MATLAB
SOLUTIONS
SERIES

APIESS

ACADEMIC

César Pérez Lopez

MAT
Proc ;{f
for NU ?
AnaIyS|s

PRACTJCAL HANDS-ON|MATLAB SOLUTIONS

&) Springer APIESS”

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOrccmimmimmr e ——————————————— ix
Chapter 1: The MATLAB Environmentcccouueeemmmmmmmmmmssnnsnsens 1
Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions 29
Chapter 3: MATLAB Language: Development Environment Features.........cccunnssnnnnnnnnnnnas 83
Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and
Numerical Analysis FUNCLIONSuuuirimmmmssssssssnmmmmmmssssssssssssnssssssssssssssssssssssssssssnsnnnsnnnss 121
Chapter 5: Numerical Algorithms: Equations, Derivatives and Integralsccccccurnrruns 191

iii

CHAPTER 1

The MATLAB Environment

Starting MATLAB on Windows. The MATLAB working environment

To start MATLAB, simply double-click on the shortcut icon to the program on the Windows desktop. Alternatively,

if there is no desktop shortcut, the easiest and most common way to run the program is to choose programs from the
Windows Start menu and select MATLAB. Having launched MATLAB by either of these methods, the welcome screen
briefly appears, followed by the screen depicted in Figure 1-1, which provides the general environment in which the
program works.

<) MATLAB
File Edt “iew Web Window Help

0O & y B) O n 2 CurrerlD'redor;ﬂ[D:WatlabRﬂMork

Launch Pad

#- A MATLAB ﬂ _ . -
- Comumications Toolbox Plasse contact your syecen adms
#-4\ Control System Toolbox The MathWorks to renew this lic

*—ﬂData Acquisition Toolbox
+—¢.Da\:abase Toolbox

To get started, select "MATLAE Help"
#-4\Datafeed Toolbox

+.—¢Filter Design Toolbox >
-4\ Financial Derivatives Toolbox v
4| |

| »| Launchpad | Workspace |

Command History 2| x|
v = [-0.6 -1.2 0.135]; -
a = fuminsearch(@three_var,v):

%-- 12:07 AN 1/02/01 --%

%-- 12:09 AN 1/02/01 --%

%-- 12:10 AN 1/02/01 --% —

I['/| Command Histary Current Directory | Ll LI
Ready
Figure 1-1.

CHAPTER 1 © THE MATLAB ENVIRONMENT

The most important elements of the MATLAB screen are the following:
e The Command Window: This runs MATLAB functions.

e The Command History: This presents a history of the functions introduced in the Command
Window and allows you to copy and execute them.

e The Launch Pad: This runs tools and gives you access to documentation for all MathWorks
products currently installed on your computer.

e The Current Directory: This shows MATLARB files and execute files (such as opening and search
for content operations).

e Help (support): This allows you to search and read the documentation for the complete family
of MATLAB products.

e The Workspace: This shows the present contents of the workspace and allows you to make
changes to it.

e The Array Editor: This displays the contents of arrays in a tabular format and allows you to edit
their values.

e The Editor/Debugger: This allows you to create, edit, and check M-files (files that contain
MATLAB functions).

The MATLAB Command Window

The Command Window (Figure 1-2) is the main way to communicate with MATLAB. It appears on the desktop when
MATLAB starts and is used to execute all operations and functions. The entries are written to the right of the

prompt >> and, once completed, they run after pressing Enter. The first line of Figure 1-3 defines a matrix and, after
pressing Enter, the matrix itself is displayed as output.

Command Window

> -

{ P

Figure 1-2.

CHAPTER 1 © THE MATLAB ENVIRONMENT

=} Command Window
File Edit VYiew Web Window Help

To get started, select "MATLAE Help" from the Help ﬂ

>> A =[123;456:7810)

A =
1 2 3
4 5 6
7 8 10
>>
| »
Ready
Figure 1-3.

In the Command Window, it is possible to evaluate previously executed operations. To do this, simply select
the syntax you wish to evaluate, right-click, and choose the option Evaluate Selection from the resulting pop-up
menu (Figures 1-4 and 1-5). Choosing Open Selection from the same menu opens in the Editor/Debugger an M-file
previously selected in the Command Window (Figures 1-6 and 1-7).

+) Command Window

File Edit View Web Window Help

b agic (2)H

>> 242 Evaluate Selection
Open Selection
she = Help on Selection
4 Al
C
. opy
Paszte b4
< T >
Ready
Figure 1-4.

CHAPTER 1 * THE MATLAB ENVIRONMENT

=) Command Window

File Edt Yew Web Window Help

Ready

Figure 1-5.

+} Command Window

File Edit Yiew Web Window Help
Al
>> int = 2] _dewm 10831] -gar-1993',...
'31-jul-1983', Evaluate Selection
| Open Selection
int = Help on Selection
0.8011
Copy
>> ik =
4| »
Ready
Figure 1-6.

CHAPTER 1 © THE MATLAB ENVIRONMENT

%) D:imatlabR12\toolbox\financelMfinancelacrubond.m

File Edit VYiew Text Debug Breakpoints Web Window Help
DEE& fBRoc AH| B8 (EDE BE| suecfe 7] xf
1l function int = acrubond(id,sd,fd,rv,cpn,per, basis) =
2 $ACRUBOND Accrued interest of security with periodic interest payments.
3 % INT = ACRUEOND(ID,SD,FD,RV,CPN,PER,BASIS) returns the
4 % accrued interest for a security with periodic interest payments. This
5 % function computes the accrued interest for securities with standard,
3] % short, and long first coupon periocds. ID is the issue date, 5D iz the
7 5 settlenent date, FD is the first coupon date, R¥ is the par wvalue, CPN
3 % iz the coupon rate, PER is the number of periods per year (default =
9 % 2), and BASIS is the day-count basis: 0 = actual/actual (defaulc), 1 =
10 % 30/360, 2 = actual/360, 3 = actual/365. Enter dates as serial date
11 % nunbers or date strings.
12 % —
13 % For example,
14 %
15 % int = acrubond('3l-jan-1983', 'l-mar-1993',...
16 % '31-jul-1983', 100, 0.1, 2, O)
17 3
18 % retukns int = 0.8011.
18 %
20 % See also ACRUDISC, CFAMOUNTS, ACCRFRAC
2 %
22 % Nocte: cfamounts or accrfrac is recommended when calculating
23 5 accrued interest beyond the first period. =
q Lr
Ready
Figure 1-7.

MATLAB is sensitive to the use of uppercase and lowercase characters, and blank spaces can be used before and
after minus signs, colons and parentheses. MATLAB also allows you to write several commands on the same line,
provided they are separated by semicolons (Figure 1-8). Entries are executed sequentially in the order they appear on
the line. Every command which ends with a semicolon will run, but will not display its output.

=) Command Window

File Edit View Web Window Help

o Mfornat short; x = (1:10)': logs = [x loglO(x)]

logs =

1.0000 0
Z.0000 0.3010
3.0000 0.4771
4.0000 0.6021
5.0000 0.6990
6.0000 0.7782
7.0000 0.8451
§.0000 0.9031
9.0000 0.9542
10.0000 1.0000

>>
«| »
Ready

Figure 1-8.

CHAPTER 1 * THE MATLAB ENVIRONMENT

Long entries that will not fit on one line can be continued onto a second line by placing dots at the end of the
first line (Figure 1-9).

+) Command Window

File Edit Yiew ‘“Web Window Help

3> 8 =1-1/2+ 1/3 - 1/4+ 1/5 - 1/6 + 1/7 ...
-1/8 +1/9 - 1/10 + 1/11 - 1/12;
>> 3
2.
0.6532

>> | -
4| »
Ready
Figure 1-9.

The option Clear Command Window from the Edit menu (Figure 1-10) allows you to clear the Command
Window. The command clc also performs this function (Figure 1-11). Similarly, the options Clear Command History
and Clear Workspace in the Edit menu allow you to clean the history window and workspace.

=} Command Window

File N8 View Web Window Help
8 =
SN Rasts cev |- 176 + 177 ...
: - 1/12;
> 4
Select All
8 = Delate
Clear Command Window
Clear Command History
>> | Clear Workspace -
a »
Ready

Figure 1-10.

CHAPTER 1 © THE MATLAB ENVIRONMENT

<) Command Window
File Edit View Web Window Help

>> magic(2); _ﬂ
>> 242

Figure 1-11.
To help you to easily identify certain elements as if/else instructions, chains, etc., some entries in the Command
Window will appear in different colors. Some of the existing rules for colors are as follows:

1. Chains appear in purple while they are being typed. When they are finished properly (with
a closing quote) they become brown.

2. Flow control syntax appears in blue. All lines between the opening and closing of the flow
control functions are correctly indented.

3. Parentheses, brackets, and keys are briefly illuminated until their contents are properly
completed. This allows the user to easily see if mathematical expressions are properly closed.

4. Comments in the Command Window, preceded by the symbol %, appear in green.
5. System commands such as ! appear in gold.
6. Errors are shown in red.

Below is a list of keys, arrows and combinations that can be used in the Command Window.

Key Control key Operation

) CTRL+p Calls to the last entry submitted.
\2 CTRL+n Calls to the next line.

< CTRL+b Moves one character backward.
> CTRL+ f Moves one character forward.
CTRL+-> CTRL+r Moves one word to the right.
CTRL+<¢ CTRL+1 Moves one word to the left.

Home CTRL+a Mouves to the beginning of the line.

(continued)

CHAPTER 1 * THE MATLAB ENVIRONMENT

(continued)
Key Control key Operation
End CTRL+e Moves the end of the line.
ESC CTRL+u Deletes the line.
Delete CTRL+d Deletes the character where the cursor is.
BACKSPACE CTRL+h Deletes the character before the cursor.
CTRL+k Deletes all text up to the end of the line.
Shift+ home Highlights the text from the beginning of the line.
Shift+ end Highlights the text up to the end of the line.

To enter explanatory comments simply start them with the symbol % anywhere in a line. The rest of the line
should be used for the comment (see Figure 1-12).

=} Command Window

Eile Edit Yiew Web Window Help

a =

>> 242 %a sum

Figure 1-12.

Running M-files (files that contain MATLAB code) follows the same procedure as running any other command
or function. Just type the name of the M-file (with its arguments, if necessary) in the Command Window, and press
Enter (Figure 1-13). To see each function of an M-file as it runs, first enter the command echo on. To interrupt the
execution of an M-file use CTRL + c or CTRL + break.

File Edit Yew Web Window Help

£
>> int = acrubond{'31-jan-1983', 'l-mar-1993',...
'31-jul-1983', 100, 0.1, 2, 0)

int =
0.8011
>> =
«| »
Ready
Figure 1-13.

8

CHAPTER 1 © THE MATLAB ENVIRONMENT

Escape and exit to DOS environment commands

There are three ways to pass from the MATLAB Command Window to the MS-DOS operating system environment to
run temporary assignments.

Entering the command ! dos_command in the Command Window allows you to execute the specified command
dos_command in the MATLAB environment. Figure 1-14 shows the execution of the command ! dir. The same effect is
achieved with the command dos dos_command (Figure 1-15).

-} Command Window

Ele Edt Yiew wWeh Yindow Help

>» 'dir -]
10/08/2010 02:19 €79.936 Databasel.accdb
10/08/2010 02:25 348.160 Databasel.accdd
18/08/2010 16:04 417.792 Database3.accdb
11/08/2010 13:00 389.120 Databased.accdb
12/08/2010 13:24 344.064 DatabaseS.accdb
19/11/2010 21:34 344.064 Databa:eé.acjhj
55 -
1 | »
Ready

Figure 1-14.

-} Command Window

Be Edk Yew Weh Window Heb

>> dos dix |
10/08/2010 02:19 679.936 Databasel.accdd
10/08/2010 02:25 348.160 Database2.accdd
18/08/2010 16:04 417.792 Database3.accdb
11/08/2010 12:00 389.120 Databased.accdb
12/08/2010 13:24 344.064 tabaseS.accdb
19/11/2010 21:34 344.064 Database6.accdb |
1 J Ll_l
Ready

Figure 1-15.

The command ! dos_command & is used to execute the DOS command in background mode. This opens a new
window on top of the MATLAB Command Window and executes the command in that window (Figure 1-16). To
return to the MATLAB environment simply click anywhere in the Command Window, or close the newly opened
window via its close button 3 or the Exit command.

CHAPTER 1 © THE MATLAB ENVIRONMENT

b L2

Ready

Figure 1-16.

Not only DOS commands, but also all kinds of executable files or batch tasks can be executed with the three
previous commands. To leave MATLAB simply type quit or exit in the Command Window and then press Enter.
Alternatively you can select the option Exit MATLAB from the File menu (Figure 1-17).

<) Command Window Q@

ZCN Edt View Web Window Help
MNew L :_E
Cpen... QO
Cloze Command Window QbW

Import Data...
Save Workspace As... CtrheS

Set Path...
Preferences...

Print...

1 0\, financelacrubond.m

2 D:\...cdmacdmalcdmaweb.m .LJ

Exit MATLAB QrlQ

Ll

Figure 1-17.

Preferences for the Command Window

Selecting the Preferences option from the File menu (Figure 1-18) allows you to set particular features for working
in the Command Window. To do this, simply choose the desired options in the Command Window Preferences
window (Figure 1-19).

10

+) Command Window

ECN Edt View Web Window Help
New » :J
QOpen... O
Closa Command Window Ctrlew
Ireport Data...
Save Workspace As... Crkes
Set Path...
Priet...
1 DL Mfinancelacrubond.m ﬂ
2 Di\...cdmalcdmatodmawed.m [_’J
Exit MATLAB CrleQ
Figure 1-18.
<) Preferences
I:TJ— General Command Window Preferences
B8 Command Window L
L_Font& colars oL display
C-EditorDebugger Numeric format: [short =
+-Help
| Current Directory Numeric display:]Ioose vI
—Waorkspace :
Spaces per tab: |5
|—Array Editor
—GUIDE
#-Figure Copy Template ~Display
- Simuli I~ Echo on
- Simulink
¥ Limit matrix display width to eighty columns
¥ Enable up to |1 00 tab completions
Command session scroll buffer size:
Min } Max
1 L} 1 L} 1
4 |]
0K Cancel

Figure 1-19.

CHAPTER 1

THE MATLAB ENVIRONMENT

11

CHAPTER 1 * THE MATLAB ENVIRONMENT

=} Preferences
- General Command Window Preferences
dCommand Window| Text displ
ext displa
[+ EditoriDebugger S
- Help Nurmeric format. |EE0NN ~
— Current Directory
—Warkspace Numeric display:|long r
. shorte
Array Editor Spaces pertab: [long e
—GUIDE shortg
- Figure Copy Template long g
Lo Display hex
#- Simulink bank
I~ Echoon .
[~ Limit matrix dilrational | eighty columns

v Enableupto |[100 tab completions

Command session scroll buffer size:

Min J . Max

oK Cancel Help

Figure 1-20.

The first area that appears in the Command Window Preferences window is Text display. This specifies how the
output will appear in the Command Window. Your options are as follows:

e Numeric format: Specifies the format of numerical values in the Command Window (Figure 1-21).

This affects only the appearance of the numbers, not the calculations or how to save them.
The possible formats are presented in the following table:

12

+) Preferences

Eo&X

CHAPTER 1

THE MATLAB ENVIRONMENT

#- General Command Window Font & Colors Preferences
== Command Window Font
B:ohi ¢ Cobors] :
#- Editor/Debugger (¢ Use deskiop font
- Help " Use customn font:
— Current Directory | nospaces __J | T _| | _J
—Workspace Sample
[Array Editor
— GUIDE
[#-Figure Copy Template
[+ Simulink
Colors
Text color: {Autornatic |
Background color: 1 =
V Syntaxhighlighting Set Colors... |
4 |]
OK [Cancel | Help
Figure 1-21.
Format Result Example
+ +,-, white +
Bank Fixed 3.14
Compact Removes excess lines displayed on the screen to theta = pi/2 theta = 1.5708
present a more compact output.
Hex Hexadecimal 400921fb54442d18
long 15 digits fixed point 3.14159265358979
longe 15 digits floating-point 3.141592653589793€ + 00
long g The best of the previous two 3.14159265358979
loose Adds lines to make the output more readable. theta = pi/2 theta=1.5708
The compact command does the opposite.
rat Ratio of small integers 355/13 (a rational approximation of pi)
short 5 digits fixed point 3.1416
shorte 5 digits floating-point 3.1416e + 00
shortg The best of the previous two 3.1416

13

CHAPTER 1 © THE MATLAB ENVIRONMENT

e Numeric display: Regulates the spacing of the output in the Command Window. Compact is
used to suppress blank lines. Loose is used to show blank lines.

e Spaces per tab: Regulates the number of spaces assigned to the tab when the output is
displayed (the default value is 4).

The second zone that appears in the Command Window Preferences window is Display. This specifies the size of
the buffer and allows you to choose whether to display the executions of all the commands included in M-files. Your
options are as follows:

e Echo on: If you check this box, the executions of all the commands included in the M-files are
displayed.

e Limit matrix display width to eighty columns: If you check this box, MATLAB will display only
an 80-column dot matrix output, regardless of the width of the Command Window. If this box
is not checked, the matrix output will occupy the current width of the Command Window.

e Enable up to n tab completions: Check this box if you want to use tab completion when typing
functions in the Command Window. You then need to specify the maximum number of
completions that will be listed. If the number of possible completions exceeds this number,
MATLAB will not show the list of completions.

e Command session scroll buffer size: This sets the number of lines that are kept in the Command
Window buffer. These lines can be viewed by scrolling up.

In MATLARB it is also possible to set fonts and colors for the Command Window. To do this, simply unfold the
sub-option Font & Colors hanging from Command Windows (Figure 1-21). In the fonts area select Use desktop font
if you want to use the same source as specified for General Font & Colors preferences. To use a different font click the
button Use custom font and in the three boxes located immediately below choose the desired font (Figure 1-22), style
(Figure 1-23) and size. The Sample area shows an example of the selected font. In the Colors area you can choose
the color of the text (Text color) (Figure 1-24) and the color of the background (Background color). If the Syntax
highlighting box is checked, you can choose which colors will represent various types of MATLAB commands.
The Set Colors button is used to select a given color.

14

CHAPTER 1 © THE MATLAB ENVIRONMENT

=) Preferences
[#- General Command Window Font & Colors Preferences
= Command Window -
ot 2 Colors [
5~ EditoriDebugger (/Use deskiop font
- Help + Use custom font:
— Current Directory spaced ‘v [Plain |12 |
—Workspace
— Array Editor Dialoginput
| GUIDE @~Arial Unicode MS Er the
@Batang
- Figure Copy Template @MS Mincho
- Simulink @PMingLiV —
@SimSun
Abadi MT Condensed Light
~Collarial
Arial Black —]
I8 Arial Narrow
Ba Arial Unicode MS —:[
Batang
Book Antiqua
Bookman Old Style plofe
Calisto MT
4 | +] Century
Century Gothic
Century Schoolbook b | Hew

Figure 1-22,

+) Preferences
- General Command Window Font & Colors Preferences
J—j-COmmandwmmw
B - ont & T
#- EditorDebugger € Use desktop font
- Help + Use custom font:
— Current Directory Monospaced ~| [FE v [12 ~]
—Workspace _Sample Plain

| i Bold
Array Editor The quick brown £oXtalic the
—GUIDE lazy dog. 123456789 Bald talic

- Figure Copy Template

H— Simulink
~Colors
Text color: |Automatic hd|
Background color: | k|
¥ Syntax highlighting SetCoIors...I
4 | +]
oK | Cancel | Help
Figure 1-23.

15

CHAPTER 1 * THE MATLAB ENVIRONMENT

+) Preferences r.._l m| @

[#- General Command Window Font & ColdZeratc -
= Command Window Font
L [_c_' | |
[+ Editor/Debugger (¢ Use deskiop font I]
#-Help " Use custorn font: I_I
= Current Directory lonospaced L] r_
»_Workspace Sample _
. [1
[Amay Edior - | ——
—GUIDE o]
- Figure Copy Template I —
#- Simulink [p=
]
]
colors I
Text color: utomatic B4
Background color: | |
¥ Syntax highlighting SetColors... |
4 | +]

0K

Cancel | Help

Figure 1-24.

To display the MATLAB Command Window separately simply click on the button # located in the top right
corner. To return the window to its site on the desktop, use the option Dock Command Window from the View menu
(Figure 1-25).

«) Command Window

Fle Edt RUECTE Web ‘Window Help
Deshtop Layout » :[
Dock Command Window

v Command Window
w Command History
v Current Directory

v Workspace
v Launch Pad
Help
» | E|
| ﬂ

Ready

Figure 1-25.

16

CHAPTER 1 © THE MATLAB ENVIRONMENT

The Command History window

The Command History window (Figure 1-26) appears when you start MATLAB. It is located at the bottom right of the
MATLAB desktop. The Command History window shows a list of functions used recently in the Command Window
(Figure 1-26). It also shows an indicator of the beginning of the session. To display this window, separated from the
MATLAB desktop, simply click on the button & located in its top right corner. To return the window to its site on the
desktop, use the Dock Window Command from the View menu. This method of separation and docking is common to
all MATLAB windows.

<} Command History g@@

File Edit VYiew Web Window Help
'31-jul-1983', 100, 0.1, 2, 0] ‘:J
echo off

exit

$-- 9:21 PM 1/01/01 --%

int = acrubond('3l-jan-1983', 'l-nar-19%3',...
'31-jul-19383', 100, 0.1, 2, 0)

nagic(2) :

e+

magic(a)

'dir

'dir

'dir &
'dir
dir |
dix|
D03 dir
dos dir
| I

Ready

Figure 1-26.

If you select one or more lines in the Command History window and right-click on the selection, the pop-up
menu of Figure 1-27 appears. This gives you options to copy the selection to the clipboard (Copy), evaluate the
selection in the Command Window (Evaluate Selection), create an M-file with the selected syntax (Create M-File),
delete the selection (Delete Selection), delete everything preceding the selection (Delete to Selection) and delete the
entire history (Delete Entire History).

17

CHAPTER 1 * THE MATLAB ENVIRONMENT

<) MATLAB
Fle Edt View Web Window Hep
D& L BE o o« B 2 CurentDrectory: [DimstsbR1Zwork =[]

I x| T or|

A maTLas Al
>> 2+2

4\ Communications Toolb

g\ Contxol System Toolb

4\Data Acquisition Too
‘lhnrnhnq- Tanlhay

ans =

x i
I

I.‘
I
Lt
d

L’
&
le-

-

<| »| Launchpag | Workspac

Command History
magic(2);
242
nagxc (2) Copy

‘dir Evaluate Selection

fair Create M-Fie
'dir &

4 | | Delete Selection -
4 | b | co Delete to Selection < »
j=——=——=—== Delete Ertire History
Ready

Figure 1-27.

The Launch Pad window

The Launch Pad window (located by default in the upper-left corner of the MATLAB desktop) allows you to get help, see
demonstrations of installed products, go to other windows on the desktop and visit the MathWorks website (Figure 1-28).

+) Launch Pad E]@@

File Edit VYiew Web Window Help

=) -
—Q Help

—ﬁi' Demos

—i Current Directory

I -itlorkspace

—|[& path

& cUIDE (GUI Builder)

—. Product Page (Web)

[]—ﬂ Commmications Toolbox

B ﬂtonu:nl System Toolbox

[]—{lData Acquisition Toolbox

[}—ﬂnatabase Toolbox

#f\ Datafeed Toolbox

g\ Filter Desion Toolbox

[]—ﬂ Financial Derivatives Toolbox

[}—ﬂ Financial Time Series Toolbox d

Ready

Figure 1-28.

18

CHAPTER 1 © THE MATLAB ENVIRONMENT

The Current Directory window

The Current Directory window is obtained by clicking on the Current Directory sticker located at the bottom left of the
MATLAB desktop (Figure 1-29). Its function is to view, open, and make changes in the MATLAB files environment.

To display this window, separated from the MATLAB desktop (Figure 1-30), just click on the button # located in its top
right corner. To return the window to its site on the desktop, use the Dock Command Window option in the View menu.

) MATLAB
Els Edt Yew Weh Wndow Help
0O S B o oo B 7 | Curent Diectory: [DimotiabR1 Zicemos =i|e
)| |
= iiﬂaxn'm] >> dos dic :j
I &Help =
- % Demos
Bl cuzzent pirecrory
—BElvorkspace
@ rarn =
4 | _'IJ
| » [_Workspace Launchpad |
ID:\latlanl.z\delos :] J = ef M
All files |File Type |Lasck
B learning_graphi... 04-3ep 2]
D vb20. jar 22-ago
uo:l:spa:e.hul. 04-sep_
D workspace.vievlet 04-3ep >
1 | »

b
<|»| cunentoirectory | CommandHistory | 4 | »
Ready

Figure 1-29.

19

CHAPTER 1 * THE MATLAB ENVIRONMENT

Search for content in M-files
Create folder
Change directory level

h fol
Current directory Search folders

+} Current Directory

File Hdit View Web Window Help

|D:\mat1abR12\demos ﬂ _I m &

ALl files |File Type |Last Modified | Description |
[banner. pg 04-sep-2000 04:43 a. -
@currdirectory.hml 04-zep-2000 04:43 a.
Dcurrdirectory.v... 04-zep-2000 04:43 a,
@cur:di:ectnry_v... 04-3ep-2000 04:43 a,

Ed&sktﬂp.hml 04-zep-2000 04:43 a.

[deskrop.viewlet 04-sep-2000 04:43 a.
Eideskmp_viewlet... 04-sep-2000 04:43 a.

D,Eu.nc.js 08-3ep-2000 0L:27 p.
@graphics_overvi... 04-sep-2000 04:43 a,
Dg‘raphics_ovexvi... 04-sep-2000 04:43 a.
gtaphics_overvi... 04-sep-2000 04:43 a.

B nistorywindow. hrul 04-2ep-2000 04:43 & |
Ready

Figure 1-30.

It is possible to set preferences in the Current Directory window using the Preferences option from the File menu
(Figure 1-31). This gives you the Current Directory Preferences window (Figure 1-32). In the History field the number
of recent directories is set to save to history. In the field Browser display options file characteristics are set to display
(file type, date of last modification, and descriptions and comments from the M-files).

20

=} Current Directory

N Edit

View ‘Web Window Help

'ECE'J & et M

| Last Modified

New

Open... Crl+0
Close Current Directory Chrl+w
Import Data. ..

Save Workspace As... Ctrl+s

Set Path...

Preferences...

| Description

0l-ene-2001
0l-ene-2001
27-ago-1999
20-ene-1999
29-dic-1999

07:05
07:08
10:30
05:43

a.

A

20-ene-1999 05:43 a.
20-ene-1999 05:43 a.
1 D:\...\finance\amartize.m 20-ene-1999 05:43 a.
2 D:\...\financelacrubond.m 20-ene-1999 05:43 a.
3 D:\...cdmalcdmalcdmaweb.m
20-ene-1999 05:43 a.
Exit MATLAB Ctr+Q 29-jul-1999 03:32 a.
Kl |
Ready

Financial Too !

ACRUBOND Accr
ACRUDISC Accr
ANORTIZE Amod
ANNURATE Peri
ANNUTERM Numb
EDTEOND Black
EDTTRANS Tran
BEYTBILL Bond

EBINPRICE Bijll
»

Figure 1-31.

Clear History I

=) Preferences
[#- General Current Directory Preferences
J—j- Command Window Hisko
LFont & Colors [4
[+~ EditoriDebugger Save most receleU 3: directories
- Help
irectory, Browser display options -

—Workspace ¥ Show file types

—Array Editor ¥ Show last modified date

— GUIDE -

- Figure Copy Template ¥ Show M-file descriptions

[+ Simulink ™ Show M-file comments and MAT-file contents
4 | +]

0K

Cancel

Help

Figure 1-32.

CHAPTER 1

THE MATLAB ENVIRONMENT

21

CHAPTER 1 * THE MATLAB ENVIRONMENT

If you select any file in the Current Directory window and you left-click on it, the pop-up menu of Figure 1-33 will
appear. This gives you options to open the file (Open), run it (Run), view Help (View Help), open it as text (Open as
Text), import data (Import Data), create new files, M-files or folders (New), rename it, delete it, cut it, copy it or paste
it, pass you filters and add it to the current path.

=) Current Directory Q@

File Edit View Web Window Help
|D:\matlathZ\toolbox\tinence\tinanceLIJ & &k M
ALl files |File Type |Last Modified | pescription
3= Folder 0l-ene-2001 07:05 a. Financial Toolbox)
Dprivate Folder 0l-ene-2001 07:05 a
| acrubond.m _file 27-ago-1999 10:30 a. ACRUBOND Accrued i
[[@acrudisc.n Open -ene-1999 05:43 a. ACRUDISC Accrued i
[@anortize.n Run -dic-1999 07:10 a. AMORTIZE Amortizat
View Hel
[@ annurate.n : P -ene-1999 05:43 a. ANNURATE Periodic
E] s Text 1999 05:43 a. ANNUTERH Mumber of
annmuterm.m Import Data... —Ene- H a B 0
[@varbond.n -ene-1999 05:43 a. BDTBOND Black-Dern
Newwy 4 M-Fie
@bdttrans.n 9 05:43 a. BDTTRANS Translate
[@yeytbill.n Rename Mocel b9 05:43 a. BEYTBILL Bond equi
o Delete Folder o
[@pinprice.n I 9 03:32 a. BINPRICE Binomial
[@bikprice.n Cut D-ene-1999 05:43 a. BLKPRICE Black's ¢
[@b1sdelta.n Copy D-ene-1999 05:43 a. BLSDELTA Black-Sch
[@b1sganna.n D-ene-1999 05:43 a. BLSGAMMA Black-Sct
Eiblsimpv.m File Fiter » D-feb-2000 08:46 p. BLSIMPV Black-Sche
JE- R PPV A PRy Acd to Path P h ocws 1AAA AC. A2 A DIETAMDTA DIanle e,lJ
{) i
RBEIUY Refresh

Figure 1-33.

The help browser

MATLAB's help browser is obtained by clicking the 2 button on the toolbar or by using the function helpbrowser in
the Command Window.

The Workspace window

The Workspace window is located in the top left corner of the MATLAB desktop and is obtained by clicking on the
label Work Space under it (Figure 1-34). Its function is to display the variables stored in memory. It shows the name,
type, size and class of each variable, as shown in Figure 1-35. To display this window, separated from the MATLAB
desktop (Figure 1-35), just click on the button # located in its upper right corner. To return the window to its site on
the desktop, use the Dock Command Window option from the View menu.

22

File Edit Yiew Web Window Help

[j Gs 4 I i& K) O
Workspace | a] x|
TICIE
Name Size Eytes C
B ans 1x1 8 doub.
Bl int 1x1 8 doub,
4 | 2l

“Ibl Workspace | LaunchPad |

[p:\natiabrIZ coolboxreir | | @) f | ¢4

AlL files |File ype |Last e
C13a Folder Ol-ene *|

> [v\vi rara Faldaw ﬂl_aﬂ_
«| » [“commandHistory _ current Directory |

depsoyd
depstln

discZzero

discrate
effrr
Ewcov
ewstats
fracZcur
frontcon
frontier
ftb
fyvdisc
fvLix
fvvar
fud2zero

>> 242

ans =

>>

{

% 2 | CurrentDirectory: | DrimatiabRi1 2toolkoxifinancelfinance ¥ | J

ylddisc
yldmat
yldoddf
yldoddfl
yldoddl
yldtbill
zbtprice
zbtyield
zerozZdisc
zero2fwd
zeroZpyld
zerobootct
zerobootsub

CHAPTER 1

Ready

Figure 1-34.

Variable name

Read workspace variable type

Save workspace size in bytes
Edit variables (Array editor)
Delete variables

«} Work spacs
Name Size Bytes Class
double a
=== 131 16 double array (cornplex)
e 1% 4 cell array
@ a 110 80 double array (global)
HRi 110 10 ints array
===] 110 80 double array (ogical)
lid m 1%6 12 thar array
n 1x1 822 inline object
p 1%10 164 sparse array
[Hs 11 406 struct array
Eu 110 40 uint32 array
Ready

Figure 1-35.

THE MATLAB ENVIRONMENT

23

CHAPTER 1 © THE MATLAB ENVIRONMENT

An important element of the Workspace window is the Array editor, which allows you to edit numeric arrays
and strings.

It is possible to set preferences in the Workspace window via the Preferences option from the File menu. This gives
you the Preferences window shown in Figure 1-36. In the History field the number of recent directories is set to save to
history. In the Font field the sources to be used in the Command Window preferences are set, and the option Confirm
Deletion of Variables is checked according to whether or not you want the deletion of variables to be confirmed.

=) Preferences

[#- General Workspace Preferences
= Command Window
L Font & Colors Font
- EditorDebugger @ Use deskiop font
#-Help " Use custom font:
i— Current Directory v 2 = =
| e | 2=l

Sample

— Array Editor

— GUIDE

#-Figure Copy Template
[+ Simulink

Iv Confirn deletion of variables

‘ |2

oK Cancel Help

Figure 1-36.

The Editor and Debugger for M-files

To create a new M-file in the Editor/Debugger simply click the button []in the MATLAB Tools toolbar or select
File » New » M-file in the MATLAB desktop (Figure 1-37). The Editor/Debugger opens a file in which you create
an M-file, i.e. a blank file for MATLAB programming code (see Figure 1-38). The Edit command in the Command
Window also opens the Editor/Debugger. To open an existing M-file use File » Open in the MATLAB desktop.
You can also use the command Open in the Command Window.

24

CHAPTER 1 © THE MATLAB ENVIRONMENT

FW Edit

View ‘Web ‘Window Help

[hev] wile cubw
Open... Crl+0 Figure
Close Launch Pad Ctrl+w Model
Import Data... suI Tpstin :i ::::zc
Save Workspace As... Ctri+5 _I disczzero yldoddf
Set Path... discrate yldoddfl
Preferences... effrr ¥ldoddl
ewcow vldthill
ewstats zbtprice
fracZcur zbtyield
frontcon zeroZdisc
1 D:\..Afinancel\amortize.m frontier zeroZtwd
2 0:\...\finance\acrubond.m +|| |£tb zero2pyld
3 D:h...cdmalcdmalcdmaweb.m | LI_, Evdisc zerobootct
fvfix zerobootsub
Exit MATLAB Chrl+Q fvvar
fwdZzero
T -]
> 2+2
|D:\narlabR12\toolbox\fir ¥ | J £ | 4
ans =
All files |File Type |Last e
3a Folder Ol-ene* 4
hd
mydrrata Falday Nl aw
4 I I ﬂ_ >> -
4 I » | _Command History Current Directory l— «| »
Ready

Figure 1-37.

) D:\mymfiles\collatz.m [(O] x]
File Edit View Text Debug Breakpoints Web Window Help
DEE&S +2Bvc @AH| AR |20 RE| s o
1 function sequence=collatz(n) _ _ =
2 % Collatz problem. Generate a sequence of integers resolving to 1 —
i) % For any positive integer, n:
4 £ Divide n by 2 if n is even)
5 % Multiply n by 3 and add 1 if n 1s odd
B % Repeat for the result
7 % Continue until the result is 1
g %
al-| sequence = n;
10/-| next_value = n;
11|=| while next_value > 1
12| - if rem{next_value,2)==
13| = next_walue = next_walue/2;
14(- else
15— next_wvalue = 3%next_walue+l;
16| - end
17| = sequence = [sequence, next_value];
12/-| end —
"
d [
Ready

Figure 1-38.

25

CHAPTER 1 * THE MATLAB ENVIRONMENT

You can also open the Editor/Debugger by right-clicking anywhere in the Current Directory window and choosing
New » M-file from the resulting pop-up menu (Figure 1-39). The option Oper is used to open an existing M-file. You
can open several M-files simultaneously, in which case they will appear in different windows (Figure 1-40).

File Edit View Web Window Help
D Bl o o ¥ 2 Current Directory: |D:'trnatlabm?dooibox\ﬂnmca\ﬁmme ﬂ J
T |
4\ HATLAB - I depsoyd ylddisc =
. depstln vldmat
& Help Open disc2zero y1ldoddf
% Denos Run discrate vldoddfl
Current | view Hep effrr vldoddl
B vorkspad o Text ewcov wldtbill
P penas Te ewstats zbtprice
& rarn Import Data... v|| |fraczcur zhtyield
‘I — m T frontcon zero2disc
.| |frontier zero2fwd
"l » | Launch Pad ~Rename Model fth zero2pyld
Delete Folder [|fwdisc zerobootct
Currert Directory x| |EvEix zerobootsub
Cut . fyvar
I D:\matlabR12\too] Copy 0 cF @ fud2zero
All files [rasc r || |, 540
[ia File Fitter » | Ol-ene*
[Jprivate Add to Path » | Ol-ene | |203 =
@acru‘bond.m Refresh 27-ago a
E acrudisc.m H-Lllec 20-e
[of | >>
-
4 | > | Command History Current Directory I 4 X
Ready
Figure 1-39.

26

CHAPTER 1 © THE MATLAB ENVIRONMENT

,.'.' . Dz\mymfiles\collatzplot.m

File Edit “iew Text Debug Breakpoints “Web ‘Window Help
DESEE » BB | dMhH| BB E0E IR E | suemm o

1 function collatzplot(n) -
2 % Plot Tength of sequence for Collatz problem
3 % Prepare figure
4 - clf
g _ *). D:\mymfiles\collatz.m™ | _ [O] x|
; File Edit Yiew Text Debug Breakpoints Web Window Help
J DEE&| 2@ e = #AH| 88| EEE QS| see[EET
11| = 1 function sequence=collatz({n) a
12| - 2 % Collatz problem. Generate a sequence of integers resolwing to 1 —
13| - 2 % For any positive integer, n:
14| - 4 % Divide n by 2 1f n 1s ewven
15 5 4 Multiply n by 3 and add 1 1f n 1s odd
< (3 % Repeat for the result
7 % Continue until the result 1s 1
Ready 8 %
a sequence = n;

10| — next_wvalue = n;

11| = while next_walue > 1

12| = 1f rem(next_wvalue,2)==0

13| — next_wvaClue = next_walue/2;

14— else

16| — next_walue = 3*next_wvalue+l;

16| — end

17| = sequence = [sequence, next_walue]; |

18| — end -
| 12

Ready

Figure 1-40.

Help in MATLAB

MATLARB has a fairly efficient inline help system. The first tool to consider is browser support (Figure 1-41), which is
accessed via the icon 2 or by typing helpbrowser in the Command Window (the Help Browser option must be selected
in the View menu). Selecting a theme in the pane on the left of the help browser will present help on the selected topic
in the right pane, and you can navigate through the content via hyperlinks. The top bar of the left navigation pane
features the options Content (support for content), Index (help by alphabetical index), Search (find help by subject)
and Favorites (favorite help topics).

27

CHAPTER 1 * THE MATLAB ENVIRONMENT

File Edit Wiew Go ‘Web Window Help

4

Help Navigator x|
¢ % & 5 Findinpage Go |
Prociuct fiter: Al Selected Select... |
| Development Environment: Getling Help v| Addto Favorites
Contents l Indlex] Search I Favorites] i -~

Types of Information =

[-1—@ Starting and Quitting MATLAEI:J

& i@ Using the Deskiop The Help brawser and help functions provide access to the following

= Running MATLAB Functions types of documentation. Use the type of documentation most suited to

[The Command Window your needs,

[E8 Opening the Comma

@ Running Functions ai ; - X :
Ei Controlling Inputandj this release, it also includes upgrade information and any

[E® Running Programs

@ Keeping a Session L # Getting Started with ... - Primarily aimed at novice users, this
B Preferences for the C documentation contains instructions for a product's main
B Ei Command History features. Review Getting Started documentation before you
R]G etting Help begin using a product or feature for the firsttime. Then, to learn
—@ Types of Infarmation maore, go to the "Using.. " collections or reference pages.
#—Fh Using the Help Browser # Using ... collections - This material containg overviews and

IT.—@ Using the Help Navigatar complete instructions for using a product. Consult it after

E— Viewing Docurmentation i
[ﬁ Preferences for the Help

[Printing ?ocumentaﬁuﬂ information for that function. It includes links to related

Release Notes - An overview of new products and features in

known problems and limitations. Review the Release Motes
for all your products when you first start using the new release.

reviewing Getting Started material.
Reference Pages - Every function has a reference page that
provides the syntax, description, examples, and other

funrtinns and additinnal infarmatinn Referenee nanes are LI

Ready

Figure 1-41.

Another very important way to obtain help in MATLAB is via its support functions. These functions are
presented in the following table.

Function

Description

doc function

docopt

help function
helpbrowser

helpdesk

helpwin or helpwin theme

lookfor text

web url

Displays the reference page in the browser’s support for the specified function, showing
syntax, description, examples and links with other related functions.

This function is used to display the location of the help files on UNIX platforms that do
not support Java interfaces.

Displays in the Command Window a description and the syntax of the specified function.
Opens the help browser.
Opens the help browser. It has been replaced by doc in recent versions of MATLAB.

Displays in the help browser a list of all the MATLAB functions or those relating to the
specified topic.

Displays in the browser all support functions which contain the specified text as part of
the function.

Opens in the Web browser the URL specified by default as relative to the Web help of
MATLAB.

28

CHAPTER 2

MATLAB Language: Variables,
Numbers, Operators and
Functions -

Variables

MATLAB does not require a command to declare variables. A variable is created simply by directly allocating a value
to it. For example:

»v=13
Vv =
3

The variable v will take the value 3 and using a new mapping will not change its value. Once the variable is
declared, we can use it in calculations.

»v”r3
ans =
27

> V5

ans =

The value assigned to a variable remains fixed until it is explicitly changed or if the current MATLAB session
is closed.

29

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

If we now write:

»v=3+7

10
then the variable v has the value 10 from now on, as shown in the following calculation:
»vha
ans =
10000
A variable name must begin with a letter followed by any number of letters, digits or underscores. However, bear
in mind that MATLAB uses only the first 31 characters of the name of the variable. It is also very important to note that

MATLARB is case sensitive. Therefore, a variable named with uppercase letters is different to the variable with the same
name except in lowercase letters.

Vector variables

A vector variable of n elements can be defined in MATLAB in the following ways:

v

[vi, v2, v3,..., vn]

v

[vi v2 v3... vn]

When most MATLAB commands and functions are applied to a vector variable the result is understood to be that
obtained by applying the command or function to each element of the vector:

»> vector1 = [1,4,9,2.25,1/4]
vectorl =

1.0000 4.0000 9.0000 2.2500 0.2500
»> sqrt (vectori)

ans =

1.0000 2.0000 3.0000 1.5000 0.5000

The following table presents some alternative ways of defining a vector variable without explicitly bracketing all
its elements together, separated by commas or blank spaces.

30

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

variable = [a:b] Defines the vector whose first and last elements are a and b,
respectively, and the intermediate elements differ by one unit.

variable = [a:s:b] Defines the vector whose first and last elements are a and b,
respectively, and the intermediate elements differ by an increase
specified by s.

variable = linespace [a, b, n] Defines the vector with n evenly spaced elements whose first and

last elements are a and b respectively.

variable = logspace [a, b, n] Defines the vector with n evenly logarithmically spaced elements
whose first and last elements are 10* and 10°, respectively.

Below are some examples:
»» vector2 = [5:5:25]
vector2 =
5 10 15 20 25
This yields the numbers between 5 and 25, inclusive, separated by 5 units.
>> vector3=[10:30]
vector3 =
Columns 1 through 13
10 11 12 13 14 15 16 17 18 19 20 21 22
Columns 14 through 21
23 24 25 26 27 28 29 30
This yields the numbers between 10 and 30, inclusive, separated by a unit.
»> t:Microsoft.WindowsMobile.DirectX.Vectorq4 = linspace (10,30,6)
t:Microsoft.WindowsMobile.DirectX.Vector4 =
10 14 18 22 26 30
This yields 6 equally spaced numbers between 10 and 30, inclusive.
»> vector5 = logspace (10,30,6)
vector5 =
1. Oe + 030 *

0.0000 0.0000 0.0000 0.0000 0.0001 1.0000

31

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

This yields 6 evenly logarithmically spaced numbers between 10 and 10%, inclusive.
One can also consider row vectors and column vectors in MATLAB. A column vector is obtained by separating its
elements by semicolons, or by transposing a row vector using a single quotation mark at the end of its definition.

»> a=[10320;30;40]
a =

10
20
30
40

»> a=(10:14);b=a’
b =

10
11
12
13
14

» c=(a")’
Cc =
10 11 12 13 14

You can also select an element of a vector or a subset of elements. The rules are summarized in the following table:

x (n) Returns the n-th element of the vector x.
x(a:b) Returns the elements of the vector x between the a-th and the b-th elements, inclusive.
x(a:p:b) Returns the elements of the vector x located between the a-th and the b-th elements, inclusive, but

separated by p units (a > b).

x(b:-p:a) Returns the elements of the vector x located between the b-th and a-th elements, both inclusive, but
separated by p units and starting with the b-th element (b > a).

Here are some examples:

» x =(1:10)

32

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

This yields the sixth element of the vector x.
»> x(4:7)
ans =
4567
This yields the elements of the vector x located between the fourth and seventh elements, inclusive.
»> x(2:3:9)
ans =
258

This yields the three elements of the vector x located between the second and ninth elements, inclusive,
but separated in steps of three units.

> x(9:-3:2)
ans =
963

This yields the three elements of the vector x located between the ninth and second elements, inclusive,
but separated in steps of three units and starting at the ninth.

Matrix variables

MATLAB defines arrays by inserting in brackets all its row vectors separated by a comma. Vectors can be entered by
separating their components by spaces or by commas, as we already know. For example, a 3 x 3 matrix variable can
be entered in the following two ways:

M = [a11 a12 a13;a21 a22 a23;a31 a32 a33]

M = [a11,a12,a13;a21,a22,a23;a31,a32,a33]

Similarly we can define an array of variable dimension (MxN). Once a matrix variable has been defined, MATLAB
enables many ways to insert, extract, renumber, and generally manipulate its elements. The following table shows
different ways to define matrix variables.

33

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

A(m,n)
A(a:b,c:d)

A(a:p:b,c:q:d)
A([ab],[cd])

A([abec...],
[efg..])

A(:,c:d)
A(G,[cde..])
A(a:b,:)
A([abec..],)
A(a,:)

A(:,b)

A(:)

A(:2)

[A, B, C,...]
S,=1I1

diag (v)
diag (A)

eye (n)

eye (m, n)
zeros (m, n)
ones (m, n)
rand (m, n)
randn (m, n)
flipud (A)
fliplr (A)
rot90 (A)
reshape(A, m, n)
size (A)

find (cond,)
length (v)
tril (A)

triu (A)

A’

Inv (A)

Defines the (m, n)-th element of the matrix A (row m and column n).

Defines the subarray of A formed between the a-th and the b-th rows and between the c-th and
the d-th columns, inclusive.

Defines the subarray of A formed by every p-th row between the a-th and the b-th rows,
inclusive, and every q-th column between the c-th and the d-th column, inclusive.

Defines the subarray of A formed by the intersection of the a-th through b-th rows and c-th
through d-th columns, inclusive.

Defines the subarray of A formed by the intersection of rows a, b, c,... and columnse, f, g...

Defines the subarray of A formed by all the rows in A and the c-th through to the d-th columns.
Defines the subarray of A formed by all the rows in A and columns c, d, e,...

Defines the subarray of A formed by all the columns in A and the a-th through to the b-th rows.
Defines the subarray of A formed by all the columns in A and rows a, b, ¢,...

Defines the a-th row of the matrix A.

Defines the b-th column of the matrix A.

Defines a column vector whose elements are the columns of A placed in order below each other.
This is equivalent to the entire matrix A.

Defines the matrix formed by the matrices A, B, C,...

Clears the subarray of the matrix A, S,, and returns the remainder.

Creates a diagonal matrix with the vector v in the diagonal.

Extracts the diagonal of the matrix as a column vector.

Creates the identity matrix of order n.

Create an mxn matrix with ones on the main diagonal and zeros elsewhere.

Creates the zero matrix of order mxn.

Creates the matrix of order mxn with all its elements equal to 1.

Creates a uniform random matrix of order mxn.

Create a normal random matrix of order mxn.

Returns the matrix whose rows are those of A but placed in reverse order (from top to bottom).
Returns the matrix whose columns are those of A but placed in reverse order (from left to right).
Rotates the matrix A counterclockwise by 90 degrees.

Returns an mxn matrix formed by taking consecutive entries of A by columns.

Returns the order (size) of the matrix A.

Returns all A items that meet a given condition.

Returns the length of the vector v.

Returns the lower triangular part of the matrix A.

Returns the upper triangular part of the matrix A.

Returns the transpose of the matrix A.

Returns the inverse of the matrix A.

34

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Here are some examples:
We consider first the 2 x 3 matrix whose rows are the first six consecutive odd numbers:

>» A =[135; 79 11]
A =

135
7911

Now we are going to change the (2,3)-th element, i.e. the last element of 4, to zero:
» A(2,3) =0

A =

We now define the matrix B to be the transpose of A:

> B=A'

w
o

We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:

» C = [B eye (3)]

C =
1 7 1 0 0
3 9 0 1

5 0 0 0 1

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection
of the first two rows and the last three columns of the matrix C:

» D = €(:,1:2:5)

D =

35

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

» E

¢([2 2],[3 5])

A

v
m
n

c([1 2],3:5)

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the
main diagonal of D:

»> G=diag(diag(D))
G =

100
00O
001

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third
and fifth columns:

» H = ¢([1 3],[2 3 5])

Now we build an array I formed by the identity matrix of order 5 x 4, appending the zero matrix of the same order
to its right and to the right of that the unit matrix, again of the same order. Then we extract the first row of I and, finally,
form the matrix J comprising the odd rows and even columns of I and calculate its order (size).

»> I = [eye(5,4) zeros(5,4) ones(5,4)]

ans =

1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1

36

» I(1,:)
ans =
1 0 0

»> J=I(1:2:5,2:2:12)

J =
0 0 0
0 0 0
0 0 0

»> size(J)
ans =

36

o

[y

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

We now construct a random matrix K of order 3 x4, reverse the order of the rows of K, reverse the order of the
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 x 3 whose
columns are obtained by taking the elements of K sequentially by columns.

»> K=rand(3,4)

K =

0.5269 0.4160
0.0920 0.7012
0.6539 0.9103
> K(3:-1:1,:)
ans =

0.6539 0.9103
0.0920 0.7012
0.5269 0.4160
» K(:,4:-1:1)
ans =

0.7361 0.7622

0.3282 0.2625
0.6326 0.0475

o

o

o

.7622
.2625
.0475

.0475
.2625
.7622

.4160
.7012
.9103

o

o

o

.7361
.3282
.6326

.6326
.3282
.7361

.5269
.0920
.6539

37

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> K(3:-1:1,4:-1:1)

ans =

0.6326 0.0475 0.9103 0.6539
0.3282 0.2625 0.7012 0.0920
0.7361 0.7622 0.4160 0.5269

»> L=reshape(K,4,3)
L =

0.5269 0.7012 0.0475
0.0920 0.9103 0.7361
0.6539 0.7622 0.3282
0.4160 0.2625 0.6326

Character variables

A character variable (chain) is simply a character string enclosed in single quotes that MATLAB treats as a vector form.
The general syntax for character variables is as follows:

c = 'string'

Among the MATLAB commands that handle character variables we have the following:

abs ('character_string')
setstr (numeric_vector)
str2mat (t1,t2,t3,...)
str2num ('string'’)
num2str (number)
int2str (integer)

sprintf ('format’, a)
sscanf ('string’, 'format’)
dec2hex (integer)
hex2dec ('string_hex")
hex2num ('string hex")
lower ('string')

upper ('string')

stremp (s1, s2)

stremp (s1, s2, n)

strrep (c, 'expl’, 'exp2')
findstr (c, 'exp’)

isstr (expression)

Returns the array of ASCII characters equivalent to each character in the string.
Returns the string of ASCII characters that are equivalent to the elements of the vector.
Returns the matrix whose rows are the strings t1, t2, t3,..., respectively.

Converts the string to its exact numeric value used by MATLAB.

Returns the exact number in its equivalent string with fixed precision.

Converts the integer to a string.

Converts a numeric array into a string in the specified format.

Converts a string to a numeric value in the specified format.

Converts a decimal integer into its equivalent string in hexadecimal.

Converts a hexadecimal string into its integer equivalent.

Converts a hexadecimal string into the equivalent IEEE floating point number.
Converts a string to lowercase.

Converts a string to uppercase.

Compares the strings s1 and s2 and returns 1 if they are equal and 0 otherwise.

Compares the strings s1 and s2 and returns 1 if their first n characters are equal
and 0 otherwise.

Replaces expl by exp2 in the chain c.
Finds where exp is in the chain c.

Returns 1 if the expression is a string and 0 otherwise.

38

(continued)

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

(continued)

ischar (expression) Returns 1 if the expression is a string and 0 otherwise.

strjust (string) Right justifies the string.

blanks (n) Generates a string of n spaces.

deblank (string) Removes blank spaces from the right of the string.

eval (expression) Executes the expression, even if it is a string.

disp (‘string’) Displays the string (or array) as has been written, and continues the MATLAB process.
input (‘string’) Displays the string on the screen and waits for a key press to continue.

Here are some examples:
»> hex2dec ('3ffe56e')
ans =
67102062
Here MATLAB has converted a hexadecimal string into a decimal number.
»> dec2hex (1345679001)
ans =
50356E99
The program has converted a decimal number into a hexadecimal string.
»> sprintf(' %f',[1+sqrt(5)/2,pi])
ans =
2.118034 3.141593
The exact numerical components of a vector have been converted to strings (with default precision).
»» sscanf('121.00012", '%f')
ans =
121.0001
Here a numeric string has been passed to an exact numerical format (with default precision).
»> num2str (pi)
ans =

3.142

39

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The constant 7 has been converted into a string.
»» str2num('15/14")
ans =
1.0714
The string has been converted into a numeric value with default precision.
»> setstr(32:126)
ans =

1"#$% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPORSTUVWXYZ [\] *
_'abcdefghijklmnopqrstuvwxyz {|}~

This yields the ASCII characters associated with the whole numbers between 32 and 126, inclusive.
»> abs('{]}><#je?22")
ans =
123 93 125 62 60 35 161 191 63 186 170
This yields the integers corresponding to the ASCII characters specified in the argument of abs.
»> lower ('ABCDefgHIJ')
ans =
abcdefghij
The text has been converted to lowercase.
»> upper('abcd eFGHi jK1Mn')
ans =
ABCD EFGHI JKLMN
The text has been converted to uppercase.
»» str2mat ('The woxrld',' The country',' Daily 16', ' ABC')
ans =
The world
The country

Daily 16
ABC

40

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The chains comprising the arguments of str2mat have been converted to a text array.
»> disp('This text will appear on the screen')
ans =
This text will appear on the screen

Here the argument of the command disp has been displayed on the screen.

»» ¢ = 'This is a good example';
»> strrep(c, 'good', 'bad’)

ans =
This is a bad example

The string good has been replaced by bad in the chain c. The following instruction locates the initial position of
each occurrence of is within the chain c.

»» findstr (c, 'is')
ans =

36

Numbers

In MATLAB the arguments of a function can take many different forms, including different types of numbers and
numerical expressions, such as integers and rational, real and complex numbers.

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is
an interactive program that allows you to perform a simple variety of mathematical operations. MATLAB assumes the
usual operations of sum, difference, product, division and power, with the usual hierarchy between them:

xX+y Sum

X-y Difference
x*yorxy Product
x/y Division
XNy Power

41

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

To add two numbers simply enter the first number, a plus sign (+) and the second number. Spaces may be
included before and after the sign to ensure that the input is easier to read.

» 2+ 3

ans =

We can perform power calculations directly.
> 100 * 50
ans =
1. 0000e + 100

Unlike a calculator, when working with integers, MATLAB displays the full result even when there are more digits
than would normally fit across the screen. For example, MATLAB returns the following value of 99 A 50 when using the
vpa function (here to the default accuracy of 32 significant figures).

»> vpa '99 ~ 50'
ans =
. 60500606713753665044791996801256€100

To combine several operations in the same instruction one must take into account the usual priority criteria
among them, which determine the order of evaluation of the expression. Consider, for example:

2 %3424+ (5-2) *3
ans =
27

Taking into account the priority of operators, the first expression to be evaluated is the power 322. The usual
evaluation order can be altered by grouping expressions together in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions and you can
also define your own functions. MATLAB functions and operators can be applied to symbolic constants
or numbers.

One of the basic applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional
calculator, but with one important difference: the precision of the calculation. Operations are performed to whatever
degree of precision the user desires. This unlimited precision in calculation is a feature which sets MATLAB apart
from other numerical calculation programs, where the accuracy is determined by a word length inherent to the
software, and cannot be modified.

The accuracy of the output of MATLAB operations can be relaxed using special approximation techniques
which are exact only up to a certain specified degree of precision. MATLAB represents results with accuracy, but
even if internally you are always working with exact calculations to prevent propagation of rounding errors, different
approximate representation formats can be enabled, which sometimes facilitate the interpretation of the results. The
commands that allow numerical approximation are the following:

42

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

format long Delivers results to 16 significant decimal figures.

format short Delivers results to 4 decimal places. This is MATLAB's default format.

format longe Provides the results to 16 decimal figures more than the power of 10 required.
format short e Provides the results to four decimal figures more than the power of 10 required.
formatlong g Provides the results in optimal long format.

format short g Provides the results in optimum short format.

bank format Delivers results to 2 decimal places.

format rat Returns the results in the form of a rational number approximation.

format + Returns the sign (+, -) and ignores the imaginary part of complex numbers.
format hex Returns results in hexadecimal format.

vpa ‘operations’ n Returns the result of the specified operations to n significant digits.

numeric (‘expr’) Provides the value of the expression numerically approximated by the current active format.
digits (n) Returns results to n significant digits.

Using format gives a numerical approximation of 174/13 in the way specified after the format command:
»> 174/13
ans =
13.3846
»> format long; 174/13
ans =
13.38461538461539
»> format long e; 174/13
ans =
1.338461538461539e + 001
»> format short e; 174/13
ans =
1.3385e + 001
»> format long g; 174/13
ans =

13.3846153846154

43

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> format short g; 174/13
ans =
13.385
»> format bank; 174/13
ans =
13.38
»> format hex; 174/13
ans =
402ac4ecqecqecsf
Now we will see how the value of sqrt (17) can be calculated to any precision that we desire:
»> vpa ' 174/13 ' 10
ans =
13.38461538
> vpa ' 174/13 ' 15
ans =
13.3846153846154
»> digits (20); vpa ' 174/13 '
ans =

13.384615384615384615

Integers

In MATLAB all common operations with whole numbers are exact, regardless of the size of the output. If we want the
result of an operation to appear on screen to a certain number of significant figures, we use the symbolic computation
command vpa (variable precision arithmetic), whose syntax we already know.

For example, the following calculates 62400 to 450 significant figures:

»> '6 vpa * 400' 450
ans =

182179771682187282513946871240893712673389715281747606674596975493339599720905327003028267800766283
867331479599455916367452421574456059646801054954062150177042349998869907885947439947961712484067309
738073652485056311556920850878594283008099992731076250733948404739350551934565743979678824151197232
629947748581376.

44

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The result of the operation is precise, always displaying a point at the end of the result. In this case it turns

out that the answer has fewer than 450 digits anyway, so the solution is exact. If you require a smaller number of

significant figures, that number can be specified and the result will be rounded accordingly. For example, calculating
the above power to only 50 significant figures we have:

»> '6 vpa * 400" 50

ans =

. 18217977168218728251394687124089371267338971528175e312

Functions of integers and divisibility

There are several functions in MATLAB with integer arguments, the majority of which are related to divisibility.

Among the most typical functions with integer arguments are the following:

rem (n, m)

sign (n)
max (nl, n2)
min (nl, n2)
gcd (n1, n2)
Icm (nl1, n2)
factorial (n)

factor (n)

Returns the remainder of the division of n by m
(also valid when n and m are real).

Thesignofn (i.e. 1ifn>0,-1ifn<0).

The maximum of nl and n2.

The minimum of nl and n2.

The greatest common divisor of n1 and n2.
The least common multiple of n1 and n2.
n factorial (i.e. n(n-1) (n-2)...1)

Returns the prime factorization of n.

Below are some examples.
The remainder of division of 17 by 3:

»> rem (17,3)

ans =

The remainder of division of 4.1 by 1.2:

»> rem (4.1,1.2)
ans =

0.5000

45

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The remainder of division of -4.1 by 1.2:
»> rem(-4.1,1.2)
ans =
-0.5000
The greatest common divisor of 1000, 500 and 625:
»» ged (12000, ged (500,625))
ans =
125.00
The least common multiple of 1000, 500 and 625:
»> lcm (2000, lcm (500,625))
ans =

5000.00

Alternative bases

MATLAB allows you to work with numbers to any base, as long as the extended symbolic math Toolbox is available. It
also allows you to express all kinds of numbers in different bases. This is implemented via the following functions:

dec2base (decimal, n_base) Converts the specified decimal number to the new base n_base.
base2dec(number,b) Converts the given number in base b to a decimal number.
dec2bin (decimal) Conwverts the specified decimal number to base 2 (binary).
dec2hex (decimal) Converts the specified decimal number to base 16 (hexadecimal).
bin2dec (binary) Converts the specified binary number to decimal.

hex2dec (hexadecimal) Converts the specified base 16 number to decimal.

Below are some examples.
Represent in base 10 the base 2 number 100101.

»> base2dec('100101',2)
ans =

37.00

46

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Represent in base 10 the hexadecimal number FFFFAAQO0.
»> base2dec ('FFFFARO', 16)
ans =
268434080.00
Represent the result of the base 16 operation FFFAA2+FF-1 in base 10.
»> base2dec('FFFAA2',16) + base2dec('FF',16)-1
ans =

16776096.00

Real numbers

As is well known, the set of real numbers is the disjoint union of the set of rational numbers and the set of irrational
numbers. A rational number is a number of the form p/g, where p and g are integers. In other words, the rational
numbers are those numbers that can be represented as a quotient of two integers. The way in which MATLAB treats
rational numbers differs from the majority of calculators. If we ask a calculator to calculate the sum 1/2 + 1/3 + 1/4,
most will return something like 1.0833, which is no more than an approximation of the result.

The rational numbers are ratios of integers, and MATLAB can work with them in exact mode, so the result of an
arithmetic expression involving rational numbers is always given precisely as a ratio of two integers. To enable this,
activate the rational format with the command format rat. If the reader so wishes, MATLAB can also return the results
in decimal form by activating any other type of format instead (e.g. format short or format long). MATLAB evaluates
the above mentioned sum in exact mode as follows:

»> format rat
> 1/2 + 1/3 + 1/4

ans =
13/12

Unlike calculators, MATLAB ensures its operations with rational numbers are accurate by maintaining the
rational numbers in the form of ratios of integers. In this way, calculations with fractions are not affected by rounding
errors, which can become very serious, as evidenced by the theory of errors. Note that, once the rational format is
enabled, when MATLAB adds two rational numbers the result is returned in symbolic form as a ratio of integers, and
operations with rational numbers will continue to be exact until an alternative format is invoked.

A floating point number, or a number with a decimal point, is interpreted as exact if the rational format is
enabled. Thus a floating point expression will be interpreted as an exact rational expression while any irrational
numbers in a rational expression will be represented by an appropriate rational approximation.

»> format rat
> 10/23 + 2.45/44

ans =

1183 / 2412

47

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The other fundamental subset of the real numbers is the set of irrational numbers, which have always created
difficulties in numerical calculation due to their special nature. The impossibility of representing an irrational number
accurately in numeric mode (using the ten digits from the decimal numbering system) is the cause of most of the
problems. MATLAB represents the results with an accuracy which can be set as required by the user. An irrational
number, by definition, cannot be represented exactly as the ratio of two integers. If ordered to calculate the square
root of 17, by default MATLAB returns the number 5.1962.

»> sqrt (27)

ans =
5.1962
MATLAB incorporates the following common irrational constants and notions:
pi The number = 3.1415926...
exp (1) The number e = 2.7182818...
Inf Infinity (returned, for example, when it encounters 1/0).
NaN Uncertainty (returned, for example, when it encounters 0/0).
realmin Returns the smallest possible normalized floating-point number in IEEE double precision.
realmax Returns the largest possible finite floating-point number in IEEE double precision.

The following examples illustrate how MATLAB outputs these numbers and notions.

»> long format
>> pi

ans =
3.14159265358979

» exp (1)

ans =

2.71828182845905

» 1/0

Warning: Divide by zero.
ans =

Inf

»> 0/0

Warning: Divide by zero.
ans =

NaN

48

CHAPTER 2

»> realmin

ans =

2. 225073858507201e-308
»> realmax

ans =

1. 797693134862316e + 308

Functions with real arguments

MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. In turn,
the set of rational numbers has the set of integers as a subset. All functions applicable to real numbers are also valid
for integers and rational numbers. MATLAB provides a full range of predefined functions, most of which are discussed
in the subsequent chapters of this book. Within the group of functions with real arguments offered by MATLAB, the

following are the most important:

Trigonometric functions

Function Inverse

sin (x) asin (x)

cos (x) acos (x)

tan(x) atan(x) and atan2(y,x)
csc (x) acsc (x)

sec (x) asec (x)

cot (x) acot (x)

Hyperbolic functions

Function Inverse

sinh (x) asinh (x)
cosh(x) acosh(x)
tanh(x) atanh(x)
csch(x) acsch(x)
sech(x) asech(x)
coth (x) acoth (x)

49

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Exponential and logarithmic functions

Function Meaning

exp (x) Exponential function in base e (e " x).
log (x) Base e logarithm of x.

log10 (x) Base 10 logarithm of x.

log2 (x) Base 2 logarithm of x.

pow2 (x) 2 raised to the power Xx.

sqrt (x) The square root of x.

Numeric variable-specific functions

Function Meaning

abs (x) The absolute value of x.

floor (x) The largest integer less than or equal to x.

ceil (x) The smaller integer greater than or equal to x.
round (x) The closest integer to x.

fix (x) Removes the fractional part of x.

rem (a, b) Returns the remainder of the division of a by b.
sign (x) Returns the sign of x (1 ifx>0,0ifx=0,- 1 ifx<0).

Here are some examples:
»> sin(pi/2)
ans =
1
»> asin (1)
ans =
1.57079632679490
»> log (exp (1) ~ 3)
ans =

3.00000000000000

50

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
The function round is demonstrated in the following two examples:
»> round (2.574)
ans =
3
»> round (2.4)

ans =

The function ceil is demonstrated in the following two examples:
»> ceil (4.2)
ans =
5
»> ceil (4.8)

ans =

The function floor is demonstrated in the following two examples:
»> floor (4.2)
ans =
4
»> floor (4.8)

ans =

The fix function simply removes the fractional part of a real number:

»» fix (5.789)

ans =

51

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Complex numbers

Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that i or j
represents the key value in complex analysis, the imaginary number /- 1. All the usual arithmetic operators can

be applied to complex numbers, and there are also some specific functions which have complex arguments.

Both the real and the imaginary part of a complex number can be a real number or a symbolic constant, and
operations with them are always performed in exact mode, unless otherwise instructed or necessary, in which case
an approximation of the result is returned. As the imaginary unit is represented by the symbol i or j, the complex
numbers are expressed in the form a+bi or a+bj. Note that you don't need to use the product symbol (asterisk)
before the imaginary unit:

»> (1-5i)*(2-i)/(-1+21)
ans =
-1.6000 + 2.8000i

»> format rat
»» (2-51) *(2-i) /(-1+42i)

ans =

-8/5 + 14/5i

Functions with complex arguments

Working with complex variables is very important in mathematical analysis and its many applications in engineering.
MATLAB implements not only the usual arithmetic operations with complex numbers, but also various complex
functions. The most important functions are listed below.

Trigonometric functions

Function Inverse
sin (z) asin (z)
cos (z) acos (z)
tan (z) atan(z) and atan2(imag(z),real(z))
csc (z) acsc (z)
sec (z) asec (z)
cot (z) acot (z)

52

CHAPTER 2

Hyperbolic functions

Function Inverse

sinh (z) asinh (z)
cosh(z) acosh(z)
tanh(z) atanh(z)
csch(z) acsch(z)
sech(z) asech(z)
coth (z) acoth (z)

Exponential and logarithmic functions

MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Function Meaning

exp (z) Exponential function in base e (e " z)
log (z) Base e logarithm of z.

log10 (z) Base 10 logarithm of z.

log2 (z) Base 2 logarithm of z.

pow2 (z) 2 to the power z.

sqrt (z) The square root of z.

Specific functions for the real and imaginary part

Function Meaning

floor (z) Applies the floor function to real(z) and imag(z).
ceil (z) Applies the ceil function to real(z) and imag(z).
round (z) Applies the round function to real(z) and imag(z).
fix (z) Applies the fix function to real(z) and imag(z).

Specific functions for complex numbers

Function Meaning

abs (z) The complex modulus of z.
angle (z) The argument of z.

conj (z) The complex conjugate of z.
real (z) The real part of z.

imag (z) The imaginary part of z.

53

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
Below are some examples of operations with complex numbers.

»> round(1.5-3.4i)

ans =

2 - 3i

»> real(i*i)

ans =

0.2079

»> (2+#2i)*2/(-3-3*sqrt(3)*i)*90
ans =

0502e-085 - 1 + 7. 4042e-0701
»» sin (1 + i)

ans =

1.2985 + 0. 63501

Elementary functions that support complex vector arguments

MATLAB easily handles vector and matrix calculus. Indeed, its name, MAtrix LABoratory, already gives an idea of its
power in working with vectors and matrices. MATLAB allows you to work with functions of a complex variable, but in
addition this variable can even be a vector or a matrix. Below is a table of functions with complex vector arguments.

max (V) The maximum component of V. (max is calculated for complex vectors as the complex number
with the largest complex modulus (magnitude), computed with max(abs(V)). Then it computes
the largest phase angle with max(angle(x)), if necessary.)

min (V) The minimum component of V. (min is calculated for complex vectors as the complex number
with the smallest complex modulus (magnitude), computed with min(abs(A)). Then it computes
the smallest phase angle with min(angle(x)), if necessary.)

mean (V) Average of the components of V.

median (V) Median of the components of V.

std (V) Standard deviation of the components of V.

sort (V) Sorts the components of V in ascending order. For complex entries the order is by absolute value
and argument.

sum (V) Returns the sum of the components of V.

54

(continued)

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

(continued)

prod (V) Returns the product of the components of V, so, for example,n! = prod(1:n).
cumsum (V) Gives the cumulative sums of the components of V.

cumprod (V) Gives the cumulative products of the components of V.

diff (V) Gives the vector of first differences of V (V- V-,).

gradient (V) Gives the gradient of V.

del2 (V) Gives the Laplacian of V (5-point discrete).

fft (V) Gives the discrete Fourier transform of V.

fft2 (V) Gives the two-dimensional discrete Fourier transform of V.

ifft (V) Gives the inverse discrete Fourier transform of V.

ifft2 (V) Gives the inverse two-dimensional discrete Fourier transform of V.

These functions also support a complex matrix as an argument, in which case the result is a vector of column
vectors whose components are the results of applying the function to each column of the matrix.
Here are some examples:

> V =2:7, W=[5+ 31 2-i 4i]

V =

2.0000 - 1.0000i

0 + 4.00001 5.0000 + 3.00001

>> diff(V),diff(W)

ans =

ans =

-2.0000 + 5.00001

5.0000 - 1.0000i

»> cumprod(V),cumsum(V)

ans =

ans =

24 120 720 5040

14 20 27

55

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> cumsum(W), mean(W), std(W), sort(W), sum(u)

ans =

2.0000 - 1.0000i 2.0000 + 3.0000i 7.0000 + 6.0000i
ans =

2.3333 + 2.0000i

ans =

3.6515

ans =

2.0000 - 1.0000i 0 + 4.00001 5.0000 + 3.00001i

ans =

7.0000 + 6.0000i

»> mean(V), std(V), sort(V), sum(V)

ans =

4.5000

ans =

1.8708

ans =

2 3 4 5 6 7

ans =

27

»> fft(W), ifft(w), FFt2(W)

ans =

7.0000 + 6.0000i 0.3660 - 0.1699i -1.3660 - 8.8301i
ans =

2.3333 + 2.0000i -0.4553 - 2.9434i 0.1220 - 0.05661
ans =

7.0000 + 6. 0000i 0.3660 - 0. 1699i -1.3660 - 8. 83011

56

Elementary functions that support complex matrix arguments

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Trigonometric
sin (z)
sinh (z)
asin (z)
asinh (z)
cos (z)
cosh (z)
acos (z)
acosh (z)
tan(z)
tanh (z)
atan (z)
atan2 (z)
atanh (z)
sec (z)
sech (z)
asec (z)
asech (z)
csc (z)
csch (z)
acsc (z)
acsch (z)
cot (z)
coth (z)
acot (z)
acoth (z)
Exponential
exp (z)
log (2)
log10 (z)
sqrt (z)

Sine function

Hyperbolic sine function
Arcsine function

Hyperbolic arcsine function
Cosine function

Hyperbolic cosine function
Arccosine function

Hyperbolic arccosine function
Tangent function

Hyperbolic tangent function
Arctangent function

Fourth quadrant arctangent function
Hyperbolic arctangent function
Secant function

Hyperbolic secant function
Arccosecant function
Hyperbolic arccosecant function
Cosecant function

Hyperbolic cosecant function
Arccosecant function
Hyperbolic arccosecant function
Cotangent function

Hyperbolic cotangent function
Arccotangent function

Hyperbolic arccotangent function

Base e exponential function
Natural logarithm function (base e)
Base 10 logarithm function

Square root function

(continued)

57

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

(continued)

Complex

abs (z) Modulus or absolute value

angle (z) Argument

conj (z) Complex conjugate

imag (z) Imaginary part

real (z) Real part

Numerical

fix (z) Removes the fractional part

floor (z) Rounds to the nearest lower integer

ceil (z) Rounds to the nearest greater integer

round (z) Performs common rounding

rem (z1, z2) Returns the remainder of the division of z1 by z2
sign (z) The sign of z

Matrix

expm (Z) Matrix exponential function by default
expml (Z) Matrix exponential function in M-file
expm?2 (Z) Matrix exponential function via Taylor series
expm3 (Z) Matrix exponential function via eigenvalues
logm (Z) Logarithmic matrix function

sqrtm (Z) Matrix square root function
funm(Z,'function’) Applies the function to the array Z

Here are some examples:

>> A=[7 8 9; 1 2 3; 4 5 6], B=[1+2i 3+i;4+i,i]

A =
7 8 9
1 2 3
4 5 6
B =

1.0000 + 2.0000i 3.0000 + 1.0000i
4.0000 + 1.00001 0 + 1.0000i

58

CHAPTER 2

»» sin(A), sin(B), exp(A), exp(B), log(B), sqrt(B)

ans =

0.6570 0.9894
0.8415 0.9093
-0.7568 -0.9589

ans =

3.1658 + 1.95961
-1.1678 - 0.76821

ans =

1.0e+003 *
1.0966 2.9810
0.0027 0.0074
0.0546 0.1484

ans =

-1.1312 + 2.47171
29.4995 +45.94281

ans =

0.8047 + 1.10711
1.4166 + 0.24501

ans =

1.2720 + 0.78621
2.0153 + 0.24811

The exponential functions, square root and logarithm used above apply to the array elementwise and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

0.4121
0.1411
-0.2794

0.2178 - 1.1634i
0 + 1.17521

8.1031
.0201
0.4034

o

10.8523 +16.9014i
0.5403 + 0.84151

1.1513 + 0.32181
0 + 1.5708i

1.7553 + 0.28481
0.7071 + 0.70711

»> expm(B), logm(A), abs(B), imag(B)

ans =

-27.9191 + 14.8698i -20.0011 + 12.0638i
-24.7950 + 17.6831i -17.5059 + 14.0445i

MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

59

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
ans =

11.9650 12.8038 -19.9093

-21.7328 -22.1157 44.6052

11.8921 12.1200 -21.2040

ans =

2.2361 3.1623
4.1231 1.0000

ans =

2 1
1

»> fix(sin(B)), ceil(log(A)), sign(B), rem(A,3*ones(3))

ans =

3.0000 + 1.0000i 0 - 1.0000i
-1.0000 0 + 1.0000i
ans =

2 3 3

0 1 2

2 2 2

ans =

0.4472 + 0.8944i 0.9487 + 0.3162i

0.9701 + 0.24251 0 + 1.0000i
ans =

1 2 0

1 2 0

1 2 0

Random numbers

MATLAB can easily generate (pseudo) random numbers. The function rand generates uniformly distributed random
numbers and the function randn generates normally distributed random numbers. The most interesting features of
MATLAB’s random number generator are presented in the following table.

60

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

rand Returns a uniformly distributed random decimal number from the interval [0,1].

rand (n) Returns an array of size nxn whose elements are uniformly distributed random decimal
numbers from the interval [0,1].

rand (m, n) Returns an array of dimension mxn whose elements are uniformly distributed random
decimal numbers from the interval [0,1].

rand (size (a)) Returns an array of the same size as the matrix A and whose elements are uniformly
distributed random decimal numbers from the interval [0,1].

rand ('seed’) Returns the current value of the uniform random number generator seed.

rand('seed’,n) Assigns to n the current value of the uniform random number generator seed.

randn Returns a normally distributed random decimal number (mean 0 and variance 1).

randn (n) Returns an array of dimension nxn whose elements are normally distributed random
decimal numbers (mean 0 and variance 1).

randn (m, n) Returns an array of dimension mxn whose elements are normally distributed random
decimal numbers (mean 0 and variance 1).

randn (size (a)) Returns an array of the same size as the matrix A and whose elements are normally
distributed random decimal numbers (mean 0 and variance 1).

randn ('seed’) Returns the current value of the normal random number generator seed.

randn('seed’,n) Assigns to n the current value of the uniform random number generator seed.

Here are some examples:
»> [rand, rand (1), randn, randn (1)]
ans =
0.9501 0.2311 -0.4326 -1.6656

»> [rand(2), randn(2)]

ans =
0.6068 0.8913 0.1253 -1.1465
0.4860 0.7621 0.2877 1.1909

»» [rand(2,3), randn(2,3)]
ans =

0.3529 0.0099 0.2028 -0.1364 1.0668 -0.0956
0.8132 0.1389 0.1987 0.1139 0.0593 -0.8323

61

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Operators

MATLAB features arithmetic, logical, relational, conditional and structural operators.

Arithmetic operators

There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved are
presented in the following table.

Operator Role played

+ Sum of scalars, vectors, or matrices

- Subtraction of scalars, vectors, or matrices

* Product of scalars or arrays

* Product of scalars or vectors

\ A\B=inv (A) * B, where A and B are matrices

A A. \B=[B(ij) /A (i, j)], where A and B are vectors [dim (A) = dim (B)]
/ Quotient, or B/A = B *inv (A), where A and B are matrices

. A/B=[A(i,j)/b (i, j)], where A and B are vectors [dim (A) = dim (B)]
A Power of a scalar or matrix (M”)

A Power of vectors (A. » B = [A(i,j)? 7], for vectors A and B)

Simple mathematical operations between scalars and vectors apply the scalar to all elements of the vector
according to the defined operation, and simple operators between vectors are performed element by element. Below
is the specification of these operators:

a={a1, a2,..., an}, b ={b1, b2,..., bn}, ¢ = scalar

a + ¢ = [al +c, a2+ c,..., an+c] Sum of a scalar and a vector
a*c=[al * ¢c,a2*c,...,an *] Product of a scalar and a vector
a+b=[al+bl a2+b2...an+bn] Sum of two vectors
a.*b=[al*bl a2*b2...an*bn] Product of two vectors
a./b=[al/bl a2/b2...an/bn] Ratio to the right of two vectors
a.\b=[al\bl a2\b2...an\bn] Ratio to the left of two vectors
a.Nc=[al Ac,a27c,...,an A ¢] Vector to the power of a scalar
c.Aa=[cral,cha2,..,cNan] Scalar to the power of a vector
a.Ab = [alAbl a2/b2...an"bn] Vector to the power of a vector

It must be borne in mind that the vectors must be of the same length and that in the product, quotient and power
the first operand must be followed by a point.
The following example involves all of the above operators.

62

» X = [5,4,3]; Y = [1,2,7]; a=X+Y, b
e=2/X, f=2.\Y, g=x/Y, h=.\X, i

0.4000 0.5000

0.5000 1.0000

5.0000 2.0000

5.0000 2.0000

i=

25 16 9
j =

32 16 8

k =

5 16 2187

0.6667

3.5000

0.4286

0.4286

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

X-Y, c=x*VY,d =2, ¥ Xy..0
X"2, j=2."X, k=K Y

The above operations are all valid since in all cases the variable operands are of the same dimension, so the
operations are successfully carried out element by element. For the sum and the difference there is no distinction
between vectors and matrices, as the operations are identical in both cases.

The most important operators for matrix variables are specified below:

63

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

A+B,A-B,A*B Addition, subtraction and product of matrices.

A\B IfAis square, A\B = inv (A) * B. If A is not square, A\B is the
solution, in the sense of least-squares, of the system AX = B.

B/A Coincides with (A'\ B')".

A® Coincides with A * A * A *... *A n times (n integer).

p* Performs the power operation only if p is a scalar.

Here are some examples:
> X = [5,4,3]; Y =[1,2,7]; 1 =X'*Y, m=X*Y ', n=2%X,0=X/Y, p=Y\X

1=

v

10 35
4 8 28
3 621

0 0 0
0 0
.7143 0.5714 0.4286

o O

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not element
by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the vector
operations X. ' * Y and X. *Y’ make no sense, since they involve vectors of different dimensions. Similarly, the matrix
operations X *Y, 2/X, 2\Y, X A 2, 2 A Xand X A Y make no sense, again because of a conflict of dimensions in the arrays.

Here are some more examples of matrix operators.

» M= [1,2,3;1,0,2;7,8,9]

M =

[N
o
N

64

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
> B=1inv (M), C=M* 2, D =M ~(2/2), E=2"* M
B =
-0.8889 0.3333 0.2222

0.2778 -0.6667 0.0556
0.4444 0.3333 -0.1111

C =
24 26 34
15 18 21
78 86 118
D =

0.5219 + 0.84321 0.5793 - 0.06641 0.7756 - 0.23441
0.3270 + 0.02071 0.3630 + 1.06501 0.4859 - 0.20121
1.7848 - 0.58281 1.9811 - 0.7508i 2.6524 + 0.30801

1. Oe + 003 *

0.8626 0.9568 1.2811
.5401 0.5999 0.8027
2.9482 3.2725 4.3816

o

Relational operators

MATLAB also provides relational operators. Relational operators perform element by element comparisons between
two matrices and return an array of the same size whose elements are zero if the corresponding relationship is

true, or one if the corresponding relation is false. The relational operators can also compare scalars with vectors or
matrices, in which case the scalar is compared to all the elements of the array. Below is a table of these operators.

< Less than (for complex numbers this applies only to the real parts)
<= Less than or equal (only applies to real parts of complex numbers)

> Greater than (only applies to real parts of complex numbers)

>= Greater than or equal (only applies to real parts of complex numbers)
X==y Equality (also applies to complex numbers)

X~=y Inequality (also applies to complex numbers)

65

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Logical operators

MATLAB provides symbols to denote logical operators. The logical operators shown in the following table offer a
way to combine or negate relational expressions.

~A Logical negation (NOT) or the complement of A.

A&B Logical conjunction (AND) or the intersection of A and B.
A|B Logical disjunction (OR) or the union of A and B.

XOR (A, B) Exclusive OR (XOR) or the symmetric difference of A and B

(takes the value 1 if A or B, but not both, are 1).

Here are some examples:
»> A = 2:7;P =(A>3) &(A<6)

P =

Returns 1 when the corresponding element of A is greater than 3 and less than 6, and returns 0 otherwise.
> X =3 *ones (3.3); X>=[789; 456 ; 12 3]
ans =
000

00
111

o

The elements of the solution array corresponding to those elements of X which are greater than or equal to the
equivalent entry of the matrix [7 8 9; 456 ; 1 2 3] are assigned the value 1. The remaining elements are assigned the value 0.

Logical functions

MATLAB implements logical functions whose output can take the value true (1) or false (0). The following table shows
the most important logical functions.

exist(A) Checks if the variable or function exists (returns 0 if A does not exist and a number between
1 and 5, depending on the type, if it does exist).
any(V) Returns 0 if all elements of the vector V are null and returns 1 if some element of V is non-zero.
any(A) Returns 0 for each column of the matrix A with all null elements and returns 1 for each column
of the matrix A which has non-null elements.
all(V) Returns 1 if all the elements of the vector V are non-null and returns 0 if some element of V is null.
all(A) Returns 1 for each column of the matrix A with all non-null elements and returns 0 for each

column of the matrix A with at least one null element.

(continued)

66

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

(continued)

find (V) Returns the places (or indices) occupied by the non-null elements of the vector V.

isnan (V) Returns 1 for the elements of V that are indeterminate and returns 0 for those that are not.

isinf (V) Returns 1 for the elements of V that are infinite and returns 0 for those that are not.

isfinite (V) Returns 1 for the elements of V that are finite and returns 0 for those that are not.

isempty (A) Returns 1 if A is an empty array and returns 0 otherwise (an empty array is an array such that
one of its dimensions is 0).

issparse (A) Returns 1 if A is a sparse matrix and returns 0 otherwise.

isreal (V) Returns 1 if all the elements of V are real and 0 otherwise.

isprime (V) Returns 1 for all elements of V that are prime and returns 0 for all elements of V that are not
prime.

islogical (V) Returns 1 if Vis a logical vector and 0 otherwise.

isnumeric (V)

ishold

isieee

isstr (S)
ischart (S)
isglobal (A)
isletter (S)
isequal (A, B)

ismember(V, W)

Returns 1 if V is a numeric vector and 0 otherwise.

Returns 1 if the properties of the current graph are retained for the next graph and only new
elements will be added and 0 otherwise.

Returns 1 if the computer is capable of IEEE standard operations.
Returns 1if S is a string and 0 otherwise.

Returns 1if S is a string and 0 otherwise.

Returns 1 if A is a global variable and 0 otherwise.

Returns 1 if S is a letter of the alphabet and 0 otherwise.

Returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

Returns 1 for every element of V which is in W and 0 for every element V that is notin W.

Below are some examples using the above defined logical functions.

» V=[1,2,3,4,5,6,7,8,9], isprime(V), isnumeric(V), all(V), any(V)

V =

ans =

ans =

ans =

67

CHAPTER 2 = MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

ans =

1

»> B=[Inf, -Inf, pi, NaN], isinf(B), isfinite(B), isnan(B), isreal(B)
B =

Inf - Inf 3.1416 NaN

ans =
1100
ans =
0010
ans =
0001

ans =

»> ismember ([1,2,3], [8,12,1,3]), A = [2,0,1];B = [4,0,2]; isequal (2A * B)
ans =
101
ans =

1

EXERCISE 2-1

Find the number of ways of choosing 12 elements from 30 without repetition, the remainder of the division of 2%
by 3, the prime decomposition of 18900, the factorial of 200 and the smallest number N which when divided by
16,24,30 and 32 leaves remainder 5.

»» factorial (30) / (factorial (12) * factorial(30-12))
ans =

8.6493e + 007

68

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The command vpa is used to present the exact result.
»> vpa 'factorial (30) / (factorial (12) * factorial(30-12))' 15
ans =

86493225.

»> rem(2°134,3)

ans =

0

»» factor (18900)

ans =

2 2 3 3 3 5 5 7

»» factorial (100)

ans =

9. 3326e + 157

The command vpa is used to present the exact result.
»> vpa ' factorial (100)' 160

ans =

933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761
56518286253697920827223758251185210916864000000000000000000000000.

N-5 is the least common multiple of 16, 24, 30 and 32.
»> lem (lem (16.24), lem (30,32))

ans =

480

Then N = 480 + 5 = 485.

69

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-2

In base 5 find the result of the operation defined by a25aaff6, + 6789aba,, + 35671, + 1100221, - 1250.
In base 13 find the result of the operation (666551,)* (aa199800a,,) + (fffaaa125,,) / (33331, + 6).

The result of the first operation in base 10 is calculated as follows:

»> base2dec('a25aaf6',16) + base2dec('6789aba’,12) +...
base2dec('35671',8) + base2dec('1100221',3)-1250

ans =
190096544

We then convert this to base 5:
»> dec2base (190096544,5)

ans =

342131042134

Thus, the final result of the first operation in base 5 is 342131042134.

The result of the second operation in base 10 is calculated as follows:

»> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)

ans =

2. 7537e + 014

We now transform the result obtained into base 13.
»> dec2base (275373340490852,13)
ans =

BA867963C1496

70

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-3

In base 13, find the result of the following operation:
(666551,)* (2a199800a,,) + (fffaaa125,) / (33331, + 6).
First, we perform the operation in base 10:

A more direct way of doing all of the above is:

»> base2dec('666551',7) * base2dec('aa199800a‘,11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)

ans =

2. 753733404908515e + 014

We now transform the result obtained into base 13.
»> dec2base (275373340490852,13)
ans =

BA867963C1496

EXERCISE 2-4

Given the complex numbers X = 2 + 2i and Y=-3-3sqrt(3)i, calculate Y3X?/Y*, Y'”2Y¥2 and In (X).

»> X=242%i; Y=-3-3*sqrt(3)*i;
» Y3

ans =
216

»X*~2/Y"90

ans =

050180953422426e-085 - 1 + 7. 404188256695968e-0701
» sqrt (Y)

ans =

1.22474487139159 - 2.121320343559641

»> sqrt(Y*3)

71

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

ans =
14.69693845669907
»> log (X)

ans =

1.03972077083992 + 0.785398163397451

EXERCISE 2-5

Calculate the value of the following operations with complex numbers:

i

1
. 4.+Li“mﬂiz+hﬁ0y,0+02f““”(l+J§ﬁH
—4l

»> (i*8-i~(-8))/(3-4*i) + 1

ans =

1

» i*(sin(1+i))

ans =

-0.16665202215166 + 0.329041394503071
» (2+log(i))~(2/i)

ans =

1.15809185259777 - 1.563880539890231
» (1+i)"i

ans =

0.42882900629437 + 0.154871752464251
»» i*(log(1+i))

ans =

0.24911518828716 + 0.15081974484717i

72

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> (1+sqrt(3)*i)~(1-i)
ans =

5.34581479196611 + 1. 975948834528731

EXERCISE 2-6

Calculate the real part, imaginary part, modulus and argument of each of the following expressions:
i, A+~B3)i, i i

> Z1 =13 *i; 72 = (1 + sqrt (3) * i) ~(2-i); 23 =(i*i) ~ i524 = i ~ i

»> format short

»> real ([21 22 73 24])
ans =

1.0000 5.3458 0.0000 0.2079
»> imag ([Zz1 22 Z3 24])

ans =

0 1.9759 - 1.0000 0

»> abs ([21 22 73 23])

ans =

1.0000 5.6993 1.0000 0.2079
»> angle ([Z1 Z2 z3 z4])
ans =

0 0.3541 - 1.5708 0

73

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-7

74

Generate a square matrix of order 4 whose elements are uniformly distributed random numbers from [0,1].
Generate another square matrix of order 4 whose elements are normally distributed random numbers from [0,1].
Find the present generating seeds, change their value to ¥2 and rebuild the two arrays of random numbers.

»> rand (4)

ans =

0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057

»» randn (4)

ans =

-0.4326 -1.1465 0.3273 -0.5883
-1.6656 1.1909 0.1746 2.1832
0.1253 1.1892 -0.1867 -0.1364
0.2877 -0.0376 0.7258 0.1139
»> rand ('seed’)

ans =

931316785

»> randn ('seed')

ans =

931316785

»> randn ('seed', 1/2)

»> rand ('seed', 1/2)

»» rand (4)

ans =

0.2190 0.9347 0.0346 0.0077
0.0470 0.3835 0.0535 0.3834

0.6789 0.5194 0.5297 0.0668
0.6793 0.8310 0.6711 0.4175

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> randn (4)
ans =

1.1650 -0.6965 0.2641 1.2460
0.6268 1.6961 0.8717 -0.6390
0.0751 0.0591 -1.4462 0.5774
0.3516 1.7971 -0.7012 -0.3600

EXERCISE 2-8

Given the vector variables a = [r, 2, 3=, 47, 57t] and b = [e, 2e, 3e, 4e, 5e], calculate ¢ = sin (a) + b, d = cos (a),
e=In(),f=c*d,g=c/dh=d"2,i=d”2-e~2andj=3d " 3-2e A 2.

>» a = [pi, 2 * pi, 3 * pi, 4 * pi, 5 * pi],

b = [exp (1), 2 * exp (1), 3 * exp (1), 4 * exp (1),5%exp(1)],
c=sin(a)+b,d=cos(a),e=1log(b),f=c.*d,g=c./d,]

h=d.*2, i=d."2-e."2, j=3*d."3-2%e."2

a =

3.1416 6.2832 9.4248 12.5664 15.7080

2.7183 5.4366 8.1548 10.8731 13.5914

2.7183 5.4366 8.1548 10.8731 13.5914

1.0000 1.6931 2.0986 2.3863 2.6094

f =

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
g =

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914
h =

1 1 1 1 1

75

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

o
1

1.8667 - 3.4042 - 4.6944 - 5.8092
j =

-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183

EXERCISE 2-9

Given a uniform random square matrix M of order 3, obtain its inverse, its transpose and its diagonal.

Transform it into a lower triangular matrix (replacing the upper triangular entries by 0) and rotate it 90 degrees
counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements. Extract the
subarray whose diagonal elements are at ,, and ,, and also remove the subarray whose diagonal elements are

at and,.

»» M=rand(3)
M =
0.6868 0.8462 0.6539

0.5890 0.5269 .4160
0.9304 0.0920 0.7012

o

»> A=inv(M)

A =

-4.1588 6.6947 -0.0934
0.3255 1.5930 -1.2487
5.4758 -9.0924 1.7138
»> B=M'

B =

0.6868 0.5890 0.9304

0.8462 0.5269 .0920
0.6539 0.4160 0.7012

o

»> V=diag(M)
V =
0.6868

0.5269
0.7012

76

»> TI=tril(M)

TI =

0.6868 0
0.5890 0.5269
0.9304 0.0920

»> TS=triu(M)

TS =

0.6868 0.8462
0 0.5269
0 0

»> TR=rot9o(M)
TR =
0.6539 0.4160

0.8462 0.5269
0.6868 0.5890

o

o

o

.7012

.6539
.4160
.7012

.7012
.0920
.9304

»> s=M(1,1)+M(1,2)+M(1,3)

s =

2.1869

»> sd=M(1,1)+M(2,2)+M(3,3)

sd =

1.9149

»> SM=M(1:2,1:2)
SM =

0.6868 0.8462
0.5890 0.5269

> SM1

SM1 =

0.6868 0.6539
0.9304 0.7012

M([2 31, [23])

CHAPTER 2

MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

77

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-10

Given the following complex square matrix M of order 3, find its square, its square root and its base
2 and — 2 exponential:

i 2i 3i
M=\ 4i 5i 61 |
71 8i 9i

>> M=[1i 2*i 3*i; 4*i 5*i 6*i; 7*i 8*i 9*i]

M =
0 + 1.00001 0 + 2.00001 0 + 3.00001
0 + 4.0000i 0 + 5.0000i 0 + 6.00001
0 + 7.0000i 0 + 8.00001 0 + 9.0000i
>> C=M"*2

C =

-30 -36 -42

-66 -81 -96

-102 -126 -150

>> D=M"(1/2)

D =
0.8570 - 0.2210i 0.5370 + 0.2445i 0.2169 + 0.71011
0.7797 + 0.66071 0.9011 + 0.86881 1.0224 + 1.07691
0.7024 + 1.54241 1.2651 + 1.49301 1.8279 + 1.44371
>> 2"M

ans =

0.7020 - 0.61461i -0.1693 - 0.27231 -0.0407 + 0.06991

-0.2320 - 0.30551
-0.1661 + 0.00361

>> (-2)"M

ans =

0.7366 - 0.32201
-0.3574 - 0.37171

-0.2947 - 0.33861
0.4513 - 0.74711

-7.7139 + 7.70501
-1.2033 + 0.85061
6.3073 - 6.00381

4.3404 - 4.56961
1.1826 - 0.50451
-3.9751 + 3.56071

17.3946 -16.84431
1.5685 - 1.85951
-13.2575 +13.12521

78

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-11

Given the complex matrix M in the previous exercise, find its elementwise logarithm and its elementwise base e
exponential. Also calculate the results of the matrix operations e™ and In (M).

> M=[i 2*i 3%i; 4*i 5%i 6*i; 7*i 8*%i 9*i]

»> log(M)

ans =

0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i
1.3863 + 1.57081 1.6094 + 1.5708i 1.7918 + 1.5708i
1.9459 + 1.5708i 2.0794 + 1.5708i 2.1972 + 1.5708i
»> exp(M)

ans =

0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i
-0.6536 - 0.75681 0.2837 - 0.9589i 0.9602 - 0.27941
0.7539 + 0.65701 -0.1455 + 0.9894i -0.9111 + 0.4121i
»> logm(M)

ans =

-5.4033 - 0.84721 11.9931 - 0.3109i -5.3770 + 0.8846i
12.3029 + 0.0537i -22.3087 + 0.8953i 12.6127 + 0.4183i
-4.7574 + 1.61381 12.9225 + 0.7828i -4.1641 + 0.61121
»> expm(M)

ans =

0.3802 - 0.69281 -0.3738 - 0.2306i -0.1278 + 0.2316i

-0.5312 - 0.1724i 0.3901 - 0.1434i -0.6886 - 0.1143i
-0.4426 + 0.34791 -0.8460 - 0.0561i -0.2493 - 0.4602i

79

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-12

Given the complex vector V = [1 + i, i, 1-i], find the mean, median, standard deviation, variance, sum, product,
maximum and minimum of its elements, as well as its gradient, its discrete Fourier transform and its inverse
discrete Fourier transform.

»> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]’
ans =

0.6667 - 0.33331
1.0000 + 1.0000i
1.2910

1.6667

2.0000 - 1.0000i
0 - 2.0000i
1.0000 + 1.0000i

0 - 1.00001

»> gradient(V)

ans =

1.0000 - 2.0000i 0.5000 O + 2.0000i

> fFft(V)

ans =

2.0000 + 1.0000i -2.7321 + 1.0000i 0.7321 + 1.0000i
»> ifft(V)

ans =

0.6667 + 0. 33331 0.2440 + 0. 33331 - 0.9107 + 0. 33331

80

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-13

Given the arrays

110 i 1-i 2+i 1 1 1
A=|01 1|,B=|0 -1 3-1|,C=|0 sqrt(2)i —sqrt(2)i
001 00 —i 1 -1 -1

calculate AB — BA, A% + B? + C?, ABC, sqrt (A)+sqrt(B)+sqrt(C), e*(e®+ €®), their transposes and their inverses.
Also verify that the product of any of the matrices A, B, C with its inverse yields the identity matrix.

> A=[1 1 050 1 130 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i]; C=[1 1 1; 0 sqrt(2)*i -sqrt(2)*i;1
-1 -1];

»> M1=A*B-B*A

M1 =

0 -1.0000 - 1.0000i 2.0000

0 0 1.0000 - 1.0000i
0 0 0

»> M2=A"2+B"2+C"2

M2 =

2.0000 2.0000 + 3.4142i 3.0000 - 5.4142i
0 - 1.4142i -0.0000 + 1.4142i 0.0000 - 0.5858i
0 2.0000 - 1.4142i 2.0000 + 1.4142i
»> M3=A*B*C

M3 =

5.0000 + 1.0000i -3.5858 + 1.0000i -6.4142 + 1.0000i
3.0000 - 2.0000i -3.0000 + 0.5858i -3.0000 + 3.4142i
0 - 1.0000i 0 + 1.0000i 0 + 1.0000i

»> M4=sqrtm(A)+sqrtm(B)-sqrtm(C)
M4 =

0.6356 + 0.8361i -0.3250 - 0.8204i 3.0734 + 1.2896i
0.1582 - 0.1521i 0.0896 + 0.5702i 3.3029 - 1.8025i
-0.3740 - 0.26541 0.7472 + 0.3370i 1.2255 + 0.1048i

»> M5=expm(A)*(expm(B)+expm(C))

M5 =

14.1906 - 0.0822i 5.4400 + 4.2724i 17.9169 - 9.5842i
4.5854 - 1.49721 0.6830 + 2.15751 8.5597 - 7.65731
3.5528 + 0.3560i 0.1008 - 0.74881 3.2433 - 1.8406i

81

CHAPTER 2 © MATLAB LANGUAGE: VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> inv(A)

ans =

o O B
1
o R R
1
[EN=

»> inv(B)
ans =

0 - 1.0000i -1.0000 - 1.00001 -4.0000 + 3.0000i

0 -1.0000 1.0000 + 3.0000i
0 0 0 + 1.0000i

»> inv(C)

ans =

0.5000 0 0.5000
0.2500 0 - 0.3536i -0.2500
0.2500 0 + 0.35361i -0.2500

»> [A*inv(A) B*inv(B) C*inv(C)]

ans =

o
=
o
o
o
o
o
=
o

>» A

o r R
[)
»r oo

» B'
ans =

0 - 1.00001 0 0
1.0000 + 1.0000i -1.0000 0
2.0000 - 1.0000i 3.0000 + 1.0000i 0 + 1.0000i

» C
ans =

1.0000 O 1.0000
1.0000 0 - 1.4142i -1.0000
1.0000 O + 1.41421i -1.0000

82

CHAPTER 3

MATLAB Language: Development
Environment Features

General Purpose Commands

MATLAB has a group of so-called general purpose commands that can be further classified into the following
subcategories according to the essential function of the script:

e Commands that handle variables in the workspace.

¢ Commands that work with files and the operating environment.
e Command handling functions.

¢ Commands that control the Command Window.

e Commands that start and exit MATLAB.

Commands that Handle Variables in the Workspace

MATLAB allows you to define and manage variables, and store them in files, in a very simple way. When extensive
calculations are performed, it is convenient to give names to intermediate results. These intermediate results are
assigned to variables to make them easier to use. The definition of variables has already been treated in the previous
chapter, but it is convenient to recall that the value assigned to a variable is permanent, until it is explicitly changed or
the current MATLAB session is closed.

The following table presents a group of MATLAB commands that handle variables:

clear Clears all variables in the workspace.

clear(vl,v2,...,vn) Deletes the specified numeric variables.

clear(‘vl’, ‘v2,...,‘vn’) Clears the specified string variables.

disp(X) Displays an array without including its name.

length(X) Shows the length of the vector X and if X is an array, displays its greatest
dimension.

(continued)

83

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

load

load file
loadfileXYZ
load file -ascii
load file -mat
S =load(...)
memory
mlock
munlock
openvar(‘v’)
pack

pack file
pack ‘file’

save
save file

save filevlv2...
save...option

save(‘file’,...)

saveas(h, ‘f.ext’)
saveas(h,‘f’,‘format’)

d = size(X)

[m,n] = size(X)
[d1,d2,d3,...,dn] = size(X)
who

whos

who(‘global’)
whos(‘global’)
who(‘-file’, ‘filename’)
whos(‘-file’, ‘filename’)
who(‘varl’,‘var2,...)
who(‘-file’, ‘filename’,
‘varl) ‘var2’,...)

s =who(...)

s =whos(...)

who -file filename varl var2...

whos -file filename varl var2...

workspace

Reads all variables from the file MATLAB.mat.

Reads all variables specified in the .mat file.

Reads the variables X, Y, Z from the specified .mat file.

Reads the file as ASCII whatever its extension.

Reads the file as .mat whatever its extension.

Assigns the contents of a .mas file to the variable S.

Displays how much memory is available and how much is currently being used.
Prevents the deletion of M-files in memory.

Allows the deletion of M-files in memory.

Opens the variable v in the workspace in the Array Editor, allowing graphical editing.

Compresses the workspace memory.

Used as a temporary file to store the variables.

Functional form of pack.

Saves the variables in the workspace in the binary file MATLAB.mat in the
current directory.

Saves the variables in the workspace in the file file.mat in the current directory.
A .mat file has a specific MATLAB format.

Saves the variables v1, v2,. . .in the workspace in the file file.mat.
Saves the variables in the workspace in the format specified by option.

Functional form of save.

Saves the figure or model h as an f.ext file.
Saves the figure or model h as fin the specified format file.

Returns the sizes of each dimension of an array X in a vector d.
Returns the dimensions of the matrix X as two variables named m and n.

Returns the dimensions of the array X as variables named d1, d2,. . ., dn.

Lists the variables in the workspace.

Lists the variables in the workspace with sizes and types.

Lists the variables in the global workspace.

Lists the variables in the global workspace with sizes and types.
Lists the variables in the specified .mat file.

Lists the variables in the specified .mat file and their sizes and types.
Lists the string variables from the specified workspace.

Lists the specified string variables in the given .mat file.

Stores the list of variables in s.

Stores the list of variables with their sizes and types in s.

Lists the numerical variables specified in the given .mat file.

Lists the numerical variables specified in the file .mat given with their sizes
and types.

Opens a browser to manage the workspace.

84

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

The save command, which applies to file workspace variables, supports the following options:

Option Mode of Storage of the Data

-append The variables are added to the end of the file.

-ascii The variables are stored in a file in 8 digit ASCII format.

-ascii - double The variables are stored in a file in 16 digit ASCII format.

-ascii - tabs The variables are stored in a tab-delimited file in 8 digit ASCII format.

-ascii - double - tabs The variables are stored in a tab-delimited file in 16 digit ASCII format.
-mat The variables are stored in a file in binary .mat MATLAB MAT-file format.
-v4 The variables are stored in a file with MATLAB version 4.

The command save is the essential instrument for storing data in MATLAB type.mat files (only readable by
the MATLAB program) and ASCII type files (readable by any application). By default, variables are stored in .mat
formatted files. To store variables in ASCII formatted files it is necessary to use options.

As a first example we let a variable A be equal to the inverse of a random square matrix of order 5 and a variable B
be equal to the inverse of twice the unit matrix of order 5 less the identity matrix of order 5.

»» A=inv(rand(3))

A =
1.67 -0.12 -0.93
-0.42 1.17 0.20
-0.85 -1.00 1.71

»» B=inv(2*ones(3)-eye(3))
B =

-0.60 0.40 0.40

0.40 -0.60 0.40

0.40 0.40 -0.60

Now we use the commands who and whos to view the workspace variables as, respectively, a simple list and a list
together with types and sizes.

»> who

Your variables are:

A B

>> whos

Name Size Bytes Class

A 3x3 72 double array
B 3x3 72 double array

Grand total is 18 elements using 144 bytes

85

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

If we want only the variable information about A, we do the following:
> who A

Your variables are:

A

>> whos A

Name Size Bytes C(lass

A 3x3 72 double array

Grand total is 9 elements using 72 bytes

Now we are going to store the variables A and B in an ASCII file with 8 digits of precision and name it matrix.asc.
In addition, to check the ASCII file has been generated, we use the command dir to see that our file exists. Finally, we
will check the contents of our file, using the DOS operating system order type to check that the contents are indeed the
elements of two arrays with 8 digits of precision, located one after the other.

»> save matrix.asc A B - ascii
» dir

matrix.asc
»> type matrix.asc

1. 6740445e + 000 - 1. 1964440e-001 - 9. 2759516e-001
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001 - 8 - 1. 0006147e + 000 1. 7125190e + 000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001

4. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001

4. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001

The files generated with the command save are stored by default (if not specified otherwise) in the \MATLAB\BIN\
subdirectory.

Saving all variables in the workspace with the command save to a binary file in MATLAB format is equivalent to
selecting the option Save Workspace As from the general MATLAB file menu.

Once the variables have been saved, the workspace can be deleted by using the command clear.

> clear

Then, to illustrate the command load, we will read the previously saved ASCII file matrix.asc. MATLAB will read
the ASCII file as a single variable whose name is that of the file, as is checked with the command whos.

»> load matrix.asc
»> whos

86

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Name Size Bytes C(lass
matrix 6x3 144 double array
Grand total is 18 elements using 144 bytes

We now check that MATLAB has read the data in the same 6 x 3 matrix structure that it had been saved in,
the first three rows corresponding to the variable A and the last three to the variable B.

»> matrix
matrix =

1.67 -0.12 -0.93
-0.42 1.17 0.20
-0.85 -1.00 1.71
-0.60 0.40 0.40

0.40 -0.60 0.40

0.40 0.40 -0.60

Now we can use matrix variable handling commands to define the variables A and B:
» A = matrix (1:3, 1:3)
A=
1.67 -0.12 -0.93
-0.42 1.17 0.20

-0.85 -1.00 1.71

»> B = matrix (4:6, 1:3)

-0.60 0.40 0.40
0.40 -0.60 0.40
0.40 0.40 -0.60

Commands that Work with Files in the Operational Environment

There is a group of commands that are used to work with files, allowing you to analyze, copy, delete, edit, and save
data, among other options. These commands also allow the DOS environment to interrelate with the MATLAB
environment, accommodating commands from both the operating system and from within the MATLAB Command
Window.

87

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Below is a list of these types of commands.

beep

CD directory
copy file f1 2
delete file
diary (‘file’)
dir

dos command
edit M-file

[path,name,ext,ver] =
fileparts(‘file’)

file browser
fullfile(‘d1’, ‘d2’,..., ‘f’)
info toolbox

[M, X, J] =inmem
Is

MATLAB root
mkdir Directory
open(‘file’)

pwd

tempdir

name =tempname
unix command

! command

Produces a beep.

Changes from the current directory to the given work directory.

Copy the file (or directory) from the origin fI to the destination file f2.
Delete the specified file (or graphic object).

Writes the inputs and outputs of the current session in the file.
Displays the files in the current directory.

Executes a DOS command and returns the result.

Edit an M-file.

Returns the path, name, extension and version of the specified file.

Displays the files in the current directory in a browser.

Builds a full file specification from the folders and file names specified.
Displays information about the specified toolbox.

Returns M-files, MEX-files and Java classes in memory.

List the current directory in UNIX.

Returns the name of the directory where MATLAB is installed.
Constructs a new directory.

Opens the specified file.

Displays the current directory.

Returns the name of the temporary directory of the system.
Assigns a unique name to the temporary directory.

Runs a UNIX command and returns the result.

Executes an operating system command.

Here are some examples:

» dir

» ! dir

matrix.ASC

The volume of drive D has no label.
The volume serial number £ n is: 1179-07DC

Directory of D:\MATLABR12\work

88

CHAPTER 3

01/01/2001 07:01 < DIR >.

2001-01-01 07:01 < DIR »>..

02/01/2001 03:27 300 matrix.asc

1 files 300 bytes

2 dirs 1.338.146.816 bytes free

»> ! matrix.asc type

1. 6740445e + 000 - 1. 1964440e-001 - 9. 2759516e-001
-4 1647244e-001 1. 1737582e + 000 2. 0499870e-001
5035677e-001 - 8 - 1. 0006147e + 000 1. 7125190e + 000
-6 0000000e-001 4. 0000000e-001 4. 0000000e-001

4. 0000000e-001 - 6. 0000000e-001 4. 0000000e-001

4. 0000000e-001 4. 0000000e-001 - 6. 0000000e-001

»> tempdir

ans =

C:\DOCUME~1\CPL\CONFIG~1\Temp\

> MATLABroot

ans =

D:\MATLABR12

>> pwd

ans =

D:\MATLABR12\work

» cd ..
»> pwd

ans =
D:\MATLABR12

»> cd work
»> pwd

ans =
D:\MATLABR12\work

»> copyfile matrix.asc matrixi.asc
»» dir

. Matrix.ASC matrixi.asc
»> two dir

MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

89

CHAPTER 3 MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

The volume of drive D

has no label.

The volume serial number £ n is: 1179-07DC

Directory of D:\MATLABR12\work

01/01/2001 07:01 < DIR »>.
01/01/2001 07:01 < DIR »>...
02/01/2001 03:27 300 matrix.asc
02/01/2001 03:27 300 matrixi.asc
2 files 600 bytes
2 dirs 1.338.130.432 bytes free

An important command that allows direct editing in a window of any M-file is edit. The figure below shows the
edit window for the file matrix1.asc.

File Edit Tet Go Tools Debug Desktop Window Help ¥iax
NSl @90 | Aessr | EB-AR0RBR ?|0 s
BB -0 |+ | +11 | x || @

1 | -1.9957974e+000 3.0630278e+000 -1.1689601e+000

2 2.8839465e+000 -2.6919473e+000 6.9869190e-001

3 -2.9097811e-002 -1.3199960e-001 1.1282341e+000

4 -6.0000000e-001 4.0000000e-001 4.0000000e-001

S5 4.0000000e-001 -6.0000000e-001 4.0000000e-001

[3 4,.0000000e-001 4.0000000e-001 -6.0000000e-001

7

plain text file [tln 1 Col 1 [OWR _:

>> edit matrix.asc

Commands that Handle Functions

The list below describes a group of commands that handle functions, displaying help on them, providing access to
information, and generating reports in MATLAB.

addpath(‘dir’, ‘dir2',...)
doc

doc file

doc toolbox/

doc toolbox/function
help

help file

help toolbox/

help toolbox/function

Adds the directories to the MATLAB search path.

Displays HTML documentation in the help panel for MATLAB functions in the
Command Windouw, for a specified M-file, for the contents of a specified toolbox or for
specified toolbox functions.

Displays help for MATLAB functions in the Command Windouw, for a specified M-file,
for the contents of a specified toolbox or for specified toolbox functions.

90

(continued)

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

helpbrowser
helpdesk
helpwin
docopt
genpath
lasterr
lastwarn
license
lookfor theme

partial pathname

path

pathtool

profile
profreport
rehash

rmpath directory
support

typefile

see (or see toolbox)
version

WebURL

what

whatsnew

which function
which file

Shows the MATLAB help browser.

Shows the help browser located on the home page.
Displays help for all MATLAB functions.

Shows the location of the UNIX help file.
Generates a path string.

Returns the last error message.

Returns the last warning message.

Displays the MATLAB license number.

Shows all functions related to search.

A partial pathname is a pathname relative to the MATLAB path matlabpath that is used
to locate private and method files which are usually hidden or to restrict the search for
files when more than one file with the given name exists.

Displays the complete path to MATLAB.

Displays the complete path to MATLAB in windowed mode.

Starts the profiler utility, to debug and optimize M-files code.

Generates a profile report in HTML format and suspends the windows profiler utility.
Refreshes caches of system files and functions.

Removes the path from the MATLAB directory.

Opens the MathWorks website.

Lists the contents of the file.

Displays the version of MATLAB, Simulink and toolboxes.

Displays the version number of MATLAB.

Directs the browser to the indicated Web address.

Lists MATLAB-specific files (.m, .mat, .mex .mdl and. p) in the current directory.
Shows help files with news of MATLAB and its toolboxes.

Locates functions.

Locates files.

Here are some examples:

»> version
ans =

6.1.0.450 (R12.1)

91

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

»> license

ans =

DEMO

»> help toolbox\symbolic

Symbolic Math Toolbox.
Version 2.1.2 (R12.1) 11-Sep-2000

New Features.
Readme - Overview of the new features in/changes made to
the Symbolic and Extended Symbolic Math Toolboxes.

Calculus.

diff - Differentiate.

int - Integrate.

limit - Limit.

taylor - Taylor series.
jacobian - Jacobian matrix.
symsum - Summation of series.

Linear Algebra.

diag - Create or extract diagonals.

triu - Upper triangle.

tril - Lower triangle.

inv - Matrix inverse.

det - Determinant.

rank - Rank.

rref - Reduced row echelon form.

null - Basis for null space.

colspace - Basis for column space.

eig - Eigenvalues and eigenvectors.

svd - Singular values and singular vectors.
Jordan - Jordan canonical (standard) form.
poly - Characteristic polynomial.

expm - Matrix exponential.

»> help int
--- help for sym/int.m ---

INT Integrate.

INT(S) is the indefinite integral of S with respect to its symbolic
variable as defined by FINDSYM. S is a SYM (matrix or scalar).

If S is a constant, the integral is with respect to 'x'.

INT(S,v) is the indefinite integral of S with respect to v. v is a
scalar SYM.

INT(S,a,b) is the definite integral of S with respect to its
symbolic variable from a to b. a and b are each double or

92

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES
symbolic scalars.

INT(S,v,a,b) is the definite integral of S with respect to v

from a to b.

Examples:

syms x alpha u t;

int(12/(1+x"2)) returns atan(x)

int (sin(alpha*u), alpha) returns - cos(alpha*u) /u

int (4 * x * t, x, 2, sin (t)) returns 2 * sin (t) *2 *t - 8 * ¢t

Command Window

Inatruenr Coatzol
WAl Contiel Teolbox

»
«l

FATLAD Compiler Fle B3t Vew GO Wb Window Mep
FATLAD Ragoit Carmia)
FATLAD ek Serwex Help haag ol
| Regping Teolbex = Yoe s thl Ool
Bodel Predictive Con] Poduttber & A3 7 Somcted |
[Botacola 242 Develogpd BT w| Assi Faveetes
[Bu-kralyris wmt sme] Conterta I roex | Sewch | Favortes |
Beucal Setwork Toold [TI e pr— —
liraar Control De T e cotourt = Rymbaie L]
Optiaizaticn Toolbax B eavasn mnt
Fartial Dafferential | Irdegrate
Power Spites Blockee B.mm
Peal-Tine Workstop Al = e
Peal-Tine Workstep If - F e ynta
Fegiirenenna Earajead ’ e
Fobuat Ceszzol Toold | g‘ . B = 1an(s)
WL (comvezts Syt L SCR T LR]
Sigmal Precessing Ted r B‘M t I T LA W
Sisulink Perfocaance ’ wa B o= A% |2,v,0.0)
Sisalink FPepoct Gena i Bm
Splize Toolbox -
Starirticr Toolbox am o.'“'w
Systen Lestiticetiel - Fdven 1A% (3] 1efums e ndednde rdegral O 3 wild respet 1o B SYTPEOC vanabie 33 Detred
Vavelet Toolbex - v by Cindeyn
I Target ! et
XIC Tazget Eadedded | g LA (3,9) reSurms P iIndedne ntepral of 3 with resact 30 T FYTTOORC 52300 varabie v
3> wezsiom
- BB rvowrgecm 185 15,4,0) 2whums T Oende indegral 40m 4% B Of each slemast of 3w retpectin
- D woorae @3ch elernnls Gfaul Symbole wirlable & 300 B are Byrbolc of Souble SCalrE
€. 1.0.450 (R12.1) a‘”.
- Fhenm 135(5,7,0,0) redamd P Orinde Pecril Of 5w sespedtd) vBom ale b
> license t “.
LD d" Euamples
ans - J J . AL (=2%/ (Lem*2) *2) relrrg ﬂ
o Ready
»» dec iak

I»

CHAPTER 3 MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Command Window

Databare Tos il
Datafesld Todsll-a
Dials & Gauges Blochk
IYRECLLC Math Toslb-o)
Filver Besign Toslbod
Financisl Derivative
Fisancial Tise Satie
Finarciel Toolbow
Fined-Feint Blochrer
Furey Legie Teslben
CAPCH Tewlbes

Inage Fiedessing T
Instaument Contisl T
AMI Comtsol Teolbem
FATLAS Complien
FATLAD Baport Gensnsl
MATLAD Web Server
Magging Teolbew
Bodel Fredictive (on
Botetols DIP Develop
PBa-Analyeis and Pyne
Brsral Fetwsrh Teell
Bomliiness Contasl Dw
wh bom Toms Liben
iffesentinl

Pobest (onteel Toolbd
SBIIL (coereares Py
Figeal Frocersing Tof
Fiwsiink Performance
Fiwslind Pegeas Core
Fpiine Teolbes
Statistiis Teelbas
Fpeten foentifioatief
Wawelet Todliou

=M Target

Fie B Vew G0 Web Wirdow Help

Hap Hpmigator xi

Proshat Wer 5 A Sateoted |
Cortores | wtms | Sewih | Fowsrten |

[Motorcis OIF Dwveiogers s2 2]
v AP Mitel Pratiitve C il Tictde

= Taiget Eateddeq o
> h
>

2l

¥ e @ rmanee| 2]

| M P rivip Ootwat Tops

=] AsamFeomes

Oafwat Toos

.- o and T MELF Tepice
ol Poprdoa i Corteid Oesgh Dby matlshisensial Carmtal purpese commands.
0 AP Mrursl Hetwoes Toolon BALISDLEEs = OperAteds sl Fpedial CRANAITALS,
» P Optenngamon Tootaos BALLAD LA aGd = leogrmaning lagusge comstrects,
v o) Pt Deferers o [Quasons FLC BALLIDLEINAY Tiensntary sateices and satohs manipaaletion.
o P irms Ty iees (B el [TLETNRST. N Eivneataly bath Fundtioms.
¥ AR Ee sk Tume Wirdows Target BALLAD LR = MPACLAlIEAd RATR DTGNS,
. " LR S = Batrin functions - smerical liness algebrs.
- '-'_lﬂ alor matlsh.Satalun - Sﬂ-l.ml”:: wned Possthor tosnsloans,
{ LELNE SRR = Aedie mgpest.
el Rotust Contred Tosmem WALLSS LRl YD = Isterpelation and pelynesiale.
» :m :‘“""‘I"”“ matlahifunlun Parction Dections sed € seivers,
{] Fpdra Tt mALIAD L FEal Cun = Dpaies BALiloes.
v o Stenvecs Tooon BALLAD L EEagsld = Two disensional guraphs.
+ Al eraos M 1ot [TASTI-T) = Thaes dinensional greghs,
v A Teateen At shcn matlshisreios sl = Spedialised guaphs.
5 Vervelet ¥ ocics BALISD\ SEASRICE - Mandle Oraphacs.
b o SC Tarpet [AST-IRSNREESY) = Guaphical weer intarfece wools.

- mAtlahistsCun Chagacten pouings,

[109< 200 vene fenacos Fala

5 LR et -
8 el Ppigwan a8 st
T TYRSTYITY

o
X

o

Toslbox

Di Cauges Block
Inbaiie Bath Teoldod
Niter Design Toolded
Tizancind Derivative
Fisancial Tine ferie
Tizancial Toolbex
Taxed-Point Blockses
Purzy Logie Tealban
GAFCH Toolbax

Inage Foocersing Teof
Instrement Conteol T
LMD Cemtrol Toolbax
MATLAD Coapiles
FATLAR Regort Cerma)
FATLAY Web Sezves
Ragping Toolbox
Bodel Predictive Con
Motorela ISP Dwvelopd
Pa-Analyris wed Iymr)
Neuzal Netwock Toolld
Bonlizear Control De,
tprinization Toelbss
Fartial Safferentinl
Power Systea Blockse
Feal-Tine Sartkmdip M
Peal-Tine Vockadep I}
Paguitenents Mazajend
Fobast Conteel Toolld
I3l (cesverts Syavd
Signal Procersing Tid
Simulink Pertornance
Sisulisk Pepost Ceme
Spline Toolbex
Statintice Teolbox
Systen Identificaticd
Warelet Toolbox

W Tazget

%P0 Tazges Labedded

Fe Bt Vew Go Web Wrdow Meb

HeD Navator
Proat e & M O Seeces |
Conterts | e | Seawch | Favortes |

v ol Reteate Notes K Relaie 121
o talaton

|5 @ waTAE

=) Sevepen

v A Ratntow

= o Feat Tirme Wonahop

5~ COMA Retasarce Bsochset
v df Commurscaten Diockan
& Commurscatons Toolen
5 Control Syswm Toslax

- Dutn Acouraton Tocton

- d Datsbste Tookax

|5 4 Datateed Toslax

v ol Duat & Oaogrs Blackaet

o OGP Duocicset

= ol F e Denign Toclton

= o Frantinl Tosbax

ol Fmantisl Dervatbers Tookon
« o Franisl Tme Semes

o Ml et s G e

e/

»

Ready

- X

L Y .Mnupl .2]

| ATLAD Roteane 12

T —

& What's New

® Beitane Noles SescrBe nes 9adres, few products, 3nd IMmeodant by tees
Tha Relodse Notes e Beadabie o5 0 OSlIRle wprgion in FOF Remat
© Th MATLAD 1800 18 MATLAINS rirw Saveiopmart eavisoermmat

¥ Product Documentation and Demos

& MATLAS Docurnaediian Seosicos COMOMON INLmnason atout using MATLAB
© Thi Liunch Pad in ™ dethdop prowidet icadi 1 Semios, 1ok, and =
Boturmentaton 3 ol YOUr products

=] 201 Favoeses

& MATLAD Derad g esabins yoo 10 A SeMON4Fatond of MATLAS'S Radsres

¥ Using the Help Browser

Use T Melp Npagator tabs 10 100 ate InS0ematon n Ofprent ways

& Cosloads . o

"

e . _';I

» halpwin
»> helpdesk
>

q

Feay

94

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

> lookfor GALOIS

GFADD Add polynomials over a Galois field.

GFCONV Multiply polynomials over a Galois field.

GFCOSETS Produce cyclotomic cosets for a Galois field.

GFDECONV Divide polynomials over a Galois field.

GFDIV Divide elements of a Galois field.

GFFILTER Filter data using polynomials over a prime Galois field.
GFLINEQ Find a particular solution of Ax = b over a prime Galois field.
GFMINPOL Find the minimal polynomial of an element of a Galois field.
GFMUL Multiply elements of a Galois field.

GFPLUS Add elements of a Galois field of characteristic two.

GFPRIMCK Check whether a polynomial over a Galois field is primitive.
GFPRIMDF Provide default primitive polynomials for a Galois field.
GFPRIMFD Find primitive polynomials for a Galois field.

GFRANK Compute the rank of a matrix over a Galois field.

GFROOTS Find roots of a polynomial over a prime Galois field.

GFSUB Subtract polynomials over a Galois field.

GFTUPLE Simplify or convert the format of elements of a Galois field.

All changes take effect immediately.

MATLAB search path:
Add Folder... [] C\MATLABGEp1toolboximatiabigeneral =
[CAMATLABGp1toolbodimatiablops
[C\MATLABGp1toolboximatiablang
([CAMATLABGp1toolboximatiablelmat
[C\MATLABGp1toolboximatlablelfun
] CMATLABGp1toolboximatiabispectun
[C\MATLABGp1toolbodmatiabimatiun
(1 CAMATLABEP 1 toolboximatiabidataiun
(] CAMATLABGp1toolboximatiablaudio
(] CAMATLABGp 1 toolboximatiabipolyiun
[C:\MATLABGp1 toolboximatiabifunfun
[C:\MATLABGp1 toolboximatiabispariun
] C\MATLABER1toolboximatiablgraph2d
(] C\MATLABGp1toolboximatiablgraph3d
] CAMATLABEP1toolboximatiabispecgraph
[C\MATLABGp1toolboximatiablgraphics
([CAMATLABGp1toolboximatiabluitools
[CAMATLABGp1toolboximatlabistriun

Add with Subfolders...|

L

[:‘ CAMATLABGp1toolboximatiabliofun | _IL‘

4 »
Save Close | Fever Default Help

>» pathtool

>>

95

CHAPTER 3 MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Fle Edit View Go Web Window Help

Help Navigator

Product fiter: Al Selected I

Corterts | index | Search | Favortes |

7_@ = Release Motes for Release 12.1 El
4 Release Notes for Release 12.1
- Installation

- WATLAB Release Notes for Release 12.1
- Simulink

- Stateflow

- Real-Time Workshop
- COMA Reference Blockset
= Communications Blockset

4% % & Frdinpoge Go
| Release Notes for Release 12.1 »| Addto Favarites

Upgrading from Earlier Releases

The Release Notes for Release 12.1 describe differences between Release 12.1 and Release

i+ Communications Toolhox 12.0. These Refease Notes contain links 1o the Release Notes for Refease 12, which provide
- Control Systern Toolbox information about upgrading fo Release 12.1 from a release earlier than Release 12.0.

+-o Data Acquisition Toolbox

+-d Database Toolbox What's in These Release Notes?

- Datafeed Toolbox ,) : . .
o Dials & Gauges Blockset Chapter 1 gives an overview of the major features in Release 12.1. That chapler also summarizes

:J G DSP Blockset platform limitations and provides some installation notes.

o Filter Design Toolbox
= Finantial Toolbox
- Financial Derivatives Toolbox

The other chapters describe products with major updates in more detail. As applicable, those
chapters include information about a product's:

+— Financial Time Series * New features
d [A Ciind Cnint Blasieat Ij‘ * Major bug fixes
S | : # Platform limitations j
>>]
»22 || Ready
>> whatsnew
>> =
»> what

M-files in the current directory C:\MATLAB6p1\work
cosint
>> which sinint

C:\MATLAB6p1\toolbox\symbolic\sinint.m

Commands that Control the Command Window

The following table summarizes a group of commands in MATLAB which control the output in the Command Window.

CLC Clears the Command Window.

echo Displays (echo on) or hides (echo off) the lines of an M-file code during its execution.
format type Controls the format of the output in the Command Window.

home Moves the cursor to the upper left corner of the Command Window.

more Enables paging of the output in the Command Window.

96

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

The possible types for the format command are given below:

Type Result Example

+ +,-, white +

bank Fixed to dollars and cents. 3.14

compact Suppresses excess line feeds in the output. Contrast this with loose. Theta = pi /2

Hex Hexadecimal format. 400921fb54442d18

long 15 digit fixed-point. 3.14159265358979

longe 15 digit floating-point. 3.141592653589793e + 00

long g 15 significant digits (fixed or floating point). 3.14159265358979

loose Adds line feeds to make the output more readable. Contrast this with Theta = 1.5708
compact.

rat Rational format. 355/113

short 5 digit fixed-point. 3.1416

shorte 5 digit floating-point. 3. 1416e + 00

shortg 5 significant digits (fixed or floating-point) 3.1416

Start and Exit Commands

MATLAB offers the following start and exit commands.

finish

exit
MATLAB
MATLABrc
quit

startup

Complete an M-file.

Finish MATLAB.

Start MATLAB (only on UNIX).
Start an M-file.

Finish MATLAB.

Start an M-file.

File Input/Output Commands

MATLAB has a group of so-called input/output commands which operate on files, allowing the user to open and close
files, read and write to files, control the position in a file and export and import data. The following table summarizes
these commands. Their full syntax will be described in the following paragraphs.

97

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Opening and closing files

fclose Closes one or more files.

fopen Opens a file or obtains information about open files.

Plain input/output

fread Reads binary data from a file.

fwrite Writes binary data to a file.

Format input /output

fgetl Returns the next line of a file as a string without ends of lines.
fgets Returns the next line of a file as a string with ends of lines.
fprintf Types formatted data into a file.

fscanf Reads formatted data from a file.

Controlling position in a file

feof Tests for the end of file.

ferror Returns the error message for the most recent input/output operation on a specified file.
frewind Rereads an open file.

fseek Moves the location of a file position indicator.

ftell Finds the location of a file position indicator.

String conversion

sprintf Type data formatted as a string.

sscanf Read under the control of format strings.

Specialized input/output functions

dlmread Reads files with delimited ASCII format.
dlmwrite Writes files with delimited ASCII format.

hdf HDF interface.

imfinfo Returns information about graphics files.
imread Reads images from graphics files.

imwrite Writes an image in a graphics file.

strread Reads formatted data from a string.

textread Reads formatted data from a text file.

wklread Reads data from Lotus123 WK1 spreadsheet files.
wklwrite Writes data in Lotus123 WK1 worksheet files.

98

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Opening and Closing Files

In order to read or write data to a file (which does not have to be in ASCII or MATLAB format), first use the command
fopen to open it. Then, to perform read or write operations on it, use the corresponding read and write commands
(fload, fwrite, fprintf, import etc.). Finally, use the command fclose to close the file. The file that is opened may be new
or may be an existing file which is to be accessed either to broaden its content or simply to read it.

The command fopen returns a file that consists of a non-negative integer which is assigned by the operating
system to the opened file. This file identifier is used as a reference for the subsequent management of the open file
as it is read (read), written to (write) or closed (close). If the file does not open correctly, fopen returns - 1 as the file
identifier. As a generic file identifier, fidelity is commonly used. The syntax of the commands fopen and fclose is
described below.

fid = fopen (‘file’) Opens the specified existing file.
fid = fopen (‘file’, ‘permission’) Opens the file for the given permission type.
[fid, message] = Opens the file for the given permission and with the numerical format of

fopen(‘file’, ‘permission’, ‘architecture’) the architecture.
fids = fopen (‘all’) Returns a column vector with the

identifiers of all open files

[filename, permission, architecture] = Returns the name of the file, the type of permission and the numerical
fopen(fid) format of the specified architecture relating to the file whose ID is fid.
fclose (fid) Closes the identifier fid file if it is open. Returns 0 if the process has been

performed successfully and -1 otherwise.

fclose (‘all') Closes all open files. Returns 0 if the process has been performed
successfully and -1 otherwise.

The possible types of permissions are the following:

‘r Open the existing file for reading (this is the default permission).

‘r+ Open the existing file for reading and writing.

‘w Creates the new file and opens it for writing, and if there is already a file with that name, deletes it and
opens it again as an empty file.

‘w+’ Creates the new file for reading and writing, and if there is already a file with that name, deletes it and
opens it again as an empty file.

‘a’ Creates the new file and opens it for writing, and if there is already a file with that name, adds new content
at the end of the existing file.

‘at’ Creates the new file and opens it for reading and writing, and if there is already a file with that name, adds
new content to the end of the existing file.

‘A Append without automatic flushing of the current output buffer. (Used with tape drives.)

‘W Write without automatic flushing of the current output buffer. (Used with tape drives.)

99

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Possible architectures for the numerical format types are as follows:

‘native’ or ‘n’ Numeric format of the current machine.

‘ieee-le’ or ‘I’ Small-format IEEE floating-point.

‘ieee-be’ or ‘b’ Large format IEEE floating-point.

‘vaxd’ or ‘d’ VAX D floating-point format.

‘vaxg’ or ‘g’ VAX G floating-point format.

‘cray’ or ‘c’ Large type Cray floating-point format.

‘ieee-le.164’ or ‘a’ Small format IEEE floating-point and 64-bit data length.
‘ieee-be. 164’ or ‘s’ IEEE floating-point, 64-bit data length large format.

Being able to open a file according to the numerical format of a given architecture allows it to be used in different
MATLAB platforms.

Reading and Writing Binary Files

Reading and writing binary files is done via the commands fwrite and fread. The command fwrite is used to write
binary data to a file previously opened with the command fopen. The command fread is used to read data from a
binary file previously opened with the command fopen. Its syntax is as follows:

fwrite (fid, A, precision) Writes the specified items in A (which in general is an array) in the file identifier fid
(previously opened) with the specified accuracy.

A =fread (fid) Reads the data from the binary file opened with identifier fid and writes them to the
matrix A, which by default will be a column vector.

[A, count] = Reads the data from the file identifier fid with the dimension specified in size and

fread(fid, size, precision) precision given by precision, and writes them to a matrix A of dimension size and

whose total number of elements is count.

The specification size is optional. If size is set to n, fread reads the first n data from the file (by columns and in
order) as a column vector, A, of length n. If size is set to inf, fread reads all file data by columns and in order, to form a
single column vector A (this is the default value). If size is set to [m, n], fread reads mxn file elements by columns and
in order, completing the matrix A of dimension (mxn). If there are insufficient elements in the file to complete the
matrix, it will be completed with zeros.

The argument precision is relative to the numeric precision of the machine on which you are working and may
present different values. In addition to its own types of formatting for numerical precision, MATLAB also accepts
those of the programming languages C and FORTRAN. Below is a table with the possible values of precision.

100

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

MATLAB C or FORTRAN Interpretation

‘schar’ ‘signed char’ Character with sign; 8-bit
‘uchar’ ‘unsigned char’ Character unsigned; 8-bit
‘int8’ ‘integer * 1’ Integer; 8-bit

‘int16’ ‘integer * 2’ Integer; 16-bit

‘int32’ ‘integer * 4’ Integer; 32-bit

‘int64’ ‘integer * 8’ Integer; 64-bit

‘uint8’ ‘integer * 1’ Unsigned integer; 8-bit
‘uint16’ ‘integer * 2’ Unsigned integer; 16-bit
‘uint32’ ‘integer * 4’ Unsigned integer; 32-bit
‘uint64’ ‘integer * 8’ Unsigned integer; 64-bit
‘float32’ ‘real * 4’ Floating point; 32-bit
‘float64’ ‘real * 8’ Floating point; 64-bit
‘double’ ‘real * 8’ Floating point; 64-bit

The following formats are also supported by MATLAB, but there is no guarantee that the same size will be used
on all platforms.

MATLAB C or FORTRAN Interpretation

‘char’ ‘char * 1’ Character; 8-bit

‘short’ ‘short’ Integer; 16-bit

‘int’ ‘int’ Integer; 32-bit

‘long’ ‘long’ Integer; 32 or 64 bit

‘ushort’ ‘unsigned short’ Unsigned integer; 16-bit

‘uint’ ‘unsigned int’ Unsigned integer; 32-bit

‘ulong’ ‘unsigned long’ Unsigned integer; 32 or 64 bit

‘float’ ‘float’ Floating point; 32-bit

‘intN’ Whole width N integer bits (1<N<64)
‘ubitN’ Integer unsigned width N bits (1<N<64)

101

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

When they are read and stored, formats often use the implication symbol as illustrated in the following examples:

‘ uint8 = > uint8’ Reads entire 8-bit unsigned integers and stores them in an array of unsigned 8-bit integers.

‘* uint8’ An abridged version of the previous example.

‘bit4 = > int8’ Reads entire 4 bit signed integers packaged in bytes and stores them in an array of 8-bit
integers. Each 4-bit integer is converted to an 8-bit integer.

‘double = > real * 4’ Reads double precision floating point numbers and stores them in an array of 32-bit real
floating point numbers.

As a first example we can view the contents of the file fclose.m using the command type as follows:
»> type fclose.m

%FCLOSE Close file.

ST = FCLOSE(FID) closes the file with file identifier FID,
which is an integer obtained from an earlier FOPEN. FCLOSE
returns 0 if successful and -1 if not.

3R 3R 3R 3 X

ST = FCLOSE('all") closes all open files, except 0, 1 and 2.

3R 3R

See also FOPEN, FREWIND, FREAD, FWRITE.

Copyright 1984-2001 The MathWorks, Inc.

$Revision: 5.8 $ $Date: 2001/04/15 12:02:12 $
Built-in function.

3R 3R X

This is equivalent to using the command type before opening the file with fopen, followed by reading its contents
with fread and presenting it with the function char.

»» fid = fopen('fclose.m','r");
»» F = fread(fid);
»» s = chax(F')

s =

%FCLOSE Close file.

% ST = FCLOSE(FID) closes the file with file identifier FID,
% which is an integer obtained from an earlier FOPEN. FCLOSE
% returns 0 if successful and -1 if not.

%
% ST = FCLOSE('all') closes all open files, except 0, 1 and 2.
%
% See also FOPEN, FREWIND, FREAD, FWRITE.

% Copyright 1984-2001 The MathWorks, Inc.

% $Revision: 5.8 $ $Date: 2001/04/15 12:02:12 $

0,

% Built-in function.

e

>

>

>

e

e

e

>

102

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

In the following example, we create a binary file id4.bin which contains the 16 elements of the identity matrix
of order 4 stored in 4 byte integers (64 bytes in total). First we open the file which will contain the matrix, with
permission to read and write, and then write the matrix to the file with the appropriate format. Finally, we close
the open file.

»» fid = fopen ('id4. bin ',' w +')
fid =

5

»> furite(fid,eye(4), 'integer*s')
ans =

16

»» fclose (5)

ans =

In the previous example, when the file was opened, the system assigned ID 5 to it. After writing the matrix to the
file, it was necessary to close it with the command fclose using the indicator. The answer of zero means the closure has
been successful.

If we now want to see the contents of the binary file just recorded, we open it, with reading permission, by
using the command fopen and read its elements with fread, in the same matrix structure and format in which it
was saved.

»> fid = fopen('id4.bin','r+')
fid =
5

»> [R,count]=fread(5,[4,4], 'integer*s')

oo oRr =™
o O r o1
o r OO
» O O O

count

16

103

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Reading and Writing Formatted ASCII Text Files

It is possible

to write formatted text to a file previously opened with the command fopen (or to the screen itself) using

the command fprintf. On the other hand, it is possible, using the command import, to read formatted data from a file
previously opened with the command fopen. The syntax is as follows:

fprintf(fid, ‘format’, A,...) Writes the specified items in A (which in general is an array) in the file identifier fid
(previously opened) with the format specified in ‘format’

fprintf(‘format’, A,...) Writes to the screen.

[A, count] = Reads the data in the given format of an open file with identifier fid and writes

fscanf(fid, ‘format’) them to the matrix A, which by default will be a column vector.

[A, count] = Reads the data from the file identifier fid with the specified size and format, and

fscanf(fid, ‘format’, size) writes them to a matrix A of dimension size and whose number of elements is count.

The argument format consists of a chain (preceded by the character '\") formed by characters and conversion
characters according to the different formats (preceded by the character '%").
The possible characters are as follows:

\n Executes the step to a new line.
\t Executes a horizontal tab.
\b Executes a step backward from a single character (backspace), deleting the current character.
\r Executes a carriage return.
\f Executes a page jump (form feed).
\\ Executes a backslash.
\ Executes a single quotation mark.
Possible conversion characters are the following:
%d Decimal integers
%0 Octal integers
%X Hexadecimal integers
%u Unsigned decimal integers
%f Real fixed-point
%e Real floating-point
%g Use whichever of d, e or f has the greater precision in the minimum of space
%c Individual characters
%s Character string
%E Real floating point (uppercase E)
%X Uppercase hexadecimal notation
%G %g format with capital letters

104

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

When working with integers, conversion characters are used in the form % nv (n is the number of digits of
the integer and v is the conversion character, which can be d, o, x or u). For example, the format % 7 x indicates a
hexadecimal integer with 7 digits.

When working with real numbers, conversion characters are used in the form %n.mv (n is the total number of
digits of the real number including the decimal point, m is the number of decimal places of the real number and v is
the conversion character, which can be f, e or g). For example, the format %6.2findicates a fixed point real number
having 6 numbers in total (including the point) and with 2 decimal places.

When working with strings, conversion characters are used in the form % na (n is the total number of characters
in the string and a is the conversion character, which can be c or s). For example, the format % 8s indicates a string of
8 characters.

In addition, escape characters and conversion of the C language are supported (see C manuals for further
information).

In the import command the size preference is optional. If size is set to n, import reads the first n data from the file
(by columns and in order) as a vector column A of length n. If size is set to inf, fread reads all file data by columns and
in order, to form a single column vector A (this is the default value). If size is set to [m, n], fread reads mxn file elements
by columns and in order, completing the matrix A of dimension (mxn). If there are insufficient elements in the file, the
matrix is completed with zeros as needed. The argument format takes the same values as the command fprintf.

For reading ASCII files there are two other commands, fget! and fgets, which present different lines of a text file as
a string. Its syntax is as follows:

fgetl (fid) Reads the characters in the text with file identifier fid line by line, ignoring carriage returns,
and returns them as a string.

fgets (fid) Reads the characters in the text with file identifier fid line by line, including carriage
returns, and returns them as a string.

fgets (fid, nchar) Returns at least nchar characters in the next line.

As an example we create an ASCII file exponen.txt, which contains the values of the exponential function for
values of the variable between 0 and 1 separated by 0.1.

The format of the text in the file should consist of two columns of real floating point numbers, in such a way that
the values of the variable appear in the first column and the corresponding values of the exponential function appear
in the second column. Finally, we issue commands to display the contents of the file on screen.

» X = 0:.1:1;

» y= [x; exp(x)];

»> fid=fopen('exponen.txt','u');

»> fprintf(fid,'%6.2f %12.8f\n', y);
»> fclose(fid)

ans =

Now information is presented directly on screen without having to save it to disk:
» X = 0:. 1:13

>y = [x; exp (x)];
(>> fprintf('%6.2f. 8f\n', and)12%

105

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

.00
.10
.20
.30
.40
.50
.60
.70
.80
.90
.00

.00000000
.10517092
.22140276
.34985881
.49182470
.64872127
.82211880
.01375271
22554093
.45960311
.71828183

P OOOO0OOOOOOO
NNNNRRRRRRER

We then read the newly generated ASCII file exponen.txt, so that the format of the text must consist of two
columns of real numbers with maximum precision in the minimum of space, the first column showing the values of
the variable and the second showing the corresponding values of the exponential function.

»> fid=fopen('exponen.txt');
»> a = fscanf(fid,'%g %g', [2 inf]);

> a=a

a =

0 1.0000
0.1000 1.1052
0.2000 1.2214
0.3000 1.3499
0.4000 1.4918
0.5000 1.6487
0.6000 1.8221
0.7000 2.0138
0.8000 2.2255
0.9000 2.4596
1.0000 2.7183

We then open the file exponent.txt and read its contents line by line with the command fgetl.

»> fid=fopen('exponen.txt');
»> lineai=fgetl(fid)

lineal =

0.00 1.00000000
>> linea2=fget1(fid)
linea2 =

0.10 1.10517092

106

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Below, the command sprintfoutputs a string variable that presents the given text according to the specified
format together with the value of the golden ratio.

»> S = sprintf ('the golden ratio is % 6.3f,' (1 + sqrt (5)) / 2).
S =
the golden ratio is 1.618
Finally we generate a column vector whose two elements are approximations of the irrational numbers e and .

S = '2.7183 3.1416"';
= sscanf(S,'%f')

v

v

>
]

2.7183
3.1416

Control Over the File Position

The commands fseek, ftell, feof, frewind and ferror control position in the file. The command fseek allows you to

move the position indicator in a previously opened file. The command ftell returns the current status of the position
indicator within a file. The command feof indicates whether the position indicator is located at the end of the file. The
command frewind places the position indicator at the beginning of the file. The command arenas returns the error
message associated with the most recent input or output operation on a specified file previously opened with fopen.
The syntax of these commands is as follows:

fseek(fid, n, ‘origin’) Moves the position indicator n bytes from the source indicated by the argument origin within
the file identifier fid previously opened with fopen. If n > 0, the position indicator moves
n bytes forward towards the end of the file. If n < 0, the position indicator moves n bytes
backward towards the beginning of the file. If n = 0, the position indicator does not change.
The values that the argument origin can take are: 'bof’ or - 1 (the origin is at the beginning of
the file), ‘cof’ or 0 (the source is at the current position of the indicator) and ‘eof or 1
(the source is at the end of the file).

n = ftell (fid) Returns the number of bytes from the beginning of the file whose identifier is fid (previously
opened with fopen) to the current position indicator.

feof (fid) Returns 1 if the position indicator is located at the end of the file with identifier fid (previously
opened) and 0 otherwise.

frewind (fid) Places the position indicator at the beginning of the (previously opened) file with identifier fid.

ferror (fid) Returns the (possibly empty) error message associated with the most recent input or output

output operation on the previously opened file with identifier fid.

[message, errnum] In addition to the error message, this returns its error number. An error number of 0 indicates

=ferror (fid) that the error message is empty, i.e. the most recent input or output operation did not result in
an error.

107

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

As an example, we write the two-byte integers from 1 to 5 into a binary file named five.bin. We check the status of
the position indicator in the file and move 6 bytes forward, checking that the operation has been correctly carried out.
Subsequently we will move the position indicator 4 bytes backwards and find which number has been located.

»> A=[1:5];
fid=fopen('five.bin','w");
fwrite(fid,A, "short');
fclose(fid);
fid=fopen('five.bin','r");
n = ftell (fid)

n =

0

As the number of bytes from the beginning of the file to the current location of the position indicator is revealed
to be n = 0, the position indicator is obviously located at the beginning of the file, i.e. at the first value, which is 1.
Another way to see that the position indicator is located on 1 is to use the command fread to read only the first
element of the binary file five.bin:

»> fid=fopen('five.bin','r');
principal = fread(fid,1,'short")

principal =
1
Now we are going to move the position indicator 6 bytes forward and check the new position:
»» fid=fopen('five.bin','r");
fseek(fid,6, 'bof');
n=ftell(fid)
n =
6
»» principal=fread(fid,1,'short’)
principal =
4

We have seen that the position indicator has moved 6 bytes to the right, landing on the element 4 (bear in mind
that each file element occupies 2 bytes). Now we are going to move the position indicator 4 units to the left and
determine on which item it has been moved to:

»> fseek(fid,-4, 'cof');
n=ftell(fid)

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES
»> principal=fread(fid,1, 'short')
principal =
3

Finally, the position indicator has been set to 4 bytes from the beginning of the file, i.e. on element 3
(again recalling that each file element occupies 2 bytes).

Exporting and Importing Data to Lotus 123 and Delimited ASCII String and
Graphic Formats

There is a group of commands in MATLAB which enable you to export and import data between Lotus 123 and
MATLAB. Another group of commands allows you to export and import data between ASCII files with delimiters and
MATLAB. The following table summarizes these commands.

A = wklread (file) Reads the Lotus 123 spreadsheet named file.wkly and imports it as a
MATLAB matrix whose rows and columns are those of the worksheet.
A = wklread(file, F,C) Reads the Lotus 123 spreadsheet named file.wkl from row F and

column C, and imports it as a MATLAB matrix whose rows and
columns are those of the worksheet.

A = wklread(file, F,C,R) Reads the R data range of the Lotus 123 spreadsheet named file.wkl
Jrom row F and column C, and imports it as a MATLAB matrix whose
rows and columns are those of the worksheet.

A = wklwrite (file, M) Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named
file.wk1 whose rows and columns are those of the matrix M.
A = wklwrite(file, M,F,C) Enters the MATLAB matrix M as a Lotus 123 spreadsheet file named

file.wk1 whose rows and columns are those of the matrix M starting at
row F and column C.

M = dlmread (file, D) Reads the specified formatted file whose data are separated by the
delimiter D and returns it as the matrix M.

M = dlmread(file, D,F,C) Reads the specified files whose data are separated by the delimiter D
and returns it as the matrix M which begins at F row and
column C.

M = dlmwrite (file, M,D) Writes the matrix M in the specified formatted file, whose data are

separated by the delimiter D.

M = dlmwrite(file, D,F,C) Writes the matrix M, starting at row F and column C, in the specified
formatted file, whose data are separated by the delimiter D.

(continued)

109

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

A = imread(file,fint)
[X,map] = imread(file,fmt)

[...] = imread (file)

[...] =imread(...,idx)
(CUR, ICO and TIFF only)
[...] = imread(...,idx)
(HDF only)

[...] =imread(...,'backgroundcolor’, BG)

(PNG only)

[A,map,alpha] =
imread(file, fmt...)

[map, alpha] = imread (...)
(PNG only)

imwrite(A, file, finr)
imwrite (X, map, file, fmt)
imwrite(...,filename)
imwrite(...,paraml,vall,

param2, val2...)

info = imfinfo(file,fmmr)

A = strread(‘C’)

A = strread(‘C’,",N)

A = strread(‘C’,",p,value,...)

A = strread(‘str’,",N,p,value,...)
[A,B,C,...]=strread(‘C’,‘format’)
[A,B,C,...]=

strread (‘C’,‘format’,N)

[A,B,C,...] = strread
(‘C’,‘format’,p,value,...)

[A,B,C,...] = strread
(‘C’,format’,N,param,value,...)
[A,B,C,...] = textread(‘file’,format’)
[A,B,C,...] = textread(‘file’,‘format’,N)

[...] = textread(...,'p’,value’,...)

Reads the image in a graphical format fmt file given in grayscale or true
color.

Reads the image in graphical format fmt of the given file indexed in X
and its associated map colors.

Tries to infer the format of the file from its content.
Reads an image of order idx in a TIFE, CUR or ICO file.

Reads an image of order idx in an HDF file.

Reads an image with background color and intensity of a given
grayscale.

Reads an image in graphical format from the given file fmt applying
transparency mask.

Returns the transparency mask.

Writes the image in graphical format fmt in the given file in grayscale
or true color.

Writes the indexed image in X and its associated color map in the given
file in graphic format fmt.

Writes the image in the given file, inferring the format of filename from
its extension.

Specifies the control of various characteristics of the output file
parameters.

Provides information on the graphic file format fimt.

Reads the C string numeric data.

Reads N lines of the C string numeric data.

Reads the C string data according to the parameter p and value.
Reads N rows of C according to the parameter p and value.
Reads the string C with the specified format.

Reads N lines of the string C with the specified format.

Reads the C string with the specified format according to the parameter
p and value.

Reads N lines of the C string with the specified format according to the
parameter p and value.

Reads data from the text file using the given format.
Reads data from the text file using the given format N times.

Reads measurement data using the specified parameter and value.

110

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Possible values for the fint file graphic format are presented in the following table:

Format Type of file

‘bmp’ Windows Bitmap (BMP)

‘cur’ Windows Cursor (CUR) resources
‘hdf’ Hierarchical Data Format (HDF)
‘ico’ Windows Icon (ICO) resources

‘jpg’ or ‘jpeg’

‘ ’

pex
lpngl
‘tif” or ‘tiff’

‘xwd’

Joint Photographic Experts Group (JPEG)
Windows Paintbrush (PCX)

Portable Network Graphics (PNG)
Tagged Image File Format (TIFF)

X Windows Dump (XWD)

The following table shows the types of image that imread can read.

Format Variants

BMP 1- bit, 4-bit, 8-bit, 24 - bit images without compression; 4-bit images with compression (RLE) 8 - bit

CUR 1- bit, 4-bit and 8-bit images without compression

HDF 8- bit with or without associated color map image data sets; 24-bit and 8-bit data image sets

ICO 1- bit, 4-bit and 8-bit images without compression

JPEG Any baseline JPEG image (8 or 24-bit); JPEG images with any commonly used extension

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit images in grey scales; 8-bit and 16-bit
indexed images; 24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit 8-bit and 24-bit images without compression; 1-bit, 8-bit,
16-bit and 24-bit compressed images; 1-bit images compressed with CCITT; also 16-bit greyscale,
16-bit indexed and 48-bit RGB images

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

The following table shows all the formats that support the commands strread and testread.

Format Action Output

Literals (characters) Ignores correspondence characters No

%d Reads a signed integer value Double array

%u Reads an integer value Double array

%f Reads a floating point value Double array

%s Reads with white space separation Cell array of strings

(continued)

111

CHAPTER 3

MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Format Action Output
%q Reads a string enclosed in double quotes Cell array of strings.
Excluding double quotes.

%c Reads characters including blanks Array character

%l...] Reads the longer string containing the characters specified Cell array of strings
within square brackets

%l[A...] Reads the longer non-empty string containing characters not Cell array of strings
specified within square brackets

%?* ...in place of % Ignores the correspondence between characters specified by * Without output

%w ...in place of %

Reads the specified field width w. The format %f supports %
w.pf, where w is the width of the field and p is the precision.

The possible pairs (parameter, value) that can be used as custom options for the strread and testread commands
are presented in the following table:

Parameter Value Action
whitespace Any of the following list Characters, * as white space. The default is \b\r\n\t.
b Backspace
f Form of the identifier
n New line
r Carriage return
t Horizontal tab
\\ Backslash (moves backwards one space)
\"or"” Mark with single quotes
% % Percent sign
delimiter Delimiter character Specifies the delimiter character
expchars Character exponent By default this is eEdD
bufsize Positive integer Maximum length of string in bytes (4095)
headerlines Positive integer Ignores the specified number of lines at the beginning of the file
Commentstyle MATLAB Ignore characters after %
Commentstyle Shell Ignore characters after #
Commentstyle c Ignored characters between / * and * /
Commentstyle c++ Ignore characters after / /

As a first example we read information from the file canoe.tif.

»> info = imfinfo

Info =

('canoe. tif')

Filename: 'C:\MATLAB6p1\toolbox\images\imdemos\canoe.tif'
FileModDate: '25-Oct-1996 23:10:40'

FileSize: 69708
Format: 'tif'

112

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

FormatVersion: []

Width: 346

Height: 207

BitDepth: 8

ColoxType: 'indexed'
FormatSignature: [73 73 42 0]
ByteOrder: 'little-endian’
NewSubfileType: 0
BitsPerSample: 8

Compression: 'PackBits'
PhotometricInterpretation: 'RGB Palette’
StripOffsets: [9x1 double]
SamplesPerPixel: 1
RowsPerStrip: 23
StripByteCounts: [9x1 double]
XResolution: 72

YResolution: 72
ResolutionUnit: 'Inch’
Colormap: [256x3 double]
PlanarConfiguration: 'Chunky'
TileWidth: []

TilelLength: []

TileOffsets: []
TileByteCounts: []
Orientation: 1

FillOrder: 1
GrayResponseUnit: 0.0100
MaxSampleValue: 255
MinSampleValue: 0
Thresholding: 1

The following example reads the sixth image of the file flowers.tif.
»> [X,map] = imread('flowers.tif',6);
The following example reads the fourth image of an HDF file.

»» info = imfinfo ('skull. hdf');
[X, map] = imread ('skull hdf',. info (4)Reference);

The following example reads a PNG image in 24-bit with complete transparency.

»> bg = [255 0 0];
A = imread('image.png', 'BackgroundColor',bg);

Below is an example with sprintfand strread.

»» s = sprintf('a,1,2\nb,3,4\n");
[a,b,c] = strread(s,'%s%d%d’,'delimiter',","’

113

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

If the file mydata.dat has as first line Sally Typel 12.34 45 Yes, then the first column will be read in free format.

»> [names,types,x,y,answer] = textread('mydata.dat’,'%s %s %f ...
%d %s',1)

names =
'Sally’
types =
'Type1'
X =
12.34000000000000
y =
45
answer =
'Yes

We then use the command strread.

»» s = sprintf('a,1,2\nb,3,4\n’);
[a,b,c] = strread(s,'%s%d%d’,'delimiter’,","’

114

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Sound Processing Functions

MATLAB'’s Basic module includes a group of functions that read and write audio files. These functions are presented

in the following table:

General sound functions

p=Ilin2mu(y)

Y=mu2lin(p)
sound(y,Fs)
sound(y)
sound(y,Fs,b)

Converts a linear audio signal of amplitude - 1<y<1 to a u-encoded audio signal
with 0<p<255.

Converts a u-encoded audio signal (U<255) to a linear audio signal (-1<y<1).

Converts the audio signal y to a sound at sample rate Fs.
Converts the audio signal y to a sound at the standard 8192 Hz sampling rate.

Using b bits/sample when converting the audio signal y to a sound at sample rate Fs.

Workstations SPARC-specific functions

auread('f.au’)
[y,Fs,bits] = uread('f.au’)

auwrite (y, 'f.au’)
auwrite(y, Fs, 'f.au’)
Functions of sound. WAV
wavplay(y,Fs)
wavread('f.wav')

[y,Fs,bits] = wavread('f.wav')

wavrecord(n, Fs)

wavwrite(y,'f.wav')

wavwrite(y,Fs, 'f.wav')

Reads the NeXT/SUN sound files f.au.

Gives the sample rate in Hz and the number of bits per sample used to encrypt the
data in the file f.au.

Writes a NeXT/SUN sound file f.au.
Writes a type f.au sound file and specifies the sample rate in Hertz.

Reproduces the audio signal y with sampling rate Fs.

Reads the fwav sound files.

Returns the sampling rate Fs and the number of bits per sample to read the fwav
sound file.

Records samples of a digital audio signal at the sample rate n Fs.

Writes a type f.wab sound file.
Writes a sound file f.wab with sampling rate Fs.

EXERCISE 3-1

Construct a magic square of order 4, and write its inverse matrix in a binary file named magic.bin.

We start by defining the matrix:

»> M = magic (4)
M =

16 2 3 13
511 10 8
976 12
414 15 1

115

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Then we open a file named magic.bin, with read/write permission to store the matrix M. We use the permission
'w +' because we want to open a new file, i.e. it does not already exist, and in addition we need to write to it
(since the file does not already exist, we could also use the permission 'a +').

»»> fid=fopen('magic.bin', 'w+')

fid =

3

The system assigns the ID 3 to our file, and then writes the matrix Mto it.
»> furite(3,M)

ans =

16

We have written the matrix M to the binary file magic.bin of ID 3. MATLAB returns the number of elements in the
file, which in this case is 16. We then close the file and the information is recorded on disk.

»» fclose (3)
ans =
0
As the answer is zero, the file was successfully closed, and the newly created file will appear in the Active Directory.
» dir
five.bin cosint.m exponen.txt id4.bin magic.bin
You can see the newly created file in Active Directory with its properties.
» ! dir

Volume in drive C has no label.
The volume serial number £ n is: 1059-8290

Directory of C:\MATLAB6p1\work

03/01/2001 19:50 < DIR >.
03/01/2001 19:50 < DIR »>...
10/06/2000 23:41 457 cosint.m
10/01/2001 22:14 64 id4.bin
10/01/2001 23:17 231 exponen.txt
11/01/2001 00: 12 10 five.bin
12/01/2001 23:09 16 magic.bin

5 files 778 bytes

2 dirs 18.027.282.432 bytes free

116

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

EXERCISE 3-2

Consider the identity matrix of order 4 and write it to a binary file with 32-bit floating point format. Subsequently
retrieve this file and read its contents in the same array form as it was recorded. Then add to the above matrix a
column of ones and save it as a binary file with the same name. Read the binary file to check its contents.

We start by generating the identity matrix of order 4:

» I = eye (4)
I-=

1000
0100
0010
0001

We open a binary file named id4.bin, in which we are going to save the matrix /, with write permission:
»> fid=fopen('idg.bin’, 'w+')

FID =

3

We recorded the matrix /in the previously opened file with 32-bit floating point format:

»> furite(3,I, 'float32’)

ans =

16

Once the 16 elements of the array have been recorded, we close the file:

»» fclose (3)

ans =
0

We open it with read permission to read the contents of the previously recorded file:
»» fid=fopen('id4.bin’, 'r+")
fid =

3

117

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Now we read the 16 elements of the opened file in the same matrix structure and format in which it was saved.

»> [R,count]=fread(3,[4,4], ' float32')

O oo Rr =™
O O O 1
oORr OO
» O O O

count

16

After checking the contents, we close the file:

»» fclose (3)

ans =

0

We then open the file with the proper write permission to add information without losing the existing data:
»> fid=fopen('id4.bin','a+")

fid =

3

We now add a column of ones to the end of the file’s contents and close it:
»> furite(3,[1 1 1 1]','float32’)

ans =

4

»> fclose(3)

ans =

0

Now we open the file with read permission to view its contents:

»> fid=fopen('id4.bin’, 'r+")

fid =

3

118

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

Finally, we read the 20 items in the file in the appropriate array form and check that the column has been added
to the end:

»> [R,count]=fread(3,[4,5], float32')

R =
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
count =

20

EXERCISE 3-3

Generate an ASCII file named log.txt containing the values of the natural logarithm for values of the variable
between 1 and 2 separated by 0.1. The format of the text in the file should consist of two columns of real floating
point numbers, in such a way that the values of the variable appear in the first column and the corresponding
values of the logarithm appear in the second column. Finally, display the contents of the file on screen.

» X = 1:. 1:2;
y = [x; log (x)];

FID = fopen ('log. txt', 'w');

(% 12 fprintf(fid, '%6.2f. 8f\n', and);
fclose (fid)

ans =

0

Let us see how we can display the information directly on screen without having to save it to disk:
» X = 1:. 132

y = [x; log (x)];
(% 12 fprintf('%6.2f. 8f\n', and)

1.00 0.00000000
1.10 0.09531018
1.20 0.18232156
1.30 0.26236426
1.40 0.33647224
1.50 0.40546511
1.60 0.47000363
1.70 0.53062825
1.80 0.58778666
1.90 0.64185389
2.00 0.69314718

119

CHAPTER 3 © MATLAB LANGUAGE: DEVELOPMENT ENVIRONMENT FEATURES

EXERCISE 3-4

Read the ASCII file named log.txt generated in the previous exercise. The format of the text must consist of two
columns of real numbers with maximum precision in the minimum of space, so that the first column lists the
values of the variable and the second column shows the corresponding values of the logarithm.

»» fid=fopen('log.txt');

a = fscanf(fid,'%g %g', [2 inf]);
a=a'

a =

1.0000 0
1.1000 0.0953
1.2000 0.1823
1.3000 0.2624
1.4000 0.3365
1.5000 0.4055
1.6000 0.4700
1.7000 0.5306
1.8000 0.5878
1.9000 0.6419
2.0000 0.6931

»> fclose(fid);

120

CHAPTER 4

MATLAB Language: M-Files, Scripts,
Flow Control and Numerical Analysis
Functions

MATLAB and Programming

MATLAB can be used as a high-level programming language including data structures, functions, instructions for
flow control, management of inputs/outputs and even object-oriented programming. MATLAB programs are usually
written into files called M-files. An M-file is nothing more than a MATLAB code (script) that executes a series of
commands or functions that accept arguments and produce an output. The M-files are created using the text editor,
as described in Chapter 2.

The Text Editor

The Editor/Debugger is activated by clicking on the create a new M-file button] in the MATLAB desktop or by
selecting File » New » M-file in the MATLAB desktop (Figure 4-1) or Command Window (Figure 4-2). The
Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB
programming code (Figure 4-3). You can open an existing M-file using File » Open on the MATLAB desktop (Figure 4-1) or,
alternatively, you can use the command Open in the Command Window (Figure 4-2). You can also open the
Editor/Debugger by right-clicking on the Current Directory window and choosing New » M-file from the resulting
pop-up menu (Figure 4-4). Using the menu option Open, you can open an existing M-file. You can open several
M-files simultaneously, each of which will appear in a different window.

121

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

W Edit Yiew ‘Web Window Help

4 M-Ffile

Print Selection

3D, \financelacrudisc.m
4 D:\...\finance\amortize.m

Exit MATLAB

1 D:\... 12\workimatrizl . asc
2 D:.. Minancelacrubond.m

New
Open... Ctrl+0O Figure
Close Command Window Chrl+w ‘ Model

L GUI
Import Data... L
Save Workspace As.., Ctrl+S
Set Path... 3
Preferences...

ne.

Print...

d methods
¥/ sin. n

<

_gine.
Ctrl+Q

g
A1l files
D.matriz.asc

FY
b

Overloaded methods
help sym/cos.n

is the sine of the element:

is the cosine of the elener

in Directory: | D:vnatl: v | _]

1y o N i -
| » [CommantHi| |« [
| Ready
Figure 4-1.

122

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

+) Command Window

F5W Edit View Web Window Help

Open... Ctrl+0O Figure
Close Command Window Ctrl+w Model
GUI
Import Data... L
Save Workspace 8s... Ctrl+s
-lements of X.
Set Path,..
Preferences...

Print...

Print Selection...

1 DL 12vworkimatrizl . asc
2 D\, Afinancelacrubond.m elements of X.
3D \financelacrudisc.m
4 D:\...\finance\amortize.m

Exit MATLAB Ctrl+Q
>> =i
| [v
Ready
Figure 4-2.

=} Untitled* [;”@E|
File Edt Wiew Text Debug Breakpoints Web Window Help
DEES ‘2o oc AfH| 88 E0EIRE| s x|
1 | j—
{] I ’]
Ready
Figure 4-3.

123

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

-) MATLAB =3

File Edit W¥iew ‘Web Window Haln

§ Open -
D& | % B2 q e, it Directory: | D:wmatle v .|

Launch Pad Viewy Help

41 —— Open as Text
Import Data...
Q Communications Toc

QControl Systen Toc M-File

Rename hodel
Delete Folder

ﬂData Acquisition 7
uﬁDa:ahase Toolbox
¥l Narafesd Tanlhav Cut .ﬂ

4 | > | Launch Pad | Wor Copy
Current Directory ' i 2 HH
File Fitter »

IJ:\matlahmZWork Add to Path » J‘ fi‘ ‘)

All files Fi Refresh Hodified Des

. matriz.asc 0Z-ene-2001 03:27 a.
Dmatrizl.asc 02-ene-2001 03:27 a.

4 | b1 Command History Current Directory

Ready

Figure 4-4.

Figure 4-5 shows the functions of the icons in the Editor/Debugger.

124

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Open new empty M-file Search and replace strings in an M-file
Open existing M-file Go to a function
Save M-file Place cut-off for debugger (breakpoint)
Print M-file Delete breakpoint
Cut Run M-file current line
Copy Run a function
Paste Step-pause function
L Run up to new breakpoint
D d & - AH 8 1& Stack

Figure 4-5.

Scripts

Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once
the syntax of the script has been entered into the editor (Figure 4-6), it is stored in the work library (work) and
simultaneously executes by clicking the button) or by selecting the option Save and run from the Debug menu
(or pressing F5). To move from one chart to the next press ENTER.

%) D:\matlabR1 2\workilor.m*

File Edit View Text Debug Breakpoints Web Window Help
D==R & B o M| 8| EaE IR« X
1 $M-file script producing graphics of petals -]
2| - theta = -pi:0.0l:pi;
3|-| rho(l,:) = 2*sin(S*theta).*2;
4| - tho(2,:) = cos(l0"theta).*3;
5| = tho(3,:) = sin(ctheta).*2;
6| - rho(4,:) = S*cos(3.5%*theta).*3;
7= tor 1 = 1:4
8| - polar(theta,xho(i,:))
a|- pause
10| - end —
1" =
dl [>]
Ready
Figure 4-6.

125

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

=) Figure No. 1
File Edit Wew Insert Took Window Help

D& YA 2/ 200

Figure 4-7.

=) Figure No. 1
File Edit Yew Insert Took Window Help

D& YA 2/ 200

Figure 4-8.

126

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

=) Figure No. 1
File Edit Wew Insert Took Window Help

D& YA 2/ 200

Figure 4-9.

J Figure NMo. 1
File Edit View Insert Tools Window Help

Deed&S M A~/ »20 0

Figure 4-10.

127

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Functions and M-files. Eval and Feval

We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program.
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the
function to be used whenever required.

MATLARB is usually used in command mode (or interactive mode), in which case a command is written in a single
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of
commands in batch mode, in which case a sequence of commands can be submitted which were previously written
in a file. This file (M-file) must be stored on disk with the extension “m” in the MATLAB subdirectory, using any ASCII
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the
command echo on is active and only the results of successive executions of the interpreted commands are displayed.
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually,
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful
applications of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters)
the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by commas.
If there is more than one input parameter, they are separated by commas. The body of the function is the syntax that defines
it, and should include commands or instructions that assign values to output parameters. Each command or instruction of
the body often appears in a line that ends either with a comma or, when variables are being defined, by a semicolon (in order
to avoid duplication of outputs when executing the function). The function is stored in the M-file named function_name.m.

Let us define the function funi(x) = x » 3 - 2x + cos(x), creating the corresponding M-file funl.m. To define this
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button) in the MATLAB
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the
function, as shown in Figure 4-11.

%) Untitled* g@

Fle Edit View Text Debug Breskpoints Web Window Help

D@ & ® - 4 fr *) (B stade | x|
1
2 function p=funl(x)
3 tDefinition of a simple function
4 pEx*3-2%x+cos(x):
5

Ready

Figure 4-11.

128

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB
Editor/Debugger. This opens the Save dialog of Figure 4-12, which we use to save our function with the desired name
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button i) or select
Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Save file as: E]g

Gu«ﬂuarr[._)m&. ;I « @ c¥ B3

J E‘COSht.rn

recientes ; i
@ =
Escritono

Y/

<
Mis stios de red Nombre: |funl.m ~] [[Gusdx]

Tipg: [A1Files 1) -] Cancelar

Figure 4-12.

Once a function has been defined and saved in an M-file, it can be used from the Command Window.
For example, to find the value of the function at 3n-2 we write in the Command Window:

»> fun1(3*pi/2)
ans =
95.2214

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the
command help, as follows:

»> help funi(x)
A simple function definition

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax
of which is as follows:

feval ('F', argl, argl,..., argn)

129

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

This evaluates the function F (the M-file Em) at the specified arguments argl, arg2,..., argn.
As an example we build an M-file named equation2.m which contains the function equation2, whose arguments
are the three coefficients of the quadratic equation ax? + bx + ¢ = 0 and whose outputs are the two solutions (Figure 4-13).

Fle Edt View Text Debug Breskponts Weh Window Hebp
DeE & B AHp 8
1 function [x1.,x21sequation2fa,b.c)
2 *ilhis 1unction solves the quadratl
3 Sw b
4 %a shose x1 and x
5|=| de=b*2-4varc:
Bl=| xl=(-besqrr(d))/(2%a):
T|=| x2«(-b-sqret(d))/(2%a):
g —
9 =
I I+
Ready
Figure 4-13.

Now if we want to solve the equation x* + 2x + 3 = 0 using feval, we write the following in the Command Window:
»» [x 1, x 2] = feval('equation2’,1,2,3)
X 1=
-1.0000 + 1. 4142i
X 2 =
-1.0000 - 1. 4142i

The quadratic equation can also be solved as follows:
» [x 1, x 2] = equation2 (1,2,3)
X 1=

-1.0000 + 1. 4142i

X 2 =
-1.0000 - 1. 4142i

If we want to ask for help about the function equation2 we do the following:
»> help equation2
This function solves the quadratic equation ax * 2 + bx + c = 0

whose coefficients are a, b and c (input parameters)
and whose solutions are x 1 and x 2 (output parameters)

130

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval,
whose syntax is as follows:

eval (expression)

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

»> n=4;

»> eval(['M' num2stx(n) ' = magic(n)'])
M4 =

16 2 3 13

511 10 8

97 6 12

414 15 1

Local and Global Variables

Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary to
define global variables with the GLOBAL command whose syntax is as follows:

GLOBAL x y z...

This defines the variables x, y and z as global.

Any variables defined as global inside a function are available separately for the rest of the functions and in the
base workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an
empty array. If there is already a variable with the same name as a global variable being defined, MATLAB will send
a warning message and change the value of that variable to match the global variable. It is convenient to declare a
variable as global in every function that will need access to it, and also in the command line, in order to access it
from the base workspace. The GLOBAL command is located at the beginning of a function (before any occurrence
of the variable).

As an example, suppose that we want to study the effect of the interaction coefficients o. and § in the
Lotka-Volterra predator-prey model:

W=V —oNY,
Y2:7y27ﬁy1y2

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 4-14.

131

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

%) C:AMATLAB6p1\work\lotka.m

Fle Edit View Text Debug Breakpoints Web Window Help
DERBEES 2R | AH R B D0EIRE | stac| x|

function yp = lotkait,y)
%LOTKA Lotka-Volterra predator-prey nodel.
= global ALPHA BETA
=| ¥p = [vil) - ALPHA®Y(1)"y(2); -y(2) + BETA*y(l)"y(2)]):

e = T T

q]
3‘| ecuacionZ.m lotka.m I

Ready

d
1

Figure 4-14.
Later, we might type the following in the command line:
>> global ALPHA BETA
ALPHA = 0.01
BETA = 0.02

These global values may then be used for o and B in the M-file lotka.m (without having to specify them).
For example, we can generate the graph (Figure 4-15) with the following syntax:

»> [t, y] = ode23 ('lotka’, 0.10, [1; 1]); plot(t,y)

) Figure No. 1
Fle Edit Wiew Insert Tools Window Help
DeEd& A A2/ 2P0

1000 T T T T T T T T T

B 8

588883

8

(=]

Figure 4-15.

132

CHAPTER 4 = MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
Data Types
MATLAB has 14 different data types, summarized in Figure 4-16 below.
ARRAY
char NUMERIC cell structure function handle
user class java class
[i |
int8, uints, single double
int16,uint16,
int32, uint3z sparse
Figure 4-16.
Below are the different types of data:
Data type Example Description
single 3*101 38 Simple numerical precision. This requires less storage than
double precision, but it is less precise. This type of data should not
be used in mathematical operations.
Double 3*10/300 Double numerical precision. This is the most commonly used
5+6i data type in MATLAB.
sparse speye(5) Sparse matrix with double precision.
int8, uint8, int16, UInt8(magic (3)) Integers and unsigned integers with 8, 16, and 32 bits. These
uintl6, int32, make it possible to use entire amounts with efficient memory
uint32 management. This type of data should not be used in
mathematical operations.
char ‘Hello’ Characters (each character has a length of 16 bits).
cell {17 ‘hello’ eye (2)} Cell (contains data of similar size).
structure a.day = 12; a.color = ‘Red’; Structure (contains cells of similar size).
a.mat = magic(3);
user class inline(‘sin (x)’) MATLAB class (built with functions).
java class Java. awt.Frame Java class (defined in API or own) with Java.
function handle @humps Manages functions in MATLAB. It can be last in a list of

arguments and evaluated with feval.

133

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Flow Control: FOR Loops, WHILE and IF ELSEIF

The use of recursive functions, conditional operations and piecewise defined functions is very common in mathematics.
The handling of loops is necessary for the definition of these types of functions. Naturally, the definition of the functions
will be made via M-files.

FOR Loops

MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This
statement allows you to run a command or group of commands repeatedly. For example:

» for i=1:3, x(i)=0, end

The general form of a FOR loop is as follows:

for variable = expression
commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of

commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 4-17):

¥) C:\MATLAB6p1\work\matriz.m g@g}

File Edit View Text Debug Breakpoints Web Window Help

D= & B | MH 88 - | x|
1 function A = matriz(m,n) -~
2 $Definition of a mactrix
3|- for im=l:m,
4| = for j=1l:n,
5|- Afi,j)=21/(i+3-1);
6| — end
= end; S
: -
9 -

| |
{ | » | ecuacion2.m matriz.m
Ready
Figure 4-17.

134

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz.m, we can build any
Hilbert matrix later by running the M-file and specifying values for the variables m and 7 (the matrix dimensions) as
shown below:

»» M = matriz (4,5)
M =

1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250

WHILE Loops

MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This
statement allows you to repeat a command or group of commands a number of times while a specified logical
condition is met. The general syntax of this loop is as follows:

While condition
commands
end

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes
in its interior a whole set of commands that are separated by commas which continually loop while the condition is
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As
an example, we write an M-file (Figure 4-18) that is saved as whilel.m, which calculates the largest number whose
factorial does not exceed 10,

%) C:\MATLAB6p 1\workimatriz.m*
File Edit Wiew Text Debug Breakpoints Web Window Help

DeE & S@Bo > AH 8x X
1=] n=1: =
2|-| while prodil:n) < l.el00,

3 - n=n+l1;
4—| end,
5-| n =
B
7
< I ﬂ_l

| > | _ecuacionzm__ matrizm_|

Ready

Figure 4-18.

135

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

We now run the M-file.

»> while1

70

IF ELSEIF ELSE END Loops

MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:

if condition
commands
end

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.

if condition
commands1
else
commands2
end

In this case, the commands commandsl are executed if the condition is true, and the commands commands2 are
executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF
statement, the general syntax is as follows:

if conditioni
commands1

elseif condition2
commands2

elseif condition3
commands3

else
end

In this case, the commands commandsl are executed if conditionl is true, the commands commands2 are
executed if conditionl is false and condition2 is true, the commands commands3 are executed if conditionl and
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:

if conditioni
commands1
else
if condition2
commands2

136

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

else
if condition3
commands3
else
end
end

end

Consider, for example, the M-file elsel.m (see Figure 4-19).

“ C:\MATLAB6p1\worklelse1.m o =]q

Fle Edt View Text Debug Breakpoints Weh Window Heb

DeE & B0~ AH BB DD
function elsel(n) |
teven, odd, positive, negative.

- it n<0,

A="'"n is negative'
elseif rem(n,2) ==0

A="'n is even'

DDA AWK -
Lyl

else
— A= 'n is odd’
= end ,:J
‘| 2]
L] | » [equatimﬂ-m] while1l.rm elsel.m I
Ready
Figure 4-19.

When you run the file it returns negative, odd or even according to whether the argument » is negative,
non-negative and odd, or non-negative and even, respectively:

»> else1 (8), else1 (5), else1 (- 10)
A =

n is even

A =

n is odd

A =

n is negative

137

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Switch and Case

The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax
is as follows:

switch expression (scalar or string)

case value1

statements % runs if expression is valuel
case value2

statements % runs if expression is value2

otherwise
statements % runs if neither case is satisfied

end

Below is an example of a function that returns ‘minus one, ‘zero, ‘one, or ‘another value’ according to whether the
input is equal to —1,0,1 or something else, respectively (Figure 4-20).

) C:\AMATLAB6p 1\work\case1.m
Ede Edt View JText Qebug Breakpoints Weh Window Help
DE& ®Be - A R4 x|

function casel(n) -

-1, 0, 1 or anoth yumb
switch n
case -1
disp({'minus one'):
case O
disp('zexrc'):
case 1
disp(‘gne'):’
othervise
disp ('another value'):

et B (e RS R 1

end

-
BN =0D00NONAWN=

«| 3|
4| » [equation2.m| whiet.m | elsetm caset.m |

Ready

Figure 4-20.
Running the above example we get:

»> casel (25)
another value

» casel (- 1)
minus one

138

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Continue

The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 4-21) that counts the lines of
code in the file magic.m, ignoring the white lines and comments.

4 C:\MATLAB6p1iworkicontinue1. m* =]

Fle Edt View Text Debug Breakpoints Web Window Heb
DeEd & BRo~ | AH | DA DBEX
1|=| fid = fopen('magic.m','r'); Al
2|-| count = 0;
3|=| while ~feof(fid)
4| - line = fgetl(fid):
5|- if isempty(line) | strncap(line,'s’,l)
6| - continue
1= end
8- count = count + 1:
9|-| end
10|-| disp(sprintf('sd lines',count)): L
1
12 LI
_ d *]
4|> qu“atlonz-ml whilel.m] elsel.m continuel.m I
Ready
Figure 4-21.

Running the M-file, we get:

»> continuel
25 lines

Break

The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which
appears outside of the loop. Below is an M-file break1.m (Figure 4-22) which reads the lines of code in the file fft.m,
exiting the loop as soon as it encounters the first empty line.

139

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

4) C:\MATLAB6p1\work\continuei.m* M=]d
Fle Edit View Text Debug Breakpoints Web Window Help
DzE8& Boa| AN QR BEDEX
1|= fid = fopen('magic.m','x'); a
2|=| count = 0;
3|-| while ~feof(fid)
4|- line = fgetl(fid):
5|- if isempty(line) | strncmp(line,'%',l)
6| - continue
7= end
8- count = count + 1;
9|-| end
10|=| disp(sprintf('%d lineas',count)): |
1
12 -
B I K | I’J
dI » quual::i.onZ.m whilel.m elsel.m continuel.m |
Ready

Figure 4-22.

Running the M-file we get:

»> breaki

°

#FFT Discrete Fourier transform.

% FFT(X) is the discrete Fourier transform (DFT) of vector X. For
% matrices, the FFT operation is applied to each column. For N-D

% arrays, the FFT operation operates on the first non-singleton

% dimension.

%
% FFT(X,N) is the N-point FFT, padded with zeros if X has less
% than N points and truncated if it has more.

%
% FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
% dimension DIM.

%
% For length N input vector x, the DFT is a length N vector X,
% with elements

S

e

S5e

>

>

e

e

e

>

>

e

e

e

% N

% X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
% n=1

% The inverse DFT (computed by IFFT) is given by

% N

% x(n) = (1/N) sum X(k)*exp(j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
% k=1

%

°

% See also IFFT, FFT2, IFFT2, FFTSHIFT.

S

140

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Try... Catch

The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the
cause of the error. The general syntax of the command is as follows:

try,
instruction

ceey
instruction
catch,

instruction

ceey
instruction

end

Return

The return statement terminates the current script and returns the control to the invoked function or the keyboard.
The following is an example (Figure 4-23) that computes the determinant of a non-empty matrix. If the array is empty
it returns the value 1.

5} C:\MATLAB6p1\work\det1.m D@@

Fle Edit View Text Debug Ereakpoints Web Window Help
DR & Ry o | MH| R 4G DE x|
1| = function d = detl(A) -
2|= if isempty(A)
3- d=1;
4| - return § |
5= else
6| - det(A)
7= end L]
d [+]
.| » [equation2.m| whilet.m | elselm detim |
Ready
Figure 4-23.

Running the function for a non-empty array we get:

>> A =[-1, -1, 1; 1,0,1; 1,1,1]

A =
-1 -1 -1
10 1
1-1-1

>> det1 (A)

ans =

2

141

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Now we apply the function to an empty array:
» B =[]
B =
(]
»> det1 (B)

ans =

Subfunctions

M-file-defined functions can contain code for more than one function. The main function in an M-file is called a
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary
function may be added which are only visible for the primary function or another subfunction within the same M-file.
Each subfunction begins with its own function definition. An example is shown in Figure 4-24.

5) Untitled5* QE‘EI

Fle Edit View Text Debug Breakpoints Web Window Help
Deld & B AH| B BDDE IR L | stax|E x|
1 function [avg,med] = newstats(u) ¥Primary function -
2 % HEWSTATS Calculates the nean and median with internal functions
3 n = lengthiu);
4 avyg = mean(u,n);
5 ned = median(u,n);
6
7 function a = mean{v,n) $Subfunction
8 $Calculates the mean
9 a = sum(v)/n;
10
1 function m = median(v,n) $Subfunction
12 $Calculates the median
13 v = Sort(v):
14 if rem(n,2) == 1
15 m = wiin+l)/2);
16 else
17 n = (win/2)+win/2+1))/2:;
18 end
19
20 —
114 b
4| » |eauation2.m| whiletm | elset.m | dett.m untitieds |
Ready
Figure 4-24.

142

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and
n as the second argument. When executing the main function, it is enough to provide as input a list of values for which
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.

»> [mean, median] = newstats ([10,20,3,4,5,6])

mean =

median =

5.5000

Commands in M-files

MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are
the following:

echo on View on-screen commands of an M-file script while it is running.

echo off Hides on-screen commands of an M-file script (this is the default setting).

pause Interrupts the execution of an M-file until the user presses a key to continue.

pause(n) Interrupts the execution of an M-file for n seconds.

pause off Disables pause and pause (n).

pause on Enables pause and pause (n).

keyboard Interrupts the execution of an M-file and passes the control to the keyboard so that the user can

perform other tasks. The execution of the M-file can be resumed by typing the return command
into the Command Window and pressing Enter.

return Resumes execution of an M-file after an outage.

break Prematurely exits a loop.

CLC Clears the Command Windouw.

Home Hides the cursor.

more on Enables paging of the MATLAB Command Window output.
more off Disables paging of the MATLAB Command Window output.
more (N) Sets page size to N lines.

menu Offers a choice between various types of menu for user input.

143

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Functions Relating to Arrays of Cells

An array is a well-ordered collection of individual items. This is simply a list of elements, each of which is associated
with a positive integer called its index, which represents the position of that element in the list. It is essential that each
element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make
changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions, and
correspondingly they have one or more sets of indices that identify their elements. The most important commands
and functions that enable MATLAB to work with arrays of cells are the following:

c =cell(n)

¢ = cell(m,n)

c =cell([m n])

¢ = cell(m,n,p,...)
c=cell(mnp..])
¢ = cell(size(A))

D = cellfun(‘f,C)

D = cellfun(‘size},C,k)

D = cellfun(‘isclass)C,class)
C=cellstr(S)

S = cell2struct(C,fields,dim)

celldisp (C)
celldisp(C, name)
cellplot(C)
cellplot(C,legend’)

C = num2cell(A)

C = num2cell(A,dims)

Creates an nxn array whose cells are empty arrays.

Creates an mxn array whose cells are empty arrays.

Creates an mxn array whose cells are empty arrays.

Creates an mxnxpx... array of empty arrays.

Creates an mxnxpx... array of empty arrays.

Creates an array of empty arrays of the same size as A.

Applies the function f (isempty, islogical, isreal, length, ndims, or prodofsize) to
each element of the array C.

Returns the size of each element of dimension k in C.

Returns true for each element of C corresponding to class.

Places each row of the character array S into separate cells of C.

Converts the array C to a structure array S incorporating field names ‘fields’ and
the dimension ‘dim’ of C.

Displays the contents of the array C.

Assigns the contents of the array C to the variable name.

Shows a graphical representation of the array C.

Shows a graphical representation of the array C and incorporates a legend.
Converts a numeric array A to the cell array C.

Converts a numeric array A to a cell array C placing the given dimensions in
separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.

»> A = ones(2,2)

»» ¢ = cell(size(A))

—r—
[E——

144

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

We then define and present a 2 x 3 array of cells element by element, and apply various functions to the cells.

>> C {1.1} = [1 2; 4 5];
C {1,2} = 'Name';

C {113} = Pi}

C{2,1} = 2 + 4i;

{2,2} = 7;

{2,3} = magic(3);

> C

C =

[2x2 double] "Name' [3.1416]

[2.0000+ 4.0000i] [7] [3x3 double]

»> D = cellfun('isreal’,(C)

D =
1 1 1
0 1 1

»> len = cellfun('length',C)

len =
2 4 1
1 1 3

»> isdbl = cellfun('isclass',C, double’)
isdbl =

101
111

The contents of the cells in the array C defined above are revealed using the command celldisp.
»> celldisp(C)
{1,1} =
1 2
4 5
C{Z)l} =

2.0000 + 4.0000i

145

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
C{1,2} =

Name

C {2,2} =

7

€ {1,3} =

3.1416

C {2)3} =

&~ w oo
o v
N N O

The following displays a graphical representation of the array C (Figure 4-25).

»> cellplot(C)

J Figure No. 1 g@@

Fle Edit Wew Insert Tools Window Help

D& YA 22/ 2L D

Figure 4-25.

146

CHAPTER 4

MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Multidimensional Array Functions

The following group of functions is used by MATLAB to work with multidimensional arrays:

C = cat(dim,A,B)

C = cat(dim,A1,A2,A3,A4...)
B = flipdim (A, dim)

[L,]] = ind2sub(siz,IND)

[11,12,13,...,In] = ind2sub(siz,IND)

A = ipermute(B,order)

[X1, X2, X3,...] = ndgrid(x1,x2,x3,...)

[X1,X2,..] = ndgrid (x)
n = ndims(A)

B = permute(A,order)
B =reshape(A,m,n)

B =reshape(A,m,n,p,...)

B =reshape(A,[m n p...])
B =reshape(A,siz)

B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

B=squeeze(A)

IND = sub2ind(siz,1,])
IND = sub2ind(siz,I1,12,...,In)

Concatenates arrays A and B according to the dimension dim.

Concatenates arrays Al, A2,... according to the dimension dim.
Flips the array A along the specified dimension dim.

Returns the matrices I and] containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix of
size siz.

Returns matrices 11, I2,...,In containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix of
size siz.

Inverts the dimensions of the multidimensional array D according to the
values of the vector order.

Transforms the domain specified by vectors x1, x2,... into the arrays X1,
X2,... which can be used for evaluation of functions of several variables and
interpolation.

Equivalent to ndgrid(x,x,x,...).
Returns the number of dimensions in the array A.
Swaps the dimensions of the array A specified by the vector order.

Defines an mxn matrix B whose elements are the columns of a.

Defines an array B whose elements are those of the array A restructured
according to the dimensions mxnxpx...

Equivalent to B = reshape(A,m,n,p,...)

Defines an array B whose elements are those of the array A restructured
according to the dimensions of the vector siz.

Shifts the dimensions of the array X by n, creating a new array B.

Defines an array B with the same number of elements as X but with leading
singleton dimensions removed.

Creates an array B with the same number of elements as A but with all
singleton dimensions removed.

Gives the linear index equivalent to the row and column indices I and J for
a matrix of size siz.

Gives the linear index equivalent to the n indices I1, I2,..., in a matrix
of size siz.

147

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

As a first example we concatenate a magic square and Pascal matrix of order 3.

> A
» C

magic (3); B = pascal (3);
cat (4, A, B)

(a)
—~
-
R

iy
-

iy
~
n

(=)
—~
-

-
iy
-

N

~
I

The following example flips the Rosser matrix.
»> R=rosser
R =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44
-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23

-8 -71 61 8 411 -599 208 208
-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911

29 -44 52 -23 208 208 -911 99

»> flipdim(R,1)
ans =
ans =

29 -44 52 -23 208 208 -911 99
-49 -8 8 59 208 208 99 -911
-52 -43 49 44 -599 411 208 208

-8 -71 61 8 411 -599 208 208
407 -192 196 611 8 44 59 -23

-192 113 899 196 61 49 8 52
196 899 113 -192 -71 -43 -8 -44
611 196 -192 407 -8 -52 -49 29

148

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Now we define an array by concatenation and permute and inverse permute its elements.

»» a = cat(3,eye(2),2*%eye(2),3*eye(2))

a(:,:,1)

10
01

[
~
oo

-
oo

-
N

~
1

[
~
oo

-
oo
-
W
~
1

»> B = permute(a,[3 2 1])

B(:,:,1)

(o]
—~
-

\: .

N
~

I

»» C = ipermute(B,[3 2 1])

C(:,:,1)

10
01

C(z,:,2)
20
02

C(:,1,3)
30
03

149

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

-xi-x3

The following example evaluates the function f(x,,x,)=xe
graphically (Figure 4-26).

in the square [- 2, 2] x [- 2, 2] and displays it

» [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z=X1. * exp(-X1.%2-X2.72);
mesh (Z)

<) Figure No. 1 E|®

Fle Edit View Insert Tocls Window Help

D& NAA/ 2 HOD

il

Figure 4-26.

In the following example we resize a 3 x4 random matrix to a 2 x 6 matrix.
»> A=rand(3,4)
A =

0.9501 0.4860 0.4565 0.4447
0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919

»> B = reshape(A,2,6)
B =

0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
0.2311 0.4860 0.7621 0.0185 0.4447 0.7919

150

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Numerical Analysis Methods in MATLAB

MATLAB programming techniques allow you to implement a wide range of numerical algorithms. It is possible to
design programs which perform numerical integration and differentiation, solve differential equations, optimize
non-linear functions, etc. However, MATLAB'’s Basic module already has a number of tailor-made functions which
implement some of these algorithms. These functions are set out in the following subsections. In the next chapter we
will give some examples showing how these functions can be used in practice.

Zeros of Functions and Optimization

The commands (functions) that enables MATLAB’s Basic module to optimize functions and find the zeros of functions
are as follows:

x = fminbnd(fun,x1,x2) Minimizes the function on the interval (x1 x2).

x = fminbnd(fun,x1,x2,0ptions) Minimizes the function on the interval (x1 x2) according to the option
given by optimset (...). This last command is explained later.

x = fminbnd(fun,x1,x2, Specifies additional parameters P1, P2, ... to pass to the target function

options,P1,P2,...) fun(x,P1,P2, ...).

[x, fval] = fminbnd (...) Returns the value of the objective function at x.

[x, fval, f] = fminbnd (...) In addition, returns an indicator of convergence f (f > 0 indicates

convergence to the solution, f< 0 indicates no convergence and f= 0
indicates the algorithm exceeded the maximum number of iterations).

[x,fval,f,output] = fminbnd(...) Provides further information (output.algorithm gives the algorithm
used, output. funcCount gives the number of evaluations of fun and
output.iterations gives the number of iterations).

x = fminsearch(fun,x0) Returns the minimum of a scalar function of several variables, starting
x = fminsearch(fun,x0,options) at an initial estimate x0. The argument x0 can be an interval [a, b].

x = fminsearch(fun,x0,options,P1,P2,... To find the minimum of fun in [a, b], x = fminsearch (fun, [a, b]) is used.

[x,fval] = fminsearch(...)

[x,fval,f] = fminsearch(...)

[x,fval,f,output] = fminsearch(...)

x = fzero(fun,x0) Finds zeros of the function fun, with initial estimate x0, by finding a
x = fzero(fun,x0,0ptions) point where fun changes sign. The argument x0 can be an interval [a,

b]. Then, to find a zero of fun in [a, b], we use x = fzero (fun, [a, b]),

x = fzero(fun,x0,0ptions,P1,P2,...) where fun has opposite signs at a and b.

[x, fval] = fzero (...)
[x, fval, exitflag] = fzero (...)
[x,fval,exitflag,output] = fzero(...)

(continued)

151

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

options = optimset(‘p1,vl,/p2,v2,...) Creates optimization parameters p1, p2,... with values v1, v2... The
possible parameters are Display (with possible values ‘of f, ‘iter;
‘final; ‘notify’) to respectively not display the output, display the
output of each iteration, display only the final output, and display a
message if there is no convergence); MaxFunEvals, whose value is an
integer indicating the maximum number of evaluations; MaxIter
whose value is an integer indicating the maximum number of
iterations; TolFun, whose value is an integer indicating the tolerance
in the value of the function, and TolX, whose value is an integer
indicating the tolerance in the value of x.

val = optimget (options, ‘param’) Returns the value of the parameter specified in the optimization
options structure.

g = inline (expr) Transforms the string expr into a function.

g = inline(expr,argl,arg2, ...) Transforms the string expr into a function with given input arguments.

g = inline (expr, n) Transforms the string expr into a function with n input arguments.

f = @function Enables the function to be evaluated.

As a first example we find the value of x that minimizes the function cos(x) in the interval (3,4).
»> x = fminbnd(@cos,3,4)

X =
3.1416

We could also have used the following syntax:
»> x = fminbnd(inline('cos(x)"),3,4)

X =
3.1416

In the following example we find the above minimum to 8 decimal places and find the value of x that minimizes
the cosine in the given interval, presenting information relating to all iterations of the process.

»» [x,fval,f] = fminbnd(@cos,3,4,0optimset('TolX"',1e-8,... 'Display’, iter'));

Func-count X f(x) Procedure
1 3.38197 -0.971249 initial
2 3.61803 -0.888633 golden
3 3.23607 -0.995541 golden
4 3.13571 -0.999983 parabolic
5 3.1413 -1 parabolic
6 3.14159 -1 parabolic
7 3.14159 -1 parabolic
8 3.14159 -1 parabolic
9 3.14159 -1 parabolic

152

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008

In the following example, taking (- 1, 2; 1) as initial values, we find the minimum and target value of the following

function of two variables:

f(x) = 100(x27x21)2+(17x])2

»> [x,fval] = fminsearch(inline('100*(x(2)-x(1)"2)"2+...

(((2-x (1)) ~ 2), [- 1.2, 1])
X =

1.0000 1.0000

fval =

8. 1777e-010

The following example computes a zero of the sine function with an initial estimate of 3, and a zero of the cosine

function between 1 and 2.

»» x = fzero(@sin,3)

3.1416

»» x = fzero(@cos,[1 2])

1.5708

Numerical Integration

MATLAB contains functions that allow you to perform numerical integration using Simpson’s method and Lobato’s
method. The syntax of these functions is as follows:

q = quad(f,a,b)

q = quad(f,a,b,tol)

q = quad(f,a,b,tol,trace)

q = quad(f,a,b,tol, trace,p1,p2, ...)
[q, fent] = quadl(f,a,b,...)

Finds the integral of f between a and b by Simpson’s method with an
error of 10-6.

Find the integral of f between a and b by Simpson’s method with the tolerance
tol instead of 10-6.

Find the integral of f between a and b by Simpson’s method with the tolerance
tol and presents the trace of iterations.

Passes additional arguments p1, p2, ... to the function f, f(x,pLp2, ...).

Additionally returns the number of evaluations off.

(continued)

153

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

q = quadi(f,a,b) Finds the integral off between a and b by Lobato’s quadrature method with a
10-6 error.
q = quadi(f,a,b,tol) Finds the integral of f between a and b by Lobato’s quadrature method with the

tolerance tol instead of 10°.

q = quad](f,a,b,tol,trace) Finds the integral of f between a and b by Lobato’s quadrature method with the
tolerance tol and presents the trace of iterations.

q = quad(f,a,b,tol,trace,p1,p2,...) Passes additional arguments p1, p2,... to the function f, f(x,p1,p2,...).

[q, fcnt] = quadl(f,a,b,...) Additionally returns the number of evaluations off.

q = dblquad (f, xmin, xmax, Evaluates the double integral f(x,y) in the rectangle specified by the given

ymin, ymax) parameters, with an error of 10°. dblquad will be removed in future releases
and replaced by integral2.

q = dblquad (f, xmin, xmax, Evaluates the double integral f(x,y) in the rectangle specified by the given

ymin,ymax,tol) parameters, with tolerance tol.

q = dblquad (f, xmin, xmax, Evaluates the double integral f(x,y) in the rectangle specified by the given

ymin,ymax,tol,@quadl) parameters, with tolerance tol and using the quadl method.

q = dblquad (f, xmin, xmax, Passes additional arguments p1, p2,... to the function f.

ymin,ymax,tol,method,p1,p2,...)

2

As a first example we calculate J

1 C s ,
ﬁdx using Simpson’s method.

0 x°—2x
»> F = inline('1./(x."3-2*x-5)");

» Q = quad(F,0,2)

0 =

-0.4605

Then we observe that the integral remains unchanged even if we increase the tolerance to 104,
»» 0 = quad(F,0,2,1.0e-18)
0 =
-0.4605
In the following example we evaluate the same integral using Lobato’s method.
»> 0 = quadl(F,0,2)
0=
-0.4605

2

We evaluate the double integral I J (v sin(x)+x cos(y))dydx .
T 0

154

CHAPTER 4 = MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
»> 0 = dblquad (inline (' y * sin (x) + x * cos (y)'), pi, 2 * pi, 0, pi)
0 =

-9.8696

Numerical Differentiation

The derivative f'(x) of a function f(x) can simply be defined as the rate of change of f(x) with respect to x. The
derivative can be expressed as a ratio between the change in f(x), denoted by df(x), and the change in x, denoted by
dx. The derivative of a function fat the point x, can be estimated by using the expression:

f(xk)_f(xk—l)
X =X

f’(xk):

provided the values x,, x, , are close to each other. Similarly the second derivative f"(x) of the function f(x) can be
estimated as the first derivative of f(x), i.e.:

f(x)-f (x)
X =X

(%)=

MATLAB includes in its Basic module the function diff, which allows you to approximate derivatives. The syntax
is as follows:

Y = diff(X) Calculates the differences between adjacent elements in the vector X:[X(2) - X(1), X(3) - X (2),..., X(n) -
X(n-1)]. If X is an mxn matrix, diff (X) returns the array of differences by rows: [X(2:m,:)-X(1:m-1,:)]

Y =diff(X,n) Finds differences of order n, for example: diff(X,2) = diff (diff (X)).

As an example we consider the function f(x) = x°- 3x*-11x° + 27x* + 10x- 24, find the difference vector of
[-4,-3.9,-3.8,...,4.8,4.9,5] the difference vector of [f(-4),f(-3.9),f(-3.8),...,/(4.8),/(4.9),/(5)] and the elementwise
quotient of the latter by the former, and graph the function in the interval [-4.5]. See Figure 4-27.

» X =-4:0.1: 5;
> f = Xe"5-3*A."4-11%X. "3 + 27*X."2 + 10*X-24;
»> df=diff(f)./diff(x)
df =
1.0e+003 *
Columns 1 through 7
1.2390 1.0967 0.9655 0.8446 0.7338 0.6324 0.5400
Columns 8 through 14

0.4560 0.3801 0.3118 0.2505 0.1960 0.1477 0.1053
155

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Columns 15 through 21

0.0683 0.0364 0.0093 -0.0136 -0.0324 -0.0476 -0.0594
Columns 22 through 28

-0.0682 -0.0743 -0.0779 -0.0794 -0.0789 -0.0769 -0.0734
Columns 29 through 35

-0.0687 -0.0631 -0.0567 -0.0497 -0.0424 -0.0349 -0.0272
Columns 36 through 42

-0.0197 -0.0124 -0.0054 0.0012 0.0072 0.0126 0.0173
Columns 43 through 49

0.0212 0.0244 0.0267 0.0281 0.0287 0.0284 0.0273
Columns 50 through 56

0.0253 0.0225 0.0189 0.0147 0.0098 0.0044 -0.0014
Columns 57 through 63

-0.0076 -0.0140 -0.0205 -0.0269 -0.0330 -0.0388 -0.0441
Columns 64 through 70

-0.0485 -0.0521 -0.0544 -0.0553 -0.0546 -0.0520 -0.0472
Columns 71 through 77

-0.0400 -0.0300 -0.0170 -0.0007 0.0193 0.0432 0.0716

Columns 78 through 84

0.1046 0.1427 0.1863 0.2357 0.2914 0.3538 0.4233
Columns 85 through 90

0.5004 0.5855 0.67910.7816 0.8936 1.0156

»> plot (x, f)

156

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

<) Figure No. 1 Q@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

600

400 + /—

200 1

800 1 Il 1 Il 1 1 1 1
-4 - - -

Figure 4-27.

Approximate Solution of Differential Equations

MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

Ordinary Differential Equations with Initial Values

An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the
independent variable ¢. A first order ordinary differential equation with an initial value for the independent variable
can be represented as:

y'=f(ty)
)’(to) =Yo

The previous problem can be generalized to the case where y is a vector, y=(y,, ¥, ..., yn)

157

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

MATLAB'’s Basic module commands relating to ordinary differential equations and differential algebraic
equations with initial values are presented in the following table:

Command Class of Problem Solving, Numerical Method and Syntax

ode45 Ordinary differential equations by the Runge-Kutta method

ode23 Ordinary differential equations by the Runge-Kutta method

odell3 Ordinary differential equations by Adams’ method

odel5s Differential algebraic equations and ordinary differential equations using NDFs (BDFs)
ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the trapezoidal rule
ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:

, y] = solver(odefun,tspan,y0)

, Y] = solver(odefun,tspan,yo,options)

y] = solver(odefun,tspan,yo0,options,p1,p2...)

» ¥, TE, YE, IE] = solver(odefun,tspan,y0,options)

.—.ﬁ,—,.—.
—

In the above, solver can be any of the commands ode45, ode23, odel113, odel5s, ode23s, ode23t, or ode23tb.

The argument odefun evaluates the right-hand side of the differential equation or system written in the form
v =f(t y) or M(t, y)y =f(¢, y), where M(¢, y) is called a mass matrix. The command ode23s can only solve equations
with constant mass matrix. The commands odel5s and ode23t can solve algebraic differential equations and systems
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the
range of integration [z, tf] (tspan =[t, tl,...,tf], which must be either an increasing or decreasing list, is used to obtain
solutions for specific values of £). The argument y, specifies a vector of initial conditions. The arguments p1, p2,... are
optional parameters that are passed to odefun. The argument options specifies additional integration options using
the command options odeset which can be found in the program manual. The vectors T and y present the numerical
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential
equations:

N
Il

V=Y.V % (0
y’z:_)ﬁya yz(o)
y’3:70‘51y1y2 y3(0)=

0
1
1

For this, we define a function named system1 in an M-file, which will store the equations of the system. The
function begins by defining a column vector with three rows which are subsequently assigned components that make
up the syntax of the three equations (Figure 4-28).

158

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

5) C:\AMATLAB6p1\workinewstats.m* E]@KZ]

File Edit View Text Debug Breakpoints Web Window
Help

DzE & B AH 88 4 x|
function dy = systeml(t,y) -
- dy = zeros(3,1): $column vector

= dy({l) = w(2) * ¥(3):

dy({2) = -y{l) * y(3); =
= dy(3) = -0.51 * y(l) * yv(2):

“ | o]

< |p| equation2 | whilel.m | elsei.m | detl.m newstats|
Ready I

5 Wk =
I

Figure 4-28.

We then solve the system by typing the following in the Command Window:

»» [T, Y] = ode45(@system1,[0 12],[0 1 1])

T =
0

0.0001

0.0001

0.0002

0.0002

0.0005

11.6136

11.7424

11.8712

12.0000

Y =

0 1.0000 1.0000
0.0001 1.0000 1.0000
0.0001 1.0000 1.0000
0.0002 1.0000 1.0000
0.0002 1.0000 1.0000
0.0005 1.0000 1.0000
0.0007 1.0000 1.0000
0.0010 1.0000 1.0000
0.0012 1.0000 1.0000
0.0025 1.0000 1.0000
0.0037 1.0000 1.0000
0.0050 1.0000 1.0000
0.0062 1.0000 1.0000

159

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

.0125 0.9999 1.0000
.0188 0.9998 0.9999
.0251 0.9997 0.9998
.0313 0.9995 0.9997
.0627 0.9980 0.9990

O O O O o

0.8594-0.5105 0.7894
0.7257-0.6876 0.8552
0.5228-0.8524 0.9281
0.2695-0.9631 0.9815

0
0
0
0
-0.0118-0.9990 0.9992
-0.2936-0.9540 0.9763
-0.4098-0.9102 0.9548
-0.5169-0.8539 0.9279
-0.6135-0.7874 0.8974
-0.6987-0.7128 0.8650

To better interpret the results, the above numerical solution can be graphed (Figure 4-29) by using the following
command:

» plot (T, Y(:,1), '-", T, ¥(:,2),"-", T, ¥(:,3),". ')

-) Figure No. 1 = OX

Fle Edit View Insert Tocls Window Help

D& NAA/ 2 HOD

Figure 4-29.

160

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Ordinary Differential Equations with Boundary Conditions

MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions
specify a relationship that must hold between the values of the solution function at the end points of the interval on
which it is defined. The simplest problem of this type is the system of equations

y'=f(xy)

where x is the independent variable, y is the dependent variable and y'is the derivative with respect to x (i.e., y' = dy/dx).
In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g(y(a),y(b))=0

More generally this type of differential equation can be expressed as follows:

y'=f(x,y,P)
g(y(a),y(b),P)=0

where the vector p consists of parameters which have to be determined simultaneously with the solution via the
boundary conditions.
The command that solves these problems is bup4c, whose syntax is as follows:

Sol = bvp4c (odefun, bcfun, solinit)
Sol = bvp4c (odefun, bcfun, solinit, options)

Sol = bvpac(odefun,bcfun,solinit,options,p1,p2...)
In the syntax above odefun is a function that evaluates f(x, y). It may take one of the following forms:
dydx = odefun(x,y)

dydx = odefun(x,y,p1,p2,...)
dydx = odefun (x, y, parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

The argument bcfun in Bup4c is a function that computes the residual in the boundary conditions. Its form
is as follows:

Res = bcfun (ya, yb)

Res = bcfun(ya,yb,p1,p2,...)

Res = bcfun (ya, yb, parameters)

Res = bcfun(ya,yb,parameters,p1,p2,...)

The argument solinit is a structure containing an initial guess of the solution. It has the following fields: x (which
gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)and
b=solinit.x(end); and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant guess
for the i-th component of the solution at all the mesh points given by x)) The structure solinit is created using the
command bvpinit. The syntax is solinit = bvpinit(x,y).

161

CHAPTER 4 = MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
As an example we solve the second order differential equation:
y"+lyl=0
whose solutions must satisfy the boundary conditions:

y(0)=0
y(4)=-2

This is equivalent to the following problem (where y, =y and y, = y'):

y1’ =),
yz’:_lyll

We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solution is
¥,=1andy, =0. These assumptions are included in the following syntax:

»> solinit = bvpinit (linspace (0,4,5), [1 0]);

The M-files depicted in Figures 4-30 and 4-31 show how to enter the equation and its boundary conditions.

3) C:\MATLAB6p1\work\twoode. m Q@@

Fle Edit View Text Debug Breakpoints Web Window

Help

DEEH& &+ 2R #AH | 88| L x|
1 function dydx = twoode(x,¥) -
2| - dydx = [v(2)
3= -abs(y(1)]]:
4
5 L
6 v

J I ;FJ

4 | » | whilel.m | elsel.m | detl.m M

Ready

Figure 4-30.

162

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

5) C:\MATLAB6p 1\workitwobc.m Q@ @

File Edit View Text Debug Breakpoints ‘Web Window

Help

DSE& s 2roc @An| BR|E X
1 function res = twobc(ya,yb) =
2| - res = [vya(l)
3= yb(l) + 2]:
4]
5
6 v

{ l ;IJ

4 | 3 | while1.m elsel.m detl.m twobe.m |

Ready

Figure 4-31.

The following syntax is used to find the solution of the equation:
»> Sun = bvpgc (@twoode, @twobc, solinit);
The solution can be graphed (Figure 4-32) using the command bvpval as follows:

»> y = bupval (Sun, linspace (0,4));
» plot (x, y(3,:));

0 05 i 15 2 25 B 25 4+
Figure 4-32.

163

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Partial Differential Equations

MATLAB’s Basic module has features that enable you to solve partial differential equations and systems of partial
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe,
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:

Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun= pdepe(m, pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block,
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun
defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x,, x,, ..., X,] and
¢, t, ... ;] that specify the points at which a numerical solution is requested (n, f>3), options specifies some
calculation options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify
relative tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are

parameters to pass to the functions pdefun, icfun and bcfun.
pdepe solves partial differential equations of the form:

[auj ou ., 0(. (6uj [auj
c| x,t,u,— | — =x"—| x" f| x,t,u,— | |+ s| x,t,u,—
ox) ot ox ox ox

Where a <x < b and <t <f. Moreover, for ¢ = #, and for all x the solution components meet the initial conditions:
u(x,t,)=u,(x)

and for all t and each x = a or x = b, the solution components satisfy the boundary conditions of the form:

p(x,t,u)+ q(x,t)f(x,t,u,i—uj =0

X

In addition, we have thata = xmesh (1), b = xmesh (end), tspan (1) =t andtspan (end) = t.Moreover
pdefun finds the terms ¢, fand s of the partial differential equation, so that:

[c, f, s] = pdefun (x, t, u, dudx)

Similiarly icfun evaluates the initial conditions
u = icfun (x)

Finally, bcfun evaluates the terms p and g of the boundary conditions:
[pl, q1, pr, qr] = bcfun (x1, ul, xr, ur, t)

As a first example we solve the following partial differential equation (x € [0,1] and > 0):

w2 (o)
ot ox\ ox

164

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

satisfying the initial condition:
u(x,0)=sinzwx
and the boundary conditions:

u(0,t)=0

o Ou
—(1,)=0
e +6x()

We begin by defining functions in M-files as shown in Figures 4-33 to 4-35.

%) C:AMATLAB6pT\workipdexipde.m [[E|X]

File Edit View Text Debug Breakpoints ‘Web Window
Help
DEES + 2B« | #AH AR x
1 function [c,£,s5] = pdexlpde(x,t,u,DubDx) =
2|-| c = pi*2;
3|-| £ = DuDx:
4-]1 s =0;
5
J 2
Ready
Figure 4-33.

5) C:\MATLAB6p 1\work\pdex1ic.m Q@@

Fle Edit View Text Debug Breakpoints Web Window
Help
DEES @+ 2@ > AH 88| 0 x|
1 function ul = pdexlic(x) =
2|-| w0 = sinipi®*x):
3
4
J]
Ready
Figure 4-34.

165

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

5] C:\MATLAB6p 1\work\pdex1bc.m Q@E‘

File Edit WView Text Debug Breakpoints Web Window Help
DSBS ' =@8o | AH| BB LT

1 function [pl,ql,pr,qr] = pdexlbe(xl,ul,xr,ur,t) -

2-| pl =ul:

3-| gl = 0;

4| - pr = pi ¥ exp(-t):

5=| qr=1:

8 | |

7 =

d| [

Ready

Figure 4-35.

Once the support functions have been defined, we define the function that solves the equation (see the M-file in
Figure 4-36).

5) C:\MATLAB6p1\work\pdex1.m Q@@

File Edit View Text Debug Breakpoints Web Window Help

DEES| {2Rro> AH | QR|(EBDE B | sx
1 function pdexl =
2
3-| m=o0;
4/-| x = linspace(0,1,20):

5/-] t = linspace(0,2,5):

6

7|=| =ol = pdepe(m,@pdexlpde,@pdexlic,@pdexlbec,x,t):

8 $Extracts the first component of the solution as u
9|- u = sol(:,:,1);

10
11 %$The solution is represented graphically as a surface
12(-| figure(l)
13|-| surf(x,t,u)
14]= title('Numerical solution with 20 grid points.')

15|=| xlabel('Distance x')
16|=| ylabel('Time t')

17
18 %Profile of the solution
19|=| figqure(2)

20{-| plot(x,ulend,:))

21|=| rtitle('solution in t=2")
22|=| xlabel ('Distance x')

23|-| vylabel('u(x,2)"')

24 v
| | »

Ready

Figure 4-36.

166

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

To view the solution (Figures 4-37 and 4-38), we enter the following into the MATLAB Command Window:

»> pdex1

) Figure No. 1 [=],
o EOt \ew jeat Jook Yirdow beb
DEES& A2/ PO

Numerical solution with 20 grid points

poar

Distance x

Figure 4-37.

) Figure No. 2 ':. U R

Ehe EOt Yww Juat Jook Wrdow beb
DFES KA/ BPOD

solution at tw2|
0 —

012} 7 \. :

omo 01 02 03 04 05 06 07 08 09 1

Distance x

Figure 4-38.

167

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

As a second example we solve the following system of partial differential equations (x € [0,1] and #> 0):

ou o’u
aTl =0.024 ax; ~F(u,~u,)

ou, o’u
—2=0170—%—-F(u, —u
ot ox? (14 -0

F(y)=exp(5.73y)—exp(-11.46y)

satisfying the initial conditions:

and the boundary conditions:

To conveniently use the function pdepe, the system can be written as:

R Psngdd B beuied

The left boundary condition can be written as:

b ool]

and the right boundary condition can be written as:

[o] o]

We start by defining the functions in M-files as shown in Figures 4-39 to 4-41

168

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

5] C:\MATLAB6p1\work\pdex4p... B@@

Fle Edit View Text Debug Breakpoints Web

Window Help

DEE& & B0 | MfH | 8Ex
1 function [c,£f,s] = pdexdpde(x,t,u,Dubx) =
2= c = [1; 1];
3[-| £ = [0.024; 0.17] .* DuDx:
-1 v = u(l) - u(2);
5l—| F = exp(S5.73%y)-expi-11.47%y);
B|— 8 = [-F: F): -

«| | >
Ready
Figure 4-39.

5} C:\MATLAB6p 1\work\pdex4bc. m D@E

File Edit View Text Debug Breakpaints Web Window Help
DSE&E L @80~ | #H| B[L0
1 function [pl,ql,pr,qr] = pdexdbc(xl,ul,xr,ur,t) =
2/-| pl=[0: ul(2)]:
3= gl =[1;0];
4/=| pr = [ur(l)-1: 0):
§=| ar = [0; 1];
: En
Ready
Figure 4-40.

File Edit View Text Debug Breskpoints Web Window

Help

DEEH&| &P 2R o | MfH 88| ¢ x|
1 function u0 = pdexdicix): =
2|=| wd = [1: 0]:

4| | >
Ready
Figure 4-41.

169

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Once the support functions are defined, the function that solves the system of equations is given by the M-file
shown in Figure 4-42.

¥) C:\MATLAB6p1\work\pdex4.m Q@@

File Edit View Text Debug Breakpoints Webh Window Help |

DEE& »" DB MAH| @B 430 E IR E | sus x|
1 function pdexd =
2|-| m=0:
3| - %x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
4| - t = [0 0.005 0.01 0.05 0.1 0.51 1.5 2]):

5

6|-| sol = pdepe(m,@Bpdexdpde,Bpdexdic,@pdexdbec,x,t);
7= wl = sol(:,:,1):

8|=| w2 = so0l(:,:,2):

9

10| - figure

1] - surf(x,c,ul)

12| = title('ul(x,tc)')

13|-| xlabel('Distance x')

14| - ylabel ('Time t'})

15

16|-| figure

17|=| surf(x,t,u2)

18| - title('uz2(x,t)")

19|-| xlabel('Distance x')

20|-| +vylabel {('Time t')

21

q L

Ready [

Figure 4-42.

To view the solution (Figures 4-43 and 4-44), we enter the following in the MATLAB Command Window:

>> pdex4

170

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

<) Figure No. 3
File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

Distance x

Figure 4-43.

-) Figure No. 4

Ble Edt View [nsert Jook Wndow Hep

D& " A2/ PPLD
u2(x.t)

Distance x

Figure 4-44.

171

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

EXERCISE 4-1

Minimize the function x*- 2 x=5 in the interval (0,2) and calculate the value that the function takes at that point,
displaying information about all iterations of the optimization process.

»» f = inline('x.”3-2*x-5");
»» [x,fval] = fminbnd(f, 0, 2,optimset('Display’, 'iter’))

Func-count X f(x) Procedure
1 0.763932 -6.08204 initial
2 1.23607 -5.58359 golden
3 0.472136 -5.83903 golden
4 0.786475 -6.08648 parabolic
5 0.823917 -6.08853 parabolic
6 0.8167 -6.08866 parabolic
7 0.81645 -6.08866 parabolic
8 0.816497 -6.08866 parabolic
9 0.81653 -6.08866 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

X =
0.8165
fval =

-6.0887

EXERCISE 4-2

172

Find in a neighborhood of x = 1.3 a zero of the function;

1 1

+ -6-
(x—0.3)"+0.01 (x—0.9)" +0.04

f(x)=

Minimize this function on the interval (0,2).

First we find a zero of the function using the initial estimate of x= 1.3, presenting information about the iterations
and checking that the result is indeed a zero.

»> [x,feval]=fzero(inline('1/((x-0.3)"2+0.01)+...

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

1/((x-0.9)"2+0.04)-6"),1.3,optimset('Display’, iter'))

Func-count X f(x) Procedure
1 1.3 -0.00990099 initial
2 1.26323 0.882416 search

Looking for a zero in the interval [1.2632, 1.3]

3 1.29959 -0.00093168 interpolation
4 1.29955 1.23235e-007 interpolation
5 1.29955 -1.37597e-011 interpolation
6 1.29955 0 interpolation

Zero found in the interval: [1.2632, 1.3].
X =

1.2995

feval =

0

Secondly, we minimize the function specified in the interval [0,2] and also present information about the iterative
process, terminating the process when the value of x which minimizes the function is found. In addition, the value
of the function at this point is calculated.

»> [x,feval]=fminbnd(inline('1/((x-0.3)"2+0.01)+...
1/((x-0.9)*2+0.04)-6"'),0,2,optimset('Display’, 'iter’))

Func-count X f(x) Procedure
1 0.763932 15.5296 initial
2 1.23607 1.66682 golden
3 1.52786 -3.03807 golden
4 1.8472 -4.51698 parabolic
5 1.81067 -4.41339 parabolic
6 1.90557 -4.66225 golden
7 1.94164 -4.74143 golden
8 1.96393 -4.78683 golden
9 1.97771 -4.81365 golden
10 1.98622 -4.82978 golden
11 1.99148 -4.83958 golden
12 1.99474 -4.84557 golden
13 1.99675 -4.84925 golden
14 1.99799 -4.85152 golden
15 1.99876 -4.85292 golden
16 1.99923 -4.85378 golden
17 1.99953 -4.85431 golden
18 1.99971 -4.85464 golden
19 1.99982 -4.85484 golden
20 1.99989 -4.85497 golden
21 1.99993 -4.85505 golden
22 1.99996 -4.85511 golden

173

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

X =
2.0000
feval =

-4.8551

EXERCISE 4-3

The intermediate value theorem says that if f is a continuous function on the interval [a, b] and L is a number
between f(a) and f(b), then there is a ¢ (a< ¢ < b) such that f(c) = L. For the function f(x) = cos(x—1), find the value
¢ in the interval [1, 2.5] such that f(c)= 0.8.

The question asks us to solve the equation cos(x— 1) — 0.8 = 0 in the interval [1, 2.5].
»» ¢ = fzero (inline ('cos (x-1) - 0.8'), [1 2.5])
C =

1.6435

EXERCISE 4-4

174

Calculate the following integral using both Simpson’s and Lobato’s methods:

j16(2+sin(2x/;)dx~)

For the solution using Simpson’s method we have:
»> quad(inline('2+sin(2*sqrt(x))'),1,6)
ans =

8.1835

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

For the solution using Lobato’s method we have:
»> quadl(inline('2+sin(2*sqrt(x))'),1,6)
ans =

8.1835

EXERCISE 4-5

Calculate the area under the normal curve (0,1) between the limits—1.96 and 1.96.

—x?

196 ¢ 2

The integral we need to calculate is j fdx .
-196 27-[

The calculation is done in MATLAB using Lobato’s method as follows:
(((»> quadl(inline('exp(-x."~2/2)/sqrt(2*pi)'), - 1.96,1.96)
ans =

0.9500

EXERCISE 4-6

Calculate the volume of the hemisphere-function defined in

[—IJ]x[—lJ]byf(x,y):1l1—(x2+y2]

»> dblquad(inline('sqrt(max(1-(x."2+y.*2),0))'),-1,1,-1,1)
ans =

2.0944

The calculation could also have been done in the following way:
»> dblquad(inline('sqrt(1-(x. 2+y."2)).*(x."2+y.*2¢=1)"'),-1,1,-1,1)
ans =

2.0944

175

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

EXERCISE 4-7

Evaluate the following double integral:

(»> dblquad(inline('1./(x+y)."2'),3,4,1,2)

ans =

0.0408

EXERCISE 4-8

Solve the following Van der Pol system of equations:
y’lz.}’z yl(o):()

¥',=1000(1-y*)y, =y, ¥,(0)=1

We begin by defining a function named vap700in an M-file, where we will store the equations of the system.
This function begins by defining a vector column with two empty rows which are subsequently assigned the
components which make up the equation (Figure 4-45).

4) C:\MATLAB6p 1\work\sistema1.m* g@@

Fle Edit Wew Text Debug Breskpoints Web Window

Help

DB & R #AHp ¥ o x
1 function dy = wdpl000(t,y) -
2|=| dy = zeros(2,1): % Column vector
3-| dy(l) = y(2):
4(-| dy(2) = 1000%(1 - y(1l)*2)*y(2) - y(1): —_
5
8 v

| | LFJ

4 /I whilelm | elset.m | dettm sistemat.m I
Ready
Figure 4-45.

176

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

We then solve the system and plot the solution y, = y,(t) given by the first column (Figure 4-46) by typing the
following into the Command Window:

»» [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
»» plot (T, Y(:,1),'-")

<) Figure No. 1 Q@g

File Edit Wiew Insert Tools Window Help

DSE& NA A2/ PPD

2

B

1k

05F

OF

05k

Ak
1.5} /
2t i

255 500 1000 1500 2000 2500 3000

Figure 4-46.

Similarly we plot the solution y, = y,(t) (Figure 4-47) by using the syntax:

» plot (T, Y(:,2),'-")

177

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

<) Figure No. 1 Q@g

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

1500

1000

-1000 -

1500 I L L 1 1

Figure 4-47.

EXERCISE 4-9

178

Given the following differential equation
y"+(A-2gcos(2x))y=0
subject to the boundary conditions y(0) = 1, y’(0) = 0, y’(n) = 0, find a solution for g =5 and A = 15 based on

an initial solution defined on 10 equally spaced points in the interval [0, =] and graph the first component of the
solution on 100 equally spaced points in the interval [0, =].

The given equation is equivalent to the following system of first order differential equations:

Vi=Y,
¥, =—(A-2qcos2x)y,

with the following boundary conditions:

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

The system of equations is introduced in the M-file shown in Figure 4-48, the boundary conditions are given in
the M-file shown in Figure 4-49, and the M-file in Figure 4-50 sets up the initial solution.

5} C:\MATLAB6p 1\workimat4ode.m Q@@

File Edit view Text Debug Breakpoints Web Window Help

D& @ 2B« MAH 8B & x|
1 function dydx = matdode(x,¥v,lanbda) -
-] gq=5:
3= dydx = [yi2)
4= -(lambda - Z*g*cos(2*x))*y(l)]:

5

4| | »

Figure 4-48.

5) C:\MATLAB6p 1\workimat4bc. m g@‘@

File Edit View Text Debug Breakpoints Web Window Help
DEEHES ‘28| AN B8R 45D x|
1 function res = matdbc(va,vb,lanbda) Al
2|=| res = [va(2)
3|- y¥b(2) —
4| - ya(l)-1 1;
5 -
1[»
Ready
Figure 4-49.

5} C:\MATLAB6p 1\workimat4init. m g@‘@

File Edit view Text Debug Breakpoints Web Window Help
DeE& » =R AH B8R G5
1 function yinit = matdinit(x) -
2|=| winit = [cos{4*x)
3= -4*zin(4*x) 1= -
4
5 -
4| »
Ready
Figure 4-50.

179

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

The initial solution for A = 15 and 10 equally spaced points in [0, =] is calculated using the following
MATLAB syntax:

»> lambda = 15;
solinit = bupinit (linspace(0,pi,10), @mat4init, lambda);

The numerical solution of the system is calculated using the following syntax:
»> sol = bup4c(@matgqode,@matgqbc,solinit);
To graph the first component on 100 equally spaced points in the interval [0, t] we use the following syntax:

»» xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([o pi-1 1.1])

xlabel ('x")

ylabel('solution y')

The result is shown in Figure 4-51.

<) Figure No. 4 Q@g

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

1

‘\
08¢
06
0.4r

0.2r

solucion y
o

02t
04f
061
n8h

Figure 4-51.

180

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

EXERCISE 4-10

Solve the following differential equation
y"+(1—y2)y’+y:0
in the interval [0,20], taking as initial solution y = 2, y' = 0. Solve the more general equation
Y+ u(1-y)y'+y=0 p>0-
The general equation above is equivalent to the following system of first-order linear equations:

y’1:y2
Vo=u(1-3)1, -0

which is defined for i = 1 in the M-file shown in Figure 4-52.

File Edit View Text Debug Breakpoints Web Window Help

DEE& »@dw | AH 88| 08|
1 function dydt = wdpl(t,¥) -
g' dydt = [y(2); (l-y(l)*~2)*y(2)-¥(1)];
4
5 v

4| >
Ready
Figure 4-52.

Taking the initial solution y,= 2 and y,= 0 in the interval [0,20], we can solve the system using the following
MATLAB syntax:

»» [t, y] = ode4a5(@vdp1,[0 20],[2; 0])

t =

.0000
.0001
.0001
.0001
.0002

O O O O oo

181

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

0.0004

0.0005

0.0006

0.0012

19.9559

19.9780

20.0000

y:

2.0000 O

2.0000 - 0.0001
2.0000 - 0.0001
2.0000 - 0.0002
2.0000 - 0.0002
2.0000 - 0.0005
1.8729 1.0366
1.9358 0.7357
1.9787 0.4746
2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404

We can graph the solutions using the following syntax (see Figure 4-53):

» plot (t, y(:,1),'-", t, y(:,2),'-")
»> xlabel ('time t')

»> ylabel('solution y')

»>> legend ('y_1', 'y 2'")

182

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

<) Figure No. 4

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

solucion y

0 2 4 B 8 10 12 14 16 18 20
tiempo t

Figure 4-53.
To solve the general system with the parameter 1, we define the system in the M-file shown in Figure 4-54.

3) C:\MATLAB6p1\workivdp2.m g@@

File Edit View Text Debug Breakpoints Web Window Help

D Ga’ E é * [}—'1 K) “ f' a @ .,:: 4§ il
1 function dydt = wdp2(t,y,mu) -
g' dydt = [y(2); wu*(1-y(1)*2)*y(2)-¥(1])]:
i =
5 -

4| >
Ready
Figure 4-54.

183

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

Now we can graph the first solution y,= 2 and y,= 0 corresponding to z = 1000 in the interval [0,1500] using the
following syntax (see Figure 4-55):

» [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],2000);
»> xlabel ('time t')
»> ylabel ('solution y_1')

-) Figure No. 1 E|E

Fle Edt View jreart Took Wndow Heb
DEEH& A2/ 2RO

2 —

15¢ e 4

Figure 4-55.

To graph the first solution y,= 2 and y,= 0 for another value of the parameter, for example u = 100, in the interval
[0,1500], we use the following syntax (see Figure 4-56):

» [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
» plot (t, y(:,1),"'-");

184

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

<) Figure No. 1 D@@

File Edit Wiew Insert Tools Window Help

D& NA 2/ 2L D

25

Figure 4-56.

EXERCISE 4-11

The Fibonacci sequence {an} is defined by the recurrence law a, = 1,a,=1,a
sequence by a recursive function and calculate a,, a, and a,.

=a__ + a . Represent this

n+1

To generate terms of the Fibonacci sequence we define a recursive function in the M-file fibo.m shown in Figure 4-57.

%) C:\MATLAB6p 1\work\fibo.m Q@@

Fle Edit View Text Debug Breakpoints Web Window

Help

@& @ 2@dw « AH 88 L x|
1 function y=fibo(x) -
2= if x<=1
3= v=1:
4| - else y=feval('fibo',x-1)+feval('fibo',x-2); | |
5|=| end
6 g

| [»
Ready
Figure 4-57.

185

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS
Terms 2, 5 and 20 of the sequence are now calculated using the syntax:
>> [fibo (2), fibo (5), fibo (20)]
ans =

2 8 10946

EXERCISE 4-12

Define the Kronecker delta, which equals 1 if x = 0 and 0 otherwise. Define the modified Kronecker delta function,
whichis 0ifx =0, 1if x> 0 and -1 if x < 0 and graph it. Lastly, define the piecewise function that is equal
to0ifx<-3,x3if-3<x<-2,xif-2<x<2,xif2<x<3and0if 3 <x, and graph it.

The Kronecker delta delta(x) is defined in the M-file delta.m shown in Figure 4-58. The modified Kronecker delta
deltai(x)is defined in the M-file deltal.m shown in Figure 4-59. To define the third function piece1(x) of the
exercise, we create the M-file piece1.m shown in Figure 4-60.

%) C:\AMATLAB6pI1\... E]@

File Edit View Text Debug
Breakpoints wWeb Window Help
DEE&E | 2R v o X
1 function y=delta(x) -
2|-| if x==0
3= ¥=1;
4|—| else y=0;
T [= end
6 -
[}
Ready
Figure 4-58.

186

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

% c:maTLABep ... [[O)X]

File Edit WView Text Debug

Breakpoints web Window Help

DEE&) 2B v | X

function y=deltal(x) -
- if x==

= ¥=0;

elseif x>0 y=1;
- elseif x<0 y=-1;
- end

K I

) h = W b —
|

Ready

Figure 4-59.

“) C:\MATLAB6p1\...

File Edit View Text Debug
Breakpoints Web Window Help
DEE& + H@w | x
1 function y-piecel (x)
2| - if X<=-3
<= y=0;
4| - elseilf -3<x & x<-2
5| - yex*3;
6| = elself -2<=Xx & X<=2
7= yax+2:
8|- elseif 2<x & x<3
9| - ¥=x —
10|- elseif x>=3
11| - v=0:
12| - end LI
« |
Ready
Figure 4-60.

187

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

To graphically represent the modified Kronecker delta on the domain [-10, 10] (and with codomain [- 2, 2]) we
use the following syntax(see Figure 4-61):

»>> fplot ('deltai (x)', [- 20 10 - 2-2])
»> title 'Modified Kronecker Delta'

) Figure No. 1

Ble Edt Vww Jroort Took Window Help
DEEd& " A2/, PO
Modified Kronecker delta

15} g

05¢ 4

15+ 4

TS i & 8 10

Figure 4-61.

To graphically represent the piecewise function on the interval [- 5,5] we use the following syntax (see Figure 4-62):

»> fplot ('piece1r (x)', [- 5 5]);
»» title 'Piecewise function'

188

CHAPTER 4 © MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

) Figure No. 1 E|@|g|

Ele Edt Vww Joert Jook Window Hebp
DSEE& A A/, 290D
i Piecewise function
N .
_///L' T
0
.,5_ -
-10}
=15 F
204
251
W—=% 3 2 4 0 { 2 3 4 5

Figure 4-62.

EXERCISE 4-13

Define a function descriptive(v) which returns the variance and coefficient of variation of the elements of a given
vector v. As an application, find the variance and coefficient of variation of the set of numbers 1, 5, 6, 7 and 9.

Figure 4-63 shows the M-file which defines the function descriptive.

189

CHAPTER 4 MATLAB LANGUAGE: M-FILES, SCRIPTS, FLOW CONTROL AND NUMERICAL ANALYSIS FUNCTIONS

%) C:\MATLAB6p 1\work\descript... D@@

Fle Edit View Text Debug Breakpoints Web

Window Help

DEE& + "Bo - #H B8 x
1 function [variance, cv] = descriptive(v) <
2|= [m,n]=size(v):
3 - if m==1
4| - n=n;
5/-| end
6|—| mean =sum(v)/m;
7|=| variance=sum(v.*2)/m- mean.*2: j |
8|=| cv=sqrtivariance),;mean:
g -

d| I'l—|
Ready
Figure 4-63.

To find the variance and coefficient of variation of the given set of numbers, we use the following syntax:
»» [variance, cv] = descriptive([1 5 6 7 9])
variance =
7.0400
Ccv =

0.4738

190

CHAPTER 5

Numerical Algorithms: Equations,
Derivatives and Integrals

Solving Non-Linear Equations

MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which
play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are
stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or
functions that accept arguments and produces output. The M-files are created using the text editor.

The Fixed Point Method for Solving x = g (x)

The fixed point method solves the equation x = g(x), under certain conditions on the function g, using an iterative
method that begins with an initial value p, (a first approximation to the solution) and defines p, , = g(p,). The fixed
point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation x = g(x).
In practice the iterative process will stop when the absolute or relative error corresponding to two consecutive
iterations is less than a preset value (folerance). The smaller this value, the better the approximation to the solution of
the equation.

This simple iterative method can be implemented using the M-file shown in Figure 5-1.

191

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

fle Edt View Text Debug Breskpoints Web Window Hep

DeE& B AH QR EDE B sl | x|
function [k,p,absoluteerror,P] = fixedpoint (g,p0,tolerance,maximumiterations)
P(1)= p0;

for k=2:maximumiterations
P(k)=feval(g,P(k-1));
absoluteerror=abs (P(k)-P(k-1)):
relativeerror=absoluteerror/ (abs (P (k))+eps=):;

p=P(k):
if (absoluteerror<tolerance) | (relativeerror<tolerance),break;end
end
if k == maximumiterations
disp('maximum number of iterations exceeded')
end
P=p';
4| » |_untitled3 |fixedpoint.m g91.m | gl.m fixedpoint.m|
Ready
Figure 5-1.

As an example we solve the following non-linear equation:
x-2"7"=0.

In order to apply the fixed point algorithm we write the equation in the form x = g(x) as follows:
x-27"=g(x).

We will start by finding an approximate solution which will be the first term p,. To plot the x axis and the curve
defined by the given equation on the same graph we use the following syntax (see Figure 5-2):

» fplot ('[x-2*(-x), o]',[0, 1])

192

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

r ™y
B Figure 1 E@E
File Edit View Insert Tools Desktop Window Help £l

DEde | M| ARRIO9ELL- 2|08 D@

05 T T T r T T T T T

05|]

o Il L 1 L Il 1 1 L

S

Figure 5-2.

The graph shows that one solution is close to x = 0.6. We can take this value as the initial value. We choose
p, = 0.6. If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have

defined the function g(x) in the M-file gI1.m (see Figure 5-3).

Fle Edt View Text Debug Breakpoints Web Window Help

DB & R AH | 28| B Ex
1k -| function g=gl (x) -]
2= g=2" (-x);

3

7] : =

2 fixedpointm % [gl.m

Figure 5-3.

We can now solve the equation using the MATLAB syntax:
>> [k, p] = fixedpoint('g1’',0.6,0.0001,1000)
k =

10

0.6412
193

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

We obtain the solution x = 0.6412 at the 1000th iteration. To check if the solution is approximately correct, we must
verify that g1(0.6412) is close to 0.6412.

>> g1 (0.6412)
ans =
0.6412

Thus we observe that the solution is acceptable.

Newton’s Method for Solving the Equation f (x) =0

Newton’s method (also called the Newton-Raphson method) for solving the equation f(x) = 0, under certain
conditions on f, uses the iteration

X, =%, —f(x.)/ f(x,)

for an initial value x, close to a solution.
The M-file in Figure 5-4 shows a program which solves equations by Newton’s method to a given precision.

4) C:\MATLAB6p 1\workinewton. m (=]
Fle Edit View Text Debug Breakpoints Web Window Help

DeE8& B o 4P X | EDE R Stadc:l'_ﬁ

1 function [res, it]=newton(func,dfunc,x,precis) -
2 %0 is the initial wvalue, precis is the required accuracy

3 $func is the function f and dfunc is its derivative

4/-| 1it=0; x0=x:

5= d=feval {func,x0) /feval (dfunc,x0)

6/|-| while abs(d)>precis

1| - *x1l=x0-d;

8| - it=it+l;

9| - x0=x1;
10| - d=feval (func,x0) /feval (dfunc,x0) ;
11]= end;
12|=| res=x0: =
13
14 _|L|

| >

4Ib| Untitied3 | fixedpointm | g91m | gim newtonm
Ready

Figure 5-4.

As an example we solve the following equation by Newton’s method:

x* —x—sin(x+0.15)=0.

194

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

The function f(x) is defined in the M-file f1.m (see Figure 5-5), and its derivative f'(x) is given in the M-file derfl.m
(see Figure 5-6).

5) C:\MATLAB6p1\work\f1.m
Fle Edt View Text Debug Breaskpoints Web Window Help
DEEE P 2rvo AN a8 466X

1 function f=£1(x): R
2|=| f=x*2-x-sin(x+0.15):
3

d.]
4| » [Untitieg3 | fixedpointm | gatm f1.m [newtonm |
Ready

Figure 5-5.

%) C:\MATLAB6p 1\work\derfi.m [:IEI@

Fle Edit View Text Debug Breskpoints Wep Window Help
DESEE| s | A 8RB0 X

1 function d=derfl(x): A
2|-| d=2%x-l-cos(x+0.15):
3

d|]
«| » [sucesiont.m | untitled3 | fixedpointm | gatm | ortm | new
Ready
Figure 5-6.

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax,
starting with an initial estimate of 1.5:

»» [x,it]=newton('f1', 'derf1',1.5,0.0001)
X =

1.6101

it =

2

»» [x,it]=newton('f1','derf1',1.5,0.000001)
X =

195

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

1.6100

it =

Thus we have obtained the solution x = 1.61 in just 2 iterations for a precision of 0.0001 and in just 3 iterations for
a precision of 0.000001.

Schrider’s Method for Solving the Equation f (x) =0

Schroder’s method, which is similar to Newton’s method, solves the equation f(x) = 0, under certain conditions on f,
via the iteration

Xr+1 :Xr_mf(Xr)/f'(Xr)

for an initial value x, close to a solution, and where m is the order of multiplicity of the solution being sought.
The M-file shown in Figure 5-7 gives the function that solves equations by Schréder’s method to a given precision.

%) C:\MATLAB6p1\work\schroder.m [:]@

File Edit View Text Debug Breakpoints Web Window Help
ba@& - Bo o | MAfH| ax|E%E D% sx

1 function [res, it]=schroder(func,dfunc,m,x,precis) :j
2 $m is the order of multiplicity of the root

3 % is the initial wvalue, precis is the precision
4| - it=0; x0=x:

5| - d=feval {func,x0) /feval (dfunc,x0) ;

6| - vhile abs(d)>precis

= *1=x0-n*d;

8- it=it+l; x0=xl:

gl - d=fewval {func,x0) /feval (dfunc,x0) :

10| - end;

11l |= res=x0:

12

13

14

J | »
<| | fixedpointm | g91.m | dft.m schroderm | f303.m |

Ready

Figure 5-7.

Systems of Non-Linear Equations

As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear
equations using classical iterative numerical methods.
Among a diverse collection of existing methods we will consider the Seidel and Newton-Raphson methods.

196

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

The Seidel Method

The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single
equations.

In the case of a system of two equations x=g,(x,y) and y=g,(x,y) the terms of the iteration are defined as:

P,.,=8,(p,q) and 4, ,=8,(p,4,)-

Similarly, in the case of a system of three equations x=g,(x,y,z),

y=8,(x,y,2) and z=g,(x,y,z) the terms of the iteration are defined as:

Pin=8(Pudords 4,,=8, (P, 1) andr, =g (pq,r.).

The M-file shown in Figure 5-8 gives a function which solves systems of equations using Seidel’s method up to a
specified accuracy.

%) C:\MATLAB6p 1\work\seidel. m*
File Edit View Text Debug Breakpoints Web Window Help

DeEd& - B> AN | BB EDE IR | st x|
1 function [P,1t]= seidel (G,P,tolerance, maximumiterations) -~
g %G is the non-linear to be created in the M-file
4 $P is the initial approximation of the solution
g $it is the number of iterations= needed to find the solution
7| - N=length(P):

8
g|-| for k=l:maximumiterations
10| = K=P:
11
12| = for 3=1:N
13| - A=feval ('G' ,X):
14| = X(3)=A(1):
15| - end
16 absoluteerror=abs (norm(X-P));
:; = relativeerror=absoluteerror/ (norm(X) +eps) ;
= pP=X;
19
20| - iter=k; ;
21| - it (absoluteerror<delta) | (relativeerror<delta)
22| - break
23| - end
24| - end =
25| -
a [

4| » [drim | schroderm | 1303m | 1305m seidelm
Ready

Figure 5-8.

The Newton-Raphson Method

The Newton-Raphson method for solving systems of equations is a generalization of Newton’s method for
single equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations F(X) = 0 is obtained
by generating from an initial approximation P, a sequence of approximations P, which converges to the solution.
Figure 5-9 shows the M-file containing the function which solves systems of equations using the Newton-Raphson
method up to a specified degree of accuracy.

197

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

¥) C:\MATLAB6p 1\work\raphson.m

Fle Edt View Text Debug Breakpoints Web Window Help
DEEEG| DB | AH OB G0 IBDE | sucfem] X
1 function(P, it, absoluteerror]= raphson(F,JF,P,delta,epsilcon, maximumiterations) Al
g $F is the system defined in the M-file F.m
4 3JF is the Jacobian of F defined in the M-file JF.m
5 %P is an initial approximation to the solution
6 %$delta is the tolerance for P
; f$epsilon is the tolerance for F(P)
9 $maximumiterations is the maximum number of iterations
10 %2it is the number of iterations
11|-| Y=feval(F,P):
12
13- for k=l:maximumiterations
14|- J=feval (JF,P);
15|- Q=P=-(J\Y') '
16| - Z=feval (F,Q):
17|- abscluteerrors=norm(Q-P);
18| - relativesrrors abscluteerzor/(norm(Q)+eps):
19|- P=0Q;
20| - Y=2:
21|- itek;
22| - if {abscluzeerror<{delta) | ({zelativeerror<delta)| (abs(Y)<epsilon)
23|- break
24| - end
25|-| end -
26
27
28 s
| | I_‘
4| [seidetm | 6m | gm raphsonm
Ready
Figure 5-9.

As an example we solve the following system of equations by the Newton-Raphson method:

x*-2x-y=-0.5
x*+4y*-4=0

taking as an initial approximation to the solution P = [2 3].
We start by defining the system F(X) = 0 and its Jacobian matrix JF according to the M-files Em and JEm shown in
Figures 5-10 and 5-11.

198

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) C:\MATLAB6p1\work\F. m D@@

File Edit View Text Debug Breakpoints Web Window Help

DeB& +»2=rmo o AH a8 37 x|

function Z=F(X) =
= | =x=X{l): v=X(2):

= Z=zeros(l,2):

Z(1l)=x*2-2%x-y+0.5;

-| Z{2)=x*2+4*y*2-4;

D B Wk =
I

J [
<] » [m0sm | seidetm | 6m | am | raphsonm Fm]_
Ready

Figure 5-10.

5] C:\MATLAB6p1\work\JF.m D@@

File Edit View Text Debug Breskpoints Web Window Help

DEE& »P2movo M 88 &4

1 function W=JF(X)

2| =] x=X{l): y=X(2):

3 -| w=[2*x-2 -1:2%x 8%y]:
4

%

dl i
4| » [m0sm | seisetm | 6m | gm | raphsonm grm ||
Ready

Figure5-11.

Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following
MATLAB syntax:

»» [P,it,absoluteerroxr]=raphson('F','JF',[2 3],0.00001,0.00001,100)
p =

1.9007 0.3112

it =

(o)}

absoluteerror =
8. 8751e-006
The solution obtained in 6 iterations is x = 1.9007, y = 0.3112, with an absolute error of 8.8751e- 006.

199

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

Interpolation Methods

There are many different methods available to find an interpolating polynomial that fits a given set of points in the
best possible way.

Among the most common methods of interpolation, we have Lagrange polynomial interpolation, Newton
polynomial interpolation and Chebyshev approximation.

Lagrange Polynomial Interpolation
The Lagrange interpolating polynomial which passes through the N+1 points (x, y,), k=0,1,..., N, is defined as follows:

P(x)= ZN:ykLN,k(x)

where:

ﬁ(x—xj)

=k
Ly (x)= j: :

H(xk —Xj)

Jj#k

The algorithm for obtaining P and L is easily implemented by the M-file shown in Figure 5-12.

200

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

“) C:\MATLAB6p 1\work\lagran. m*

Fle Edt View Text Debug Breskpoints Web Window Help
DEE& » T8~ AH OB 260D E| suax|m x|

function [C,L]=lagrange(X,Y) ﬁ
%X is the vector of abscissas
$Y is the vector of ordinates
%2C is the wvector of coefiicients of the interpolating polynomial
$L is the coefficient matrix of the polynomial
=| w=length(X):

- nsw=-1;
=| L=zeros(w,w):;

P Qs S O S S S Gt
O =D & Wb = OO0~ &= W —

= for k=l:n+l
- V=1;
= for j=l:in+l
= it k~=3
= V=conv (V,poly(X(3)))/(X(k)-X(3)):
= end
- end
19| - L{k,:)sV:
20(-| end
21
22|-| C=Y=L; —
23
24 1]

d|]
4| »| B03m | 05m | seidetm | 6m | gm | raphsonm | JEm | Fm_ jagranm
Ready

Figure 5-12.

As an example we find the Lagrange interpolating polynomial that passes through the points (2,3), (4,5), (6,5),
(7,6), (8,8), (9,7).
We will simply use the following MATLAB syntax:

»» [F, L] = lagrange([2 4 6 7 8 9],[3 55 6 8 7])
C =

-0.0185 0.4857-4.8125 22.2143-46.6690 38.8000

L =

-0.0006 0.0202 -0.2708 1.7798 -5.7286 7.2000
0.0042 -0.1333 1.6458 -9.6667 26.3500 -25.2000
-0.0208 0.6250 -7.1458 38.3750 -94.8333 84.0000
0.0333 -0.9667 10.6667 -55.3333 132.8000 -115.2000
-0.0208 0.5833 -6.2292 31.4167 -73.7500 63.0000
0.0048 -0.1286 1.3333 -6.5714 15.1619 -12.8000

201

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

We can obtain the symbolic form of the polynomial whose coefficients are given by the vector C by using the
following MATLAB command:

»> pretty(poly2sym(C))

31 5 1093731338075689 4 77 3 311 2 19601
= === X 4 memmeemmeeeeeee- X = ==X + === X = ----- X + 194/5
1680 2251799813685248 16 14 420

Newton Polynomial Interpolation

The Newton interpolating polynomial that passes through the N+ 1 points (x, y,) = (x,, f(x,)), k=0,1,..., N, is defined as
follows:

p(x):do,o +d1,1(x_xo)+d2,2(x_xo)(x_x1)+'"+dN,N(x_xo)(x_x1)"'(x_xx\H)
where:

dk, 1 dk—l,j—l

d; =y d ;= x—d_,

Obtaining the coefficients C of the interpolating polynomial and the divided difference table D is easily done via
the M-file shown in Figure 5-13.

202

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

5) C:\MATLAB6p 1\work\pnewton. m

File Edit View Text Debug Breakpoints Web Window Help
DEE&S| » @B~ | AH | AR DR s x|

function [C,D]l=pnewton (X,Y)
%X contains the abscissas of the interpolation points

%Y contains the ordinates of the interpolation points
3C contains the coefficients of the Newton interpolating polynomial
%D contains the table of divided differences

n=lengchi{x):

- D=zeros(n,n):
= D(:,1)=Y";:

- for jI=2:n
for k=j:n
D(k,3)=(D(k,3-1)-D(k=1,3-1))/(X(k)=-X(k=3+1}):
end
end

C=D(n,n):

T e e e Y
OODO~-NO0&aEWKN=0000~ND 0 & WK

for k=(n-1):-1:1
C=conv(C,poly(X(k))):
m=length(C):
C(m)»Ci{m)+D(k, k):

end

NNNNNN
D h B b =

< 2
4| » | seidetm | 6m | gm | raphsonm | JFm | Fm | lagrange.m pnewton.m
Ready

Figure 5-13.

As an example we apply Newton’s method to the same interpolation problem solved by the Lagrange method
in the previous section. We will use the following MATLAB syntax:

»> [C, D] = pnewton([2 4 6 7 8 9],[3 55 6 8 7])
C =

-0.0185 0.4857 - 4.8125 22.2143 - 46.6690 38.8000

D =

3.0000 0 0 0 0 0
5.0000 1.0000 0 0 0 0
5.0000 0 - 0.2500 0 0 0
6.0000 1.0000 0.3333 0.1167 0 0
8.0000 2.0000 0.5000 0.0417 - 0.0125 0
7.0000 - 1.0000 - 1.5000 - 0.6667 - 0.1417 - 0.0185

203

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS
The interpolating polynomial in symbolic form is calculated as follows:

»> pretty(poly2sym(C))

31 5 17 4 77 3 311 2 19601
- --e- X F - X - -= X+ mmm X - mm-e- X + 194/5
1680 35 16 14 420

Observe that the results obtained by both interpolation methods are similar.

Numerical Derivation Methods

There are various different techniques available for numerical derivation. These are of great importance when
developing algorithms to solve problems involving ordinary or partial differential equations.

Among the most common methods for numerical derivation are derivation using limits, derivation using
extrapolation and derivation using interpolation on N-1 nodes.

Numerical Derivation via Limits
This method consists in building a sequence of numerical approximations to f (x) via the generated sequence:

f(x+107h) - f(x-107"h)

F6)~D, = 2(10%h)

The iterations continue until
|D,.,-D |2|D -D, |or|D -D, |<tolerance. This approach approximates f (x) by D, .
The algorithm to obtain the derivative D is easily implemented by the M-file shown in Figure 5-14.

204

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

5) C:\MATLABG6p 1\work\derivadalim.m*

File Edit View Text Debug Breakpoints Web Window Help
DEE& » 28w ~ AfH Q8| G0 IR % s | x|
; function [L,n)= derivedlim (£,%,tolerance) -
3 kf 1s the n to
4
5
6 s the vector of error bounds
7
8
g9|- maximumiterations =15;
10|-=| h=1:
11| - H(l)=h:
12|-| D(l)=(feval (f,x+h)-feval(f,x-h))/(2%h):
13|=| E(1)=0:
14| - R(l)=0;
15
16| - for n=1:2
17 = h=h/10;
18| - H(n+l)=h;
19| - Din+l)=(feval (f,x+h)-feval (£,x-h})/(2%h);
20| - E(n+l)=abs(D(n+l)-D(n)):
21| - Rin+l)=2*"E(n+l)* (abs (D (n+l))+abs (D (n))+eps) ;
22| - end
23
24|-| n=2:
25
26|-| while({E{n)>E({n+l}})&{R{n)>tolerance })sn< maximumiterations
27| - h=h/10:
28| - Hin+2)=h;
29| - Din+2)=(feval (f,x+h)-feval (f,%x-h))/(2%h) ;
30| - E(n+2)=abs(D(n+2)-D(n+l)):
31| - R(n+2)=2*E(n+2) * (abs (D (n+2))+abs (D (n+1))+eps) ;
32| - n=n+l:
33| - end
34
35| - n=length(D)-1;
36| - L=[H' D' E']: e
37 =
d o
il >| g.m I raphson.m [JF.m] F.m I lagrange.m ‘ pnewton.m derivadalim.m I
Ready
Figure 5-14.

As an example, we approximate the derivative of the function:

f(x)=sin (cos[ln
x

1-5
—

at the point

To begin we define the function fin an M-file named funcion (see Figure 5-15). (Note: we use funcion rather than
function here since the latter is a protected term in MATLAB.)

205

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) C:AMATLAB6p1\work\funcion.m ’;] @g}

File Edit View Text Debug Breakpoints Web Window Help

[=== = B 4fH 88 x|
1 function f=funcionix): =
2| - f=sin(cosil. /x)):

3

l ol
<| | lagrange.m | pnewton.m | derivadalim.m funcion.m |
Ready

Figure 5-15.

The derivative is then given by the following MATLAB command:

» [L, n] = derivedlim ('funcion', (1-sqrt (5)) / 2,0.01)

L =

1.0000 - 0.7448 0
0.1000 - 2.6045 1.8598
0.0100 - 2.6122 0.0077
0.0010 - 2.6122 0.0000
0.0001 - 2.6122 0.0000
n =

4

Thus we see that the approximate derivative is - 2.6122, which can be checked as follows:
»> f = diff ('sin (cos (x))')
f =
cos (cos (x)) * sin (x) / x ~ 2
»» subs (f, (1-sqrt (5)) /7 2).
ans =

-2.6122

206

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

Richardson’s Extrapolation Method

This method involves building numerical approximations to f (x) via the construction of a table of values D(j, k) with
k < j that yield a final solution to the derivative f (x) = D(n, n). The values D(jj, k) form a lower triangular matrix, the
first column of which is defined as:

)= f(x+27R)- f(x-2"h)

D(j,1 -
(J 2)

and the remaining elements are defined by:

)-D(j-1,k-1)

, , D(j, k-1
D(j, =D k-1 PLEDD

(2<k<j)

The corresponding algorithm for D is implemented by the M-file shown in Figure 5-16.

%) C:\MATLAB6p1\work\richardson.m

File Edit View Text Debug Breskpoints Web Window Help
DB & Bo - MAH BB 4 DE RDE st 4| x|
1 function [D.abscﬂuteerrnr.re1at*iveerror.n]-nchudsuﬂ(t.x.delt.u.to'lerance))
2
3 whi
4
5 -
6
7|=| absoluteerrors=l;
8l - relativeerror=1:
9|=| h=l;
10(—| 3=1:
11)= D(l,1)=(feval (£, x+h)-feval (£,x-h})/(2%h);
12
13|-| while relativeerror > tolerance & absoluteerror > delta &3 <12
14|- h=h/2;
15]= D(3j+1,1)=(feval (£, x+h)-feval (£,x-h))/(2%h);
16| - for k=1:3
17| - D(j+1,k+1)=D (3+1,k)+(D (3+1,k)-D(3,k)) /{ (4*k)-1) ;
18|- end
19| - absoluteerror=abs(D(j+1,3+1)-D(3,3)):
20| - relativeerror=2% absoluteerror/{abs(D{j+1,3+1))+abs(D(j,3))+eps):
|- J=3+1;
22|-| end
23
24|-=| [n,n)=size(D): -
25
26 ILI
| fI I 13
4| » | pnewtonm | derivadalimm | funcionm richardson.m
Ready

Figure 5-16.

207

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

As an example, we approximate the derivative of the function:

flx)= sin[cos(ljj
x

at the point 1- J5 .
2

As the M-file that defines the function f has already been defined in the previous section, we can find the
approximate derivative using the MATLAB syntax:

»> [D, relativeerror, absoluteerror, n] = richaxdson ('funcion’,
(1-sqrt(5))/2,0.001,0.001)

D =
-0.7448 0 0 0 0 0
-1.1335 - 1.2631 0 0 0 O
-2.3716 - 2.7843 - 2.8857 0 0 0
-2.5947 - 2.6691 - 2.6614 - 2.6578 0 0
-2.6107 - 2.6160 - 2.6125 - 2.6117 - 2.6115 0
-2.6120 - 2.6124 - 2.6122 - 2.6122 - 2.6122 - 2.6122
relativeerror =
6. 9003e-004
absoluteerror =
2. 6419e-004
n =
6

Thus we get the same result as before when we used the limit method.

Derivation Using Interpolation (n + 1 nodes)

This method consists in building the Newton interpolating polynomial of degree N:
P(x)= a, +al(x_xo)+az(x_xo)(x_x1)+" '+azv(x_x0)(x_x1)' "(x_xN—l)

and numerically approximating f (x,) by P' (x,).
The algorithm for the derivative D is easily implemented by the M-file shown in Figure 5-17.

208

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

¥) C:\MATLAB6p1\workinodos.m E‘@‘@

File Edit View Text Debug Breakpoints Web Window Help
DEE& » 2B« >~ AH 8| 5 DE DL s] x|
1 function [A,df]=nodes(X,Y) -
2 - . o -
3 o .'i.-
4 N
5
6 |
7|=| A=Y:
8|-| N=length(X):
9
10|-| £for j=2:N
1|= for k=N:-1:3
1= Afk)=(A(k)-A(k-1))/(X(k)-X({k-3+1)):
15 = end
14/-| end
15
16|-| =x=0=X{l):
17|-| df=A(2);:
18/-| prod=1l;
19/-| nl=length(A)-1:
20
2= for k=2:nl
22| - prod=prod® (x0-X(k)):
23| - df=df+prod*A(k+1):
24| - end —
25
26 ILI
<| |>
¢| » [9Fm | Fm | lagrangem | pnewtonm | derivadalimm | funcionm | richardsonm nodes.m ||
Ready

Figure 5-17.

As an example, we approximate the derivative of the function:
. 1

f(x)= s1n[cos(—D
X

As the M-file that defines the function f has already been constructed in the previous section, we can calculate
the approximate derivative using the MATLAB command:

1-5
2

at the point

»> [A, df] = nodes([2 46 7 8 9],[3 556 8 7])
A =
3.0000 1.0000 - 0.2500 0.1167 - 0.0125 - 0.0185

df =
-1.4952

209

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

Numerical Integration Methods

Given the difficulty of obtaining an exact primitive for many functions, numerical integration methods are especially
important. There are many different ways to numerically approximate definite integrals, among them the trapezium
method, Simpson’s method and Romberg’s method (all implemented in MATLAB’s Basic module).

The Trapezium Method

The trapezium method for numerical integration has two variants: the trapezoidal rule and the recursive trapezoidal rule.
The trapezoidal rule approximates the definite integral of the function f(x) between a and b as follows:

I} 7Gx =2 0r @)+ f)+ Y 1)

calculating f(x) at equidistant points x, = a+kh, k=0,1,..., Mwhere x;=a and x, = b.
The trapezoidal rule is implemented by the M-file shown in Figure 5-18.

%) D:\matlabR12\work\traprl.m* (=13

File Edit View Text Debug Breakpoints Web Window Help
DR & © M 88 x|
1 function s= trapezoidalrule(f,a,b,M) Al
2
3|-| h=(b-a)/m:
4| - s=0;
5
B|=| for k=l:(M-1)
7 - x=a+h*k ;
8| - s=s+feval (£,x):
9| - end
10
11| - s=h*(feval (f,a)+feval (f,b))/2+h*s;
12
13 i
4| [
Ready
Figure 5-18.

The recursive trapezoidal rule considers the points x,= a+kh, k=0,1,..., M, where x,=a and x, = b, dividing the
interval [a, b] into 2= M subintervals of the same size h =(b-a)/2J. We then consider the following recursive formula:

T(O)=§(f(a)+f(b))

TUJ-1)

=" 003)

and the integral of the function f(x) between a and b can be calculated as:
b h 2
INIGLESINVICHENICE)
k=1

210

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

using the trapezoidal rule as the number of sub-intervals [a, b] increases, taking at the J-th iteration a set of
2J+ 1 equally spaced points.
The recursive trapezoidal rule is implemented via the M-file shown in Figure 5-19.

%) D:\matlabR1 2\work\rctrap.m*

File Edit WView Text Debug Breakpoints Web Window Help
DEE&S| s2Rox AN 2R|2D X
1 function T= recursivetrapezcida’ (£,a,b,n) -
2
3= H=1;
4-| h=b-a;
5|=| T=zeros{l,n+l):
6| - T(l)=h*(feval(£f,a)+feval (f,b))/2;
7
8|-| for j=l:n
9| - M=27M;
10| - h=h/2;
il = 5=0;
12| - for k=1:M/2
13- x=a+h* (2%k-1);
14| - s=s+feval (£,x);
15| - end
16| - T(3+1)=T(3) /2+h*s;
17|]-| end .
18 =
| | i3
| | b ’recursivetrapezcidal .m rctrap.m
Ready
Figure 5-19.

As an example, we calculate the following integral using 100 iterations of the recursive trapezoidal rule:

We start by defining the integrand by means of the M-file integrandl.m shown in Figure 5-20.

211

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) D:\matlabR1 2\work\integrando1.m Q@@
File Edt View Text Debug Breakpoints Web Window Help
Dz & 2o o M| 8 E X
1 function F= integrandl (x): :
21= F=1/(x*2+1/10);
3
4
5 =
4| | i)
|.- |”ecu|_'s1'».retrapezrda1m integrandi.m I
Ready
Figure 5-20.

We then calculate the requested integral as follows:
>> recursivetrapezoidal('integrand1',0,2,14)
ans =
Columns 1 through 4
10.24390243902439 6.03104212860310 4.65685845031979 4.47367657743630
Columns 5 through 8
4.47109102437123 4.47132194954670 4.47138003053334 4.47139455324593
Columns 9 through 12
4.47139818407829 4.47139909179602 4.47139931872606 4.47139937545860
Columns 13 through 15
4.47139938964175 4.47139939318754 4.47139939407398

This shows that after 14 iterations an accurate value for the integral is 4.47139939407398.
We calculate the same integral using the trapezoidal rule, using M = 14, using the following MATLAB command:

»> trapezoidalrule('integrand1',0,2,14)

ans =
4.47100414648074

The result is now the less accurate 4.47100414648074.

212

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

Simpson’s Method

Simpson’s method for numerical integration is generally considered in two variants: the simple Simpson’s rule and
the composite Simpson's rule.

Simpson'’s simple approximation of the definite integral of the function f{x) between the points a and b is the
following:

a+b
2

J! 7Gx = 2@+ fb)+af @)

This can be implemented using the M-file shown in Figure 5-21.

%) D:\matlabR12\work\simpsonsimple.m B@@

File Edit View Text Debug Breakpoints Web Window Help

DR & Boo | MAH| 8|44
function Z= simplesimpson(f,a,b, tolerance) -

=| h=(b-a)/2;

= C=zeros(l,3):

C=feval (f,[a (a+b)/2 b]):
-| S=h*(C(1)+4%C(2)+C(3))/3:

D00~ O h &= LI b =
]

= 52=5;

- tolerancel = tolerance ;

- absoluteerror=tolerance ;
10
11|=| 2Z=[a b § 52 absoluteerror tolerancel]’
12

13 =
«| | Ll_l
4| » | compositesimpson|m simplesimpson.m I

Ready

Figure 5-21.

The composite Simpson's rule approximates the definite integral of the function f(x) between points a and b as follows:

J! rax=20r@+ ro)+ 25 pe)+ Y fe)

calculating f(x) at equidistant points x, = a+kh, k=0, 1,...,, 2M, where x,=a and x,, = b.
The composite Simpson’s rule is implemented using the M-file shown in Figure 5-22.

213

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) D:umatlabR1 2\workisimpsoncompuesta.m
File Edit VYiew Text Debug Breakpoints Web Window Help
DER& Eoc | MH|BB|EDEx
1 function s=compositesimpson(f,a,b,M)
2
3 h=(b-a)/({2*H):
4= sl=0;
5|-| s2=0:
6
T|= for k=1:M
8- x=a+h* (2*k-1);
9|- sl=sl+feval (£,x):
10|=| end
11|-| for k=1:(H-1)
12| = x=a+h*2%k;
13]= 32=32+feval (f,x):
14| - end
15
16|- s=h*(feval (f,a)+feval (£,b)+4%21+2%382) /3;
17
18
4| i
Figure 5-22,

As an example, we calculate the following integral by the composite Simpson's rule taking M = 14:

We use the following syntax:
>>compositesimpson('integrand1',0,2,14)
ans =

4.47139628125498

Next we calculate the same integral using the simple Simpson’s rule:
»> Z=simplesimpson('integrand2',0,2,0.0001)
7 =
Columns 1 through 4
0 2.00000000000000 4.62675535846268 4.62675535846268
Columns 5 through 6

0.00010000000000 0.00010000000000

214

As we see, the simple Simpson’s rule is less accurate than the composite rule.
In this case, we have previously defined the integrand in the M-file named integrand2.m (see Figure 5-23).

%) D:\matlabR12\work\integrando2.m Q@@

File Edit View Text Debug Breakpoints Web Window Help

beE &

1
2|-| F=l./(x.*2+1/10);
3

4

i

9]

function F=integrand2(x):

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

éH 88 x|

L

-

Figure 5-23.

Ordinary Differential Equations

Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different

methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include,
among others, Euler’s method, Heun'’s method, the Taylor series method, the Runge-Kutta method (implemented in

MATLAB's Basic module), the Adams-Bashforth-Moulton method, Milne’s method and Hamming’s method.

Euler’s Method

Suppose we want to solve the differential equation y '=(t, y), y(a) =y, on the interval [a, b]. We divide the interval

[a, b] into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h= (b-a) /M. Euler’s

method then finds the solution of the differential equation iteratively by calculating y, , =y +hf(t,, y,), k=0,1, ..., M-1.
Euler’s method is implemented using the M-file shown in Figure 5-24.

215

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) D:\matlabR1 2\workeuler.m* E]@

File Edit View Text Debug Breakpoints Web Window Help
D=8 & Boc | AH| Q8| EDE P
1 function E=euler(f,a,b,va,M) -
2
3
4
5
6
7
8| - h=(b-a) /M
9|-| T=zeros(l,M+l):
10|=| Y=zeros(l,M+l):
11|-| T=a:h:b;
12|=| ¥Y(l)=va:
13
14|-| €£for j=1:M
15| - Y(3+1)=Y(3)+h*feval (£, T(3),Y{i)):
16| - end
17
18/-| E=[T' ¥'J: —
19
A
4 of

Figure 5-24.

Heun’s Method

Suppose we want to solve the differential equation y '=f(t, y), y(a) =y,, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h=(b-a) /M.
Heun'’s method then finds the solution of the differential equation iteratively by calculatingy, , =y + h(f(t, y) +
f&, v+, ¥))/2,k=0,1,.., M-1.

Heun’s method is implemented using the M-file shown in Figure 5-25.

216

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

8 D:imatlabR1 2yworkiheun.m

File Edit View Text Debug Breakpoints Web Window Help
DEe@B& @+ @B« #H af x|
1 function H=heun(f,a,b,ya,M) =
2
3|-| h=ib-a)/M;
4|-| T=zeros(l,M+1l):
a|=| Y=zeros(l,M+l):
B|-| T=a:h:b;
= Yily=va:
8- for j=1:M
9| - kl=feval (£,T(3),T(i));:
10| - k2=feval (£, T(i+l),¥(3)+h*kl);
11|- T{3+1)=Y(j)+(h/2)* (k1+k2) ;
12|- end
13 =
14[-| H=[T' ¥']:
15 7
4 | »
il | simpsonsimple.m euler.m heun.m I
Ready
Figure 5-25.

The Taylor Series Method

Suppose we want to solve the differential equation y’=f(t, y), y(a) =y,, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a+kh, k=0,1,..., M, h=(b-a) /M.
The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by
evaluating y’, y”, y” and y"” to give the 4th order Taylor series for y at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 5-26.

nn

217

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

%) D:\matlabR1 2\work\taylor.m

File Edit Yiew Text Debug Breakpoints Web Window Help
DR & Bo o M4H| R BEDE RS x|
1 function T4=taylor (df,a,b,ya, M) =
2
3 % df=[y' y'' ¥''' y''''] is the string 'df’
4 % T4=[T' Y']
5
B|=| h=(b-a)/M:
7= T=zeros(l,M+1);
8|-| Y=zeros{l,M+l):
9/=| T=a:h:b;
10|-| Y(l)=ya:
11
12|-| tor j=1:M
13- D=feval (df,T(3),Y(3)):
14| - T(3+1)=Y({3)+h*(D(1)+h* (D(2) /2+h* (D (3) /6+h*D(4) /24))):
15|=| end
16
17|=| Ta=[T* ¥'3: B
18 |
« | »f
Figure 5-26.

As an example we solve the differential equation y'(#) = (¢ - y) / 2 on the interval [0,3], with y(0) = 1, using Euler’s
method, Heun’s method and by the Taylor series method.
We will begin by defining the function f(#, y) via the M-file shown in Figure 5-27.

%) D:AmatlabR1 2\workidif1.m M=

File Edit Yiew Text Debug Breakpoints Web Window Help
DSEES + =2eo - fH|8Rx
1 function f£=difl(t,¥v) -
2
3-| f=(t-y)/a:
4 v
4| | »
4| bl eulerm I heun.m difl .m |
Ready
Figure 5-27.

The solution of the equation using Euler’s method in 100 steps is calculated as follows:
»» E = euler('dif1',0,3,1,100)
E =

0 1.00000000000000
0.03000000000000 0.98500000000000

218

.06000000000000
.09000000000000
.12000000000000
.15000000000000
.18000000000000

QO O O OO

.85000000000000
.88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

W NNNNN .

This solution can be graphed as follows (see Figure 5-28):

»» plot (E (:,2))

~) Figure No. 1
File Edit Wew Insert Tools ‘Window Help

D& A2/ 2P0

0.97067500000000
0.95701487500000
0.94400965187500
0.93164950709688
0.91992476449042

1.56377799005910
1.58307132020821
1.60252525040509
1.62213737164901
1.64190531107428
1.66182673140816

CHAPTER 5

NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

09r \

08 v '
0

120

Figure 5-28.

219

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

The solution of the equation by Heun’s method in 100 steps is calculated as follows:

»> H = heun('dif1',0,3,1,100)

H

0 1.00000000000000

0.
.06000000000000
.09000000000000
.12000000000000

S © O

w NN DNN

03000000000000

. 88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

The solution using the Taylor series method requires the previously defined function df=[y'y"” y"’y""] using the

0.98533750000000
0.97133991296875
0.95799734001443
0.94530002961496

1.59082209379464
1.61023972987327
1.62981491089478
1.64954529140884
1.66942856088299

M-file shown in Figure 5-29.

%) D:umatlabR12\workidf.m
File Edit View Text Debug Breakpoints Web Window Help

D=E& L] ¢ fr x|
1 function £=df£(t,¥) =
2
3= E=[({t-¥) /2, (2-t+y)/4, (-2+t-¥)/8, (2-t+y)/l€6];]
& =

< | i
4| | euler.m] heun.m dfm
Ready
Figure 5-29.

The differential equation is solved by the Taylor series method via the command:
»» T = taylox('df’',o0,3,1,100)

T =

0 1.00000000000000

0.
0.06000000000000
0.

0.12000000000000

W NNNN .

03000000000000

09000000000000

.88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

220

0.98533581882813
0.97133660068283
0.95799244555443
0.94529360082516

.61020109213866
.62977645599332
.64950702246046
.66939048087422

R R R KRR

.59078327648360

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

EXERCISE 5-1

Solve the following non-linear equation using the fixed point iterative method:
x =cos(sin(x)).

We will start by finding an approximate solution to the equation, which we will use as the initial value p,. To do this
we show the x axis and the curve y=x-cos(sin(x)) on the same graph (Figure 5-30) by using the following command:

»> fplot ([x-cos (sin (x)), o], [- 2, 2])

} Figure No. 1 E“Elz]

File Edit WView Insert Tocols Window Help
DS K A A s 200

15
ik P
D5 - /' -

0
o5} e 7

gl - i
15} /__/

o |

25L7 —

-3 L 1 L 1 L L 1
-2 -1.5 -1 -0.5 u] 0.5 1 15 2

Figure 5-30.

The graph indicates that there is a solution close to x = 1, which is the value that we shall take as our initial
approximation to the solution, i.e. p, = 1. If we consider a tolerance of 0.0001 for a maximum number of 100
iterations, we can solve the problem once we have defined the function g(x) =cos(sin(x) via the M-file g97.m shown
in Figure 5-31.

221

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

5] C:\MATLAB6p1\work\g91.m

Fle Edit ‘iew Text Debug Breskpoints Web Window Help

D&) @ H aR x|
1 function g=g91l(x); =
2|-| g=cosi(sin(x)):

3

| [>]
4| » [sucesiont.m | untiteda | puntofiom gar.m |

Ready

Figure 5-31.

We can now solve the equation using the MATLAB command:
>> [k, p, absoluteerror, P]=fixedpoint('g91’',1,0.0001,1000)
k =

13

0.7682
absoluteerror =
6. 3361e-005

P =

.0000
.6664
.8150
.7467
.7781
.7636
.7703
.7672
.7686
.7680
.7683
. 7681
.7682

[eleelelelelellele e e R e RN

The solution is x = 0.7682, which has been found in 13 iterations with an absolute error of 6.3361¢6- 005. Thus,
the convergence to the solution is particularly fast.

222

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

EXERCISE 5-2

Using Newton’s method calculate the root of the equation x° - 10x% + 29 x - 20 = 0 close to the point
x =7 with an accuracy of 0.00005. Repeat the same calculation but with an accuracy of 0.0005.

We define the function f(x) =x° - 10x% + 29x - 20 and its derivative via the M-files named f302.m and f303.m
shown in Figures 5-32 and 5-33.

¥ C:\MATLAB6p1iwork\f302.m ([=]=d
File Edit Wiew Text Debug Breakpoints Web Window Help
DB & ¢ @B o | M FH | 8| E x|
1 function F=£302(x) :
2(=| F=x.+3-10.0%x.+2+29.0%x-20.0;
=) =
<| I e I_
4| [puntefiiom | gotm | oftm | newtonm r0zm |
Ready
Figure 5-32.

¥l C:\MATLAB6p1\work\f303.m
File Edit Wview Text Debug Breakpoints Web Window Help

1 function F=£303(x): -
2(=| F=3"x.*2-20%x+29;
| =
2 I
4| » | puntofiom | g81m | dfim | newtonm fapam 17
Ready
Figure 5-33.

To run the program that solves the equation, type:
»> [x, it]=newton('f302','f303',7,.00005)
X =

5.0000

it =

223

CHAPTER 5 NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

In 6 iterations and with an accuracy of 0.00005 the solution x = 5 has been obtained. In 5 iterations and with an
accuracy of 0.0005 we get the solution x = 5.0002:

»» [x, it] = newton('f302','f303',7,.0005)

EXERCISE 5-3

Write a program that calculates a root with multiplicity 2 of the equation (¢ - X? = 0 close to the point x = -2 to
an accuracy of 0.00005.

We define the function f(x)=(e* - x)? and its derivative via the M-files f304.m and f305.m shown in
Figures 5-34 and 5-35:

%) C:\MATLAB6p 1\work\f304. m - B8X

File Edit View Text Debug Breakpoints wWeb Window Help
(= = =) L@ e oo | | B 0 xd
1 function F=£304(x): =
2| - F=(exp(-xX)-x)."2;
3 I
HE Hm
4| b| puntofijo.m g91.m] dfl.m] schroder.m an3.m 30
Ready
Figure 5-34.

B) C:\MATLAB&p1\warkf305. m m@@

File Edit WView Text Debug Breakpoints Web Window Help

DS ES Be o @AH BB DD X
1 function F=£305(x): -]
2= F=2.0% (exp(-®)-%X).*(-exp(-x)-1):

3
4 I
d o]
| g9im | ofim | schroderm | 303m f3p5m |
Ready
Figure 5-35.

224

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

We solve the equation using Schroder’s method. To run the program we enter the command:
»> [x,it]=schroder('f304','f305',2,-2,.00005)

X =

0.5671

it =

5

In 5 iterations we have found the solution x = 0.56715.

EXERCISE 5-4

Approximate the derivative of the function

f(x)= tan[cos{\/g;sm(x)]}

+x°

at the point 1_3\/5 .

To begin we define the function fin the M-file funcion1.m shown in Figure 5-36.

2} D:\matlabR1 2\workMuncion1.m Q@@
File Edit Wew Text Debug Breakpoints “Web ‘Window Help
== e & Fr &K x|
1 function f=funcionl(x) =
2
3| - f=tan(cosi(sgqro(s)+sin(=))/ (1+x*Z2))); —
4 _
| [
<4|» [_minem | hammina.m | dift.m funciont.m |
Ready
Figure 5-36.

The derivative can be found using the method of numerical derivation with an accuracy of 0.0001 via the
following MATLAB command:

»» [L, n] = derivedlim ('funcion1', (1 + sqrt (5)) / 3,0.0001)

L =

1.00000000000000 0.94450896913313 0
0.10000000000000 1.22912035588668 0.28461138675355
0.01000000000000 1.22860294102802 0.00051741485866

225

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

0.00100000000000 1.22859747858110 0.00000546244691
0.00010000000000 1.22859742392997 0.00000005465113

4

We see that the value of the derivative is approximated by 1.22859742392997.

Using Richardson’s method, the derivative is calculated as follows:
»> [D, absoluteerror, relativeerror, n] = ('funcioni’ richardson,(1+sqrt(5))/3,0.0001,0.0001)
D =

Columns 1 through 4

0.94450896913313 0 0 0
1.22047776163545 1.31246735913623 0 0
1.23085024935646 1.23430774526347 1.22909710433862 0

1.22938849854454 1.22890124827389 1.22854081514126 1.22853198515400
1.22880865382036 1.22861537224563 1.22859631384374 1.22859719477553

Column 5

O © © O

1.22859745049954

absoluteerror =

6. 546534553897310e-005

relativeerror =

5. 328603742973844e-005

226

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

EXERCISE 5-5

Approximate the following integral:

—

23”tan[cos[\/§+SiI:(x)D dx.

1+x

We can use the composite Simpson’s rule with M=100 using the following command:
»> s = compositesimpson(’function1’,1,2*pi/3,100)

s =

0.68600990924332

If we use the trapezoidal rule instead, we get the following result:
»» s = trapezoidalrule('function1',1,2*pi/3,100)
S =

0.68600381840334

EXERCISE 5-6

Find an approximate solution of the following differential equation in the interval [0, 0.8]:
y'=t'+y* y(0)=1.

We start by defining the function 1(t, j) via the M-file in Figure 5-37.

%) D:\matlabR1 2\workidif2.m
File Edit Wew Text Debug Ereakpoints ‘Web Window Help

LezEE) 4 fr &% x
1 function f£=dif2(t,¥v)
2
3= f=t 24+y+2;
4
| I
4| | milne.m | hamming.m I dif1.m dif2.m |
Ready
Figure 5-37.

227

CHAPTER 5 © NUMERICAL ALGORITHMS: EQUATIONS, DERIVATIVES AND INTEGRALS

We then solve the differential equation by Euler’s method, dividing the interval into 20 subintervals using the

following command:

»> E = euler('dif2',0,0.8,1,20)

[eleelelelelelele e e lNe e e lolole ool ol B

The solution can be graphed as follows (see Figure 5-38):

1.00000000000000

.04000000000000 1
.08000000000000 1
.12000000000000 1
.16000000000000 1
.20000000000000 1
.24000000000000 1
.28000000000000 1
.32000000000000 1
.36000000000000 1
.40000000000000 1
.44000000000000 1.
.48000000000000 1
.52000000000000 2
.56000000000000 2
.60000000000000 2
.64000000000000 2
.68000000000000 2
. 72000000000000 3
. 76000000000000 3
.80000000000000 4

»> plot (E (:,2))

J Figure Mo. 1 E]@IEJ

Insert Tools Window Help
DEEH& k A~ 200

File Edit ‘iew

4.5

.04000000000000
.08332800000000
.13052798222336
.18222772296696
.23915821852503
.30217874214655
.37230952120649
.45077485808625
.53906076564045
.63899308725380

75284502085643

.88348764754208
.03460467627982
.21100532382941
.41909110550949
.66757117657970
.96859261586445
-33959030062305
.80644083566367
.40910450907999

4

3.5 -

3

25

~1(8

Figure 5-38.

228

MATLAB Programming for
Numerical Analysis

César Pérez Lépez

Apress-

MATLAB Programming for Numerical Analysis
Copyright © 2014 by César Pérez Lopez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0296-8
ISBN-13 (electronic): 978-1-4842-0295-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Dominic Shakeshaft

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano

Copy Editor: Barnaby Sheppard

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.f

For information on translations, please e-mail rights@apress.com, or visitwww.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents

About the AUtROrccccsiimmsis s ———————_————————— ix
Chapter 1: The MATLAB Environmentcccuvcemmmnnssmnnmmsssssnnmmsssssssssssssssssssssssssssssssssssssssans 1
Starting MATLAB on Windows. The MATLAB working environmentccccoeevevereessensessessensenns 1

The MATLAB Command WINAOW ..o 2
Escape and exit to DOS environment COMMANUS.........cccocceiiennennc e r e re e nes 9
Preferences for the Command WiNdow ... 10
The Command HiSTOry WINUOW...........coeiiircrrcnere e a s s s e n e s e s n e 17
The Launch Pad WINAOW ... 18
The Current DireCtory WINAOW..........cccoicieeierrrcrecre e s s s se s e b e b e e e p e p e e 19
TRE NEIP DIOWSEE ...ttt s sa e e e s e neeennes 22
The WOrKSPACE WINTAOW........cceieereererieeseerersessessessessessassassasssssasssssassenes 22
The Editor and Debugger for M-fileSccvrimrrennnmnnnmiesnesessseses s ssesssssssssssssssssssnes 24
HEIP iN MATLABoo e se s se s e s e s s se s e s sn s e e s e a e e sn s e s e s e s s n e e nnnnnnnnnnnnnsannnns 27
Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions 29
VarIADIES.....cvcct it —————————————— 29
VECTOr VANIADIES ... —————————————— 30
1)1 T 0] 33
Character VariablEs...... ..o 38
NUMDBEIS ... ————— 41
01T OO SRSRRRTSRSN 44
Functions of integers and diViSiDIlity..........cccucrrrrenienncrrce e e n e 45
AREINALIVE DASES....c.crcriiiiiiiiii s 46
REAI NUMDELS ... 47

vi

CONTENTS

Functions With real @rgUmEeNTS.............ccorieceree e 49
COMPIEX NUMDELS. ...ttt e et R e e e e A e A e e R e e Re e e Re s A e e R et e Re e e aenenaenenanns 52
Functions with COMPIEX @rGUMENLS ... p s 52
Elementary functions that support complex vector arguments...........cccceerernvennnennesesesesse s sessesessesesaens 54
Elementary functions that support complex matrix arguments ... 57
RANAOM NUMDEIS ...t 60
00 TS T 10 OSSR 62
ArthMETIC OPEIATOIS....covivcceeree e e e e R e e e e e s Re e e e naannnnnes 62
Relational OPEIALOIScccveeeeerrrriesirrrrs e e a s re e r e e s e se e e s Re e e s nae e e e npnnn s 65
[T oz L0 0T £ 0] £ PSR TTRPR 66
LI To o7z L {17 e (0] 3PP 66

Chapter 3: MATLAB Language: Development Environment Features..........cccnnnnneeennnnnnnn 83

General PUrpoSe COMMANGS.......coccvererererererse e ssessessessesassasssesasssesaesassssssssssssssssssssssssssasssssnns 83
Commands that Handle Variables in the WOrKSPACEccovrrrererrrrseseserssseesesssssssessssssssessssssssssssssssssssssssssenes 83
Commands that Work with Files in the Operational ENVironmentcccoveceennniencnnnescsessssesesessssesesessssens 87
Commands that HaNdIe FUNCHIONS...........coorrrrrrcrrrrcr e es 90
Commands that Control the Command WINUOWc.coceererrrererererrerereseseresenes 96
Start and EXit COMMANGSc.cucuiurrececeeeeeeee e e e e 97

File Input/Output COMMANS.........ccoeeiieercresrc e r e s e 97
0pening and ClIOSING FIlEScccverererererereressersssersesessessssesassesassessssessessssssessessssessssessssssssssssessssessssessssessssasassansens 99
Reading and Writing Bin@ry FIleS........oouviiiririninri s sse s ssesas e ssssssssesasssssassasssssssssssassasssnses 100
Reading and Writing Formatted ASCI TEXE FIlES......ccvcrrrererererereressersesersesessesesessssessssesssssssessssesssesssssssenansens 104
Control Over the File POSIION ... sssens 107
Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats..........cccecveevunuene 109

Sound Processing FUNCLIONSccceeiirirceree e sn s e s sn s sn s snssnesnssns e snennns 115

Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and
Numerical Analysis FUNCLIONS.........ccccuunnssemmmmmmnmssmsssssssssssssssssssssssssssnsssssssssssssssssssssnnssss 121

MATLAB and Programming..........cueceesesessssessessssessssesssnnes 121
QLTI Ll =0] (0 OO 121
RS T 10 PSP O TSR 125

CONTENTS

Functions and M-files. Eval @nd FEVal...........c.cocovrnnnnnnnnnsssssssss s 128
Local and GIoDbal VariabIEs...........cccuvrririnininininsninisssse s 131
D1 1 1L O 133
Ordinary Differential Equations with Boundary Conditions............cooeeerneienernnnesererseeses e 161
Chapter 5: Numerical Algorithms: Equations, Derivatives and Integralsccoccenneins 191
Solving Non-Linear EQUALIONScccceieeiercersersie e ses s s sns e sn s sns s snssnssnnnnns 191
The Fixed Point Method fOr SOIVING X = g (X).ceceererererereerererssesesesssssesessssesesessssssesessssssssesssssssssssssssssssssssssens 191
Newton’s Method for Solving the Equation f (X) =0.........ccceerreiennncrcrre s 194
Schrider’s Method for Solving the Equation f (X) =0........cccceeeeeieieiinssssssss s ens 196
Systems of Non-Linear EQUALIONScccccererrenrsserensrsessssessesessessssessessssesssssssessssssssssssesssssssens 196
THE SEIARI MELNOM. ... e 197
The Newton—Raphson MEhOd ... 197
Interpolation MEthods ... s 200
Lagrange Polynomial INterpolation............coviierininincrsrse e sr s sa e nn s 200
Newton Polynomial INterpolation...........oc i sr e sa e e r s 202
Numerical Derivation Methods.........c.ccevcrvrrirrerierre e s sae e sae e sneens 204
Numerical Derivation via LIMItS.........c.covrnrnnnnnnsssssssssss s sesasees 204
Richardson’s Extrapolation MEthod ... e sa e 207
Derivation Using Interpolation (N + 1 NOAES).....c..cececriririeicririrccrere e 208
Numerical Integration Methods...........ccccovereciicnniresrerr e 210
The Trapezitm MELNOMcov e p s esp e e e ae e e e s 210
SIMPSON’S METNOM ... e R e e e R e e e R e e e e nnnns 213
Ordinary Differential EQUAtIONSccceverererern s sesses e sassassssssssasssssssssssassssssssasssssasses 215
EUIEI’S MENOM. ... ————— 215
HEUN’S MELNOM. ..o —————— 216
The Taylor SEriES MELNOMccveverererere e re e rre e ra e s e a e e sa e sesaesesae s s e e sa e e sae e saesasaesa e e sae e sannnnan 217

vii

About the Author

César Pérez LOpez is a Professor at the Department of Statistics and Operations Research at the University of Madrid.
César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which
belongs to the Superior Systems and Information Technology Department of the Spanish Government.

César also currently works at the Institute for Fiscal Studies in Madrid.

ix

Coming Soon

e MATLAB Differential Equations, 978-1-4842-0311-8

e MATLAB Control Systems Engineering, 978-1-4842-0290-6

e MATLAB Linear Algebra, 978-1-4842-0323-1

e MATLAB Differential and Integral Calculus, 978-1-4842-0305-7
e MATLAB Matrix Algebra, 978-1-4842-0308-8

Xi

	Contents at a Glance
	Contents
	About the Author
	Chapter 1: The MATLAB Environment
	Starting MATLAB on Windows. The MATLAB working environment
	The MATLAB Command Window
	Escape and exit to DOS environment commands
	Preferences for the Command Window
	The Command History window
	The Launch Pad window
	The Current Directory window
	The help browser
	The Workspace window

	The Editor and Debugger for M-files
	Help in MATLAB

	Chapter 2: MATLAB Language: Variables, Numbers, Operators and Functions
	Variables
	Vector variables
	Matrix variables
	Character variables

	Numbers
	Integers
	Functions of integers and divisibility
	Alternative bases
	Real numbers
	Functions with real arguments
	Trigonometric functions
	Hyperbolic functions
	Exponential and logarithmic functions
	Numeric variable-specific functions

	Complex numbers
	Functions with complex arguments
	Trigonometric functions
	Hyperbolic functions
	Exponential and logarithmic functions
	Specific functions for the real and imaginary part
	Specific functions for complex numbers

	Elementary functions that support complex vector arguments
	Elementary functions that support complex matrix arguments
	Random numbers

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	Logical functions

	Chapter 3: Matlab Language: Development Environment Features
	General Purpose Commands
	Commands that Handle Variables in the Workspace
	Commands that Work with Files in the Operational Environment
	Commands that Handle Functions
	Commands that Control the Command Window
	Start and Exit Commands

	File Input/Output Commands
	Opening and Closing Files
	Reading and Writing Binary Files
	Reading and Writing Formatted ASCII Text Files
	Control Over the File Position
	Exporting and Importing Data to Lotus 123 and Delimited ASCII String and Graphic Formats

	Sound Processing Functions

	Chapter 4: MATLAB Language: M-Files, Scripts, Flow Control and Numerical Analysis Functions
	MATLAB and Programming
	The Text Editor
	Scripts
	Functions and M-files. Eval and Feval
	Local and Global Variables
	Data Types
	Flow Control: FOR Loops, WHILE and IF ELSEIF
	FOR Loops
	WHILE Loops
	IF ELSEIF ELSE END Loops
	Switch and Case
	Continue
	Break
	Try... Catch
	Return
	Subfunctions
	Commands in M-files
	Functions Relating to Arrays of Cells
	Multidimensional Array Functions
	Numerical Analysis Methods in MATLAB
	Zeros of Functions and Optimization
	Numerical Integration
	Numerical Differentiation
	Approximate Solution of Differential Equations
	Ordinary Differential Equations with Initial Values

	Ordinary Differential Equations with Boundary Conditions
	Partial Differential Equations

	Chapter 5: Numerical Algorithms: Equations, Derivatives and Integrals
	Solving Non-Linear Equations
	The Fixed Point Method for Solving x = g (x)
	Newton’s Method for Solving the Equation f (x) =0
	Schröder’s Method for Solving the Equation f (x) =0

	Systems of Non-Linear Equations
	The Seidel Method
	The Newton–Raphson Method

	Interpolation Methods
	Lagrange Polynomial Interpolation
	Newton Polynomial Interpolation

	Numerical Derivation Methods
	Numerical Derivation via Limits
	Richardson’s Extrapolation Method
	Derivation Using Interpolation (n + 1 nodes)

	Numerical Integration Methods
	The Trapezium Method
	Simpson’s Method

	Ordinary Differential Equations
	Euler’s Method
	Heun’s Method
	The Taylor Series Method

