{6})$
t:Microsoft.WindowsMobile.DirectX.Vector4 =
101418222630
This yields 6 equally spaced numbers between 10 and 30 , inclusive.

```
>> vector5 = logspace (10,30,6)
```

vector5 $=$

1. $0 \mathrm{e}+030$ *
0.00000 .00000 .00000 .00000 .00011 .0000

This yields 6 evenly logarithmically spaced numbers between 10^{10} and 10^{30}, inclusive.
One can also consider row vectors and column vectors in MATLAB. A column vector is obtained by separating its elements by semicolons, or by transposing a row vector using a single quotation mark at the end of its definition.

```
>> a=[10;20;30;40]
```

a $=$

10
20
30
40

```
>> a=(10:14);b=a'
```

b =

10
11
12
13
14

>> $C=\left(a^{\prime}\right)^{\prime}$

C =
1011121314

You can also select an element of a vector or a subset of elements. The rules are summarized in the following table:
\mathbf{x} (n) Returns the n-th element of the vector x.
$\mathbf{x}(\mathbf{a : b)} \quad$ Returns the elements of the vector x between the a-th and the b-th elements, inclusive.
$\mathbf{x}(\mathbf{a : p : b)} \quad$ Returns the elements of the vector x located between the a-th and the b-th elements, inclusive, but separated by p units ($a>b$).
$\mathbf{x}(\mathbf{b}:-\mathbf{p : a} \quad$ Returns the elements of the vector x located between the b-th and a-th elements, both inclusive, but separated by p units and starting with the b-th element $(b>a)$.

Here are some examples:

```
>> x =(1:10)
x =
\begin{tabular}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}
>> x (6)
```

ans =
6

This yields the sixth element of the vector x.

>) $x(4: 7)$

ans =

4567
This yields the elements of the vector x located between the fourth and seventh elements, inclusive.

```
>> x(2:3:9)
```


ans =

258
This yields the three elements of the vector x located between the second and ninth elements, inclusive, but separated in steps of three units.

```
>> x(9:-3:2)
```


ans =

963

This yields the three elements of the vector x located between the ninth and second elements, inclusive, but separated in steps of three units and starting at the ninth.

Matrix variables

MATLAB defines arrays by inserting in brackets all its row vectors separated by a comma. Vectors can be entered by separating their components by spaces or by commas, as we already know. For example, a 3×3 matrix variable can be entered in the following two ways:

```
M = [a11 a12 a13;a21 a22 a23;a31 a32 a33]
M = [a11,a12,a13;a21,a22,a23;a31,a32,a33]
```

Similarly we can define an array of variable dimension ($M \times N$). Once a matrix variable has been defined, MATLAB enables many ways to insert, extract, renumber, and generally manipulate its elements. The following table shows different ways to define matrix variables.

A(m,n)	Defines the (m, n)-th element of the matrix A (row m and column n).
A(a:b,c:d)	Defines the subarray of A formed between the a-th and the b-th rows and between the c-th and the d-th columns, inclusive.
A(a:p:b,c:q:d)	Defines the subarray of A formed by every p-th row between the a-th and the b-th rows, inclusive, and every q-th column between the c-th and the d-th column, inclusive.
A([ab],[c d]	Defines the subarray of A formed by the intersection of the a-th through b-th rows and c-th through d-th columns, inclusive.
$\begin{aligned} & \text { A([able...], } \\ & [\mathbf{e f g}]) \end{aligned}$	Defines the subarray of A formed by the intersection of rows a, b, c, \ldots and columns e, f, g, \ldots
A(:,c:d)	Defines the subarray of A formed by all the rows in A and the c-th through to the d-th columns.
A(:,[cde...])	Defines the subarray of A formed by all the rows in A and columns c, d, e, \ldots
A(a:b,:)	Defines the subarray of A formed by all the columns in A and the a-th through to the b-th rows.
A([abc...],:)	Defines the subarray of A formed by all the columns in A and rows a, b, c, \ldots
A(a,:)	Defines the a-th row of the matrix A.
A(:,b)	Defines the b-th column of the matrix A.
A(:)	Defines a column vector whose elements are the columns of A placed in order below each other.
A(:, $)$	This is equivalent to the entire matrix A.
[A, B, C,...]	Defines the matrix formed by the matrices A, B, C, \ldots
$\mathrm{S}_{\mathrm{A}}=$ []	Clears the subarray of the matrix $A, S_{A^{\prime}}$, and returns the remainder.
diag (v)	Creates a diagonal matrix with the vector v in the diagonal.
diag (A)	Extracts the diagonal of the matrix as a column vector.
eye (n)	Creates the identity matrix of order n.
eye (m, n)	Create an $m \times n$ matrix with ones on the main diagonal and zeros elsewhere.
zeros (m, n)	Creates the zero matrix of order $m \times n$.
ones (m, n)	Creates the matrix of order $m \times n$ with all its elements equal to 1 .
rand (m, n)	Creates a uniform random matrix of order $m \times n$.
randn (m, n)	Create a normal random matrix of order $m \times n$.
flipud (A)	Returns the matrix whose rows are those of A but placed in reverse order (from top to bottom).
fliplr (A)	Returns the matrix whose columns are those of A but placed in reverse order (from left to right).
$\boldsymbol{r o t 9 0}(\mathrm{A})$	Rotates the matrix A counterclockwise by 90 degrees.
reshape(A, m, n)	Returns an m×n matrix formed by taking consecutive entries of A by columns.
size (A)	Returns the order (size) of the matrix A.
find (cond_{A})	Returns all A items that meet a given condition.
length (v)	Returns the length of the vector v.
tril (A)	Returns the lower triangular part of the matrix A.
triu (A)	Returns the upper triangular part of the matrix A.
A^{\prime}	Returns the transpose of the matrix A.
$\mathbf{I n v}(\mathrm{A})$	Returns the inverse of the matrix A.

Here are some examples:
We consider first the 2×3 matrix whose rows are the first six consecutive odd numbers:

>> $A=\left[\begin{array}{lllll}1 & 3 & 5 & 7 & 9\end{array}\right]$

$A=$

135
7911

Now we are going to change the $(2,3)$-th element, i.e. the last element of A, to zero:
3) $A(2,3)=0$
$A=$

135
790

We now define the matrix B to be the transpose of A :
>) $B=A^{\prime}$
$B=$

17
39
50
We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B :
>> $C=[B$ eye (3)]
$C=$

1	7	1	0	0
3	9	0	1	0
5	0	0	0	1

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection of the first two rows and the last three columns of the matrix C :

```
>> D = C(:,1:2:5)
```

$D=$

110
300
501

```
>> E = C([ll 2],[3 5])
```

$\mathrm{E}=$

10
00

```
>> F = C([11 2],3:5)
```

$F=$

100
010

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the main diagonal of D :

```
>> G=diag(diag(D))
G =
100
00
O }0
```

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third and fifth columns:

```
>> H = C([llll,[[\begin{array}{lll}{2}&{3}&{5}\end{array}])
```

$H=$

710
001
Now we build an array I formed by the identity matrix of order 5×4, appending the zero matrix of the same order to its right and to the right of that the unit matrix, again of the same order. Then we extract the first row of I and, finally, form the matrix J comprising the odd rows and even columns of I and calculate its order (size).

>> $I=[\operatorname{eye}(5,4) \operatorname{zeros}(5,4)$ ones $(5,4)]$

```
ans =
```

1	0	0	0	0	0	0	0	1	1	1	1
0	1	0	0	0	0	0	0	1	1	1	1
0	0	1	0	0	0	0	0	1	1	1	1
0	0	0	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1

```
>> I(1,:)
ans =
\begin{tabular}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{tabular}
>> J=I(1:2:5,2:2:12)
J =
0
0
0
>> size(J)
ans =
36
```

We now construct a random matrix K of order 3×4, reverse the order of the rows of K, reverse the order of the columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4×3 whose columns are obtained by taking the elements of K sequentially by columns.

>> K=rand(3,4)

$K=$

0.5269	0.4160	0.7622	0.7361
0.0920	0.7012	0.2625	0.3282
0.6539	0.9103	0.0475	0.6326

```
>> K(3:-1:1,:)
```

ans =

0.6539	0.9103	0.0475	0.6326
0.0920	0.7012	0.2625	0.3282
0.5269	0.4160	0.7622	0.7361

>> $K(:, 4:-1: 1)$
ans =

0.7361	0.7622	0.4160	0.5269
0.3282	0.2625	0.7012	0.0920
0.6326	0.0475	0.9103	0.6539

```
>> K(3:-1:1,4:-1:1)
ans =
\begin{tabular}{llll}
0.6326 & 0.0475 & 0.9103 & 0.6539 \\
0.3282 & 0.2625 & 0.7012 & 0.0920 \\
0.7361 & 0.7622 & 0.4160 & 0.5269
\end{tabular}
>> L=reshape(K,4,3)
L =
0.5269 0.7012 0.0475
0.0920 0.9103 0.7361
0.6539 0.7622 0.3282
0.4160 0.2625 0.6326
```


Character variables

A character variable (chain) is simply a character string enclosed in single quotes that MATLAB treats as a vector form. The general syntax for character variables is as follows:

```
c = 'string'
```

Among the MATLAB commands that handle character variables we have the following:

abs ('character_string')	Returns the array of ASCII characters equivalent to each character in the string.
setstr (numeric_vector)	Returns the string of ASCII characters that are equivalent to the elements of the vector.
str2mat (t1,t2,t3,...)	Returns the matrix whose rows are the strings tl, t2, t3,..., respectively.
str2num ('string')	Converts the string to its exact numeric value used by MATLAB.
num2str (number)	Returns the exact number in its equivalent string with fixed precision.
int2str (integer)	Converts the integer to a string.
sprintf ('format', a)	Converts a numeric array into a string in the specified format.
sscanf ('string', 'format')	Converts a string to a numeric value in the specified format.
dec2hex (integer)	Converts a decimal integer into its equivalent string in hexadecimal.
hex2dec ('string_hex')	Converts a hexadecimal string into its integer equivalent.
hex2num ('string_hex')	Converts a hexadecimal string into the equivalent IEEE floating point number.
lower ('string')	Converts a string to lowercase.
upper ('string')	Converts a string to uppercase.
strcmp (s1, s2)	Compares the strings s1 and s2 and returns 1 if they are equal and 0 otherwise.
strcmp (s1, s2, n)	Compares the strings s1 and s2 and returns 1 if their first n characters are equal
and 0 otherwise.	

(continued)

ischar (expression)	Returns 1 if the expression is a string and 0 otherwise.
strjust (string)	Right justifies the string.
blanks (n)	Generates a string of n spaces.
deblank (string)	Removes blank spaces from the right of the string.
eval (expression)	Executes the expression, even if it is a string.
disp ('string')	Displays the string (or array) as has been written, and continues the MATLAB process.
input ('string')	Displays the string on the screen and waits for a key press to continue.

Here are some examples:

```
>> hex2dec ('3ffe56e')
```

ans =
67102062

Here MATLAB has converted a hexadecimal string into a decimal number.

```
>> dec2hex (1345679001)
```

ans =
50356E99

The program has converted a decimal number into a hexadecimal string.

```
>> sprintf(' %f',[1+sqrt(5)/2,pi])
```

ans =
2.1180343 .141593

The exact numerical components of a vector have been converted to strings (with default precision).
>> sscanf('121.00012', '\%f')
ans =
121.0001

Here a numeric string has been passed to an exact numerical format (with default precision).
>) num2str (pi)
ans =
3.142

The constant π has been converted into a string.

```
>> str2num('15/14')
```

ans $=$
1.0714

The string has been converted into a numeric value with default precision.

```
>> setstr(32:126)
```

ans $=$
!"\#\$\% \&' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPORSTUVWXYZ [\] ^

_'abcdefghijklmnopqrstuvwxyz \{|\}~

This yields the ASCII characters associated with the whole numbers between 32 and 126, inclusive.

ans =

1239312562603516119163186170
This yields the integers corresponding to the ASCII characters specified in the argument of $a b s$.

>> lower ('ABCDefghIJ')

ans =
abcdefghij
The text has been converted to lowercase.
>> upper('abcd eFGHi jK1Mn')
ans =

ABCD EFGHI JKLMN

The text has been converted to uppercase.
>> str2mat ('The world',' The country',' Daily 16', ' ABC')
ans =
The world
The country
Daily 16
ABC

The chains comprising the arguments of str2mat have been converted to a text array.

```
>> disp('This text will appear on the screen')
```

ans =

This text will appear on the screen

Here the argument of the command disp has been displayed on the screen.

```
>> c = 'This is a good example';
>> strrep(c, 'good', 'bad')
```

ans =
This is a bad example

The string good has been replaced by bad in the chain c. The following instruction locates the initial position of each occurrence of $i s$ within the chain c.

```
>> findstr (c, 'is')
```

ans =
36

Numbers

In MATLAB the arguments of a function can take many different forms, including different types of numbers and numerical expressions, such as integers and rational, real and complex numbers.

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is an interactive program that allows you to perform a simple variety of mathematical operations. MATLAB assumes the usual operations of sum, difference, product, division and power, with the usual hierarchy between them:

$\mathbf{x + y}$	Sum
$\mathbf{x}-\mathbf{y}$	Difference
$\mathbf{x} * \mathbf{y}$ or $\mathbf{x} \mathbf{y}$	Product
\mathbf{x} / \mathbf{y}	Division
$\mathbf{x}^{\wedge} \mathbf{y}$	Power

To add two numbers simply enter the first number, a plus sign (+) and the second number. Spaces may be included before and after the sign to ensure that the input is easier to read.

```
>>2+3
```

ans $=$
5

We can perform power calculations directly.

```
>> 100 ^ 50
```

ans $=$

1. $0000 e+100$

Unlike a calculator, when working with integers, MATLAB displays the full result even when there are more digits than would normally fit across the screen. For example, MATLAB returns the following value of $99 \wedge 50$ when using the vpa function (here to the default accuracy of 32 significant figures).

```
>> vpa '99 ^ 50'
```

ans $=$
. 60500606713753665044791996801256 e 100
To combine several operations in the same instruction one must take into account the usual priority criteria among them, which determine the order of evaluation of the expression. Consider, for example:

```
>> 2* 3 ^ 2 + (5-2)* 3
```

ans $=$

27
Taking into account the priority of operators, the first expression to be evaluated is the power $3^{\wedge} 2$. The usual evaluation order can be altered by grouping expressions together in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions and you can also define your own functions. MATLAB functions and operators can be applied to symbolic constants or numbers.

One of the basic applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional calculator, but with one important difference: the precision of the calculation. Operations are performed to whatever degree of precision the user desires. This unlimited precision in calculation is a feature which sets MATLAB apart from other numerical calculation programs, where the accuracy is determined by a word length inherent to the software, and cannot be modified.

The accuracy of the output of MATLAB operations can be relaxed using special approximation techniques which are exact only up to a certain specified degree of precision. MATLAB represents results with accuracy, but even if internally you are always working with exact calculations to prevent propagation of rounding errors, different approximate representation formats can be enabled, which sometimes facilitate the interpretation of the results. The commands that allow numerical approximation are the following:

format long	Delivers results to 16 significant decimal figures.
format short	Delivers results to 4 decimal places. This is MATLAB's default format.
format long e	Provides the results to 16 decimal figures more than the power of 10 required.
format short e	Provides the results to four decimal figures more than the power of 10 required.
format long g	Provides the results in optimal long format.
format short g	Provides the results in optimum short format.
bank format	Delivers results to 2 decimal places.
format rat	Returns the results in the form of a rational number approximation.
format +	Returns the sign (+, -) and ignores the imaginary part of complex numbers.
format hex	Returns results in hexadecimal format.
vpa 'operations' n	Returns the result of the specified operations to n significant digits.
numeric ('expr')	Provides the value of the expression numerically approximated by the current active format.
digits (n)	Returns results to n significant digits.

Using format gives a numerical approximation of $174 / 13$ in the way specified after the format command:

>> 174/13

ans =
13.3846
>> format long; 174/13
ans =
13.38461538461539
>> format long e; 174/13
ans =
$1.338461538461539 \mathrm{e}+001$

>> format short e; 174/13

ans =
$1.3385 \mathrm{e}+001$

>) format long g; 174/13

ans =
13.3846153846154

```
>> format short g; 174/13
```

ans =
13.385
>> format bank; 174/13
ans =
13.38
>> format hex; 174/13
ans =
402ac4ec4ec4ec4f

Now we will see how the value of sqrt (17) can be calculated to any precision that we desire:

```
>> vpa ' 174/13 ' 10
```

ans =
13.38461538
>> vpa ' 174/13 ' 15
ans $=$
13.3846153846154
>> digits (20); vpa ' 174/13 '
ans =
13.384615384615384615

Integers

In MATLAB all common operations with whole numbers are exact, regardless of the size of the output. If we want the result of an operation to appear on screen to a certain number of significant figures, we use the symbolic computation command vpa (variable precision arithmetic), whose syntax we already know.

For example, the following calculates $6^{\wedge} 400$ to 450 significant figures:

```
>> '6 vpa ^ 400' 450
```

ans =

182179771682187282513946871240893712673389715281747606674596975493339599720905327003028267800766283 867331479599455916367452421574456059646801054954062150177042349998869907885947439947961712484067309 738073652485056311556920850878594283008099992731076250733948404739350551934565743979678824151197232 629947748581376.

The result of the operation is precise, always displaying a point at the end of the result. In this case it turns out that the answer has fewer than 450 digits anyway, so the solution is exact. If you require a smaller number of significant figures, that number can be specified and the result will be rounded accordingly. For example, calculating the above power to only 50 significant figures we have:

```
>> '6 vpa ^ 400' 50
```

ans =
. 18217977168218728251394687124089371267338971528175 e 312

Functions of integers and divisibility

There are several functions in MATLAB with integer arguments, the majority of which are related to divisibility. Among the most typical functions with integer arguments are the following:

$\operatorname{rem}(\mathrm{n}, \mathrm{m})$	Returns the remainder of the division of n by m (also valid when n and m are real).
sign (n)	The sign of $n($ i.e. 1 if $n>0,-1$ if $n<0$).
$\max (\mathrm{n} 1, \mathrm{n} 2)$	The maximum of $n 1$ and $n 2$.
$\min (\mathrm{n} 1, \mathrm{n} 2)$	The minimum of n1 and n2.
$\operatorname{gcd}(\mathrm{n} 1, \mathrm{n} 2)$	The greatest common divisor of n1 and n2.
$\operatorname{lcm}(\mathrm{n} 1, \mathrm{n} 2)$	The least common multiple of n1 and n2.
factorial (n)	n factorial (i.e. $n(n-1)(n-2) \ldots 1)$
factor (n)	Returns the prime factorization of n.

Below are some examples.
The remainder of division of 17 by 3 :

>> rem $(17,3)$

ans =
2

The remainder of division of 4.1 by 1.2:

>> rem (4.1,1.2)

ans $=$
0.5000

The remainder of division of -4.1 by 1.2 :

```
>> rem(-4.1,1.2)
```

ans =
-0.5000

The greatest common divisor of 1000, 500 and 625:

```
>> gcd (1000, gcd (500,625))
```

ans =
125.00

The least common multiple of 1000,500 and 625:

```
>> lcm (1000, lcm (500,625))
```

ans =
5000.00

Alternative bases

MATLAB allows you to work with numbers to any base, as long as the extended symbolic math Toolbox is available. It also allows you to express all kinds of numbers in different bases. This is implemented via the following functions:

dec2base (decimal, n_base)	Converts the specified decimal number to the new base n_base.
base2dec(number,b)	Converts the given number in base b to a decimal number.
dec2bin (decimal)	Converts the specified decimal number to base 2 (binary).
dec2hex (decimal)	Converts the specified decimal number to base 16 (hexadecimal).
bin2dec (binary)	Converts the specified binary number to decimal.
hex2dec (hexadecimal)	Converts the specified base 16 number to decimal.

Below are some examples.
Represent in base 10 the base 2 number 100101.

>> base2dec('100101',2)

ans =
37.00

Represent in base 10 the hexadecimal number FFFFAA00.

```
>> base2dec ('FFFFAAO', 16)
```

ans =
268434080.00

Represent the result of the base 16 operation FFFAA2+FF-1 in base 10.

```
>> base2dec('FFFAA2',16) + base2dec('FF',16)-1
```

ans =
16776096.00

Real numbers

As is well known, the set of real numbers is the disjoint union of the set of rational numbers and the set of irrational numbers. A rational number is a number of the form p / q, where p and q are integers. In other words, the rational numbers are those numbers that can be represented as a quotient of two integers. The way in which MATLAB treats rational numbers differs from the majority of calculators. If we ask a calculator to calculate the sum $1 / 2+1 / 3+1 / 4$, most will return something like 1.0833, which is no more than an approximation of the result.

The rational numbers are ratios of integers, and MATLAB can work with them in exact mode, so the result of an arithmetic expression involving rational numbers is always given precisely as a ratio of two integers. To enable this, activate the rational format with the command format rat. If the reader so wishes, MATLAB can also return the results in decimal form by activating any other type of format instead (e.g. format short or format long). MATLAB evaluates the above mentioned sum in exact mode as follows:

```
>> format rat
>> 1/2 + 1/3 + 1/4
```

ans =

13/12

Unlike calculators, MATLAB ensures its operations with rational numbers are accurate by maintaining the rational numbers in the form of ratios of integers. In this way, calculations with fractions are not affected by rounding errors, which can become very serious, as evidenced by the theory of errors. Note that, once the rational format is enabled, when MATLAB adds two rational numbers the result is returned in symbolic form as a ratio of integers, and operations with rational numbers will continue to be exact until an alternative format is invoked.

A floating point number, or a number with a decimal point, is interpreted as exact if the rational format is enabled. Thus a floating point expression will be interpreted as an exact rational expression while any irrational numbers in a rational expression will be represented by an appropriate rational approximation.

```
>> format rat
>> 10/23 + 2.45/44
```

ans =

The other fundamental subset of the real numbers is the set of irrational numbers, which have always created difficulties in numerical calculation due to their special nature. The impossibility of representing an irrational number accurately in numeric mode (using the ten digits from the decimal numbering system) is the cause of most of the problems. MATLAB represents the results with an accuracy which can be set as required by the user. An irrational number, by definition, cannot be represented exactly as the ratio of two integers. If ordered to calculate the square root of 17 , by default MATLAB returns the number 5.1962.

>> sqrt (27)

ans $=$
5.1962

MATLAB incorporates the following common irrational constants and notions:

$\mathbf{p i}$	The number $\pi=3.1415926 \ldots$
$\mathbf{e x p}(\mathbf{1})$	The number $e=2.7182818 . .$.
Inf	Infinity (returned, for example, when it encounters 1/0).
NaN	Uncertainty (returned, for example, when it encounters 0/0).
realmin	Returns the smallest possible normalized floating-point number in IEEE double precision.
realmax	Returns the largest possible finite floating-point number in IEEE double precision.

The following examples illustrate how MATLAB outputs these numbers and notions.

```
>> long format
>> pi
ans =
3.14159265358979
>> exp (1)
ans =
2.71828182845905
>> 1/0
```

Warning: Divide by zero.
ans =
Inf
>> 0/0
Warning: Divide by zero.
ans =
NaN

>> realmin

ans $=$
2. $225073858507201 e-308$
>> realmax
ans =

1. $797693134862316 \mathrm{e}+308$

Functions with real arguments

The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. In turn, the set of rational numbers has the set of integers as a subset. All functions applicable to real numbers are also valid for integers and rational numbers. MATLAB provides a full range of predefined functions, most of which are discussed in the subsequent chapters of this book. Within the group of functions with real arguments offered by MATLAB, the following are the most important:

Trigonometric functions

Function	Inverse
$\sin (x)$	$\operatorname{asin}(x)$
$\cos (x)$	$\operatorname{acos}(x)$
$\tan (x)$	$\operatorname{atan}(x)$ and $\operatorname{atan} 2(y, x)$
$\csc (x)$	$\operatorname{acsc}(x)$
$\sec (x)$	$\operatorname{asec}(x)$
$\cot (x)$	$\operatorname{acot}(x)$

Hyperbolic functions

Function	Inverse
$\sinh (x)$	$\operatorname{asinh}(x)$
$\cosh (x)$	$\operatorname{acosh}(x)$
$\tanh (x)$	$\operatorname{atanh}(x)$
$\operatorname{csch}(x)$	$\operatorname{acsch}(x)$
$\operatorname{sech}(x)$	$\operatorname{asech}(x)$
$\operatorname{coth}(x)$	$\operatorname{acoth}(x)$

Exponential and logarithmic functions

Function	Meaning
$\boldsymbol{\operatorname { e x p } (x)}$	Exponential function in base $e\left(e^{\wedge} x\right)$.
$\boldsymbol{\operatorname { l o g } (\boldsymbol { x })}$	Base e logarithm of x.
$\boldsymbol{\operatorname { l o g } 1 0}(\boldsymbol{x})$	Base 10 logarithm of x.
$\boldsymbol{\operatorname { l o g } 2 (x)}$	Base 2 logarithm of x.
$\boldsymbol{\operatorname { p o w } 2 (x)}$	2 raised to the power x.
$\boldsymbol{\operatorname { s q r t } (\boldsymbol { x })}$	The square root of x.

Numeric variable-specific functions

Function	Meaning
$\mathbf{a b s}(\mathbf{x})$	The absolute value of x.
floor (x)	The largest integer less than or equal to x.
ceil (x)	The smaller integer greater than or equal to x.
round (x)	The closest integer to x.
fix (x)	Removes the fractional part of x.
rem (a, b)	Returns the remainder of the division of a by b.
$\boldsymbol{\operatorname { s i g n } (\mathbf { x })}$	Returns the sign of $x(1$ if $x>0,0$ if $x=0,-1$ if $x<0)$.

Here are some examples:

>> $\sin (p i / 2)$

ans =

1
>> asin (1)
ans =
1.57079632679490
>> $\log (\exp (1) \wedge 3)$
ans =
3.00000000000000

The function round is demonstrated in the following two examples:

```
>> round (2.574)
ans =
3
>> round (2.4)
ans =
2
The function ceil is demonstrated in the following two examples:
```

```
>> ceil (4.2)
```

>> ceil (4.2)
ans =
5
>> ceil (4.8)
ans =
5
The function floor is demonstrated in the following two examples:

```

\section*{>> floor (4.2)}
```

ans =
4
>> floor (4.8)
ans =
4
The fix function simply removes the fractional part of a real number:

```

\section*{>> fix (5.789)}
```

ans =
5

```

\section*{Complex numbers}

Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that \(i\) or \(j\) represents the key value in complex analysis, the imaginary number \(\sqrt{ }-1\). All the usual arithmetic operators can be applied to complex numbers, and there are also some specific functions which have complex arguments. Both the real and the imaginary part of a complex number can be a real number or a symbolic constant, and operations with them are always performed in exact mode, unless otherwise instructed or necessary, in which case an approximation of the result is returned. As the imaginary unit is represented by the symbol \(i\) or \(j\), the complex numbers are expressed in the form \(a+b i\) or \(a+b j\). Note that you don't need to use the product symbol (asterisk) before the imaginary unit:

\section*{>> \((1-5 i) *(1-i) /(-1+2 i)\)}
ans =
\(-1.6000+2.8000 i\)
>> format rat
>> \((1-5 i) *(1-i) /(-1+2 i)\)
ans =
\(-8 / 5+14 / 5 i\)

\section*{Functions with complex arguments}

Working with complex variables is very important in mathematical analysis and its many applications in engineering. MATLAB implements not only the usual arithmetic operations with complex numbers, but also various complex functions. The most important functions are listed below.

\section*{Trigonometric functions}
\begin{tabular}{ll}
\hline Function & Inverse \\
\hline \(\sin (z)\) & \(\boldsymbol{a s i n}(z)\) \\
\(\cos (z)\) & \(\boldsymbol{\operatorname { a c o s } ( z )}\) \\
\(\boldsymbol{\operatorname { t a n } ( z )}\) & \(\boldsymbol{a t a n}(z)\) and \(\operatorname{atan2}(\operatorname{imag}(z)\), real \((z))\) \\
\(\boldsymbol{\operatorname { c s c } ( z )}\) & \(\boldsymbol{\operatorname { a c s c } ( z )}\) \\
\(\boldsymbol{\operatorname { s e c } ( z )}\) & \(\boldsymbol{\operatorname { a s e c } ( z )}\) \\
\(\cot (z)\) & \(\boldsymbol{\operatorname { a c o t } ( z )}\) \\
\hline
\end{tabular}

\section*{Hyperbolic functions}
\begin{tabular}{ll}
\hline Function & Inverse \\
\hline \(\sinh (z)\) & \(\operatorname{asinh}(z)\) \\
\(\cosh (z)\) & \(\operatorname{acosh}(z)\) \\
\(\tanh (z)\) & \(\operatorname{atanh}(z)\) \\
\(\operatorname{csch}(z)\) & \(\operatorname{acsch}(z)\) \\
\(\operatorname{sech}(z)\) & \(\operatorname{asech}(z)\) \\
\(\operatorname{coth}(z)\) & \(\operatorname{acoth}(z)\) \\
\hline
\end{tabular}

\section*{Exponential and logarithmic functions}
\begin{tabular}{ll}
\hline Function & Meaning \\
\hline \(\boldsymbol{\operatorname { e x p } ( z )}\) & Exponential function in base \(e\left(e^{\wedge} z\right)\) \\
\(\boldsymbol{\operatorname { l o g } ( z )}\) & Base e logarithm of \(z\). \\
\(\boldsymbol{\operatorname { l o g } 1 0}(z)\) & Base 10 logarithm of \(z\). \\
\(\boldsymbol{\operatorname { l o g } 2 ( z )}\) & Base 2 logarithm of \(z\). \\
\(\boldsymbol{p o w 2}(z)\) & 2 to the power \(z\). \\
\(\boldsymbol{\operatorname { s q r t } ( z )}\) & The square root of \(z\). \\
\hline
\end{tabular}

Specific functions for the real and imaginary part
\begin{tabular}{ll}
\hline Function & Meaning \\
\hline floor \((z)\) & Applies the floor function to real(z) and \(\operatorname{imag}(z)\). \\
ceil \((z)\) & Applies the ceil function to real(z) and imag(z). \\
round (z) & Applies the round function to real(z) and imag(z). \\
fix (z) & Applies the fix function to real(z) and imag(z). \\
\hline
\end{tabular}

\section*{Specific functions for complex numbers}
\begin{tabular}{|c|c|}
\hline Function & Meaning \\
\hline abs (z) & The complex modulus of \(z\). \\
\hline \[
\text { angle ( } \mathrm{z} \text { ) }
\] & The argument of \(z\). \\
\hline conj (z) & The complex conjugate of \(z\). \\
\hline real (z) & The real part of \(z\). \\
\hline imag (z) & The imaginary part of \(z\). \\
\hline
\end{tabular}

Below are some examples of operations with complex numbers.
```

>> round(1.5-3.4i)
ans =
2 - 3i
>> real(i^i)
ans =
0.2079
>>(2+2i)^2/(-3-3*sqrt(3)*i)^90
ans =
0502e-085 - 1 + 7. 4042e-070i
>> sin (1 + i)
ans =
1.2985 + 0. 6350i

```

\section*{Elementary functions that support complex vector arguments}

MATLAB easily handles vector and matrix calculus. Indeed, its name, MAtrix LABoratory, already gives an idea of its power in working with vectors and matrices. MATLAB allows you to work with functions of a complex variable, but in addition this variable can even be a vector or a matrix. Below is a table of functions with complex vector arguments.
\begin{tabular}{|c|c|}
\hline \(\max (\mathrm{V})\) & The maximum component of \(V\). (max is calculated for complex vectors as the complex number with the largest complex modulus (magnitude), computed with max (abs(V)). Then it computes the largest phase angle with max(angle(x)), if necessary.) \\
\hline \(\min (\mathrm{V})\) & The minimum component of \(V\). (min is calculated for complex vectors as the complex number with the smallest complex modulus (magnitude), computed with min(abs(A)). Then it computes the smallest phase angle with min(angle(x)), if necessary.) \\
\hline mean (V) & Average of the components of \(V\). \\
\hline median (V) & Median of the components of \(V\). \\
\hline std (V) & Standard deviation of the components of \(V\). \\
\hline sort (V) & Sorts the components of V in ascending order. For complex entries the order is by absolute value and argument. \\
\hline sum (V) & Returns the sum of the components of \(V\). \\
\hline
\end{tabular}
(continued)
\begin{tabular}{ll} 
prod (V) & Returns the product of the components of \(V\), so, for example, \(n!=\operatorname{prod}(1: n)\). \\
cumsum (V) & Gives the cumulative sums of the components of \(V\). \\
cumprod (V) & Gives the cumulative products of the components of \(V\). \\
diff (V) & Gives the vector of first differences of \(V\left(V_{t}-V_{t-1}\right)\). \\
gradient (V) & Gives the gradient of \(V\). \\
del2 (V) & Gives the Laplacian of \(V\) (5-point discrete). \\
\(\mathbf{f f t ~ ( V ) ~}\) & Gives the discrete Fourier transform of \(V\). \\
fft2 (V) & Gives the two-dimensional discrete Fourier transform of \(V\). \\
ifft (V) & Gives the inverse discrete Fourier transform of \(V\). \\
ifft2 (V) & Gives the inverse two-dimensional discrete Fourier transform of \(V\).
\end{tabular}

These functions also support a complex matrix as an argument, in which case the result is a vector of column vectors whose components are the results of applying the function to each column of the matrix.

Here are some examples:
```

>> V = 2:7, W = [5 + 3i 2-i 4i]
V =
2
W =
2.0000-1.0000i 0 + 4.0000i 5.0000 + 3.0000i
>> diff(V),diff(W)
ans =
1
ans =
-2.0000 + 5.0000i 5.0000-1.0000i
>> cumprod(V),cumsum(V)
ans =
2 6 6 24 120
ans =
2

```

CHAPTER 2 MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
>> cumsum( \(W\) ), mean( \(W\) ), std( \(W\) ), sort( \(W\) ), sum( \(W\) )
ans =
\(2.0000-1.0000 i \quad 2.0000+3.0000 i \quad 7.0000+6.0000 i\)
ans =
\(2.3333+2.0000 i\)
ans =
3.6515
ans =
\(2.0000-1.0000 i \quad 0+4.0000 i \quad 5.0000+3.0000 i\)
ans =
\(7.0000+6.0000 i\)
>> mean(V), std(V), sort(V), sum(V)
ans =
4.5000
ans =
1.8708
ans =
\(\begin{array}{llllll}2 & 3 & 4 & 5 & 6 & 7\end{array}\)
ans =

27
>> fft(W), ifft(W), fft2(W)
ans =
\(7.0000+6.0000 i \quad 0.3660-0.1699 i-1.3660-8.8301 i\)
ans \(=\)
\(2.3333+2.0000 i-0.4553-2.9434 i \quad 0.1220-0.0566 i\)
ans \(=\)
\(7.0000+6.0000 i 0.3660-0.1699 i-1.3660-8.8301 i\)

\section*{Elementary functions that support complex matrix arguments}

\section*{Trigonometric}
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{\operatorname { s i n }}(\mathrm{z})\) & Sine function \\
\hline \(\sinh (\mathrm{z})\) & Hyperbolic sine function \\
\hline \(\operatorname{asin}(\mathrm{z})\) & Arcsine function \\
\hline \(\operatorname{asinh}(\mathrm{z})\) & Hyperbolic arcsine function \\
\hline \(\cos (\mathrm{z})\) & Cosine function \\
\hline \(\cosh (\mathrm{z})\) & Hyperbolic cosine function \\
\hline \(\boldsymbol{\operatorname { a c o s }}(\mathrm{z})\) & Arccosine function \\
\hline \(\operatorname{acosh}(\mathrm{z})\) & Hyperbolic arccosine function \\
\hline \(\boldsymbol{\operatorname { t a n }}(\mathrm{z})\) & Tangent function \\
\hline \(\tanh (\mathrm{z})\) & Hyperbolic tangent function \\
\hline \(\operatorname{atan}(\mathrm{z})\) & Arctangent function \\
\hline \(\operatorname{atan} 2(\mathrm{z})\) & Fourth quadrant arctangent function \\
\hline \(\operatorname{atanh}(\mathrm{z})\) & Hyperbolic arctangent function \\
\hline \(\boldsymbol{\operatorname { s e c }}(\mathrm{z})\) & Secant function \\
\hline \(\boldsymbol{\operatorname { s e c h }}(\mathrm{z})\) & Hyperbolic secant function \\
\hline \(\operatorname{asec}(\mathrm{z})\) & Arccosecant function \\
\hline asech (z) & Hyperbolic arccosecant function \\
\hline \(\mathbf{c s c}(\mathrm{z})\) & Cosecant function \\
\hline \(\boldsymbol{\operatorname { c s c h }}(\mathrm{z})\) & Hyperbolic cosecant function \\
\hline \(\operatorname{acsc}(\mathrm{z})\) & Arccosecant function \\
\hline \(\operatorname{acsch}(\mathrm{z})\) & Hyperbolic arccosecant function \\
\hline \(\cot (\mathrm{z})\) & Cotangent function \\
\hline \(\operatorname{coth}(\mathrm{z})\) & Hyperbolic cotangent function \\
\hline \(\boldsymbol{\operatorname { a c o t }}(\mathrm{z})\) & Arccotangent function \\
\hline acoth (z) & Hyperbolic arccotangent function \\
\hline \multicolumn{2}{|l|}{Exponential} \\
\hline \(\boldsymbol{\operatorname { e x p }}(\mathrm{z})\) & Base e exponential function \\
\hline \(\boldsymbol{\operatorname { l o g }}(\mathrm{z})\) & Natural logarithm function (base e) \\
\hline \(\log 10\) (z) & Base 10 logarithm function \\
\hline sqrit (z) & Square root function \\
\hline
\end{tabular}
(continued)
(continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Complex} \\
\hline abs (z) & Modulus or absolute value \\
\hline angle (z) & Argument \\
\hline conj (z) & Complex conjugate \\
\hline imag (z) & Imaginary part \\
\hline real (z) & Real part \\
\hline \multicolumn{2}{|l|}{Numerical} \\
\hline fix (z) & Removes the fractional part \\
\hline floor (z) & Rounds to the nearest lower integer \\
\hline ceil (z) & Rounds to the nearest greater integer \\
\hline round ( z ) & Performs common rounding \\
\hline \(\operatorname{rem}(\mathrm{z} 1, \mathrm{z} 2)\) & Returns the remainder of the division of z1 by z2 \\
\hline sign (z) & The sign of z \\
\hline \multicolumn{2}{|l|}{Matrix} \\
\hline \(\operatorname{expm}(\mathrm{Z})\) & Matrix exponential function by default \\
\hline \(\operatorname{expm1} 1 \mathrm{Z})\) & Matrix exponential function in M-file \\
\hline \(\operatorname{expm} 2(\mathrm{Z})\) & Matrix exponential function via Taylor series \\
\hline expm3 (Z) & Matrix exponential function via eigenvalues \\
\hline \(\operatorname{logm}(Z)\) & Logarithmic matrix function \\
\hline sqrtm ( Z ) & Matrix square root function \\
\hline funm(Z,'function') & Applies the function to the array \(Z\) \\
\hline
\end{tabular}

Here are some examples:
>> \(A=\left[\begin{array}{ll}789 ; 123 ; 456], B=[1+2 i ~ 3+i ; 4+i, i]\end{array}\right.\)
\(A=\)
\begin{tabular}{lll}
7 & 8 & 9 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{tabular}
\(B=\)
\begin{tabular}{rr}
\(1.0000+2.0000 i\) & \(3.0000+1.0000 i\) \\
\(4.0000+1.0000 i\) & \(0+1.0000 i\)
\end{tabular}
```

>> sin(A), sin(B), exp(A), exp(B), log(B), sqrt(B)
ans =

0.6570	0.9894	0.4121
0.8415	0.9093	0.1411
-0.7568	-0.9589	-0.2794

ans =

$3.1658+1.9596 i$	$0.2178-1.1634 i$
$-1.1678-0.7682 i$	$0+1.1752 i$

-1.1678 - 0.7682i
0 + 1.1752i
ans =
1.0e+003 *

1.0966	2.9810	8.1031
0.0027	0.0074	0.0201
0.0546	0.1484	0.4034

ans =
-1.1312 + 2.4717i 10.8523 +16.9014i
29.4995 +45.9428i 0.5403 + 0.8415i
ans =
0.8047 + 1.1071i 1.1513 + 0.3218i
1.4166 + 0.2450i
0 + 1.5708i
ans =
1.2720 + 0.7862i 1.7553 + 0.2848i
2.0153 + 0.2481i
0.7071 + 0.7071i

```

The exponential functions, square root and logarithm used above apply to the array elementwise and have nothing to do with the matrix exponential and logarithmic functions that are used below.

\section*{>> \(\operatorname{expm}(B), \operatorname{logm}(A), \operatorname{abs}(B), i m a g(B)\)}
ans =
\(-27.9191+14.8698 \mathrm{i}-20.0011+12.0638 \mathrm{i}\)
\(-24.7950+17.6831 i-17.5059+14.0445 i\)
\begin{tabular}{lrr}
11.9650 & 12.8038 & -19.9093 \\
-21.7328 & -22.1157 & 44.6052 \\
11.8921 & 12.1200 & -21.2040
\end{tabular}
ans \(=\)
2.23613 .1623
4.12311 .0000
ans =

21
11
>> fix(sin(B)), ceil(log(A)), sign(B), rem(A,3*ones(3))
ans =
\(3.0000+1.0000 i\)
\(0-1.0000 i\)
-1.0000
0 + 1.0000i
ans =

233
\(\begin{array}{lll}0 & 1 & 2 \\ 2 & 2 & 2\end{array}\)
22
ans =
\(0.4472+0.8944 i \quad 0.9487+0.3162 i\)
\(0.9701+0.2425 i \quad 0+1.0000 i\)
ans =

102
100
100

\section*{Random numbers}

MATLAB can easily generate (pseudo) random numbers. The function rand generates uniformly distributed random numbers and the function randn generates normally distributed random numbers. The most interesting features of MATLAB's random number generator are presented in the following table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
rand \\
rand ( \(n\) )
\end{tabular}}} & \multicolumn{4}{|l|}{Returns a uniformly distributed r} \\
\hline & & \multicolumn{4}{|l|}{Returns an array of size \(n \times n\) who numbers from the interval [0,1].} \\
\hline rand (1 & n, n) & \multicolumn{4}{|l|}{Returns an array of dimension \(m\) decimal numbers from the interv} \\
\hline rand ( & ze (a)) & \multicolumn{4}{|l|}{Returns an array of the same size distributed random decimal num} \\
\hline rand (' & seed') & \multicolumn{4}{|l|}{Returns the current value of the un} \\
\hline rand('s & eed',n) & \multicolumn{4}{|l|}{Assigns to \(n\) the current value of t} \\
\hline randn & & \multicolumn{4}{|l|}{Returns a normally distributed rand} \\
\hline randn & & \multicolumn{4}{|l|}{Returns an array of dimension \(n\) decimal numbers (mean 0 and \(v\)} \\
\hline randn & (m, n) & \multicolumn{4}{|l|}{Returns an array of dimension \(m\) decimal numbers (mean 0 and \(v\)} \\
\hline randn & (size (a)) & \multicolumn{4}{|l|}{Returns an array of the same size distributed random decimal num} \\
\hline randn & ('seed') & \multicolumn{4}{|l|}{Returns the current value of the n} \\
\hline randn( & 'seed',n) & \multicolumn{4}{|l|}{Assigns to \(n\) the current value of} \\
\hline \multicolumn{6}{|c|}{Here are some examples:} \\
\hline \multicolumn{6}{|l|}{>> [rand, rand (1), randn, randn (1)]} \\
\hline \multicolumn{6}{|l|}{ans =} \\
\hline 0.9501 & 0.2311 & -0.4326 & -1.6656 & & \\
\hline \multicolumn{6}{|l|}{>> [rand(2), randn(2)]} \\
\hline \multicolumn{6}{|l|}{ans =} \\
\hline 0.6068 & 0.8913 & & 0.1253 & & -1.146 \\
\hline 0.4860 & 0.7621 & & 0.2877 & & 1.19 \\
\hline \multicolumn{6}{|l|}{>> [rand \((2,3), \operatorname{randn}(2,3)]\)} \\
\hline \multicolumn{6}{|l|}{ans =} \\
\hline 0.3529 & 0.00990 .2 & 28-0.1364 & 1.0668 & -0 & . 0956 \\
\hline 0.8132 & 0.13890 .1 & 870.1139 & 0.0593 & -0 & . 8323 \\
\hline
\end{tabular}

\section*{Operators}

MATLAB features arithmetic, logical, relational, conditional and structural operators.

\section*{Arithmetic operators}

There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved are presented in the following table.
\begin{tabular}{ll}
\hline Operator & Role played \\
\hline+ & Sum of scalars, vectors, or matrices \\
- & Subtraction of scalars, vectors, or matrices \\
\(*\) & Product of scalars or arrays \\
.\(*\) & Product of scalars or vectors \\
। & \(A \backslash B=\) inv \((A)^{*} B\), where \(A\) and \(B\) are matrices \\
. \(\mid\) & \(A . \backslash B=[B(i, j) / A(i, j)]\), where \(A\) and \(B\) are vectors \([\operatorname{dim}(A)=\operatorname{dim}(B)]\) \\
\(/\) & Quotient, or \(B / A=B^{*}\) inv \((A)\), where \(A\) and \(B\) are matrices \\
.\(/\) & \(A / B=[A(i, j) / b(i, j)]\), where \(A\) and \(B\) are vectors \([\operatorname{dim}(A)=\operatorname{dim}(B)]\) \\
\(\wedge\) & Power of a scalar or matrix \(\left(M^{p}\right)\) \\
.\(\wedge\) & Power of vectors \(\left(A . \wedge B=\left[A(i, j)^{B(i, j)], \text { for vectors } A \text { and } B)}\right.\right.\) \\
\hline
\end{tabular}

Simple mathematical operations between scalars and vectors apply the scalar to all elements of the vector according to the defined operation, and simple operators between vectors are performed element by element. Below is the specification of these operators:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{a}=\{\mathrm{a} 1, \mathrm{a} 2, . . . \mathrm{an}\), \(\mathrm{b}=\{\mathrm{b} 1, \mathrm{~b} 2, \ldots, \mathrm{bn}\}, \mathrm{c}=\) scalar} \\
\hline \(\mathbf{a + c}=[\mathbf{a 1}+\mathbf{c}, \mathrm{a} 2+\mathrm{c}, \ldots, \mathrm{an}+\mathrm{c}]\) & Sum of a scalar and a vector \\
\hline \(\mathbf{a}^{*} \mathbf{c}=\left[\mathbf{a} 1^{*} \mathbf{c}, \mathbf{a} 2 * \mathbf{c}, \ldots, \mathrm{an}^{*} \mathbf{c}\right]\) & Product of a scalar and a vector \\
\hline  & Sum of two vectors \\
\hline  & Product of two vectors \\
\hline a. \(/ \mathrm{b}=\left[\begin{array}{llll}\text { al/bl } & \mathbf{a} 2 / \mathrm{b} 2 \ldots . . & \mathrm{an} / \mathrm{bn}\end{array}\right]\) & Ratio to the right of two vectors \\
\hline a. \(\backslash \mathrm{b}=\left[\begin{array}{l}\text { al } \backslash \mathrm{b} 1 \\ \mathbf{a} 2 \backslash \mathrm{~b} 2 \ldots \\ \text { an } \backslash \mathrm{bn}\end{array}\right]\) & Ratio to the left of two vectors \\
\hline a. \(\wedge c=[a 1 \wedge c, a 2 \wedge c, \ldots, a n \wedge c]\) & Vector to the power of a scalar \\
\hline c. \(\wedge^{\text {a }}=[\mathbf{c} \wedge \mathrm{al}, \mathrm{c} \wedge\) a2, \(\ldots, \mathrm{c} \wedge\) an \(]\) & Scalar to the power of a vector \\
\hline  & Vector to the power of a vector \\
\hline
\end{tabular}

It must be borne in mind that the vectors must be of the same length and that in the product, quotient and power the first operand must be followed by a point.

The following example involves all of the above operators.
>> \(X=[5,4,3] ; Y=[1,2,7] ; a=X+Y, b=X-Y, c=x * Y, d=2 \|^{*} X, \ldots\)
\(e=2 / X, f=2 . V Y, ~\)
\(a=\)
\(6 \quad 6 \quad 10\)
\(b=\)
\(\begin{array}{lll}4 & 2 & -4\end{array}\)
C =
\(5 \quad 8 \quad 21\)
\(d=\)
1086
e =
\(0.4000 \quad 0.5000 \quad 0.6667\)
\(f=\)
\(0.5000 \quad 1.0000 \quad 3.5000\)
g =
\(5.0000 \quad 2.0000 \quad 0.4286\)
\(\mathrm{h}=\)
\(5.0000 \quad 2.0000 \quad 0.4286\)
i =
25169
j =
32168
k =
5162187

The above operations are all valid since in all cases the variable operands are of the same dimension, so the operations are successfully carried out element by element. For the sum and the difference there is no distinction between vectors and matrices, as the operations are identical in both cases.

The most important operators for matrix variables are specified below:
\(\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, \mathbf{A} * \mathbf{B} \quad\) Addition, subtraction and product of matrices.
\begin{tabular}{ll}
\(\mathbf{A} \backslash \mathbf{B}\) & \begin{tabular}{l} 
If \(A\) is square, \(A \backslash B=\operatorname{inv}(A){ }^{*} B\). If \(A\) is not square, \(A \backslash B\) is the \\
solution, in the sense ofleast-squares, of the system \(A X=B\).
\end{tabular} \\
\(\mathbf{B / A}\) & Coincides with \(\left(A^{\prime} \backslash B^{\prime}\right)^{\prime}\). \\
\(\mathbf{A}^{\mathbf{n}}\) & Coincides with \(A^{*} A^{*} A^{*} \ldots{ }^{*} A\) n times ( \(n\) integer). \\
\(\mathbf{p}^{\mathbf{A}}\) & Performs the power operation only ifp is a scalar. \\
\hline
\end{tabular}

Here are some examples:
```

>> X = [5,4,3]; Y = [1,2,7]; l = X'* Y, m = X * Y ', n = 2 * X, o = X / Y, P = Y\X
l =
51035
4 8 28
3 6 21
m =
34
n =
1086
O =
0.6296
p =
0 0 0
0 0 0
0.7143 0.5714 0.4286

```

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not element by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the vector operations \(X\). \({ }^{*} Y\) and \(X\). \({ }^{*} Y^{\prime}\) make no sense, since they involve vectors of different dimensions. Similarly, the matrix operations \(X^{*} Y, 2 / X, 2 \backslash Y, X^{\wedge} 2,2^{\wedge} X\) and \(X^{\wedge} Y\) make no sense, again because of a conflict of dimensions in the arrays.

Here are some more examples of matrix operators.
```

>>M = [1,2,3;1,0,2;7,8,9]

```
\(M=\)

123
102
789
```

>> B = inv (M),C = M^ 2, D = M ^(1/2), E = 2^M
B =

-0.8889	0.3333	0.2222
0.2778	-0.6667	0.0556
0.4444	0.3333	-0.1111

C =
24 26 34
15 18 21
78 86 118
D =

$0.5219+0.8432 i$	$0.5793-0.0664 i$	$0.7756-0.2344 i$
$0.3270+0.0207 i$	$0.3630+1.0650 i$	$0.4859-0.2012 i$
$1.7848-0.5828 i$	$1.9811-0.7508 i$	$2.6524+0.3080 i$

E =

1. Oe + 003 *
0.8626 0.9568 1.2811
0.5401 0.5999 0.8027
2.9482 3.27254.3816
```

\section*{Relational operators}

MATLAB also provides relational operators. Relational operators perform element by element comparisons between two matrices and return an array of the same size whose elements are zero if the corresponding relationship is true, or one if the corresponding relation is false. The relational operators can also compare scalars with vectors or matrices, in which case the scalar is compared to all the elements of the array. Below is a table of these operators.
\begin{tabular}{ll}
\(<\) & Less than (for complex numbers this applies only to the real parts) \\
\(<=\) & Less than or equal (only applies to real parts of complex numbers) \\
\(>\) & Greater than (only applies to real parts of complex numbers) \\
\(>=\) & Greater than or equal (only applies to real parts of complex numbers) \\
\(\mathbf{x}==\mathbf{y}\) & Equality (also applies to complex numbers) \\
\(\mathbf{x} \sim=\mathbf{y}\) & Inequality (also applies to complex numbers)
\end{tabular}

\section*{Logical operators}

MATLAB provides symbols to denote logical operators. The logical operators shown in the following table offer a way to combine or negate relational expressions.
\begin{tabular}{ll}
\(\sim \mathbf{A}\) & Logical negation \((N O T)\) or the complement of \(A\). \\
\(\mathbf{A \& B}\) & Logical conjunction \((A N D)\) or the intersection of \(A\) and \(B\). \\
\(\mathbf{A} \mid \mathbf{B}\) & Logical disjunction \((O R)\) or the union of \(A\) and \(B\). \\
XOR (A, B) & \begin{tabular}{l} 
Exclusive OR \((X O R)\) or the symmetric difference of \(A\) and \(B\) \\
(takes the value 1 if A or \(B\), but not both, are 1\().\)
\end{tabular} \\
\hline
\end{tabular}

Here are some examples:
```

>> A = 2:7;P =(A>3) \&(A<6)
P=
0

```

Returns 1 when the corresponding element of \(A\) is greater than 3 and less than 6 , and returns 0 otherwise.
```

>>X = 3* ones (3.3); X > = [7 8 9; 4 5 6 ; 1 2 3]
ans =
00
0 0
11

```

The elements of the solution array corresponding to those elements of \(X\) which are greater than or equal to the equivalent entry of the matrix \([789 ; 456 ; 123]\) are assigned the value 1 . The remaining elements are assigned the value 0.

\section*{Logical functions}

MATLAB implements logical functions whose output can take the value true (1) or false (0). The following table shows the most important logical functions.
\begin{tabular}{|c|c|}
\hline exist(A) & Checks if the variable or function exists (returns 0 if A does not exist and a number between 1 and 5, depending on the type, if it does exist). \\
\hline any (V) & Returns 0 if all elements of the vector V are null and returns 1 if some element of V is non-zero. \\
\hline any(A) & Returns 0 for each column of the matrix A with all null elements and returns 1 for each column of the matrix A which has non-null elements. \\
\hline all(V) & Returns 1 if all the elements of the vector V are non-null and returns 0 if some element of V is null. \\
\hline all(A) & Returns 1 for each column of the matrix A with all non-null elements and returns 0 for each column of the matrix A with at least one null element. \\
\hline
\end{tabular}
(continued)
\begin{tabular}{|c|c|}
\hline find (V) & Returns the places (or indices) occupied by the non-null elements of the vector V. \\
\hline isnan (V) & Returns 1 for the elements of \(V\) that are indeterminate and returns 0 for those that are not. \\
\hline isinf (V) & Returns 1 for the elements of \(V\) that are infinite and returns 0 for those that are not. \\
\hline isfinite (V) & Returns 1 for the elements of V that are finite and returns 0 for those that are not. \\
\hline isempty (A) & Returns 1 if \(A\) is an empty array and returns 0 otherwise (an empty array is an array such that one of its dimensions is 0). \\
\hline issparse (A) & Returns 1 if \(A\) is a sparse matrix and returns 0 otherwise. \\
\hline isreal (V) & Returns 1 if all the elements of \(V\) are real and 0 otherwise. \\
\hline isprime (V) & Returns 1 for all elements of \(V\) that are prime and returns 0 for all elements of \(V\) that are not prime. \\
\hline islogical (V) & Returns 1 if V is a logical vector and 0 otherwise. \\
\hline isnumeric (V) & Returns 1 if V is a numeric vector and 0 otherwise. \\
\hline ishold & Returns 1 if the properties of the current graph are retained for the next graph and only new elements will be added and 0 otherwise. \\
\hline isieee & Returns 1 if the computer is capable of IEEE standard operations. \\
\hline isstr (S) & Returns 1 if \(S\) is a string and 0 otherwise. \\
\hline ischart (S) & Returns 1 if \(S\) is a string and 0 otherwise. \\
\hline isglobal (A) & Returns 1 if A is a global variable and 0 otherwise. \\
\hline isletter (S) & Returns 1 if S is a letter of the alphabet and 0 otherwise. \\
\hline isequal ( \(A, B\) ) & Returns 1 if the matrices or vectors \(A\) and \(B\) are equal, and 0 otherwise. \\
\hline ismember(V, W) & Returns 1 for every element of V which is in W and 0 for every element V that is not in W. \\
\hline
\end{tabular}

Below are some examples using the above defined logical functions.
```

>> V=[1,2,3,4,5,6,7,8,9], isprime(V), isnumeric(V), all(V), any(V)
V =
1 1}2
ans =
0
ans =
1
ans =

```
> B=[Inf, -Inf, pi, NaN], isinf(B), isfinite(B), isnan(B), isreal(B)
```

$B=$
Inf - Inf 3.1416 NaN
ans =
1100
ans =
0010
ans =
0001
ans =
1
>> ismember $([1,2,3],[8,12,1,3]), A=[2,0,1] ; B=[4,0,2]$; isequal ($2 A * B$)
ans =
101
ans =
1

EXERCISE 2-1

Find the number of ways of choosing 12 elements from 30 without repetition, the remainder of the division of 2^{134} by 3 , the prime decomposition of 18900 , the factorial of 200 and the smallest number N which when divided by $16,24,30$ and 32 leaves remainder 5.
>> factorial (30) / (factorial (12) * factorial(30-12))
ans =
$8.6493 e+007$

The command vpa is used to present the exact result.

```
>> vpa 'factorial (30) / (factorial (12) * factorial(30-12))' 15
ans =
86493225.
>> rem(2^134,3)
ans =
0
>> factor (18900)
ans =
```



```
>> factorial (100)
ans =
9. 3326e + 157
The command vpa is used to present the exact result.
>> vpa ' factorial (100)' 160
ans =
933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761
565182862536979208272237582511852109168640000000000000000000000000.
```

$N-5$ is the least common multiple of $16,24,30$ and 32.

```
>> lcm (lcm (16.24), lcm (30,32))
```

ans =
480
Then $N=480+5=485$.

EXERCISE 2-2

In base 5 find the result of the operation defined by a25aaff ${ }_{16}+6789 a^{2} a_{12}+35671_{8}+1100221_{3}-1250$. In base 13 find the result of the operation $\left(666551_{7}\right)^{*}\left(\right.$ aa199800a $\left.{ }_{11}\right)+\left(\right.$ fffaaa125 $\left.{ }_{16}\right) /\left(33331_{4}+6\right)$.
The result of the first operation in base 10 is calculated as follows:

```
>> base2dec('a25aaf6',16) + base2dec('6789aba',12) +...
base2dec('35671',8) + base2dec('1100221',3)-1250
ans =
190096544
We then convert this to base 5:
>> dec2base (190096544,5)
ans =
342131042134
```

Thus, the final result of the first operation in base 5 is 342131042134 .
The result of the second operation in base 10 is calculated as follows:

```
>> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)
ans =
2. 7537e + 014
```

We now transform the result obtained into base 13.

```
>> dec2base (275373340490852,13)
```

ans $=$

BA867963C1496

EXERCISE 2-3

In base 13, find the result of the following operation:
$\left(666551_{7}\right)^{\star}\left(\right.$ aa199800 $\left.a_{11}\right)+\left(\right.$ fffaaa125 $\left.{ }_{16}\right) /\left(33331_{4}+6\right)$.
First, we perform the operation in base 10:
A more direct way of doing all of the above is:

```
>> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)
ans =
2. 753733404908515e + 014
```

We now transform the result obtained into base 13.
>> dec2base (275373340490852,13)
ans $=$
BA867963C1496

EXERCISE 2-4

Given the complex numbers $X=2+2 i$ and $Y=-3-3$ sqrit(3)i, calculate $Y^{3} X^{2} / Y^{90}, Y^{1 / 2}, Y^{3 / 2}$ and $\ln (X)$.

```
>> X=2+2*i; Y=-3-3*sqrt(3)*i;
>) Y^3
ans =
2 1 6
>> X ^2 / Y ^ 90
ans =
050180953422426e-085-1 + 7. 404188256695968e-070i
>> sqrt (Y)
ans =
1.22474487139159 - 2.12132034355964i
>> sqrt(Y^3)
```

ans =
14.69693845669907
>) $\log (X)$
ans =
$1.03972077083992+0.78539816339745 i$

EXERCISE 2-5

Calculate the value of the following operations with complex numbers:
$\frac{i^{8}-i^{-8}}{3-4 i}+1, i^{\sin (1+i)},(2+\operatorname{In}(i))^{\frac{1}{i}},(1+i)^{i}, i^{\ln (1+i)},(1+\sqrt{3}) i^{1-i}$
>> ($\left.i^{\wedge} 8-i^{\wedge}(-8)\right) /\left(3-4^{*} i\right)+1$
ans =

1
>> $\mathbf{i n}^{\wedge}(\sin (1+i))$
ans =
$-0.16665202215166+0.32904139450307 i$
>> $(2+\log (i))^{\wedge}(1 / i)$
ans =
1.15809185259777 - $1.56388053989023 i$
>> $(1+i)^{\wedge} \mathbf{i}$
ans =
$0.42882900629437+0.15487175246425 i$
>> $i^{\wedge}(\log (1+i))$
ans =
$0.24911518828716+0.15081974484717 i$
>> (1+sqrt(3)*i)^(1-i)
ans =
$5.34581479196611+1.97594883452873 i$

EXERCISE 2-6

Calculate the real part, imaginary part, modulus and argument of each of the following expressions:

```
    i}\mp@subsup{}{}{3i},(1+\sqrt{}{3})\mp@subsup{i}{}{1-i},\mp@subsup{i}{}{\mp@subsup{i}{}{i}},\mp@subsup{i}{}{i
>> Z1 = i ^ 3 * i; Z2 = (1 + sqrt (3)* i) ^(1-i); Z3 =(i^i) ^ i;Z4 = i ^ i;
>> format short
>> real ([[\begin{array}{llll}{Z2}&{Z3}&{Z4])}\end{array})
ans =
1.0000 5.3458 0.0000 0.2079
>> imag ([{Z1 Z2 Z3 Z4])
ans =
0 1.9759-1.0000 0
>> abs ([Z1 Z2 Z3 Z4])
ans =
1.0000 5.6993 1.0000 0.2079
>> angle ([\begin{array}{lll}{Z2}&{Z3}&{Z4])}\end{array})
    ans =
    00.3541 - 1.5708 0
```


EXERCISE 2-7

Generate a square matrix of order 4 whose elements are uniformly distributed random numbers from $[0,1]$.
Generate another square matrix of order 4 whose elements are normally distributed random numbers from $[0,1]$.
Find the present generating seeds, change their value to $1 / 2$ and rebuild the two arrays of random numbers.

```
>> rand (4)
ans =
0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057
```


>> randn (4)

ans =

-0.4326	-1.1465	0.3273	-0.5883
-1.6656	1.1909	0.1746	2.1832
0.1253	1.1892	-0.1867	-0.1364
0.2877	-0.0376	0.7258	0.1139

>> rand ('seed')

ans =
931316785

```
>> randn ('seed')
```

```
ans =
```

931316785

```
>> randn ('seed', 1/2)
>> rand ('seed', 1/2)
>> rand (4)
```

ans =
0.21900 .93470 .03460 .0077
0.04700 .38350 .05350 .3834
0.67890 .51940 .52970 .0668
0.67930 .83100 .67110 .4175

>) randn (4)

ans =

1.1650	-0.6965	0.2641	1.2460
0.6268	1.6961	0.8717	-0.6390
0.0751	0.0591	-1.4462	0.5774
0.3516	1.7971	-0.7012	-0.3600

EXERCISE 2-8

Given the vector variables $\mathrm{a}=[\pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi]$ and $\mathrm{b}=[\mathrm{e}, 2 \mathrm{e}, 3 \mathrm{e}, 4 \mathrm{e}, 5 \mathrm{e}]$, calculate $\mathrm{c}=\sin (\mathrm{a})+\mathrm{b}, \mathrm{d}=\cos (\mathrm{a})$, $e=\ln (b), f=c^{*} d, g=c / d, h=d^{\wedge} 2, i=d \wedge 2-e \wedge 2$ and $j=3 d \wedge 3-2 e \wedge 2$.

```
 >> a = [pi, 2 * pi, 3 * pi, 4 * pi, 5 * pi],
b = [exp (1), 2* exp (1), 3 * exp (1), 4 * exp (1),5*exp(1)],
c=sin(a)+b,d=cos(a),e=log(b),f=c.*d,g=c./d,]
h=d.^2, i=d.^2-e.^2, j=3*d.^3-2*e.^2
a =
3.1416 6.2832 9.4248 12.5664 15.7080
b =
2.7183 5.4366 8.1548 10.8731 13.5914
C =
2.7183 5.4366 8.1548 10.8731 13.5914
d =
-1 
e =
1.0000 1.6931 2.0986 2.3863 2.6094
f=
-2.7183 5.4366-8.1548 10.8731-13.5914
g =
-2.7183 5.4366-8.1548 10.8731-13.5914
h =
1 1 1 1 1 1 1 
```

$i=$
$0-1.8667-3.4042-4.6944-5.8092$
j =
$-5.0000-2.7335-11.8083-8.3888-16.6183$

EXERCISE 2-9

Given a uniform random square matrix M of order 3 , obtain its inverse, its transpose and its diagonal.
Transform it into a lower triangular matrix (replacing the upper triangular entries by 0) and rotate it 90 degrees counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements. Extract the subarray whose diagonal elements are at ${ }_{11}$ and ${ }_{22}$ and also remove the subarray whose diagonal elements are at ${ }_{11}$ and ${ }_{33}$.

>		
	M=rand(3)	
$M=$		
0.6868	0.8462	0.6539
0.5890	0.5269	0.4160
0.9304	0.0920	0.7012

1> $A=i n v(M)$

$A=$

-4.1588	6.6947	-0.0934
0.3255	1.5930	-1.2487
5.4758	-9.0924	1.7138

>> $B=M$ '
$B=$

0.6868	0.5890	0.9304
0.8462	0.5269	0.0920
0.6539	0.4160	0.7012

1> V=diag(M)

$\mathrm{V}=$
0.6868
0.5269
0.7012

```
>> TI=tril(M)
TI =
0.6868 0 0
0.5890 0.5269 0
0.9304 0.0920 0.7012
>> TS=triu(M)
TS =
\begin{tabular}{lll}
0.6868 & 0.8462 & 0.6539 \\
0 & 0.5269 & 0.4160 \\
0 & 0 & 0.7012
\end{tabular}
>> TR=rot90(M)
TR =
0.6539 0.4160 0.7012
0.8462 0.5269 0.0920
0.6868 0.5890 0.9304
>> s=M(1,1)+M(1,2)+M(1,3)
S =
2.1869
>> sd=M(1,1)+M(2,2)+M(3,3)
sd =
1.9149
>> SM=M(1:2,1:2)
SM =
0.6868 0.8462
0.5890 0.5269
>> SM1 = M([1 3], [1 3])
SM1 =
0.6868 0.6539
0.9304 0.7012
```


EXERCISE 2-10

Given the following complex square matrix M of order 3 , find its square, its square root and its base 2 and - 2 exponential:

$$
\begin{aligned}
& M=\left[\begin{array}{ccc}
i & 2 i & 3 i \\
4 i & 5 i & 6 i \\
7 i & 8 i & 9 i
\end{array}\right] \text {. } \\
& \text { >> } M=\left[\begin{array}{ll}
i & *^{*} \\
3 *_{i} & 4 *_{i} \\
*_{i} & 6 *_{i} ; ~ 7 *_{i} \\
8 *_{i} & 9 *_{i}
\end{array}\right] \\
& M=
\end{aligned}
$$

> $C=M^{\wedge} 2$
$C=$
$\begin{array}{lll}-30 & -36 & -42\end{array}$
$\begin{array}{lll}-66 & -81 & -96\end{array}$
$-102-126-150$
>> $D=M^{\wedge}(1 / 2)$
$D=$
$\begin{array}{lll}0.8570-0.2210 i & 0.5370+0.2445 i & 0.2169+0.7101 i \\ 0.7797+0.6607 i & 0.9011+0.8688 i & 1.0224+1.0769 i \\ 0.7024+1.5424 i & 1.2651+1.4930 i & 1.8279+1.4437 i\end{array}$
>> $2^{\wedge} M$
ans =

| $0.7020-0.6146 i$ | $-0.1693-0.2723 i$ | $-0.0407+0.0699 i$ |
| :--- | ---: | ---: | ---: |
| $-0.2320-0.3055 i$ | $0.7366-0.3220 i$ | $-0.2947-0.3386 i$ |
| $-0.1661+0.0036 i$ | $-0.3574-0.3717 i$ | $0.4513-0.7471 i$ |

>> $(-2)^{\wedge} M$
ans =
$17.3946-16.8443 i \quad 4.3404-4.5696 i-7.7139+7.7050 i$
$1.5685-1.8595 i \quad 1.1826-0.5045 i-1.2033+0.8506 i$
$-13.2575+13.1252 i-3.9751+3.5607 i \quad 6.3073-6.0038 i$

EXERCISE 2-11

Given the complex matrix M in the previous exercise, find its elementwise logarithm and its elementwise base e exponential. Also calculate the results of the matrix operations e^{M} and $\ln (\mathrm{M})$.

```
>> M=[i 2*i 3*i; 4*i 5*i 6*i; 7*i 8*i 9*i]
>> log(M)
```

ans =
$0+1.5708 i \quad 0.6931+1.5708 i \quad 1.0986+1.5708 i$
$1.3863+1.5708 i \quad 1.6094+1.5708 i \quad 1.7918+1.5708 i$
$1.9459+1.5708 i$
$2.0794+1.5708 i$
$2.1972+1.5708 i$
>> $\exp (M)$
ans =
$0.5403+0.8415 i-0.4161+0.9093 i-0.9900+0.1411 i$
$-0.6536-0.7568 i \quad 0.2837-0.9589 i \quad 0.9602-0.2794 i$
$0.7539+0.6570 i-0.1455+0.9894 i-0.9111+0.4121 i$
>> $\operatorname{logm}(M)$
ans =
$-5.4033-0.8472 i \quad 11.9931-0.3109 i \quad-5.3770+0.8846 i$
$12.3029+0.0537 i-22.3087+0.8953 i \quad 12.6127+0.4183 i$
$-4.7574+1.6138 i \quad 12.9225+0.7828 i \quad-4.1641+0.6112 i$

>> $\operatorname{expm}(\mathrm{M})$

ans =

```
0.3802-0.6928i -0.3738-0.2306i -0.1278 + 0.2316i
-0.5312-0.1724i 0.3901-0.1434i -0.6886 - 0.1143i
-0.4426 + 0.3479i -0.8460-0.0561i -0.2493-0.4602i
```


EXERCISE 2-12

Given the complex vector $\mathrm{V}=[1+\mathrm{i}, \mathrm{i}, 1-\mathrm{i}]$, find the mean, median, standard deviation, variance, sum, product, maximum and minimum of its elements, as well as its gradient, its discrete Fourier transform and its inverse discrete Fourier transform.

```
>> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]'
```

ans =
$0.6667-0.3333 i$
$1.0000+1.0000 i$
1.2910
1.6667
$2.0000-1.0000 i$
$0-2.0000 i$
$1.0000+1.0000 i$
$0-1.0000 i$
>> gradient(V)
ans $=$
$1.0000-2.0000 i \quad 0.5000 \quad 0+2.0000 i$
> $\mathbf{f f t}(V)$
ans $=$
$2.0000+1.0000 i-2.7321+1.0000 i \quad 0.7321+1.0000 i$
>> ifft(v)
ans =
$0.6667+0.3333 i 0.2440+0.3333 i-0.9107+0.3333 i$

EXERCISE 2-13

Given the arrays

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
i & 1-i & 2+i \\
0 & -1 & 3-1 \\
0 & 0 & -i
\end{array}\right], C=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & \operatorname{sqrt}(2) i-\operatorname{sqrt}(2) i \\
1 & -1 & -1
\end{array}\right]
$$

calculate $A B-B A, A^{2}+B^{2}+C^{2}, A B C$, sqrt $(A)+\operatorname{sqrt}(B)+\operatorname{sqrt}(C), e^{A}\left(e^{B}+e^{C}\right)$, their transposes and their inverses. Also verify that the product of any of the matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with its inverse yields the identity matrix.

```
>> A=[1 1 0;0 1 1;0 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i]; C=[11 1 1; 0 sqrt(2)*i -sqrt(2)*i;1
-1 -1];
>> M1=A*B-B*A
M1 =
\begin{tabular}{lll}
0 & \(-1.0000-1.0000 i\) & 2.0000 \\
0 & 0 & \(1.0000-1.0000 i\) \\
0 & 0 & 0
\end{tabular}
>> M2=A^2+B^2+C^2
M2 =
\begin{tabular}{lrr}
2.0000 & \(2.0000+3.4142 i\) & \(3.0000-5.4142 i\) \\
\(0-1.4142 i\) & \(-0.0000+1.4142 i\) & \(0.0000-0.5858 i\) \\
0 & \(2.0000-1.4142 i\) & \(2.0000+1.4142 i\)
\end{tabular}
```


>> $\mathrm{M}_{3}=A * \mathrm{~B}^{*} \mathrm{C}$

M3 =

$5.0000+1.0000 i$	$-3.5858+1.0000 i$	$-6.4142+1.0000 i$
$3.0000-2.0000 i$	$-3.0000+0.5858 i$	$-3.0000+3.4142 i$
$0-1.0000 i$	$0+1.0000 i$	$0+1.0000 i$

>> M4 $=\mathbf{s q r t m (A) + s q r t m (B) - s q r t m (C) ~}$
M4 =

$0.6356+0.8361 i$	$-0.3250-0.8204 i$	$3.0734+1.2896 i$
$0.1582-0.1521 i$	$0.0896+0.5702 i$	$3.3029-1.8025 i$
$-0.3740-0.2654 i$	$0.7472+0.3370 i$	$1.2255+0.1048 i$

>> M5=expm(A)*(expm(B)+expm(C))

M5 =

$14.1906-0.0822 i$	$5.4400+4.2724 i$	$17.9169-9.5842 i$
$4.5854-1.4972 i$	$0.6830+2.1575 i$	$8.5597-7.6573 i$
$3.5528+0.3560 i$	$0.1008-0.7488 i$	$3.2433-1.8406 i$

CHAPTER 2 MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

inv(A)

ans =
1-1 1
0 -1 -1
$0 \quad 0 \quad 1$
inv(B)
ans $=$

$0-1.0000 \mathrm{i}$	$-1.0000-1.0000 \mathrm{i}$	$-4.0000+3.0000 \mathrm{i}$
0	-1.0000	$1.0000+3.0000 \mathrm{i}$
0	0	$0+1.0000 \mathrm{i}$

>> inv(C)
ans =

0.5000	0	0.5000
0.2500	$0-0.3536 i$	-0.2500
0.2500	$0+0.3536 i$	-0.2500

>> [A*inv(A) B*inv(B) C*inv(C)]
ans =

1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0	1

>> A^{\prime}
ans =
100
110
011
>> B^{\prime}
ans =

$0-1.0000 i$	0	0
$1.0000+1.0000 i$	-1.0000	0
$2.0000-1.0000 i$	$3.0000+1.0000 i$	$0+1.0000 i$

>> C'
ans =

1.0000	0	1.0000
1.0000	$0-1.4142 i$	-1.0000
1.0000	$0+1.4142 i$	-1.0000

CHAPTER 3

MATLAB Language: Development Environment Features

General Purpose Commands

MATLAB has a group of so-called general purpose commands that can be further classified into the following subcategories according to the essential function of the script:

- Commands that handle variables in the workspace.
- Commands that work with files and the operating environment.
- Command handling functions.
- Commands that control the Command Window.
- Commands that start and exit MATLAB.

Commands that Handle Variables in the Workspace

MATLAB allows you to define and manage variables, and store them in files, in a very simple way. When extensive calculations are performed, it is convenient to give names to intermediate results. These intermediate results are assigned to variables to make them easier to use. The definition of variables has already been treated in the previous chapter, but it is convenient to recall that the value assigned to a variable is permanent, until it is explicitly changed or the current MATLAB session is closed.

The following table presents a group of MATLAB commands that handle variables:

clear	Clears all variables in the workspace.
clear(v1,v2,..., vn)	Deletes the specified numeric variables.
clear('v1', 'v2', ..., 'vn')	Clears the specified string variables.
disp(X)	Displays an array without including its name.
length(X)	Shows the length of the vector X and if X is an array, displays its greatest dimension.

(continued)

load	Reads all variables from the file MATLAB.mat.
load file	Reads all variables specified in the .mat file.
load file X Y Z	Reads the variables X, Y, Z from the specified .mat file.
load file -ascii	Reads the file as ASCII whatever its extension.
load file -mat	Reads the file as .mat whatever its extension.
S $=\operatorname{load}(\ldots$)	Assigns the contents of a .mas file to the variable S.
memory	Displays how much memory is available and how much is currently being used.
mlock	Prevents the deletion of M-files in memory.
munlock	Allows the deletion of M-files in memory.
openvar('v')	Opens the variable v in the workspace in the Array Editor, allowing graphical editing.
pack	Compresses the workspace memory.
pack file	Used as a temporary file to store the variables.
pack 'file'	Functional form of pack.
save	Saves the variables in the workspace in the binary file MATLAB.mat in the current directory.
save file	Saves the variables in the workspace in the file file.mat in the current directory. A .mat file has a specific MATLAB format.
save file v1 v2...	Saves the variables v1, v2, . . in the workspace in the file file.mat.
save... option	Saves the variables in the workspace in the format specified by option.
save('file',)	Functional form of save.
saveas(h, 'f.ext')	Saves the figure or model h as an f.ext file.
saveas(h,'f','format')	Saves the figure or model h as f in the specified format file.
$\mathrm{d}=\operatorname{size}(\mathrm{X})$	Returns the sizes of each dimension of an array X in a vector d.
[$\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{X})$	Returns the dimensions of the matrix X as two variables named m and n.
[d1,d2,d3, . . dn] = $\operatorname{size}(\mathrm{X})$	Returns the dimensions of the array X as variables named d1, d2, . . , dn .
who	Lists the variables in the workspace.
whos	Lists the variables in the workspace with sizes and types.
who('global')	Lists the variables in the global workspace.
whos('global')	Lists the variables in the global workspace with sizes and types.
who('-file', 'filename')	Lists the variables in the specified .mat file.
whos('-file', 'filename')	Lists the variables in the specified .mat file and their sizes and types.
who('var1', 'var2',...)	Lists the string variables from the specified workspace.
who('-file', 'filename',	Lists the specified string variables in the given .mat file.
'var1,' 'var2',...)	Stores the list of variables in s.
$\mathrm{s}=\mathrm{who}(. .$.	Stores the list of variables with their sizes and types in s.
s = whos(...)	Lists the numerical variables specified in the given .mat file.
who -file filename var1 var2 ... whos -file filename var 1 var2...	Lists the numerical variables specified in the file .mat given with their sizes and types.
workspace	Opens a browser to manage the workspace.

The save command, which applies to file workspace variables, supports the following options:

Option	Mode of Storage of the Data
-append	The variables are added to the end of the file.
-ascii	The variables are stored in a file in 8 digit ASCII format.
-ascii - double	The variables are stored in a file in 16 digit ASCII format.
-ascii - tabs	The variables are stored in a tab-delimited file in 8 digit ASCII format.
-ascii - double - tabs	The variables are stored in a tab-delimited file in 16 digit ASCII format.
-mat	The variables are stored in a file in binary .mat MATLAB MAT-file format.
-v4	The variables are stored in a file with MATLAB version 4.

The command save is the essential instrument for storing data in MATLAB type.mat files (only readable by the MATLAB program) and ASCII type files (readable by any application). By default, variables are stored in .mat formatted files. To store variables in ASCII formatted files it is necessary to use options.

As a first example we let a variable A be equal to the inverse of a random square matrix of order 5 and a variable B be equal to the inverse of twice the unit matrix of order 5 less the identity matrix of order 5.

>> $A=\operatorname{inv}($ rand(3))

$A=$

1.67	-0.12	-0.93
-0.42	1.17	0.20
-0.85	-1.00	1.71

>> B=inv(2*ones(3)-eye(3))
$B=$
$\begin{array}{lll}-0.60 & 0.40 & 0.40\end{array}$
$0.40-0.60 \quad 0.40$
$0.40 \quad 0.40-0.60$
Now we use the commands who and whos to view the workspace variables as, respectively, a simple list and a list together with types and sizes.

>> who

Your variables are:

A B

>> whos

Name Size Bytes Class

A	3×3	72	double array
B	3×3	72	double array

Grand total is 18 elements using 144 bytes

If we want only the variable information about A, we do the following:

>> who A

Your variables are:

A
>> whos A

Name	Size	Bytes	Class
A	3×3	72	double array

Grand total is 9 elements using 72 bytes
Now we are going to store the variables A and B in an ASCII file with 8 digits of precision and name it matrix.asc. In addition, to check the ASCII file has been generated, we use the command dir to see that our file exists. Finally, we will check the contents of our file, using the DOS operating system order type to check that the contents are indeed the elements of two arrays with 8 digits of precision, located one after the other.

```
>> save matrix.asc A B - ascii
>> dir
```

. .. matrix.asc
>> type matrix.asc

1. $6740445 \mathrm{e}+000-1.1964440 \mathrm{e}-001-9.2759516 \mathrm{e}-001$
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001-8-1. $0006147 \mathrm{e}+000$ 1. 7125190e +000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001
2. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001
3. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001

The files generated with the command save are stored by default (if not specified otherwise) in the \backslash MATLAB $\backslash B I N \backslash$ subdirectory.

Saving all variables in the workspace with the command save to a binary file in MATLAB format is equivalent to selecting the option Save Workspace As from the general MATLAB file menu.

Once the variables have been saved, the workspace can be deleted by using the command clear.

>> clear

Then, to illustrate the command load, we will read the previously saved ASCII file matrix.asc. MATLAB will read the ASCII file as a single variable whose name is that of the file, as is checked with the command whos.

```
>> load matrix.asc
>> whos
```

Name	Size	Bytes	Class
matrix	6×3	144	double array
Grand total is	18 elements using	144 bytes	

We now check that MATLAB has read the data in the same 6×3 matrix structure that it had been saved in, the first three rows corresponding to the variable A and the last three to the variable B.

```
>> matrix
matrix =
\begin{tabular}{rrr}
1.67 & -0.12 & -0.93 \\
-0.42 & 1.17 & 0.20 \\
-0.85 & -1.00 & 1.71 \\
-0.60 & 0.40 & 0.40 \\
0.40 & -0.60 & 0.40 \\
0.40 & 0.40 & -0.60
\end{tabular}
```

Now we can use matrix variable handling commands to define the variables A and B :

```
>> A = matrix (1:3, 1:3)
```

$A=$

1.67	-0.12	-0.93
-0.42	1.17	0.20
-0.85	-1.00	1.71

>> $B=\operatorname{matrix}(4: 6,1: 3)$
B =
$\begin{array}{lll}-0.60 & 0.40 & 0.40\end{array}$
$0.40-0.60 \quad 0.40$
$0.40 \quad 0.40-0.60$

Commands that Work with Files in the Operational Environment

There is a group of commands that are used to work with files, allowing you to analyze, copy, delete, edit, and save data, among other options. These commands also allow the DOS environment to interrelate with the MATLAB environment, accommodating commands from both the operating system and from within the MATLAB Command Window.

Below is a list of these types of commands.

beep	Produces a beep.
CD directory	Changes from the current directory to the given work directory.
copy file f1 f2	Copy the file (or directory) from the origin f1 to the destination file f2.
delete file	Delete the specified file (or graphic object).
diary ('file')	Writes the inputs and outputs of the current session in the file.
dir	Displays the files in the current directory.
dos command	Executes a DOS command and returns the result.
edit M-file	Edit an M-file.
[path,name,ext,ver] =	Returns the path, name, extension and version of the specified file.
fileparts('file')	Displays the files in the current directory in a browser.
file browser	Builds a full file specification from the folders and file names specified.
fullfile('d1', 'd2',..., 'f')	Displays information about the specified toolbox.
info toolbox	Returns M-files, MEX-files and Java classes in memory.
[M, $\mathbf{X}, \mathbf{J}]=\mathbf{i n m e m}$	List the current directory in UNIX.
ls	Returns the name of the directory where MATLAB is installed.
MATLAB root	Constructs a new directory.
mkdir Directory	Opens the specified file.
open('file')	Displays the current directory.
pwd	Returns the name of the temporary directory of the system.
tempdir	Assigns a unique name to the temporary directory.
name =tempname	Runs a UNIX command and returns the result.
unix command	Executes an operating system command.
! command	

Here are some examples:
>> dir
. .. matrix.ASC

>> ! dir

The volume of drive D has no label.
The volume serial number $£ \mathrm{n}$ is: 1179-07DC

Directory of D:\MATLABR12\work

```
01/01/2001 07:01 < DIR >.
2001-01-01 07:01 < DIR >..
02/01/2001 03:27 300 matrix.asc
1 files 300 bytes
2 dirs 1.338.146.816 bytes free
>>! matrix.asc type
1. 6740445e + 000 - 1. 1964440e-001 - 9. 2759516e-001
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001 - 8 - 1. 0006147e + 000 1. 7125190e + 000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001
4. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001
4. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001
```


>> tempdir

```
ans =
C:\DOCUME~1\CPL\CONFIG~1\Temp\
>> MATLABroot
ans =
D:\MATLABR12
>> pwd
ans =
D:\MATLABR12\work
>> cd ..
>> pwd
ans =
D: \MATLABR12
>> cd work
>> pwd
ans =
D:\MATLABR12\work
>> copyfile matrix.asc matrix1.asc
>> dir
. .. Matrix.ASC matrix1.asc
>> two dir
```

The volume of drive D has no label.
The volume serial number $£ \mathrm{n}$ is: 1179-07DC
Directory of D:\MATLABR12\work

```
01/01/2001 07:01 < DIR >.
01/01/2001 07:01 < DIR >...
02/01/2001 03:27 300 matrix.asc
02/01/2001 03:27 300 matrix1.asc
    2 files 600 bytes
2 dirs 1.338.130.432 bytes free
```

An important command that allows direct editing in a window of any M-file is edit. The figure below shows the edit window for the file matrix1.asc.

Commands that Handle Functions

The list below describes a group of commands that handle functions, displaying help on them, providing access to information, and generating reports in MATLAB.

helpbrowser	Shows the MATLAB help browser.
helpdesk	Shows the help browser located on the home page.
helpwin	Displays help for all MATLAB functions.
docopt	Shows the location of the UNIX help file.
genpath	Generates a path string.
lasterr	Returns the last error message.
lastwarn	Returns the last warning message.
license	Displays the MATLAB license number.
lookfor theme	Shows all functions related to search.
partial pathname	A partial pathname is a pathname relative to the MATLAB path matlabpath that is used to locate private and method files which are usually hidden or to restrict the search for
path	files when more than one file with the given name exists.
pathtool	Displays the complete path to MATLAB.
profile	Displays the complete path to MATLAB in windowed mode.
profreport	Starts the profiler utility, to debug and optimize M-files code.
rehash	Generates a profile report in HTML format and suspends the windows profiler utility.
rmpath directory	Refreshes caches of system files and functions.
support	Removes the path from the MATLAB directory.
typefile	Opens the Math Works website.
see (or see toolbox)	Lists the contents of the file.
version	Displays the version of MATLAB, Simulink and toolboxes.
WebURL	Displays the version number of MATLAB.
what	Directs the browser to the indicated Web address.
whatsnew	Lists MATLAB-specific files (.m, .mat, .mex .mdl and. p) in the current directory.
which function	Shows help files with news of MATLAB and its toolboxes.
which file	Locates functions.

Here are some examples:

>> version

ans =
6.1.0.450 (R12.1)

license

ans =

DEMO

>> help toolbox\symbolic

Symbolic Math Toolbox.
Version 2.1.2 (R12.1) 11-Sep-2000

New Features.
Readme - Overview of the new features in/changes made to the Symbolic and Extended Symbolic Math Toolboxes.

Calculus.
diff - Differentiate.
int - Integrate.
limit - Limit.
taylor - Taylor series.
jacobian - Jacobian matrix.
symsum - Summation of series.

Linear Algebra.

diag	- Create or extract diagonals.
triu	- Upper triangle.
tril	- Lower triangle.
inv	- Matrix inverse.
det	- Determinant.
rank	- Rank.
rref	- Reduced row echelon form.
null	- Basis for null space.
colspace	- Basis for column space.
eig	- Eigenvalues and eigenvectors.
svd	- Singular values and singular vectors.
Jordan	- Jordan canonical (standard) form.
poly	- Characteristic polynomial.
expm	- Matrix exponential.

>> help int

--- help for sym/int.m ---
INT Integrate.
INT(S) is the indefinite integral of S with respect to its symbolic variable as defined by FINDSYM. S is a SYM (matrix or scalar). If S is a constant, the integral is with respect to ' x '. $\operatorname{INT}(S, v)$ is the indefinite integral of S with respect to $v . v$ is a scalar SYM.
$\operatorname{INT}(S, a, b)$ is the definite integral of S with respect to its symbolic variable from a to b. a and b are each double or
symbolic scalars.
$\operatorname{INT}(S, v, a, b)$ is the definite integral of S with respect to v from a to b.

Examples:
syms x alpha ut;
int(1/(1+x^2)) returns atan(x)
int (sin(alpha*u), alpha) returns - cos(alpha*u) /u
int ($4^{*} x^{*} t, x, 2$, $\left.\sin (t)\right)$ returns $2 * \sin (t) \wedge 2 * t-8 * t$

> lookfor GALOIS

GFADD Add polynomials over a Galois field.
GFCONV Multiply polynomials over a Galois field.
GFCOSETS Produce cyclotomic cosets for a Galois field.
GFDECONV Divide polynomials over a Galois field.
GFDIV Divide elements of a Galois field.
GFFILTER Filter data using polynomials over a prime Galois field.
GFLINEO Find a particular solution of $\mathrm{Ax}=\mathrm{b}$ over a prime Galois field.
GFMINPOL Find the minimal polynomial of an element of a Galois field.
GFMUL Multiply elements of a Galois field.
GFPLUS Add elements of a Galois field of characteristic two.
GFPRIMCK Check whether a polynomial over a Galois field is primitive.
GFPRIMDF Provide default primitive polynomials for a Galois field.
GFPRIMFD Find primitive polynomials for a Galois field.
GFRANK Compute the rank of a matrix over a Galois field.
GFROOTS Find roots of a polynomial over a prime Galois field.
GFSUB Subtract polynomials over a Galois field.
GFTUPLE Simplify or convert the format of elements of a Galois field.

pathtool

>> what

M-files in the current directory C:\MATLAB6p1\work
cosint
>> which sinint
C: \MATLAB6p1\toolbox\symbolic\sinint.m

Commands that Control the Command Window

The following table summarizes a group of commands in MATLAB which control the output in the Command Window.

CLC	Clears the Command Window.
echo	Displays (echo on) or hides (echo off) the lines of an M-file code during its execution.
format type	Controls the format of the output in the Command Window.
home	Moves the cursor to the upper left corner of the Command Window.
more	Enables paging of the output in the Command Window.

The possible types for the format command are given below:

Type	Result	Example
+	,,+- white	+
bank	Fixed to dollars and cents.	3.14
compact	Suppresses excess line feeds in the output. Contrast this with loose.	Theta $=$ pi $/ 2$
Hex	Hexadecimal format.	400921 fb 54442 d 18
long	15 digit fixed-point.	3.14159265358979
long e	15 digit floating-point.	$3.141592653589793 \mathrm{e}+00$
long g	15 significant digits (fixed or floating point).	3.14159265358979
loose	Adds line feeds to make the output more readable. Contrast this with compact.	Theta $=1.5708$
rat	Rational format.	$355 / 113$
short	5 digit fixed-point.	3.1416
short e	5 digit floating-point.	$3.1416 \mathrm{e}+00$
short g	5 significant digits (fixed or floating-point)	3.1416

Start and Exit Commands

MATLAB offers the following start and exit commands.

finish	Complete an M-file.
exit	Finish MATLAB.
MATLAB	Start MATLAB (only on UNIX).
MATLABrc	Start an M-file.
quit	Finish MATLAB.
startup	Start an M-file.

File Input/Output Commands

MATLAB has a group of so-called input/output commands which operate on files, allowing the user to open and close files, read and write to files, control the position in a file and export and import data. The following table summarizes these commands. Their full syntax will be described in the following paragraphs.

Opening and closing files

fclose	Closes one or more files.
fopen	Opens a file or obtains information about open files.
Plain input/output	
fread	Reads binary data from a file.
fwrite	Writes binary data to a file.

Format input /output

fgetl	Returns the next line of a file as a string without ends of lines.
fgets	Returns the next line of a file as a string with ends of lines.
fprintf	Types formatted data into a file.
fscanf	Reads formatted data from a file.

Controlling position in a file

feof Tests for the end of file.
ferror Returns the error message for the most recent input/output operation on a specified file.
frewind Rereads an open file.
fseek Moves the location of a file position indicator.
ftell Finds the location of a file position indicator.
String conversion

sprintf	Type data formatted as a string.
sscanf	Read under the control of format strings.

Specialized input/output functions

dlmread	Reads files with delimited ASCII format.
dlmwrite	Writes files with delimited ASCII format.
hdf	HDF interface.
imfinfo	Returns information about graphics files.
imread	Reads images from graphics files.
imwrite	Writes an image in a graphics file.
strread	Reads formatted data from a string.
textread	Reads formatted data from a text file.
wklread	Reads data from Lotus123 WK1 spreadsheet files.
wklwrite	Writes data in Lotus123 WK1 worksheet files.

Opening and Closing Files

In order to read or write data to a file (which does not have to be in ASCII or MATLAB format), first use the command fopen to open it. Then, to perform read or write operations on it, use the corresponding read and write commands (fload, fwrite, fprintf, import etc.). Finally, use the command fclose to close the file. The file that is opened may be new or may be an existing file which is to be accessed either to broaden its content or simply to read it.

The command fopen returns a file that consists of a non-negative integer which is assigned by the operating system to the opened file. This file identifier is used as a reference for the subsequent management of the open file as it is read (read), written to (write) or closed (close). If the file does not open correctly, fopen returns - 1 as the file identifier. As a generic file identifier, fidelity is commonly used. The syntax of the commands fopen and fclose is described below.

fid = fopen ('file')	Opens the specified existing file.
fid = fopen ('file', 'permission')	Opens the file for the given permission type.
[fid, message] =	Opens the file for the given permission and with the numerical format of fopen('file',' 'permission', 'architecture') fids = fopen ('all') the architecture.
	Returns a column vector with the
[filename, permission, architecture] =	identifiers of all open files
fopen(fid)	Returns the name of the file, the type of permission and the numerical
fclose (fid)	format of the specified architecture relating to the file whose ID is fid.
	Closes the identifier fid file if it is open. Returns 0 if the process has been
fclose ('all')	performed successfully and -1 otherwise.

The possible types of permissions are the following:

'r'	Open the existing file for reading (this is the default permission).
'r +'	Open the existing file for reading and writing.
'w'	Creates the new file and opens it for writing, and if there is already a file with that name, deletes it and opens it again as an empty file.
'w +'	Creates the new file for reading and writing, and if there is already a file with that name, deletes it and opens it again as an empty file.
${ }^{\prime} \mathbf{a}^{\prime}$	Creates the new file and opens it for writing, and if there is already a file with that name, adds new content at the end of the existing file.
'a+'	Creates the new file and opens it for reading and writing, and if there is already a file with that name, adds new content to the end of the existing file.
' ${ }^{\prime}$ '	Append without automatic flushing of the current output buffer. (Used with tape drives.)
${ }^{\prime} \mathbf{W}$ '	Write without automatic flushing of the current output buffer. (Used with tape drives.)

Possible architectures for the numerical format types are as follows:

'native' or ' \mathbf{n} '	Numeric format of the current machine.
'ieee-le' or ' \mathbf{l} '	Small-format IEEE floating-point.
'ieee-be' or 'b'	Large format IEEE floating-point.
'vaxd' or 'd'	VAX D floating-point format.
'vaxg' or 'g'	VAX G floating-point format.
'cray' or ' \mathbf{c} '	Large type Cray floating-point format.
'ieee-le.164' or 'a'	Small format IEEE floating-point and 64-bit data length.
'ieee-be. l64' or 's'	IEEE floating-point, 64-bit data length large format.

Being able to open a file according to the numerical format of a given architecture allows it to be used in different MATLAB platforms.

Reading and Writing Binary Files

Reading and writing binary files is done via the commands fwrite and fread. The command fwrite is used to write binary data to a file previously opened with the command fopen. The command fread is used to read data from a binary file previously opened with the command fopen. Its syntax is as follows:

fwrite (fid, A, precision)	Writes the specified items in A (which in general is an array) in the file identifier fid (previously opened) with the specified accuracy.
$\mathbf{A}=$ fread (fid)	Reads the data from the binary file opened with identifier fid and writes them to the matrix A, which by default will be a column vector.
$[\mathbf{A}$, count] =	
fread(fid, size, precision)	Reads the data from the file identifier fid with the dimension specified in size and precision given by precision, and writes them to a matrix A of dimension size and whose total number of elements is count.

The specification size is optional. If size is set to n, fread reads the first n data from the file (by columns and in order) as a column vector, A, of length n. If size is set to inf, fread reads all file data by columns and in order, to form a single column vector A (this is the default value). If size is set to [m, n], fread reads $m \times n$ file elements by columns and in order, completing the matrix A of dimension $(m \times n)$. If there are insufficient elements in the file to complete the matrix, it will be completed with zeros.

The argument precision is relative to the numeric precision of the machine on which you are working and may present different values. In addition to its own types of formatting for numerical precision, MATLAB also accepts those of the programming languages C and FORTRAN. Below is a table with the possible values of precision.

MATLAB	C or FORTRAN	Interpretation
'schar'	'signed char'	Character with sign; 8-bit
'uchar'	'unsigned char'	Character unsigned; 8-bit
'int8'	'integer * ${ }^{\text {' }}$	Integer; 8-bit
'int16'	'integer * ${ }^{\prime}$	Integer; 16-bit
'int32'	'integer* ${ }^{\prime}$	Integer; 32-bit
'int64'	'integer * $\mathbf{8}^{\prime}$	Integer; 64-bit
'uint8'	'integer * ${ }^{\prime}$	Unsigned integer; 8-bit
'uint16'	'integer* ${ }^{\prime}$	Unsigned integer; 16-bit
'uint32'	'integer * $\mathbf{4}^{\prime}$	Unsigned integer; 32-bit
'uint64'	'integer * 8 '	Unsigned integer; 64-bit
'float32'	'real * ${ }^{\prime}$	Floating point; 32-bit
'float64'	'real * 8 '	Floating point; 64-bit
'double'	'real * ${ }^{\text {' }}$	Floating point; 64-bit

The following formats are also supported by MATLAB, but there is no guarantee that the same size will be used on all platforms.

MATLAB	C or FORTRAN	Interpretation
'char'	'char* \mathbf{l}^{\prime}	Character; 8-bit
'short'	'short'	Integer; 16-bit
'int'	'int'	Integer; 32-bit
'long'	'long'	Integer; 32 or 64 bit
'ushort'	'unsigned short'	Unsigned integer; 16-bit
'uint'	'unsigned int'	Unsigned integer; 32-bit
'ulong'	'unsigned long'	Unsigned integer; 32 or 64 bit
'float'	'float'	Floating point; 32-bit
'intN'		Whole width N integer bits ($1 \leq N \leq 64)$
'ubitN'		Integer unsigned width N bits ($1 \leq N \leq 64)$

When they are read and stored, formats often use the implication symbol as illustrated in the following examples:

' uint8 $=$ > uint8'	Reads entire 8-bit unsigned integers and stores them in an array of unsigned 8 -bit integers.
'* uint8'	An abridged version of the previous example.
' $\mathrm{bit4}=>$ int8'	Reads entire 4 bit signed integers packaged in bytes and stores them in an array of 8-bit integers. Each 4 -bit integer is converted to an 8 -bit integer.
${ }^{\prime}$ double $=>$ real * 4'	Reads double precision floating point numbers and stores them in an array of 32-bit real floating point numbers.

As a first example we can view the contents of the file fclose.m using the command type as follows:

>> type fclose.m

\%FCLOSE Close file.
\% ST = FCLOSE(FID) closes the file with file identifier FID,
\% which is an integer obtained from an earlier FOPEN. FCLOSE
\% returns 0 if successful and -1 if not.
\%
\% ST = FCLOSE('all') closes all open files, except 0, 1 and 2.
\%
\% See also FOPEN, FREWIND, FREAD, FWRITE.
\% Copyright 1984-2001 The MathWorks, Inc.
\% \$Revision: 5.8 \$ \$Date: 2001/04/15 12:02:12 \$
\% Built-in function.
This is equivalent to using the command type before opening the file with fopen, followed by reading its contents with fread and presenting it with the function char.

```
>> fid = fopen('fclose.m','r');
>> F = fread(fid);
>> s = char(F')
S =
%FCLOSE Close file.
% ST = FCLOSE(FID) closes the file with file identifier FID,
% which is an integer obtained from an earlier FOPEN. FCLOSE
% returns 0 if successful and -1 if not.
%
% ST = FCLOSE('all') closes all open files, except 0, 1 and 2.
%
% See also FOPEN, FREWIND, FREAD, FWRITE.
% Copyright 1984-2001 The MathWorks, Inc.
% $Revision: 5.8 $ $Date: 2001/04/15 12:02:12 $
% Built-in function.
```

In the following example, we create a binary file id4.bin which contains the 16 elements of the identity matrix of order 4 stored in 4 byte integers (64 bytes in total). First we open the file which will contain the matrix, with permission to read and write, and then write the matrix to the file with the appropriate format. Finally, we close the open file.

```
>> fid = fopen ('id4. bin ',' w +')
```

fid $=$

5

>> fwrite(fid,eye(4),'integer*4')

ans =

16

>> fclose (5)

ans =

0

In the previous example, when the file was opened, the system assigned ID 5 to it. After writing the matrix to the file, it was necessary to close it with the command fclose using the indicator. The answer of zero means the closure has been successful.

If we now want to see the contents of the binary file just recorded, we open it, with reading permission, by using the command fopen and read its elements with fread, in the same matrix structure and format in which it was saved.

```
>> fid = fopen('id4.bin','r+')
```

fid $=$

5
>> [R,count]=fread(5,[4,4], 'integer*4')
$\mathrm{R}=$
1000
0100
0010
0001
count =

16

Reading and Writing Formatted ASCII Text Files

It is possible to write formatted text to a file previously opened with the command fopen (or to the screen itself) using the command fprintf. On the other hand, it is possible, using the command import, to read formatted data from a file previously opened with the command fopen. The syntax is as follows:

fprintf(fid, 'format', A,...)	Writes the specified items in A (which in general is an array) in the file identifier fid (previously opened) with the format specified in 'format.'
fprintf('format', A, ...)	Writes to the screen.
$\begin{aligned} & {[\mathrm{A}, \text { count }]=} \\ & \text { fscanf(fid, 'format') } \end{aligned}$	Reads the data in the given format of an open file with identifier fid and writes them to the matrix A, which by default will be a column vector.
$\begin{aligned} & {[A, \text { count }]=} \\ & \text { fscanf(fid, 'format', size) } \end{aligned}$	Reads the data from the file identifier fid with the specified size and format, and writes them to a matrix A of dimension size and whose number of elements is count.

The argument format consists of a chain (preceded by the character ' \backslash ') formed by characters and conversion characters according to the different formats (preceded by the character ' $\%$ ').

The possible characters are as follows:

\n	Executes the step to a new line.
$\backslash \mathbf{t}$	Executes a horizontal tab.
$\backslash \mathbf{b}$	Executes a step backward from a single character (backspace), deleting the current character.
$\backslash \mathbf{r}$	Executes a carriage return.
$\backslash \mathbf{f}$	Executes a page jump (form feed).
$\backslash \backslash$	Executes a backslash.
$\^{\prime}$	Executes a single quotation mark.

Possible conversion characters are the following:

\%d	Decimal integers
\%o	Octal integers
\%x	Hexadecimal integers
\%u	Unsigned decimal integers
\%f	Real fixed-point
\%e	Real floating-point
\%g	Use whichever of d, e or f has the greater precision in the minimum of space
\%c	Individual characters
\%s	Character string
\%E	Real floating point (uppercase E)
\%X	Uppercase hexadecimal notation
\%G	\%g format with capital letters

When working with integers, conversion characters are used in the form $\% n v$ (n is the number of digits of the integer and v is the conversion character, which can be d, o, x or u). For example, the format $\% 7 x$ indicates a hexadecimal integer with 7 digits.

When working with real numbers, conversion characters are used in the form $\% n . m v$ (n is the total number of digits of the real number including the decimal point, m is the number of decimal places of the real number and v is the conversion character, which can be f, e or g). For example, the format $\% 6.2 f$ indicates a fixed point real number having 6 numbers in total (including the point) and with 2 decimal places.

When working with strings, conversion characters are used in the form $\% n a$ (n is the total number of characters in the string and a is the conversion character, which can be c or s). For example, the format $\% 8 s$ indicates a string of 8 characters.

In addition, escape characters and conversion of the C language are supported (see C manuals for further information).

In the import command the size preference is optional. If size is set to n, import reads the first n data from the file (by columns and in order) as a vector column A of length n. If size is set to inf, fread reads all file data by columns and in order, to form a single column vector A (this is the default value). If size is set to [m, n], fread reads $m \times n$ file elements by columns and in order, completing the matrix A of dimension ($m \times n$). If there are insufficient elements in the file, the matrix is completed with zeros as needed. The argument format takes the same values as the command fprintf.

For reading ASCII files there are two other commands, fgetl and fgets, which present different lines of a text file as a string. Its syntax is as follows:

fgetl (fid)	Reads the characters in the text with file identifier fid line by line, ignoring carriage returns, and returns them as a string.
fgets (fid)	Reads the characters in the text with file identifier fid line by line, including carriage returns, and returns them as a string.
fgets (fid, nchar)	Returns at least nchar characters in the next line.

As an example we create an ASCII file exponen.txt, which contains the values of the exponential function for values of the variable between 0 and 1 separated by 0.1 .

The format of the text in the file should consist of two columns of real floating point numbers, in such a way that the values of the variable appear in the first column and the corresponding values of the exponential function appear in the second column. Finally, we issue commands to display the contents of the file on screen.

```
>> x = 0:.1:1;
>> y= [x; exp(x)];
>> fid=fopen('exponen.txt','w');
>> fprintf(fid,'%6.2f %12.8f\n', y);
>> fclose(fid)
```

ans =
0

Now information is presented directly on screen without having to save it to disk:

```
>> x = 0:. 1:1;
>> y = [x; exp (x)];
(>> fprintf('%6.2f. 8f\n', and)12%
```

0.001 .00000000
0.101 .10517092
0.201 .22140276
0.301 .34985881
0.401 .49182470
0.501 .64872127
0.601 .82211880
0.702 .01375271
0.802 .22554093
0.902 .45960311
1.002 .71828183

We then read the newly generated ASCII file exponen.txt, so that the format of the text must consist of two columns of real numbers with maximum precision in the minimum of space, the first column showing the values of the variable and the second showing the corresponding values of the exponential function.

```
>> a = a'
a =
0 1.0000
0.1000 1.1052
0.2000 1.2214
0.3000 1.3499
0.4000 1.4918
0.5000 1.6487
0.6000 1.8221
0.7000 2.0138
0.8000 2.2255
0.9000 2.4596
1.0000 2.7183
```

>> fid=fopen('exponen.txt');
>> $a=f s c a n f(f i d, ' \% g$ \%', [2 inf]);

We then open the file exponent.txt and read its contents line by line with the command fgetl.

>> fid=fopen('exponen.txt');
 >> linea1=fgetl(fid)

linea1 =
0.001 .00000000
>> linea2=fgetl(fid)
linea2 =
0.101 .10517092

Below, the command sprintf outputs a string variable that presents the given text according to the specified format together with the value of the golden ratio.

```
>> S = sprintf ('the golden ratio is % 6.3f,' (1 + sqrt (5)) / 2).
```


$S=$

the golden ratio is 1.618
Finally we generate a column vector whose two elements are approximations of the irrational numbers e and π.

```
>> S = '2.7183 3.1416';
>> A = sscanf(S,'%f')
```

$A=$
2.7183
3.1416

Control Over the File Position

The commands fseek, ftell, feof, frewind and ferror control position in the file. The command fseek allows you to move the position indicator in a previously opened file. The command ftell returns the current status of the position indicator within a file. The command feof indicates whether the position indicator is located at the end of the file. The command frewind places the position indicator at the beginning of the file. The command arenas returns the error message associated with the most recent input or output operation on a specified file previously opened with fopen. The syntax of these commands is as follows:

fseek(fid, n, 'origin')	Moves the position indicator n bytes from the source indicated by the argument origin within the file identifier fid previously opened with fopen. If $n>0$, the position indicator moves n bytes forward towards the end of the file. If $n<0$, the position indicator moves n bytes backward towards the beginning of the file. If $n=0$, the position indicator does not change. The values that the argument origin can take are: 'bof' or -1 (the origin is at the beginning of the file), 'cof' or 0 (the source is at the current position of the indicator) and 'eof' or 1 (the source is at the end of the file).
$\mathbf{n}=\mathbf{f t e l l}$ (fid)	Returns the number of bytes from the beginning of the file whose identifier is fid (previously opened with fopen) to the current position indicator.
feof (fid)	Returns 1 if the position indicator is located at the end of the file with identifier fid (previously opened) and 0 otherwise.
frewind (fid)	Places the position indicator at the beginning of the (previously opened) file with identifier fid.
ferror (fid) output	Returns the (possibly empty) error message associated with the most recent input or output operation on the previously opened file with identifier fid.
[message, errnum] $=$ ferror (fid)	In addition to the error message, this returns its error number. An error number of 0 indicates that the error message is empty, i.e. the most recent input or output operation did not result in an error.

As an example, we write the two-byte integers from 1 to 5 into a binary file named five.bin. We check the status of the position indicator in the file and move 6 bytes forward, checking that the operation has been correctly carried out. Subsequently we will move the position indicator 4 bytes backwards and find which number has been located.

```
>) A=[1:5];
fid=fopen('five.bin','w');
fwrite(fid,A,'short');
fclose(fid);
fid=fopen('five.bin','r');
n = ftell (fid)
```

$\mathrm{n}=$
0

As the number of bytes from the beginning of the file to the current location of the position indicator is revealed to be $n=0$, the position indicator is obviously located at the beginning of the file, i.e. at the first value, which is 1 . Another way to see that the position indicator is located on 1 is to use the command fread to read only the first element of the binary file five.bin:

```
>> fid=fopen('five.bin','r');
principal = fread(fid,1,'short')
principal =
```

1

Now we are going to move the position indicator 6 bytes forward and check the new position:

```
>> fid=fopen('five.bin','r');
fseek(fid,6,'bof');
n=ftell(fid)
n =
6
>> principal=fread(fid,1,'short')
```

principal =
4

We have seen that the position indicator has moved 6 bytes to the right, landing on the element 4 (bear in mind that each file element occupies 2 bytes). Now we are going to move the position indicator 4 units to the left and determine on which item it has been moved to:

```
>> fseek(fid,-4,'cof');
n=ftell(fid)
```

$\mathrm{n}=$

4

```
>> principal=fread(fid,1,'short')
```

```
principal =
```

3

Finally, the position indicator has been set to 4 bytes from the beginning of the file, i.e. on element 3 (again recalling that each file element occupies 2 bytes).

Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats

There is a group of commands in MATLAB which enable you to export and import data between Lotus 123 and MATLAB. Another group of commands allows you to export and import data between ASCII files with delimiters and MATLAB. The following table summarizes these commands.

A $=$ wk1read (file)	Reads the Lotus 123 spreadsheet named file.wkly and imports it as a MATLAB matrix whose rows and columns are those of the worksheet.
A $=$ wk1read(file, F,C)	Reads the Lotus 123 spreadsheet named file.wk1 from row F and column C, and imports it as a MATLAB matrix whose rows and columns are those of the worksheet.
$\mathbf{A}=\mathbf{w k} 1 \mathrm{read}($ file $, \mathbf{F}, \mathbf{C}, \mathbf{R})$	Reads the R data range of the Lotus 123 spreadsheet named file.wkl from row F and column C, and imports it as a MATLAB matrix whose rows and columns are those of the worksheet.
A = wk1write (file, M)	Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named file.wkl whose rows and columns are those of the matrix M.
A = wkıwrite(file, M,F,C)	Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named file.wkl whose rows and columns are those of the matrix M starting at row F and column C.
$\mathbf{M}=$ dlmread (file, \mathbf{D})	Reads the specified formatted file whose data are separated by the delimiter D and returns it as the matrix M.
M = dlmread(file, D,F,C)	Reads the specified files whose data are separated by the delimiter D and returns it as the matrix M which begins at F row and column C.
$\mathbf{M}=$ dlmwrite (file, \mathbf{M}, \mathbf{D})	Writes the matrix M in the specified formatted file, whose data are separated by the delimiter D.
M = dimwrite(file, D,F,C)	Writes the matrix M, starting at row F and column C, in the specified formatted file, whose data are separated by the delimiter D.

(continued)

$\mathrm{A}=\mathbf{i m r e a d}($ file, fint $)$

[X,map] = imread(file,fint)
[...] = imread (file)
[...] = imread(...,idx)
(CUR, ICO and TIFF only)
[...] = imread(...,idx)
(HDF only)
[...] = imread(...,'backgroundcolor', BG) (PNG only)
[A,map,alpha] = imread(file, fmt...)
[map, alpha] = imread (...)
(PNG only)
imwrite(A, file, fmt)
imwrite (X, map, file, $f m t$)
imwrite(...,filename)
imwrite(...,param1,valı, param2, val2...)
info $=$ imfinfo(file,$f m t)$
A = strread(' ${ }^{\mathbf{C}}$ ')
A = strread(' \mathbf{C} ',",N)
A = strread(' \mathbf{C}^{\prime}, ,",p,value,...)
A = strread('str',",N,p,value,...)
[A,B,C, ...] = strread('C','format')
[A,B,C,...] =
strread ('C','format',N)
[A,B,C,...] = strread
('C','format', $\mathbf{p , \text { value,...) }}$
[A,B,C, ...] = strread ('C','format',N,param,value,...)
[A,B,C,...] = textread('file','format')
[A,B,C,...] = textread('file','format', \mathbf{N})
[...] = textread (...,'p','value',...)

Reads the image in a graphical format frot file given in grayscale or true color.

Reads the image in graphical format fint of the given file indexed in X and its associated map colors.
Tries to infer the format of the file from its content.
Reads an image of order idx in a TIFF, CUR or ICO file.

Reads an image of order idx in an HDF file.
Reads an image with background color and intensity of a given grayscale.
Reads an image in graphical format from the given file frnt applying transparency mask.
Returns the transparency mask.

Writes the image in graphical format fmt in the given file in grayscale or true color.
Writes the indexed image in X and its associated color map in the given file in graphic format fmt.
Writes the image in the given file, inferring the format of filename from its extension.
Specifies the control of various characteristics of the output file parameters.
Provides information on the graphic file format fmt.
Reads the C string numeric data.
Reads N lines of the C string numeric data.
Reads the C string data according to the parameter p and value.
Reads N rows of C according to the parameter p and value.
Reads the string C with the specified format.
Reads N lines of the string C with the specified format.
Reads the C string with the specified format according to the parameter p and value.
Reads N lines of the C string with the specified format according to the parameter p and value.

Reads data from the text file using the given format.
Reads data from the text file using the given format N times. Reads measurement data using the specified parameter and value.

Possible values for the fmt file graphic format are presented in the following table:

Format	Type of file
'bmp'	Windows Bitmap (BMP)
'cur'	Windows Cursor (CUR) resources
'hdf'	Hierarchical Data Format (HDF)
'ico'	Windows Icon (ICO) resources
'jpg' or 'jpeg'	Joint Photographic Experts Group (JPEG)
'pcx'	Windows Paintbrush (PCX)
'png',	Portable Network Graphics (PNG)
'tif' or 'tiff'	Tagged Image File Format (TIFF)
'xwd'	X Windows Dump (XWD)

The following table shows the types of image that imread can read.

Format	Variants
BMP	1-bit, 4-bit, 8-bit, 24 - bit images without compression; 4-bit images with compression (RLE) 8 - bit
CUR	1-bit, 4-bit and 8-bit images without compression
HDF	8- bit with or without associated color map image data sets; 24-bit and 8-bit data image sets
ICO	1-bit, 4-bit and 8-bit images without compression
JPEG	Any baseline JPEG image (8 or 24-bit); JPEG images with any commonly used extension
PCX	1-bit, 8-bit, and 24-bit images
PNG	Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit images in grey scales; 8-bit and 16-bit indexed images; 24-bit and 48-bit RGB images
	Any baseline TIFF image, including 1-bit 8-bit and 24-bit images without compression; 1-bit, 8-bit, TIFF
	16-bit and 24-bit compressed images; 1-bit images compressed with CCITT; also 16-bit greyscale, 16-bit indexed and 48-bit RGB images
XWD	1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

The following table shows all the formats that support the commands strread and testread.

Format	Action	Output
Literals (characters)	Ignores correspondence characters	No
\%d	Reads a signed integer value	Double array
\%u	Reads an integer value	Double array
\%f	Reads a floating point value	Double array
\%s	Reads with white space separation	Cell array of strings

(continued)

Format	Action	Output
\%q	Reads a string enclosed in double quotes	Cell array of strings. Excluding double quotes.
\%c	Reads characters including blanks	Array character
\%[...]	Reads the longer string containing the characters specified within square brackets	Cell array of strings
\%[^...]	Reads the longer non-empty string containing characters not specified within square brackets	Cell array of strings
\%*... in place of \%	Ignores the correspondence between characters specified by *	Without output
\%w... in place of \%	Reads the specified field width w. The format \%f supports \% $w . p f$, where w is the width of the field and p is the precision.	

The possible pairs (parameter, value) that can be used as custom options for the strread and testread commands are presented in the following table:

Parameter	Value	Action
whitespace	Any of the following list	Characters, *, as white space. The default is $\backslash b \backslash r \backslash n \backslash t$.
	b	Backspace
	f	Form of the identifier
	n	New line
	r	Carriage return
	t	Horizontal tab
	11	Backslash (moves backwards one space)
	\|"or "	Mark with single quotes
	\%\%	Percent sign
delimiter	Delimiter character	Specifies the delimiter character
expchars	Character exponent	By default this is eEdD
bufsize	Positive integer	Maximum length of string in bytes (4095)
headerlines	Positive integer	Ignores the specified number of lines at the beginning of the file
Commentstyle	MATLAB	Ignore characters after \%
Commentstyle	Shell	Ignore characters after \#
Commentstyle	c	Ignored characters between / * and */
Commentstyle	c++	Ignore characters after //

As a first example we read information from the file canoe.tif.

```
>> info = imfinfo ('canoe. tif')
```

Info =
Filename: 'C:\MATLAB6p1\toolbox\images \imdemos\canoe.tif'
FileModDate: '25-Oct-1996 23:10:40'
FileSize: 69708
Format: 'tif'

FormatVersion: []
Width: 346
Height: 207
BitDepth: 8
ColorType: 'indexed'
FormatSignature: [737342 0]
ByteOrder: 'little-endian'
NewSubfileType: 0
BitsPerSample: 8
Compression: 'PackBits'
PhotometricInterpretation: 'RGB Palette'
Strip0ffsets: [9x1 double]
SamplesPerPixel: 1
RowsPerStrip: 23
StripByteCounts: [9x1 double]
XResolution: 72
YResolution: 72
ResolutionUnit: 'Inch'
Colormap: [256x3 double]
PlanarConfiguration: 'Chunky'
TileWidth: []
TileLength: []
TileOffsets: []
TileByteCounts: []
Orientation: 1
FillOrder: 1
GrayResponseUnit: 0.0100
MaxSampleValue: 255
MinSampleValue: 0
Thresholding: 1
The following example reads the sixth image of the file flowers.tif.
>> [X,map] = imread('flowers.tif',6);
The following example reads the fourth image of an HDF file.

```
>> info = imfinfo ('skull. hdf');
[X, map] = imread ('skull hdf',. info (4)Reference);
```

The following example reads a PNG image in 24-bit with complete transparency.

```
>> bg = [255 0 0];
A = imread('image.png','BackgroundColor',bg);
```

Below is an example with sprintf and strread.

```
>> s = sprintf('a,1,2\nb,3,4\n');
[a,b,c] = strread(s,'\%s\%d\%d','delimiter',',')
```

If the file mydata.dat has as first line Sally Type1 12.3445 Yes, then the first column will be read in free format.

```
>> [names,types,x,y,answer] = textread('mydata.dat','%s %s %f ...
%d %s',1)
names =
            'Sally'
types =
        'Type1'
x =
    12.340000000000000
y =
    45
answer =
    'Yes'
```

We then use the command strread.

```
>> s = sprintf('a,1,2\nb,3,4\n');
[a,b,c] = strread(s,'%s%d%d','delimiter',',')
a =
    'a'
    'b'
    b =
    1
3
C =
```

2
4

Sound Processing Functions

MATLAB's Basic module includes a group of functions that read and write audio files. These functions are presented in the following table:

```
General sound functions
\mu=lin2mu(y) Converts a linear audio signal of amplitude - 1\leqy\leq1 to a }\mu\mathrm{ -encoded audio signal
    with 0\leq\mu\leq255.
Y=mu2lin(\mu) Converts a }\mu\mathrm{ -encoded audio signal ( }\mu\leq255)\mathrm{ to a linear audio signal ( }-1\leqy\leq1)
sound(y,Fs) Converts the audio signal y to a sound at sample rate Fs.
sound(y) Converts the audio signal y to a sound at the standard }8192\mathrm{ Hz sampling rate.
sound(\mathbf{y,Fs,b) Using b bits/sample when converting the audio signal y to a sound at sample rate Fs.}
Workstations SPARC-specific functions
auread('f.au') Reads the NeXT/SUN sound files f.au.
[y,Fs,bits] = uread('f.au') Gives the sample rate in Hz and the number of bits per sample used to encrypt the
    data in the file f.au.
auwrite (y, 'f.au') Writes a NeXT/SUN sound file f.au.
auwrite(y, Fs, 'f.au') Writes a type f.au sound file and specifies the sample rate in Hertz.
Functions of sound.WAV
wavplay(y,Fs) Reproduces the audio signal y with sampling rate Fs.
wavread('f.wav') Reads the f.wav sound files.
[y,Fs,bits] = wavread('f.wav') Returns the sampling rate Fs and the number of bits per sample to read the f.wav
    sound file.
wavrecord(n, Fs) Records samples of a digital audio signal at the sample rate n Fs.
wavwrite(y,'f.wav') Writes a type f.wab sound file.
wavwrite(y,Fs, 'f.wav') Writes a sound file f.wab with sampling rate Fs.
```


EXERCISE 3-1

Construct a magic square of order 4, and write its inverse matrix in a binary file named magic.bin.
We start by defining the matrix:
>> $M=$ magic (4)
$M=$
162313
511108
97612
414151

Then we open a file named magic.bin, with read/write permission to store the matrix M. We use the permission ' w +' because we want to open a new file, i.e. it does not already exist, and in addition we need to write to it (since the file does not already exist, we could also use the permission ' $a+$ ').

>> fid=fopen('magic.bin','w+')

fid $=$
3
The system assigns the ID 3 to our file, and then writes the matrix M to it.

```
>> fwrite(3,M)
```

ans =

16

We have written the matrix M to the binary file magic.bin of ID 3 . MATLAB returns the number of elements in the file, which in this case is 16 . We then close the file and the information is recorded on disk.

>> fclose (3)

ans $=$

0

As the answer is zero, the file was successfully closed, and the newly created file will appear in the Active Directory.
>> dir
.. five.bin cosint.m exponen.txt id4.bin magic.bin

You can see the newly created file in Active Directory with its properties.

```
>> ! dir
```

Volume in drive C has no label.
The volume serial number $£ \mathrm{n}$ is: 1059-8290

```
Directory of C:\MATLAB6p1\work
```

```
03/01/2001 19:50 < DIR >.
03/01/2001 19:50 < DIR >...
10/06/2000 23:41 457 cosint.m
10/01/2001 22:14 64 id4.bin
10/01/2001 23:17 231 exponen.txt
11/01/2001 00: }1210\mathrm{ five.bin
12/01/2001 23:09 16 magic.bin
5 files }778\mathrm{ bytes
2 dirs 18.027.282.432 bytes free
```


EXERCISE 3-2

Consider the identity matrix of order 4 and write it to a binary file with 32 -bit floating point format. Subsequently retrieve this file and read its contents in the same array form as it was recorded. Then add to the above matrix a column of ones and save it as a binary file with the same name. Read the binary file to check its contents.

We start by generating the identity matrix of order 4 :

```
>> I = eye (4)
```

I =
1000
0100
0010
0001
We open a binary file named id4.bin, in which we are going to save the matrix I, with write permission:

```
>> fid=fopen('id4.bin','w+')
```

FID $=$
3
We recorded the matrix / in the previously opened file with 32-bit floating point format:

```
>> fwrite(3,I,'float32')
```

ans =
16
Once the 16 elements of the array have been recorded, we close the file:

```
>> fclose (3)
```

ans $=$
0

We open it with read permission to read the contents of the previously recorded file:

```
>> fid=fopen('id4.bin','r+')
```

fid $=$

Now we read the 16 elements of the opened file in the same matrix structure and format in which it was saved.

```
>> [R,count]=fread(3,[4,4],'float32')
```

$\mathrm{R}=$
1000
0100
0010
0001
count $=$
16
After checking the contents, we close the file:
>> fclose (3)
ans $=$
0
We then open the file with the proper write permission to add information without losing the existing data:
>> fid=fopen('id4.bin','a+')
fid $=$

3

We now add a column of ones to the end of the file's contents and close it:
>> fwrite(3,[lllll','float32')
ans =
4
>> fclose(3)
ans $=$

0

Now we open the file with read permission to view its contents:
>> fid=fopen('id4.bin','r+')
fid $=$

3

Finally, we read the 20 items in the file in the appropriate array form and check that the column has been added to the end:

```
>> [R,count]=fread(3,[4,5],'float32')
R=
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{tabular}
count =
20
```


EXERCISE 3-3

Generate an ASCII file named log.txt containing the values of the natural logarithm for values of the variable between 1 and 2 separated by 0.1. The format of the text in the file should consist of two columns of real floating point numbers, in such a way that the values of the variable appear in the first column and the corresponding values of the logarithm appear in the second column. Finally, display the contents of the file on screen.

```
>> x = 1:. 1:2;
y = [x; log (x)];
FID = fopen ('log. txt', 'w');
(% 12 fprintf(fid,'%6.2f. 8f\n', and);
fclose (fid)
ans =
0
```

Let us see how we can display the information directly on screen without having to save it to disk:

```
>> x = 1:. 1:2;
y = [x; log (x)];
(% 12 fprintf('%6.2f. 8f\n', and)
1.00 0.00000000
1.10 0.09531018
1.20 0.18232156
1.30 0.26236426
1.40 0.33647224
1.50 0.40546511
1.60 0.47000363
1.70 0.53062825
1.80 0.58778666
1.90 0.64185389
2.00 0.69314718
```


EXERCISE 3-4

Read the ASCII file named log.txt generated in the previous exercise. The format of the text must consist of two columns of real numbers with maximum precision in the minimum of space, so that the first column lists the values of the variable and the second column shows the corresponding values of the logarithm.

```
>> fid=fopen('log.txt');
```

a = fscanf(fid,'\%g \%g', [2 inf]);
$a=a^{\prime}$
$a=$

1.0000	0
1.1000	0.0953
1.2000	0.1823
1.3000	0.2624
1.4000	0.3365
1.5000	0.4055
1.6000	0.4700
1.7000	0.5306
1.8000	0.5878
1.9000	0.6419
2.0000	0.6931

>> fclose(fid);

MATLAB Language: M-Files, Scripts, Flow Control and Numerical Analysis Functions

MATLAB and Programming

MATLAB can be used as a high-level programming language including data structures, functions, instructions for flow control, management of inputs/outputs and even object-oriented programming. MATLAB programs are usually written into files called M-files. An M-file is nothing more than a MATLAB code (script) that executes a series of commands or functions that accept arguments and produce an output. The M -files are created using the text editor, as described in Chapter 2.

The Text Editor

The Editor/Debugger is activated by clicking on the create a new M-file button in mATLAB desktop or by selecting File $>$ New $>$-file in the MATLAB desktop (Figure 4-1) or Command Window (Figure 4-2). The Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB programming code (Figure 4-3). You can open an existing M-file using File $>$ Open on the MATLAB desktop (Figure 4-1) or, alternatively, you can use the command Open in the Command Window (Figure 4-2). You can also open the Editor/Debugger by right-clicking on the Current Directory window and choosing New $>M$-file from the resulting pop-up menu (Figure 4-4). Using the menu option Open, you can open an existing M-file. You can open several M-files simultaneously, each of which will appear in a different window.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5 shows the functions of the icons in the Editor/Debugger.

Figure 4-5.

Scripts

Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once the syntax of the script has been entered into the editor (Figure 4-6), it is stored in the work library (work) and simultaneously executes by clicking the button or by selecting the option Save and run from the Debug menu (or pressing F5). To move from one chart to the next press ENTER.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 4-9.

Figure 4-10.

Functions and M-files. Eval and Feval

We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program. But, in addition, the program also offers the possibility of custom defined functions. The most common way to define a function is to write its definition to a text file, called an M -file, which will be permanent and will therefore enable the function to be used whenever required.

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of commands in batch mode, in which case a sequence of commands can be submitted which were previously written in a file. This file (M-file) must be stored on disk with the extension " m " in the MATLAB subdirectory, using any ASCII editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the command echo on is active and only the results of successive executions of the interpreted commands are displayed. Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually, would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the comment with the symbol \%. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful applications of M-files. The syntax of this command is as follows:
function output_parameters = function_name (input_parameters)
the function body
Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some explanatory text in the syntax of the function (using \%), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by commas. If there is more than one input parameter, they are separated by commas. The body of the function is the syntax that defines it, and should include commands or instructions that assign values to output parameters. Each command or instruction of the body often appears in a line that ends either with a comma or, when variables are being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is stored in the M -file named function_name.m.

Let us define the function $f u n 1(x)=x^{\wedge} 3-2 x+\cos (x)$, creating the corresponding M-file fun1.m. To define this function in MATLAB select M-file New from the File menu in the top menu bar (or click the button in matLAB tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the function, as shown in Figure 4-11.

Figure 4-11.

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB Editor/Debugger. This opens the Save dialog of Figure 4-12, which we use to save our function with the desired name and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button \downarrow or select Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function and in MATLAB's default work subdirectory C: $\backslash M A T L A B 6 p 1 \backslash$ work.

Figure 4-12.

Once a function has been defined and saved in an M-file, it can be used from the Command Window. For example, to find the value of the function at $3 \pi-2$ we write in the Command Window:

```
>> fun1(3*pi/2)
```

ans $=$
95.2214

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the command help, as follows:

>> help fun1(x)

A simple function definition

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax of which is as follows:
feval ('F', arg1, arg1,..., argn)

This evaluates the function F (the M-file F.m) at the specified arguments arg1, arg2,..., argn.
As an example we build an M-file named equation $2 . m$ which contains the function equation2, whose arguments are the three coefficients of the quadratic equation $a x^{2}+b x+c=0$ and whose outputs are the two solutions (Figure 4-13).

Figure 4-13.

Now if we want to solve the equation $x^{2}+2 x+3=0$ using feval, we write the following in the Command Window:

>> [x 1, x 2] = feval('equation2',1,2,3)

x $1=$
$-1.0000+1.4142 i$
x $2=$
$-1.0000-1.4142 i$

The quadratic equation can also be solved as follows:

>> $[x 1, x 2]=$ equation2 $(1,2,3)$

x $1=$
$-1.0000+1.4142 i$
x $2=$
$-1.0000-1.4142 i$

If we want to ask for help about the function equation2 we do the following:

>> help equation2

This function solves the quadratic equation $a x \wedge 2+b x+c=0$
whose coefficients are a, b and c (input parameters)
and whose solutions are $\times 1$ and $\times 2$ (output parameters)

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval, whose syntax is as follows:

```
eval (expression)
```

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

```
>> n=4;
>> eval(['M' num2str(n) ' = magic(n)'])
```

M4 =

162313
511108
$\begin{array}{llll}97 & 6 & 12\end{array}$
414151

Local and Global Variables

Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary to define global variables with the GLOBAL command whose syntax is as follows:

GLOBAL x y z...

This defines the variables x, y and z as global.
Any variables defined as global inside a function are available separately for the rest of the functions and in the base workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an empty array. If there is already a variable with the same name as a global variable being defined, MATLAB will send a warning message and change the value of that variable to match the global variable. It is convenient to declare a variable as global in every function that will need access to it, and also in the command line, in order to access it from the base workspace. The GLOBAL command is located at the beginning of a function (before any occurrence of the variable).

As an example, suppose that we want to study the effect of the interaction coefficients α and β in the Lotka-Volterra predator-prey model:

$$
\begin{aligned}
& \dot{y}_{1}=y_{1}-\alpha y_{1} y_{2} \\
& \dot{y}_{2}=-y_{2}-\beta y_{1} y_{2}
\end{aligned}
$$

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 4-14.

Figure 4-14.

Later, we might type the following in the command line:

```
>> global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
```

These global values may then be used for α and β in the M-file lotka.m (without having to specify them). For example, we can generate the graph (Figure 4-15) with the following syntax:

>> $[t, y]=$ ode23 ('lotka', $0.10,[1 ; 1]) ; \operatorname{plot}(t, y)$

Figure 4-15.

Data Types

MATLAB has 14 different data types, summarized in Figure 4-16 below.

Figure 4-16.

Below are the different types of data:

Data type	Example	Description
single	3* 10 ^ 38	Simple numerical precision. This requires less storage than double precision, but it is less precise. This type of data should not be used in mathematical operations.
Double	$\begin{aligned} & 3^{*} 10 \wedge 300 \\ & 5+6 i \end{aligned}$	Double numerical precision. This is the most commonly used data type in MATLAB.
sparse	speye(5)	Sparse matrix with double precision.
$\begin{aligned} & \text { int8, uint8, int16, } \\ & \text { uint16, int32, } \\ & \text { uint32 } \end{aligned}$	UInt8(magic (3))	Integers and unsigned integers with 8, 16, and 32 bits. These make it possible to use entire amounts with efficient memory management. This type of data should not be used in mathematical operations.
char	'Hello'	Characters (each character has a length of 16 bits).
cell	\{17 'hello' eye (2) \}	Cell (contains data of similar size).
structure	$\begin{aligned} & \text { a.day }=12 ; \text { a.color }=\text { 'Red'; } \\ & \text { a.mat }=\text { magic }(3) ; \end{aligned}$	Structure (contains cells of similar size).
user class	inline('sin (x)')	MATLAB class (built with functions).
java class	Java. awt.Frame	Java class (defined in API or own) with Java.
function handle	@humps	Manages functions in MATLAB. It can be last in a list of arguments and evaluated with feval.

Flow Control: FOR Loops, WHILE and IF ELSEIF

The use of recursive functions, conditional operations and piecewise defined functions is very common in mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition of the functions will be made via M-files.

FOR Loops

MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This statement allows you to run a command or group of commands repeatedly. For example:

```
" for i=1:3, x(i)=0, end
x =
0
x =
0
x =
000
```

The general form of a FOR loop is as follows:

```
for variable = expression
```

 commands
 end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 4-17):

Figure 4-17.

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz. m, we can build any Hilbert matrix later by running the M -file and specifying values for the variables m and n (the matrix dimensions) as shown below:

```
>> M = matriz (4,5)
```

$M=$

1.0000	0.5000	0.3333	0.2500	0.2000
0.5000	0.3333	0.2500	0.2000	0.1667
0.3333	0.2500	0.2000	0.1667	0.1429
0.2500	0.2000	0.1667	0.1429	0.1250

WHILE Loops

MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This statement allows you to repeat a command or group of commands a number of times while a specified logical condition is met. The general syntax of this loop is as follows:

```
While condition
    commands
end
```

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes in its interior a whole set of commands that are separated by commas which continually loop while the condition is met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As an example, we write an M-file (Figure 4-18) that is saved as while1.m, which calculates the largest number whose factorial does not exceed 10^{100}.

Figure 4-18.

We now run the M-file.

>> while1

$\mathrm{n}=$

70

IF ELSEIF ELSE END Loops

MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this structure, scripts can be run if certain conditions are met. The loop syntax is as follows:

```
if condition
    commands
end
```

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.

```
if condition
    commands1
else
    commands2
end
```

In this case, the commands commands 1 are executed if the condition is true, and the commands commands 2 are executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF statement, the general syntax is as follows:

```
if condition1
```

 commands1
 elseif condition2
commands2
elseif condition3
commands3
-
else
end

In this case, the commands commands1 are executed if conditionl is true, the commands commands 2 are executed if condition 1 is false and condition 2 is true, the commands commands 3 are executed if condition 1 and condition 2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:

```
if condition1
    commands1
else
    if condition2
        commands2
```

```
    else
        if condition3
                commands3
            else
        •
        •
        -
        end
        end
```

end

Consider, for example, the M-file else1.m (see Figure 4-19).

Figure 4-19.

When you run the file it returns negative, odd or even according to whether the argument n is negative, non-negative and odd, or non-negative and even, respectively:

>> else1 (8), else1 (5), else1 (- 10)

$A=$
n is even
$A=$
n is odd
$A=$
n is negative

Switch and Case

The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax is as follows:
switch expression (scalar or string)
case value1
statements \% runs if expression is value1
case value2
statements \% runs if expression is value2
-
-
-
otherwise
statements \% runs if neither case is satisfied
end
Below is an example of a function that returns 'minus one', 'zero', 'one', or 'another value' according to whether the input is equal to $-1,0,1$ or something else, respectively (Figure 4-20).

Figure 4-20.
Running the above example we get:
>> case1 (25)
another value

>> case1 (- 1)

minus one

Continue

The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 4-21) that counts the lines of code in the file magic. m, ignoring the white lines and comments.

Figure 4-21.

Running the M-file, we get:
>) continue1
25 lines

Break

The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which appears outside of the loop. Below is an M-file break1.m (Figure 4-22) which reads the lines of code in the file fft.m, exiting the loop as soon as it encounters the first empty line.

Figure 4-22.

Running the M-file we get:

>> break1

\%FFT Discrete Fourier transform.
\% $\mathrm{FFT}(\mathrm{X})$ is the discrete Fourier transform (DFT) of vector X. For
\% matrices, the FFT operation is applied to each column. For N-D
\% arrays, the FFT operation operates on the first non-singleton
\% dimension.
\%
\% $\operatorname{FFT}(X, N)$ is the N-point $F F T$, padded with zeros if X has less
$\%$ than N points and truncated if it has more.
\% $\operatorname{FFT}(X,[], D I M)$ or $\operatorname{FFT}(X, N, D I M)$ applies the FFT operation across the \% dimension DIM.
\% See also IFFT, FFT2, IFFT2, FFTSHIFT.

Try... Catch

The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the cause of the error. The general syntax of the command is as follows:

```
try,
instruction
instruction
catch,
instruction
instruction
end
```


Return

The return statement terminates the current script and returns the control to the invoked function or the keyboard. The following is an example (Figure 4-23) that computes the determinant of a non-empty matrix. If the array is empty it returns the value 1 .

Figure 4-23.

Running the function for a non-empty array we get:

```
>> A = [- 1, - 1, 1; 1,0,1; 1,1,1]
A =
-1 -1 -1
    1 0 1
    1 -1 -1
>> det1 (A)
ans =
2
```

Now we apply the function to an empty array:

> $\mathbf{B}=[]$

$B=$
[]
det1 (B)
ans =

1

Subfunctions

M-file-defined functions can contain code for more than one function. The main function in an M-file is called a primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary function may be added which are only visible for the primary function or another subfunction within the same M -file. Each subfunction begins with its own function definition. An example is shown in Figure 4-24.

Figure 4-24.

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and n as the second argument. When executing the main function, it is enough to provide as input a list of values for which the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.

```
>> [mean, median] = newstats ([10,20,3,4,5,6])
```

mean =

8
median $=$
5.5000

Commands in M-files

MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are the following:

echo on	View on-screen commands of an M-file script while it is running.
echo off	Hides on-screen commands of an M-file script (this is the default setting).
pause	Interrupts the execution of an M-file until the user presses a key to continue.
pause(n)	Interrupts the execution of an M-file for n seconds.
pause off	Disables pause and pause (n).
pause on	Enables pause and pause (n).
keyboard	Interrupts the execution of an M-file and passes the control to the keyboard so that the user can perform other tasks. The execution of the M-file can be resumed by typing the return command into the Command Window and pressing Enter.
return	Resumes execution of an M-file after an outage. break
CLC	Clears the Command Window.
Home	Hides the cursor.
more on	Enables paging of the MATLAB Command Window output.
more off	Disables paging of the MATLAB Command Window output.
more (N)	Sets page size to N lines.
menu	Offers a choice between various types of menu for user input.

Functions Relating to Arrays of Cells

An array is a well-ordered collection of individual items. This is simply a list of elements, each of which is associated with a positive integer called its index, which represents the position of that element in the list. It is essential that each element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions, and correspondingly they have one or more sets of indices that identify their elements. The most important commands and functions that enable MATLAB to work with arrays of cells are the following:

$\mathrm{c}=\operatorname{cell}(\mathrm{n})$	Creates an $n \times n$ array whose cells are empty arrays.
$\mathbf{c}=\operatorname{cell}(\mathrm{m}, \mathrm{n})$	Creates an $m \times n$ array whose cells are empty arrays.
$\mathrm{c}=\operatorname{cell}([\mathrm{m} \mathrm{n}])$	Creates an $m \times n$ array whose cells are empty arrays.
$\mathbf{c}=\operatorname{cell}(\mathrm{m}, \mathrm{n}, \mathrm{p}, \ldots$.	Creates an $m \times n \times p \times \ldots$ array of empty arrays.
$\mathbf{c}=\operatorname{cell}([\mathrm{m} \mathrm{n} \mathrm{p} \mathrm{..]})$.	Creates an $m \times n \times p \times \ldots$ array of empty arrays.
$\mathrm{c}=\operatorname{cell}(\operatorname{size}(\mathrm{A})$)	Creates an array of empty arrays of the same size as A.
D = cellfun('f', \mathbf{C})	Applies the function f(isempty, islogical, isreal, length, ndims, or prodofsize) to each element of the array C.
D = cellfun('size', C, \mathbf{k})	Returns the size of each element of dimension k in C.
D = cellfun('isclass,'C,class)	Returns true for each element of C corresponding to class.
$\mathrm{C}=$ cellstr(S)	Places each row of the character array S into separate cells of C.
S = cell2struct(C,fields, dim)	Converts the array C to a structure array S incorporating field names 'fields' and the dimension 'dim' of C.
celldisp (C)	Displays the contents of the array C.
celldisp(C, name)	Assigns the contents of the array C to the variable name.
cellplot(C)	Shows a graphical representation of the array C.
cellplot(C,legend')	Shows a graphical representation of the array C and incorporates a legend.
$\mathrm{C}=$ num2cell(A)	Converts a numeric array A to the cell array C.
C = num2cell(A,dims)	Converts a numeric array A to a cell array C placing the given dimensions in separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.

```
>> A = ones(2,2)
A =
1
1 1
>> c = cell(size(A))
c =
[] []
[] []
```

We then define and present a 2×3 array of cells element by element, and apply various functions to the cells.

```
>> C {1.1} = [1 2; 4 5];
C {1,2} = 'Name';
C {1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);
>> C
C =
\begin{tabular}{lll} 
[2x2 double] & 'Name' & {\(\left[\begin{array}{ll}3.1416] \\
{[2.0000+4.0000 i]}\end{array}\right.\)} \\
{\(\left[\begin{array}{ll}7\end{array}\right.\)} & {\([3 \times 3\)} & double \(]\)
\end{tabular}
>> D = cellfun('isreal',C)
D =
1 1 1
0 1 1
>> len = cellfun('length',C)
len =
2 4 1
1 1 3
>> isdbl = cellfun('isclass',C,'double')
isdbl =
1 O 1
111
```

The contents of the cells in the array C defined above are revealed using the command celldisp.

>> celldisp(C)

$C\{1,1\}=$
12
45
$C\{2,1\}=$
$2.0000+4.0000 i$
$C\{1,2\}=$

Name

C $\{2,2\}=$

7
$C\{1,3\}=$
3.1416
$C\{2,3\}=$

816
357
492

The following displays a graphical representation of the array C (Figure 4-25).
>> cellplot(C)
4) Figure No. 1

File Edit View Insert Tools Window Help

Figure 4-25.

Multidimensional Array Functions

The following group of functions is used by MATLAB to work with multidimensional arrays:

$\mathbf{C}=\mathbf{c a t}(\mathbf{d i m}, \mathbf{A}, \mathbf{B})$	Concatenates arrays A and B according to the dimension dim.
$\mathbf{C}=\mathbf{c a t}(\mathbf{d i m}, \mathbf{A 1}, \mathbf{A 2}, \mathbf{A 3}, \mathbf{A 4} \ldots .$.	Concatenates arrays A1, A2,... according to the dimension dim.
$\mathrm{B}=\mathrm{flipdim}(\mathrm{A}, \operatorname{dim})$	Flips the array A along the specified dimension dim.
[I,J] = ind2sub (siz,IND)	Returns the matrices I and J containing the equivalent row and column subscripts corresponding to each index in the matrix IND for a matrix of size siz.
[I1,I2,I3,...,In] = ind2sub(siz,IND	Returns matrices I1, I2,..,In containing the equivalent row and column subscripts corresponding to each index in the matrix IND for a matrix of size siz.
A = ipermute(\mathbf{B}, order $)$	Inverts the dimensions of the multidimensional array D according to the values of the vector order.
[$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots]=\operatorname{ndgrid}(\mathbf{x 1 , x 2}, \mathbf{x} 3, \ldots$.	Transforms the domain specified by vectors $x 1, x 2, \ldots$ into the arrays X1, X2,... which can be used for evaluation of functions of several variables and interpolation.
[$\mathrm{X} 1, \mathrm{X} 2, \ldots . \mathrm{]}$ = ndgrid (x)	Equivalent to ndgrid (x, x, x, \ldots).
$\mathrm{n}=\mathbf{n d i m s}(\mathrm{A})$	Returns the number of dimensions in the array A.
$B=$ permute (\mathbf{A}, order $)$	Swaps the dimensions of the array A specified by the vector order.
$B=\operatorname{reshape}(\mathbf{A}, \mathbf{m}, \mathbf{n})$	Defines an $m \times n$ matrix B whose elements are the columns of a.
$\mathbf{B}=\mathbf{r e s h a p e}(\mathbf{A}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \ldots$.	Defines an array B whose elements are those of the array A restructured according to the dimensions $m \times n \times p \times \ldots$
$B=\operatorname{reshape}(\mathrm{A},[\mathrm{m} \mathrm{n} \mathrm{p} . .]$.	Equivalent to $B=\operatorname{reshape}(A, m, n, p, \ldots)$
$\mathrm{B}=\operatorname{reshape}(\mathbf{A}, \mathbf{s i z})$	Defines an array B whose elements are those of the array A restructured according to the dimensions of the vector siz.
$\mathbf{B}=\operatorname{shiftdim}(\mathbf{X}, \mathbf{n})$	Shifts the dimensions of the array X by n, creating a new array B.
[$\mathrm{B}, \mathrm{nshifts}]=\operatorname{shiftdim}(\mathbf{X})$	Defines an array B with the same number of elements as X but with leading singleton dimensions removed.
$\mathbf{B}=$ squeeze(\mathbf{A})	Creates an array B with the same number of elements as A but with all singleton dimensions removed.
$\begin{aligned} & \text { IND }=\text { sub2ind(siz,I,J) } \\ & \text { IND }=\text { sub2ind(siz,II,I2,...,In) } \end{aligned}$	Gives the linear index equivalent to the row and column indices I and J for a matrix of size siz.
	Gives the linear index equivalent to the n indices I1, I2,..., in a matrix of size siz.

As a first example we concatenate a magic square and Pascal matrix of order 3.

```
>> A = magic (3); B = pascal (3);
>> C = cat (4, A, B)
```

$C(:,:, 1,1)=$

816
357
492
$C(:,:, 1,2)=$

111
123
136

The following example flips the Rosser matrix.

>> R=rosser

$R=$

611	196	-192	407	-8	-52	-49	29
196	899	113	-192	-71	-43	-8	-44
-192	113	899	196	61	49	8	52
407	-192	196	611	8	44	59	-23
-8	-71	61	8	411	-599	208	208
-52	-43	49	44	-599	411	208	208
-49	-8	8	59	208	208	99	-911
29	-44	52	-23	208	208	-911	99

>> flipdim(R,1)

ans =
ans =

29	-44	52	-23	208	208	-911	99
-49	-8	8	59	208	208	99	-911
-52	-43	49	44	-599	411	208	208
-8	-71	61	8	411	-599	208	208
407	-192	196	611	8	44	59	-23
-192	113	899	196	61	49	8	52
196	899	113	-192	-71	-43	-8	-44
611	196	-192	407	-8	-52	-49	29

Now we define an array by concatenation and permute and inverse permute its elements.

```
>> a = cat(3,eye(2),2*eye(2),3*eye(2))
```

```
a(:,:,1) =
10
O 1
a(:,:,2) =
20
O
a(:,:,\mp@code{) =}
30
0}
>> B = permute(a,[[\begin{array}{lll}{3}&{2}&{1}\end{array}])
```

$B(:,:, 1)=$
10
20
30
$B(:,:, 2)=$
01
02
03
>> $C=$ ipermute($\left.B,\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]\right)$
$C(:,:, 1)=$
10
01
$C(:,:, 2)=$
20
02
$C(:,:, 3)=$
30
03

The following example evaluates the function $f\left(x_{1}, x_{2}\right)=x_{1} \mathrm{e}^{-x_{1}^{2}-x_{2}^{2}}$ in the square $[-2,2] \times[-2,2]$ and displays it graphically (Figure 4-26).

```
>> [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z = X 1.* * exp(-X1.^2-X2.^2);
mesh (Z)
```


Figure 4-26.

In the following example we resize a 3×4 random matrix to a 2×6 matrix.

>> $A=r a n d(3,4)$

$A=$

0.9501	0.4860	0.4565	0.4447
0.2311	0.8913	0.0185	0.6154
0.6068	0.7621	0.8214	0.7919

>> $B=\operatorname{reshape}(A, 2,6)$
$B=$

```
0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
0.2311 0.4860 0.7621 0.0185 0.4447 0.7919
```


Numerical Analysis Methods in MATLAB

MATLAB programming techniques allow you to implement a wide range of numerical algorithms. It is possible to design programs which perform numerical integration and differentiation, solve differential equations, optimize non-linear functions, etc. However, MATLAB's Basic module already has a number of tailor-made functions which implement some of these algorithms. These functions are set out in the following subsections. In the next chapter we will give some examples showing how these functions can be used in practice.

Zeros of Functions and Optimization

The commands (functions) that enables MATLAB's Basic module to optimize functions and find the zeros of functions are as follows:

```
x= fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x= fminbnd(fun,x1,x2,
options,P1,P2,...)
[x, fval] = fminbnd (...)
[x, fval, f] = fminbnd (...)
[x,fval,f,output] = fminbnd(...)
x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,f] = fminsearch(...)
[x,fval,f,output] = fminsearch(...)
x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x, fval] = fzero (...)
[x, fval, exitflag] = fzero (...)
[x,fval,exitflag,output] = fzero(...)
```

Minimizes the function on the interval (x1 x2).
Minimizes the function on the interval ($x 1 \times 2$) according to the option given by optimset (...). This last command is explained later.

Specifies additional parameters P1, P2, ... to pass to the target function fun($x, P 1, P 2, \ldots$).

Returns the value of the objective function at x.
In addition, returns an indicator of convergence $f(f>0$ indicates convergence to the solution, $f<0$ indicates no convergence and $f=0$ indicates the algorithm exceeded the maximum number of iterations).

Provides further information (output.algorithm gives the algorithm used, output. funcCount gives the number of evaluations offun and output.iterations gives the number of iterations).
Returns the minimum of a scalar function of several variables, starting at an initial estimate $x 0$. The argument $x 0$ can be an interval $[a, b]$. To find the minimum offun in $[a, b], x=$ fminsearch (fun, $[a, b]$) is used.

Finds zeros of the function fun, with initial estimate x0, by finding a point where fun changes sign. The argument $x 0$ can be an interval $[a$, $b]$. Then, to find a zero offun in $[a, b]$, we use $x=$ fzero (fun, $[a, b]$), where fun has opposite signs at a and b.

	Creates optimization parameters p1, p2,... with values v1, v2... The possible parameters are Display (with possible values 'off', 'iter,' 'final,' 'notify') to respectively not display the output, display the output of each iteration, display only the final output, and display a message if there is no convergence); MaxFunEvals, whose value is an integer indicating the maximum number of evaluations; MaxIter whose value is an integer indicating the maximum number of iterations; TolFun, whose value is an integer indicating the tolerance in the value of the function, and TolX, whose value is an integer indicating the tolerance in the value of x.
val = optimget (options, 'param')	Returns the value of the parameter specified in the optimization options structure.
$\mathrm{g}=$ inline (expr)	Transforms the string expr into a function.
$\mathrm{g}=\mathrm{inline}($ expr,arg1,arg2, ...)	Transforms the string expr into a function with given input arguments.
$\mathrm{g}=$ inline ($\mathrm{expr}^{\text {n }} \boldsymbol{n}$)	Transforms the string expr into a function with n input arguments.
$\mathbf{f}=$ @function	Enables the function to be evaluated.

As a first example we find the value of x that minimizes the function $\cos (x)$ in the interval $(3,4)$.

```
>> x = fminbnd(@cos,3,4)
```

x =
3.1416

We could also have used the following syntax:

```
>> x = fminbnd(inline(' }\operatorname{cos}(x)'),3,4
```

x =
3.1416

In the following example we find the above minimum to 8 decimal places and find the value of x that minimizes the cosine in the given interval, presenting information relating to all iterations of the process.

>> [x,fval,f] = fminbnd(@cos,3,4,optimset('TolX',1e-8,... 'Display','iter'));

Func-count	x	$\mathrm{f}(\mathrm{x})$	Procedure
1	3.38197	-0.971249	initial
2	3.61803	-0.888633	golden
3	3.23607	-0.995541	golden
4	3.13571	-0.999983	parabolic
5	3.1413	-1	parabolic
6	3.14159	-1	parabolic
7	3.14159	-1	parabolic
8	3.14159	-1	parabolic
9	3.14159	-1	parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008

In the following example, taking $(-1,2 ; 1)$ as initial values, we find the minimum and target value of the following function of two variables:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

```
>> [x,fval] = fminsearch(inline('100*(x(2)-x(1)^2)^2+...
(((1-x (1)) ^ 2'), [- 1.2, 1])
x =
1.0000 1.0000
fval =
8. 1777e-010
```

The following example computes a zero of the sine function with an initial estimate of 3 , and a zero of the cosine function between 1 and 2 .

```
>> x = fzero(@sin,3)
```

$x=$
3.1416
>> $x=$ fzero(@cos,[lllll
$x=$
1.5708

Numerical Integration

MATLAB contains functions that allow you to perform numerical integration using Simpson's method and Lobato's method. The syntax of these functions is as follows:

$\mathbf{q}=\mathbf{q u a d}(\mathbf{f}, \mathbf{a}, \mathbf{b})$	Finds the integral off between a and b by Simpson's method with an error of 10-6.
$\mathbf{q}=\mathbf{q u a d}(\mathbf{f}, \mathbf{a}, \mathbf{b}$, tol $)$	Find the integral off between a and b by Simpson's method with the tolerance tol instead of 10-6.
$\mathbf{q}=$ quad($\mathbf{f}, \mathrm{a}, \mathrm{b}$, tol,trace $)$	Find the integral off between a and b by Simpson's method with the tolerance tol and presents the trace of iterations.
$\mathbf{q}=$ quad($\mathbf{f}, \mathrm{a}, \mathrm{b}$, tol,trace, $\mathbf{p} 1, \mathrm{p} 2, \ldots$)	Passes additional arguments p1, p2, ... to the function $f, f(x, p 1, p 2, \ldots)$.
[q, fcnt] = quadl(f,a,b,...)	Additionally returns the number of evaluations off.

$\mathbf{q}=$ quadl $(\mathbf{f}, \mathbf{a}, \mathrm{b})$	Finds the integral off between a and b by Lobato's quadrature method with a 10-6 error.
$\mathbf{q}=\mathbf{q u a d l}(\mathbf{f}, \mathbf{a}, \mathbf{b}$, tol $)$	Finds the integral off between a and b by Lobato's quadrature method with the tolerance tol instead of 10^{-6}.
$\mathbf{q}=$ quadl($\mathbf{f}, \mathbf{a}, \mathbf{b}$, tol,trace $)$	Finds the integral off between a and b by Lobato's quadrature method with the tolerance tol and presents the trace of iterations.
$\mathbf{q}=\mathbf{q u a d}(\mathbf{f}, \mathbf{a}, \mathrm{b}$, tol,trace, $\mathbf{p} 1, \mathbf{p} 2, \ldots$)	Passes additional arguments p1, p2,... to the function $f, f(x, p 1, p 2, \ldots)$.
[q, fcnt] = quadl(f, $\mathbf{a}, \mathrm{b}, \ldots$)	Additionally returns the number of evaluations off.
$\begin{aligned} & q=\operatorname{dblquad}(f, x m i n, x m a x \\ & \text { ymin, ymax) } \end{aligned}$	Evaluates the double integral $f(x, y)$ in the rectangle specified by the given parameters, with an error of 10^{-6}. dblquad will be removed in future releases and replaced by integral2.
$\begin{aligned} & q=\text { dblquad (f, xmin, xmax, } \\ & \text { ymin,ymax,tol) } \end{aligned}$	Evaluates the double integral $f(x, y)$ in the rectangle specified by the given parameters, with tolerance tol.
$q=\operatorname{dblquad}(f, x m i n, x m a x$, ymin,ymax,tol,@quadl)	Evaluates the double integral $f(x, y)$ in the rectangle specified by the given parameters, with tolerance tol and using the quadl method.
$\begin{aligned} & q=\operatorname{dblquad}(f, \text { xmin, xmax, } \\ & \text { ymin,ymax,tol,method,p1,p2,...) } \end{aligned}$	Passes additional arguments p1, p2,... to the function f.

As a first example we calculate $\int_{0}^{2} \frac{1}{x^{3}-2 x-5} d x$ using Simpson's method.

```
>> F = inline('1./(x.^3-2*x-5)');
>> O = quad(F,0,2)
```

O =
-0.4605

Then we observe that the integral remains unchanged even if we increase the tolerance to 10^{-18}.

```
>>O = quad(F,0,2,1.0e-18)
```

O =
-0.4605

In the following example we evaluate the same integral using Lobato's method.

```
>> 0 = quadl(F,0,2)
```

$0=$
-0.4605
We evaluate the double integral $\int_{\pi}^{2 \pi} \int_{0}^{\pi}(y \sin (x)+x \cos (y)) d y d x$.

```
>> Q = dblquad (inline (' y * sin (x) + x * cos (y)'), pi, 2 * pi, 0, pi)
```

$0=$
-9.8696

Numerical Differentiation

The derivative $f^{\prime}(x)$ of a function $f(x)$ can simply be defined as the rate of change of $f(x)$ with respect to x. The derivative can be expressed as a ratio between the change in $f(x)$, denoted by $d f(x)$, and the change in x, denoted by $d x$. The derivative of a function f at the point x_{k} can be estimated by using the expression:

$$
f^{\prime}\left(x_{k}\right)=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

provided the values $x_{k^{\prime}}, x_{k-1}$ are close to each other. Similarly the second derivative $f^{\prime \prime}(x)$ of the function $f(x)$ can be estimated as the first derivative of $f^{\prime}(x)$, i.e.:

$$
f^{\prime \prime}\left(x_{k}\right)=\frac{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

MATLAB includes in its Basic module the function diff, which allows you to approximate derivatives. The syntax is as follows:
$\mathbf{Y}=\operatorname{diff}(\mathbf{X}) \quad$ Calculates the differences between adjacent elements in the vector $X:[X(2)-X(1), X(3)-X(2), \ldots, X(n)-$ $X(n-1)]$. If X is an $m \times n$ matrix, diff (X) returns the array of differences by rows: $[X(2: m,:)-X(1: m-1,:)]$
$\mathbf{Y}=\operatorname{diff}(\mathbf{X}, \boldsymbol{n}) \quad$ Finds differences of order n, for example: $\operatorname{diff}(X, 2)=\operatorname{diff}(\operatorname{diff}(X))$.

As an example we consider the function $f(x)=x^{5}-3 x^{4}-11 x^{3}+27 x^{2}+10 x-24$, find the difference vector of $[-4,-3.9,-3.8, \ldots, 4.8,4.9,5]$ the difference vector of $[f(-4), f(-3.9), f(-3.8), \ldots, f(4.8), f(4.9), f(5)]$ and the elementwise quotient of the latter by the former, and graph the function in the interval [-4.5]. See Figure 4-27.

```
>> x =-4:0.1: 5;
>> f = x.^5-3*x.^4-11*x.^3 + 27*x.^2 + 10*x-24;
>> df=diff(f)./diff(x)
```

$d f=$
$1.0 \mathrm{e}+003$ *

Columns 1 through 7

$$
\begin{array}{lllllll}
1.2390 & 1.0967 & 0.9655 & 0.8446 & 0.7338 & 0.6324 & 0.5400
\end{array}
$$

Columns 8 through 14
0.4560
0.3801
0.3118
0.2505
0.1960
0.1477
0.1053

CHAPTER $4 \square$ MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Columns 15 through 21

$$
\begin{array}{lllllll}
0.0683 & 0.0364 & 0.0093 & -0.0136 & -0.0324 & -0.0476 & -0.0594
\end{array}
$$

Columns 22 through 28

$$
\begin{array}{lllllll}
-0.0682 & -0.0743 & -0.0779 & -0.0794 & -0.0789 & -0.0769 & -0.0734
\end{array}
$$

Columns 29 through 35

$$
\begin{array}{lllllll}
-0.0687 & -0.0631 & -0.0567 & -0.0497 & -0.0424 & -0.0349 & -0.0272
\end{array}
$$

Columns 36 through 42

$$
\begin{array}{lllllll}
-0.0197 & -0.0124 & -0.0054 & 0.0012 & 0.0072 & 0.0126 & 0.0173
\end{array}
$$

Columns 43 through 49
0.0212
0.0244
0.0267
0.0281
0.0287
0.0284
0.0273

Columns 50 through 56
0.0253
0.0225
0.0189
0.0147
0.0098
0.0044
-0.0014

Columns 57 through 63

$$
\begin{array}{lllllll}
-0.0076 & -0.0140 & -0.0205 & -0.0269 & -0.0330 & -0.0388 & -0.0441
\end{array}
$$

Columns 64 through 70

$$
\begin{array}{lllllll}
-0.0485 & -0.0521 & -0.0544 & -0.0553 & -0.0546 & -0.0520 & -0.0472
\end{array}
$$

Columns 71 through 77

-0.0400	-0.0300	-0.0170	-0.0007	0.0193	0.0432	0.0716

Columns 78 through 84
0.1046
0.1427
0.1863
0.2357
0.2914
0.3538
0.4233

Columns 85 through 90
0.5004
0.5855
0.67910 .7816
0.8936
1.0156

>> plot (x, f)

Figure 4-27.

Approximate Solution of Differential Equations

MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

Ordinary Differential Equations with Initial Values

An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the independent variable t. A first order ordinary differential equation with an initial value for the independent variable can be represented as:

$$
\begin{aligned}
& y^{\prime}=f(t, y) \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

The previous problem can be generalized to the case where y is a vector, $y=\left(y_{1}, y_{2}, \ldots, y n\right)$

MATLAB's Basic module commands relating to ordinary differential equations and differential algebraic equations with initial values are presented in the following table:

Command	Class of Problem Solving, Numerical Method and Syntax
ode45	Ordinary differential equations by the Runge-Kutta method
ode23	Ordinary differential equations by the Runge-Kutta method
ode113	Ordinary differential equations by Adams' method
ode15s	Differential algebraic equations and ordinary differential equations using NDFs (BDFs)
ode23s	Ordinary differential equations by the Rosenbrock method
ode23t	Ordinary differential and differential algebraic equations by the trapezoidal rule
ode23tb	Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:

```
[T, y] = solver(odefun,tspan,y0)
[T, y] = solver(odefun,tspan,yo,options)
[T, y] = solver(odefun,tspan,y0,options,p1,p2...)
[T, y, TE, YE, IE] = solver(odefun,tspan,yo,options)
```

In the above, solver can be any of the commands ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb. The argument odefun evaluates the right-hand side of the differential equation or system written in the form $y^{\prime}=f(t, y)$ or $M(t, y) y^{\prime}=f(t, y)$, where $M(t, y)$ is called a mass matrix. The command ode23s can only solve equations with constant mass matrix. The commands ode15s and ode $23 t$ can solve algebraic differential equations and systems of ordinary differential equations with a singular mass matrix. The argument $t s p a n$ is a vector that specifies the range of integration $\left[t_{0^{0}}, t_{f}\right]\left(t s p a n=\left[t_{0}, t_{1}, \ldots, t_{f}\right]\right.$, which must be either an increasing or decreasing list, is used to obtain solutions for specific values of t). The argument y_{0} specifies a vector of initial conditions. The arguments $p 1, p 2, \ldots$ are optional parameters that are passed to odefun. The argument options specifies additional integration options using the command options odeset which can be found in the program manual. The vectors T and y present the numerical values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval $[0,12]$ of the following system of ordinary differential equations:

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{2} y_{3} & y_{1}(0)=0 \\
y_{2}^{\prime}=-y_{1} y_{3} & y_{2}(0)=1 \\
y_{3}^{\prime}=-0.51 y_{1} y_{2} & y_{3}(0)=1
\end{array}
$$

For this, we define a function named systeml in an M-file, which will store the equations of the system. The function begins by defining a column vector with three rows which are subsequently assigned components that make up the syntax of the three equations (Figure 4-28).
5) C:MATLAB6p11worklnewstats.m*

Figure 4-28.

We then solve the system by typing the following in the Command Window:

```
>> [T, Y] = ode45(@system1,[0 12],[[0 1 1])
```

$\mathrm{T}=$

0
0.0001
0.0001
0.0002
0.0002
0.0005
.
11.6136
11.7424
11.8712
12.0000
$Y=$
01.00001 .0000
0.00011 .00001 .0000
0.00011 .00001 .0000
0.00021 .00001 .0000
0.00021 .00001 .0000
0.00051 .00001 .0000
0.00071 .00001 .0000
0.00101 .00001 .0000
0.00121 .00001 .0000
0.00251 .00001 .0000
0.00371 .00001 .0000
0.00501 .00001 .0000
0.00621 .00001 .0000

CHAPTER $4 \square$ MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
0.01250 .99991 .0000
0.01880 .99980 .9999
0.02510 .99970 .9998
0.03130 .99950 .9997
0.06270 .99800 .9990
-
0.8594-0.5105 0.7894
0.7257-0.6876 0.8552
0.5228-0.8524 0.9281
0.2695-0.9631 0.9815
-0.0118-0.9990 0.9992
-0.2936-0.9540 0.9763
-0.4098-0.9102 0.9548
-0.5169-0.8539 0.9279
-0.6135-0.7874 0.8974
-0.6987-0.7128 0.8650

To better interpret the results, the above numerical solution can be graphed (Figure 4-29) by using the following command:

```
>> plot (T, Y(:,1), '-', T, Y(:,2),'-', T, Y(:,3),'.')
```


Figure 4-29.

Ordinary Differential Equations with Boundary Conditions

MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions specify a relationship that must hold between the values of the solution function at the end points of the interval on which it is defined. The simplest problem of this type is the system of equations

$$
y^{\prime}=f(x, y)
$$

where x is the independent variable, y is the dependent variable and y^{\prime} is the derivative with respect to x (i.e., $y^{\prime}=d y / d x$). In addition, the solution on the interval $[a, b]$ has to meet the following boundary condition:

$$
g(y(a), y(b))=0
$$

More generally this type of differential equation can be expressed as follows:

$$
\begin{aligned}
& y^{\prime}=f(x, y, P) \\
& g(y(a), y(b), P)=0
\end{aligned}
$$

where the vector p consists of parameters which have to be determined simultaneously with the solution via the boundary conditions.

The command that solves these problems is bup $4 c$, whose syntax is as follows:

```
Sol = bvp4c (odefun, bcfun, solinit)
Sol = bvp4c (odefun, bcfun, solinit, options)
Sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)
```

In the syntax above odefun is a function that evaluates $f(x, y)$. It may take one of the following forms:

```
dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,\ldots.)
dydx = odefun (x, y, parameters)
dydx = odefun(x,y,parameters,p1,p2,...)
```

The argument bcfun in $B v p 4 c$ is a function that computes the residual in the boundary conditions. Its form is as follows:

```
Res = bcfun (ya, yb)
Res \(=b c f u n(y a, y b, p 1, p 2, \ldots)\)
Res = bcfun (ya, yb, parameters)
Res \(=\) bcfun(ya,yb,parameters, p1,p2,...)
```

The argument solinit is a structure containing an initial guess of the solution. It has the following fields: x (which gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at $a=$ solinit. $\mathrm{x}(1)$ and $b=$ solinit. x (end); and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant guess for the i-th component of the solution at all the mesh points given by x)) The structure solinit is created using the command bupinit. The syntax is solinit $=\operatorname{bvpinit}(x, y)$.

As an example we solve the second order differential equation:

$$
y^{\prime \prime}+|y|=0
$$

whose solutions must satisfy the boundary conditions:

$$
\begin{aligned}
& y(0)=0 \\
& y(4)=-2
\end{aligned}
$$

This is equivalent to the following problem (where $y_{1}=y$ and $y_{2}=y^{\prime}$):

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=-\left|y_{1}\right|
\end{aligned}
$$

We consider a mesh of five equally spaced points in the interval $[0,4]$ and our initial guess for the solution is $y_{1}=1$ and $y_{2}=0$. These assumptions are included in the following syntax:

```
>> solinit = bvpinit (linspace (0,4,5), [1 0]);
```

The M-files depicted in Figures 4-30 and 4-31 show how to enter the equation and its boundary conditions.

Figure 4-30.

Figure 4-31.

The following syntax is used to find the solution of the equation:

>> Sun = bvp4c (@twoode, @twobc, solinit);

The solution can be graphed (Figure 4-32) using the command bupval as follows:

```
>> y = bvpval (Sun, linspace (0,4));
>> plot (x, y(1,:));
```


Figure 4-32.

Partial Differential Equations

MATLAB's Basic module has features that enable you to solve partial differential equations and systems of partial differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe, and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun= pdepe(m, pdefun,icfun, bcfun, xmesh, tspan,options, p1,p2...)
The parameter m takes the value 0,1 or 2 according to the nature of the symmetry of the problem (block, cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors $\left[x_{0}, x_{1}, \ldots, x_{\mathrm{n}}\right]$ and $\left[t_{0}, t_{1}, \ldots, t_{\mathrm{f}}\right]$ that specify the points at which a numerical solution is requested ($n, f \geq 3$), options specifies some calculation options of the underlying solver (RelTol, AbsTol, NormControl, InitialStep and MaxStep to specify relative tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and $p 1, p 2, \ldots$ are parameters to pass to the functions pdefun, icfun and bcfun.
pdepe solves partial differential equations of the form:

$$
c\left(x, t, u, \frac{\partial u}{\partial x}\right) \frac{\partial u}{\partial t}=x^{-m} \frac{\partial}{\partial x}\left(x^{m} f\left(x, t, u, \frac{\partial u}{\partial x}\right)\right)+s\left(x, t, u, \frac{\partial u}{\partial x}\right)
$$

Where $a \leq x \leq b$ and $t_{0} \leq t \leq t_{\mathrm{f}}$ Moreover, for $t=t_{0}$ and for all x the solution components meet the initial conditions:

$$
u\left(x, t_{0}\right)=u_{0}(x)
$$

and for all t and each $x=a$ or $x=b$, the solution components satisfy the boundary conditions of the form:

$$
p(x, t, u)+q(x, t) f\left(x, t, u, \frac{\partial u}{\partial x}\right)=0
$$

In addition, we have that $a=$ xmesh (1), $b=x m e s h$ (end), tspan (1) $=t_{o}$ and $t s p a n$ (end) $=t_{f}$ Moreover $p d e f u n$ finds the terms c, f and s of the partial differential equation, so that:

[$c, f, s]=$ pdefun ($x, t, u, d u d x$)

Similiarly icfun evaluates the initial conditions

u = icfun (x)

Finally, bcfun evaluates the terms p and q of the boundary conditions:

[pl, ql, pr, qr] = bcfun (xl, ul, $x r, u r, ~ t) ~$

As a first example we solve the following partial differential equation $(x \in[0,1]$ and $t \geq 0)$:

$$
\pi^{2} \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)
$$

satisfying the initial condition:

$$
u(x, 0)=\sin \pi x
$$

and the boundary conditions:

$$
\begin{aligned}
& u(0, t) \equiv 0 \\
& \pi e^{-t}+\frac{\partial u}{\partial x}(1, t)=0
\end{aligned}
$$

We begin by defining functions in M -files as shown in Figures 4-33 to 4-35.

Figure 4-33.

Figure 4-34.

Figure 4-35.

Once the support functions have been defined, we define the function that solves the equation (see the M-file in Figure 4-36).

Figure 4-36.

To view the solution (Figures 4-37 and 4-38), we enter the following into the MATLAB Command Window:
>) pdex1

Figure 4-37.

Figure 4-38.

As a second example we solve the following system of partial differential equations ($x \in[0,1]$ and $t \geq 0$):

$$
\begin{gathered}
\frac{\partial u_{1}}{\partial t}=0.024 \frac{\partial^{2} u_{1}}{\partial x^{2}}-F\left(u_{1}-u_{2}\right) \\
\frac{\partial u_{2}}{\partial t}=0.170 \frac{\partial^{2} u_{2}}{\partial x^{2}}-F\left(u_{1}-u_{2}\right) \\
F(y)=\exp (5.73 y)-\exp (-11.46 y)
\end{gathered}
$$

satisfying the initial conditions:

$$
\begin{aligned}
& u_{1}(x, 0) \equiv 1 \\
& u_{2}(x, 0) \equiv 0
\end{aligned}
$$

and the boundary conditions:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x}(0, t) \equiv 0 \\
& u_{2}(0, t) \equiv 0 \\
& u_{1}(1, t) \equiv 1 \\
& \frac{\partial u_{2}}{\partial x}(1, t) \equiv 0
\end{aligned}
$$

To conveniently use the function pdepe, the system can be written as:

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot \frac{\partial}{\partial t}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\frac{\partial}{\partial x}\left[\begin{array}{l}
0.024\left(\partial u_{1} / \partial x\right) \\
0.170\left(\partial u_{2} / \partial x\right)
\end{array}\right]+\left[\begin{array}{c}
-F\left(u_{1}-u_{2}\right) \\
F\left(u_{1}-u_{2}\right)
\end{array}\right]
$$

The left boundary condition can be written as:

$$
\left[\begin{array}{l}
0 \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
0.024\left(\partial u_{1} / \partial x\right) \\
0.170\left(\partial u_{2} / \partial x\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

and the right boundary condition can be written as:

$$
\left[\begin{array}{l}
u_{1}-1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cdot *\left[\begin{array}{l}
0.024\left(\partial u_{1} / \partial x\right) \\
0.170\left(\partial u_{2} / \partial x\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

We start by defining the functions in M-files as shown in Figures 4-39 to 4-41.

Figure 4-39.

Figure 4-40.

Figure 4-41.

Once the support functions are defined, the function that solves the system of equations is given by the M-file shown in Figure 4-42.

Figure 4-42.

To view the solution (Figures 4-43 and 4-44), we enter the following in the MATLAB Command Window:

>> pdex4

Figure 4-43.

Figure 4-44.

EXERCISE 4-1

Minimize the function $x^{3}-2 x-5$ in the interval (0,2) and calculate the value that the function takes at that point, displaying information about all iterations of the optimization process.

```
>> f = inline('x.^3-2*x-5');
>> [x,fval] = fminbnd(f, 0, 2,optimset('Display','iter'))
```

Func-count	x	$f(x)$	Procedure
1	0.763932	-6.08204	initial
2	1.23607	-5.58359	golden
3	0.472136	-5.83903	golden
4	0.786475	-6.08648	parabolic
5	0.823917	-6.08853	parabolic
6	0.8167	-6.08866	parabolic
7	0.81645	-6.08866	parabolic
8	0.816497	-6.08866	parabolic
9	0.81653	-6.08866	parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004
$x=$
0.8165
fval =
-6.0887

EXERCISE 4-2

Find in a neighborhood of $x=1.3$ a zero of the function:

$$
f(x)=\frac{1}{(x-0.3)^{2}+0.01}+\frac{1}{(x-0.9)^{2}+0.04}-6 .
$$

Minimize this function on the interval $(0,2)$.
First we find a zero of the function using the initial estimate of $x=1.3$, presenting information about the iterations and checking that the result is indeed a zero.

[^0]```
1/((x-0.9)^2+0.04)-6'),1.3,optimset('Display','iter'))
Func-count \(x \quad f(x)\) Procedure
\(1 \quad 1.3-0.00990099\) initial
21.263230 .882416 search
```

Looking for a zero in the interval [1.2632, 1.3]

| 3 | 1.29959 | -0.00093168 | interpolation |
| :--- | ---: | ---: | ---: |
| 4 | 1.29955 | $1.23235 \mathrm{e}-007$ | interpolation |
| 5 | 1.29955 | $-1.37597 \mathrm{e}-011$ | interpolation |
| 6 | 1.29955 | 0 | interpolation |
| Zero found in the interval: $[1.2632$, | $1.3]$. |  |  |

X =
1.2995
feval =

0

Secondly, we minimize the function specified in the interval $[0,2]$ and also present information about the iterative process, terminating the process when the value of $x$ which minimizes the function is found. In addition, the value of the function at this point is calculated.

```
>> [x,feval]=fminbnd(inline('1/((x-0.3)^2+0.01)+...
1/((x-0.9)^2+0.04)-6'),0,2,optimset('Display','iter'))
```

| Func-count | $x$ | $f(x)$ | Procedure |
| :--- | ---: | ---: | ---: |
| 1 | 0.763932 | 15.5296 | initial |
| 2 | 1.23607 | 1.66682 | golden |
| 3 | 1.52786 | -3.03807 | golden |
| 4 | 1.8472 | -4.51698 | parabolic |
| 5 | 1.81067 | -4.41339 | parabolic |
| 6 | 1.90557 | -4.66225 | golden |
| 7 | 1.94164 | -4.74143 | golden |
| 8 | 1.96393 | -4.78683 | golden |
| 9 | 1.97771 | -4.81365 | golden |
| 10 | 1.98622 | -4.82978 | golden |
| 11 | 1.99148 | -4.83958 | golden |
| 12 | 1.99474 | -4.84557 | golden |
| 13 | 1.99675 | -4.84925 | golden |
| 14 | 1.99799 | -4.85152 | golden |
| 15 | 1.99876 | -4.85292 | golden |
| 16 | 1.99923 | -4.85378 | golden |
| 17 | 1.99953 | -4.85431 | golden |
| 18 | 1.99971 | -4.85464 | golden |
| 19 | 1.99982 | -4.85484 | golden |
| 20 | 1.99989 | -4.85497 | golden |
| 21 | 1.99993 | -4.85505 | golden |
| 22 | 1.99996 | -4.85511 | golden |

Optimization terminated successfully:
the current $x$ satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

X =
2.0000
feval =
$-4.8551$

## EXERCISE 4-3

The intermediate value theorem says that if $f$ is a continuous function on the interval $[a, b]$ and $L$ is a number between $f(a)$ and $f(b)$, then there is a $c(a<c<b)$ such that $f(c)=L$. For the function $f(x)=\cos (x-1)$, find the value $c$ in the interval $[1,2.5]$ such that $f(c)=0.8$.

The question asks us to solve the equation $\cos (x-1)-0.8=0$ in the interval $[1,2.5]$.
>> $c=$ fzero (inline ('cos (x-1) - 0.8'), [1 2.5])

C =
1.6435

## EXERCISE 4-4

Calculate the following integral using both Simpson's and Lobato's methods:

$$
\int_{1}^{6}(2+\sin (2 \sqrt{x}) d x \cdot)
$$

For the solution using Simpson's method we have:
>> quad(inline('2+sin(2*sqrt(x))'),1,6)
ans $=$
8.1835

For the solution using Lobato's method we have:
>> quadl(inline('2+sin(2*sqrt(x))'),1,6)
ans $=$
8.1835

## EXERCISE 4-5

Calculate the area under the normal curve $(0,1)$ between the limits-1.96 and 1.96.
The integral we need to calculate is $\int_{-196}^{196} \frac{e^{\frac{-x^{2}}{2}}}{\sqrt{2 \pi}} d x$.
The calculation is done in MATLAB using Lobato's method as follows:
(((>> quadl(inline('exp(-x.^2/2)/sqrt(2*pi)'), - 1.96,1.96)
ans $=$
0.9500

## EXERCISE 4-6

Calculate the volume of the hemisphere-function defined in

$$
[-1,1] \times[-1,1] \text { by } f(x, y)=\sqrt{1-\left(x^{2}+y^{2}\right)}
$$

>> dblquad(inline('sqrt(max(1-(x.^2+y.^2),0))'),-1,1,-1,1)
ans $=$
2.0944

The calculation could also have been done in the following way:
>> dblquad(inline('sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1)'),-1,1,-1,1)
ans =
2.0944

## EXERCISE 4-7

Evaluate the following double integral:

$$
\int_{3}^{4} \int_{1}^{2} \frac{1}{(x+y)^{2}} d x d y
$$

## (>> dblquad(inline('1./(x+y).^2'),3,4,1,2)

ans =
0.0408

## EXERCISE 4-8

Solve the following Van der Pol system of equations:

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{2} & y_{1}(0)=0 \\
y_{2}^{\prime}=1000\left(1-y_{1}^{2}\right) y_{2}-y_{1} & y_{2}(0)=1
\end{array}
$$

We begin by defining a function named $v d p 100$ in an M-file, where we will store the equations of the system. This function begins by defining a vector column with two empty rows which are subsequently assigned the components which make up the equation (Figure 4-45).


Figure 4-45.

We then solve the system and plot the solution $y_{1}=y_{1}(t)$ given by the first column (Figure 4-46) by typing the following into the Command Window:

```
>> [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
>> plot (T, Y(:,1),'-')
```



Figure 4-46.

Similarly we plot the solution $y_{2}=y_{2}(t)$ (Figure 4-47) by using the syntax:
>> plot (T, Y(:,2),'-')


Figure 4-47.

## EXERCISE 4-9

Given the following differential equation

$$
y^{\prime \prime}+(\lambda-2 q \cos (2 x)) y=0
$$

subject to the boundary conditions $y(0)=1, y^{\prime}(0)=0, y^{\prime}(\pi)=0$, find a solution for $q=5$ and $\lambda=15$ based on an initial solution defined on 10 equally spaced points in the interval $[0, \pi]$ and graph the first component of the solution on 100 equally spaced points in the interval $[0, \pi]$.

The given equation is equivalent to the following system of first order differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=-(\lambda-2 q \cos 2 x) y_{1}
\end{aligned}
$$

with the following boundary conditions:

$$
\begin{aligned}
y_{1}(0)-1 & =0 \\
y_{2}(0) & =0 \\
y_{2}(\pi) & =0
\end{aligned}
$$

The system of equations is introduced in the M-file shown in Figure 4-48, the boundary conditions are given in the M -file shown in Figure 4-49, and the M-file in Figure 4-50 sets up the initial solution.


## Figure 4-48.



Figure 4-49.


Figure 4-50.

The initial solution for $\lambda=15$ and 10 equally spaced points in $[0, \pi]$ is calculated using the following MATLAB syntax:

```
>> lambda = 15;
solinit = bvpinit (linspace(0,pi,10), @mat4init, lambda);
```

The numerical solution of the system is calculated using the following syntax:

```
>> sol = bvp4c(@mat4ode,@mat4bc,solinit);
```

To graph the first component on 100 equally spaced points in the interval $[0, \pi]$ we use the following syntax:

```
>> xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([0 pi-1 1.1])
xlabel ('x')
ylabel('solution y')
```

The result is shown in Figure 4-51.


Figure 4-51.

## EXERCISE 4-10

Solve the following differential equation

$$
y^{\prime \prime}+\left(1-y^{2}\right) y^{\prime}+y=0
$$

in the interval $[0,20]$, taking as initial solution $y=2, y^{\prime}=0$. Solve the more general equation

$$
y^{\prime \prime}+\mu\left(1-y^{2}\right) y^{\prime}+y=0 \mu>0 .
$$

The general equation above is equivalent to the following system of first-order linear equations:

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=\mu\left(1-y_{1}^{2}\right) y_{2}-y_{1}
\end{aligned}
$$

which is defined for $\mu=1$ in the M-file shown in Figure 4-52.


Figure 4-52.

Taking the initial solution $y_{1}=2$ and $y_{2}=0$ in the interval $[0,20]$, we can solve the system using the following MATLAB syntax:
>> [t, y] = ode45(@vdp1,[0 20],[2; 0])
$t=$

0
0.0000
0.0001
0.0001
0.0001
0.0002

CHAPTER $4 \square$ MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

```
0.0004
0.0005
0.0006
0.0012
.
19.9559
19.9780
20.0000
y =
2.0000 0
2.0000 - 0.0001
2.0000 - 0.0001
2.0000 - 0.0002
2.0000 - 0.0002
2.0000 - 0.0005
1.8729 1.0366
1.9358 0.7357
1.9787 0.4746
2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404
```

We can graph the solutions using the following syntax (see Figure 4-53):

```
>> plot (t, y(:,1),'-', t, y(:,2),'-')
>> xlabel ('time t')
>> ylabel('solution y')
>> legend ('y_1', 'y_2')
```



Figure 4-53.
To solve the general system with the parameter $\mu$, we define the system in the $M$-file shown in Figure 4-54.


Figure 4-54.

Now we can graph the first solution $y_{1}=2$ and $y_{2}=0$ corresponding to $\mu=1000$ in the interval $[0,1500]$ using the following syntax (see Figure 4-55):

```
>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],1000);
>> xlabel ('time t')
>> ylabel ('solution y_1')
```



## Figure 4-55.

To graph the first solution $y_{1}=2$ and $y_{2}=0$ for another value of the parameter, for example $\mu=100$, in the interval [ 0,1500 ], we use the following syntax (see Figure 4-56):

```
>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
>> plot (t, y(:,1),'-');
```



Figure 4-56.

## EXERCISE 4-11

The Fibonacci sequence $\{a n\}$ is defined by the recurrence law $a_{1}=1, a_{2}=1, a_{n+1}=a_{n-1}+a_{n}$. Represent this sequence by a recursive function and calculate $\mathrm{a}_{2}, \mathrm{a}_{5}$ and $\mathrm{a}_{20}$.
To generate terms of the Fibonacci sequence we define a recursive function in the M-file fibo.m shown in Figure 4-57.


Figure 4-57.

Terms 2, 5 and 20 of the sequence are now calculated using the syntax:

```
>> [fibo (2), fibo (5), fibo (20)]
ans =
```


## EXERCISE 4-12

Define the Kronecker delta, which equals 1 if $\mathrm{x}=0$ and 0 otherwise. Define the modified Kronecker delta function, which is 0 if $x=0,1$ if $x>0$ and -1 if $x<0$ and graph it. Lastly, define the piecewise function that is equal to 0 if $x \leq-3, x^{3}$ if $-3<x<-2, x^{2}$ if $-2 \leq x \leq 2$, $x$ if $2<x<3$ and 0 if $3 \leq x$, and graph it.

The Kronecker delta delta( $(x)$ is defined in the M-file delta.m shown in Figure 4-58. The modified Kronecker delta delta1 $(x)$ is defined in the M-file delta1.m shown in Figure 4-59. To define the third function piece1 $(x)$ of the exercise, we create the M-file piece1.m shown in Figure 4-60.


Figure 4-58.


## Figure 4-59.



Figure 4-60.

To graphically represent the modified Kronecker delta on the domain [-10, 10] (and with codomain [-2, 2]) we use the following syntax(see Figure 4-61):

```
>> fplot ('delta1 (x)', [- 10 10 - 2-2])
>> title 'Modified Kronecker Delta'
```



Figure 4-61.

To graphically represent the piecewise function on the interval $[-5,5]$ we use the following syntax (see Figure 4-62):
>> fplot ('piece1 (x)', [- 5 5]);
>> title 'Piecewise function'


Figure 4-62.

## EXERCISE 4-13

Define a function descriptive(v) which returns the variance and coefficient of variation of the elements of a given vector v. As an application, find the variance and coefficient of variation of the set of numbers $1,5,6,7$ and 9 .

Figure 4-63 shows the M-file which defines the function descriptive.


## Figure 4-63.

To find the variance and coefficient of variation of the given set of numbers, we use the following syntax:

```
>> [variance, cv] = descriptive([[1 5 5 6 7 9])
```

variance $=$
7.0400
CV =
0.4738

## -

# Numerical Algorithms: Equations, Derivatives and Integrals 

## Solving Non-Linear Equations

MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or functions that accept arguments and produces output. The M -files are created using the text editor.

## The Fixed Point Method for Solving $\mathrm{x}=\mathrm{g}(\mathrm{x})$

The fixed point method solves the equation $x=g(x)$, under certain conditions on the function $g$, using an iterative method that begins with an initial value $p_{0}$ (a first approximation to the solution) and defines $p_{k+1}=g\left(p_{k}\right)$. The fixed point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation $x=g(x)$. In practice the iterative process will stop when the absolute or relative error corresponding to two consecutive iterations is less than a preset value (tolerance). The smaller this value, the better the approximation to the solution of the equation.

This simple iterative method can be implemented using the M-file shown in Figure 5-1.

```
Ele Edit View Iext Debug Breakpoints Web Window Help
```



```
function [k,p,absoluteerror, P] = fixedpoint(g,po,tolerance,maximumiterations)
P(1)= p0;
for k=2:maximumiterations
 P(k)=feval (g, P(k-1));
 absoluteerror=abs(P(k)-P(k-1));
 relativeerror=absoluteerror/(abs(P(k))+eps);
 p=P(k);
 if (absoluteerror<tolerance) | (relativeerror<tolerance),break;end
end
if k == maximumiterations
 disp('maximum number of iterations exceeded')
end
P=P';
4|>| Untitled3 fixedpoint.m] g91.m g1.m fixedpoint.m
Ready
```


## Figure 5-1.

As an example we solve the following non-linear equation:

$$
x-2^{-x}=0
$$

In order to apply the fixed point algorithm we write the equation in the form $x=g(x)$ as follows:

$$
x-2^{-x}=g(x) .
$$

We will start by finding an approximate solution which will be the first term $p_{0}$. To plot the $x$ axis and the curve defined by the given equation on the same graph we use the following syntax (see Figure 5-2):
>> fplot ('[x-2^(-x), 0]',[0, 1])


## Figure 5-2.

The graph shows that one solution is close to $x=0.6$. We can take this value as the initial value. We choose $p_{0}=0.6$. If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have defined the function $g(x)$ in the M-file $g 1 . m$ (see Figure 5-3).


## Figure 5-3.

We can now solve the equation using the MATLAB syntax:

## >> [k, p] = fixedpoint('g1',0.6,0.0001,1000)

$k=$
10
$p=$
0.6412

We obtain the solution $x=0.6412$ at the 1000 th iteration. To check if the solution is approximately correct, we must verify that $\mathrm{g} 1(0.6412)$ is close to 0.6412 .

## >> g1 (0.6412)

ans =
0.6412

Thus we observe that the solution is acceptable.

## Newton's Method for Solving the Equation $\mathrm{f}(\mathrm{x})=0$

Newton's method (also called the Newton-Raphson method) for solving the equation $f(x)=0$, under certain conditions on $f$, uses the iteration

$$
x_{r+1}=x_{r}-f\left(x_{r}\right) / f^{\prime}\left(x_{r}\right)
$$

for an initial value $x_{0}$ close to a solution.
The M-file in Figure 5-4 shows a program which solves equations by Newton's method to a given precision.


Figure 5-4.

As an example we solve the following equation by Newton's method:

$$
x^{2}-x-\sin (x+0.15)=0
$$

The function $f(x)$ is defined in the M-file $f 1 . m$ (see Figure 5-5), and its derivative $f^{\prime}(x)$ is given in the M-file derf1.m (see Figure 5-6).


Figure 5-5.


## Figure 5-6.

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax, starting with an initial estimate of 1.5 :

```
>> [x,it]=newton('f1','derf1',1.5,0.0001)
```

$x=$
1.6101
it $=$
2
>> [x,it]=newton('f1','derf1',1.5,0.000001)
$x=$
1.6100
it $=$

3

Thus we have obtained the solution $x=1.61$ in just 2 iterations for a precision of 0.0001 and in just 3 iterations for a precision of 0.000001 .

## Schröder's Method for Solving the Equation $f(x)=0$

Schröder's method, which is similar to Newton's method, solves the equation $f(x)=0$, under certain conditions on $f$, via the iteration

$$
X_{r+1}=X_{r}-m f\left(X_{r}\right) / f^{\prime}\left(X_{r}\right)
$$

for an initial value $x_{0}$ close to a solution, and where $m$ is the order of multiplicity of the solution being sought.
The M-file shown in Figure 5-7 gives the function that solves equations by Schröder's method to a given precision.


Figure 5-7.

## Systems of Non-Linear Equations

As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear equations using classical iterative numerical methods.

Among a diverse collection of existing methods we will consider the Seidel and Newton-Raphson methods.

## The Seidel Method

The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single equations.

In the case of a system of two equations $x=g_{1}(x, y)$ and $y=g_{2}(x, y)$ the terms of the iteration are defined as:
$P_{k+1}=g_{1}\left(p_{k^{\prime}}, q_{k}\right)$ and $q_{k+1}=g_{2}\left(p_{k^{\prime}}, q_{k}\right)$.
Similarly, in the case of a system of three equations $x=g_{1}(x, y, z)$,
$y=g_{2}(x, y, z)$ and $z=g_{3}(x, y, z)$ the terms of the iteration are defined as:
$p_{k+1}=g_{1}\left(p_{k^{\prime}}, q_{k}, r_{k}\right), q_{k+1}=g_{2}\left(p_{k}, q_{k}, r_{4}\right)$ and $r_{k+1}=g_{3}\left(p_{k}, q_{k}, r_{4}\right)$.
The M-file shown in Figure 5-8 gives a function which solves systems of equations using Seidel's method up to a specified accuracy.


Figure 5-8.

## The Newton-Raphson Method

The Newton-Raphson method for solving systems of equations is a generalization of Newton's method for single equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations $F(X)=0$ is obtained by generating from an initial approximation $P_{0}$ a sequence of approximations $P_{k}$ which converges to the solution. Figure 5-9 shows the M-file containing the function which solves systems of equations using the Newton-Raphson method up to a specified degree of accuracy.

## 5/ C:MATLAB6pilworkIraphson.m



Figure 5-9.

As an example we solve the following system of equations by the Newton-Raphson method:

$$
\begin{aligned}
x^{2}-2 x-y & =-0.5 \\
x^{2}+4 y^{2}-4 & =0
\end{aligned}
$$

taking as an initial approximation to the solution $P=[23]$.
We start by defining the system $F(X)=0$ and its Jacobian matrix $J F$ according to the M-files $F . m$ and $J F . m$ shown in Figures 5-10 and 5-11.


Figure 5-10.


Figure 5-11.

Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following MATLAB syntax:

```
>> [P,it,absoluteerror]=raphson('F','JF',[2 3],0.00001,0.00001,100)
```

$P=$
1.90070 .3112
it =

6
absoluteerror =
8. 8751e-006

The solution obtained in 6 iterations is $x=1.9007, y=0.3112$, with an absolute error of $8.8751 e-006$.

## Interpolation Methods

There are many different methods available to find an interpolating polynomial that fits a given set of points in the best possible way.

Among the most common methods of interpolation, we have Lagrange polynomial interpolation, Newton polynomial interpolation and Chebyshev approximation.

## Lagrange Polynomial Interpolation

The Lagrange interpolating polynomial which passes through the $N+1$ points $\left(x_{k} y_{k}\right), k=0,1, \ldots, N$, is defined as follows:

$$
P(x)=\sum_{k=0}^{N} y_{k} L_{N, k}(x)
$$

where:

$$
L_{N, k}(x)=\frac{\prod_{\substack{j=0 \\ j \neq k}}^{N}\left(x-x_{j}\right)}{\prod_{\substack{j=0 \\ j \neq k}}^{N}\left(x_{k}-x_{j}\right)} .
$$

The algorithm for obtaining $P$ and $L$ is easily implemented by the $M$-file shown in Figure 5-12.


Figure 5-12.

As an example we find the Lagrange interpolating polynomial that passes through the points $(2,3),(4,5),(6,5)$, $(7,6),(8,8),(9,7)$.

We will simply use the following MATLAB syntax:

## 

$C=$
-0.0185 0.4857-4.8125 22.2143-46.6690 38.8000
$L=$
$-0.00060 .0202-0.27081 .7798-5.72867 .2000$
$0.0042-0.13331 .6458-9.666726 .3500-25.2000$
$-0.02080 .6250-7.145838 .3750-94.833384 .0000$
$0.0333-0.966710 .6667-55.3333132 .8000-115.2000$
-0.0208 $0.5833-6.229231 .4167-73.750063 .0000$
$0.0048-0.12861 .3333-6.571415 .1619-12.8000$

We can obtain the symbolic form of the polynomial whose coefficients are given by the vector $C$ by using the following MATLAB command:

## >> pretty(poly2sym(C))



## Newton Polynomial Interpolation

The Newton interpolating polynomial that passes through the $N+1$ points $\left(x_{k} y_{k}\right)=\left(x_{k^{\prime}} f\left(x_{k}\right)\right), k=0,1, \ldots, N$, is defined as follows:

$$
P(x)=d_{0,0}+d_{1,1}\left(x-x_{0}\right)+d_{2,2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+d_{N, N}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{N-1}\right)
$$

where:

$$
d_{k, j}=y_{k} d_{k, j}=\frac{d_{k, j-1}-d_{k-1, j-1}}{x_{k}-d_{k-1}}
$$

Obtaining the coefficients $C$ of the interpolating polynomial and the divided difference table $D$ is easily done via the M-file shown in Figure 5-13.


Figure 5-13.

As an example we apply Newton's method to the same interpolation problem solved by the Lagrange method in the previous section. We will use the following MATLAB syntax:

## >> $[C, D]=$ pnewton([ $\left.\begin{array}{llllll}2 & 4 & 6 & 7 & 8 & 9\end{array}\right]$, $\left[\begin{array}{lllll}3 & 5 & 5 & 6 & 8\end{array}\right]$ 7)

$C=$
$-0.01850 .4857-4.812522 .2143-46.669038 .8000$
$D=$

| 3.0000 | 0 | 0 | 0 | 0 | 0 |
| ---: | ---: | ---: | :--- | :--- | :--- |
| 5.0000 | 1.0000 | 0 | 0 | 0 | 0 |
| 5.0000 | 0 | -0.2500 | 0 | 0 | 0 |
| 6.0000 | 1.0000 | 0.3333 | 0.1167 | 0 | 0 |
| 8.0000 | 2.0000 | 0.5000 | 0.0417 | -0.0125 | 0 |
| 7.0000 | -1.0000 | -1.5000 | -0.6667 | -0.1417 | -0.0185 |

The interpolating polynomial in symbolic form is calculated as follows:

```
>> pretty(poly2sym(C))
```



Observe that the results obtained by both interpolation methods are similar.

## Numerical Derivation Methods

There are various different techniques available for numerical derivation. These are of great importance when developing algorithms to solve problems involving ordinary or partial differential equations.

Among the most common methods for numerical derivation are derivation using limits, derivation using extrapolation and derivation using interpolation on $\mathrm{N}-1$ nodes.

## Numerical Derivation via Limits

This method consists in building a sequence of numerical approximations to $f(x)$ via the generated sequence:

$$
f^{\prime}(x) \approx D_{k}=\frac{f\left(x+10^{-k} h\right)-f\left(x-10^{-k} h\right)}{2\left(10^{-k} h\right)}
$$

The iterations continue until
$\left|D_{n+1}-D_{n}\right| \geq\left|D_{n}-D_{n-1}\right|$ or $\left|D_{n}-D_{n-1}\right|<$ tolerance. This approach approximates $f(x)$ by $D_{n}$.
The algorithm to obtain the derivative $D$ is easily implemented by the M-file shown in Figure 5-14.


Figure 5-14.

As an example, we approximate the derivative of the function:

$$
f(x)=\sin \left(\cos \left(\frac{1}{x}\right)\right)
$$

at the point $\frac{1-\sqrt{5}}{2}$.
To begin we define the function $f$ in an M-file named funcion (see Figure 5-15). (Note: we use funcion rather than function here since the latter is a protected term in MATLAB.)


Figure 5-15.

The derivative is then given by the following MATLAB command:
>> $[L, n]=$ derivedlim ('funcion', (1-sqrt (5)) / 2,0.01)
$L=$
$1.0000-0.74480$
$0.1000-2.60451 .8598$
$0.0100-2.61220 .0077$
$0.0010-2.61220 .0000$
$0.0001-2.61220 .0000$
$n=$
4

Thus we see that the approximate derivative is -2.6122 , which can be checked as follows:

```
>> f = diff ('sin (cos (x))')
f=
cos (cos (x))* sin (x) / x^^ 2
 subs (f, (1-sqrt (5)) / 2).
ans =
 -2.6122
```


## Richardson's Extrapolation Method

This method involves building numerical approximations to $f(x)$ via the construction of a table of values $D(j, k)$ with $k \leq j$ that yield a final solution to the derivative $f(x)=D(n, n)$. The values $D(j, k)$ form a lower triangular matrix, the first column of which is defined as:

$$
D(j, 1)=\frac{f\left(x+2^{-j} h\right)-f\left(x-2^{-j} h\right)}{\left.2^{-j+1} h\right)}
$$

and the remaining elements are defined by:

$$
D(j, k)=D(j, k-1)+\frac{D(j, k-1)-D(j-1, k-1)}{4^{k}-1}(2 \leq k \leq j)
$$

The corresponding algorithm for $D$ is implemented by the M -file shown in Figure 5-16.

## 5) C:MATLAB6p1lworklrichardson.m



Figure 5-16.

As an example, we approximate the derivative of the function:

$$
f(x)=\sin \left(\cos \left(\frac{1}{x}\right)\right)
$$

at the point $\frac{1-\sqrt{5}}{2}$.

As the $M$-file that defines the function $f$ has already been defined in the previous section, we can find the approximate derivative using the MATLAB syntax:

```
>> [D, relativeerror, absoluteerror, n] = richardson ('funcion',
(1-sqrt(5))/2,0.001,0.001)
D =
 -0.7448 0 0 0 0
 -1.1335-1.26310000
 -2.3716 - 2.7843-2.8857 0 0 0
 -2.5947 - 2.6691 - 2.6614 - 2.6578 0 0
 -2.6107 - 2.6160 - 2.6125 - 2.6117 - 2.6115 0
 -2.6120-2.6124-2.6122 - 2.6122 - 2.6122 - 2.6122
```

relativeerror =
6. 9003e-004
absoluteerror =
2. $6419 e-004$
$n=$
6

Thus we get the same result as before when we used the limit method.

## Derivation Using Interpolation ( $\mathrm{n}+1$ nodes)

This method consists in building the Newton interpolating polynomial of degree $N$ :

$$
P(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{N}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{N-1}\right)
$$

and numerically approximating $f^{\prime}\left(x_{0}\right)$ by $P^{\prime}\left(x_{0}\right)$.
The algorithm for the derivative $D$ is easily implemented by the M-file shown in Figure 5-17.
B) C:MATLAB6p1lworkInodos.m


Figure 5-17.

As an example, we approximate the derivative of the function:

$$
f(x)=\sin \left(\cos \left(\frac{1}{x}\right)\right)
$$

at the point $\frac{1-\sqrt{5}}{2}$.
As the M-file that defines the function $f$ has already been constructed in the previous section, we can calculate the approximate derivative using the MATLAB command:

## 

$A=$
$3.00001 .0000-0.25000 .1167-0.0125-0.0185$
df $=$
-1.4952

## Numerical Integration Methods

Given the difficulty of obtaining an exact primitive for many functions, numerical integration methods are especially important. There are many different ways to numerically approximate definite integrals, among them the trapezium method, Simpson's method and Romberg's method (all implemented in MATLAB's Basic module).

## The Trapezium Method

The trapezium method for numerical integration has two variants: the trapezoidal rule and the recursive trapezoidal rule.
The trapezoidal rule approximates the definite integral of the function $f(x)$ between $a$ and $b$ as follows:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2}(f(a)+f(b))+h \sum_{k=1}^{M-1} f\left(x_{k}\right)
$$

calculating $f(x)$ at equidistant points $x_{k}=a+k h, k=0,1, \ldots, M$ where $x_{0}=a$ and $x_{M}=b$.
The trapezoidal rule is implemented by the M-file shown in Figure 5-18.


Figure 5-18.

The recursive trapezoidal rule considers the points $x_{k}=a+k h, k=0,1, \ldots, M$, where $x_{0}=a$ and $x_{M}=b$, dividing the interval $[a, b]$ into $2 J=M$ subintervals of the same size $h=(b-a) / 2 J$. We then consider the following recursive formula:

$$
\begin{gathered}
T(0)=\frac{h}{2}(f(a)+f(b)) \\
T(J)=\frac{T(J-1)}{2}+h \sum_{k=1}^{M} f\left(x_{2 k-1}\right)
\end{gathered}
$$

and the integral of the function $f(x)$ between $a$ and $b$ can be calculated as:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2} \sum_{k=1}^{2^{\prime}}\left(f\left(x_{k}\right)+f\left(x_{k-1}\right)\right)
$$

using the trapezoidal rule as the number of sub-intervals $[a, b]$ increases, taking at the $J$-th iteration a set of $2 J+1$ equally spaced points.

The recursive trapezoidal rule is implemented via the M-file shown in Figure 5-19.


## Figure 5-19.

As an example, we calculate the following integral using 100 iterations of the recursive trapezoidal rule:

$$
\int_{0}^{2} \frac{1}{x^{2}+\frac{1}{10}} d x
$$

We start by defining the integrand by means of the M-file integrand1.m shown in Figure 5-20.


Figure 5-20.

We then calculate the requested integral as follows:
>> recursivetrapezoidal('integrand1',0,2,14)
ans =

Columns 1 through 4
$10.24390243902439 \quad 6.03104212860310 \quad 4.65685845031979 \quad 4.47367657743630$
Columns 5 through 8
4.471091024371234 .471321949546704 .471380030533344 .47139455324593

Columns 9 through 12
4.471398184078294 .471399091796024 .471399318726064 .47139937545860

Columns 13 through 15
4.471399389641754 .471399393187544 .47139939407398

This shows that after 14 iterations an accurate value for the integral is 4.47139939407398 .
We calculate the same integral using the trapezoidal rule, using $M=14$, using the following MATLAB command:

## >> trapezoidalrule('integrand1',0,2,14)

ans =
4.47100414648074

The result is now the less accurate 4.47100414648074 .

## Simpson's Method

Simpson's method for numerical integration is generally considered in two variants: the simple Simpson's rule and the composite Simpson's rule.

Simpson's simple approximation of the definite integral of the function $f(x)$ between the points $a$ and $b$ is the following:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}(f(a)+f(b)+4 f(c)) c=\frac{a+b}{2}
$$

This can be implemented using the M-file shown in Figure 5-21.


## Figure 5-21.

The composite Simpson's rule approximates the definite integral of the function $f(x)$ between points $a$ and $b$ as follows:

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}(f(a)+f(b))+\frac{2 h}{3} \sum_{k=1}^{M-1} f\left(x_{2 k}\right)+\frac{4 h}{3} \sum_{k=1}^{M} f\left(x_{2 k-1}\right)
$$

calculating $f(x)$ at equidistant points $x_{k}=a+\mathrm{kh}, \mathrm{k}=0,1, \ldots, 2 M$, where $x_{0}=a$ and $x_{2 M}=b$. The composite Simpson's rule is implemented using the M-file shown in Figure 5-22.


Figure 5-22.

As an example, we calculate the following integral by the composite Simpson's rule taking M=14:

$$
\int_{0}^{2} \frac{1}{x^{2}+\frac{1}{10}} d x
$$

We use the following syntax:
>>compositesimpson('integrand1' , 0, 2, 14)
ans =
4.47139628125498

Next we calculate the same integral using the simple Simpson's rule:

## >> Z=simplesimpson('integrand2',0,2,0.0001)

$Z=$
Columns 1 through 4
02.000000000000004 .626755358462684 .62675535846268

Columns 5 through 6
0.000100000000000 .00010000000000

As we see, the simple Simpson's rule is less accurate than the composite rule.
In this case, we have previously defined the integrand in the M-file named integrand2.m (see Figure 5-23).


Figure 5-23.

## Ordinary Differential Equations

Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include, among others, Euler's method, Heun's method, the Taylor series method, the Runge-Kutta method (implemented in MATLAB's Basic module), the Adams-Bashforth-Moulton method, Milne's method and Hamming's method.

## Euler's Method

Suppose we want to solve the differential equation $y^{\prime}=f(t, y), y(a)=y_{o^{\prime}}$ on the interval $[a, b]$. We divide the interval $[a, b]$ into $M$ subintervals of the same size using the partition given by the points $t_{k}=a+\mathrm{kh}, \mathrm{k}=0,1, \ldots, M, h=(b-a) / M$. Euler's method then finds the solution of the differential equation iteratively by calculating $y_{k+1}=y_{k}+h f\left(t_{k^{\prime}} y_{k}\right), k=0,1, \ldots, M-1$.

Euler's method is implemented using the M-file shown in Figure 5-24.


Figure 5-24.

## Heun's Method

Suppose we want to solve the differential equation $y^{\prime}=f(t, y), y(a)=y_{o^{\prime}}$, on the interval $[a, b]$. We divide the interval $[a, b]$ into $M$ subintervals of the same size using the partition given by the points $t_{k}=a+\mathrm{kh}, \mathrm{k}=0,1, \ldots, M, h=(b-a) / M$. Heun's method then finds the solution of the differential equation iteratively by calculating $y_{k+1}=y_{k}+h\left(f\left(t_{k^{\prime}} y_{k}\right)+\right.$ $\left.f\left(t_{k+1}, y_{k}+f\left(t_{k^{\prime}} y_{k}\right)\right)\right) / 2, k=0,1, \ldots, M-1$.

Heun's method is implemented using the M-file shown in Figure 5-25.


Figure 5-25.

## The Taylor Series Method

Suppose we want to solve the differential equation $y^{\prime}=f(t, y), y(a)=y_{0}$, on the interval $[a, b]$. We divide the interval $[a, b]$ into $M$ subintervals of the same size using the partition given by the points $t_{k}=a+\mathrm{kh}, \mathrm{k}=0,1, \ldots, M, h=(b-a) / M$. The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by evaluating $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ and $y^{\prime \prime \prime \prime}$ to give the 4th order Taylor series for $y$ at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 5-26.


Figure 5-26.

As an example we solve the differential equation $y^{\prime}(t)=(t-y) / 2$ on the interval $[0,3]$, with $y(0)=1$, using Euler's method, Heun's method and by the Taylor series method.

We will begin by defining the function $f(t, y)$ via the M-file shown in Figure 5-27.


Figure 5-27.

The solution of the equation using Euler's method in 100 steps is calculated as follows:

```
>> E = euler('dif1',0,3,1,100)
E=
0 1.00000000000000
0.03000000000000 0.985000000000000
```

```
0.060000000000000 0.97067500000000
0.090000000000000 0.95701487500000
0.12000000000000 0.94400965187500
0.150000000000000 0.93164950709688
0.18000000000000 0.91992476449042
.
•
2.85000000000000 1.56377799005910
2.880000000000000 1.58307132020821
2.91000000000000 1.60252525040509
2.940000000000000 1.62213737164901
2.970000000000000 1.64190531107428
3.000000000000000 1.66182673140816
```

This solution can be graphed as follows (see Figure 5-28):
>> plot (E (:,2))


Figure 5-28.

The solution of the equation by Heun's method in 100 steps is calculated as follows:

```
>> H = heun('dif1',0,3,1,100)
H =
O 1.00000000000000
0.03000000000000 0.98533750000000
0.06000000000000 0.97133991296875
0.09000000000000 0.957997344001443
0.12000000000000 0.945300002961496
.
.
2.88000000000000 1.59082209379464
2.91000000000000 1.61023972987327
2.94000000000000 1.62981491089478
2.97000000000000 1.64954529140884
3.00000000000000 1.66942856088299
```

The solution using the Taylor series method requires the previously defined function $d f=\left[y^{\prime} y^{\prime \prime} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}\right]$ using the M-file shown in Figure 5-29.


Figure 5-29.

The differential equation is solved by the Taylor series method via the command:

```
>> T = taylor('df',0,3,1,100)
```

$T=$
01.00000000000000
0.030000000000000 .98533581882813
0.060000000000000 .97133660068283
0.090000000000000 .95799244555443
0.120000000000000 .94529360082516
-
$\cdot$
2.880000000000001 .59078327648360
2.910000000000001 .61020109213866
2.940000000000001 .62977645599332
2.970000000000001 .64950702246046
3.000000000000001 .66939048087422

## EXERCISE 5-1

Solve the following non-linear equation using the fixed point iterative method:

$$
x=\cos (\sin (x)) .
$$

We will start by finding an approximate solution to the equation, which we will use as the initial value $\mathrm{p}_{0}$. To do this we show the $x$ axis and the curve $y=x-\cos (\sin (x))$ on the same graph (Figure 5-30) by using the following command:

```
>> fplot \(([x-\cos (\sin (x)), 0],[-2,2])\)
```



Figure 5-30.

The graph indicates that there is a solution close to $x=1$, which is the value that we shall take as our initial approximation to the solution, i.e. $p_{0}=1$. If we consider a tolerance of 0.0001 for a maximum number of 100 iterations, we can solve the problem once we have defined the function $g(x)=\cos (\sin (x)$ ) via the $M$-file $g 91$.m shown in Figure 5-31.


Figure 5-31.

We can now solve the equation using the MATLAB command:
>> [k, p, absoluteerror, P]=fixedpoint('g91',1,0.0001,1000)
$k=$

13
$p=$
0.7682
absoluteerror =
6. 3361e-005
$P=$
1.0000
0.6664
0.8150
0.7467
0.7781
0.7636
0.7703
0.7672
0.7686
0.7680
0.7683
0.7681
0.7682

The solution is $x=0.7682$, which has been found in 13 iterations with an absolute error of $6.3361 e-005$. Thus, the convergence to the solution is particularly fast.

## EXERCISE 5-2

Using Newton's method calculate the root of the equation $x^{3}-10 x^{2}+29 x-20=0$ close to the point $x=7$ with an accuracy of 0.00005 . Repeat the same calculation but with an accuracy of 0.0005 .

We define the function $f(x)=x^{3}-10 x^{2}+29 x-20$ and its derivative via the M-files named $f 302$.m and $f 303 . m$ shown in Figures 5-32 and 5-33.


Figure 5-32.


Figure 5-33.

To run the program that solves the equation, type:

```
>> [x, it]=newton('f302','f303',7,.00005)
```

$x=$
5.0000
it $=$
6

In 6 iterations and with an accuracy of 0.00005 the solution $x=5$ has been obtained. In 5 iterations and with an accuracy of 0.0005 we get the solution $x=5.0002$ :

```
>> [x, it] = newton('f302','f303',7,.0005)
```

$x=$
5.0002
it =

5

## EXERCISE 5-3

Write a program that calculates a root with multiplicity 2 of the equation $\left(e^{-x}-x\right)^{2}=0$ close to the point $x=-2$ to an accuracy of 0.00005 .

We define the function $f(x)=\left(e^{x}-x\right)^{2}$ and its derivative via the M-files $f 304$.m and $f 305$.m shown in Figures 5-34 and 5-35:


Figure 5-34.
E) C:MATLAB6p 1 lworkIf305.m


Figure 5-35.

We solve the equation using Schröder's method. To run the program we enter the command:
>> [x,it]=schroder('f304','f305',2,-2,.00005)
$x=$
0.5671
it $=$

5

In 5 iterations we have found the solution $x=0.56715$.

## EXERCISE 5-4

Approximate the derivative of the function

$$
f(x)=\tan \left(\cos \left(\frac{\sqrt{5}+\sin (x)}{1+x^{2}}\right)\right)
$$

at the point $\frac{1-\sqrt{5}}{3}$.
To begin we define the function $f$ in the M -file funcion1.m shown in Figure 5-36.


Figure 5-36.
The derivative can be found using the method of numerical derivation with an accuracy of 0.0001 via the following MATLAB command:

```
>> [L, n] = derivedlim ('funcion1', (1 + sqrt (5)) / 3,0.0001)
L =
1.000000000000000 0.94450896913313 0
0.10000000000000 1.22912035588668 0.28461138675355
0.01000000000000 1.22860294102802 0.00051741485866
```

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS
$\begin{array}{llll}0.00100000000000 & 1.22859747858110 & 0.00000546244691 \\ 0.00010000000000 & 1.22859742392997 & 0.00000005465113\end{array}$
$n=$

4

We see that the value of the derivative is approximated by 1.22859742392997.
Using Richardson's method, the derivative is calculated as follows:

```
>> [D, absoluteerror, relativeerror, n] = ('funcion1' richardson,(1+sqrt(5))/3,0.0001,0.0001)
```

$D=$

Columns 1 through 4

| 0.94450896913313 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: |
| 1.22047776163545 | 1.31246735913623 | 0 | 0 |
| 1.23085024935646 | 1.23430774526347 | 1.22909710433862 | 0 |
| 1.22938849854454 | 1.22890124827389 | 1.22854081514126 | 1.22853198515400 |
| 1.22880865382036 | 1.22861537224563 | 1.22859631384374 | 1.22859719477553 |

Column 5

0
0
0
0
1.22859745049954
absoluteerror =
6. $546534553897310 e-005$
relativeerror =
5. $328603742973844 e-005$
$n=$
5

## EXERCISE 5-5

Approximate the following integral:

$$
\int_{1}^{\frac{2 \pi}{3}} \tan \left(\cos \left(\frac{\sqrt{5}+\sin (x)}{1+x^{2}}\right)\right) d x
$$

We can use the composite Simpson's rule with $\mathrm{M}=100$ using the following command:
>> $\mathrm{s}=$ compositesimpson('function1',1,2*pi/3,100)
$s=$
0.68600990924332

If we use the trapezoidal rule instead, we get the following result:
>> s = trapezoidalrule('function1',1,2*pi/3,100)
$s=$
0.68600381840334

## EXERCISE 5-6

Find an approximate solution of the following differential equation in the interval $[0,0.8]$ :

$$
y^{\prime}=t^{2}+y^{2} \quad y(0)=1 .
$$

We start by defining the function $f(t, y)$ via the $M$-file in Figure 5-37.


Figure 5-37.

We then solve the differential equation by Euler's method, dividing the interval into 20 subintervals using the following command:

```
>> E = euler('dif2',0,0.8,1,20)
E =
O 1.00000000000000
0.04000000000000 1.040000000000000
0.08000000000000 1.083328000000000
0.12000000000000 1.13052798222336
0.16000000000000 1.18222772296696
0.20000000000000 1.23915821852503
0.24000000000000 1.30217874214655
0.28000000000000 1.37230952120649
0.320000000000000 1.45077485808625
0.36000000000000 1.53906076564045
0.400000000000000 1.63899308725380
0.44000000000000 1.75284502085643
0.48000000000000 1.88348764754208
0.52000000000000 2.03460467627982
0.56000000000000 2.21100532382941
0.60000000000000 2.41909110550949
0.64000000000000 2.66757117657970
0.68000000000000 2.96859261586445
0.72000000000000 3.33959030062305
0.76000000000000 3.80644083566367
0.80000000000000 4.40910450907999
```

The solution can be graphed as follows (see Figure 5-38):

```
>> plot (E (:,2))
```



Figure 5-38.

# MATLAB Programming for Numerical Analysis 

César Pérez López

Apress ${ }^{\circ}$

## MATLAB Programming for Numerical Analysis

## Copyright © 2014 by César Pérez López

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0296-8
ISBN-13 (electronic): 978-1-4842-0295-1
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer<br>Lead Editor: Dominic Shakeshaft<br>Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss<br>Coordinating Editor: Jill Balzano<br>Copy Editor: Barnaby Sheppard<br>Compositor: SPi Global<br>Indexer: SPi Global<br>Artist: SPi Global<br>Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit www. springeronline. com Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.f

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.
Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook Licensing web page at www. apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at WWW. apress.com. For detailed information about how to locate your book's source code, go to www. apress.com/source-code/.

## Contents

About the Author ..... ix
Chapter 1: The MATLAB Environment ..... 1
Starting MATLAB on Windows. The MATLAB working environment ..... 1
The MATLAB Command Window ..... 2
Escape and exit to DOS environment commands ..... 9
Preferences for the Command Window ..... 10
The Command History window. ..... 17
The Launch Pad window ..... 18
The Current Directory window ..... 19
The help browser ..... 22
The Workspace window ..... 22
The Editor and Debugger for M-files ..... 24
Help in MATLAB ..... 27
Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions ..... 29
Variables ..... 29
Vector variables ..... 30
Matrix variables ..... 33
Character variables. ..... 38
Numbers ..... 41
Integers ..... 44
Functions of integers and divisibility ..... 45
Alternative bases ..... 46
Real numbers ..... 47
Functions with real arguments ..... 49
Complex numbers ..... 52
Functions with complex arguments ..... 52
Elementary functions that support complex vector arguments. ..... 54
Elementary functions that support complex matrix arguments ..... 57
Random numbers ..... 60
Operators ..... 62
Arithmetic operators ..... 62
Relational operators ..... 65
Logical operators ..... 66
Logical functions ..... 66
Chapter 3: MATLAB Language: Development Environment Features ..... 83
General Purpose Commands ..... 83
Commands that Handle Variables in the Workspace ..... 83
Commands that Work with Files in the Operational Environment ..... 87
Commands that Handle Functions. ..... 90
Commands that Control the Command Window ..... 96
Start and Exit Commands ..... 97
File Input/Output Commands ..... 97
Opening and Closing Files ..... 99
Reading and Writing Binary Files. ..... 100
Reading and Writing Formatted ASCII Text Files. ..... 104
Control Over the File Position ..... 107
Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats ..... 109
Sound Processing Functions ..... 115
Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and Numerical Analysis Functions ..... 121
MATLAB and Programming. ..... 121
The Text Editor ..... 121
Scripts ..... 125
Functions and M-files. Eval and Feval ..... 128
Local and Global Variables. ..... 131
Data Types ..... 133
Ordinary Differential Equations with Boundary Conditions. ..... 161
Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals ..... 191
Solving Non-Linear Equations ..... 191
The Fixed Point Method for Solving $\mathrm{x}=\mathrm{g}(\mathrm{x})$. ..... 191
Newton's Method for Solving the Equation $f(x)=0$ ..... 194
Schröder's Method for Solving the Equation $f(x)=0$ ..... 196
Systems of Non-Linear Equations ..... 196
The Seidel Method ..... 197
The Newton-Raphson Method ..... 197
Interpolation Methods ..... 200
Lagrange Polynomial Interpolation ..... 200
Newton Polynomial Interpolation. ..... 202
Numerical Derivation Methods ..... 204
Numerical Derivation via Limits ..... 204
Richardson's Extrapolation Method ..... 207
Derivation Using Interpolation ( $\mathrm{n}+1$ nodes) ..... 208
Numerical Integration Methods. ..... 210
The Trapezium Method ..... 210
Simpson's Method ..... 213
Ordinary Differential Equations ..... 215
Euler's Method ..... 215
Heun's Method ..... 216
The Taylor Series Method ..... 217

## About the Author

César Pérez López is a Professor at the Department of Statistics and Operations Research at the University of Madrid. César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which belongs to the Superior Systems and Information Technology Department of the Spanish Government. César also currently works at the Institute for Fiscal Studies in Madrid.

## Coming Soon

- MATLAB Differential Equations, 978-1-4842-0311-8
- MATLAB Control Systems Engineering, 978-1-4842-0290-6
- MATLAB Linear Algebra, 978-1-4842-0323-1
- MATLAB Differential and Integral Calculus, 978-1-4842-0305-7
- MATLAB Matrix Algebra, 978-1-4842-0308-8


[^0]:    >> [x,feval]=fzero(inline( $\mathbf{~} 1 /\left((x-0.3)^{\wedge} \mathbf{2 + 0 . 0 1}\right)+. .$.

