
López

Shelve in
Applications/Mathematical & 
Statistical Software

MATLAB Programming for Numerical Analysis 

M
ATLAB Program

m
ing for Num

erical Analysis 

MATLAB is a high-level language and environment for numerical computation, visualization, and pro-
gramming. Using MATLAB, you can analyze data, develop algorithms, and create models and appli-
cations. The language, tools, and built-in math functions enable you to explore multiple approaches 
and reach a solution faster than with spreadsheets or traditional programming languages, such as 
C/C++ or Java.

Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical 
hands-on instructions and results, allowing you to quickly achieve your goals. You will first become 
familiar with the MATLAB environment, and then you will begin to harness the power of MATLAB. You 
will learn the MATLAB language, starting with an introduction to variables, and how to manipulate num-
bers, vectors, matrices, arrays and character strings. You will learn about MATLAB’s high-precision 
capabilities, and how you can use MATLAB to solve problems, making use of arithmetic, relational 
and logical operators in combination with the common functions and operations of real and complex 
analysis and linear algebra.

You will learn to implement various numerical methods for optimization, interpolation and solving 
non-linear equations. You will discover how MATLAB can solve problems in differential and integral 
calculus, both numerically and symbolically, including techniques for solving ordinary and partial dif-
ferential equations, and how to graph the solutions in brilliant high resolution. You will then expand your 
knowledge of the MATLAB language by learning how to use commands which enable you to investi-
gate the convergence of sequences and series, and explore continuity and other analytical features of 
functions in one and several variables.

·      Use the MATLAB environment

·      Program the MATLAB language from first principles

·      Analyze data by developing MATLAB algorithms

·      Perform numerical analysis in MATLAB with hands-on examples you create

·      Understand how MATLAB can be used to investigate convergence of sequences and series and 

        analytical properties of functions

·      Learn how to numerically and symbolically solve differential equations using MATLAB, and graph the solutions

9 781484 202968

54999
ISBN 978-1-4842-0296-8



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



iii

Contents at a Glance

About the Author ����������������������������������������������������������������������������������������������������������������� ix

Chapter 1: The MATLAB Environment ■  ��������������������������������������������������������������������������������1

Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions ■  ���������������29

Chapter 3: M ■ ATLAB Language: Development Environment Features �������������������������������83

 Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and   ■
Numerical Analysis Functions ���������������������������������������������������������������������������������������121

Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals ■  ����������������������191



1

Chapter 1

The MATLAB Environment

Starting MATLAB on Windows. The MATLAB working environment
To start MATLAB, simply double-click on the shortcut icon to the program on the Windows desktop. Alternatively,  
if there is no desktop shortcut, the easiest and most common way to run the program is to choose programs from the 
Windows Start menu and select MATLAB. Having launched MATLAB by either of these methods, the welcome screen 
briefly appears, followed by the screen depicted in Figure 1-1, which provides the general environment in which the 
program works.

Figure 1-1.  



Chapter 1 ■ the MatLaB environMent

2

The most important elements of the MATLAB screen are the following:

•	 The Command Window: This runs MATLAB functions.

•	 The Command History: This presents a history of the functions introduced in the Command 
Window and allows you to copy and execute them.

•	 The Launch Pad: This runs tools and gives you access to documentation for all MathWorks 
products currently installed on your computer.

•	 The Current Directory: This shows MATLAB files and execute files (such as opening and search 
for content operations).

•	 Help (support): This allows you to search and read the documentation for the complete family 
of MATLAB products.

•	 The Workspace: This shows the present contents of the workspace and allows you to make 
changes to it.

•	 The Array Editor: This displays the contents of arrays in a tabular format and allows you to edit 
their values.

•	 The Editor/Debugger: This allows you to create, edit, and check M-files (files that contain 
MATLAB functions).

The MATLAB Command Window
The Command Window (Figure 1-2) is the main way to communicate with MATLAB. It appears on the desktop when 
MATLAB starts and is used to execute all operations and functions. The entries are written to the right of the  
prompt >> and, once completed, they run after pressing Enter. The first line of Figure 1-3 defines a matrix and, after 
pressing Enter, the matrix itself is displayed as output.

Figure 1-2.  



Chapter 1 ■ the MatLaB environMent

3

In the Command Window, it is possible to evaluate previously executed operations. To do this, simply select 
the syntax you wish to evaluate, right-click, and choose the option Evaluate Selection from the resulting pop-up 
menu (Figures 1-4 and 1-5). Choosing Open Selection from the same menu opens in the Editor/Debugger an M-file 
previously selected in the Command Window (Figures 1-6 and 1-7).

Figure 1-3.  

Figure 1-4.  



Chapter 1 ■ the MatLaB environMent

4

Figure 1-5.  

Figure 1-6.  



Chapter 1 ■ the MatLaB environMent

5

MATLAB is sensitive to the use of uppercase and lowercase characters, and blank spaces can be used before and 
after minus signs, colons and parentheses. MATLAB also allows you to write several commands on the same line, 
provided they are separated by semicolons (Figure 1-8). Entries are executed sequentially in the order they appear on 
the line. Every command which ends with a semicolon will run, but will not display its output.

Figure 1-7.  

Figure 1-8.  



Chapter 1 ■ the MatLaB environMent

6

Long entries that will not fit on one line can be continued onto a second line by placing dots at the end of the 
first line (Figure 1-9).

Figure 1-9.  

Figure 1-10.  

The option Clear Command Window from the Edit menu (Figure 1-10) allows you to clear the Command 
Window. The command clc also performs this function (Figure 1-11). Similarly, the options Clear Command History 
and Clear Workspace in the Edit menu allow you to clean the history window and workspace.



Chapter 1 ■ the MatLaB environMent

7

To help you to easily identify certain elements as if/else instructions, chains, etc., some entries in the Command 
Window will appear in different colors. Some of the existing rules for colors are as follows:

 1. Chains appear in purple while they are being typed. When they are finished properly (with 
a closing quote) they become brown.

 2. Flow control syntax appears in blue. All lines between the opening and closing of the flow 
control functions are correctly indented.

 3. Parentheses, brackets, and keys are briefly illuminated until their contents are properly 
completed. This allows the user to easily see if mathematical expressions are properly closed.

 4. Comments in the Command Window, preceded by the symbol %, appear in green.

 5. System commands such as ! appear in gold.

 6. Errors are shown in red.

Below is a list of keys, arrows and combinations that can be used in the Command Window.

Key Control key Operation

� CTRL+ p Calls to the last entry submitted.

¯ CTRL+ n Calls to the next line.

← CTRL+ b Moves one character backward.

→ CTRL+ f Moves one character forward.

CTRL+→ CTRL+ r Moves one word to the right.

CTRL+← CTRL+ l Moves one word to the left.

Home CTRL+ a Moves to the beginning of the line.

Figure 1-11.  

(continued)



Chapter 1 ■ the MatLaB environMent

8

Key Control key Operation

End CTRL+ e Moves the end of the line.

ESC CTRL+ u Deletes the line.

Delete CTRL+ d Deletes the character where the cursor is.

BACKSPACE CTRL+ h Deletes the character before the cursor.

CTRL+ k Deletes all text up to the end of the line.

Shift+ home Highlights the text from the beginning of the line.

Shift+ end Highlights the text up to the end of the line.

Figure 1-13.  

Figure 1-12.  

To enter explanatory comments simply start them with the symbol % anywhere in a line. The rest of the line 
should be used for the comment (see Figure 1-12).

Running M-files (files that contain MATLAB code) follows the same procedure as running any other command 
or function. Just type the name of the M-file (with its arguments, if necessary) in the Command Window, and press 
Enter (Figure 1-13). To see each function of an M-file as it runs, first enter the command echo on. To interrupt the 
execution of an M-file use CTRL + c or CTRL + break.

(continued)



Chapter 1 ■ the MatLaB environMent

9

Escape and exit to DOS environment commands
There are three ways to pass from the MATLAB Command Window to the MS-DOS operating system environment to 
run temporary assignments.

Entering the command ! dos_command in the Command Window allows you to execute the specified command 
dos_command in the MATLAB environment. Figure 1-14 shows the execution of the command ! dir. The same effect is 
achieved with the command dos dos_command (Figure 1-15).

Figure 1-14.  

Figure 1-15.  

The command ! dos_command & is used to execute the DOS command in background mode. This opens a new 
window on top of the MATLAB Command Window and executes the command in that window (Figure 1-16). To 
return to the MATLAB environment simply click anywhere in the Command Window, or close the newly opened 
window via its close button  or the Exit command.



Chapter 1 ■ the MatLaB environMent

10

Not only DOS commands, but also all kinds of executable files or batch tasks can be executed with the three 
previous commands. To leave MATLAB simply type quit or exit in the Command Window and then press Enter. 
Alternatively you can select the option Exit MATLAB from the File menu (Figure 1-17).

Figure 1-16.  

Figure 1-17.  

Preferences for the Command Window
Selecting the Preferences option from the File menu (Figure 1-18) allows you to set particular features for working 
in the Command Window. To do this, simply choose the desired options in the Command Window Preferences 
window (Figure 1-19).



Chapter 1 ■ the MatLaB environMent

11

Figure 1-18.  

Figure 1-19.  



Chapter 1 ■ the MatLaB environMent

12

The first area that appears in the Command Window Preferences window is Text display. This specifies how the 
output will appear in the Command Window. Your options are as follows:

•	 Numeric format: Specifies the format of numerical values in the Command Window (Figure 1-21). 
This affects only the appearance of the numbers, not the calculations or how to save them.  
The possible formats are presented in the following table:

Figure 1-20.  



Chapter 1 ■ the MatLaB environMent

13

 
Format Result Example

+ +,-, white +

Bank Fixed 3.14

Compact Removes excess lines displayed on the screen to 
present a more compact output.

theta = pi/2 theta = 1.5708

Hex Hexadecimal 400921fb54442d18

long 15 digits fixed point 3.14159265358979

long e 15 digits floating-point 3. 141592653589793e + 00

long g The best of the previous two 3.14159265358979

loose Adds lines to make the output more readable.  
The compact command does the opposite.

theta = pi/2 theta=1.5708

rat Ratio of small integers 355/13 (a rational approximation of pi)

short 5 digits fixed point 3.1416

short e 5 digits floating-point 3. 1416e + 00

short g The best of the previous two 3.1416

Figure 1-21.  



Chapter 1 ■ the MatLaB environMent

14

•	 Numeric display: Regulates the spacing of the output in the Command Window. Compact is 
used to suppress blank lines. Loose is used to show blank lines.

•	 Spaces per tab: Regulates the number of spaces assigned to the tab when the output is 
displayed (the default value is 4).

 The second zone that appears in the Command Window Preferences window is Display. This specifies the size of 
the buffer and allows you to choose whether to display the executions of all the commands included in M-files. Your 
options are as follows:

•	 Echo on: If you check this box, the executions of all the commands included in the M-files are 
displayed.

•	 Limit matrix display width to eighty columns: If you check this box, MATLAB will display only 
an 80-column dot matrix output, regardless of the width of the Command Window. If this box 
is not checked, the matrix output will occupy the current width of the Command Window.

•	 Enable up to n tab completions: Check this box if you want to use tab completion when typing 
functions in the Command Window. You then need to specify the maximum number of 
completions that will be listed. If the number of possible completions exceeds this number, 
MATLAB will not show the list of completions.

•	 Command session scroll buffer size: This sets the number of lines that are kept in the Command 
Window buffer. These lines can be viewed by scrolling up.

In MATLAB it is also possible to set fonts and colors for the Command Window. To do this, simply unfold the 
sub-option Font & Colors hanging from Command Windows (Figure 1-21). In the fonts area select Use desktop font 
if you want to use the same source as specified for General Font & Colors preferences. To use a different font click the 
button Use custom font and in the three boxes located immediately below choose the desired font (Figure 1-22), style 
(Figure 1-23) and size. The Sample area shows an example of the selected font. In the Colors area you can choose 
the color of the text (Text color) (Figure 1-24) and the color of the background (Background color). If the Syntax 
highlighting box is checked, you can choose which colors will represent various types of MATLAB commands.  
The Set Colors button is used to select a given color.



Chapter 1 ■ the MatLaB environMent

15

Figure 1-23.  

Figure 1-22.  



Chapter 1 ■ the MatLaB environMent

16

To display the MATLAB Command Window separately simply click on the button  located in the top right 
corner. To return the window to its site on the desktop, use the option Dock Command Window from the View menu 
(Figure 1-25).

Figure 1-25.  

Figure 1-24.  



Chapter 1 ■ the MatLaB environMent

17

The Command History window
The Command History window (Figure 1-26) appears when you start MATLAB. It is located at the bottom right of the 
MATLAB desktop. The Command History window shows a list of functions used recently in the Command Window 
(Figure 1-26). It also shows an indicator of the beginning of the session. To display this window, separated from the 
MATLAB desktop, simply click on the button  located in its top right corner. To return the window to its site on the 
desktop, use the Dock Window Command from the View menu. This method of separation and docking is common to 
all MATLAB windows.

Figure 1-26.  

If you select one or more lines in the Command History window and right-click on the selection, the pop-up 
menu of Figure 1-27 appears. This gives you options to copy the selection to the clipboard (Copy), evaluate the 
selection in the Command Window (Evaluate Selection), create an M-file with the selected syntax (Create M-File), 
delete the selection (Delete Selection), delete everything preceding the selection (Delete to Selection) and delete the 
entire history (Delete Entire History).



Chapter 1 ■ the MatLaB environMent

18

The Launch Pad window
The Launch Pad window (located by default in the upper-left corner of the MATLAB desktop) allows you to get help, see 
demonstrations of installed products, go to other windows on the desktop and visit the MathWorks website (Figure 1-28).

Figure 1-28.  

Figure 1-27.  



Chapter 1 ■ the MatLaB environMent

19

Figure 1-29.  

The Current Directory window
The Current Directory window is obtained by clicking on the Current Directory sticker located at the bottom left of the 
MATLAB desktop (Figure 1-29). Its function is to view, open, and make changes in the MATLAB files environment. 
To display this window, separated from the MATLAB desktop (Figure 1-30), just click on the button  located in its top 
right corner. To return the window to its site on the desktop, use the Dock Command Window option in the View menu.  



Chapter 1 ■ the MatLaB environMent

20

It is possible to set preferences in the Current Directory window using the Preferences option from the File menu 
(Figure 1-31). This gives you the Current Directory Preferences window (Figure 1-32). In the History field the number 
of recent directories is set to save to history. In the field Browser display options file characteristics are set to display 
(file type, date of last modification, and descriptions and comments from the M-files).

Search for content in M-files

Create folder

Change directory level

Current directory
Search folders

Figure 1-30.  



Chapter 1 ■ the MatLaB environMent

21

Figure 1-32.  

Figure 1-31.  



Chapter 1 ■ the MatLaB environMent

22

If you select any file in the Current Directory window and you left-click on it, the pop-up menu of Figure 1-33 will 
appear. This gives you options to open the file (Open), run it (Run), view Help (View Help), open it as text (Open as 
Text), import data (Import Data), create new files, M-files or folders (New), rename it, delete it, cut it, copy it or paste 
it, pass you filters and add it to the current path.

Figure 1-33.  

The help browser
MATLAB’s help browser is obtained by clicking the  button on the toolbar or by using the function helpbrowser in 
the Command Window.

The Workspace window
The Workspace window is located in the top left corner of the MATLAB desktop and is obtained by clicking on the 
label Work Space under it (Figure 1-34). Its function is to display the variables stored in memory. It shows the name, 
type, size and class of each variable, as shown in Figure 1-35. To display this window, separated from the MATLAB 
desktop (Figure 1-35), just click on the button  located in its upper right corner. To return the window to its site on 
the desktop, use the Dock Command Window option from the View menu. 



Chapter 1 ■ the MatLaB environMent

23

Figure 1-34.  

Variable name
Read workspace variable type

Save workspace size in bytes
Edit variables (Array editor )

Delete variables

Figure 1-35.  



Chapter 1 ■ the MatLaB environMent

24

An important element of the Workspace window is the Array editor, which allows you to edit numeric arrays 
and strings. 

It is possible to set preferences in the Workspace window via the Preferences option from the File menu. This gives 
you the Preferences window shown in Figure 1-36. In the History field the number of recent directories is set to save to 
history. In the Font field the sources to be used in the Command Window preferences are set, and the option Confirm 
Deletion of Variables is checked according to whether or not you want the deletion of variables to be confirmed.

Figure 1-36.  

The Editor and Debugger for M-files
To create a new M-file in the Editor/Debugger simply click the button  in the MATLAB Tools toolbar or select  
File ➤ New ➤ M-file in the MATLAB desktop (Figure 1-37). The Editor/Debugger opens a file in which you create 
an M-file, i.e. a blank file for MATLAB programming code (see Figure 1-38). The Edit command in the Command 
Window also opens the Editor/Debugger. To open an existing M-file use File ➤ Open in the MATLAB desktop.  
You can also use the command Open in the Command Window.



Chapter 1 ■ the MatLaB environMent

25

Figure 1-37.  

Figure 1-38.  



Chapter 1 ■ the MatLaB environMent

26

You can also open the Editor/Debugger by right-clicking anywhere in the Current Directory window and choosing 
New ➤ M-file from the resulting pop-up menu (Figure 1-39). The option Open is used to open an existing M-file. You 
can open several M-files simultaneously, in which case they will appear in different windows (Figure 1-40).

Figure 1-39.  



Chapter 1 ■ the MatLaB environMent

27

Figure 1-40.  

Help in MATLAB
MATLAB has a fairly efficient inline help system. The first tool to consider is browser support (Figure 1-41), which is 
accessed via the icon  or by typing helpbrowser in the Command Window (the Help Browser option must be selected 
in the View menu). Selecting a theme in the pane on the left of the help browser will present help on the selected topic 
in the right pane, and you can navigate through the content via hyperlinks. The top bar of the left navigation pane 
features the options Content (support for content), Index (help by alphabetical index), Search (find help by subject) 
and Favorites (favorite help topics).



Chapter 1 ■ the MatLaB environMent

28

Figure 1-41.  

Another very important way to obtain help in MATLAB is via its support functions. These functions are  
presented in the following table.

Function Description

doc function Displays the reference page in the browser’s support for the specified function, showing 
syntax, description, examples and links with other related functions.

docopt This function is used to display the location of the help files on UNIX platforms that do 
not support Java interfaces.

help function Displays in the Command Window a description and the syntax of the specified function.

helpbrowser Opens the help browser.

helpdesk Opens the help browser. It has been replaced by doc in recent versions of MATLAB.

helpwin or helpwin theme Displays in the help browser a list of all the MATLAB functions or those relating to the 
specified topic.

lookfor text Displays in the browser all support functions which contain the specified text as part of 
the function.

web url Opens in the Web browser the URL specified by default as relative to the Web help of 
MATLAB.



29

Chapter 2

MATLAB Language: Variables,  
Numbers, Operators and  
Functions

Variables
MATLAB does not require a command to declare variables. A variable is created simply by directly allocating a value 
to it. For example:
 
>> v = 3
 
v =
 
3
 

The variable v will take the value 3 and using a new mapping will not change its value. Once the variable is 
declared, we can use it in calculations.
 
>> v ^ 3
 
ans =
 
27
 
>> v+5
 
ans =
 
8
 

The value assigned to a variable remains fixed until it is explicitly changed or if the current MATLAB session 
is closed.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

30

If we now write:
 
>> v = 3 + 7
 
v =
 
10
 
then the variable v has the value 10 from now on, as shown in the following calculation:
 
>> v ^ 4
 
ans =
 
10000
 

A variable name must begin with a letter followed by any number of letters, digits or underscores. However, bear 
in mind that MATLAB uses only the first 31 characters of the name of the variable. It is also very important to note that 
MATLAB is case sensitive. Therefore, a variable named with uppercase letters is different to the variable with the same 
name except in lowercase letters.

Vector variables
A vector variable of n elements can be defined in MATLAB in the following ways:
 
V = [v1, v2, v3,..., vn]
 
V = [v1 v2 v3... vn]
 

When most MATLAB commands and functions are applied to a vector variable the result is understood to be that 
obtained by applying the command or function to each element of the vector:
 
>> vector1 = [1,4,9,2.25,1/4]
 
vector1 =
 
1.0000 4.0000 9.0000 2.2500 0.2500
 
>> sqrt (vector1)
 
ans =
 
1.0000 2.0000 3.0000 1.5000 0.5000
 

The following table presents some alternative ways of defining a vector variable without explicitly bracketing all 
its elements together, separated by commas or blank spaces.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

31

variable = [a:b] Defines the vector whose first and last elements are a and b, 
respectively, and the intermediate elements differ by one unit.

variable = [a:s:b] Defines the vector whose first and last elements are a and b, 
respectively, and the intermediate elements differ by an increase 
specified by s.

variable = linespace [a, b, n] Defines the vector with n evenly spaced elements whose first and 
last elements are a and b respectively.

variable = logspace [a, b, n] Defines the vector with n evenly logarithmically spaced elements 
whose first and last elements are 10a and 10b, respectively.

Below are some examples:
 
>> vector2 = [5:5:25]
 
vector2 =
 
5 10 15 20 25
 

This yields the numbers between 5 and 25, inclusive, separated by 5 units.
 
>> vector3=[10:30]
 
vector3 =
 
Columns 1 through 13
 
10    11    12    13    14    15    16    17    18    19       20    21    22
 
Columns 14 through 21
 
23 24 25 26 27 28 29 30
 

This yields the numbers between 10 and 30, inclusive, separated by a unit.
 
>> t:Microsoft.WindowsMobile.DirectX.Vector4 = linspace (10,30,6)
 
t:Microsoft.WindowsMobile.DirectX.Vector4 =
 
10 14 18 22 26 30
 

This yields 6 equally spaced numbers between 10 and 30, inclusive.
 
>> vector5 = logspace (10,30,6)
 
vector5 =
 
1. 0e + 030 *
 
0.0000 0.0000 0.0000 0.0000 0.0001 1.0000
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

32

This yields 6 evenly logarithmically spaced numbers between 1010 and 1030, inclusive.
One can also consider row vectors and column vectors in MATLAB. A column vector is obtained by separating its 

elements by semicolons, or by transposing a row vector using a single quotation mark at the end of its definition.
 
>> a=[10;20;30;40]
 
a =
 
10
20
30
40
 
>> a=(10:14);b=a'
 
b =
 
10
11
12
13
14
 
>> c=(a')'
 
c =
 
10 11 12 13 14
 

You can also select an element of a vector or a subset of elements. The rules are summarized in the following table:

x (n) Returns the n-th element of the vector x.

x(a:b) Returns the elements of the vector x between the a-th and the b-th elements, inclusive.

x(a:p:b) Returns the elements of the vector x located between the a-th and the b-th elements, inclusive, but 
separated by p units (a > b).

x(b:-p:a) Returns the elements of the vector x located between the b-th and a-th elements, both inclusive, but 
separated by p units and starting with the b-th element (b > a).

Here are some examples:
 
>> x =(1:10)
 
x =
 
1     2     3     4     5     6     7     8     9    10
 
>> x (6)
 
ans =
 
6
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

33

This yields the sixth element of the vector x.
 
>> x(4:7)
 
ans =
 
4 5 6 7
 

This yields the elements of the vector x located between the fourth and seventh elements, inclusive.
 
>> x(2:3:9)
 
ans =
 
2 5 8
 

This yields the three elements of the vector x located between the second and ninth elements, inclusive,  
but separated in steps of three units.
 
>> x(9:-3:2)
 
ans =
 
9 6 3
 

This yields the three elements of the vector x located between the ninth and second elements, inclusive,  
but separated in steps of three units and starting at the ninth.

Matrix variables
MATLAB defines arrays by inserting in brackets all its row vectors separated by a comma. Vectors can be entered by 
separating their components by spaces or by commas, as we already know.  For example, a 3 × 3 matrix variable can 
be entered in the following two ways:
 
M = [a11 a12 a13;a21 a22 a23;a31 a32 a33]
 
M = [a11,a12,a13;a21,a22,a23;a31,a32,a33]
 

Similarly we can define an array of variable dimension (M×N). Once a matrix variable has been defined, MATLAB 
enables many ways to insert, extract, renumber, and generally manipulate its elements. The following table shows 
different ways to define matrix variables.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

34

A(m,n) Defines the (m, n)-th element of the matrix A (row m and column n).

A(a:b,c:d) Defines the subarray of A formed between the a-th and the b-th rows and between the c-th and 
the d-th columns, inclusive.

A(a:p:b,c:q:d) Defines the subarray of A formed by every p-th row between the a-th and the b-th rows, 
inclusive, and every q-th column between the c-th and the d-th column, inclusive.

A([a b],[c d]) Defines the subarray of A formed by the intersection of the a-th through b-th rows and c-th 
through d-th columns, inclusive.

A([a b c...],
[e f g...])

Defines the subarray of A formed by the intersection of rows a, b, c,... and columns e, f, g,...

A(:,c:d) Defines the subarray of A formed by all the rows in A and the  c-th through to the d-th columns.

A(:,[c d e...]) Defines the subarray of A formed by all the rows in A and columns c, d, e,...

A(a:b,:) Defines the subarray of A formed by all the columns in A and the a-th through to the b-th rows.

A([a b c...],:) Defines the subarray of A formed by all the columns in A and rows a, b, c,...

A(a,:) Defines the a-th row of the matrix A.

A(:,b) Defines the b-th column of the matrix A.

A(:) Defines a column vector whose elements are the columns of A placed in order below each other.

A(:,:) This is equivalent to the entire matrix A.

[A, B, C,...] Defines the matrix formed by the matrices A, B, C,...

SA = [ ] Clears the subarray of the matrix A, S
A
, and returns the remainder.

diag (v) Creates a diagonal matrix with the vector v in the diagonal.

diag (A) Extracts the diagonal of the matrix as a column vector.

eye (n) Creates the identity matrix of order n.

eye (m, n) Create an m×n matrix with ones on the main diagonal and zeros elsewhere.

zeros (m, n) Creates the zero matrix of order m×n.

ones (m, n) Creates the matrix of order m×n with all its elements equal to 1.

rand (m, n) Creates a uniform random matrix of order m×n.

randn (m, n) Create a normal random matrix of order m×n.

flipud (A) Returns the matrix whose rows are those of A but placed in reverse order (from top to bottom).

fliplr (A) Returns the matrix whose columns are those of A but placed in reverse order (from left to right).

rot90 (A) Rotates the matrix A counterclockwise by 90 degrees.

reshape(A, m, n) Returns an m×n matrix formed by taking consecutive entries of A by columns.

size (A) Returns the order (size) of the matrix A.

find (condA) Returns all A items that meet a given condition.

length (v) Returns the length of the vector v.

tril (A) Returns the lower triangular part of the matrix A.

triu (A) Returns the upper triangular part of the matrix A.

A' Returns the transpose of the matrix A.

Inv (A) Returns the inverse of the matrix A.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

35

Here are some examples:
We consider first the 2 × 3 matrix whose rows are the first six consecutive odd numbers:

 
>> A = [1 3 5; 7 9 11]
 
A =
 
1 3 5
7 9 11
 

Now we are going to change the (2,3)-th element, i.e. the last element of A, to zero:
 
>> A(2,3) = 0
 
A =
 
1 3 5
7 9 0
 

We now define the matrix B to be the transpose of A:
 
>> B = A'
 
B =
 
1 7
3 9
5 0
 

We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:
 
>> C = [B eye (3)]
 
C =
 
1     7     1     0     0
3     9     0     1     0
5     0     0     0     1
 

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the 
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection 
of the first two rows and the last three columns of the matrix C:
 
>> D = C(:,1:2:5)
 
D =
 
1 1 0
3 0 0
5 0 1
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

36

>> E = C([1 2],[3 5])
 
E =
 
1 0
0 0
 
>> F = C([1 2],3:5)
 
F =
 
1 0 0
0 1 0
 

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the 
main diagonal of D:
 
>> G=diag(diag(D))
G =
 
1 0 0
0 0 0
0 0 1
 

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third 
and fifth columns:
 
>> H = C([1 3],[2 3 5])
 
H =
 
7 1 0
0 0 1
 

Now we build an array I formed by the identity matrix of order 5 × 4, appending the zero matrix of the same order 
to its right and to the right of that the unit matrix, again of the same order. Then we extract the first row of I and, finally, 
form the matrix J comprising the odd rows and even columns of I and calculate its order (size).
 
>> I = [eye(5,4) zeros(5,4) ones(5,4)]
 
ans =
 
1     0     0     0     0     0     0     0     1     1     1     1
0     1     0     0     0     0     0     0     1     1     1     1
0     0     1     0     0     0     0     0     1     1     1     1
0     0     0     1     0     0     0     0     1     1     1     1
0     0     0     0     0     0     0     0     1     1     1     1
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

37

>> I(1,:)
 
ans =
 
1     0     0     0     0     0     0     0     1     1     1     1
 
>> J=I(1:2:5,2:2:12)
 
J =
 
0     0     0     0     1     1
0     0     0     0     1     1
0     0     0     0     1     1
 
>> size(J)
 
ans =
 
3 6
 

We now construct a random matrix K of order 3 ×4, reverse the order of the rows of K, reverse the order of the 
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 × 3 whose 
columns are obtained by taking the elements of K sequentially by columns.
 
>> K=rand(3,4)
 
K =
 
0.5269    0.4160    0.7622    0.7361
0.0920    0.7012    0.2625    0.3282
0.6539    0.9103    0.0475    0.6326
 
>> K(3:-1:1,:)
 
ans =
 
0.6539    0.9103    0.0475    0.6326
0.0920    0.7012    0.2625    0.3282
0.5269    0.4160    0.7622    0.7361
 
>> K(:,4:-1:1)
 
ans =
 
0.7361    0.7622    0.4160    0.5269
0.3282    0.2625    0.7012    0.0920
0.6326    0.0475    0.9103    0.6539
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

38

>> K(3:-1:1,4:-1:1)
 
ans =
 
0.6326    0.0475    0.9103    0.6539
0.3282    0.2625    0.7012    0.0920
0.7361    0.7622    0.4160    0.5269
 
>> L=reshape(K,4,3)
 
L =
 
0.5269 0.7012 0.0475
0.0920 0.9103 0.7361
0.6539 0.7622 0.3282
0.4160 0.2625 0.6326 

Character variables
A character variable (chain) is simply a character string enclosed in single quotes that MATLAB treats as a vector form. 
The general syntax for character variables is as follows:
 
c = 'string'
 

Among the MATLAB commands that handle character variables we have the following:

abs ('character_string') Returns the array of ASCII characters equivalent to each character in the string.

setstr (numeric_vector) Returns the string of ASCII characters that are equivalent to the elements of the vector.

str2mat (t1,t2,t3,...) Returns the matrix whose rows are the strings t1, t2, t3,..., respectively.

str2num ('string') Converts the string to its exact numeric value used by MATLAB.

num2str (number) Returns the exact number in its equivalent string with fixed precision.

int2str (integer) Converts the integer to a string.

sprintf ('format', a) Converts a numeric array into a string in the specified format.

sscanf ('string', 'format') Converts a string to a numeric value in the specified format.

dec2hex (integer) Converts a decimal integer into its equivalent string in hexadecimal.

hex2dec ('string_hex') Converts a hexadecimal string into its integer equivalent.

hex2num ('string_hex') Converts a hexadecimal string into the equivalent IEEE floating point number.

lower ('string') Converts a string to lowercase.

upper ('string') Converts a string to uppercase.

strcmp (s1, s2) Compares the strings s1 and s2 and returns 1 if they are equal and 0 otherwise.

strcmp (s1, s2, n) Compares the strings s1 and s2 and returns 1 if their first n characters are equal  
and 0 otherwise.

strrep (c, 'exp1', 'exp2') Replaces exp1 by  exp2 in the chain c.

findstr (c, 'exp') Finds where exp is in the chain c.

isstr (expression) Returns 1 if the expression is a string and 0 otherwise.

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

39

ischar (expression) Returns 1 if the expression is a string and 0 otherwise.

strjust (string) Right justifies the string.

blanks (n) Generates a string of n spaces.

deblank (string) Removes blank spaces from the right of the string.

eval (expression) Executes the expression, even if it is a string.

disp (‘string’) Displays the string (or array) as has been written, and continues the MATLAB process.

input (‘string’) Displays the string on the screen and waits for a key press to continue.

Here are some examples:
 
>> hex2dec ('3ffe56e')
 
ans =
 
67102062
 

Here MATLAB has converted a hexadecimal string into a decimal number.
 
>> dec2hex (1345679001)
 
ans =
 
50356E99
 

The program has converted a decimal number into a hexadecimal string.
 
>> sprintf(' %f',[1+sqrt(5)/2,pi])
 
ans =
 
2.118034 3.141593
 

The exact numerical components of a vector have been converted to strings (with default precision).
 
>> sscanf('121.00012', '%f')
 
ans =
 
121.0001
 

Here a numeric string has been passed to an exact numerical format (with default precision).
 
>> num2str (pi)
 
ans =
 
3.142
 

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

40

The constant p has been converted into a string.
 
>> str2num('15/14')
 
ans =
 
1.0714
 

The string has been converted into a numeric value with default precision.
 
>> setstr(32:126)
 
ans =
 
!"#$% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ^ 
_'abcdefghijklmnopqrstuvwxyz {|}~
 

This yields the ASCII characters associated with the whole numbers between 32 and 126, inclusive.
 
>> abs('{]}><#¡¿?ºª')
 
ans =
 
123 93 125 62 60 35 161 191 63 186 170
 

This yields the integers corresponding to the ASCII characters specified in the argument of abs.
 
>> lower ('ABCDefgHIJ')
 
ans =
 
abcdefghij
 

The text has been converted to lowercase.
 
>> upper('abcd eFGHi jKlMn')
 
ans =
 
ABCD EFGHI JKLMN
 

The text has been converted to uppercase.
 
>> str2mat ('The world',' The country',' Daily 16', ' ABC')
 
ans =
 
The world
The country
Daily 16
ABC



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

41

 
The chains comprising the arguments of str2mat have been converted to a text array.

 
>> disp('This text will appear on the screen')
 
ans =
 
This text will appear on the screen
 

Here the argument of the command disp has been displayed on the screen.
 
>> c = 'This is a good example';
>> strrep(c, 'good', 'bad')
 
ans =
 
This is a bad example
 

The string good has been replaced by bad in the chain c. The following instruction locates the initial position of 
each occurrence of is within the chain c.
 
>> findstr (c, 'is')
 
ans =
 
3 6 

Numbers
In MATLAB the arguments of a function can take many different forms, including different types of numbers and 
numerical expressions, such as integers and rational, real and complex numbers.

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is 
an interactive program that allows you to perform a simple variety of mathematical operations. MATLAB assumes the 
usual operations of sum, difference, product, division and power, with the usual hierarchy between them:

x + y Sum

x – y Difference

x * y or x y Product

x/y Division

x ^ y Power



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

42

To add two numbers simply enter the first number, a plus sign (+) and the second number. Spaces may be 
included before and after the sign to ensure that the input is easier to read.
 
>> 2 + 3
 
ans =
 
5
 

We can perform power calculations directly.
 
>> 100 ^ 50
 
ans =
 
1. 0000e + 100
 

Unlike a calculator, when working with integers, MATLAB displays the full result even when there are more digits 
than would normally fit across the screen. For example, MATLAB returns the following value of 99 ^ 50 when using the 
vpa function (here to the default accuracy of 32 significant figures).
 
>> vpa '99 ^ 50'
 
ans =
 
. 60500606713753665044791996801256e100
 

To combine several operations in the same instruction one must take into account the usual priority criteria 
among them, which determine the order of evaluation of the expression. Consider, for example:
 
>> 2 * 3 ^ 2 + (5-2) * 3
 
ans =
 
27
 

Taking into account the priority of operators, the first expression to be evaluated is the power 3^2. The usual 
evaluation order can be altered by grouping expressions together in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions and you can 
also define your own functions. MATLAB functions and operators can be applied to symbolic constants  
or numbers.

One of the basic applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional 
calculator, but with one important difference: the precision of the calculation. Operations are performed to whatever 
degree of precision the user desires. This unlimited precision in calculation is a feature which sets MATLAB apart 
from other numerical calculation programs, where the accuracy is determined by a word length inherent to the 
software, and cannot be modified.

The accuracy of the output of MATLAB operations can be relaxed using special approximation techniques 
which are exact only up to a certain specified degree of precision. MATLAB represents results with accuracy, but 
even if internally you are always working with exact calculations to prevent propagation of rounding errors, different 
approximate representation formats can be enabled, which sometimes facilitate the interpretation of the results. The 
commands that allow numerical approximation are the following:



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

43

format long Delivers results to 16 significant decimal figures.

format short Delivers results to 4 decimal places. This is MATLAB’s default format.

format long e Provides the results to 16 decimal figures more than the power of 10 required.

format short e Provides the results to four decimal figures more than the power of 10 required.

format long g Provides the results in optimal long format.

format short g Provides the results in optimum short format.

bank format Delivers results to 2 decimal places.

format rat Returns the results in the form of a rational number approximation.

format + Returns the sign (+, -) and ignores the imaginary part of complex numbers.

format hex Returns results in hexadecimal format.

vpa ‘operations’ n Returns the result of the specified operations to n significant digits.

numeric (‘expr’) Provides the value of the expression numerically approximated by the current active format.

digits (n) Returns results to n significant digits.

Using format gives a numerical approximation of 174/13 in the way specified after the format command:
 
>> 174/13
 
ans =
 
13.3846
 
>> format long; 174/13
 
ans =
 
13.38461538461539
 
>> format long e; 174/13
 
ans =
 
1.338461538461539e + 001
 
>> format short e; 174/13
 
ans =
 
1.3385e + 001
 
>> format long g; 174/13
 
ans =
 
13.3846153846154
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

44

>> format short g; 174/13
 
ans =
 
13.385
 
>> format bank; 174/13
 
ans =
 
13.38
 
>> format hex; 174/13
 
ans =
 
402ac4ec4ec4ec4f
 

Now we will see how the value of sqrt (17) can be calculated to any precision that we desire:
 
>> vpa ' 174/13 ' 10
 
ans =
 
13.38461538
 
>> vpa ' 174/13 ' 15
 
ans =
 
13.3846153846154
 
>> digits (20); vpa ' 174/13 '
 
ans =
 
13.384615384615384615 

Integers
In MATLAB all common operations with whole numbers are exact, regardless of the size of the output.  If we want the 
result of an operation to appear on screen to a certain number of significant figures, we use the symbolic computation 
command vpa (variable precision arithmetic), whose syntax we already know.

For example, the following calculates 6^400 to 450 significant figures:
 
>> '6 vpa ^ 400' 450
 
ans =
 
182179771682187282513946871240893712673389715281747606674596975493339599720905327003028267800766283
867331479599455916367452421574456059646801054954062150177042349998869907885947439947961712484067309
738073652485056311556920850878594283008099992731076250733948404739350551934565743979678824151197232
629947748581376.
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

45

The result of the operation is precise, always displaying a point at the end of the result. In this case it turns 
out that the answer has fewer than 450 digits anyway, so the solution is exact. If you require a smaller number of 
significant figures, that number can be specified and the result will be rounded accordingly. For example, calculating 
the above power to only 50 significant figures we have:
 
>> '6 vpa ^ 400' 50
 
ans =
 
. 18217977168218728251394687124089371267338971528175e312
 

Functions of integers and divisibility
There are several functions in MATLAB with integer arguments, the majority of which are related to divisibility. 
Among the most typical functions with integer arguments are the following:

rem (n, m) Returns the remainder of the division of n by m
(also valid when n and m are real).

sign (n) The sign of n (i.e. 1 if n > 0, - 1 if n < 0).

max (n1, n2) The maximum of n1 and n2.

min (n1, n2) The minimum of n1 and n2.

gcd (n1, n2) The greatest common divisor of n1 and n2.

lcm (n1, n2) The least common multiple of n1 and n2.

factorial (n) n factorial (i.e. n(n-1) (n-2)...1)

factor (n) Returns the prime factorization of n.

Below are some examples.
The remainder of division of 17 by 3:

 
>> rem (17,3)
 
ans =
 
2
 

The remainder of division of 4.1 by 1.2:
 
>> rem (4.1,1.2)
 
ans =
 
0.5000
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

46

The remainder of division of -4.1 by 1.2:
 
>> rem(-4.1,1.2)
 
ans =
 
-0.5000
 

The greatest common divisor of 1000, 500 and 625:
 
>> gcd (1000, gcd (500,625))
 
ans =
 
125.00
 

The least common multiple of 1000, 500 and 625:
 
>> lcm (1000, lcm (500,625))
 
ans =
 
5000.00 

Alternative bases
MATLAB allows you to work with numbers to any base, as long as the extended symbolic math Toolbox is available. It 
also allows you to express all kinds of numbers in different bases. This is implemented via the following functions:

dec2base (decimal, n_base) Converts the specified decimal number to the new base n_base.

base2dec(number,b) Converts the given number in base b to a decimal number.

dec2bin (decimal) Converts the specified decimal number to base 2 (binary).

dec2hex (decimal) Converts the specified decimal number to base 16 (hexadecimal).

bin2dec (binary) Converts the specified binary number to decimal.

hex2dec (hexadecimal) Converts the specified base 16 number to decimal.

Below are some examples.
Represent in base 10 the base 2 number 100101.

 
>> base2dec('100101',2)
 
ans =
 
37.00
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

47

Represent in base 10 the hexadecimal number FFFFAA00.
 
>> base2dec ('FFFFAA0', 16)
 
ans =
 
268434080.00
 

Represent the result of the base 16 operation FFFAA2+FF-1 in base 10.
 
>> base2dec('FFFAA2',16) + base2dec('FF',16)-1
 
ans =
 
16776096.00 

Real numbers
As is well known, the set of real numbers is the disjoint union of the set of rational numbers and the set of irrational 
numbers. A rational number is a number of the form p/q, where p and q are integers. In other words, the rational 
numbers are those numbers that can be represented as a quotient of two integers. The way in which MATLAB treats 
rational numbers differs from the majority of calculators. If we ask a calculator to calculate the sum 1/2 + 1/3 + 1/4, 
most will return something like 1.0833, which is no more than an approximation of the result.

The rational numbers are ratios of integers, and MATLAB can work with them in exact mode, so the result of an 
arithmetic expression involving rational numbers is always given precisely as a ratio of two integers. To enable this, 
activate the rational format with the command format rat. If the reader so wishes, MATLAB can also return the results 
in decimal form by activating any other type of format instead (e.g. format short or format long). MATLAB evaluates 
the above mentioned sum in exact mode as follows:
 
>> format rat
>> 1/2 + 1/3 + 1/4
 
ans =
 
13/12
 

Unlike calculators, MATLAB ensures its operations with rational numbers are accurate by maintaining the 
rational numbers in the form of ratios of integers. In this way, calculations with fractions are not affected by rounding 
errors, which can become very serious, as evidenced by the theory of errors. Note that, once the rational format is 
enabled, when MATLAB adds two rational numbers the result is returned in symbolic form as a ratio of integers, and 
operations with rational numbers will continue to be exact until an alternative format is invoked.

A floating point number, or a number with a decimal point, is interpreted as exact if the rational format is 
enabled. Thus a floating point expression will be interpreted as an exact rational expression while any irrational 
numbers in a rational expression will be represented by an appropriate rational approximation.
 
>> format rat
>> 10/23 + 2.45/44
 
ans =
 
1183 / 2412
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

48

The other fundamental subset of the real numbers is the set of irrational numbers, which have always created 
difficulties in numerical calculation due to their special nature. The impossibility of representing an irrational number 
accurately in numeric mode (using the ten digits from the decimal numbering system) is the cause of most of the 
problems. MATLAB represents the results with an accuracy which can be set as required by the user. An irrational 
number, by definition, cannot be represented exactly as the ratio of two integers. If ordered to calculate the square 
root of 17, by default MATLAB returns the number 5.1962.
 
>> sqrt (27)
 
ans =
 
5.1962
 

MATLAB incorporates the following common irrational constants and notions:

pi The number p = 3.1415926...

exp (1) The number e = 2.7182818...

Inf Infinity (returned, for example, when it encounters 1/0).

NaN Uncertainty (returned, for example, when it encounters 0/0).

realmin Returns the smallest possible normalized floating-point number in IEEE double precision.

realmax Returns the largest possible finite floating-point number in IEEE double precision.

The following examples illustrate how MATLAB outputs these numbers and notions.
 
>> long format
>> pi
 
ans =
 
3.14159265358979
 
>> exp (1)
 
ans =
 
2.71828182845905
 
>> 1/0
 
Warning: Divide by zero.
 
ans =
 
Inf
 
>> 0/0
 
Warning: Divide by zero.
 
ans =
 
NaN
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

49

>> realmin
 
ans =
 
2. 225073858507201e-308
 
>> realmax
 
ans =
 
1. 797693134862316e + 308 

Functions with real arguments
The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. In turn, 
the set of rational numbers has the set of integers as a subset. All functions applicable to real numbers are also valid 
for integers and rational numbers. MATLAB provides a full range of predefined functions, most of which are discussed 
in the subsequent chapters of this book. Within the group of functions with real arguments offered by MATLAB, the 
following are the most important:

Trigonometric functions

Function Inverse

sin (x) asin (x)

cos (x) acos (x)

tan(x) atan(x) and atan2(y,x)

csc (x) acsc (x)

sec (x) asec (x)

cot (x) acot (x)

Hyperbolic functions

Function Inverse

sinh (x) asinh (x)

cosh(x) acosh(x)

tanh(x) atanh(x)

csch(x) acsch(x)

sech(x) asech(x)

coth (x) acoth (x)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

50

Exponential and logarithmic functions

Function Meaning

exp (x) Exponential function in base e (e ^ x).

log (x) Base e logarithm of x.

log10 (x) Base 10 logarithm of x.

log2 (x) Base 2 logarithm of x.

pow2 (x) 2 raised to the power x.

sqrt (x) The square root of x.

Numeric variable-specific functions

Function Meaning

abs (x) The absolute value of x.

floor (x) The largest integer less than or equal to x.

ceil (x) The smaller integer greater than or equal to x.

round (x) The closest integer to x.

fix (x) Removes the fractional part of x.

rem (a, b) Returns the remainder of the division of  a by b.

sign (x) Returns the sign of  x (1 if x > 0,0 if x=0,- 1 if x < 0).

Here are some examples:
 
>> sin(pi/2)
 
ans =
 
1
 
>> asin (1)
 
ans =
 
1.57079632679490
 
>> log (exp (1) ^ 3)
 
ans =
 
3.00000000000000
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

51

The function round is demonstrated in the following two examples:
 
>> round (2.574)
 
ans =
 
3
 
>> round (2.4)
 
ans =
 
2
 

The function ceil is demonstrated in the following two examples:
 
>> ceil (4.2)
 
ans =
 
5
 
>> ceil (4.8)
 
ans =
 
5
 

The function floor is demonstrated in the following two examples:
 
>> floor (4.2)
 
ans =
 
4
 
>> floor (4.8)
 
ans =
 
4
 

The fix function simply removes the fractional part of a real number:
 
>> fix (5.789)
 
ans =
 
5
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

52

Complex numbers
Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that i or j 
represents the key value in complex analysis, the imaginary number √- 1. All the usual arithmetic operators can 
be applied to complex numbers, and there are also some specific functions which have complex arguments. 
Both the real and the imaginary part of a complex number can be a real number or a symbolic constant, and 
operations with them are always performed in exact mode, unless otherwise instructed or necessary, in which case 
an approximation of the result is returned. As the imaginary unit is represented by the symbol i or j, the complex 
numbers are expressed in the form a+bi or a+bj. Note that you don't need to use the product symbol (asterisk) 
before the imaginary unit:
 
>> (1-5i)*(1-i)/(-1+2i)
 
ans =
 
-1.6000 + 2.8000i
 
>> format rat
>> (1-5i) *(1-i) /(-1+2i)
 
ans =
 
-8/5 + 14/5i 

Functions with complex arguments
Working with complex variables is very important in mathematical analysis and its many applications in engineering. 
MATLAB implements not only the usual arithmetic operations with complex numbers, but also various complex 
functions. The most important functions are listed below.

Trigonometric functions

Function Inverse

sin (z) asin (z)

cos (z) acos (z)

tan (z) atan(z) and atan2(imag(z),real(z))

csc (z) acsc (z)

sec (z) asec (z)

cot (z) acot (z)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

53

Hyperbolic functions

Function Inverse

sinh (z) asinh (z)

cosh(z) acosh(z)

tanh(z) atanh(z)

csch(z) acsch(z)

sech(z) asech(z)

coth (z) acoth (z)

Exponential and logarithmic functions

Function Meaning

exp (z) Exponential function in base e (e ^ z)

log (z) Base e logarithm of z.

log10 (z) Base 10 logarithm of z.

log2 (z) Base 2 logarithm of z.

pow2 (z) 2 to the power z.

sqrt (z) The square root of z.

Specific functions for the real and imaginary part

Function Meaning

floor (z) Applies the floor function to real(z) and imag(z).

ceil (z) Applies the ceil function to real(z) and imag(z).

round (z) Applies the round function to real(z) and imag(z).

fix (z) Applies the fix function to real(z) and imag(z).

Specific functions for complex numbers

Function Meaning

abs (z) The complex modulus of z.

angle (z) The argument of z.

conj (z) The complex conjugate of z.

real (z) The real part of z.

imag (z) The imaginary part of z.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

54

Below are some examples of operations with complex numbers.
 
>> round(1.5-3.4i)
 
ans =
 
2       -    3i
 
>> real(i^i)
 
ans =
 
0.2079
 
 
>> (2+2i)^2/(-3-3*sqrt(3)*i)^90
 
ans =
 
0502e-085 - 1 + 7. 4042e-070i
 
>> sin (1 + i)
 
ans =
 
1.2985 + 0. 6350i
 

Elementary functions that support complex vector arguments
MATLAB easily handles vector and matrix calculus. Indeed, its name, MAtrix LABoratory, already gives an idea of its 
power in working with vectors and matrices. MATLAB allows you to work with functions of a complex variable, but in 
addition this variable can even be a vector or a matrix. Below is a table of functions with complex vector arguments.

max (V) The maximum component of V. (max is calculated for complex vectors as the complex number 
with the largest complex modulus (magnitude), computed with max(abs(V)). Then it computes 
the largest phase angle with max(angle(x)), if necessary.)

min (V) The minimum component of V. (min is calculated for complex vectors as the complex number 
with the smallest complex modulus (magnitude), computed with min(abs(A)). Then it computes 
the smallest phase angle with min(angle(x)), if necessary.)

mean (V) Average of the components of V.

median (V) Median of the components of V.

std (V) Standard deviation of the components of V.

sort (V) Sorts the components of V in ascending order. For complex entries the order is by absolute value 
and argument.

sum (V) Returns the sum of the components of V.

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

55

prod (V) Returns the product of the components of V, so, for example,n! = prod(1:n).

cumsum (V) Gives the cumulative sums of the components of V.

cumprod (V) Gives the cumulative products of the components of V.

diff (V) Gives the vector of first differences of V (V
t
 - V-

t-1
).

gradient (V) Gives the gradient of V.

del2 (V) Gives the Laplacian of V (5-point discrete).

fft (V) Gives the discrete Fourier transform of V.

fft2 (V) Gives the two-dimensional discrete Fourier transform of V.

ifft (V) Gives the inverse discrete Fourier transform of V.

ifft2 (V) Gives the inverse two-dimensional discrete Fourier transform of V.

These functions also support a complex matrix as an argument, in which case the result is a vector of column 
vectors whose components are the results of applying the function to each column of the matrix.

Here are some examples:
 
>> V = 2:7, W = [5 + 3i 2-i 4i]
 
V =
 
2     3     4     5     6     7
 
W =
 
2.0000 - 1.0000i        0 + 4.0000i   5.0000 + 3.0000i
 
>> diff(V),diff(W)
 
ans =
 
1     1     1     1     1
 
ans =
 
-2.0000 + 5.0000i   5.0000 - 1.0000i
 
>> cumprod(V),cumsum(V)
 
ans =
 
2           6          24         120         720        5040
 
ans =
 
2     5     9    14    20    27
 

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

56

>> cumsum(W), mean(W), std(W), sort(W), sum(W)
 
ans =
 
2.0000 - 1.0000i   2.0000 + 3.0000i   7.0000 + 6.0000i
 
ans =
 
2.3333 + 2.0000i
 
ans =
 
3.6515
 
ans =
 
2.0000 - 1.0000i   0 + 4.0000i   5.0000 + 3.0000i
 
ans =
 
7.0000 + 6.0000i
 
>> mean(V), std(V), sort(V), sum(V)
 
ans =
 
4.5000
 
ans =
 
1.8708
 
ans =
 
2     3     4     5     6     7
 
ans =
 
27
 
>> fft(W), ifft(W), fft2(W)
 
ans =
 
7.0000 + 6.0000i   0.3660 - 0.1699i  -1.3660 - 8.8301i
 
ans =
 
2.3333 + 2.0000i  -0.4553 - 2.9434i   0.1220 - 0.0566i
 
ans =
 
7.0000 + 6. 0000i 0.3660 - 0. 1699i  -1.3660 - 8. 8301i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

57

Elementary functions that support complex matrix arguments

Trigonometric

sin (z) Sine function

sinh (z) Hyperbolic sine function

asin (z) Arcsine function

asinh (z) Hyperbolic arcsine function

cos (z) Cosine function

cosh (z) Hyperbolic cosine function

acos (z) Arccosine function

acosh (z) Hyperbolic arccosine function

tan(z) Tangent function

tanh (z) Hyperbolic tangent function

atan (z) Arctangent function

atan2 (z) Fourth quadrant arctangent function

atanh (z) Hyperbolic arctangent function

sec (z) Secant function

sech (z) Hyperbolic secant function

asec (z) Arccosecant function

asech (z) Hyperbolic arccosecant function

csc (z) Cosecant function

csch (z) Hyperbolic cosecant function

acsc (z) Arccosecant function

acsch (z) Hyperbolic arccosecant function

cot (z) Cotangent function

coth (z) Hyperbolic cotangent function

acot (z) Arccotangent function

acoth (z) Hyperbolic arccotangent function

Exponential

exp (z) Base e exponential function

log (z) Natural logarithm function (base e)

log10 (z) Base 10 logarithm function

sqrt (z) Square root function

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

58

Complex

abs (z) Modulus or absolute value

angle (z) Argument

conj (z) Complex conjugate

imag (z) Imaginary part

real (z) Real part

Numerical

fix (z) Removes the fractional part

floor (z) Rounds to the nearest lower integer

ceil (z) Rounds to the nearest greater integer

round (z) Performs common rounding

rem (z1, z2) Returns the remainder of the division of z1 by z2

sign (z) The sign of z

Matrix

expm (Z) Matrix exponential function by default

expm1 (Z) Matrix exponential function in M-file

expm2 (Z) Matrix exponential function via Taylor series

expm3 (Z) Matrix exponential function via eigenvalues

logm (Z) Logarithmic matrix function

sqrtm (Z) Matrix square root function

funm(Z,'function') Applies the function to the array Z

Here are some examples:
 
>> A=[7 8 9; 1 2 3; 4 5 6], B=[1+2i 3+i;4+i,i]
 
A =
 
7     8     9
1     2     3
4     5     6
 
B =
 
1.0000 + 2.0000i   3.0000 + 1.0000i
4.0000 + 1.0000i        0 + 1.0000i
 

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

59

>> sin(A), sin(B), exp(A), exp(B), log(B), sqrt(B)
 
ans =
 
0.6570    0.9894    0.4121
0.8415    0.9093    0.1411
-0.7568  -0.9589   -0.2794
 
ans =
 
3.1658  + 1.9596i   0.2178 - 1.1634i
-1.1678 - 0.7682i        0 + 1.1752i
 
ans =
 
1.0e+003 *
 
1.0966    2.9810    8.1031
0.0027    0.0074    0.0201
0.0546    0.1484    0.4034
 
ans =
 
-1.1312 + 2.4717i  10.8523 +16.9014i
29.4995 +45.9428i   0.5403 + 0.8415i
 
ans =
 
0.8047 + 1.1071i   1.1513 + 0.3218i
1.4166 + 0.2450i        0 + 1.5708i
 
ans =
 
1.2720 + 0.7862i   1.7553 + 0.2848i
2.0153 + 0.2481i   0.7071 + 0.7071i
 

The exponential functions, square root and logarithm used above apply to the array elementwise and have 
nothing to do with the matrix exponential and logarithmic functions that are used below.
 
>> expm(B), logm(A), abs(B), imag(B)
 
ans =
 
-27.9191 + 14.8698i -20.0011 + 12.0638i
-24.7950 + 17.6831i -17.5059 + 14.0445i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

60

ans =
 
11.9650   12.8038 -19.9093
-21.7328 -22.1157  44.6052
11.8921   12.1200 -21.2040
 
ans =
 
2.2361 3.1623
4.1231 1.0000
 
ans =
 
2     1
1     1
 
>> fix(sin(B)), ceil(log(A)), sign(B), rem(A,3*ones(3))
 
ans =
 
3.0000 + 1.0000i         0 - 1.0000i
-1.0000                  0 + 1.0000i
 
ans =
 
2     3     3
0     1     2
2     2     2
 
ans =
 
0.4472 + 0.8944i   0.9487 + 0.3162i
0.9701 + 0.2425i        0 + 1.0000i
 
ans =
 
1     2     0
1     2     0
1     2     0 

Random numbers
MATLAB can easily generate (pseudo) random numbers. The function rand generates uniformly distributed random 
numbers and the function randn generates normally distributed random numbers. The most interesting features of 
MATLAB’s random number generator are presented in the following table.



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

61

rand Returns a uniformly distributed random decimal number from the interval [0,1].

rand (n) Returns an array of size n×n whose elements are uniformly distributed random decimal 
numbers from the interval [0,1].

rand (m, n) Returns an array of dimension m×n whose elements are uniformly distributed random 
decimal numbers from the interval [0,1].

rand (size (a)) Returns an array of the same size as the matrix A and whose elements are uniformly 
distributed random decimal numbers from the interval [0,1].

rand ('seed') Returns the current value of the uniform random number generator seed.

rand('seed',n) Assigns to n the current value of the uniform random number generator seed.

randn Returns a normally distributed random decimal number (mean 0 and variance 1).

randn (n) Returns an array of dimension n×n whose elements are normally distributed random 
decimal numbers (mean 0 and variance 1).

randn (m, n) Returns an array of dimension m×n whose elements are normally distributed random 
decimal numbers (mean 0 and variance 1).

randn (size (a)) Returns an array of the same size as the matrix A and whose elements are normally 
distributed random decimal numbers (mean 0 and variance 1).

randn ('seed') Returns the current value of the normal random number generator seed.

randn('seed',n) Assigns to n the current value of the uniform random number generator seed.

Here are some examples:
 
>> [rand, rand (1), randn, randn (1)]
 
ans =
 
0.9501    0.2311   -0.4326   -1.6656
 
>> [rand(2), randn(2)]
 
ans =
 
0.6068    0.8913              0.1253   -1.1465
0.4860    0.7621              0.2877    1.1909
 
>> [rand(2,3), randn(2,3)]
 
ans =
 
0.3529 0.0099 0.2028 -0.1364 1.0668 -0.0956
0.8132 0.1389 0.1987  0.1139 0.0593 -0.8323
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

62

Operators
MATLAB features arithmetic, logical, relational, conditional and structural operators.

Arithmetic operators
There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules 
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved are 
presented in the following table.

Operator Role played

+ Sum of scalars, vectors, or matrices

- Subtraction of scalars, vectors, or matrices

* Product of scalars or arrays

.* Product of scalars or vectors

\ A\B = inv (A) * B, where A and B are matrices

.\ A. \B = [B(i,j) /A (i, j)], where A and B are vectors [dim (A) = dim (B)]

/ Quotient, or B/A = B * inv (A), where A and B are matrices

./ A / B = [A(i,j)/b (i, j)], where A and B are vectors [dim (A) = dim (B)]

^ Power of a scalar or matrix (M p)

.^ Power of vectors (A. ^ B = [A(i,j)B (i, j)], for vectors A and B)

Simple mathematical operations between scalars and vectors apply the scalar to all elements of the vector 
according to the defined operation, and simple operators between vectors are performed element by element. Below 
is the specification of these operators:

a = {a1, a2,..., an}, b = {b1, b2,..., bn}, c = scalar

a + c = [a1 +c, a2+ c,..., an+c] Sum of a scalar and a vector

a * c = [a1 * c,a2* c ,..., an * c] Product of a scalar and a vector

a + b = [ a1+b1   a2+b2 ... an+bn] Sum of two vectors

a. * b = [ a1*b1   a2*b2 ... an*bn] Product of two vectors

a. / b = [ a1/b1   a2/b2 ... an/bn] Ratio to the right of two vectors

a. \ b = [ a1\b1   a2\b2 ... an\bn] Ratio to the left of two vectors

a. ^ c = [a1 ^c, a2^ c ,..., an ^ c] Vector to the power of a scalar

c. ^ a = [c ^ a1,c ^ a2,... ,c ^ an] Scalar to the power of a vector

a.^b = [a1^b1  a2^b2 ... an^bn] Vector to the power of a vector

It must be borne in mind that the vectors must be of the same length and that in the product, quotient and power 
the first operand must be followed by a point.

The following example involves all of the above operators.
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

63

>> X = [5,4,3]; Y = [1,2,7]; a = X + Y, b = X-Y, c = x * Y, d = 2. * X,...
e = 2/X, f = 2. \Y, g = x / Y, h =. \X, i = x ^ 2, j = 2. ^ X, k = X. ^ Y
 
a =
 
6     6    10
 
b =
 
4     2    -4
 
c =
 
5     8    21
 
d =
 
10     8     6
 
e =
 
0.4000    0.5000    0.6667
 
f =
 
0.5000    1.0000    3.5000
 
g =
 
5.0000    2.0000    0.4286
 
h =
 
5.0000    2.0000    0.4286
 
i =
 
25    16     9
 
j =
 
32 16 8
 
k =
 
5 16 2187
 

The above operations are all valid since in all cases the variable operands are of the same dimension, so the 
operations are successfully carried out element by element. For the sum and the difference there is no distinction 
between vectors and matrices, as the operations are identical in both cases.

The most important operators for matrix variables are specified below:



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

64

A + B, A - B, A * B Addition, subtraction and product of matrices.

A\B If A is square, A\B = inv (A) * B. If A is not square, A\B is the 
solution, in the sense of least-squares, of the system AX = B.

B/A Coincides with (A ' \ B')'.

An Coincides with A * A * A *... *A n times (n integer).

pA Performs the power operation only if p is a scalar.

Here are some examples:
 
>> X = [5,4,3]; Y = [1,2,7]; l = X'* Y, m = X * Y ', n = 2 * X, o = X / Y, p = Y\X
 
l =
 
5 10 35
4  8 28
3  6 21
 
m =
 
34
 
n =
 
10 8 6
 
o =
 
0.6296
 
p =
 
0         0         0
0         0         0
0.7143    0.5714    0.4286
 

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every 
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not element 
by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the vector 
operations X. ' * Y and X.*Y' make no sense, since they involve vectors of different dimensions. Similarly, the matrix 
operations X * Y, 2/X, 2\Y, X ^ 2, 2 ^ X and X ^ Y make no sense, again because of a conflict of dimensions in the arrays.

Here are some more examples of matrix operators.
 
>> M = [1,2,3;1,0,2;7,8,9]
 
M =
 
1 2 3
1 0 2
7 8 9
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

65

>> B = inv (M), C = M ^ 2, D = M ^(1/2), E = 2 ^ M
 
B =
 
-0.8889    0.3333    0.2222
0.2778    -0.6667    0.0556
0.4444     0.3333   -0.1111
 
C =
 
24    26    34
15    18    21
78    86   118
 
D =
 
0.5219 + 0.8432i   0.5793 - 0.0664i   0.7756 - 0.2344i
0.3270 + 0.0207i   0.3630 + 1.0650i   0.4859 - 0.2012i
1.7848 - 0.5828i   1.9811 - 0.7508i   2.6524 + 0.3080i
 
E =
 
1. 0e + 003 *
 
0.8626 0.9568 1.2811
0.5401 0.5999 0.8027
2.9482 3.2725 4.3816 

Relational operators
MATLAB also provides relational operators. Relational operators perform element by element comparisons between 
two matrices and return an array of the same size whose elements are zero if the corresponding relationship is 
true, or one if the corresponding relation is false. The relational operators can also compare scalars with vectors or 
matrices, in which case the scalar is compared to all the elements of the array. Below is a table of these operators.

< Less than (for complex numbers this applies only to the real parts)

< = Less than or equal (only applies to real parts of complex numbers)

> Greater than (only applies to real parts of complex numbers)

> = Greater than or equal (only applies to real parts of complex numbers)

x == y Equality (also applies to complex numbers)

x ~ = y Inequality (also applies to complex numbers)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

66

Logical operators
MATLAB provides symbols to denote logical operators. The logical operators shown in the following table offer a 
way to combine or negate relational expressions.

~ A Logical negation (NOT) or the complement of A.

A & B Logical conjunction (AND) or the intersection of A and B.

A | B Logical disjunction (OR) or the union of A and B.

XOR (A, B) Exclusive OR (XOR) or the symmetric difference of A and B  
(takes the value 1 if A or B, but not both, are 1).

Here are some examples:
 
>> A = 2:7;P =(A>3) &(A<6)
 
P =
 
0     0     1     1     0     0
 

Returns 1 when the corresponding element of A is greater than 3 and less than 6, and returns 0 otherwise.
 
>> X = 3 * ones (3.3); X > = [7 8 9; 4 5 6 ; 1 2 3]
 
ans =
 
0 0 0
0 0 0
1 1 1
 

The elements of the solution array corresponding to those elements of X which are greater than or equal to the 
equivalent entry of the matrix [7 8 9; 456 ; 1 2 3] are assigned the value 1. The remaining elements are assigned the value 0.

Logical functions
MATLAB implements logical functions whose output can take the value true (1) or false (0). The following table shows 
the most important logical functions.

exist(A) Checks if the variable or function exists (returns 0 if A does not exist and a number between  
1 and 5, depending on the type, if it does exist).

any(V) Returns 0 if all elements of the vector V are null and returns 1 if some element of V is non-zero.

any(A) Returns 0 for each column of the matrix A with all null elements and returns 1 for each column 
of the matrix A which has non-null elements.

all(V) Returns 1 if all the elements of the vector V are non-null and returns 0 if some element of V is null.

all(A) Returns 1 for each column of the matrix A with all non-null elements and returns 0 for each 
column of the matrix A with at least one null element.

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

67

find (V) Returns the places (or indices) occupied by the non-null elements of the vector V.

isnan (V) Returns 1 for the elements of V that are indeterminate and returns 0 for those that are not.

isinf (V) Returns 1 for the elements of V that are infinite and returns 0 for those that are not.

isfinite (V) Returns 1 for the elements of V that are finite and returns 0 for those that are not.

isempty (A) Returns 1 if A is an empty array and returns 0 otherwise (an empty array is an array such that 
one of its dimensions is 0).

issparse (A) Returns 1 if A is a sparse matrix and returns 0 otherwise.

isreal (V) Returns 1 if all the elements of V are real and 0 otherwise.

isprime (V) Returns 1 for all elements of V that are prime and returns 0 for all elements of V that are not 
prime.

islogical (V) Returns 1 if V is a logical vector and 0 otherwise.

isnumeric (V) Returns 1 if V is a numeric vector and 0 otherwise.

ishold Returns 1 if the properties of the current graph are retained for the next graph and only new 
elements will be added and 0 otherwise.

isieee Returns 1 if the computer is capable of IEEE standard operations.

isstr (S) Returns 1 if S is a string and 0 otherwise.

ischart (S) Returns 1 if S is a string and 0 otherwise.

isglobal (A) Returns 1 if A is a global variable and 0 otherwise.

isletter (S) Returns 1 if S is a letter of the alphabet and 0 otherwise.

isequal (A, B) Returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

ismember(V, W) Returns 1 for every element of V which is in W and 0 for every element V that is not in W.

Below are some examples using the above defined logical functions.
 
>> V=[1,2,3,4,5,6,7,8,9], isprime(V), isnumeric(V), all(V), any(V)
 
V =
 
1     2     3     4     5     6     7     8     9
 
ans =
 
0     1     1     0     1     0     1     0     0
 
ans =
 
1
 
ans =
 
1
 

(continued)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

68

ans =
 
1
 
>> B=[Inf, -Inf, pi, NaN], isinf(B), isfinite(B), isnan(B), isreal(B)
 
B =
 
Inf - Inf 3.1416 NaN
 
ans =
 
1 1 0 0
 
ans =
 
0 0 1 0
 
ans =
 
0 0 0 1
 
ans =
 
1
 
 
>> ismember ([1,2,3], [8,12,1,3]), A = [2,0,1];B = [4,0,2]; isequal (2A * B)
 
ans =
 
1 0 1
 
ans =
 
1 

eXerCISe 2-1

Find the number of ways of choosing 12 elements from 30 without repetition, the remainder of the division of 2134 
by 3, the prime decomposition of 18900, the factorial of 200 and the smallest number n which when divided by 
16,24,30 and 32 leaves remainder 5.
 
>> factorial (30) / (factorial (12) * factorial(30-12))
 
ans =
 
8.6493e + 007
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

69

The command vpa is used to present the exact result.
 
>> vpa 'factorial (30) / (factorial (12) * factorial(30-12))' 15
 
ans =
 
86493225.
 
>> rem(2^134,3)
 
ans =
 
0
 
>> factor (18900)
 
ans =
 
2     2     3     3     3     5     5     7
 
>> factorial (100)
 
ans =
 
9. 3326e + 157
 
The command vpa is used to present the exact result.
 
>> vpa ' factorial (100)' 160
 
ans =
 
933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761
56518286253697920827223758251185210916864000000000000000000000000.
 

n-5 is the least common multiple of 16, 24, 30 and 32.
 
>> lcm (lcm (16.24), lcm (30,32))
 
ans =
 
480
 
Then N = 480 + 5 = 485.
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

70

eXerCISe 2-2

in base 5 find the result of the operation defined by a25aaff616 + 6789aba12 + 356718 + 11002213 - 1250.   
in base 13 find the result of the operation (6665517 )* (aa199800a11 ) + (fffaaa12516 ) / (333314 + 6).

the result of the first operation in base 10 is calculated as follows:
 
>> base2dec('a25aaf6',16) + base2dec('6789aba',12) +...
base2dec('35671',8) + base2dec('1100221',3)-1250
 
ans =
 
190096544
 
We then convert this to base 5:
 
>> dec2base (190096544,5)
 
ans =
 
342131042134
 

thus, the final result of the first operation in base 5 is 342131042134.

the result of the second operation in base 10 is calculated as follows:
 
>> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)
 
ans =
 
2. 7537e + 014
 

We now transform the result obtained into base 13.
 
>> dec2base (275373340490852,13)
 
ans =
 
BA867963C1496
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

71

eXerCISe 2-3

in base 13, find the result of the following operation:

(6665517 )* (aa199800a11 ) + (fffaaa12516 ) / (333314 + 6).

First, we perform the operation in base 10:

a more direct way of doing all of the above is:
 
>> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)
 
ans =
 
2. 753733404908515e + 014
 

We now transform the result obtained into base 13.
 
>> dec2base (275373340490852,13)
 
ans =
 
BA867963C1496
 

eXerCISe 2-4

given the complex numbers X = 2 + 2i and Y=-3-3sqrt(3)i, calculate Y3X2/Y90, Y1/2,Y3/2 and ln (X).
 
>> X=2+2*i; Y=-3-3*sqrt(3)*i;
>> Y^3
 
ans =
 
216
 
>> X ^ 2 / Y ^ 90
 
ans =
 
050180953422426e-085 - 1 + 7. 404188256695968e-070i
 
>> sqrt (Y)
 
ans =
 
1.22474487139159 - 2.12132034355964i
 
>> sqrt(Y^3)



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

72

 
ans =
 
14.69693845669907
 
>> log (X)
 
ans =
 
1.03972077083992 + 0.78539816339745i
 

eXerCISe 2-5

Calculate the value of the following operations with complex numbers:

i i

i
i i i i ii i i i

8 8
1

1
1 1 1

3 4
1 2 1 1 3

-
-

+ + + +
-

+ +, , ( ( )) , ( ) , , ( )sin( ) ( )In n --i

>> (i^8-i^(-8))/(3-4*i) + 1
 
ans =
 
1
 
>> i^(sin(1+i))
 
ans =
 
-0.16665202215166 + 0.32904139450307i
 
>> (2+log(i))^(1/i)
 
ans =
 
1.15809185259777 - 1.56388053989023i
 
>> (1+i)^i
 
ans =
 
0.42882900629437 + 0.15487175246425i
 
>> i^(log(1+i))
 
ans =
 
0.24911518828716 + 0.15081974484717i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

73

>> (1+sqrt(3)*i)^(1-i)
 
ans =
 
5.34581479196611 + 1. 97594883452873i
 

eXerCISe 2-6

Calculate the real part, imaginary part, modulus and argument of each of the following expressions:

i i i ii i i ii3 11 3, ( ) , ,+ -

 

>> Z1 = i ^ 3 * i; Z2 = (1 + sqrt (3) * i) ^(1-i); Z3 =(i^i) ^ i;Z4 = i ^ i;
 
>> format short
 
>> real ([Z1 Z2 Z3 Z4])
ans =
 
1.0000 5.3458 0.0000 0.2079
 
>> imag ([Z1 Z2 Z3 Z4])
 
ans =
 
0 1.9759 - 1.0000 0
 
>> abs ([Z1 Z2 Z3 Z4])
 
ans =
 
1.0000 5.6993 1.0000 0.2079
 
>> angle ([Z1 Z2 Z3 Z4])
 
ans =
 
0 0.3541 - 1.5708 0
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

74

eXerCISe 2-7

generate a square matrix of order 4 whose elements are uniformly distributed random numbers from [0,1]. 
generate another square matrix of order 4 whose elements are normally distributed random numbers from [0,1]. 
Find the present generating seeds, change their value to ½ and rebuild the two arrays of random numbers.
 
>> rand (4)
 
ans =
 
0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057
 
>> randn (4)
 
ans =
 
-0.4326 -1.1465  0.3273 -0.5883
-1.6656  1.1909  0.1746  2.1832
0.1253   1.1892 -0.1867 -0.1364
0.2877  -0.0376  0.7258  0.1139
 
>> rand ('seed')
 
ans =
 
931316785
 
>> randn ('seed')
 
ans =
 
931316785
 
>> randn ('seed', 1/2)
>> rand ('seed', 1/2)
>> rand (4)
 
ans =
 
0.2190 0.9347 0.0346 0.0077
0.0470 0.3835 0.0535 0.3834
0.6789 0.5194 0.5297 0.0668
0.6793 0.8310 0.6711 0.4175
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

75

>> randn (4)
 
ans =
 
1.1650 -0.6965  0.2641  1.2460
0.6268  1.6961  0.8717 -0.6390
0.0751  0.0591 -1.4462  0.5774
0.3516  1.7971 -0.7012 -0.3600
 

eXerCISe 2-8

given the vector variables a = [p, 2p, 3p, 4p, 5p] and b = [e, 2e, 3e, 4e, 5e], calculate c = sin (a) + b, d = cos (a), 
e = ln (b), f = c * d, g = c/d, h = d ^ 2, i = d ^ 2-e ^ 2 and j = 3d ^ 3-2e ^ 2.
 
>> a = [pi, 2 * pi, 3 * pi, 4 * pi, 5 * pi],
b = [exp (1), 2 * exp (1), 3 * exp (1), 4 * exp (1),5*exp(1)],
c=sin(a)+b,d=cos(a),e=log(b),f=c.*d,g=c./d,]
h=d.^2, i=d.^2-e.^2, j=3*d.^3-2*e.^2
 
a =
 
3.1416    6.2832    9.4248   12.5664   15.7080
 
b =
 
2.7183 5.4366 8.1548 10.8731 13.5914
 
c =
 
2.7183 5.4366 8.1548 10.8731 13.5914
 
d =
 
-1     1    -1     1    -1
 
e =
 
1.0000 1.6931 2.0986 2.3863 2.6094
 
f =
 
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
 
g =
 
-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
 
h =
 
1     1     1     1     1
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

76

i =
 
0 - 1.8667 - 3.4042 - 4.6944 - 5.8092
 
j =
 
-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183
 

eXerCISe 2-9

given a uniform random square matrix M of order 3, obtain its inverse, its transpose and its diagonal. 
transform it into a lower triangular matrix (replacing the upper triangular entries by 0) and rotate it 90 degrees 
counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements. extract the 
subarray whose diagonal elements are at 11 and 22 and also remove the subarray whose diagonal elements are  
at 11 and 33.
 
>> M=rand(3)
 
M =
 
0.6868    0.8462    0.6539
0.5890    0.5269    0.4160
0.9304    0.0920    0.7012
 
>> A=inv(M)
 
A =
 
-4.1588   6.6947   -0.0934
0.3255    1.5930   -1.2487
5.4758   -9.0924    1.7138
 
>> B=M'
 
B =
 
0.6868    0.5890    0.9304
0.8462    0.5269    0.0920
0.6539    0.4160    0.7012
 
>> V=diag(M)
 
V =
 
0.6868
0.5269
0.7012
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

77

>> TI=tril(M)
 
TI =
 
0.6868    0         0
0.5890    0.5269    0
0.9304    0.0920    0.7012
 
>> TS=triu(M)
 
TS =
 
0.6868    0.8462    0.6539
0         0.5269    0.4160
0         0         0.7012
 
>> TR=rot90(M)
 
TR =
 
0.6539    0.4160    0.7012
0.8462    0.5269    0.0920
0.6868    0.5890    0.9304
 
>> s=M(1,1)+M(1,2)+M(1,3)
 
s =
 
2.1869
 
>> sd=M(1,1)+M(2,2)+M(3,3)
 
sd =
 
1.9149
 
>> SM=M(1:2,1:2)
 
SM =
 
0.6868 0.8462
0.5890 0.5269
 
>> SM1 = M([1 3], [1 3])
 
SM1 =
 
0.6868 0.6539
0.9304 0.7012
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

78

eXerCISe 2-10

given the following complex square matrix M of order 3, find its square, its square root and its base  
2 and – 2 exponential:

M

i i i

i i i

i i i

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3

4 5 6

7 8 9



>>  M=[i 2*i 3*i; 4*i 5*i 6*i; 7*i 8*i 9*i]
 
M =
 
0 + 1.0000i        0 + 2.0000i        0 + 3.0000i
0 + 4.0000i        0 + 5.0000i        0 + 6.0000i
0 + 7.0000i        0 + 8.0000i        0 + 9.0000i
 
>> C=M^2
 
C =
 
-30   -36   -42
-66   -81   -96
-102  -126  -150
 
>> D=M^(1/2)
D =
 
0.8570 - 0.2210i   0.5370 + 0.2445i   0.2169 + 0.7101i
0.7797 + 0.6607i   0.9011 + 0.8688i   1.0224 + 1.0769i
0.7024 + 1.5424i   1.2651 + 1.4930i   1.8279 + 1.4437i
 
>> 2^M
 
ans =
 
0.7020 - 0.6146i   -0.1693 - 0.2723i  -0.0407 + 0.0699i
-0.2320 - 0.3055i   0.7366 - 0.3220i  -0.2947 - 0.3386i
-0.1661 + 0.0036i  -0.3574 - 0.3717i   0.4513 - 0.7471i
 
>> (-2)^M
 
ans =
 
17.3946 -16.8443i    4.3404 - 4.5696i  -7.7139 + 7.7050i
1.5685 - 1.8595i     1.1826 - 0.5045i  -1.2033 + 0.8506i
-13.2575 +13.1252i  -3.9751 + 3.5607i   6.3073 - 6.0038i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

79

eXerCISe 2-11

given the complex matrix M in the previous exercise, find its elementwise logarithm and its elementwise base e 
exponential. also calculate the results of the matrix operations eM and ln (M).
 
>> M=[i 2*i 3*i; 4*i 5*i 6*i; 7*i 8*i 9*i]
 
>> log(M)
 
ans =
 
0 + 1.5708i        0.6931 + 1.5708i   1.0986 + 1.5708i
1.3863 + 1.5708i   1.6094 + 1.5708i   1.7918 + 1.5708i
1.9459 + 1.5708i   2.0794 + 1.5708i   2.1972 + 1.5708i
 
>> exp(M)
 
ans =
 
0.5403  + 0.8415i  -0.4161 + 0.9093i  -0.9900 + 0.1411i
-0.6536 - 0.7568i   0.2837 - 0.9589i   0.9602 - 0.2794i
0.7539  + 0.6570i  -0.1455 + 0.9894i  -0.9111 + 0.4121i
 
>> logm(M)
 
ans =
 
-5.4033 - 0.8472i   11.9931 - 0.3109i  -5.3770 + 0.8846i
12.3029 + 0.0537i  -22.3087 + 0.8953i  12.6127 + 0.4183i
-4.7574 + 1.6138i   12.9225 + 0.7828i  -4.1641 + 0.6112i
 
>> expm(M)
 
ans =
 
0.3802 - 0.6928i   -0.3738 - 0.2306i  -0.1278 + 0.2316i
-0.5312 - 0.1724i   0.3901 - 0.1434i  -0.6886 - 0.1143i
-0.4426 + 0.3479i  -0.8460 - 0.0561i  -0.2493 - 0.4602i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

80

eXerCISe 2-12

given the complex vector V = [1 + i, i, 1-i], find the mean, median, standard deviation, variance, sum, product, 
maximum and minimum of its elements, as well as its gradient, its discrete Fourier transform and its inverse 
discrete Fourier transform.
 
>> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]'
 
ans =
 
0.6667 - 0.3333i
1.0000 + 1.0000i
1.2910
1.6667
2.0000 - 1.0000i
0 - 2.0000i
1.0000 + 1.0000i
0 - 1.0000i
 
>> gradient(V)
 
ans =
 
1.0000 - 2.0000i   0.5000   0 + 2.0000i
 
>> fft(V)
 
ans =
 
2.0000 + 1.0000i  -2.7321 + 1.0000i   0.7321 + 1.0000i
 
>> ifft(V)
 
ans =
 
0.6667 + 0. 3333i 0.2440 + 0. 3333i - 0.9107 + 0. 3333i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

81

eXerCISe 2-13

given the arrays

A B

i i i

i

C=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
- +
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 1 0

0 1 1

0 0 1

1 2

0 1 3 1

0 0

1 1 1

0, , ssqrt i sqrt i( ) ( )2 2

1 1 1

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

calculate aB – Ba, a2 + B2 + C2, aBC, sqrt (a)+sqrt(B)+sqrt(C),  ea(eB+ eC), their transposes and their inverses.  
also verify that the product of any of the matrices a, B, C with its inverse yields the identity matrix.
 
>> A=[1 1 0;0 1 1;0 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i]; C=[1 1 1; 0 sqrt(2)*i -sqrt(2)*i;1 
-1 -1];
 
>> M1=A*B-B*A
 
M1 =
 
0            -1.0000 - 1.0000i   2.0000
0             0                  1.0000 - 1.0000i
0             0                  0
 
>> M2=A^2+B^2+C^2
 
M2 =
 
2.0000        2.0000 + 3.4142i   3.0000 - 5.4142i
0 - 1.4142i  -0.0000 + 1.4142i   0.0000 - 0.5858i
0             2.0000 - 1.4142i   2.0000 + 1.4142i
 
>> M3=A*B*C
 
M3 =
 
5.0000 + 1.0000i  -3.5858 + 1.0000i  -6.4142 + 1.0000i
3.0000 - 2.0000i  -3.0000 + 0.5858i  -3.0000 + 3.4142i
0 - 1.0000i        0 + 1.0000i        0 + 1.0000i
 
>> M4=sqrtm(A)+sqrtm(B)-sqrtm(C)
 
M4 =
 
0.6356 + 0.8361i   -0.3250 - 0.8204i   3.0734 + 1.2896i
0.1582 - 0.1521i    0.0896 + 0.5702i   3.3029 - 1.8025i
-0.3740 - 0.2654i   0.7472 + 0.3370i   1.2255 + 0.1048i
 
>> M5=expm(A)*(expm(B)+expm(C))
 
M5 =
 
14.1906 - 0.0822i   5.4400 + 4.2724i  17.9169 - 9.5842i
4.5854 - 1.4972i    0.6830 + 2.1575i   8.5597 - 7.6573i
3.5528 + 0.3560i    0.1008 - 0.7488i   3.2433 - 1.8406i
 



Chapter 2 ■ MatLaB Language: VariaBLes, nuMBers, OperatOrs and FunCtiOns  

82

>> inv(A)
 
ans =
 
1 -1  1
0 -1 -1
0  0  1
 
>> inv(B)
 
ans =
 
0 - 1.0000i  -1.0000 - 1.0000i  -4.0000 + 3.0000i
0            -1.0000             1.0000 + 3.0000i
0             0                  0 + 1.0000i
 
>> inv(C)
 
ans =
 
0.5000                  0             0.5000
0.2500                  0 - 0.3536i  -0.2500
0.2500                  0 + 0.3536i  -0.2500
 
>> [A*inv(A) B*inv(B) C*inv(C)]
 
ans =
 
1     0     0     1     0     0     1     0     0
0     1     0     0     1     0     0     1     0
0     0     1     0     0     1     0     0     1
 
>> A'
 
ans =
 
1 0 0
1 1 0
0 1 1
 
>> B'
 
ans =
 
0 - 1.0000i        0                       0
1.0000 + 1.0000i  -1.0000                  0
2.0000 - 1.0000i   3.0000 + 1.0000i        0 + 1.0000i
 
>> C'
 
ans =
 
1.0000   0             1.0000
1.0000   0 - 1.4142i  -1.0000
1.0000   0 + 1.4142i  -1.0000
 



83

Chapter 3

Matlab language: Development 
Environment Features

General Purpose Commands
MATLAB has a group of so-called general purpose commands that can be further classified into the following 
subcategories according to the essential function of the script:

Commands that handle variables in the workspace.•	

Commands that work with files and the operating environment.•	

Command handling functions.•	

Commands that control the •	 Command Window.

Commands that start and exit MATLAB.•	

Commands that Handle Variables in the Workspace
MATLAB allows you to define and manage variables, and store them in files, in a very simple way. When extensive 
calculations are performed, it is convenient to give names to intermediate results. These intermediate results are 
assigned to variables to make them easier to use. The definition of variables has already been treated in the previous 
chapter, but it is convenient to recall that the value assigned to a variable is permanent, until it is explicitly changed or 
the current MATLAB session is closed.

The following table presents a group of MATLAB commands that handle variables:

clear

clear(v1,v2, . . . , vn)

clear(‘v1’ , ‘v2’ , . . . , ‘vn’)

Clears all variables in the workspace.

Deletes the specified numeric variables.

Clears the specified string variables.

disp(X) Displays an array without including its name.

length(X) Shows the length of the vector X and if X is an array, displays its greatest 
dimension.

(continued)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

84

load

load file

load file X Y Z

load file -ascii

load file -mat

S = load(. . . )

Reads all variables from the file MATLAB.mat.

Reads all variables specified in the  .mat file.

Reads the variables X, Y, Z from the specified .mat file.

Reads the file as ASCII whatever its extension.

Reads the file as .mat whatever its extension.

Assigns the contents of a .mas file to the variable S.

memory Displays how much memory is available and how much is currently being used.

mlock Prevents the deletion of M-files in memory.

munlock Allows the deletion of M-files in memory.

openvar(‘v’) Opens the variable v in the workspace in the Array Editor, allowing graphical editing.

pack

pack file

pack ‘file’

Compresses the workspace memory.

Used as a temporary file to store the variables.

Functional form of pack.

save

save file

save file v1 v2 . . . 

save . . . option

save(‘file', . . . )

Saves the variables in the workspace in the binary file MATLAB.mat in the 
current directory.

Saves the variables in the workspace in the file file.mat in the current directory.  
A .mat file has a specific MATLAB format.

Saves the variables v1, v2,. . .in the workspace in the file  file.mat.

Saves the variables in the workspace in the format specified by option.

Functional form of save.

saveas(h, ‘f.ext’)

saveas(h, ‘f ’ , ‘format’)

Saves the figure or model h as an f.ext file.

Saves the figure or model h as f in the specified format file.

d = size(X)

[m,n] = size(X)

[d1,d2,d3,. . . ,dn] = size(X)

Returns the sizes of each dimension of an array X  in a vector d.

Returns the dimensions of the matrix X as two variables named m and n.

Returns the dimensions of the array X as variables named d1, d2,. . ., dn.

who

whos

who(‘global’)

whos(‘global’)

who(‘-file’ , ‘filename’)

whos(‘-file’ , ‘filename’)

who(‘var1’ , ‘var2',. . . )

who(‘-file’ , ‘filename’ ,

‘var1’, ‘var2’ ,. . . )

s = who(. . . )

s = whos(. . . )

who -file filename var1 var2 . . . 

whos -file filename var1 var2. . . 

Lists the variables in the workspace.

Lists the variables in the workspace with sizes and types.

Lists the variables in the global workspace.

Lists the variables in the global workspace with sizes and types.

Lists the variables in the specified .mat file.

Lists the variables in the specified .mat file and their sizes and types.

Lists the string variables from the specified workspace.

Lists the specified string variables in the given .mat file.

Stores the list of variables in s.

Stores the list of variables with their sizes and types in s.

Lists the numerical variables specified in the given .mat file.

Lists the numerical variables specified in the file .mat given with their sizes  
and types.

workspace Opens a browser to manage the workspace.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

85

The save command, which applies to file workspace variables, supports the following options: 

Option Mode of Storage of the Data

-append The variables are added to the end of the file.

-ascii The variables are stored in a file in 8 digit ASCII format.

-ascii - double The variables are stored in a file in 16 digit ASCII format.

-ascii - tabs The variables are stored in a tab-delimited file in 8 digit ASCII format.

-ascii - double - tabs The variables are stored in a tab-delimited file in 16 digit ASCII format.

-mat The variables are stored in a file in binary .mat MATLAB MAT-file format.

-v4 The variables are stored in a file with MATLAB version 4.

The command save is the essential instrument for storing data in MATLAB type.mat files (only readable by 
the MATLAB program) and ASCII type files (readable by any application). By default, variables are stored in .mat 
formatted files. To store variables in ASCII formatted files it is necessary to use options.

As a first example we let a variable A be equal to the inverse of a random square matrix of order 5 and a variable B 
be equal to the inverse of twice the unit matrix of order 5 less the identity matrix of order 5.
 
>> A=inv(rand(3))
 
A =
 1.67         -0.12         -0.93
-0.42          1.17          0.20
-0.85         -1.00          1.71
 
>> B=inv(2*ones(3)-eye(3))
 
B =
-0.60  0.40  0.40
 0.40 -0.60  0.40
 0.40  0.40 -0.60
 

Now we use the commands who and whos to view the workspace variables as, respectively, a simple list and a list 
together with types and sizes.
 
>> who
 
Your variables are:
 
A  B  
 
>> whos
 
Name      Size         Bytes  Class
 
A         3x3          72     double array
B         3x3          72     double array
 
Grand total is 18 elements using 144 bytes
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

86

If we want only the variable information about A, we do the following:
 
>> who A
 
Your variables are:
 
A  
 
 >> whos A
 
Name      Size         Bytes  Class
 
A         3x3          72     double array
 
Grand total is 9 elements using 72 bytes
 

Now we are going to store the variables A and B in an ASCII file with 8 digits of precision and name it matrix.asc. 
In addition, to check the ASCII file has been generated, we use the command dir to see that our file exists. Finally, we 
will check the contents of our file, using the DOS operating system order type to check that the contents are indeed the 
elements of two arrays with 8 digits of precision, located one after the other.
 
>> save matrix.asc A B - ascii
>> dir
 
.           ..          matrix.asc
 
>> type matrix.asc
 
 1. 6740445e + 000 - 1. 1964440e-001 - 9. 2759516e-001
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001 - 8 - 1. 0006147e + 000 1. 7125190e + 000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001
4. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001
4. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001
 

The files generated with the command save are stored by default (if not specified otherwise) in the \MATLAB\BIN\ 
subdirectory.

Saving all variables in the workspace with the command save to a binary file in MATLAB format is equivalent to 
selecting the option Save Workspace As from  the general MATLAB file menu.

Once the variables have been saved, the workspace can be deleted by using the command clear.
 
>> clear
 

Then, to illustrate the command load, we will read the previously saved ASCII file matrix.asc. MATLAB will read 
the ASCII file as a single variable whose name is that of the file, as is checked with the command whos.
 
>> load matrix.asc
>> whos
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

87

Name         Size         Bytes  Class
 
matrix       6x3          144    double array
 
Grand total is 18 elements using 144 bytes
 

We now check that MATLAB has read the data in the same 6 × 3 matrix structure that it had been saved in,  
the first three rows corresponding to the variable A and the last three to the variable B.
 
>> matrix
 
matrix =
 
 1.67  -0.12  -0.93
-0.42   1.17   0.20
-0.85  -1.00   1.71
-0.60   0.40   0.40
 0.40  -0.60   0.40
 0.40   0.40  -0.60
 

Now we can use matrix variable handling commands to define the variables A and B:
 
>> A = matrix (1:3, 1:3)
 
A =
 
 1.67  -0.12  -0.93
-0.42   1.17   0.20
-0.85  -1.00   1.71
 
>> B = matrix (4:6, 1:3)
 
B =
 
-0.60  0.40  0.40
 0.40 -0.60  0.40
 0.40  0.40 -0.60  

Commands that Work with Files in the Operational Environment
There is a group of commands that are used to work with files, allowing you to analyze, copy, delete, edit, and save 
data, among other options. These commands also allow the DOS environment to interrelate with the MATLAB 
environment, accommodating commands from both the operating system and from within the MATLAB Command 
Window.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

88

Below is a list of these types of commands.

beep Produces a beep.

CD directory Changes from the current directory to the given work directory.

copy file f1 f2 Copy the file (or directory) from the origin f1 to the destination f ile f 2.

delete file Delete the specified file (or graphic object).

diary (‘file’) Writes the inputs and outputs of the current session in the file.

dir Displays the files in the current directory.

dos command Executes a DOS command and returns the result.

edit M-file Edit an M-file.

[path,name,ext,ver] = 
fileparts(‘file’)

Returns the path, name, extension and version of the specified file.

file browser Displays the files in the current directory in a browser.

fullfile(‘d1’ , ‘d2’ ,. . . , ‘f ’) Builds a full file specification from the folders and file names specified.

info toolbox Displays information about the specified toolbox.

[M, X, J] =inmem Returns M-files, MEX-files and Java classes in memory.

ls List the current directory in UNIX.

MATLAB root Returns the name of the directory where MATLAB is installed.

mkdir Directory Constructs a new directory.

open(‘file’) Opens the specified file.

pwd Displays the current directory.

tempdir Returns the name of the temporary directory of the system.

name =tempname Assigns a unique name to the temporary directory.

unix command Runs a UNIX command and returns the result.

! command Executes an operating system command.

Here are some examples:
 
>> dir
 
.           ..          matrix.ASC
 
>> ! dir
 
The volume of drive D has no label.
The volume serial number £ n is: 1179-07DC
 
Directory of D:\MATLABR12\work
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

89

01/01/2001 07:01 < DIR >.
2001-01-01 07:01 < DIR >..
02/01/2001 03:27 300 matrix.asc
1 files 300 bytes
2 dirs 1.338.146.816 bytes free
 
>> ! matrix.asc type
1. 6740445e + 000 - 1. 1964440e-001 - 9. 2759516e-001
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001 - 8 - 1. 0006147e + 000 1. 7125190e + 000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001
4. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001
4. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001
 
>> tempdir
 
ans =
 
C:\DOCUME~1\CPL\CONFIG~1\Temp\
 
>> MATLABroot
 
ans =
 
D:\MATLABR12
 
>> pwd
 
ans =
 
D:\MATLABR12\work
 
>> cd ..
>> pwd
 
ans =
 
D:\MATLABR12
 
>> cd work
>> pwd
 
ans =
 
D:\MATLABR12\work
 
>> copyfile matrix.asc matrix1.asc
>> dir
 
.            ..           Matrix.ASC matrix1.asc
>> two dir
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

90

The volume of drive D has no label.
The volume serial number £ n is: 1179-07DC
 
Directory of D:\MATLABR12\work
 
01/01/2001 07:01 < DIR >.
01/01/2001 07:01 < DIR >...
02/01/2001 03:27 300 matrix.asc
02/01/2001 03:27 300 matrix1.asc
               2 files 600 bytes
2 dirs 1.338.130.432 bytes free
 

An important command that allows direct editing in a window of any M-file is edit. The figure below shows the 
edit window for the file matrix1.asc.

Commands that Handle Functions
The list below describes a group of commands that handle functions, displaying help on them, providing access to 
information, and generating reports in MATLAB. 

addpath(‘dir’ , ‘dir2',. . . ) Adds the directories to the MATLAB search path.

doc

doc file

doc toolbox/

doc toolbox/function

Displays HTML documentation in the help panel for MATLAB functions in the 
Command Window, for a specified M-file, for the contents of a specified toolbox or for 
specified toolbox functions.

help

help file

help toolbox/

help toolbox/function

Displays help for MATLAB functions in the Command Window, for a specified M-file,  
for the contents of a specified toolbox or for specified toolbox functions.

(continued)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

91

helpbrowser Shows the MATLAB help browser.

helpdesk Shows the help browser located on the home page.

helpwin Displays help for all MATLAB functions.

docopt Shows the location of the UNIX help file.

genpath Generates a path string.

lasterr Returns the last error message.

lastwarn Returns the last warning message.

license Displays the MATLAB license number.

lookfor theme Shows all functions related to search.

partial pathname A partial pathname is a pathname relative to the MATLAB path matlabpath that is used 
to locate private and method files which are usually hidden or to restrict the search for 
files when more than one file with the given name exists.

path Displays the complete path to MATLAB.

pathtool Displays the complete path to MATLAB in windowed mode.

profile Starts the profiler utility, to debug and optimize M-files code.

profreport Generates a profile report in HTML format and suspends the windows profiler utility.

rehash Refreshes caches of system files and functions.

rmpath directory Removes the path from the MATLAB directory.

support Opens the MathWorks website.

typefile Lists the contents of the file.

see (or see toolbox) Displays the version of MATLAB, Simulink and toolboxes.

version Displays the version number of MATLAB.

WebURL Directs the browser to the indicated Web address.

what Lists MATLAB-specific files (.m, .mat, .mex .mdl and. p) in the current directory.

whatsnew Shows help files with news of MATLAB and its toolboxes.

which function

which file

Locates functions.

Locates files.

Here are some examples:
 
>> version
 
ans =
 
6.1.0.450 (R12.1)
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

92

>> license
 
ans =
 
DEMO
 
>> help toolbox\symbolic
 
Symbolic Math Toolbox.
Version 2.1.2 (R12.1) 11-Sep-2000
 
New Features.
Readme     - Overview of the new features in/changes made to
the Symbolic and Extended Symbolic Math Toolboxes.
 
Calculus.
diff        - Differentiate.
int         - Integrate.
limit       - Limit.
taylor      - Taylor series.
jacobian    - Jacobian matrix.
symsum      - Summation of series. 
 
Linear Algebra.
diag        - Create or extract diagonals.
triu        - Upper triangle.
tril        - Lower triangle.
inv         - Matrix inverse.
det         - Determinant.
rank        - Rank.
rref        - Reduced row echelon form.
null        - Basis for null space.
colspace    - Basis for column space.
eig         - Eigenvalues and eigenvectors.
svd         - Singular values and singular vectors.
Jordan      - Jordan canonical (standard) form.
poly        - Characteristic polynomial.
expm        - Matrix exponential.
 
>> help int
 
--- help for sym/int.m ---
 
INT Integrate.
INT(S) is the indefinite integral of S with respect to its symbolic
variable as defined by FINDSYM. S is a SYM (matrix or scalar).
If S is a constant, the integral is with respect to 'x'.
INT(S,v) is the indefinite integral of S with respect to v. v is a
scalar SYM.
INT(S,a,b) is the definite integral of S with respect to its
symbolic variable from a to b. a and b are each double or



Chapter 3 ■ Matlab language: DevelopMent environMent Features

93

symbolic scalars.
INT(S,v,a,b) is the definite integral of S with respect to v
from a to b.
 
Examples:
syms x alpha u t;
int(1/(1+x^2)) returns atan(x)
int (sin(alpha*u), alpha) returns - cos(alpha*u) /u
int (4 * x * t, x, 2, sin (t)) returns 2 * sin (t) ^ 2 * t - 8 * t 
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

94



Chapter 3 ■ Matlab language: DevelopMent environMent Features

95

>> lookfor GALOIS
 
GFADD Add polynomials over a Galois field.
GFCONV Multiply polynomials over a Galois field.
GFCOSETS Produce cyclotomic cosets for a Galois field.
GFDECONV Divide polynomials over a Galois field.
GFDIV Divide elements of a Galois field.
GFFILTER Filter data using polynomials over a prime Galois field.
GFLINEQ Find a particular solution of Ax = b over a prime Galois field.
GFMINPOL Find the minimal polynomial of an element of a Galois field.
GFMUL Multiply elements of a Galois field.
GFPLUS Add elements of a Galois field of characteristic two.
GFPRIMCK Check whether a polynomial over a Galois field is primitive.
GFPRIMDF Provide default primitive polynomials for a Galois field.
GFPRIMFD Find primitive polynomials for a Galois field.
GFRANK Compute the rank of a matrix over a Galois field.
GFROOTS Find roots of a polynomial over a prime Galois field.
GFSUB Subtract polynomials over a Galois field.
GFTUPLE Simplify or convert the format of elements of a Galois field. 
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

96

>> what
 
M-files in the current directory C:\MATLAB6p1\work
 
cosint    
 
>> which sinint
 
C:\MATLAB6p1\toolbox\symbolic\sinint.m 

Commands that Control the Command Window
The following table summarizes a group of commands in MATLAB which control the output in the Command Window. 

CLC Clears the Command Window.

echo Displays (echo on) or hides (echo off) the lines of an M-file code during its execution.

format type Controls the format of the output in the Command Window.

home Moves the cursor to the upper left corner of the Command Window.

more Enables paging of the output in the Command Window.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

97

The possible types for the format command are given below:

type Result Example

+ +,-, white +

bank Fixed to dollars and cents. 3.14

compact Suppresses excess line feeds in the output. Contrast this with loose. Theta = pi /2

Hex Hexadecimal format. 400921fb54442d18

long 15 digit fixed-point. 3.14159265358979

long e 15 digit floating-point. 3.141592653589793e + 00

long g 15 significant digits (fixed or floating point). 3.14159265358979

loose Adds line feeds to make the output more readable. Contrast this with 
compact.

Theta = 1.5708

rat Rational format. 355/113

short 5 digit fixed-point. 3.1416

short e 5 digit floating-point. 3. 1416e + 00

short g 5 significant digits (fixed or floating-point) 3.1416

Start and Exit Commands
MATLAB offers the following start and exit commands.

finish Complete an M-file.

exit Finish MATLAB.

MATLAB Start MATLAB (only on UNIX).

MATLABrc Start an M-file.

quit Finish MATLAB.

startup Start an M-file.

File Input/Output Commands
MATLAB has a group of so-called input/output commands which operate on files, allowing the user to open and close 
files, read and write to files, control the position in a file and export and import data. The following table summarizes 
these commands. Their full syntax will be described in the following paragraphs.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

98

Opening and closing files

fclose Closes one or more files.

fopen Opens a file or obtains information about open files.

Plain input/output

fread Reads binary data from a file.

fwrite Writes binary data to a file.

Format input /output

fgetl Returns the next line of a file as a string without ends of lines.

fgets Returns the next line of a file as a string with ends of lines.

fprintf Types formatted data into a file.

fscanf Reads formatted data from a file.

Controlling position in a file

feof Tests for the end of file.

ferror Returns the error message for the most recent input/output operation on a specified file.

frewind Rereads an open file.

fseek Moves the location of a file position indicator.

ftell Finds the location of a file position indicator.

String conversion

sprintf Type data formatted as a string.

sscanf Read under the control of format strings.

Specialized input/output functions

dlmread Reads files with delimited ASCII format.

dlmwrite Writes files with delimited ASCII format.

hdf HDF interface.

imfinfo Returns information about graphics files.

imread Reads images from graphics files.

imwrite Writes an image in a graphics file.

strread Reads formatted data from a string.

textread Reads formatted data from a text file.

wk1read Reads data from Lotus123 WK1 spreadsheet files.

wk1write Writes data in Lotus123 WK1 worksheet files.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

99

Opening and Closing Files
In order to read or write data to a file (which does not have to be in ASCII or MATLAB format), first use the command 
fopen to open it. Then, to perform read or write operations on it, use the corresponding read and write commands 
(fload, fwrite, fprintf, import etc.). Finally, use the command fclose to close the file. The file that is opened may be new 
or may be an existing file which is to be accessed either to broaden its content or simply to read it.

The command fopen returns a file that consists of a non-negative integer which is assigned by the operating 
system to the opened file. This file identifier is used as a reference for the subsequent management of the open file 
as it is read (read), written to (write) or closed (close). If the file does not open correctly, fopen returns - 1 as the file 
identifier. As a generic file identifier, fidelity is commonly used. The syntax of the commands fopen and fclose is 
described below.

fid = fopen (‘file’) Opens the specified existing file.

fid = fopen (‘file’ , ‘permission’) Opens the file for the given permission type.

[fid, message] =  
fopen(‘file’ , ‘permission’ , ‘architecture’)

Opens the file for the given permission and with the numerical format of 
the architecture.

fids = fopen (‘all’) Returns a column vector with the

identifiers of all open files

[filename, permission, architecture] =  
fopen(fid)

Returns the name of the file, the type of permission and the numerical 
format of the specified architecture relating to the file whose ID is fid.

fclose (fid) Closes the identifier fid file if it is open. Returns 0 if the process has been 
performed successfully and -1 otherwise.

fclose (‘all') Closes all open files. Returns 0 if the process has been performed 
successfully and -1 otherwise.

The possible types of permissions are the following:

‘r’ Open the existing file for reading (this is the default permission).

‘r +’ Open the existing file for reading and writing.

‘w’ Creates the new file and opens it for writing, and if there is already a file with that name, deletes it and 
opens it again as an empty file.

‘w +’ Creates the new file for reading and writing, and if there is already a file with that name, deletes it and 
opens it again as an empty file.

‘a’ Creates the new file and opens it for writing, and if there is already a file with that name, adds new content 
at the end of the existing file.

‘a +’ Creates the new file and opens it for reading and writing, and if there is already a file with that name, adds 
new content to the end of the existing file.

‘A’ Append without automatic flushing of the current output buffer. (Used with tape drives.)

‘W’ Write without automatic flushing of the current output buffer. (Used with tape drives.)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

100

Possible architectures for the numerical format types are as follows:

‘native’ or ‘n’ Numeric format of the current machine.

‘ieee-le’ or ‘l’ Small-format IEEE floating-point.

‘ieee-be’ or ‘b’ Large format IEEE floating-point.

‘vaxd’ or ‘d’ VAX D floating-point format.

‘vaxg’ or ‘g’ VAX G floating-point format.

‘cray’ or ‘c’ Large type Cray floating-point format.

‘ieee-le.164’ or ‘a’ Small format IEEE floating-point and 64-bit data length.

‘ieee-be. l64’ or ‘s’ IEEE floating-point, 64-bit data length large format.

Being able to open a file according to the numerical format of a given architecture allows it to be used in different 
MATLAB platforms.

Reading and Writing Binary Files
Reading and writing binary files is done via the commands fwrite and fread. The command  fwrite is used to write 
binary data to a file previously opened with the command  fopen. The command  fread is used to read data from a 
binary file previously opened with the command fopen. Its syntax is as follows:

fwrite (fid, A, precision) Writes the specified items in A (which in general is an array) in the file identifier fid 
(previously opened) with the specified accuracy.

A = fread (fid) Reads the data from the binary file opened with identifier fid and writes them to the 
matrix A, which by default will be a column vector.

[A, count] =  
fread(fid, size, precision)

Reads the data from the file identifier fid with the dimension specified in size and 
precision given by precision, and writes them to a matrix A of dimension size and 
whose total number of elements is count.

The specification size is optional. If size is set to n,  fread reads the first n data from the file (by columns and in 
order) as a column vector, A, of length n. If size is set to inf, fread reads all file data by columns and in order, to form a 
single column vector A (this is the default value). If size is set to [m, n], fread reads m×n file elements by columns and 
in order, completing the matrix A of dimension (m×n). If there are insufficient elements in the file to complete the 
matrix, it will be completed with zeros.

The argument precision is relative to the numeric precision of the machine on which you are working and may 
present different values. In addition to its own types of formatting for numerical precision, MATLAB also accepts 
those of the programming languages C and FORTRAN. Below is a table with the possible values of precision.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

101

Matlab C or FORtRaN Interpretation

‘schar’ ‘signed char’ Character with sign; 8-bit

‘uchar’ ‘unsigned char’ Character unsigned; 8-bit

‘int8’ ‘integer * 1’ Integer; 8-bit

‘int16’ ‘integer * 2’ Integer; 16-bit

‘int32’ ‘integer * 4’ Integer; 32-bit

‘int64’ ‘integer * 8’ Integer; 64-bit

‘uint8’ ‘integer * 1’ Unsigned integer; 8-bit

‘uint16’ ‘integer * 2’ Unsigned integer; 16-bit

‘uint32’ ‘integer * 4’ Unsigned integer; 32-bit

‘uint64’ ‘integer * 8’ Unsigned integer; 64-bit

‘float32’ ‘real * 4’ Floating point; 32-bit

‘float64’ ‘real * 8’ Floating point; 64-bit

‘double’ ‘real * 8’ Floating point; 64-bit

The following formats are also supported by MATLAB, but there is no guarantee that the same size will be used 
on all platforms.

Matlab C or FORtRaN Interpretation

‘char’ ‘char * 1’ Character; 8-bit

‘short’ ‘short’ Integer; 16-bit

‘int’ ‘int’ Integer; 32-bit

‘long’ ‘long’ Integer; 32 or 64 bit

‘ushort’ ‘unsigned short’ Unsigned integer; 16-bit

‘uint’ ‘unsigned int’ Unsigned integer; 32-bit

‘ulong’ ‘unsigned long’ Unsigned integer; 32 or 64 bit

‘float’ ‘float’ Floating point; 32-bit

‘intN’ Whole width N integer bits (1£N£64)

‘ubitN’ Integer unsigned width N bits (1£N£64)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

102

When they are read and stored, formats often use the implication symbol as illustrated in the following examples:

‘ uint8 = > uint8’ Reads entire 8-bit unsigned integers and stores them in an array of unsigned 8-bit integers.

‘ * uint8’ An abridged version of the previous example.

‘ bit4 = > int8’ Reads entire 4 bit signed integers packaged in bytes and stores them in an array of 8-bit 
integers. Each 4-bit integer is converted to an 8-bit integer.

‘ double = > real * 4’ Reads double precision floating point numbers and stores them in an array of 32-bit real 
floating point numbers.

As a first example we can view the contents of the file fclose.m using the command type as follows:
 
>> type fclose.m
 
%FCLOSE Close file.
%   ST = FCLOSE(FID) closes the file with file identifier FID,
%   which is an integer obtained from an earlier FOPEN.  FCLOSE 
%   returns 0 if successful and -1 if not.
%
%   ST = FCLOSE('all') closes all open files, except 0, 1 and 2.
%
%   See also FOPEN, FREWIND, FREAD, FWRITE.
%   Copyright 1984-2001 The MathWorks, Inc. 
%   $Revision: 5.8 $  $Date: 2001/04/15 12:02:12 $
% Built-in function.
 

This is equivalent to using the command type before opening the file with fopen, followed by reading its contents 
with fread and presenting it with the function char.
 
>> fid = fopen('fclose.m','r');
>> F = fread(fid);
>> s = char(F')
 
s =
 
%FCLOSE Close file.
%   ST = FCLOSE(FID) closes the file with file identifier FID,
%   which is an integer obtained from an earlier FOPEN. FCLOSE 
%   returns 0 if successful and -1 if not.
%
%   ST = FCLOSE('all') closes all open files, except 0, 1 and 2.
%
%   See also FOPEN, FREWIND, FREAD, FWRITE.
%   Copyright 1984-2001 The MathWorks, Inc. 
%   $Revision: 5.8 $  $Date: 2001/04/15 12:02:12 $
% Built-in function.
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

103

In the following example, we create a binary file id4.bin which contains the 16 elements of the identity matrix 
of order 4 stored in 4 byte integers (64 bytes in total). First we open the file which will contain the matrix, with 
permission to read and write, and then write the matrix to the file with the appropriate format. Finally, we close  
the open file.
 
>> fid = fopen ('id4. bin ',' w +')
 
fid =
 
5
 
>> fwrite(fid,eye(4),'integer*4')
 
ans =
 
16
 
>> fclose (5)
 
ans =
 
0
 

In the previous example, when the file was opened, the system assigned ID 5 to it. After writing the matrix to the 
file, it was necessary to close it with the command fclose using the indicator. The answer of zero means the closure has 
been successful.

If we now want to see the contents of the binary file just recorded, we open it, with reading permission, by 
using the command fopen and read its elements with fread, in the same matrix structure and format in which it 
was saved.
 
>> fid = fopen('id4.bin','r+')
 
fid =
 
5
 
>> [R,count]=fread(5,[4,4],'integer*4')
 
R =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
 
count =
 
16 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

104

Reading and Writing Formatted ASCII Text Files
It is possible to write formatted text to a file previously opened with the command fopen (or to the screen itself) using 
the command fprintf.  On the other hand, it is possible, using the command import, to read formatted data from a file 
previously opened with the command fopen. The syntax is as follows:

fprintf(fid, ‘format’ , A,. . . ) Writes the specified items in A (which in general is an array) in the file identifier fid 
(previously opened) with the format specified in ‘format’.

fprintf(‘format’ , A,. . . ) Writes to the screen.

[A, count] =  
fscanf(fid, ‘format’)

Reads the data in the given format of an open file with identifier fid and writes 
them to the matrix A, which by default will be a column vector.

[A, count] =  
fscanf(fid, ‘format’ , size)

Reads the data from the file identifier fid with the specified size and format, and 
writes them to a matrix A of dimension size and whose number of elements is count.

The argument format consists of a chain (preceded by the character '\') formed by characters and conversion 
characters according to the different formats (preceded by the character '%').

The possible characters are as follows:

\n Executes the step to a new line.

\t Executes a horizontal tab.

\b Executes a step backward from a single character (backspace), deleting the current character.

\r Executes a carriage return.

\f Executes a page jump (form feed).

\\ Executes a backslash.

\’ Executes a single quotation mark.

Possible conversion characters are the following:

%d Decimal integers

%o Octal integers

%x Hexadecimal integers

%u Unsigned decimal integers

%f Real fixed-point

%e Real floating-point

%g Use whichever of d, e or f has the greater precision in the minimum of space

%c Individual characters

%s Character string

%E Real floating point (uppercase E)

%X Uppercase hexadecimal notation

%G %g format with capital letters



Chapter 3 ■ Matlab language: DevelopMent environMent Features

105

When working with integers, conversion characters are used in the form  % nv (n is the number of digits of 
the integer and v is the conversion character, which can be d, o, x or u). For example, the format % 7 x indicates a 
hexadecimal integer with 7 digits.

When working with real numbers, conversion characters are used in the form %n.mv (n is the total number of 
digits of the real number including the decimal point, m is the number of decimal places of the real number and v is 
the conversion character, which can be f, e or g). For example, the format %6.2f indicates a fixed point real number 
having 6 numbers in total (including the point) and with 2 decimal places.

When working with strings, conversion characters are used in the form % na (n is the total number of characters 
in the string and a is the conversion character, which can be c or s ). For example, the format % 8s indicates a string of 
8 characters.

In addition, escape characters and conversion of the C language are supported (see C manuals for further 
information).

In the import command the size preference is optional. If size is set to n, import reads the first n data from the file 
(by columns and in order) as a vector column A of length n. If size is set to inf,  fread reads all file data by columns and 
in order, to form a single column vector A (this is the default value). If size is set to [m, n], fread reads m×n file elements 
by columns and in order, completing the matrix A of dimension (m×n). If there are insufficient elements in the file, the 
matrix is completed with zeros as needed. The argument format takes the same values as the command fprintf.

For reading ASCII files there are two other commands,  fgetl and fgets, which present different lines of a text file as 
a string. Its syntax is as follows:

fgetl (fid) Reads the characters in the text with file identifier fid line by line, ignoring carriage returns, 
and returns them as a string.

fgets (fid) Reads the characters in the text with file identifier fid line by line, including carriage 
returns, and returns them as a string.

fgets (fid, nchar) Returns at least nchar characters in the next line.

As an example we create an ASCII file exponen.txt, which contains the values of the exponential function for 
values of the variable between 0 and 1 separated by 0.1.

The format of the text in the file should consist of two columns of real floating point numbers, in such a way that 
the values of the variable appear in the first column and the corresponding values of the exponential function appear 
in the second column. Finally, we issue commands to display the contents of the file on screen.
 
>> x = 0:.1:1;
>> y= [x; exp(x)];
>> fid=fopen('exponen.txt','w');
>> fprintf(fid,'%6.2f  %12.8f\n', y);
>> fclose(fid)
 
ans =
 
0
 

Now information is presented directly on screen without having to save it to disk:
 
>> x = 0:. 1:1;
>> y = [x; exp (x)];
(>> fprintf('%6.2f. 8f\n', and)12%
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

106

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183
 

We then read the newly generated ASCII file exponen.txt, so that the format of the text must consist of two 
columns of real numbers with maximum precision in the minimum of space, the first column showing the values of 
the variable and the second showing the corresponding values of the exponential function.
 
>> fid=fopen('exponen.txt');
>> a = fscanf(fid,'%g  %g', [2 inf]);
>> a = a '
 
a =
 
0 1.0000
0.1000 1.1052
0.2000 1.2214
0.3000 1.3499
0.4000 1.4918
0.5000 1.6487
0.6000 1.8221
0.7000 2.0138
0.8000 2.2255
0.9000 2.4596
1.0000 2.7183
 

We then open the file exponent.txt and read its contents line by line with the command fgetl.
 
>> fid=fopen('exponen.txt');
>> linea1=fgetl(fid)
 
linea1 =
 
0.00    1.00000000
 
>> linea2=fgetl(fid)
 
linea2 =
 
0.10 1.10517092
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

107

Below, the command sprintf outputs a string variable that presents the given text according to the specified 
format together with the value of the golden ratio.
 
>> S = sprintf ('the golden ratio is % 6.3f,' (1 + sqrt (5)) / 2).
 
S =
 
the golden ratio is 1.618
 

Finally we generate a column vector whose two elements are approximations of the irrational numbers e and p.
 
>> S = '2.7183 3.1416';
>> A = sscanf(S,'%f')
  
A =
 
2.7183
3.1416 

Control Over the File Position
The commands fseek, ftell, feof, frewind and ferror control position in the file. The command fseek allows you to 
move the position indicator in a previously opened file. The command ftell returns the current status of the position 
indicator within a file. The command feof indicates whether the position indicator is located at the end of the file. The 
command frewind places the position indicator at the beginning of the file. The command arenas returns the error 
message associated with the most recent input or output operation on a specified file previously opened with fopen. 
The syntax of these commands is as follows:

fseek(fid, n, ‘origin’) Moves the position indicator n bytes from the source indicated by the argument origin within 
the file identifier fid previously opened with fopen. If n > 0, the position indicator moves 
n bytes forward towards the end of the file. If n < 0, the position indicator moves n bytes 
backward towards the beginning of the file. If n = 0, the position indicator does not change. 
The values that the argument origin can take are: 'bof' or - 1 (the origin is at the beginning of 
the file), 'cof' or 0 (the source is at the current position of the indicator) and ‘eof’ or 1  
(the source is at the end of the file).

n = ftell (fid) Returns the number of bytes from the beginning of the file whose identifier is fid (previously 
opened with fopen) to the current  position indicator.

feof (fid) Returns 1 if the position indicator is located at the end of the file with identifier fid (previously 
opened) and 0 otherwise.

frewind (fid) Places the position indicator at the beginning of the (previously opened) file with identifier fid.

ferror (fid)  
output

Returns the (possibly empty) error message associated with the most recent input or output 
operation on the previously opened file with identifier fid.

[message, errnum] 
=ferror (fid)

In addition to the error message, this returns its error number. An error number of 0 indicates 
that the error message is empty, i.e. the most recent input or output operation did not result in 
an error.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

108

As an example, we write the two-byte integers from 1 to 5 into a binary file named five.bin. We check the status of 
the position indicator in the file and move 6 bytes forward, checking that the operation has been correctly carried out. 
Subsequently we will move the position indicator 4 bytes backwards and find which number has been located.
 
>> A=[1:5];
fid=fopen('five.bin','w');
fwrite(fid,A,'short');
fclose(fid);
fid=fopen('five.bin','r');
n = ftell (fid)
 
n =
 
0
 

As the number of bytes from the beginning of the file to the current location of the position indicator is revealed 
to be n = 0, the position indicator is obviously located at the beginning of the file, i.e. at the first value, which is 1. 
Another way to see that the position indicator is located on 1 is to use the command fread to read only the first 
element of the binary file five.bin:
 
>> fid=fopen('five.bin','r');
principal = fread(fid,1,'short')
 
principal =
 
1
 

Now we are going to move the position indicator 6 bytes forward and check the new position:
 
>> fid=fopen('five.bin','r');
fseek(fid,6,'bof');
n=ftell(fid)
 
n =
 
6
 
>> principal=fread(fid,1,'short')
 
principal =
 
4
 

We have seen that the position indicator has moved 6 bytes to the right, landing on the element 4 (bear in mind 
that each file element occupies 2 bytes). Now we are going to move the position indicator 4 units to the left and 
determine on which item it has been moved to:
 
>> fseek(fid,-4,'cof');
n=ftell(fid)
 
n =
 
4
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

109

>> principal=fread(fid,1,'short')
 
principal =
 
3
 

Finally, the position indicator has been set to 4 bytes from the beginning of the file, i.e. on element 3  
(again recalling that each file element occupies 2 bytes).

Exporting and Importing Data to Lotus 123 and Delimited ASCII String and 
Graphic Formats
There is a group of commands in MATLAB which enable you to export and import data between Lotus 123 and 
MATLAB. Another group of commands allows you to export and import data between ASCII files with delimiters and 
MATLAB. The following table summarizes these commands.

A = wk1read (file) Reads the Lotus 123 spreadsheet named file.wk1y and imports it as a 
MATLAB matrix whose rows and columns are those of the worksheet.

A = wk1read(file, F,C) Reads the Lotus 123 spreadsheet named file.wk1 from row F and 
column C, and imports it as a MATLAB matrix whose rows and 
columns are those of the worksheet.

A = wk1read(file, F,C,R) Reads the R data range of the Lotus 123 spreadsheet named file.wk1 
from row F and column C, and imports it as a MATLAB matrix whose 
rows and columns are those of the worksheet.

A = wk1write (file, M) Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named 
file.wk1 whose rows and columns are those of the matrix M.

A = wk1write(file, M,F,C) Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named 
file.wk1 whose rows and columns are those of the matrix M starting at 
row F and column C.

M = dlmread (file, D) Reads the specified formatted file whose data are separated by the 
delimiter D and returns it as the matrix M.

M = dlmread(file, D,F,C) Reads the specified files whose data are separated by the delimiter D 
and returns it as the matrix M which begins at F row and  
column C.

M = dlmwrite (file, M,D) Writes the matrix M in the specified formatted file, whose data are 
separated by the delimiter D.

M = dlmwrite(file, D,F,C) Writes the matrix M, starting at row F and column C, in the specified 
formatted file, whose data are separated by the delimiter D.

(continued)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

110

A = imread(file,fmt)

[X,map] = imread(file,fmt)

[. . . ] = imread (file)

[. . . ] = imread(. . . ,idx)

(CUR, ICO and TIFF only)

[. . . ] = imread(. . . ,idx)

(HDF only)

[. . . ] = imread(. . . , ‘backgroundcolor’ , BG) 
(PNG only)

[A,map,alpha] =

imread(file, fmt. . . )

[map, alpha] = imread (. . . )

(PNG only)

Reads the image in a graphical format fmt file given in grayscale or true 
color.

Reads the image in graphical format fmt of the given file indexed in X 
and its associated map colors.

Tries to infer the format of the file from its content.

Reads an image of order idx in a TIFF, CUR or ICO file.

Reads an image of order idx in an HDF file.

Reads an image with background color and intensity of a given 
grayscale.

Reads an image in graphical format from the given file fmt applying 
transparency mask.

Returns the transparency mask.

imwrite(A, file, fmt)

imwrite (X, map, file, fmt)

imwrite(. . . ,filename)

imwrite(. . . ,param1,val1,

param2, val2. . . )

Writes the image in graphical format fmt in the given file in grayscale 
or true color.

Writes the indexed image in X and its associated color map in the given 
file in graphic format fmt.

Writes the image in the given file, inferring the format of filename from 
its extension.

Specifies the control of various characteristics of the output file 
parameters.

info = imfinfo(file,fmt) Provides information on the graphic file format fmt.

A = strread(‘C’)

A = strread(‘C’ ,'',N)

A = strread(‘C’ ,'',p,value,. . . )

A = strread(‘str’ ,'',N,p,value,. . . )

[A,B,C,. . . ]= strread(‘C’ , ‘format’)

[A,B,C,. . . ] =

strread (‘C’ , ‘format’ ,N)

[A,B,C,. . . ] = strread 
(‘C’ , ‘format’ ,p,value,. . . )

[A,B,C,. . . ] = strread 
(‘C’ , ‘format’ ,N,param,value,. . . )

Reads the C string numeric data.

Reads N lines of the C string numeric data.

Reads the C string data according to the parameter p and value.

Reads N rows of C according to the parameter p and value.

Reads the string C with the specified format.

Reads N lines of the string C with the specified format.

Reads the C string with the specified format according to the parameter 
p and value.

Reads N lines of the C string with the specified format according to the 
parameter p and value.

[A,B,C,. . . ] = textread(‘file’ , ‘format’)

[A,B,C,. . . ] = textread(‘file’ , ‘format’ ,N)

[. . . ] = textread(. . . , ‘p’ , ‘value’ ,. . . )

Reads data from the text file using the given format.

Reads data from the text file using the given format N times.

Reads measurement data using the specified parameter and value.



Chapter 3 ■ Matlab language: DevelopMent environMent Features

111

Possible values for the fmt file graphic format are presented in the following table:

Format type of file

‘bmp’ Windows Bitmap (BMP)

‘cur’ Windows Cursor (CUR) resources

‘hdf’ Hierarchical Data Format (HDF)

‘ico’ Windows Icon (ICO) resources

‘jpg’ or ‘jpeg’ Joint Photographic Experts Group (JPEG)

‘pcx’ Windows Paintbrush (PCX)

‘png’ Portable Network Graphics (PNG)

‘tif ’ or ‘tiff ’ Tagged Image File Format (TIFF)

‘xwd’ X Windows Dump (XWD)

The following table shows the types of image that imread can read.

Format Variants

BMP 1- bit, 4-bit, 8-bit, 24 - bit  images without compression; 4-bit images with compression (RLE) 8 - bit

CUR 1- bit, 4-bit and 8-bit images without compression

HDF 8- bit with or without associated color map image data sets; 24-bit and 8-bit data image sets

ICO 1- bit, 4-bit and 8-bit images without compression

JPEG Any baseline JPEG image (8 or 24-bit); JPEG images with any commonly used extension

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit images in grey scales; 8-bit and 16-bit 
indexed images; 24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit 8-bit and 24-bit images without compression; 1-bit, 8-bit, 
16-bit and 24-bit compressed images; 1-bit images compressed with CCITT; also 16-bit greyscale,  
16-bit indexed and 48-bit RGB images

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

The following table shows all the formats that support the commands strread and testread.

Format action Output

Literals (characters) Ignores correspondence characters No

%d Reads a signed integer value Double array

%u Reads an integer value Double array

%f Reads a floating point value Double array

%s Reads with white space separation Cell array of strings

(continued)



Chapter 3 ■ Matlab language: DevelopMent environMent Features

112

Format action Output

%q Reads a string enclosed in double quotes Cell array of strings. 
Excluding double quotes.

%c Reads characters including blanks Array character

%[. . . ] Reads the longer string containing the characters specified 
within square brackets

Cell array of strings

%[^. . . ] Reads the longer non-empty string containing characters not 
specified within square brackets

Cell array of strings

%* . . . in place of % Ignores the correspondence between characters specified by * Without output

%w . . . in place of % Reads the specified field width w. The format %f supports % 
w.pf, where w is the width of the field and p is the precision.

The possible pairs (parameter, value) that can be used as custom options for the strread and testread commands 
are presented in the following table:

Parameter Value action

whitespace Any of the following list Characters, *, as white space. The default is \b\r\n\t.

b

f

n

r

t

\\

\'' or ''

%%

Backspace

Form of the identifier

New line

Carriage return

Horizontal tab

Backslash (moves backwards one space)

Mark with single quotes

Percent sign

delimiter Delimiter character Specifies the delimiter character

expchars Character exponent By default this is eEdD

bufsize Positive integer Maximum length of string in bytes (4095)

headerlines Positive integer Ignores the specified number of lines at the beginning of the file

Commentstyle MATLAB Ignore characters after %

Commentstyle Shell Ignore characters after #

Commentstyle c Ignored characters between / * and * /

Commentstyle c ++ Ignore characters after / /

As a first example we read information from the file canoe.tif.
 
>> info = imfinfo ('canoe. tif')
 
Info =
Filename: 'C:\MATLAB6p1\toolbox\images\imdemos\canoe.tif'
FileModDate: '25-Oct-1996 23:10:40'
FileSize: 69708
Format: 'tif'



Chapter 3 ■ Matlab language: DevelopMent environMent Features

113

FormatVersion: []
Width: 346
Height: 207
BitDepth: 8
ColorType: 'indexed'
FormatSignature: [73 73 42 0]
ByteOrder: 'little-endian'
NewSubfileType: 0
BitsPerSample: 8
Compression: 'PackBits'
PhotometricInterpretation: 'RGB Palette'
StripOffsets: [9x1 double]
SamplesPerPixel: 1
RowsPerStrip: 23
StripByteCounts: [9x1 double]
XResolution: 72
YResolution: 72
ResolutionUnit: 'Inch'
Colormap: [256x3 double]
PlanarConfiguration: 'Chunky'
TileWidth: []
TileLength: []
TileOffsets: []
TileByteCounts: []
Orientation: 1
FillOrder: 1
GrayResponseUnit: 0.0100
MaxSampleValue: 255
MinSampleValue: 0
Thresholding: 1
 

The following example reads the sixth image of the file flowers.tif.
 
>> [X,map] = imread('flowers.tif',6);
 

The following example reads the fourth image of an HDF file.
 
>> info = imfinfo ('skull. hdf');
[X, map] = imread ('skull hdf',. info (4)Reference);
 

The following example reads a PNG image in 24-bit with complete transparency.
 
>> bg = [255 0 0];
A = imread('image.png','BackgroundColor',bg);
 

Below is an example with sprintf and strread.
 
>> s = sprintf('a,1,2\nb,3,4\n');
[a,b,c] = strread(s,'%s%d%d','delimiter',',')
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

114

a =
 
'a'
'b'
 
b =
 
1
3

c =

2
4
 

If the file mydata.dat has as first line Sally Type1 12.34 45 Yes, then the first column will be read in free format.
 
>> [names,types,x,y,answer] = textread('mydata.dat','%s %s %f ...
%d %s',1)
 
names = 
      'Sally'
types = 
     'Type1'
x =
     12.34000000000000
y =
     45
answer =
     'Yes'
 

We then use the command strread.
 
>> s = sprintf('a,1,2\nb,3,4\n');
[a,b,c] = strread(s,'%s%d%d','delimiter',',')
 
a = 
 
'a'
'b'
 
b =
 
1
3
 
c =
 
2
4 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

115

Sound Processing Functions
MATLAB’s Basic module includes a group of functions that read and write audio files. These functions are presented 
in the following table:

General sound functions

µ=lin2mu(y) Converts a linear audio signal of amplitude - 1£y£1 to a m-encoded audio signal  
with 0£m£255.

Y=mu2lin(μ) Converts a m-encoded audio signal (m£255) to a linear audio signal (-1£y£1).

sound(y,Fs)

sound(y)

sound(y,Fs,b)

Converts the audio signal y to a sound at sample rate Fs.

Converts the audio signal y to a sound at the standard 8192 Hz sampling rate.

Using b bits/sample when converting the audio signal y to a sound at sample rate Fs.

Workstations SPARC-specific functions

auread('f.au')

[y,Fs,bits] = uread('f.au')

Reads the NeXT/SUN sound files f.au.

Gives the sample rate in Hz and the number of bits per sample used to encrypt the 
data in the file f.au.

auwrite (y, 'f.au')

auwrite(y, Fs, 'f.au')

Writes a NeXT/SUN sound file f.au.

Writes a type f.au sound file and specifies the sample rate in Hertz.

Functions of sound.WAV

wavplay(y,Fs) Reproduces the audio signal y with sampling rate Fs.

wavread('f.wav')

[y,Fs,bits] = wavread('f.wav')

Reads the f.wav sound files.

Returns the sampling rate Fs and the number of bits per sample to read the f.wav 
sound file.

wavrecord(n, Fs) Records samples of a digital audio signal at the sample rate n Fs.

wavwrite(y,'f.wav')

wavwrite(y,Fs, 'f.wav')

Writes a type f.wab sound file.

Writes a sound file f.wab with sampling rate Fs.

eXerCISe 3-1

Construct a magic square of order 4, and write its inverse matrix in a binary file named magic.bin.

We start by defining the matrix:
 
>> M = magic (4)
 
M =
 
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

116

then we open a file named magic.bin, with read/write permission to store the matrix M. We use the permission  
'w +' because we want to open a new file, i.e. it does not already exist, and in addition we need to write to it 
(since the file does not already exist, we could also use the permission 'a +').
 
>> fid=fopen('magic.bin','w+')
 
fid =
 
3
 
the system assigns the iD 3 to our file, and then writes the matrix M to it.
 
>> fwrite(3,M)
 
ans =
 
16
 
We have written the matrix M to the binary file magic.bin of iD 3. Matlab returns the number of elements in the 
file, which in this case is 16. We then close the file and the information is recorded on disk.
 
>> fclose (3)
 
ans =
 
0
 
as the answer is zero, the file was successfully closed, and the newly created file will appear in the active Directory.
 
>> dir
 
.            ..           five.bin cosint.m exponen.txt id4.bin magic.bin
 
You can see the newly created file in active Directory with its properties.
 
>> ! dir
 
Volume in drive C has no label.
The volume serial number £ n is: 1059-8290
 
Directory of C:\MATLAB6p1\work
 
03/01/2001 19:50 < DIR >.
03/01/2001 19:50 < DIR >...
10/06/2000 23:41 457 cosint.m
10/01/2001 22:14 64 id4.bin
10/01/2001 23:17 231 exponen.txt
11/01/2001 00: 12 10 five.bin
12/01/2001 23:09 16 magic.bin
5 files 778 bytes
2 dirs 18.027.282.432 bytes free 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

117

eXerCISe 3-2

Consider the identity matrix of order 4 and write it to a binary file with 32-bit floating point format. subsequently 
retrieve this file and read its contents in the same array form as it was recorded. then add to the above matrix a 
column of ones and save it as a binary file with the same name. read the binary file to check its contents.

We start by generating the identity matrix of order 4:
 
>> I = eye (4)
 
I =
 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
 
We open a binary file named id4.bin, in which we are going to save the matrix I, with write permission:
 
>> fid=fopen('id4.bin','w+')
 
FID =
 
3
 
We recorded the matrix I in the previously opened file with 32-bit floating point format:
 
>> fwrite(3,I,'float32')
 
ans =
 
16
 
once the 16 elements of the array have been recorded, we close the file:
 
>> fclose (3)
 
ans =
0
 
We open it with read permission to read the contents of the previously recorded file:
 
>> fid=fopen('id4.bin','r+')
 
fid =
 
3
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

118

now we read the 16 elements of the opened file in the same matrix structure and format in which it was saved.
 
>> [R,count]=fread(3,[4,4],'float32')
 
R =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
 
count =
 
16
 
after checking the contents, we close the file:
 
>> fclose (3)
 
ans =
 
0
 
We then open the file with the proper write permission to add information without losing the existing data:
 
>> fid=fopen('id4.bin','a+')
 
fid =
 
3
 
We now add a column of ones to the end of the file’s contents and close it:
 
>> fwrite(3,[1 1 1 1]','float32')
 
ans =
 
4
 
>> fclose(3)
 
ans =
 
0
 
now we open the file with read permission to view its contents:
 
>> fid=fopen('id4.bin','r+')
 
fid =
 
3
 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

119

Finally, we read the 20 items in the file in the appropriate array form and check that the column has been added 
to the end:
 
>> [R,count]=fread(3,[4,5],'float32')
 
R =
 
1     0     0     0     1
0     1     0     0     1
0     0     1     0     1
0     0     0     1     1
 
count =
 
20 

eXerCISe 3-3

generate an asCii file named log.txt containing the values of the natural logarithm for values of the variable 
between 1 and 2 separated by 0.1. the format of the text in the file should consist of two columns of real floating 
point numbers, in such a way that the values of the variable appear in the first column and the corresponding 
values of the logarithm appear in the second column. Finally, display the contents of the file on screen.
 
>> x = 1:. 1:2;
y = [x; log (x)];
FID = fopen ('log. txt', 'w');
(% 12 fprintf(fid,'%6.2f. 8f\n', and);
fclose (fid)
 
ans =
 
0
 
let us see how we can display the information directly on screen without having to save it to disk:
 
>> x = 1:. 1:2;
y = [x; log (x)];
(% 12 fprintf('%6.2f. 8f\n', and)
1.00 0.00000000
1.10 0.09531018
1.20 0.18232156
1.30 0.26236426
1.40 0.33647224
1.50 0.40546511
1.60 0.47000363
1.70 0.53062825
1.80 0.58778666
1.90 0.64185389
2.00 0.69314718 



Chapter 3 ■ Matlab language: DevelopMent environMent Features

120

eXerCISe 3-4

read the asCii file named log.txt generated in the previous exercise. the format of the text must consist of two 
columns of real numbers with maximum precision in the minimum of space, so that the first column lists the 
values of the variable and the second column shows the corresponding values of the logarithm.
 
>> fid=fopen('log.txt');
a = fscanf(fid,'%g  %g', [2 inf]);
a = a'
 
a =
 
1.0000         0
1.1000    0.0953
1.2000    0.1823
1.3000    0.2624
1.4000    0.3365
1.5000    0.4055
1.6000    0.4700
1.7000    0.5306
1.8000    0.5878
1.9000    0.6419
2.0000    0.6931
 
>> fclose(fid); 



121

Chapter 4

MATLAB Language: M-Files, Scripts, 
Flow Control and Numerical Analysis 
Functions

MATLAB and Programming
MATLAB can be used as a high-level programming language including data structures, functions, instructions for 
flow control, management of inputs/outputs and even object-oriented programming. MATLAB programs are usually 
written into files called M-files. An M-file is nothing more than a MATLAB code (script) that executes a series of 
commands or functions that accept arguments and produce an output. The M-files are created using the text editor,  
as described in Chapter 2.

The Text Editor
The Editor/Debugger is activated by clicking on the create a new M-file button  in the MATLAB desktop or by 
selecting File ➤ New ➤ M-file in the MATLAB desktop (Figure 4-1) or Command Window (Figure 4-2). The  
Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB 
programming code (Figure 4-3). You can open an existing M-file using File ➤ Open on the MATLAB desktop (Figure 4-1) or, 
alternatively, you can use the command Open in the Command Window (Figure 4-2). You can also open the  
Editor/Debugger by right-clicking on the Current Directory window and choosing New ➤ M-file from the resulting 
pop-up menu (Figure 4-4). Using the menu option Open, you can open an existing M-file. You can open several 
M-files simultaneously, each of which will appear in a different window.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

122

Figure 4-1.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

123

Figure 4-2.  

Figure 4-3.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

124

Figure 4-4.  

Figure 4-5 shows the functions of the icons in the Editor/Debugger.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

125

Scripts
Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions 
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts 
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will 
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once 
the syntax of the script has been entered into the editor (Figure 4-6), it is stored in the work library (work) and 
simultaneously executes by clicking the button  or by selecting the option Save and run from the Debug menu  
(or pressing F5). To move from one chart to the next press ENTER.

Figure 4-5.  

Figure 4-6.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

126

Figure 4-7.  

Figure 4-8.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

127

Figure 4-9.  

Figure 4-10.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

128

Functions and M-files. Eval and Feval
We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program. 
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define 
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the 
function to be used whenever required.

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single 
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of 
commands in batch mode, in which case a sequence of commands can be submitted which were previously written 
in a file. This file (M-file) must be stored on disk with the extension “.m” in the MATLAB subdirectory, using any ASCII 
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow 
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top 
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and 
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes 
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the 
command echo on is active and only the results of successive executions of the interpreted commands are displayed. 
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually, 
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the 
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful 
applications of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters)

the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some 
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by commas.  
If there is more than one input parameter, they are separated by commas. The body of the function is the syntax that defines 
it, and should include commands or instructions that assign values to output parameters. Each command or instruction of  
the body often appears in a line that ends either with a comma or, when variables are being defined, by a semicolon (in order 
 to avoid duplication of outputs when executing the function). The function is stored in the M-file named function_name.m.

Let us define the function fun1(x) = x ^ 3 - 2x + cos(x), creating the corresponding M-file fun1.m. To define this 
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button  in the MATLAB 
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the 
function, as shown in Figure 4-11.

Figure 4-11.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

129

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB 
Editor/Debugger. This opens the Save dialog of Figure 4-12, which we use to save our function with the desired name 
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button  or select 
Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function 
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Once a function has been defined and saved in an M-file, it can be used from the Command Window.  
For example, to find the value of the function at 3p-2 we write in the Command Window:
 
>> fun1(3*pi/2)
 
ans =
 
95.2214
 

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the 
command help, as follows:
 
>> help fun1(x)
 
A simple function definition
 

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax 
of which is as follows:
 
feval ('F', arg1, arg1,..., argn) 
 

Figure 4-12.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

130

This evaluates the function F (the M-file F.m) at the specified arguments arg1, arg2,..., argn.
As an example we build an M-file named equation2.m which contains the function equation2, whose arguments  

are the three coefficients of the quadratic equation ax2 + bx + c = 0 and whose outputs are the two solutions (Figure 4-13).

Figure 4-13.  

Now if we want to solve the equation x2 + 2x + 3 = 0 using feval, we write the following in the Command Window:
 
>> [x 1, x 2] = feval('equation2',1,2,3)
 
x 1 =
 
-1.0000 + 1. 4142i
 
x 2 =
 
-1.0000 - 1. 4142i
 

The quadratic equation can also be solved as follows:
 
>> [x 1, x 2] = equation2 (1,2,3)
 
x 1 =
 
  -1.0000 + 1. 4142i
 
x 2 =
 
-1.0000 - 1. 4142i
 

If we want to ask for help about the function equation2 we do the following:
 
>> help equation2
 
This function solves the quadratic equation ax ^ 2 + bx + c = 0
whose coefficients are a, b and c (input parameters)
and whose solutions are x 1 and x 2 (output parameters)
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

131

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval, 
whose syntax is as follows:
 
eval (expression) 
 

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

 
>> n=4;
>> eval(['M' num2str(n) ' = magic(n)'])
 
M4 =
 
16 2  3  13
 5 11 10 8
 9 7  6  12
 4 14 15 1 

Local and Global Variables
Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the 
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files 
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary to 
define global variables with the GLOBAL command whose syntax is as follows:
 
GLOBAL x y z...
 

This defines the variables x, y and z as global.
Any variables defined as global inside a function are available separately for the rest of the functions and in the 

base workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an 
empty array. If there is already a variable with the same name as a global variable being defined, MATLAB will send 
a warning message and change the value of that variable to match the global variable. It is convenient to declare a 
variable as global in every function that will need access to it, and also in the command line, in order to access it  
from the base workspace. The GLOBAL command is located at the beginning of a function (before any occurrence  
of the variable).

As an example, suppose that we want to study the effect of the interaction coefficients a and b in the  
Lotka–Volterra predator-prey model:





y y y y

y y y y
1 1 1 2

2 2 1 2

= -
=- -

a
b

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 4-14.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

132

Later, we might type the following in the command line:
 
>> global ALPHA BETA
ALPHA = 0.01
BETA  = 0.02
 

These global values may then be used for a and b in the M-file lotka.m (without having to specify them).  
For example, we can generate the graph (Figure 4-15) with the following syntax:
 
>> [t, y] = ode23 ('lotka', 0.10, [1; 1]); plot(t,y) 

Figure 4-14.  

Figure 4-15.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

133

Data Types
MATLAB has 14 different data types, summarized in Figure 4-16 below.

Figure 4-16.  

Below are the different types of data:

Data type Example Description

single 3* 10 ^ 38 Simple numerical precision. This requires less storage than 
double precision, but it is less precise. This type of data should not 
be used in mathematical operations.

Double 3*10^300  
5+6i

Double numerical precision. This is the most commonly used 
data type in MATLAB.

sparse speye(5) Sparse matrix with double precision.

int8, uint8, int16, 
uint16, int32, 
uint32

UInt8(magic (3)) Integers and unsigned integers with 8, 16, and 32 bits. These 
make it possible to use entire amounts with efficient memory 
management. This type of data should not be used in 
mathematical operations.

char ‘Hello’ Characters (each character has a length of 16 bits).

cell {17 ‘hello’ eye (2)} Cell (contains data of similar size).

structure a.day = 12; a.color = ‘Red’; 
a.mat = magic(3);

Structure (contains cells of similar size).

user class inline(‘sin (x)’) MATLAB class (built with functions).

java class Java. awt.Frame Java class (defined in API or own) with Java.

function handle @humps Manages functions in MATLAB. It can be last in a list of 
arguments and evaluated with feval.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

134

Flow Control: FOR Loops, WHILE and IF ELSEIF
The use of recursive functions, conditional operations and piecewise defined functions is very common in mathematics. 
The handling of loops is necessary for the definition of these types of functions. Naturally, the definition of the functions 
will be made via M-files.

FOR Loops
MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This 
statement allows you to run a command or group of commands repeatedly. For example:
 
» for i=1:3, x(i)=0, end
 
x =
 
0
 
x =
 
0     0
 
x =
 
0 0 0
 

The general form of a FOR loop is as follows:
 
for variable = expression
    commands
end
 

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of 
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order 
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 4-17):

Figure 4-17.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

135

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz.m, we can build any 
Hilbert matrix later by running the M-file and specifying values for the variables m and n (the matrix dimensions) as 
shown below:
 
>> M = matriz (4,5)
 
M =
 
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250 

WHILE Loops
MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This 
statement allows you to repeat a command or group of commands a number of times while a specified logical 
condition is met. The general syntax of this loop is as follows:
 
While condition
    commands
end
 

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes 
in its interior a whole set of commands that are separated by commas which continually loop while the condition is 
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As 
an example, we write an M-file (Figure 4-18) that is saved as while1.m, which calculates the largest number whose 
factorial does not exceed 10100.

Figure 4-18.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

136

We now run the M-file.
 
>> while1
 
n =
 
70 

IF ELSEIF ELSE END Loops
MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this 
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:
 
if condition
    commands
end
 

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.
 
if condition
    commands1
else
    commands2
end
 

In this case, the commands commands1 are executed if the condition is true, and the commands commands2 are 
executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF 
statement, the general syntax is as follows:
 
if condition1
    commands1
elseif condition2
    commands2
elseif condition3
    commands3
.
.
else
end
 

In this case, the commands commands1 are executed if condition1 is true, the commands commands2 are 
executed if condition1 is false and condition2 is true, the commands commands3 are executed if condition1 and 
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:
 
if condition1
    commands1
else
      if condition2
          commands2



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

137

      else
            if condition3
                commands3
            else
            .
            .
            .
            end
      end
end
 

Consider, for example, the M-file else1.m (see Figure 4-19).

Figure 4-19.  

When you run the file it returns negative, odd or even according to whether the argument n is negative,  
non-negative and odd, or non-negative and even, respectively:
 
>> else1 (8), else1 (5), else1 (- 10)
 
A =
 
n is even
 
A =
 
n is odd
 
A =
 
n is negative 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

138

Switch and Case
The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax  
is as follows:
 
switch expression (scalar or string)
case value1
statements % runs if expression is value1
case value2
statements % runs if expression is value2
.
.
.
otherwise
statements % runs if neither case is satisfied
 
end
 

Below is an example of a function that returns ‘minus one’, ‘zero’, ‘one’, or ‘another value’ according to whether the 
input is equal to −1,0,1 or something else, respectively (Figure 4-20).

Figure 4-20.  

Running the above example we get:
 
>> case1 (25)
another value
 
>> case1 (- 1)
minus one 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

139

Continue
The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring 
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 4-21) that counts the lines of 
code in the file magic.m, ignoring the white lines and comments.

Figure 4-21.  

Running the M-file, we get:
 
>> continue1
25 lines 

Break
The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which 
appears outside of the loop. Below is an M-file break1.m (Figure 4-22) which reads the lines of code in the file fft.m, 
exiting the loop as soon as it encounters the first empty line.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

140

Running the M-file we get:
 
>> break1
 
%FFT Discrete Fourier transform.                                      
%   FFT(X) is the discrete Fourier transform (DFT) of vector X.  For  
%   matrices, the FFT operation is applied to each column. For N-D    
%   arrays, the FFT operation operates on the first non-singleton     
%   dimension.                                                        
%                                                                     
%   FFT(X,N) is the N-point FFT, padded with zeros if X has less      
%   than N points and truncated if it has more.                       
%                                                                     
%   FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
%   dimension DIM.                                                    
%                                                                     
%   For length N input vector x, the DFT is a length N vector X,      
%   with elements                                                     
%                    N                                                
%      X(k) =       sum  x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
%                   n=1                                               
%   The inverse DFT (computed by IFFT) is given by                    
%                    N                                                
%      x(n) = (1/N) sum  X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
%                   k=1                                               
%                                                                     
%   See also IFFT, FFT2, IFFT2, FFTSHIFT.              
 

Figure 4-22.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

141

Try... Catch
The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the 
cause of the error. The general syntax of the command is as follows:
 
try,
instruction
...,
instruction
catch,
instruction
...,
instruction
end 

Return
The return statement terminates the current script and returns the control to the invoked function or the keyboard. 
The following is an example (Figure 4-23) that computes the determinant of a non-empty matrix. If the array is empty 
it returns the value 1.

Figure 4-23.  

Running the function for a non-empty array we get:
 
>> A = [- 1, - 1, 1; 1,0,1; 1,1,1]
 
A =
-1 -1 -1
 1  0  1
 1 -1 -1
 
>> det1 (A)
 
ans =
 
2
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

142

Now we apply the function to an empty array:
 
>> B =[]
 
B =
 
     []
 
>> det1 (B)
 
ans =
 
     1 

Subfunctions
M-file-defined functions can contain code for more than one function. The main function in an M-file is called a 
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary 
function may be added which are only visible for the primary function or another subfunction within the same M-file. 
Each subfunction begins with its own function definition. An example is shown in Figure 4-24.

Figure 4-24.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

143

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary 
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and  
n as the second argument. When executing the main function, it is enough to provide as input a list of values for which 
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.
 
>> [mean, median] = newstats ([10,20,3,4,5,6])
 
mean =
 
     8
 
median =
 
    5.5000 

Commands in M-files
MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are  
the following:

echo on View on-screen commands of an M-file script while it is running.

echo off Hides on-screen commands of an M-file script (this is the default setting).

pause Interrupts the execution of an M-file until the user presses a key to continue.

pause(n) Interrupts the execution of an M-file for n seconds.

pause off Disables pause and pause (n).

pause on Enables pause and pause (n).

keyboard Interrupts the execution of an M-file and passes the control to the keyboard so that the user can 
perform other tasks. The execution of the M-file can be resumed by typing the return command 
into the Command Window and pressing Enter.

return Resumes execution of an M-file after an outage.

break Prematurely exits a loop.

CLC Clears the Command Window.

Home Hides the cursor.

more on Enables paging of the MATLAB Command Window output.

more off Disables paging of the MATLAB Command Window output.

more (N) Sets page size to N lines.

menu Offers a choice between various types of menu for user input.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

144

Functions Relating to Arrays of Cells
An array is a well-ordered collection of individual items. This is simply a list of elements, each of which is associated 
with a positive integer called its index, which represents the position of that element in the list. It is essential that each 
element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make 
changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions, and 
correspondingly they have one or more sets of indices that identify their elements. The most important commands 
and functions that enable MATLAB to work with arrays of cells are the following:

c = cell(n)

c = cell(m,n)

c = cell([m n])

c = cell(m,n,p,...)

c = cell([m n p ...])

c = cell(size(A))

Creates an n×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an array of empty arrays of the same size as A.

D = cellfun(‘f ’,C)

D = cellfun(‘size’,C,k)

D = cellfun(‘isclass’,C,class)

Applies the function f (isempty, islogical, isreal, length, ndims, or prodofsize) to 
each element of the array C.

Returns the size of each element of dimension k in C.

Returns true for each element of C corresponding to class.

C=cellstr(S) Places each row of the character array S into separate cells of C.

S = cell2struct(C,fields,dim) Converts the array C to a structure array S incorporating field names ‘fields’ and 
the dimension ‘dim’ of C.

celldisp (C)

celldisp(C, name)

Displays the contents of the array C.

Assigns the contents of the array C to the variable name.

cellplot(C)

cellplot(C,‘legend’)

Shows a graphical representation of the array C.

Shows a graphical representation of the array C and incorporates a legend.

C = num2cell(A)

C = num2cell(A,dims)

Converts a numeric array A to the cell array C.

Converts a numeric array A to a cell array C placing the given dimensions in 
separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.
 
>> A = ones(2,2)
 
A =
1     1
1     1
 
>> c = cell(size(A))
 
c =
 
[]     []
[]     []
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

145

We then define and present a 2 × 3 array of cells element by element, and apply various functions to the cells.
 
>> C {1.1} = [1 2; 4 5];
C {1,2} = 'Name';
C {1,3} = pi;
C{2,1} = 2 + 4i; 
C{2,2} = 7;
C{2,3} = magic(3);
 
>> C
 
C = 
 
[2x2 double]         'Name'    [    3.1416]
[2.0000+ 4.0000i]    [   7]    [3x3 double]
 
 >> D = cellfun('isreal',C)
 
D =
 
1     1     1
0     1     1
 
>> len = cellfun('length',C)
 
len =
 
2     4     1
1     1     3
 
>> isdbl = cellfun('isclass',C,'double')
 
isdbl =
 
1 0 1
1 1 1
 

The contents of the cells in the array C defined above are revealed using the command celldisp.
 
>> celldisp(C)
 
C{1,1} =
1     2
4     5
 
C{2,1} =
 
2.0000 + 4.0000i
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

146

C{1,2} =
 
Name
 
C {2,2} =
 
7
 
C {1,3} =
 
3.1416
  
C {2,3} =
 
8 1 6
3 5 7
4 9 2
 

The following displays a graphical representation of the array C (Figure 4-25).
 
>> cellplot(C) 

Figure 4-25.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

147

Multidimensional Array Functions
The following group of functions is used by MATLAB to work with multidimensional arrays:

C = cat(dim,A,B)

C = cat(dim,A1,A2,A3,A4...)

Concatenates arrays A and B according to the dimension dim.

Concatenates arrays A1, A2,... according to the dimension dim.

B = flipdim (A, dim) Flips the array A along the specified dimension dim.

[I,J] = ind2sub(siz,IND)

[I1,I2,I3,...,In] = ind2sub(siz,IND)

Returns the matrices I and J containing the equivalent row and column 
subscripts corresponding to each index in the matrix IND for a matrix of 
size siz.

Returns matrices  I1, I2,...,In containing the equivalent row and column 
subscripts corresponding to each index in the matrix IND for a matrix of 
size siz.

A = ipermute(B,order) Inverts the dimensions of the multidimensional array D according to the 
values of the vector order.

[X1, X2, X3,...] = ndgrid(x1,x2,x3,...)

[X 1, X 2,...] = ndgrid (x)

Transforms the domain specified by vectors x1, x2,... into the arrays X1, 
X2,... which can be used for evaluation of functions of several variables and 
interpolation.

Equivalent to ndgrid(x,x,x,...).

n = ndims(A) Returns the number of dimensions in the array A.

B = permute(A,order) Swaps the dimensions of the array A specified by the vector order.

B = reshape(A,m,n)

B = reshape(A,m,n,p,...)

B = reshape(A,[m n p...])

B = reshape(A,siz)

Defines an m×n matrix B whose elements are the columns of a.

Defines an array B whose elements are those of the array A restructured 
according to the dimensions m×n×p×...

Equivalent to B = reshape(A,m,n,p,...)

Defines an array B whose elements are those of the array A restructured 
according to the dimensions of the vector siz.

B = shiftdim(X,n)

[B,nshifts] = shiftdim(X)

Shifts the dimensions of the array X by n, creating a new array B.

Defines an array B with the same number of elements as X but with leading 
singleton dimensions removed.

B=squeeze(A) Creates an array B with the same number of elements as A but with all 
singleton dimensions removed.

IND = sub2ind(siz,I,J)

IND = sub2ind(siz,I1,I2,...,In)

Gives the linear index equivalent to the row and column indices I and J for 
a matrix of size siz.

Gives the linear index equivalent to the n indices I1, I2,..., in a matrix  
of size siz.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

148

As a first example we concatenate a magic square and Pascal matrix of order 3.
 
>> A = magic (3); B = pascal (3);
>> C = cat (4, A, B)
 
C(:,:,1,1) =
 
8 1 6
3 5 7
4 9 2
 
C(:,:,1,2) =
 
1 1 1
1 2 3
1 3 6
 

The following example flips the Rosser matrix.
 
>> R=rosser
 
R =
 
   611   196  -192   407    -8   -52   -49    29
   196   899   113  -192   -71   -43    -8   -44
  -192   113   899   196    61    49     8    52
   407  -192   196   611     8    44    59   -23
    -8   -71    61     8   411  -599   208   208
   -52   -43    49    44  -599   411   208   208
   -49    -8     8    59   208   208    99  -911
    29   -44    52   -23   208   208  -911    99
 
>> flipdim(R,1)
 
ans =
 
ans =
 
    29   -44    52   -23   208   208  -911    99
   -49    -8     8    59   208   208    99  -911
   -52   -43    49    44  -599   411   208   208
    -8   -71    61     8   411  -599   208   208
   407  -192   196   611     8    44    59   -23
  -192   113   899   196    61    49     8    52
   196   899   113  -192   -71   -43    -8   -44
   611   196  -192   407    -8   -52   -49    29
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

149

Now we define an array by concatenation and permute and inverse permute its elements.
 
>> a = cat(3,eye(2),2*eye(2),3*eye(2))
 
a(:,:,1) =
 
1 0
0 1
 
a(:,:,2) =
 
2 0
0 2
 
a(:,:,3) =
 
3 0
0 3
 
>> B = permute(a,[3 2 1])
 
B(:,:,1) =
 
1 0
2 0
3 0
 
B(:,:,2) =
 
0 1
0 2
0 3
 
>> C = ipermute(B,[3 2 1])
 
C(:,:,1) =
 
1 0
0 1
 
C(:,:,2) =
 
2 0
0 2
 
C(:,:,3) =
 
3 0
0 3
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

150

The following example evaluates the function f x x x( , )1 2 1
1
2

2
2

= - -e x x  in the square [− 2, 2] × [− 2, 2] and displays it 
graphically (Figure 4-26).
 
>> [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z = X 1. * exp(-X1.^2-X2.^2);
mesh (Z)
 

Figure 4-26.  

In the following example we resize a 3 ×4 random matrix to a 2 × 6 matrix.
 
>> A=rand(3,4)
 
A =
 
0.9501    0.4860    0.4565    0.4447
0.2311    0.8913    0.0185    0.6154
0.6068    0.7621    0.8214    0.7919
 
>> B = reshape(A,2,6)
 
B =
 
    0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
    0.2311 0.4860 0.7621 0.0185 0.4447 0.7919 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

151

Numerical Analysis Methods in MATLAB
MATLAB programming techniques allow you to implement a wide range of numerical algorithms. It is possible to 
design programs which perform numerical integration and differentiation, solve differential equations, optimize 
non-linear functions, etc. However, MATLAB’s Basic module already has a number of tailor-made functions which 
implement some of these algorithms. These functions are set out in the following subsections. In the next chapter we 
will give some examples showing how these functions can be used in practice.

Zeros of Functions and Optimization
The commands (functions) that enables MATLAB’s Basic module to optimize functions and find the zeros of functions 
are as follows:

x = fminbnd(fun,x1,x2) Minimizes the function on the interval (x1 x2).

x = fminbnd(fun,x1,x2,options) Minimizes the function on the interval (x1 x2) according to the option 
given by optimset (...). This last command is explained later.

x = fminbnd(fun,x1,x2, 
options,P1,P2,...)

Specifies additional parameters P1, P2, ... to pass to the target function 
fun(x,P1,P2, ...).

[x, fval] = fminbnd (...) Returns the value of the objective function at x.

[x, fval, f] = fminbnd (...) In addition, returns an indicator of convergence f (f > 0 indicates 
convergence to the solution, f < 0 indicates no convergence and f = 0 
indicates the algorithm exceeded the maximum number of iterations).

[x,fval,f,output] = fminbnd(...) Provides further information (output.algorithm gives the algorithm 
used, output.funcCount gives the number of evaluations of fun and 
output.iterations gives the number of iterations).

x = fminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(fun,x0,options,P1,P2,...)

[x,fval] = fminsearch(...)

[x,fval,f] = fminsearch(...)

[x,fval,f,output] = fminsearch(...)

Returns the minimum of a scalar function of several variables, starting 
at an initial estimate x0. The argument x0 can be an interval [a, b].  
To find the minimum of fun in [a, b], x = fminsearch ( fun, [a, b]) is used.

x = fzero(fun,x0)

x = fzero(fun,x0,options)

x = fzero(fun,x0,options,P1,P2,...)

[x, fval] = fzero (...)

[x, fval, exitflag] = fzero (...)

[x,fval,exitflag,output] = fzero(...)

Finds zeros of the function fun, with initial estimate x0, by finding a 
point where fun changes sign. The argument x0 can be an interval [a, 
b]. Then, to find a zero of fun in  [a, b], we use x = fzero ( fun, [a, b]), 
where fun has opposite signs at a and b.

(continued)



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

152

options = optimset(‘p1’,v1,‘p2’,v2,...) Creates optimization parameters p1, p2,... with values v1, v2... The 
possible parameters are Display (with possible values ‘off’, ‘iter’, 
‘final’, ‘notify’) to respectively not display the output, display the 
output of each iteration, display only the final output, and display a 
message if there is no convergence); MaxFunEvals, whose value is an 
integer indicating the maximum number of evaluations; MaxIter 
whose value is an integer indicating the maximum number of 
iterations; TolFun, whose value is an integer indicating the tolerance 
in the value of the function, and TolX, whose value is an integer 
indicating the tolerance in the value of x.

val = optimget (options, ‘param’) Returns the value of the parameter specified in the optimization 
options structure.

g = inline (expr) Transforms the string expr into a function.

g = inline(expr,arg1,arg2, ...) Transforms the string expr into a function with given input arguments.

g = inline (expr, n) Transforms the string expr into a function with n input arguments.

f = @function Enables the function to be evaluated.

As a first example we find the value of x that minimizes the function cos(x) in the interval (3,4).
 
>> x = fminbnd(@cos,3,4)
 
x =
3.1416
 

We could also have used the following syntax:
 
>> x = fminbnd(inline('cos(x)'),3,4)
 
x =
3.1416
 

In the following example we find the above minimum to 8 decimal places and find the value of x that minimizes 
the cosine in the given interval, presenting information relating to all iterations of the process.
 
>> [x,fval,f] = fminbnd(@cos,3,4,optimset('TolX',1e-8,... 'Display','iter'));
 
Func-count          x         f(x)    Procedure
1             3.38197    -0.971249      initial
2             3.61803    -0.888633       golden
3             3.23607    -0.995541       golden
4             3.13571    -0.999983    parabolic
5             3.1413            -1    parabolic
6             3.14159           -1    parabolic
7             3.14159           -1    parabolic
8             3.14159           -1    parabolic
9             3.14159           -1    parabolic
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

153

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008
 

In the following example, taking (− 1, 2; 1) as initial values, we find the minimum and target value of the following 
function of two variables:

f x x x x( ) = -( ) + -( )100 12
2

1

2

1

2

>> [x,fval] = fminsearch(inline('100*(x(2)-x(1)^2)^2+...
(((1-x (1)) ^ 2'), [- 1.2, 1])
 
x =
 
1.0000 1.0000
 
 fval =
 
8. 1777e-010
 

The following example computes a zero of the sine function with an initial estimate of 3, and a zero of the cosine 
function between 1 and 2.
 
>> x = fzero(@sin,3)
 
x =
 
3.1416
 
>> x = fzero(@cos,[1 2])
 
x =
 
    1.5708 

Numerical Integration
MATLAB contains functions that allow you to perform numerical integration using Simpson’s method and Lobato’s 
method. The syntax of these functions is as follows:

q = quad(f,a,b) Finds the integral of f between a and b by Simpson’s method with an  
error of 10-6.

q = quad(f,a,b,tol) Find the integral of f between a and b by Simpson’s method with the tolerance 
tol instead  of 10-6.

q = quad(f,a,b,tol,trace) Find the integral of f between a and b by Simpson’s method with the tolerance 
tol and presents the trace of iterations.

q = quad(f,a,b,tol,trace,p1,p2, ...) Passes additional arguments p1, p2, ... to the function f, f(x,p1,p2, ...).

[q, fcnt] = quadl(f,a,b,...) Additionally returns the number of evaluations off.

(continued)



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

154

q = quadl(f,a,b) Finds the integral off between a and b by Lobato’s quadrature method with a 
10-6 error.

q = quadl(f,a,b,tol) Finds the integral of f between a and b by Lobato’s quadrature method with the 
tolerance tol instead of 10-6.

q = quadl(f,a,b,tol,trace) Finds the integral of f between a and b by  Lobato’s quadrature method with the 
tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol,trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fcnt] = quadl(f,a,b,...) Additionally returns the number of evaluations off.

q = dblquad (f, xmin, xmax,  
ymin, ymax)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with an error of 10-6. dblquad will be removed in future releases 
and replaced by integral2.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with tolerance tol.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol,@quadl)

Evaluates the double integral f(x,y) in the rectangle specified by the given 
parameters, with tolerance tol and using the quadl method.

q = dblquad (f, xmin, xmax, 
ymin,ymax,tol,method,p1,p2,...)

Passes additional arguments p1, p2,... to the function f.

As a first example we calculate 
1

2 53
0

2

x x
dx

- -ò  using Simpson’s method.

 
>> F = inline('1./(x.^3-2*x-5)');
>> Q = quad(F,0,2)
 
Q =
 
-0.4605
 

Then we observe that the integral remains unchanged even if we increase the tolerance to 10−18.
 
>> Q = quad(F,0,2,1.0e-18)
 
Q =
 
-0.4605
 

In the following example we evaluate the same integral using Lobato’s method.
 
>> Q = quadl(F,0,2)
 
Q =
 
-0.4605
 

We evaluate the double integral y x x y dydxsin( ) cos( )+( )òò
0

2 p

p

p

.
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

155

>> Q = dblquad (inline (' y * sin (x) + x * cos (y)'), pi, 2 * pi, 0, pi)
 
Q =
 
   -9.8696
 

Numerical Differentiation
The derivative f' (x) of a function f (x) can simply be defined as the rate of change of f (x) with respect to x. The 
derivative can be expressed as a ratio between the change in f (x), denoted by df (x), and the change in x, denoted by 
dx. The derivative of a function f at the point x

k
 can be estimated by using the expression:

f x
f x f x

x xk
k k

k k

’ ( ) = ( )- ( )
-

-

-

1

1

provided the values x
k
, x

k-1
 are close to each other. Similarly the second derivative  f ''(x) of the function f (x) can be 

estimated as the first derivative of f'(x), i.e.:

f x
f x f x

x xk
k k

k k

’’
’ ’

( ) = ( )- ( )
-

-

-

1

1

MATLAB includes in its Basic module the function diff, which allows you to approximate derivatives. The syntax 
is as follows:

Y = diff(X) Calculates the differences between adjacent elements in the vector X:[X(2) - X(1), X(3) - X (2),..., X(n) -  
X(n-1)]. If X is an m×n matrix, diff (X) returns the array of differences by rows: [X(2:m,:)-X(1:m-1,:)]

Y = diff(X,n) Finds differences of order n, for example: diff(X,2) = diff (diff (X)).

As an example we consider the function f (x) = x5− 3x4−11x3 + 27x2 + 10x− 24, find the difference vector of 
[−4,−3.9,−3.8,...,4.8,4.9,5] the difference vector of [f (−4),f (−3.9),f (−3.8),...,f (4.8),f (4.9),f (5)] and the elementwise 
quotient of the latter by the former, and graph the function in the interval [−4.5]. See Figure 4-27.
 
>> x =-4:0.1: 5;
>> f = x.^5-3*x.^4-11*x.^3 + 27*x.^2 + 10*x-24;
>> df=diff(f)./diff(x)
 
df =
 
  1.0e+003 *
 
  Columns 1 through 7
 
    1.2390    1.0967    0.9655    0.8446    0.7338    0.6324    0.5400
 
  Columns 8 through 14
 
    0.4560    0.3801    0.3118    0.2505    0.1960    0.1477    0.1053
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

156

  Columns 15 through 21
 
    0.0683    0.0364    0.0093   -0.0136   -0.0324   -0.0476   -0.0594
 
  Columns 22 through 28
 
   -0.0682   -0.0743   -0.0779   -0.0794   -0.0789   -0.0769   -0.0734
 
  Columns 29 through 35
 
   -0.0687   -0.0631   -0.0567   -0.0497   -0.0424   -0.0349   -0.0272
 
  Columns 36 through 42
 
   -0.0197   -0.0124   -0.0054    0.0012    0.0072    0.0126    0.0173
 
  Columns 43 through 49
 
    0.0212    0.0244    0.0267    0.0281    0.0287    0.0284    0.0273
 
  Columns 50 through 56
 
    0.0253    0.0225    0.0189    0.0147    0.0098    0.0044   -0.0014
 
  Columns 57 through 63
 
   -0.0076   -0.0140   -0.0205   -0.0269   -0.0330   -0.0388   -0.0441
 
  Columns 64 through 70
 
   -0.0485   -0.0521   -0.0544   -0.0553   -0.0546   -0.0520   -0.0472
 
  Columns 71 through 77
 
-0.0400   -0.0300   -0.0170   -0.0007    0.0193    0.0432    0.0716
 
  Columns 78 through 84
 
    0.1046    0.1427    0.1863    0.2357    0.2914    0.3538    0.4233
 
  Columns 85 through 90
 
    0.5004    0.5855    0.67910.7816    0.8936    1.0156
 
>> plot (x, f)
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

157

Approximate Solution of Differential Equations
MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential 
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve 
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

Ordinary Differential Equations with Initial Values
An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the 
independent variable t. A first order ordinary differential equation with an initial value for the independent variable 
can be represented as:

y f t y

y t y

’ ,= ( )
( ) =0 0

The previous problem can be generalized to the case where y is a vector, y = (y
1
, y

2
, ..., yn)

Figure 4-27.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

158

MATLAB’s Basic module commands relating to ordinary differential equations and differential algebraic 
equations with initial values are presented in the following table:

Command Class of Problem Solving, Numerical Method and Syntax

ode45 Ordinary differential equations by the Runge–Kutta method

ode23 Ordinary differential equations by the Runge–Kutta method

ode113 Ordinary differential equations by Adams’ method

ode15s Differential algebraic equations and ordinary differential equations using NDFs (BDFs)

ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the trapezoidal  rule

ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:
 
[T, y] = solver(odefun,tspan,y0)
[T, y] = solver(odefun,tspan,y0,options)
[T, y] = solver(odefun,tspan,y0,options,p1,p2...)
[T, y, TE, YE, IE] = solver(odefun,tspan,y0,options)
 

In the above, solver can be any of the commands ode45, ode23, ode113, ode15s, ode23s, ode23t , or ode23tb.
The argument odefun evaluates the right-hand side of the differential equation or system written in the form 

y' = f (t, y) or M(t, y)y '=f (t, y), where M(t, y) is called a mass matrix. The command ode23s can only solve equations 
with constant mass matrix. The commands ode15s and ode23t can solve algebraic differential equations and systems 
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the 
range of integration [t

0
, t

f
] (tspan = [t

0
, t

1
,...,t

f
], which must be either an increasing or decreasing list, is used to obtain 

solutions for specific values of t). The argument y
0
 specifies a vector of initial conditions. The arguments p1, p2,... are 

optional parameters that are passed to odefun. The argument options specifies additional integration options using 
the command options odeset which can be found in the program manual. The vectors T and y present the numerical 
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential 
equations:

y y y y

y y y y

y y y y

’

’

’ .

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0 51 0 1

= ( ) =
= - ( ) =
= - ( ) =

For this, we define a function named system1 in an M-file, which will store the equations of the system. The 
function begins by defining a column vector with three rows which are subsequently assigned components that make 
up the syntax of the three equations (Figure 4-28).



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

159

We then solve the system by typing the following in the Command Window:
  
>> [T, Y] = ode45(@system1,[0 12],[0 1 1])
 
T =
 
0
0.0001
0.0001
0.0002
0.0002
0.0005
.
.
11.6136
11.7424
11.8712
12.0000
 
Y =
0 1.0000 1.0000
0.0001 1.0000 1.0000
0.0001 1.0000 1.0000
0.0002 1.0000 1.0000
0.0002 1.0000 1.0000
0.0005 1.0000 1.0000
0.0007 1.0000 1.0000
0.0010 1.0000 1.0000
0.0012 1.0000 1.0000
0.0025 1.0000 1.0000
0.0037 1.0000 1.0000
0.0050 1.0000 1.0000
0.0062 1.0000 1.0000

Figure 4-28.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

160

0.0125 0.9999 1.0000
0.0188 0.9998 0.9999
0.0251 0.9997 0.9998
0.0313 0.9995 0.9997
0.0627 0.9980 0.9990
.
.
0.8594-0.5105  0.7894
0.7257-0.6876  0.8552
0.5228-0.8524  0.9281
0.2695-0.9631  0.9815
-0.0118-0.9990 0.9992
-0.2936-0.9540 0.9763
-0.4098-0.9102 0.9548
-0.5169-0.8539 0.9279
-0.6135-0.7874 0.8974
-0.6987-0.7128 0.8650
 

To better interpret the results, the above numerical solution can be graphed (Figure 4-29) by using the following 
command:
 
>> plot (T, Y(:,1), '-', T, Y(:,2),'-', T, Y(:,3),'. ') 

Figure 4-29.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

161

Ordinary Differential Equations with Boundary Conditions
MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions 
specify a relationship that must hold between the values of the solution function at the end points of the interval on 
which it is defined. The simplest problem of this type is the system of equations

y f x y’ ,= ( )

where x is the independent variable, y is the dependent variable and y' is the derivative with respect to x (i.e., y' = dy/dx ). 
In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g y a y b( ) ( )( ) =, 0

More generally this type of differential equation can be expressed as follows:

y f x y P

g y a y b P

’ , ,

, ,

= ( )
( ) ( )( )= 0

where the vector p consists of parameters which have to be determined simultaneously with the solution via the 
boundary conditions.

The command that solves these problems is bvp4c, whose syntax is as follows:
 
Sol = bvp4c (odefun, bcfun, solinit)
Sol = bvp4c (odefun, bcfun, solinit, options)
Sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)
 

In the syntax above odefun is a function that evaluates f (x, y). It may take one of the following forms:
 
dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun (x, y, parameters)
dydx = odefun(x,y,parameters,p1,p2,...)
 

The argument bcfun in Bvp4c is a function that computes the residual in the boundary conditions. Its form  
is as follows:
 
Res = bcfun (ya, yb)
Res = bcfun(ya,yb,p1,p2,...)
Res = bcfun (ya, yb, parameters)
Res = bcfun(ya,yb,parameters,p1,p2,...)
 

The argument solinit is a structure containing an initial guess of the solution. It has the following fields: x (which 
gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)and  
b = solinit.x(end); and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant guess 
for the i-th component of the solution at all the mesh points given by x)) The structure solinit is created using the 
command bvpinit. The syntax is solinit = bvpinit(x,y).



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

162

As an example we solve the second order differential equation:

y y"+ = 0

whose solutions must satisfy the boundary conditions:

y

y

0 0

4 2

( ) =
( ) = -

This is equivalent to the following problem (where y
1
 = y and y

2
 = y'):

y y

y y
1 2

2 1

’

’

=

= -

We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solution is  
y

1
 = 1 and y

2
 = 0. These assumptions are included in the following syntax:

 
>> solinit = bvpinit (linspace (0,4,5), [1 0]);
 

The M-files depicted in Figures 4-30 and 4-31 show how to enter the equation and its boundary conditions.

Figure 4-30.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

163

The following syntax is used to find the solution of the equation:
 
>> Sun = bvp4c (@twoode, @twobc, solinit);
 

The solution can be graphed (Figure 4-32) using the command bvpval as follows:
 
>> y = bvpval (Sun, linspace (0,4));
>> plot (x, y(1,:));
 

Figure 4-31.  

Figure 4-32.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

164

Partial Differential Equations
MATLAB’s Basic module has features that enable you to solve partial differential equations and systems of partial 
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe, 
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:
 
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun= pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)
 

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block, 
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun 
defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x

0
, x

1
, ..., x

n
] and  

[t
0
, t

1
, ... ,t

f
] that specify the points at which a numerical solution is requested (n, f  ³3), options specifies some 

calculation options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify 
relative tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are 
parameters to pass to the functions pdefun, icfun and bcfun.

pdepe solves partial differential equations of the form:

c x t u
u

x

u

t
x

x
x f x t u

u

x
s x tm m, , , , , , ,

¶
¶

æ
è
ç

ö
ø
÷
¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷+

- ,, ,u
u

x

¶
¶

æ
è
ç

ö
ø
÷

Where a £ x £ b and t
0
£ t £ t

f
. Moreover, for t = t

0
 and for all x the solution components meet the initial conditions:

u x t u x, 0 0( ) = ( )

and for all t and each x = a or x = b, the solution components satisfy the boundary conditions of the form:

p x t u q x t f x t u
u

x
, , , , , ,( ) + ( ) ¶

¶
æ
è
ç

ö
ø
÷ = 0

In addition, we have that a = xmesh (1), b = xmesh (end), tspan (1) =t
0
 and tspan (end) =  t

f
. Moreover 

pdefun finds the terms c, f and s of the partial differential equation, so that:
 
[c, f, s] = pdefun (x, t, u, dudx)
 

Similiarly icfun evaluates the initial conditions
 
u = icfun (x)
 

Finally, bcfun evaluates the terms p and q of the boundary conditions:
 
[pl, ql, pr, qr] = bcfun (xl, ul, xr, ur, t)
 

As a first example we solve the following partial differential equation (x Î [0,1] and t ³ 0):

p 2 ¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

u

t x

u

x



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

165

satisfying the initial condition:

u x x, sin0( ) = p

and the boundary conditions:

u t

e
u

x
tt

0 0

1 0

,

,

( ) º

+
¶
¶

( ) =-p

We begin by defining functions in M-files as shown in Figures 4-33 to 4-35.

Figure 4-33.  

Figure 4-34.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

166

Once the support functions have been defined, we define the function that solves the equation (see the M-file in 
Figure 4-36).

Figure 4-35.  

Figure 4-36.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

167

To view the solution (Figures 4-37 and 4-38), we enter the following into the MATLAB Command Window:
 
>> pdex1 

Figure 4-37.  

Figure 4-38.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

168

As a second example we solve the following system of partial differential equations (x Î [0,1] and t ³ 0):

¶
¶

=
¶
¶

- -( )

¶
¶

=
¶
¶

- -( )

u

t

u

x
F u u

u

t

u

x
F u u

1
2

1
2 1 2

2
2

2
2 1 2

0 024

0 170

.

.

F y y y( ) = ( )- -( )exp . exp .5 73 11 46

satisfying the initial conditions:

u x

u x

1

2

0 1

0 0

,

,

( )º
( )º

and the boundary conditions:

¶
¶

( )º

( )º
( )º

¶
¶

( )º

u

x
t

u t

u t

u

x
t

1

2

1

2

0 0

0 0

1 1

1 0

,

,

,

,

To conveniently use the function pdepe, the system can be written as:

1

1

0 024

0 170
1

2

1

2

é

ë
ê
ù

û
ú ×*

¶
¶
é

ë
ê

ù

û
ú =

¶
¶

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

t

u

u x

u x

u x

. /

. / ûû
ú
ú
+

- -( )
-( )

é

ë
ê
ê

ù

û
ú
ú

F u u

F u u

1 2

1 2

The left boundary condition can be written as:

0 1

0

0 024

0 170

0

02

1

2
u

u x

u x

é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú ×*

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

û
ú
ú
=
é. /

. / ëë
ê

ù

û
ú

and the right boundary condition can be written as:

u u x

u x
1 1

2

1

0

1

0

0 024

0 170

0-é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú ×*

¶ ¶( )
¶ ¶( )

é

ë
ê
ê

ù

û
ú
ú
=

. /

. / 00

é

ë
ê

ù

û
ú

We start by defining the functions in M-files as shown in Figures 4-39 to 4-41.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

169

Figure 4-39.  

Figure 4-41.  

Figure 4-40.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

170

Once the support functions are defined, the function that solves the system of equations is given by the M-file 
shown in Figure 4-42.

Figure 4-42.  

To view the solution (Figures 4-43 and 4-44), we enter the following in the MATLAB Command Window:
 
>> pdex4
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

171

Figure 4-43.  

Figure 4-44.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

172

eXerCISe 4-1

Minimize the function x3− 2 x–5  in the interval (0,2) and calculate the value that the function takes at that point, 
displaying information about all iterations of the optimization process.
 
>> f = inline('x.^3-2*x-5'); 
>> [x,fval] = fminbnd(f, 0, 2,optimset('Display','iter'))
 
Func-count            x         f(x)     Procedure
1              0.763932     -6.08204       initial
2               1.23607     -5.58359        golden
3              0.472136     -5.83903        golden
4              0.786475     -6.08648     parabolic
5              0.823917     -6.08853     parabolic
6                0.8167     -6.08866     parabolic
7               0.81645     -6.08866     parabolic
8              0.816497     -6.08866     parabolic
9               0.81653     -6.08866     parabolic
 
Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004 
 
x =
 
0.8165
 
fval =
 
-6.0887 

eXerCISe 4-2

Find in a neighborhood of x = 1.3 a zero of the function:

f x
x x

( ) =
-( ) +

+
-( ) +

- ×
1

0 3 0 01

1

0 9 0 04
62 2

. . . .

Minimize this function on the interval (0,2).

First we find a zero of the function using the initial estimate of x= 1.3, presenting information about the iterations 
and checking that the result is indeed a zero.
 
>> [x,feval]=fzero(inline('1/((x-0.3)^2+0.01)+...



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

173

1/((x-0.9)^2+0.04)-6'),1.3,optimset('Display','iter'))

Func-count        x         f(x)  Procedure
1               1.3  -0.00990099    initial
2           1.26323     0.882416     search
 
Looking for a zero in the interval [1.2632, 1.3]
 
3         1.29959   -0.00093168        interpolation
4         1.29955  1.23235e-007        interpolation
5         1.29955 -1.37597e-011        interpolation
6         1.29955             0        interpolation
Zero found in the interval: [1.2632, 1.3].
 
x =
 
1.2995
  
feval =
 
0
 
secondly, we minimize the function specified in the interval [0,2] and also present information about the iterative 
process, terminating the process when the value of x which minimizes the function is found. in addition, the value 
of the function at this point is calculated.
 
>> [x,feval]=fminbnd(inline('1/((x-0.3)^2+0.01)+...
1/((x-0.9)^2+0.04)-6'),0,2,optimset('Display','iter'))
 
Func-count         x      f(x)  Procedure

1           0.763932   15.5296     initial
2            1.23607   1.66682      golden
3            1.52786  -3.03807      golden
4             1.8472  -4.51698   parabolic
5            1.81067  -4.41339   parabolic
6            1.90557  -4.66225      golden
7            1.94164  -4.74143      golden
8            1.96393  -4.78683      golden
9            1.97771  -4.81365      golden
10           1.98622  -4.82978      golden
11           1.99148  -4.83958      golden
12           1.99474  -4.84557      golden
13           1.99675  -4.84925      golden
14           1.99799  -4.85152      golden
15           1.99876  -4.85292      golden
16           1.99923  -4.85378      golden
17           1.99953  -4.85431      golden
18           1.99971  -4.85464      golden
19           1.99982  -4.85484      golden
20           1.99989  -4.85497      golden
21           1.99993  -4.85505      golden
22           1.99996  -4.85511      golden
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

174

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004 
  
x =
 
2.0000
 
feval =
 
-4.8551 

eXerCISe 4-3

the intermediate value theorem says that if f is a continuous function on the interval [a, b] and L is a number 
between f(a) and f(b), then there is a c (a< c < b) such that f(c) = L. For the function f(x) = cos(x−1), find the value 
c in the interval  [1, 2.5] such that f(c)= 0.8.

the question asks us to solve the equation cos(x− 1) − 0.8 = 0 in the interval [1, 2.5].
 
>> c = fzero (inline ('cos (x-1) - 0.8'), [1 2.5])
 
c =
 
1.6435 

eXerCISe 4-4

Calculate the following integral using both simpson’s and Lobato’s methods:

2 2
1

6
+ ( ) ×( )ò sin x dx

For the solution using simpson’s method we have:
 
>> quad(inline('2+sin(2*sqrt(x))'),1,6)
 
ans =
 
8.1835
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

175

For the solution using Lobato’s method we have:
 
>> quadl(inline('2+sin(2*sqrt(x))'),1,6)
 
ans =
 
8.1835 

eXerCISe 4-5

Calculate the area under the normal curve (0,1) between the limits−1.96 and 1.96.

the integral we need to calculate is e
dx

x-

-ò

2

2

196

196

2p
 .

the calculation is done in MatLaB using Lobato’s method as follows:
 
(((>> quadl(inline('exp(-x.^2/2)/sqrt(2*pi)'), - 1.96,1.96)
 
ans =
 
0.9500 

eXerCISe 4-6

Calculate the volume of the hemisphere-function defined in 

-[ ] ´ -[ ] ( ) = - +( )1 1 1 1 1 2 2, , , .by f x y x y

>> dblquad(inline('sqrt(max(1-(x.^2+y.^2),0))'),-1,1,-1,1)
 
ans =
 
2.0944
 

the calculation could also have been done in the following way:
 
>> dblquad(inline('sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1)'),-1,1,-1,1)
 
ans =
 
2.0944 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

176

eXerCISe 4-7

evaluate the following double integral:

1
2

1

2

3

4

x y
dxdy

+( )
×òò

(>> dblquad(inline('1./(x+y).^2'),3,4,1,2)
 
ans =
 
0.0408 

eXerCISe 4-8

solve the following Van der pol system of equations:

y y y

y y y y y

’

’

1 2 1

2
2

1 2 1 2

0 0

1000 1 0 1

= ( )=
= -( ) - ( )=

we begin by defining a function named vdp100 in an M-file, where we will store the equations of the system. 
this function begins by defining a vector column with two empty rows which are subsequently assigned the 
components which make up the equation (Figure 4-45).

Figure 4-45.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

177

we then solve the system and plot the solution y1 = y1(t ) given by the first column (Figure 4-46) by typing the 
following into the Command window:
 
>> [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
>> plot (T, Y(:,1),'-') 

Figure 4-46.  

similarly we plot the solution y2 = y2(t ) (Figure 4-47) by using the syntax:
 
>> plot (T, Y(:,2),'-')



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

178

 

eXerCISe 4-9

given the following differential equation

y q x y”+ - ( )( ) =l 2 2 0cos

subject to the boundary conditions y(0) = 1, y’(0) = 0, y’(p) = 0, find a solution for  q = 5 and l = 15 based on 
an initial solution defined on 10 equally spaced points in the interval [0, p ] and graph the first component of the 
solution on 100 equally spaced points in the interval [0, p ].

the given equation is equivalent to the following system of first order differential equations:

y y

y q x y

’

’ cos
1 2

2 12 2

=

=- -( )l

with the following boundary conditions:

y

y

y

1

2

2

0 1 0

0 0

0

( )- =

( ) =
( ) =p

Figure 4-47.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

179

the system of equations is introduced in the M-file shown in Figure 4-48, the boundary conditions are given in 
the M-file shown in Figure 4-49, and the M-file in Figure 4-50 sets up the initial solution.

Figure 4-48.  

Figure 4-49.  

Figure 4-50.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

180

the initial solution for l = 15 and 10 equally spaced points in [0, p ] is calculated using the following  
MatLaB syntax:
 
>> lambda = 15;
solinit = bvpinit (linspace(0,pi,10), @mat4init, lambda);
 
the numerical solution of the system is calculated using the following syntax:
 
>> sol = bvp4c(@mat4ode,@mat4bc,solinit);
 
to graph the first component on 100 equally spaced points in the interval [0, p ] we use the following syntax:
 
>> xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([0 pi-1 1.1])
xlabel ('x')
ylabel('solution y')
 
the result is shown in Figure 4-51.

Figure 4-51.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

181

eXerCISe 4-10

solve the following differential equation

y y y y”+ -( ) + =1 02 ’

in the interval [0,20], taking as initial solution y = 2, y' = 0.  solve the more general equation

y y y y” ’+ -( ) + = > ×m m1 0 02

the general equation above is equivalent to the following system of first-order linear equations:

y y

y y y y

’

’

1 2

2 1
2

2 11

=

= -( ) -m

which is defined for m = 1 in the M-file shown in Figure 4-52.

Figure 4-52.  

taking the initial solution y1= 2 and y2= 0 in the interval [0,20], we can solve the system using the following 
MatLaB syntax:
 
>> [t, y] = ode45(@vdp1,[0 20],[2; 0])
 
t =
 
0
0.0000
0.0001
0.0001
0.0001
0.0002



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

182

0.0004
0.0005
0.0006
0.0012
.
.
19.9559
19.9780
20.0000
 
y =
 
2.0000 0
2.0000 - 0.0001
2.0000 - 0.0001
2.0000 - 0.0002
2.0000 - 0.0002
2.0000 - 0.0005
.
.
1.8729 1.0366
1.9358 0.7357
1.9787 0.4746
2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404
 
we can graph the solutions using the following syntax (see Figure 4-53):
 
>> plot (t, y(:,1),'-', t, y(:,2),'-')
>> xlabel ('time t')
>> ylabel('solution y')
>> legend ('y_1', 'y_2')
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

183

Figure 4-53.  

to solve the general system with the parameter m, we define the system in the M-file shown in Figure 4-54.

Figure 4-54.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

184

to graph the first solution y1= 2 and y2= 0 for another value of the parameter, for example m = 100, in the interval 
[0,1500], we use the following syntax (see Figure 4-56): 

>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
>> plot (t, y(:,1),'-'); 

Figure 4-55.  

now we can graph the first solution y1= 2 and y2= 0 corresponding to m = 1000 in the interval [0,1500] using the 
following syntax (see Figure 4-55):
 
>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],1000);
>> xlabel ('time t')
>> ylabel ('solution y_1') 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

185

Figure 4-56.  

eXerCISe 4-11

the Fibonacci sequence {an} is defined by the recurrence law a1 = 1, a2 = 1, an+1 =an−1 + an. represent this 
sequence by a recursive function and calculate a2, a5 and a20.

to generate terms of the Fibonacci sequence we define a recursive function in the M-file fibo.m shown in Figure 4-57.

Figure 4-57.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

186

terms 2, 5 and 20 of the sequence are now calculated using the syntax:
 
>> [fibo (2), fibo (5), fibo (20)]
 
ans =
 
           2 8 10946 

eXerCISe 4-12

define the Kronecker delta, which equals 1 if x = 0 and 0 otherwise. define the modified Kronecker delta function, 
which is 0 if x = 0, 1 if x > 0 and −1 if x < 0 and graph it. Lastly, define the piecewise function that is equal  
to 0 if x £ − 3, x3 if −3 < x <− 2, x2 if −2 £ x £ 2, x if 2 < x < 3 and 0 if 3 £ x, and graph it.

the Kronecker delta delta(x) is defined in the M-file delta.m shown in Figure 4-58. the modified Kronecker delta 
delta1(x) is defined in the M-file delta1.m shown in Figure 4-59. to define the third function piece1(x) of the 
exercise, we create the M-file piece1.m shown in Figure 4-60.

Figure 4-58.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

187

Figure 4-59.  

Figure 4-60.  



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

188

to graphically represent the piecewise function on the interval [- 5,5] we use the following syntax (see Figure 4-62):
 
>> fplot ('piece1 (x)', [- 5 5]);
>> title 'Piecewise function' 

Figure 4-61.  

to graphically represent the modified Kronecker delta on the domain [−10, 10] (and with codomain [− 2, 2]) we 
use the following syntax(see Figure 4-61):
 
>> fplot ('delta1 (x)', [- 10 10 – 2-2])
>> title 'Modified Kronecker Delta'
 



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

189

Figure 4-62.  

eXerCISe 4-13

define a function descriptive(v) which returns the variance and coefficient of variation of the elements of a given 
vector v. as an application, find the variance and coefficient of variation of the set of numbers 1, 5, 6, 7 and 9.

Figure 4-63 shows the M-file which defines the function descriptive.



Chapter 4 ■ MatLaB Language: M-FiLes, sCripts, FLow ControL and nuMeriCaL anaLysis FunCtions

190

to find the variance and coefficient of variation of the given set of numbers, we use the following syntax:
 
>> [variance, cv] = descriptive([1 5 6 7 9])
 
variance =
 
    7.0400
 
cv =
 
0.4738 

Figure 4-63.  



191

Chapter 5

Numerical Algorithms: Equations, 
Derivatives and Integrals

Solving Non-Linear Equations
MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which 
play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are 
stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or 
functions that accept arguments and produces output. The M-files are created using the text editor.

The Fixed Point Method for Solving x = g (x)
The fixed point method solves the equation x = g (x), under certain conditions on the function g, using an iterative 
method that begins with an initial value p

0
 (a first approximation to the solution) and defines p

k+1
 = g (p

k
). The fixed 

point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation x = g (x).  
In practice the iterative process will stop when the absolute or relative error corresponding to two consecutive 
iterations is less than a preset value (tolerance). The smaller this value, the better the approximation to the solution of 
the equation.

This simple iterative method can be implemented using the M-file shown in Figure 5-1.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

192

As an example we solve the following non-linear equation:

x x- =-2 0.

In order to apply the fixed point algorithm we write the equation in the form x = g (x) as follows:

x g xx- =-2 ( ).

We will start by finding an approximate solution which will be the first term p
0
. To plot the x axis and the curve 

defined by the given equation on the same graph we use the following syntax (see Figure 5-2):
 
>> fplot ('[x-2^(-x), 0]',[0, 1])
 

Figure 5-1.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

193

The graph shows that one solution is close to x = 0.6. We can take this value as the initial value. We choose  
p

0
 = 0.6. If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have 

defined the function g (x) in the M-file g1.m (see Figure 5-3).

Figure 5-2.  

Figure 5-3.  

We can now solve the equation using the MATLAB syntax:
 
>> [k, p] = fixedpoint('g1',0.6,0.0001,1000)
 
k =
 
    10
  
p =
 
    0.6412
 



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

194

We obtain the solution x = 0.6412 at the 1000th iteration. To check if the solution is approximately correct, we must 
verify that g1(0.6412) is close to 0.6412.
 
>> g1 (0.6412)
 
ans =
 
    0.6412
 

Thus we observe that the solution is acceptable.

Newton’s Method for Solving the Equation f (x) =0
Newton’s method (also called the Newton–Raphson method) for solving the equation f (x) = 0, under certain 
conditions on f, uses the iteration 

x x f x f xr r r r+ = - ¢1 ( )/ ( )

for an initial value x
0
 close to a solution.

The M-file in Figure 5-4 shows a program which solves equations by Newton’s method to a given precision.

Figure 5-4.  

As an example we solve the following equation by Newton’s method:

x x x2 0 15 0- - + =sin( . ) .



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

195

The function f (x) is defined in the M-file f1.m (see Figure 5-5), and its derivative f'(x) is given in the M-file derf1.m 
(see Figure 5-6).

Figure 5-5.  

Figure 5-6.  

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax, 
starting with an initial estimate of 1.5:
 
>> [x,it]=newton('f1','derf1',1.5,0.0001)
 
x =
 
1.6101
  
it =
 
2
 
>> [x,it]=newton('f1','derf1',1.5,0.000001)
x =
 



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

196

1.6100
 
it =
 
3
 

Thus we have obtained the solution x = 1.61 in just 2 iterations for a precision of 0.0001 and in just 3 iterations for 
a precision of 0.000001.

Schröder’s Method for Solving the Equation f (x) =0
Schröder’s method, which is similar to Newton’s method, solves the equation f (x) = 0, under certain conditions on f, 
via the iteration

X X mf X f Xr r r r+ = - ¢1 ( )/ ( )

for an initial value x
0
 close to a solution, and where m is the order of multiplicity of the solution being sought.

The M-file shown in Figure 5-7 gives the function that solves equations by Schröder’s method to a given precision.

Figure 5-7.  

Systems of Non-Linear Equations
As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear 
equations using classical iterative numerical methods.

Among a diverse collection of existing methods we will consider the Seidel and Newton–Raphson methods.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

197

The Seidel Method
The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single 
equations.

In the case of a system of two equations x=g
1
(x,y) and y=g

2
(x,y) the terms of the iteration are defined as:

P
k+1

=g
1
(p

k
,q

k
) and q

k+1
=g

2
(p

k
,q

k
).

Similarly, in the case of a system of three equations x=g
1
(x,y,z),

y=g
2
(x,y,z) and z=g

3
(x,y,z) the terms of the iteration are defined as:

p
k+1

=g
1
(p

k
,q

k 
,r

k
),  q

k+1
=g

2
(p

k
,q

k 
,r

4
) and r

k+1
=g

3
(p

k
 ,q

k
 ,r

4
).

The M-file shown in Figure 5-8 gives a function which solves systems of equations using Seidel’s method up to a 
specified accuracy.

Figure 5-8.  

The Newton–Raphson Method
The Newton–Raphson method for solving systems of equations is a generalization of Newton’s method for  
single equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations F (X) = 0 is obtained 
by generating from an initial approximation  P

0
 a sequence of approximations P

k
 which converges to the solution. 

Figure 5-9 shows the M-file containing the function which solves systems of equations using the Newton–Raphson 
method up to a specified degree of accuracy.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

198

As an example we solve the following system of equations by the Newton–Raphson method:

x x y

x y

2

2 2

2 0 5

4 4 0

- - = -

+ - =

.

taking as an initial approximation to the solution P = [2 3].
We start by defining the system F(X) = 0 and its Jacobian matrix JF according to the M-files F.m and JF.m shown in 

Figures 5-10 and 5-11.

Figure 5-9.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

199

Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following 
MATLAB syntax:
 
>> [P,it,absoluteerror]=raphson('F','JF',[2 3],0.00001,0.00001,100)
P =
 
1.9007 0.3112
 
it =
 
6
 
absoluteerror =
 
8. 8751e-006
 

The solution obtained in 6 iterations is x = 1.9007, y = 0.3112, with an absolute error of 8.8751e- 006.

Figure 5-10.  

Figure 5-11.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

200

Interpolation Methods
There are many different methods available to find an interpolating polynomial that fits a given set of points in the 
best possible way.

Among the most common methods of interpolation, we have Lagrange polynomial interpolation, Newton 
polynomial interpolation and Chebyshev approximation.

Lagrange Polynomial Interpolation
The Lagrange interpolating polynomial which passes through the N+1 points (x

k
 y

k
), k= 0,1,..., N, is defined as follows:

P x y L xk N k
k

N

( ) ( ),=
=
å

0

where:

L x

x x

x x
N k

j
j
j k

N

k j
j
j k

N, ( )

( )

( )
.=

-

-

=
¹

=
¹

Õ

Õ

0

0

The algorithm for obtaining P and L is easily implemented by the M-file shown in Figure 5-12.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

201

As an example we find the Lagrange interpolating polynomial that passes through the points (2,3), (4,5), (6,5), 
(7,6), (8,8), (9,7).

We will simply use the following MATLAB syntax:
 
>> [F, L] = lagrange([2 4 6 7 8 9],[3 5 5 6 8 7])
 
C =
 
-0.0185 0.4857-4.8125 22.2143-46.6690 38.8000
 
L =
 
-0.0006 0.0202 -0.2708 1.7798 -5.7286 7.2000
0.0042 -0.1333 1.6458 -9.6667 26.3500 -25.2000
-0.0208 0.6250 -7.1458 38.3750 -94.8333 84.0000
0.0333 -0.9667 10.6667 -55.3333 132.8000 -115.2000
-0.0208 0.5833 -6.2292 31.4167 -73.7500 63.0000
0.0048 -0.1286 1.3333 -6.5714 15.1619 -12.8000
 

Figure 5-12.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

202

We can obtain the symbolic form of the polynomial whose coefficients are given by the vector C by using the 
following MATLAB command:
 
>> pretty(poly2sym(C))
 
   31   5   1093731338075689  4   77  3   311  2   19601
- ---- x  + ---------------- x  - -- x  + --- x  - ----- x + 194/5
  1680      2251799813685248      16       14        420

Newton Polynomial Interpolation
The Newton interpolating polynomial that passes through the N+ 1 points (x

k
 y

k
) = (x

k
, f (x

k
)), k= 0,1,..., N, is defined as 

follows:

P x d d x x d x x x x d x x x xN N( ) ( ) ( )( ) ( )( ) (, , , ,= + - + - - + + - -0 0 1 1 0 2 2 0 1 0 1  xx xN- -1)

where:

d y d
d d

x dk j k k j
k j k j

k k
, ,

, , .= =
-

-
- - -

-

1 1 1

1

Obtaining the coefficients C of the interpolating polynomial and the divided difference table D is easily done via 
the M-file shown in Figure 5-13.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

203

As an example we apply Newton’s method to the same interpolation problem solved by the Lagrange method  
in the previous section. We will use the following MATLAB syntax:
 
>> [C, D] = pnewton([2 4 6 7 8 9],[3 5 5 6 8 7])
 
C =
 
-0.0185 0.4857 - 4.8125 22.2143 - 46.6690 38.8000
 
D =
 
3.0000         0         0         0         0         0
5.0000    1.0000         0         0         0         0
5.0000         0       - 0.2500    0         0         0
6.0000    1.0000         0.3333    0.1167    0         0
8.0000    2.0000         0.5000    0.0417  - 0.0125    0
7.0000  - 1.0000       - 1.5000  - 0.6667  - 0.1417  - 0.0185
 

Figure 5-13.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

204

The interpolating polynomial in symbolic form is calculated as follows:
 
>> pretty(poly2sym(C))

   31   5   17  4   77  3   311  2   19601
- ---- x  + -- x  - -- x  + --- x  - ----- x + 194/5
  1680      35      16       14       420
 

Observe that the results obtained by both interpolation methods are similar.

Numerical Derivation Methods
There are various different techniques available for numerical derivation. These are of great importance when 
developing algorithms to solve problems involving ordinary or partial differential equations.

Among the most common methods for numerical derivation are derivation using limits, derivation using 
extrapolation and derivation using interpolation on N-1 nodes.

Numerical Derivation via Limits
This method consists in building a sequence of numerical approximations to f' (x) via the generated sequence:

¢ » =
+ - -- -

-f x D
f x h f x h

hk

k k

k
( )

( ) ( )

( )
.

10 10

2 10

The iterations continue until
|D

n+1
−D

n
|³|D

n
−D

n-1
| or |D

n
−D

n−1
|< tolerance. This approach approximates f' (x) by D

n
.

The algorithm to obtain the derivative D is easily implemented by the M-file shown in Figure 5-14.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

205

As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

at the point 
1 5

2

-
.

To begin we define the function f in an M-file named funcion (see Figure 5-15). (Note: we use funcion rather than 
function here since the latter is a protected term in MATLAB.)

Figure 5-14.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

206

The derivative is then given by the following MATLAB command:
 
>> [L, n] = derivedlim ('funcion', (1-sqrt (5)) / 2,0.01)
 
L =
1.0000 - 0.7448 0
0.1000 - 2.6045 1.8598
0.0100 - 2.6122 0.0077
0.0010 - 2.6122 0.0000
0.0001 - 2.6122 0.0000
 
n =
4
 

Thus we see that the approximate derivative is – 2.6122, which can be checked as follows:
 
>> f = diff ('sin (cos (x))')
 
f =
 
cos (cos (x)) * sin (x) / x ^ 2
 
>> subs (f, (1-sqrt (5)) / 2).
 
ans =
 
   -2.6122

Figure 5-15.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

207

Richardson’s Extrapolation Method
This method involves building numerical approximations to f' (x) via the construction of a table of values D(j, k) with  
k ≤ j that yield a final solution to the derivative f' (x) = D(n, n). The values D( j, k) form a lower triangular matrix, the 
first column of which is defined as:

D j
f x h f x h

h

j j

j
( , )

( ) ( )

)
1

2 2

2 1
=

+ - -- -

- +

and the remaining elements are defined by:

D j k D j k
D j k D j k

k j
k

( , ) ( , )
( , ) ( , )

( )= - +
- - - -

-
£ £1

1 1 1

4 1
2

The corresponding algorithm for D is implemented by the M-file shown in Figure 5-16.

Figure 5-16.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

208

As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

at the point 1 5

2

- .

As the M-file that defines the function f  has already been defined in the previous section, we can find the 
approximate derivative using the MATLAB syntax:
 
>> [D, relativeerror, absoluteerror, n] = richardson ('funcion',
(1-sqrt(5))/2,0.001,0.001)
 
D =
 
   -0.7448         0         0         0         0         0
   -1.1335 - 1.2631 0 0 0 0
   -2.3716 - 2.7843 - 2.8857 0 0 0
   -2.5947 - 2.6691 - 2.6614 - 2.6578 0 0
   -2.6107 - 2.6160 - 2.6125 - 2.6117 - 2.6115 0
   -2.6120 - 2.6124 - 2.6122 - 2.6122 - 2.6122 - 2.6122
 
relativeerror =
 
  6. 9003e-004
 
absoluteerror =
 
  2. 6419e-004
 
n =
6
 

Thus we get the same result as before when we used the limit method.

Derivation Using Interpolation (n + 1 nodes)
This method consists in building the Newton interpolating polynomial of degree N:

P x a a x x a x x x x a x x x x x xN N( ) ( ) ( )( ) ( )( ) ( )= + - + - - + + - - - -0 1 0 2 0 1 0 1 1 

and numerically approximating f' (x
0
) by P' (x

0
).

The algorithm for the derivative D is easily implemented by the M-file shown in Figure 5-17.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

209

As an example, we approximate the derivative of the function:

f x
x

( ) sin cos= æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

at the point 1 5

2

- .

As the M-file that defines the function f  has already been constructed in the previous section, we can calculate 
the approximate derivative using the MATLAB command:
 
>> [A, df] = nodes([2 4 6 7 8 9],[3 5 5 6 8 7])
 
A =
 
3.0000 1.0000 - 0.2500 0.1167 - 0.0125 - 0.0185
 
df =
-1.4952

Figure 5-17.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

210

Numerical Integration Methods
Given the difficulty of obtaining an exact primitive for many functions, numerical integration methods are especially 
important. There are many different ways to numerically approximate definite integrals, among them the trapezium 
method, Simpson’s method and Romberg’s method (all implemented in MATLAB’s Basic module).

The Trapezium Method
The trapezium method for numerical integration has two variants: the trapezoidal rule and the recursive trapezoidal rule.

The trapezoidal rule approximates the definite integral of the function f (x) between a and b as follows:

f x dx
h

f a f b h f x
a

b

k
k

M

( ) ( ( ) ( )) ( )» + +ò å
=

-

2 1

1

calculating f (x) at equidistant points x
k
 = a+kh, k= 0,1,..., M where x

0
=a and x

M
= b.

The trapezoidal rule is implemented by the M-file shown in Figure 5-18.

Figure 5-18.  

The recursive trapezoidal rule considers the points x
k
= a+kh, k= 0,1,..., M, where x

0
=a and x

M
= b, dividing the 

interval [a, b] into 2J= M subintervals of the same size h =(b-a)/2J. We then consider the following recursive formula:  

T
h

f a f b( ) ( ( ) ( ))0
2

= +

T J
T J

h f x k
k

M

( )
( )

( )=
-

+ -
=
å1

2 2 1
1

and the integral of the function f (x) between a and b can be calculated as:

f x dx
h

f x f xk
k

ka

b
J

( ) ( ( ) ( ))» +
=

-åò 2 1

2

1



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

211

using the trapezoidal rule as the number of sub-intervals [a, b] increases, taking at the J-th iteration a set of  
2J+ 1 equally spaced points.

The recursive trapezoidal rule is implemented via the M-file shown in Figure 5-19.

Figure 5-19.  

As an example, we calculate the following integral using 100 iterations of the recursive trapezoidal rule:

1
1

10
20

2

x
dx

+
ò .

We start by defining the integrand by means of the M-file integrand1.m shown in Figure 5-20.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

212

We then calculate the requested integral as follows:
 
>> recursivetrapezoidal('integrand1',0,2,14)
 
ans =
 
Columns 1 through 4 
 
10.24390243902439   6.03104212860310   4.65685845031979   4.47367657743630
 
Columns 5 through 8 
 
4.47109102437123 4.47132194954670 4.47138003053334 4.47139455324593
 
Columns 9 through 12
 
4.47139818407829 4.47139909179602 4.47139931872606 4.47139937545860
 
Columns 13 through 15
 
4.47139938964175 4.47139939318754 4.47139939407398
 

This shows that after 14 iterations an accurate value for the integral is 4.47139939407398.
We calculate the same integral using the trapezoidal rule, using M = 14, using the following MATLAB command:

 
>> trapezoidalrule('integrand1',0,2,14)
 
ans =
4.47100414648074
 

The result is now the less accurate 4.47100414648074.

Figure 5-20.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

213

Simpson’s Method
Simpson’s method for numerical integration is generally considered in two variants: the simple Simpson’s rule and 
the composite Simpson's rule.

Simpson’s simple approximation of the definite integral of the function f(x) between the points a and b is the 
following:

f x dx
h

f a f b f c c
a b

a

b
( ) ( ( ) ( ) ( ))» + + =

+
ò 3

4
2

This can be implemented using the M-file shown in Figure 5-21.

Figure 5-21.  

The composite Simpson's rule approximates the definite integral of the function f (x) between points a and b as follows:

f x dx
h

f a f b
h

f x
h

f xk
k

M

a

b

k
k

M

( ) ( ( ) ( )) ( ) ( )» + + +
=

-

-
=

åò å
3

2

3

4

32
1

1

2 1
1

calculating f (x) at equidistant points x
k
 = a+kh, k= 0, 1,..., 2M, where x

0
=a and x

2M
= b.

The composite Simpson’s rule is implemented using the M-file shown in Figure 5-22.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

214

As an example, we calculate the following integral by the composite Simpson's rule taking M = 14:

1
1

10
20

2

x
dx

+
ò .

We use the following syntax:
 
>>compositesimpson('integrand1',0,2,14)
 
ans =
 
   4.47139628125498
 

Next we calculate the same integral using the simple Simpson’s rule:
 
>> Z=simplesimpson('integrand2',0,2,0.0001)
 
Z =
 
Columns 1 through 4 
 
0 2.00000000000000 4.62675535846268 4.62675535846268
 
Columns 5 through 6
 
0.00010000000000 0.00010000000000
 

Figure 5-22.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

215

As we see, the simple Simpson’s rule is less accurate than the composite rule.
In this case, we have previously defined the integrand in the M-file named integrand2.m (see Figure 5-23).

Ordinary Differential Equations
Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different 
methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include, 
among others, Euler’s method, Heun’s method, the Taylor series method, the Runge–Kutta method (implemented in 
MATLAB’s Basic module), the Adams–Bashforth–Moulton method, Milne’s method and Hamming’s method.

Euler’s Method
Suppose we want to solve the differential equation y ' = f (t, y),  y(a) =y

0
, on the interval [a, b]. We divide the interval  

[a, b] into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k= 0,1,..., M, h= (b-a) /M. Euler’s 

method then finds the solution of the differential equation iteratively by calculating y
k+1

 = y
k
+hf (t

k
, y

k
),  k=0,1, ..., M-1.

Euler’s method is implemented using the M-file shown in Figure 5-24.

Figure 5-23.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

216

Heun’s Method
Suppose we want to solve the differential equation y ' = f (t, y), y(a) =y

0
, on the interval [a, b]. We divide the interval 

[a, b] into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k= 0,1,..., M, h= (b-a) /M. 

Heun’s method then finds the solution of the differential equation iteratively by calculating y
k + 1

 = y
k
+ h(f (t

k
, y

k
) +  

f (t
k + 1

, y
k
+ f (t

k
, y

k
))) / 2, k= 0,1,..., M-1.

Heun’s method is implemented using the M-file shown in Figure 5-25.

Figure 5-24.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

217

The Taylor Series Method
Suppose we want to solve the differential equation y' = f (t, y), y(a) =y

0
, on the interval [a, b]. We divide the interval 

[a, b] into M subintervals of the same size using the partition given by the points t
k
 = a+kh, k= 0,1,..., M, h= (b-a) /M. 

The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by 
evaluating y', y", y"' and y"" to give the 4th order Taylor series for y at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 5-26.

Figure 5-25.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

218

As an example we solve the differential equation y'(t) = (t - y) / 2 on the interval [0,3], with y (0) = 1, using Euler’s 
method, Heun’s method and by the Taylor series method.

We will begin by defining the function f (t, y) via the M-file shown in Figure 5-27.

Figure 5-26.  

Figure 5-27.  

The solution of the equation using Euler’s method in 100 steps is calculated as follows:
 
>> E = euler('dif1',0,3,1,100)
  
E =
 
0 1.00000000000000
0.03000000000000 0.98500000000000



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

219

0.06000000000000 0.97067500000000
0.09000000000000 0.95701487500000
0.12000000000000 0.94400965187500
0.15000000000000 0.93164950709688
0.18000000000000 0.91992476449042
.
.
.
2.85000000000000 1.56377799005910
2.88000000000000 1.58307132020821
2.91000000000000 1.60252525040509
2.94000000000000 1.62213737164901
2.97000000000000 1.64190531107428
3.00000000000000 1.66182673140816
 

This solution can be graphed as follows (see Figure 5-28):
 
>> plot (E (:,2))
 

Figure 5-28.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

220

The solution of the equation by Heun’s method in 100 steps is calculated as follows:
 
>> H = heun('dif1',0,3,1,100)
H =
0 1.00000000000000
0.03000000000000 0.98533750000000
0.06000000000000 0.97133991296875
0.09000000000000 0.95799734001443
0.12000000000000 0.94530002961496
.
.
.
2.88000000000000 1.59082209379464
2.91000000000000 1.61023972987327
2.94000000000000 1.62981491089478
2.97000000000000 1.64954529140884
3.00000000000000 1.66942856088299
 

The solution using the Taylor series method requires the previously defined function df = [y' y'' y''' y''''] using the 
M-file shown in Figure 5-29.

Figure 5-29.  

The differential equation is solved by the Taylor series method via the command:
 
>> T = taylor('df',0,3,1,100)
 
T =
0 1.00000000000000
0.03000000000000 0.98533581882813
0.06000000000000 0.97133660068283
0.09000000000000 0.95799244555443
0.12000000000000 0.94529360082516
.
.
.
2.88000000000000 1.59078327648360
2.91000000000000 1.61020109213866
2.94000000000000 1.62977645599332
2.97000000000000 1.64950702246046
3.00000000000000 1.66939048087422
 



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

221

eXerCISe 5-1

solve the following non-linear equation using the fixed point iterative method:

x x= cos(sin( )).

We will start by finding an approximate solution to the equation, which we will use as the initial value p0. to do this 
we show the x axis and the curve y=x-cos(sin(x)) on the same graph (Figure 5-30) by using the following command:

 
>> fplot ([x-cos (sin (x)), 0], [- 2, 2])   

Figure 5-30.    

the graph indicates that there is a solution close to x = 1, which is the value that we shall take as our initial 
approximation to the solution, i.e. p0 = 1. if we consider a tolerance of 0.0001 for a maximum number of 100 
iterations, we can solve the problem once we have defined the function g (x) =cos(sin(x)) via the m-file g91.m shown 
in Figure 5-31.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

222

We can now solve the equation using the matlaB command:
 
>> [k, p, absoluteerror, P]=fixedpoint('g91',1,0.0001,1000)
 
k =
 
    13
 
p =
 
    0.7682
 
absoluteerror =
 
  6. 3361e-005
 
P =
 
1.0000
0.6664
0.8150
0.7467
0.7781
0.7636
0.7703
0.7672
0.7686
0.7680
0.7683
0.7681
0.7682

 
the solution is x = 0.7682, which has been found in 13 iterations with an absolute error of 6.3361e- 005. thus, 
the convergence to the solution is particularly fast.

Figure 5-31.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

223

eXerCISe 5-2

using Newton’s method calculate the root of the equation x3 - 10x2 + 29 x - 20 = 0 close to the point  
x = 7 with an accuracy of 0.00005. repeat the same calculation but with an accuracy of 0.0005.

We define the function f (x) =x3 - 10x2 + 29x - 20 and its derivative via the m-files named f 302.m and f 303.m 
shown in Figures 5-32 and 5-33.

Figure 5-32.  

Figure 5-33.  

to run the program that solves the equation, type:
 
>> [x, it]=newton('f302','f303',7,.00005)
 
x =
 
5.0000
 
it =
 
6

 



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

224

in 6 iterations and with an accuracy of 0.00005 the solution x = 5 has been obtained. in 5 iterations and with an 
accuracy of 0.0005 we get the solution x = 5.0002:

 
>> [x, it] = newton('f302','f303',7,.0005)

x =
 
5.0002
 
it =
 
5 

eXerCISe 5-3

Write a program that calculates a root with multiplicity 2 of the equation (e -x - x)2 = 0 close to the point x = -2 to 
an accuracy of 0.00005.

We define the function f (x)=(ex - x)2 and its derivative via the m-files f 304.m and f 305.m shown in  
Figures 5-34 and 5-35:

Figure 5-34.  

Figure 5-35.  



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

225

We solve the equation using schröder’s method. to run the program we enter the command:
 

>> [x,it]=schroder('f304','f305',2,-2,.00005)

x =
 
0.5671
 
it =
 
5

 
in 5 iterations we have found the solution x = 0.56715.

eXerCISe 5-4

approximate the derivative of the function

f x
x

x
( ) tan cos

sin( )
=

+
+

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷

5

1 2

at the point 
1 5

3

-
.

to begin we define the function f in the m-file funcion1.m shown in Figure 5-36.

Figure 5-36.  

the derivative can be found using the method of numerical derivation with an accuracy of 0.0001 via the 
following matlaB command:

 
>> [L, n] = derivedlim ('funcion1', (1 + sqrt (5)) / 3,0.0001)

L =
 
1.00000000000000 0.94450896913313 0
0.10000000000000 1.22912035588668 0.28461138675355
0.01000000000000 1.22860294102802 0.00051741485866



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

226

0.00100000000000 1.22859747858110 0.00000546244691
0.00010000000000 1.22859742392997 0.00000005465113
 
n =
 
4
 
We see that the value of the derivative is approximated by 1.22859742392997.

using richardson’s method, the derivative is calculated as follows:
 

>> [D, absoluteerror, relativeerror, n] = ('funcion1' richardson,(1+sqrt(5))/3,0.0001,0.0001)
 
D =
 
Columns 1 through 4 
 
   0.94450896913313                  0                  0                  0
   1.22047776163545   1.31246735913623                  0                  0
   1.23085024935646   1.23430774526347   1.22909710433862                  0
   1.22938849854454   1.22890124827389   1.22854081514126   1.22853198515400
   1.22880865382036   1.22861537224563   1.22859631384374   1.22859719477553
 
  Column 5 
 
                  0
                  0
                  0
                  0
   1.22859745049954
 
absoluteerror =
 
6. 546534553897310e-005
 
relativeerror =
 
    5. 328603742973844e-005
 
n =
     5 



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

227

Figure 5-37.  

eXerCISe 5-5

approximate the following integral:

tan cos
sin( )

.
5

1 21

2

3
+
+

æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
÷÷ò

x

x
dx

p

We can use the composite simpson’s rule with m=100 using the following command:
 

>> s = compositesimpson('function1',1,2*pi/3,100)
 
s =
 
0.68600990924332

 

if we use the trapezoidal rule instead, we get the following result:
 

>> s = trapezoidalrule('function1',1,2*pi/3,100)
  
s =
 
0.68600381840334 

eXerCISe 5-6

Find an approximate solution of the following differential equation in the interval [0, 0.8]:

¢ = + =y t y y2 2 0 1( ) .

We start by defining the function f(t, y) via the m-file in Figure 5-37.



Chapter 5 ■ NumeriCal algorithms: equatioNs, Derivatives aND iNtegrals

228

Figure 5-38.  

We then solve the differential equation by euler’s method, dividing the interval into 20 subintervals using the 
following command:

 
>> E = euler('dif2',0,0.8,1,20)
 
E =
0 1.00000000000000
0.04000000000000 1.04000000000000
0.08000000000000 1.08332800000000
0.12000000000000 1.13052798222336
0.16000000000000 1.18222772296696
0.20000000000000 1.23915821852503
0.24000000000000 1.30217874214655
0.28000000000000 1.37230952120649
0.32000000000000 1.45077485808625
0.36000000000000 1.53906076564045
0.40000000000000 1.63899308725380
0.44000000000000 1.75284502085643
0.48000000000000 1.88348764754208
0.52000000000000 2.03460467627982
0.56000000000000 2.21100532382941
0.60000000000000 2.41909110550949
0.64000000000000 2.66757117657970
0.68000000000000 2.96859261586445
0.72000000000000 3.33959030062305
0.76000000000000 3.80644083566367
0.80000000000000 4.40910450907999
 
the solution can be graphed as follows (see Figure 5-38):

 
>> plot (E (:,2)) 



MATLAB Programming for  
Numerical Analysis

César Pérez López



MATLAB Programming for Numerical Analysis

Copyright © 2014 by César Pérez López

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0296-8

ISBN-13 (electronic): 978-1-4842-0295-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Dominic Shakeshaft
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf, 

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,  
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Barnaby Sheppard
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global 
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + 
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.f

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/


v

Contents

About the Author ����������������������������������������������������������������������������������������������������������������� ix

Chapter 1: The MATLAB Environment ■  ��������������������������������������������������������������������������������1

Starting MATLAB on Windows. The MATLAB working environment ..............................................1

The MATLAB Command Window ............................................................................................................................ 2

Escape and exit to DOS environment commands .................................................................................................. 9

Preferences for the Command Window ............................................................................................................... 10

The Command History window ............................................................................................................................ 17

The Launch Pad window ..................................................................................................................................... 18

The Current Directory window ............................................................................................................................. 19

The help browser ................................................................................................................................................. 22

The Workspace window ....................................................................................................................................... 22

The Editor and Debugger for M-files ...........................................................................................24

Help in MATLAB ...........................................................................................................................27

Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions ■  ���������������29

Variables ......................................................................................................................................29

Vector variables ................................................................................................................................................... 30

Matrix variables ................................................................................................................................................... 33

Character variables.............................................................................................................................................. 38

Numbers ......................................................................................................................................41

Integers................................................................................................................................................................ 44

Functions of integers and divisibility ................................................................................................................... 45

Alternative bases ................................................................................................................................................. 46

Real numbers ...................................................................................................................................................... 47



■ Contents

vi

Functions with real arguments ............................................................................................................................ 49

Complex numbers ................................................................................................................................................ 52

Functions with complex arguments .................................................................................................................... 52

Elementary functions that support complex vector arguments ........................................................................... 54

Elementary functions that support complex matrix arguments .......................................................................... 57

Random numbers ................................................................................................................................................ 60

Operators .....................................................................................................................................62

Arithmetic operators ............................................................................................................................................ 62

Relational operators ............................................................................................................................................ 65

Logical operators ................................................................................................................................................. 66

Logical functions ................................................................................................................................................. 66

Chapter 3: M ■ ATLAB Language: Development Environment Features �������������������������������83

General Purpose Commands .......................................................................................................83

Commands that Handle Variables in the Workspace ........................................................................................... 83

Commands that Work with Files in the Operational Environment ....................................................................... 87

Commands that Handle Functions ....................................................................................................................... 90

Commands that Control the Command Window .................................................................................................. 96

Start and Exit Commands .................................................................................................................................... 97

File Input/Output Commands .......................................................................................................97

Opening and Closing Files ................................................................................................................................... 99

Reading and Writing Binary Files ....................................................................................................................... 100

Reading and Writing Formatted ASCII Text Files ................................................................................................ 104

Control Over the File Position ............................................................................................................................ 107

Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats .......................... 109

Sound Processing Functions .....................................................................................................115

 Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and   ■
Numerical Analysis Functions ���������������������������������������������������������������������������������������121

MATLAB and Programming........................................................................................................121

The Text Editor ................................................................................................................................................... 121

Scripts ............................................................................................................................................................... 125



■ Contents

vii

Functions and M-files. Eval and Feval ............................................................................................................... 128

Local and Global Variables ................................................................................................................................. 131

Data Types ......................................................................................................................................................... 133

Ordinary Differential Equations with Boundary Conditions................................................................................ 161

Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals ■  ����������������������191

Solving Non-Linear Equations ...................................................................................................191

The Fixed Point Method for Solving x = g (x) ..................................................................................................... 191

Newton’s Method for Solving the Equation f (x) =0 ........................................................................................... 194

Schröder’s Method for Solving the Equation f (x) =0 ......................................................................................... 196

Systems of Non-Linear Equations .............................................................................................196

The Seidel Method ............................................................................................................................................. 197

The Newton–Raphson Method .......................................................................................................................... 197

Interpolation Methods ...............................................................................................................200

Lagrange Polynomial Interpolation .................................................................................................................... 200

Newton Polynomial Interpolation ....................................................................................................................... 202

Numerical Derivation Methods ..................................................................................................204

Numerical Derivation via Limits ......................................................................................................................... 204

Richardson’s Extrapolation Method ................................................................................................................... 207

Derivation Using Interpolation (n + 1 nodes) ..................................................................................................... 208

Numerical Integration Methods .................................................................................................210

The Trapezium Method ...................................................................................................................................... 210

Simpson’s Method ............................................................................................................................................. 213

Ordinary Differential Equations .................................................................................................215

Euler’s Method ................................................................................................................................................... 215

Heun’s Method ................................................................................................................................................... 216

The Taylor Series Method .................................................................................................................................. 217



ix

About the Author

César Pérez López is a Professor at the Department of Statistics and Operations Research at the University of Madrid. 
César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which 
belongs to the Superior Systems and Information Technology Department of the Spanish Government.  
César also currently works at the Institute for Fiscal Studies in Madrid.



xi

Coming Soon

MATLAB Differential Equations•	 , 978-1-4842-0311-8

MATLAB Control Systems Engineering•	 , 978-1-4842-0290-6

MATLAB Linear Algebra•	 , 978-1-4842-0323-1

MATLAB Differential and Integral Calculus•	 , 978-1-4842-0305-7

MATLAB Matrix Algebra•	 , 978-1-4842-0308-8


	Contents at a Glance
	Contents
	About the Author
	Chapter 1: The MATLAB Environment
	Starting MATLAB on Windows. The MATLAB working environment
	The MATLAB Command Window
	Escape and exit to DOS environment commands
	Preferences for the Command Window
	The Command History window
	The Launch Pad window
	The Current Directory window
	The help browser
	The Workspace window

	The Editor and Debugger for M-files
	Help in MATLAB

	Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions
	Variables
	Vector variables
	Matrix variables
	Character variables

	Numbers
	Integers
	Functions of integers and divisibility
	Alternative bases
	Real numbers
	Functions with real arguments
	Trigonometric functions
	Hyperbolic functions
	Exponential and logarithmic functions
	Numeric variable-specific functions

	Complex numbers
	Functions with complex arguments
	Trigonometric functions
	Hyperbolic functions
	Exponential and logarithmic functions
	Specific functions for the real and imaginary part
	Specific functions for complex numbers

	Elementary functions that support complex vector arguments
	Elementary functions that support complex matrix arguments
	Random numbers

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	Logical functions


	Chapter 3: Matlab Language: Development Environment Features
	General Purpose Commands
	Commands that Handle Variables in the Workspace
	Commands that Work with Files in the Operational Environment
	Commands that Handle Functions
	Commands that Control the Command Window
	Start and Exit Commands

	File Input/Output Commands
	Opening and Closing Files
	Reading and Writing Binary Files
	Reading and Writing Formatted ASCII Text Files
	Control Over the File Position
	Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats

	Sound Processing Functions

	Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and Numerical Analysis Functions
	MATLAB and Programming
	The Text Editor
	Scripts
	Functions and M-files. Eval and Feval
	Local and Global Variables
	Data Types
	Flow Control: FOR Loops, WHILE and IF ELSEIF
	FOR Loops
	WHILE Loops
	IF ELSEIF ELSE END Loops
	Switch and Case
	Continue
	Break
	Try... Catch
	Return
	Subfunctions
	Commands in M-files
	Functions Relating to Arrays of Cells
	Multidimensional Array Functions
	Numerical Analysis Methods in MATLAB
	Zeros of Functions and Optimization
	Numerical Integration
	Numerical Differentiation
	Approximate Solution of Differential Equations
	Ordinary Differential Equations with Initial Values

	Ordinary Differential Equations with Boundary Conditions
	Partial Differential Equations



	Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals
	Solving Non-Linear Equations
	The Fixed Point Method for Solving x = g (x)
	Newton’s Method for Solving the Equation f (x) =0
	Schröder’s Method for Solving the Equation f (x) =0

	Systems of Non-Linear Equations
	The Seidel Method
	The Newton–Raphson Method

	Interpolation Methods
	Lagrange Polynomial Interpolation
	Newton Polynomial Interpolation

	Numerical Derivation Methods
	Numerical Derivation via Limits
	Richardson’s Extrapolation Method
	Derivation Using Interpolation (n + 1 nodes)

	Numerical Integration Methods
	The Trapezium Method
	Simpson’s Method

	Ordinary Differential Equations
	Euler’s Method
	Heun’s Method
	The Taylor Series Method





