
preP
res

st

Micr
os

of

Published with the authorization of Microsoft Corporation by:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, California 95472

With Microsoft prePress, you can access just-written content from upcoming
books. The chapters come straight from our respected authors, before they’re
fully polished and debugged—for critical insights now, when you need them.

This document contains one or more portions of a preliminary version of a Microsoft Press title and is provided
“as is.” The content may be changed substantially upon final publication. In addition, this document may make
reference to pre-released versions of software products that may be changed substantially prior to final
commercial release. Microsoft reserves the right to not publish this title or any versions thereof (including
future prePress ebooks). This document is provided for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EITHER EXPRESS OR IMPLIED, IN THIS DOCUMENT. Information and views expressed in this
document, including URL and other Internet website references may be subject to change without notice. You
bear the risk of using it.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Some examples are for illustration only and are fictitious. No real association is intended or inferred. This
document does not provide you with any legal rights to any intellectual property in any Microsoft product,
service, or other offering.

© 2013 Patrick LeBlanc. All rights reserved.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other marks are property of their respective owners.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
V413HAV
Typewritten Text
V413HAV

Contents at a glance

Part I Getting started with Microsoft SQL Server 2012
Chapter 1 Overview of Microsoft SQL Server 2012

Chapter 2 Installing, configuring, and upgrading
Microsoft SQL Server 2012

Chapter 3 Using SQL Server 2012 administration and
development tools

Part II Designing databases
Chapter 4 Designing SQL Server databases

Chapter 5 Creating your first table

Chapter 6 Building and maintaining indexes

Part III Advanced database design topics
Chapter 7 Table compression

Chapter 8 Table partitioning

Chapter 9 Database snapshots

Chapter 10 The SELECT statement

Part IV Using Transact-SQL (TSQL)
Chapter 11 Advanced data retrieval topics

Chapter 12 Modifying data

Chapter 13 Built-in scalar functions

Part V Creating other database objects
Chapter 14 Advanced TSQL topics

Chapter 15 Views

Chapter 16 User-defined functions

Chapter 17 Stored procedures

Chapter 18 Data manipulation triggers

Part VI SQL Server replication
Chapter 19 Replication

Part VII Database maintenance
Chapter 20 Backups

Chapter 21 Managing and maintaining indexes and statistics

Chapter 22 Maintenance plans

Part VIII Database management
Chapter 23 SQL Server Profiler

Chapter 24 Extended events

Chapter 25 SQL Server security

Chapter 26 Resource Governor

Chapter 27 SQL Server Agent

Chapter 28 Database mail

Chapter 29 Data definition triggers

Chapter 30 Dynamic management objects

Part IX High-availability solutions
Chapter 31 AlwaysOn

Chapter 32 Log shipping

Note: Chapters included in this file are indicated in black.

		 1

PART I

Getting started
with Microsoft
SQL Server 2012

CHAPTER 1	 Sections, body text, and emphasis tags 3

CHAPTER 2	 Code elements . 7

CHAPTER 3	 Using SQL Server 2012 administration and
development tools . . 21

		 3

C H A P T E R 1

Overview of
Microsoft SQL Server 2012

After completing this chapter, you will be able to

■■ Explain SQL Server components and features and their uses.

■■ Identify SQL Server features vital to your environment.

■■ Define and scope your SQL Server installation topology from a high level.

The process of learning a new technology can be daunting and sometimes involves a tremendous
amount of time and effort. Each step of the process, from installing and configuring the software to
deploying the first project, introduces new challenges. These challenges often grow when the tech-
nology includes several components and features, so the first step, especially with a multicomponent
technology, is to identify the components your environment requires and gain a good understanding
of the functionality of each component. To that end, in this chapter, you will examine the components
and features of Microsoft SQL Server 2012 and determine how they fit into your installation.

Like most relational database management systems (RDBMSs), SQL Server 2012 includes several
components. The product itself, however, is often divided into two distinct categories: business intel-
ligence (BI) and the Database Engine.

Business Intelligence

Business intelligence (BI) refers to data transformed into knowledge that can then be used to make
more informed business decisions. For example, a company whose primary purpose is to sell bikes
could use its data to identify sales trends and the purchasing patterns of its customers. From that
analysis, the company could decide to focus sales efforts on a particular area or region, which in turn
could lead to better opportunities and offer the company competitive advantages in its industry.

While the BI features of SQL Server 2012 can add highly visible and effective value to business
users and data consumers, in this book you'll focus primarily on the features specific to the Database
Engine.

4   Part 1  Getting Started with Microsoft SQL Server 2012

Database Engine

The Database Engine sits at the core of the SQL Server components. The engine operates as a service
on a machine, which is often referred to as an instance of SQL Server. You can run multiple instances
of SQL Server on a given server. When you connect to SQL Server, the instance is the target of the
connection. Once an application is connected, it sends Transact-SQL (T-SQL) statements to the in-
stance. The instance in return sends data back to the client. Within the connection is a security layer
that validates access to the data as specified by the database administrators (DBAs). The Database
Engine enables you to leverage the full capabilities of all of the other components, such as accessing,
storing, and securing the data.

The storage component of the Database Engine determines how the data is stored on disk. When
designing your databases, you will specify various aspects that will dictate how your tables, indexes,
and, in some cases, views are physically organized on your disk subsystem. You will examine the con-
cepts of tables, indexes, and views in detail in later chapters. In SQL Server 2012, you can physically
distribute data across disks by partitioning it, or dividing the data into distinct, independent parts.
Partitioning not only improves query performance, but it also simplifies the process of managing and
maintaining your data. With the release of SQL Server 2012, Microsoft increased the number of sup-
ported partitions to 15,000 per table.

Within the Database Engine itself, the storage engine is the primary component. Surrounding it are
several additional components that depend on the engine. These components include the following:

■■ T-SQL programming interface (Microsoft's implementations of the SQL ANSI standard
language)

■■ Security subsystem

■■ Replication

■■ SQL Server Agent

■■ High availability and disaster recovery tools

■■ SQL Server Integration Services

■■ SQL Server Management tools

The following sections provide a brief explanation of each component.

T-SQL Programming Interface

What is the value in storing data if you cannot access it? SQL Server provides a rich programming lan-
guage that allows you to write simple and complex queries against the underlying storage structures.
Using T-SQL, you can write data manipulation queries that enable you to modify and access the data
on demand. You can create objects such as views, stored procedures, triggers, and user-defined func-
tions that act as a means of surfacing that data. Applications written in programming languages such

	 Chapter 1  Overview of Microsoft SQL Server 2012     5

as Visual Basic and C# .NET can send T-SQL queries from applications to the Database Engine. The
Database Engine will then resolve the queries and send the results back to the client.

In addition, you can write data definition queries to create and modify objects that act as mecha-
nisms for surfacing the data. T-SQL also allows you to manage server configurations and security
seamlessly. T-SQL is a set-based language, meaning that it performs optimally when interacting with
data in sets as opposed to manipulating strings or iterating over rows of data. While T-SQL is capable
of these cursor-based operations, these types of operations are less efficient than a properly designed
set-based approach. If you find you are using T-SQL to perform cursor-based operations, consider
leveraging a common language runtime (CLR) language. Using your favorite compiler (Visual Studio,
for example), you can extend the functionality of T-SQL.

SQL Server 2012 introduces several new T-SQL programming enhancements, including a simpler
form of paging, windowing functions, and error handling. A THROW statement is introduced that
provides a way to elegantly handle errors by raising exceptions. You can now create a FileTable that
builds on the FileStream technology introduced in SQL Server 2008. Coupling the FileTable with Full-
TextSearch allows you to run complicated queries against massive amounts of text data (such as the
complete text of this book). SQL Server 2012 also introduces several new conversion, string, logical,
data, and time functions.

Security Subsystem

In most organizations, data is the most valuable asset, and keeping that data secure is a major con-
cern. Any vulnerability in an organization's security might end up triggering a series of events that
could prove catastrophic to the business. This is why SQL Server 2012 consists of a robust security
subsystem that allows you to control access via two modes of authentication, SQL and Windows. As
an administrator, you are able to configure SQL Server security at multiple levels. Using T-SQL or SQL
Server Management Studio, you can control access to a particular instance of SQL Server, to specific
databases, to objects within those databases, and even to columns within a particular table.

SQL Server also includes native encryption. For example, if you want to secure employees' So-
cial Security numbers, using column level encryption, you could encrypt a single column in a table.
SQL Server also includes Transparent Data Encryption (TDE), which allows you to encrypt an entire
database without affecting how clients and applications access the data. However, if someone were to
breach your network security and obtain a copy of a data file or backup file, the only way that person
could access the data is with an encryption key that you set and store.

Even with all of these security capabilities, SQL Server provides you with the ability to audit your
server and databases proactively. In SQL Server 2012, you can filter audit events before they are writ-
ten to the audit log. Chapter 26, “Security,” describes how to plan and deploy your SQL Server security
strategy. You will learn specific concepts around creating logins and users, and you will examine how
to create a security approach and maintain security accounts.

Also in SQL Server 2012, you can create user-defined server roles, which can assist in providing a
more secure method of allocating server-level access to server administrators. Microsoft has included

6   Part 1  Getting Started with Microsoft SQL Server 2012

the ability to create users within a database without requiring you to create a server login, known as
contained databases. In past versions of SQL Server, prior to granting access at the database level, an
administrator was required to create a server login. With the advent of SQL Server 2012, a user can be
self-contained within a database.

Replication

SQL Server replication has been available in most releases of the product. Over time, replication types
were introduced to ensure that users could configure replication architectures that satisfied a wide
range of scenarios. Using SQL Server replication technology, you can distribute data locally, to differ-
ent locations, using File Transfer Protocol (FTP), over the Internet, and to mobile users. Replication can
be configured to push data, pull data, and merge data across local area networks (LANs) and wide
area networks (WANs).

The simplest form of replication, snapshot replication, periodically takes a snapshot of the data and
distributes it to servers that are subscribed to the publication. Snapshot replication is typically used to
move data at longer intervals, such as daily or nightly. While this method is effective, it is often insuffi-
cient in satisfying the high demands of users for near real-time data. If higher throughput is required,
users often leverage transactional replication. Instead of distributing snapshots of data, transactional
replication continuously sends data changes as they happen to the subscribers. Transactional replica-
tion is typically used in a server-to-server topology where one server is the source of the data and the
other server is used as a backup copy or for reporting.

Both replication types are one-way data movements. But what if you need bidirectional move-
ment? For example, assume you have mobile users who work offline. While they are offline, they enter
information into a database residing on an instance of SQL Server running on their laptops. What
happens when they return to the office and connect to the network? In this scenario, the local in-
stance will synchronize with the company’s primary SQL Server database. Merge replication will move
transactions between the publisher and subscriber since the last time synchronization occurred.

SQL Server professionals debate the use of replication as a high availability (HA) or disaster re-
covery (DR) technology. Could it be used for either? There is a possibility; however, replication only
moves schema changes and data. To provide an effective HA or DR topology, every aspect of the
instance should be included such as security, maintenance, jobs, and so on. Therefore, using replica-
tion in either case could pose potential problems in the event of hardware failure or a disaster.

See Also  Chapter 19, "Replication," discusses the replication in depth.

SQL Server Agent
SQL Server Agent runs as a separate service on an instance of SQL Server. Each instance of SQL Server
has an accompanying SQL Agent service. The primary use of SQL Server Agent is to execute sched-
uled tasks, such as rebuilding indexes, backing up databases, loading the data warehouse, and so on.
It allows you to schedule the jobs to run at various intervals throughout the day or night.

	 Chapter 1  Overview of Microsoft SQL Server 2012     7

To ensure that you are notified in the event of a job failure, SQL Server Agent allows you to config-
ure operators and alerts. An operator is simply an individual and an email address. Once you config-
ure an operator, you can send notifications or alerts to that person when a job succeeds, completes,
or fails.

High Availability and Disaster Recovery Tools
With growing demands on server availability and uptime, it is vital that your RDBMS include several
mechanisms that will ensure the consistency and availability of your data. SQL Server 2012 provides
four technologies for high availability:

■■ AlwaysOn Availability Groups  In SQL Server 2012, Microsoft introduces AlwaysOn Avail-
ability Groups. An Availability Group supports failover for a set of databases and leverages
the existing database mirroring technology to maintain secondary replicas of the database
on local or remote instances of SQL Server. This technology differs from traditional failover
clustering in two ways:

•	 You can configure automatic failover without the use of a Storage Area Network (SAN).

•	 You can configure one or more of the secondary replicas to support read-only operations.

Since a SAN is no longer required, you now have the ability to configure HA and DR using
one technology. By leveraging the database mirroring capability to move data over distances
using TCP/IP, you can have a copy of the database stored in a data center located in a differ-
ent geographic area.

■■ Failover clustering  SQL Server failover cluster instances provide high availability support at
the server level. Prior to building an AlwaysOn SQL Server failover instance, you must create
and configure a Windows Server failover cluster.

■■ Database mirroring  A predecessor of AlwaysOn, database mirroring provides high availabil-
ity at the database level. It maintains two copies of the database on instances of SQL Server
running on separate servers. Typically, the servers are hosted in separate geographic locations,
not only ensuring HA, but also providing DR. If you want to incorporate automatic failover,
you must include a third server (witness) that will change which server is the owner of the da-
tabase. Unlike with AlwaysOn, with database mirroring you cannot directly read the second-
ary copy of the database. You can, however, create a snapshot of the database for read-only
purposes. The snapshot will have a different name, so any clients connecting to it must be
aware of the name change. Please note that this feature has been deprecated and replaced by
AlwaysOn; therefore, going forward, you should use AlwaysOn instead of database mirroring.

■■ Log shipping  This is another technology that provides high availability at the database level,
which is ideal for very low-latency networks. The transaction log for a specific database is sent
to a secondary server from the primary server and restored. Just as with AlwaysOn and data-
base mirroring, you can configure log shipping in a way that allows the secondary database to
be read.

8   Part 1  Getting Started with Microsoft SQL Server 2012

Note  If you are familiar with SQL Server, you may be wondering why replication does not
appear in the preceding list. This is because replication lacks a few key features, such as ho-
listic database synchronization (as opposed to object-level movement).

SQL Server Integration Services
SQL Server Integration Services (SSIS) is a platform that allows you to build high-performance extrac-
tion, transformation, and loading (ETL) frameworks for data warehouses. So why is it included in
here in a list of Database Engine components? In most cases SSIS is used for ETL; however, it offers a
number of tasks and transformations that extend its usage well beyond ETL.

For example, if you are new to administering a SQL Server environment, SSIS provides you with the
tools needed to perform several administrative tasks, including rebuilding indexes, updating statistics,
and backing up databases, which make up the primary list of maintenance items that should be per-
formed on any database. Without SSIS, as a new administrator you could spend a lot of time writing
T-SQL just to get these activities running on a regular basis. But this is not the extent of the capabili-
ties of SSIS for administrators. How often are you asked for an export of data to Microsoft Excel or
to move data from one server to another? Using SSIS, you can quickly export or import data from
various sources, including Excel, text files, Oracle, and DB2.

SQL Server Management Tools
SQL Server 2012 includes two graphical user interfaces that enable you to manage, monitor, maintain,
and develop in a SQL Server environment. The first is SQL Server Management Studio (SSMS), which
allows you to perform just about any action you can think of against an instance of SQL Server. It is
an integrated environment where you can access many instances of SQL Server. It consists of a broad
set of tools with a rich set of interfaces and script editors that simplify the process of developing and
configuring SQL Server instances.

In addition to SSMS, SQL Server 2012 introduces SQL Server Data Tools (SSDT). SSDT is another
integrated environment, but it was designed specifically for database developers. You can explore
the database and database objects using the SQL Server Object Explorer. So far, some of the most
talked-about features of SSDT are the ability to easily create or edit database objects and data, and
run queries directly from the interface. Using the visual Table Designer, you can change table schemas
for both database projects and online database instances.

Summary

SQL Server offers a robust set of components and tools to enable you to design an efficient, flexible,
and highly available database topology for your organization. Each component either complements
or supplements the capabilities and functionality of the others. Throughout the rest of this book, you
will discover how the components work independently and together.

		 9

C H A P T E R 2

Installing, Configuring,
and Upgrading
Microsoft SQL Server 2012

After completing this chapter, you will be able to

■■ Understand the differences between the various SQL Server editions.

■■ Select hardware for your SQL Server instance.

■■ Use the setup files to install an instance of SQL Server.

Editions of SQL Server 2012

It’s now time to get your hands dirty and start working with SQL Server. However, before you run
off and install an instance of SQL Server, you should first become familiar with the different editions
of SQL Server that Microsoft offers. The SQL Server 2012 versions are offered in three categories:
primary, specialized, and breadth. All editions come in 32-bit and 64-bit flavors, so don’t worry if you
don’t have any 64-bit machines available; you can still get started with SQL Server. However, this book
will cover the installation and configuration of a 64-bit version of SQL Server.

The first category, primary, contains what some consider the three core production editions of SQL
Server. With this release of SQL Server, Microsoft has removed the Data Center edition and replaced
it with the Business Intelligence edition. Table 2-1 provides a list of each of the primary editions, ac-
companied by a brief description.

10   Part 1  Getting Started with Microsoft SQL Server 2012

TABLE 2-1  SQL Server 2012 Primary Editions

Edition Description

Enterprise This is considered the premium edition of SQL Server. This edition is all-inclusive, meaning
that it contains all the features available in every edition. SQL Server Enterprise delivers a
comprehensive data center solution that supports a high level of mission-critical workloads,
blazing-fast performance, virtualization, and business intelligence (BI) capabilities.

Business Intelligence This is a new edition to the SQL Server family. It is focused on delivering all-encompassing
BI-focused solutions. The Business Intelligence edition enables organizations to build, de-
ploy, and manage highly scalable solutions efficiently and effectively. When accessing data,
end users will have a browser-based experience that allows them to slice and dice data in
ways that they could previously only imagine.

Standard While not as robust as the Enterprise or BI edition, the Standard edition does boast several
intriguing capabilities. Most important, it encompasses basic data management and BI ca-
pabilities that are more in line with the needs of smaller-scale deployments of SQL Server. If
you are looking at running a departmental application, or if you have a smaller organization,
this is the version for you.

The next category is hard to call a category because it contains only one version, but it is still
noteworthy. The specialized category contains the Web edition. This edition is optimally designed
for those SQL Server instances that will support Internet-facing workloads and is intended for web
hosting service providers. It allows organizations of any size to deploy web-based content such as
webpages, applications, sites, and services.

The final category, breadth, was designed for specific scenarios and is offered for free or at a very
low price. Table 2-2 describes the two editions in this category: Developer and Express.

TABLE 2-2  SQL Server 2012 Breadth Editions

Edition Description

Developer This is identical to the Enterprise edition, except that it is only licensed for development and test sys-
tems. You cannot use it for production purposes. Note, however, that you can easily upgrade it to the
Enterprise license for production use if you need to.

Express The Express version of SQL Server is a great entry-level product. It is perfect for learning and building
small data-driven applications.

This book covers features of SQL Server that span the entire product line, so it will use the Devel-
oper edition. You can download an evaluation copy from http://www.microsoft.com/sqlserver.

	 Chapter 2  Installing, Configuring, and Upgrading Microsoft SQL Server 2012     11

Choosing Hardware for SQL Server

Choosing the hardware to run your software is often a challenge. With SQL Server 2012, it’s even
more challenging because you must consider the disk subsystem along with the typical server specifi-
cations, such as CPU and memory, among others.

As with any relational database management system (RDBMS), memory is at the top of the re-
source list. This book doesn't delve too deeply into a hardware discussion, since the main purpose is
to get you started with SQL Server, but note that hardware requirements vary across SQL Server edi-
tions. At a minimum, your server should meet the hardware specifications outlined in Table 2-3.

TABLE 2-3  SQL Server 2012 Recommended Hardware Specifications

Component Requirement

Processor Processor type: Intel Pentium IV or AMD Athlon
Processor Speed: 2.0 GHz or faster

Memory 4 GB or more

Hard disk space Database Engine, data files, and replication: 811 MB
SSIS: 591 MB
Client components: 1823 MB

The requirements provided are specific to an Enterprise, Business Intelligence, or Standard instal-
lation. The number of processors, size of your disk subsystem, and amount of memory are primarily
dependent on the type of workload, your availability requirements, and I/O requirements. For more
information on specific requirements for other editions, please refer to SQL Server 2012 Books Online.
An exhaustive list is provided for every edition.

Software Prerequisites

Once you've chosen your hardware, you must ensure that the proper software is installed before you
set up your SQL Server instance. For the sake of brevity, this section will focus on those instances that
are included in the primary category of SQL Server editions. Table 2-4 provides a list of the minimum
software requirements for those editions.

12   Part 1  Getting Started with Microsoft SQL Server 2012

TABLE 2-4  SQL Server 2012 Minimum Software Requirements

Software Requirement

Operating system Enterprise and BI versions operating system requirements:
Windows Server 2008 R2 SP1 64-bit Datacenter
Windows Server 2008 R2 SP1 64-bit Enterprise
Windows Server 2008 R2 SP1 64-bit Standard
Windows Server 2008 R2 SP1 64-bit Web
Windows Server 2008 SP2 64-bit Datacenter
Windows Server 2008 SP2 64-bit Enterprise
Windows Server 2008 SP2 64-bit Standard
Windows Server 2008 SP2 64-bit Web

Standard and Developer versions operating system requirements:
Windows 7 SP1 64-bit Ultimate
Windows 7 SP1 64-bit Enterprise
Windows 7 SP1 64-bit Professional
Windows Server 2008 SP2 64-bit Datacenter
Windows Server 2008 SP2 64-bit Foundation

Windows Vista SP2 64-bit Ultimate
Windows Vista SP2 64-bit Enterprise
Windows Vista SP2 64-bit Business

.NET Framework .NET 3.5 SP1

Internet software Internet Explorer 7.0 or later

In addition to these requirements, SQL Server setup installs .NET 4.0, SQL Server Native Client, and
SQL Server–specific support files.

Before Installation

Prior to installing SQL Server, ensure that you have selected and configured hardware that will sup-
port the version of SQL Server you plan to use. Also, carefully consider the hardware and software
requirements for that version. In addition, ensure that all the external needs, such as service accounts
and service packs, have been created, configured, or downloaded.

SQL Server Instances
SQL Server 2012 supports multiple Database Engine instances on the same computer. Typically, the
initial install of SQL Server is the default instance, which assumes the name of the computer on which
SQL Server is being installed. Any additional installed instances are referred to as named instances.
SQL Server 2012 supports side-by-side installations of instances with earlier versions. For example, if
a SQL Server 2005 default instance is currently installed, you can install a SQL Server 2012 named in-
stance on the same machine. The following is a list of all the SQL Server versions that can be installed
side-by-side with SQL Server 2012:

	 Chapter 2  Installing, Configuring, and Upgrading Microsoft SQL Server 2012     13

■■ SQL Server 2005 (32-bit)

■■ SQL Server 2005 (64-bit) x64

■■ SQL Server 2008 (32-bit)

■■ SQL Server 2008 (64-bit) x64

■■ SQL Server 2008 R2 (32-bit)

■■ SQL Server 2008 R2 (64-bit) x64

■■ Microsoft SQL Server 2012 Release Candidate (RC) 0 (32-bit)

■■ Microsoft SQL Server 2012 RC 0 (64-bit) x64

Service Accounts
Each service in SQL Server is a mechanism that is used to manage Windows or SQL authentication
for SQL Server operations. During installation, you will be able to select which components to install.
As a result, the SQL Server setup will install specific services. Since this book is focused on Database
Engine, it will only discuss a few of the possible services: the Database Engine, SQL Server Agent, and
SQL Server Integration Services (SSIS).

As a best practice, you should use separate accounts for each SQL Server service. The accounts
should be configured with the lowest possible user rights. During the installation, SQL Server will
assign default accounts to these services based on the host operating system. If you are running Win-
dows 7 or Windows Server 2008 R2, you can use two new types of service accounts: a virtual account
or a managed services account (MSA).

The primary purpose of both account types is to simplify administration for the database adminis-
trator. An MSA is a domain account whose password is automanaged by the domain controller. It can
be used to start a Windows service, but not to log on to a computer. Virtual accounts are managed
local accounts that are also automanaged. Both accounts can access network resources, but virtual
accounts cannot be used with SQL Server failover cluster instances. If other servers and clients need to
communicate with these services, you must configure the services to use domain accounts.

Note  When changing service accounts, always use SQL Server Configuration Manager.

Unlike with Windows Services Control Manager, the SQL Server tools will perform additional con-
figurations, such as updating the Windows local security store.

14   Part 1  Getting Started with Microsoft SQL Server 2012

Collation Sequences
During some SQL Server engagements, you will likely encounter many people who just accept the
default collation. In most cases, the default is sufficient; however, since it’s responsible for case
sensitivity, international characters, case sorting, accenting sensitivity, and rule sorting, you should
definitely consider it prior to install. SQL Server allows collation specification at the server, database,
and column level. As a best practice, you should use a single collation within your company.

Authentication Modes
The final consideration is specific to authentication. During installation, you are given two choices of
authentication: Windows and SQL Server. If you choose Windows, the SA login, which will be dis-
cussed in Chapter 25, "SQL Server Security," will be disabled. Selecting Windows limits access to SQL
Server to Windows accounts. If you select mixed mode authentication, you will have the ability to
create accounts that are specific to SQL Server.

Installing SQL Server

This section will show you how to install SQL Server. Note that SQL Server can be installed using
several methods, which include unattended, command prompt, configuration file, sysprep, and server
core. This section will describe the simplest installation method, which is using the SQL Server 2012
Setup wizard. If you don’t have a licensed copy of SQL Server, you can download an evaluation copy
from the Microsoft website.

Installing SQL Server from the Setup Wizard
This exercise will quickly run through the installation process.

1.	 Either insert the SQL Server 2012 media into a DVD or CD drive or access it from a local or
networked drive. Look in the root folder of the media and double-click setup.exe. If you are
using an .iso file, you will need to use a tool to mount it or software such as WINRAR to ex-
tract the contents.

2.	 The SQL Server Installation 2012 Setup wizard will open. Select Installation from the left navi-
gation area. On the right, click New SQL Server Stand-Alone Installation or Add Features to an
Existing Installation, depending on your needs.

3.	 The installer will then execute a list of setup support rules. To view a complete list, click the
Show Details button. Click OK.

4.	 If you have a product key, select the radio button labeled Enter the Product Key, and then
enter the product key. If you don’t have a product key, click the Specify a Free Edition radio
button and select Evaluation from the list of available choices. Then click Next.

	 Chapter 2  Installing, Configuring, and Upgrading Microsoft SQL Server 2012     15

5.	 On the next page, check the box labeled "I accept the license terms." You also have the option
of sending additional information to Microsoft about your installation. Make your choice and
click Next. Note that the button labeled Next will not be enabled unless you accept the license
terms. The installer will then install the necessary setup files.

6.	 After the setup files are installed, another set of setup support rules will run. Click Next.

7.	 Now you must select the server role. Select the SQL Server Feature Installation radio button,
and click Next.

8.	 On the Feature Selection page, select the following: Database Engine Services, SQL Server
Replication, SQL Server Data Tools, Client Tools Connectivity, Integration Services, Documen-
tation Components, Management Tools - Basic, and Management Tools - Complete. The page
should resemble Figure 2-1. This book will focus on these foundation features, but you can in-
stall others if you want, as well. Also, if you are installing a second instance of SQL Server 2012,
the shared features will already be installed, so the Shared Features options will be grayed out.

FIGURE 2-1  SQL Server 2012 Feature Selection page.

16   Part 1  Getting Started with Microsoft SQL Server 2012

9.	 Toward the bottom of the page are options for specifying the directory where you want to
install the features. Accept the defaults and click Next.

10.	 A few more installation rules will execute. If you have installed all the proper prerequisites,
everything should run successfully. Click Next.

11.	 On the Instance Configuration page, select whether to install a default installation or a named
instance. If a default instance is already installed, your only choice will be to install a named
instance. The Named Instance text box will display the name you use to connect to the SQL
Server—for example, ServerName\InstanceName\. The instance ID is used to identify installa-
tion directories and registry keys for an instance of SQL Server. Click Next.

12.	 The Disk Space Requirements page summarizes how much available space there is and how
much is required. Click Next.

13.	 On the Server Configuration page, you specify the login accounts and startup types for the
SQL Server services. If you want other services to communicate with SQL Server and vice versa,
you must specify a domain account, an MSA, or a virtual account as the login account for
Database Engine. For now, accept the defaults. For the SQL Server Agent service, change the
startup type to Automatic. Click the Collation tab next to the Service Accounts tab. You can
customize your collation on this page, but for now accept the default collation and click Next.

14.	 On the Database Engine Configuration page, first select your authentication mode. Select the
radio button labeled Mixed Mode (SQL Server Authentication and Windows Authentication).
Then specify a password for the SA account. Provide a password of your choice. Click the but-
ton labeled Add Current User. On the Data Directories tab, you can change the location where
the system databases and user databases are stored. For now, accept the defaults. The final
tab allows you to enable FileStream. Leave it disabled for now. Click Next.

15.	 If you want to report errors about the installation, select the check box on the Error Reporting
page, and then click Next.

16.	 One last rules check is run. If everything passes, click Next.

17.	 You are now ready to install. Click the button labeled Install.

When the installation completes, a page resembling Figure 2-2 will appear.

	 Chapter 2  Installing, Configuring, and Upgrading Microsoft SQL Server 2012     17

FIGURE 2-2  SQL Server 2012 setup summary page.

After Installation

After your SQL Server installation is complete, there are certain things you should do. The following
subsections describe a couple of them.

Assigning a TCP/IP Port Number to the
SQL Server Database Engine
First, you may want to change the SQL Servers default TCP port from 1433 to a different port. This
exercise describes how.

1.	 Open SQL Server Configuration Manager by clicking Start | All Programs | Microsoft SQL
Server 2012 | Configuration Tools | SQL Server Configuration Manager.

18   Part 1  Getting Started with Microsoft SQL Server 2012

2.	 In the left-hand navigation pane, expand SQL Server Network Configuration and click Proto-
cols for MSSQLSERVER. If you are changing the port for a nondefault instance, then you will
click Protocols for <Instance Name>.

3.	 Right-click TCP/IP in the left section.

4.	 You can configure each specific IP address, or you can configure the port for all IP addresses.
To do so, click the IP Addresses tab, scroll to the bottom to locate IPALL, and change the port
number to your desired port. Don’t change the port, as this will require you to include the
port number when connecting to this server.

5.	 Restart the instance of SQL Server that has been changed. Click SQL Server Service in the left
navigation pane.

6.	 Select SQL Server (MSSQLSERVER), right-click, and select Restart.

Once this change is made, you are required to specify this port number when you connect to the
SQL Server instance.

Opening a SQL Server Instance Port Using Windows Firewall
If you attempt to connect to SQL Server from another machine now, the connection attempt will time
out. To connect to this instance, you must open the port. You can do so using Windows Firewall, as
follows:

1.	 Open Windows Firewall and click Start | Control Panel | Windows Firewall.

2.	 Toward the top of the page, click Advanced Settings.

3.	 Select Inbound Rules from the left navigation pane.

4.	 Click New Rule from the right navigation pane.

5.	 On the Rule Type page, select the radio button labeled Port, and click Next.

6.	 Ensure that the radio button labeled TCP is selected and enter 1433 in the text box labeled
Specific Local Ports. Click Next.

7.	 Select the Allow the Connection radio button and click Next.

8.	 In the text box labeled Name, type a descriptive name for your inbound rule. Click Finish.

Now you should be able to connect to this instance of SQL Server using various client tools, which
will be discussed later in this book.

	 Chapter 2  Installing, Configuring, and Upgrading Microsoft SQL Server 2012     19

How to Upgrade to SQL Server 2012

Whether you are upgrading an existing server from one version to the next or installing a new version
on a new server, you should carefully think through and plan this task. You have two upgrade choices:
in-place or side-by-side. Each has advantages and disadvantages. Often your choice will depend on
how much downtime your environment can support, the age or state of the existing systems, and
funding. During an in-place upgrade, your system will be down for some time. If you are a member of
a 24/7 organization, taking the system down may not be an option, and you will be required to do a
side-by-side upgrade. Also, if you are looking to replace older or out-of-date machines, then side-by-
side is your only option. With that said, purchasing new hardware has a cost, and if you don't have
funding, then your only option is an in-place upgrade.

In-Place Upgrade
Just the thought of upgrading any software may send chills down your spine. Fortunately, the process
of upgrading to SQL Server 2012 has been greatly improved over the years. SQL Server 2012 has
several supported upgrade paths. Therefore, if you are currently running SQL Server on previous ver-
sions, you can quickly upgrade to SQL Server 2012 without upgrading to other versions. SQL Server
2005 with SP4 is the oldest version of SQL Server that has a direct upgrade path. If you are running a
version older than this, you will need to upgrade to that version before you can perform an in-place
upgrade to SQL Server 2012. For example, if you are currently running SQL Server 2000, you must
upgrade to SQL Server 2005 with SP4 prior to running an in-place upgrade to SQL Server 2012.

Since this is an introductory book, how to actually perform the upgrade will not be covered; how-
ever, the following preupgrade checklist should assist you prior to an in-place upgrade:

■■ Ensure that your version of SQL Server has a supported upgrade path.

■■ Back up all your databases, including system databases.

■■ Run SQL Server Upgrade Advisor to prepare for the upgrade to SQL Server 2012.

■■ Verify that your hardware and software meet the minimum requirements for SQL Server 2012.

■■ Stop replication and make sure that the replication log is empty.

■■ Ensure that all the database server logons are stored in the master database.

■■ Estimate the disk space required for the components being upgraded and ensure that suf-
ficient disk space is available.

When you are ready to upgrade, you will repeat most of the steps from the "Installing SQL Server"
section of this chapter. The main differences will involve the configuration. The setup detects older
version of SQL Server with support upgrade paths and then guides you through the process.

20   Part 1  Getting Started with Microsoft SQL Server 2012

Side-by-Side Upgrade
This type of upgrade may not stress you as much as an in-place upgrade, simply because the old serv-
er remains in place and can be made available quickly in the event of an installation failure. You will
follow the same steps as outlined in the "Installing SQL Server from the Setup Wizard" section of this
chapter. Once you've completed the steps, you will need to migrate your security, databases, replica-
tion configuration, maintenance plans, and any other custom configurations that have been added to
your SQL Server installation. This process gives you the advantage of having a stable rollback plan. In
the event of an installation failure or some other type of catastrophe, you can always turn the other
server back on and continue operations as normal. Figure 2-3 illustrates a side-by-side migration.

While this strategy offers several advantages, it could require that your organization purchase new
hardware. In addition, this method may require that you have disk space that accommodates two
identical databases. For organizations with very large databases, this could pose a problem.

Migrate Security,
Databases,

Maintenance Plans, etc.

Old Server
SQL Server 2008 R2

New Server
SQL Server 2012

FIGURE 2-3  SQL Server 2012 side-by-side migration.

Summary

As outlined in this chapter, you can use several techniques and methods to upgrade SQL Server.
Regardless of the method you choose, the end goal is typically the same. With any install or upgrade,
you should allocate sufficient time to develop an effective strategy and outline the steps necessary for
performing the tasks. The success of your plan depends heavily on these two factors.

		 21

C H A P T E R 3

Using SQL Server 2012
administration and
development tools

After completing this chapter, you will be able to

■■ Use SQL Server 2012 Books Online.

■■ Create solutions and projects with SQL Server Management Studio.

■■ Use Object Explorer.

■■ Use SQL Server Data Tools.

■■ Use SQL Server Configuration Manager.

Using SQL Server Books Online

Over the years, Microsoft SQL Server Books Online (BOL) has been criticized for its lack of content and
its inability to effectively explain how to use various SQL Server tools and options. However, as the
versions of SQL Server have progressed, so has the documentation. Unfortunately, the perception of
BOL remains marred by the many years of criticism and, in some cases, its limited content. While BOL
does not and probably will never provide a walk-through for every possible task, it does offer a good
foundation and starting point for anyone interested in gaining general knowledge about all of the
capabilities of SQL Server.

In previous versions of SQL Server BOL, content was installed locally by default. In Microsoft SQL
Server 2012, this has changed slightly. When you open BOL for the first time, the Online Help Consent
dialog box opens, as shown in Figure 3-1.

22   PART I  Getting Started with Microsoft SQL Server 2012

FIGURE 3-1  The SQL Server 2012 Online Help Consent dialog box displays the first time you open
SQL Server Books Online.

You have the option of storing the help content locally or viewing it online. If you decide to view it
online, you can always change the setting later. In the next exercise, you’ll install BOL locally.

Install Books Online locally

1.	 Click the Yes button in the Online Help Consent dialog box. Microsoft Help Viewer 1.1
displays.

2.	 Click the Help Library Manager icon.

3.	 In the Help Library Manager dialog box, click Install Content from Online. A fetch process
begins that provides you with a list of available content.

4.	 From the list, click the Add button next to Books Online, located under the SQL Server 2012
category.

5.	 Click the Update button. The install process begins.

6.	 When the update is complete, click the Finish button.

7.	 Click Exit.

8.	 Close Microsoft Help Viewer.

9.	 Now open SQL Server Books Online by clicking Start | All Programs | Microsoft SQL Server
2012 | Documentation & Community | SQL Server Documentation.

10.	 In the left navigation section, you should see several SQL Server choices.

Take some time to explore the contents of BOL. If you are just getting started with SQL Server, or
even if you are seasoned SQL Server veteran, you are bound to find all sorts of information that will
provide insight into the full feature set available within SQL Server 2012.

	 Chapter 3  Using SQL Server 2012 administration and development tools    23

Using SQL Server Management Studio

Your ability to efficiently manage and maintain your SQL Server environment has been greatly
improved with the introduction of Microsoft SQL Server Management Studio (SSMS) in SQL Server
2005. Administrators can configure other SQL Server components, such as replication, availability
groups, Microsoft SQL Server Agent, change data capture (CDC), and many other features that will
be discussed later in this book. In addition, you can create databases and database objects, such as
tables, views, and stored procedures. Finally, after building a database, you can also manage the data
inside the database using SSMS.

Get started with SQL Server Management Studio

1.	 To open SSMS, click Start | All Programs | Microsoft SQL Server 2012 | SQL Server Management
Studio.

2.	 When SSMS opens, the Connect to Server dialog box appears. Accept the defaults for every
option except the Server Name drop-down list. Type your server name and click the Connect
button.

Before you start using SSMS, let’s take a quick tour of the environment. First, you may notice that
the SSMS environment is very similar to that of most Microsoft products. At the very top is the main
menu, which has several options available. Directly below the main menu is the Standard toolbar,
which is loaded by default. If you right-click anywhere on either toolbar, a context menu appears.
From this menu, you can select other choices that will add new items to the existing toolbars or add
new toolbars to the menu. Below all the menus and to the left of the window is Object Explorer.

Object Explorer is a multifunctional window available in SSMS. As previously mentioned, it pro-
vides an intuitive interface for navigating and accessing server features and databases. Moreover, you
can use Object Explorer to connect to multiple instances of SQL Server, Integration Services, Analysis
Services, and Reporting Services instances. Once connected, you have the ability to create databases
and database objects, configure other features and components, run performance reports, and
perform a number of other functions. When you are connected to an instance of SQL Server, simply
right-click to access additional functionality that further demonstrates the true power and flexibil-
ity of SSMS. For example, if you right-click the Databases folder, you can create, attach, or restore a
database. You may have also noticed that Object Explorer has its own menu. This menu allows you to
connect to or disconnect from an instance of SQL Server, refresh the items displayed in the window,
and perform many other functions. You’ll get started with Object Explorer in the next exercise.

24   PART I  Getting Started with Microsoft SQL Server 2012

Use Object Explorer

1.	 Open SSMS if you have not already done so. When prompted by the Connect to Server dialog
box, ensure that Database Engine is selected from the Server Type drop-down list, type your
server name in the Server Name drop-down list, and ensure that Windows Authentication is
selected in the Authentication drop-down list.

2.	 If Object Explorer does not open, select Object Explorer from the View menu or press F8.

Object Explorer will appear to the left of the SSMS window.

3.	 Near the top of Object Explorer, you should see the word Connect with a drop-down arrow
located directly to the left. Click the drop-down arrow and use the menu that opens to con-
nect to other SQL Server components. Since you have installed only a Database Engine, that is
the only component that can be connected.

	 Chapter 3  Using SQL Server 2012 administration and development tools    25

4.	 You can explore various server objects by expanding any of the folders displayed in Object
Explorer. For example, expand the Management folder. You can now view and configure fea-
tures such as Data Collection, Database Mail, and Extended Events.

5.	 Right-click the server name, which is the topmost item in the Object Explorer tree. From the
context menu, select Reports | Standard Reports | Server Dashboards. This report provides you
with a high-level overview of the server.

6.	 To view more detailed information, instead of selecting Server Dashboards from the report
list, select Activity-All Active Sessions. This report reveals all active open sessions on that
server.

7.	 In the toolbar located above Object Explorer, click the button labeled New Query. A new
query window opens in which you can write queries to create objects, configure components,
and query database objects.

Note  The preceding steps provide a quick overview of some of the SSMS function-
ality. Throughout this book, you’ll learn more details and additional steps to help
you take full advantage of the capabilities of SSMS.

While out of the box SSMS is configured to provide a full set of functionality to administrators and
developers, it also provides you with the ability to make it your own. If you don’t like Object Explorer
on the left, you can move it, or if you don’t like the font of the query editor, you can change it to one
of your choice. You have several options available for configuration.

Personalize SQL Server Management Studio

1.	 Open SSMS if it is not already open.

2.	 Select Tools | Options.

3.	 In the Options dialog box, select Fonts and Colors.

4.	 Select Courier New from the Font drop-down list.

5.	 Select 16 from the Size drop-down list.

6.	 Click OK.

7.	 Open a query window and type SELECT @@SEVERNAME. Click the red exclamation point
icon in the menu bar to execute the query.

8.	 Open Object Explorer if it is not already open.

26   PART I  Getting Started with Microsoft SQL Server 2012

9.	 Click the drop-down arrow located to the right of the words Object Explorer. Select Float from
the menu.

10.	 Click and drag Object Explorer onto the left docking option that appears. This docks Object
Explorer back in its original position. Explore a little and move it to other docking locations.
Find the one that best fits your preference.

Using SQL Server Management Studio to
create solutions and projects

While most of this chapter’s content has been specific to administrators, SSMS does provide func-
tionality for developers as well. In other words, you can create project-based solutions that help you
organize your development and configuration scripts. Using SSMS, you can create a solution, which is
a container of projects. Within SSMS, you can create two types of projects:

■■ SQL Server Scripts

■■ Analysis Services Scripts

In the next exercise, you will create a SQL Server Scripts project.

Create solutions and projects

1.	 Open SSMS if it is not already open.

2.	 From the menu select File | New | Project.

3.	 The New Project dialog box opens.

4.	 There are two Installed Templates to select from. Ensure that you select the SQL Server
Management Studio Projects template. This choice provides two project types. Select SQL
Server Scripts.

5.	 At the bottom of the screen, in the Name text box, type SBS2012Chp3.

6.	 Accept the defaults for the Location and Solution drop-down lists.

7.	 Type SBS2012 in the Solution Name text box.

8.	 Click OK.

To the right, you will notice a new docked window labeled Solution Explorer.

9.	 Right-click the Connections folder.

	 Chapter 3  Using SQL Server 2012 administration and development tools    27

10.	 Select New Connection.

11.	 Type your server name in the Server Name drop-down list.

12.	 Click OK.

13.	 Right-click the Queries folder.

14.	 Select New Query.

15.	 Right-click the newly created query and select Rename.

16.	 Change the name of the query to Select Server Name. Ensure that you don’t remove .sql.

17.	 In the query editor, type SELECT @@SERVERNAME.

18.	 Select File | Save All.

Using SQL Server data tools

SQL Server 2012 introduces a new development environment for SQL Server database developers
called SQL Server Data Tools (SSDT). Although the primary purpose of this tool is development, it
can be used for database deployment and database-level configurations. Using SSDT, you can cre-
ate databases and database objects such as tables, views, stored procedures, and triggers. You can
also edit data within the tables. In addition, you can execute queries and perform database schema
compares.

SSDT replaces Business Intelligence Development Studio (BIDS). As a result, not only can you create
and deploy databases, but you can also create Analysis Services, Integration Services, and Reporting
Services projects. In addition, these projects can be checked into source control solutions such as
Team Foundation Server.

Use SQL Server Data Tools

1.	 Click Start | Microsoft SQL Server 2012 | SQL Server Data Tools.

2.	 If this is your first time opening SSDT, you will be prompted with the following screen. The
options available will vary depending on the software installed on your machine.

28   PART I  Getting Started with Microsoft SQL Server 2012

3.	 Select SQL Server Development Settings from the Choose Your Default Environment Settings
list box.

4.	 Click Start Visual Studio.

5.	 Choose File | New | Project.

6.	 In the Recent Templates pane located in the left of the New Project dialog box, select SQL
Server.

7.	 Select SQL Server Database Project from the project list.

8.	 In the Name text box, type AdventureWorks.

9.	 Accept the default for the Location drop-down list.

10.	 In the Solution Name text box, type SBSChp3.

11.	 Click OK.

12.	 In Solution Explorer, right-click the AdventureWorks project. Select Import | Database. The
Import Database dialog box appears.

	 Chapter 3  Using SQL Server 2012 administration and development tools    29

13.	 Click the New Connection button.

14.	 Type your server name in the Server Name drop-down list.

15.	 Select AdventureWorks2008R2 from the Select or Enter Database Name drop-down list.

16.	 Change the selection in the Folder Structure drop-down list to Object Type.

17.	 Click OK.

18.	 Accept all the defaults for the remaining items and click the Start button. The database import
process begins.

19.	 Once all the objects have been imported, click the Finish button.

20.	 In Solution Explorer, expand the Tables folder.

21.	 Double-click the Address.sql item.

22.	 In the table designer view, locate AddressLine1 under the Name column. For that column,
change the Data Type from nvarchar(60) to nvarchar(65).

23.	 Right-click the AdventureWorks project in Solution Explorer and select Deploy from the con-
text menu. Now the changes are deployed to the database on the server.

Note  The changes made in the design view are replicated to the script view. If the
changes are made in the script view, they are replicated to the design view.

30   PART I  Getting Started with Microsoft SQL Server 2012

Using SQL Server Configuration Manager

SQL Server Configuration Manager, shown in Figure 3-2, allows you to manage the SQL Server ser-
vices that have been installed on your server.

FIGURE 3-2  SQL Server Configuration Manager.

Using SQL Server Configuration Manager, you can perform the following actions:

■■ Start, stop, and pause a service

■■ Change service accounts

■■ Configure network protocols

■■ Configure advanced properties such as AlwaysOn and Filestream

Because these services are centralized, administrators are able to configure and manage services
from one location.

Changing accounts and account passwords are actions often required or requested. For exam-
ple, during installation you may have accepted the defaults for the service account that runs SQL
Server, and now you need to change them. As a best practice, you should always use SQL Server
Configuration Manager to make the changes because it not only changes the account, but also sets
necessary changes to registry permissions so that the account has the proper permissions.

	 Chapter 3  Using SQL Server 2012 administration and development tools    31

Use SQL Server Configuration Manager

1.	 Open SQL Server Configuration Manager by clicking Start | All Programs | Microsoft SQL
Server 2012 | Configuration Tools | SQL Server Configuration Manager.

2.	 In the left pane, right-click the SQL Server (MSSQLSERVER).

3.	 Click Properties in the context menu.

4.	 In the Properties dialog box, you will notice several tabs. Click each to view the available
options.

5.	 With the Log On tab activated, click the Stop button.

6.	 Click the Start button.

7.	 Click OK.

8.	 Expand the SQL Server Network Configuration item.

9.	 Select Protocols from MSSQLSERVER.

10.	 If you want to enable the Named Pipes protocol, right-click and select Enable from the con-
text menu.

Summary

In this chapter, you learned about several administrative and development tools included in Microsoft
SQL Server 2012. Individually, each includes further tools that provide administrators and developers
with the ability to create and manage SQL Server instances and objects at different levels. Together,
they offer a comprehensive set of tools providing a one-stop shop for the functionality needed to
maintain one to many instances of SQL Server.

		 33

PART II

Designing databases

CHAPTER 4	 Designing SQL Server databases 35

CHAPTER 5	 Creating your first table . . 49

CHAPTER 6	 Building and maintaining indexes 73

		 35

C H A P T E R 4

Designing SQL Server databases

After completing this chapter, you will be able to

■■ Understand the requirements and functions of each system database.

■■ Understand the SQL Server database structure.

■■ Create a database.

■■ Add and alter filegroups.

■■ Add files to filegroups.

■■ Detach and attach databases.

■■ Understand database recovery models.

The database is the container for all objects within Microsoft SQL Server for the relational engine.
In this chapter, you will learn about the system databases that store vital information about the
SQL Server instance. You will also learn fundamental techniques needed to create user-defined
databases, along with methods you can use to control how and where data is stored. The methods
include creating databases that consist of multiple filegroups and multiple data files. Finally, you
will learn how to move databases from one instance of SQL Server to another, and you will explore
database recovery models.

Understanding SQL Server System Databases

Before you start creating Microsoft SQL Server 2012 databases, you should have a good understand-
ing of the system databases that are created by default when you install an instance of SQL Server.
Each of the following databases serves a specific purpose and is required to run SQL Server:

■■ master

■■ tempdb

■■ model

■■ msdb

■■ resource

■■ distribution

36   PART II  Designing Databases

master database
The master database, as its name suggests, is the primary system database. Without it, SQL Server
cannot start. The master database contains the most important information about objects within the
SQL Server instance, such as the following:

■■ Databases

■■ AlwaysON

■■ Database mirroring

■■ Configurations

■■ Logins

■■ Resource Governor

■■ Endpoints

For example, if you want to quickly obtain a list of all the databases on an instance of SQL Server,
you can execute the following query:

//The following code returns a list of all databases on an instance of SQL Server
Select * from sys.master_files

This query returns a list of databases and also additional configuration options that have been
specified for each database. This approach is faster than using Microsoft SQL Server Management
Studio (SSMS), where you view this information one database at a time.

tempdb database
The tempdb database is a global playground for temporary objects created by the internal processes
that run SQL Server and temporary objects that are created by users or applications. These temporary
objects included temporary tables and stored procedures, table variables, global temporary tables,
and cursors. In addition to temporary objects, tempdb stores row versions for read-committed or
snapshot isolation transactions, online index operations, and AFTER triggers. One important thing to
note about tempdb is that it is re-created every time SQL Server is restarted. Although you can create
objects in tempdb, you should never use it as a database where persisted information is stored.

model database
The model database is exactly what its name implies: a model for all databases that are created on an
instance of SQL Server. In other words, it’s used as a template each time you create a database. For
example, if you want a particular table to exist in every database created on an instance of SQL Server,
you will create that table in the model database. As a result, each time a database is created, it will
include that table.

	 Chapter 4  Designing SQL Server databases    37

Note  If the model database does not exist or is offline, tempdb cannot be created. This is
because, as mentioned previously, it is re-created each time SQL Server is restarted. Since
each database uses model as a template, and tempdb is no exception, it must exist to re-
create tempdb at startup.

msdb database
The s serves primarily as the back-end database for Microsoft SQL Server Agent. Whenever you create
and/or schedule a SQL Server Agent job, the metadata for that job is stored in this database. In addi-
tion to SQL Server Agent data, msdb stores information for the following components:

■■ Service brokers

■■ Alerts

■■ Log shipping

■■ SSIS packages

■■ Utility control point (UCP)

■■ Database mail

■■ Maintenance plans

resource database
The resource database is a hidden, read-only database that is usually not discussed very often. The
resource database's primary purpose is to improve the upgrade process from one version of SQL
Server to the next. All system objects for an instance of SQL Server are stored within the resource
database. This database cannot be backed up or restored. You should not attempt to change or move
this database unless Microsoft Customer Support directs you to do so.

distribution database
The final system database is the distribution database. This database exists only when you have con-
figured this instance as a distributor for replication. Prior to configuring replication, you must perform
this configuration. All metadata and history for the various types of replication are stored within this
database.

See Also  For more information on replication, see Chapter 19, "Replication."

38   PART II  Designing Databases

View system databases

1.	 Open SQL Server Management Studio (SSMS) and connect to a server.

2.	 Object Explorer should be open. If it is not, press F8 to open it.

3.	 In Object Explorer, expand Databases.

4.	 You will see a folder labeled System Databases. Expand it.

Understanding the SQL Server database structure

As mentioned previously, databases are the primary data storage objects within SQL Server. The
database creation process, while very simple, always requires careful thought relating to the struc-
ture. Databases can be created using many different technologies and techniques. In this chapter,
you will focus on using T-SQL and SSMS. By default, every SQL Server database consists of two files
(see Figure 4-1):

■■ The data file contains data and database objects such as tables, views, and stored procedures.

■■ The log file contains information that assists in the recoverability of transactions in the
database.

SBSChp4DB

Data File (C:\SQLData\SBSChp4DB.mdf)

Log File (C:\SQLData\SBSChp4DB_log.ldf)

FIGURE 4-1  The SQL Server database structure consists of at least a single data file and a single log file.

	 Chapter 4  Designing SQL Server databases    39

Creating a database
There are two types of data files: primary and secondary. When a database is initially created, the
primary data file is created. By default, it contains all the startup information for the database. As
user-defined objects are created, they may also be stored in the primary data file. However, you may
implement certain architectural strategies to improve the performance, scalability, and maintainabil-
ity of your database. These strategies are discussed in the upcoming “Adding Files and Filegroups”
section.

Prior to running the script, create two folders on the root of your C drive: SQLData and SQLLog.

Create your first database with SSMS

1.	 Open SSMS.

2.	 Open Object Explorer, if it is not already opened.

3.	 Click the arrow next to your server.

4.	 Right-click the Databases folder.

5.	 In the context menu, select New Database.

6.	 The New Database dialog box opens. Ensure that General is selected in the Select a Page sec-
tion on the left.

7.	 In the Database Name text box, type SBSChp4SSMS.

8.	 In the Database Files section, locate the Path column. On the first row under the Path column,
click the ellipsis button. Browse to C:\SQLData.

9.	 On the same row, under the File Name column, type SBSChp4SSMS.

10.	 On the second row, under the Path column, click the ellipsis button. Browse to C:\SQLLog.

11.	 On the same row, under the File Name column, type SBSChp4SSMS_log.

40   PART II  Designing Databases

12.	 Click OK.

13.	 In the left section labeled Select a Page, select Filegroup.

Create your first database with T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

--Use this script to create a database using T-SQL
USE master;
CREATE DATABASE SBSChp4TSQL
ON PRIMARY
(NAME='SBSChp4TSQL1', FILENAME = 'C:\SQLDATA\SBSTSQL1.mdf', SIZE=10MB, MAXSIZE=20,
FILEGROWTH=10%)
LOG ON
(NAME='SBSChp4TSQL_log', FILENAME = 'C:\SQLLog\SBSTSQL_log.ldf',
SIZE=10MB, MAXSIZE=200, FILEGROWTH=20%);

Understanding arguments
In the previous script, several arguments are used so that the database is placed in a specific directory
and it grows at a certain rate. SQL Server provides a long list of arguments that can further extend
how a database is created and where it resides. The previous script uses the following commonly used
arguments:

	 Chapter 4  Designing SQL Server databases    41

■■ database_name is the name of the database, which must be unique to any of the databases
that exist at the time of creation.

■■ ON specifies the filegroup and begins the section where the data file is defined.

■■ LOG ON begins the section where the log is defined.

■■ Name is the logical file name used by SQL Server when referencing the file. As with database_
name, it must be unique.

■■ FileName is the operating system path and file name, including the file extension.

■■ Size specifies the initial size of the file in megabytes (MB) by default. Kilobytes (KB), gigabytes
(GB), and terabytes (TB) can also be specified.

■■ Maxsize specifies the maximum size to which the file can grow (shown in megabytes by
default).

■■ Filegrowth specifies the growth increment of the file. It is also shown in megabytes by default,
but it can be specified as a percentage.

Note  This is not an exhaustive list of available database creation options. As you work more
and more with SQL Server, you may discover a need for the other available options, which
you can find in SQL Server Books Online.

Adding files and filegroups

Instead of placing user-defined objects in the primary data file, you have the option of adding a
secondary data file to your database. These files types are usually distinguished by the file extension:
primary files are usually suffixed with .mdf, while secondary files are suffixed with .ndf. Neither is a
requirement; however, it is a best practice to use these extensions. The secondary data files are often
used to spread data across disk subsystems or to add more disk space to a database in the event that
the other data files have reached maximum capacity.

In addition to adding multiple files to a database, another best practice is to group the files using
filegroups. When a database is created, the primary filegroup containing the primary data file is cre-
ated by default. Additional filegroups are then created to ease database administration and typically
to group data files together (see Figure 4-2).

42   PART II  Designing Databases

SBSChp4DB

Prim
ary

Filegroup
Secondary Filegroup

Data File (C:\SQLData\SBSChp4DB.mdf)

Log File (C:\SQLData\SBSChp4DB_log.ldf)

Data File (C:\SQLData\SBSChp4DB1.ndf)

Data File (C:\SQLData\SBSChp4DB2.ndf)

FIGURE 4-2  Database files and filegroups.

In the image are two filegroups:

■■ The primary filegroup contains the primary data file.

■■ The secondary filegroup contains two secondary data files.

Add files and filegroups using SSMS

1.	 Open SSMS and connect to a SQL server instance.

2.	 Expand the Databases folder.

3.	 Right-click the SBSChp4SSMS database and select Properties.

4.	 Select Filegroups from the Select a Page section of the Database Properties dialog box.

5.	 Click the Add button under the Rows section.

6.	 In the newly created row, under the Name column, type SBSSSMSGroup1.

7.	 In the second row, under the Default column, check the box.

	 Chapter 4  Designing SQL Server databases    43

8.	 In the Select a Page section, select Files, and then maximize the window.

9.	 Click Add.

10.	 In the newly created row, under the Logical Name column, enter SBSChp4SSMS1.

11.	 In the Filegroup column, select SBSSSMSGroup1.

12.	 In the Path column, click the ellipsis button. Browse to C:\SQLData.

13.	 In the File Name column, enter SBSChp4SSMS1.ndf.

14.	 Click OK.

Add files and filegroups using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

--Use this code to add a file and filegroup to a database
USE master;
ALTER DATABASE SBSChp4TSQL
 ADD FILEGROUP SBSTSQLGroup1;

44   PART II  Designing Databases

ALTER DATABASE SBSChp4TSQL
 ADD File
 (
 NAME='SBSChp4TSQL2',
 FILENAME = 'C:\SQLDATA\SBSTSQL2.ndf',
 SIZE=10MB,
 MAXSIZE=20,
 FILEGROWTH=10%
)
TO FILEGROUP SBSTSQLGroup1;

Detaching and attaching SQL Server databases

Now that you’ve created your database, what happens if you need to move it to another instance of
SQL Server? For example, assume that you want to redistribute the free space on a server or decom-
mission a server, which would require you to detach a database from one instance of SQL Server
and then attach the database to a new instance of SQL Server. To accomplish this, you can use either
T-SQL or SSMS.

There are currently two ways to attach a database to and one way to detach a database from an
instance of SQL Server. To attach a database, you use sp_attach or CREATE DATABASE specifying the
FOR ATTACH argument. Please note that the sp_attach system stored procedure has been deprecated
and will be removed from future versions of SQL Server. As a result, it is recommended that you use
only the CREATE DATABASE option when attaching databases.

Detach a SQL Server database using SSMS

1.	 Open SSMS.

2.	 Open Object Explorer, if it is not already open.

3.	 Expand the server node.

4.	 Expand the Databases folder.

5.	 Right-click the SBSChp4SSMS database.

6.	 Select Tasks | Detach.

7.	 In the Detach Database dialog box, check the boxes in the Drop Connections and Update
Statistics columns.

	 Chapter 4  Designing SQL Server databases    45

8.	 Click OK.

Now that the database is detached, you can copy the files to the new storage location and attach
the database to a new instance of SQL Server.

Detach a SQL Server database using T-SQL

1.	 Open SSMS, and then open a new query window.

2.	 Enter and execute the following script:

USE Master;
EXEC sp_detach_db @dbname = 'SBSChp4TSQL';

Attach a SQL Server database using SSMS

1.	 Open SSMS.

2.	 Open Object Explorer, if it is not already open.

3.	 Expand the server node.

4.	 Right-click the Databases folder.

46   PART II  Designing Databases

5.	 Click Attach.

6.	 Click the Add button.

7.	 In the Locate Database Files dialog box, expand the folder labeled C.

8.	 Locate and expand the SQLData folder, and then select the SBSChp4SSMS.mdf file.

9.	 Click OK.

10.	 Click OK.

Attach a SQL Server database using T-SQL

1.	 Open SSMS, and then open a new query window.

2.	 Enter and execute the following script:

USE master;
CREATE DATABASE SBSChp4TSQL ON
(FILENAME = 'C:\SQLData\SBSTSQL1.mdf'),
(FILENAME = 'C:\SQLData\SBSTSQL2.ndf'),
(FILENAME = 'C:\SQLLog\SBSTSQL_Log.ldf')
FOR ATTACH;

V413HAV
Typewritten Text
V413HAV

	 Chapter 4  Designing SQL Server databases    47

Understanding database recovery models

A SQL Server database can be set to one of three recovery models:

■■ Simple

■■ Full

■■ Bulk-logged

The model determines how precisely a database may be restored.

Simple model
The simple model does not allow for transaction log backups. As a result, you cannot restore a
database to a point in time. Your database is vulnerable to data loss when using this model. That said,
using this model does ease the task of administration because SQL Server will reclaim space automati-
cally from the transaction log.

Full model
With the full model, data loss is minimal when the transaction log is backed up on a regular basis.
Every transaction is fully logged to the transaction log, and the transaction log will continue to grow
until it is backed up. While this model does add administrative overhead, your data is protected from
data loss.

Bulk-logged model
When you use the bulk-logged model, bulk operations are minimally logged, which reduces the size
of the transaction log. Note that this does not eliminate the need to back up the transaction log.
Unlike in the full recovery model, in the bulk-logged model you can restore only to the end of any
backup; you cannot restore to some point in time.

Summary

You can create SQL Server databases using several different tools. In this chapter, you learned about
two methods to create databases, but you are also able to use other tools such as SQL Server Data
Tools, Windows PowerShell, and the C# and VB .NET programming languages. Each tool offers certain
advantages and disadvantages, therefore you should take some time to explore all options available
to ensure you use the tool that best fits your development needs.

		 49

C H A P T E R 5

Creating your first table

After completing this chapter, you will be able to

■■ Develop a naming standard.

■■ Understand schemas.

■■ Understand the different SQL Server data types.

■■ Understand column properties.

■■ Create and alter tables.

■■ Understand computed columns.

■■ Add constraints to a table.

■■ Understand the FileTable feature.

■■ Create a database diagram.

Just as the database is the primary container of all objects on an instance of Microsoft SQL Server,
the table is the primary container of all data on a SQL Server instance. Tables are the foundation of
all objects, and without them a database is useless. The power in any application is the data that it
accepts and stores. Without a relational database management system (RDBMS) to store and main-
tain that data, the application would likely not exist.

While this book's primary focus is SQL Server, it should be noted that databases come in many
shapes and forms. For example, the most widely used database is a Microsoft Excel spreadsheet.
Many people extract data or request data from an RDBMS and import that data into Excel. Once the
data is in Excel, the end user may create a series of spreadsheets and workbooks that together pro-
vide a very robust reporting tool containing answers to many organizational questions.

The downside of this approach is that those Excel spreadsheets and workbooks become data
silos that are typically stored on users’ machines. If the spreadsheets and workbooks are not secured
and backed up regularly, the information stored in them is vulnerable to a failure or catastrophe. In
addition, the process to populate those spreadsheets and workbooks is often manual, and only one
person understands how it works. Finally, by storing data in Excel, users are not able to realize the
RDBMS benefits of multiuser concurrency and data integrity, which are the foundation of most data-
base management systems.

50   PART II  Designing Databases

The previously described downsides alone provide sufficient justification for using an RDBMS.
Whether you are working with SQL Server or a similar system, most RDBMSs offer a way to centrally
maintain and monitor access and availability to the data. Moreover, they provide governance on
how the data is structured, organized, and delivered. These three key components are not typically
available in something like an Excel spreadsheet. Using a robust RDBMS such as SQL Server provides
administrators and developers with the ability to ensure that data is stored in a central location, and
they can enforce naming standards and additional control that almost guarantee consistent and cred-
ible data across the organization.

In this chapter, you will first learn the importance of implementing and enforcing a naming
standard. From there, you will be introduced to the various data types that are supported by SQL
Server. Then you will create your first table using Microsoft SQL Server Management Studio (SSMS)
and Transact-SQL (T-SQL). Finally, you will use the same methods to add constraints and keys to your
tables.

Developing a naming standard

The first step in any database design project is to develop a naming standard that will be used during
the design process. While naming standard development is definitely not a requirement, continuing
without some standard could yield an unorganized database that may present challenges to develop-
ers when accessing the data. Inconsistent naming conventions often inhibit the development process
indirectly. For a developer who is writing T-SQL to modify or retrieve data, naming standards provide
clear paths to constructing T-SQL statements. For example, assume that you are designing a database
that will store human resources data. You are asked to create a structure that houses information
about individual employees, such as their name, address, phone number, and department. Assume
that you have designed the database shown in Figure 5-1.

tblDepartments

DepartmentIDFK1

EmployeeDept

DeptID
EmpIDFK1

Employee

EmployeeID

Addresses

AddressIdentification
EmployeeIDFK1

FIGURE 5-1  This simple database schema does not have naming conventions.

	 Chapter 5  Creating your first table    51

The database schema in Figure 5-1 shows four tables. Notice that each table uses a different nam-
ing convention. The name of the table that will store address information is plural, and the name of
the table that will store department information is prefixed with tbl. There are other inconsistencies,
but you should get the picture. If you were a developer new to this database, writing T-SQL against
this database could pose a challenge. Since the table names vary, a developer would have to spend
a significant amount of time becoming familiar with the database prior to writing queries. You may
have also noticed the inconsistencies in the column names, which further complicate working with
this database.

Enforcing governance with regard to naming objects within a database makes the database easier
to work with. The following are some best practices:

■■ General standards

•	 Do not use spaces within any object or column name.

•	 Underscore characters are acceptable, but be aware that they can present some challenges
with visualization tools.

•	 Use PascalCase, which means capitalizing the first letter of each word that is used to name
an object or column.

•	 Do not use reserved keywords. Plural table and column names are acceptable, but singular
is preferred in this book. This is completely a matter of preference.

■■ Table naming standards

•	 Names should reflect the contents of the table.

•	 Names must be unique to the database and the schema.

■■ Column naming standards

•	 Names should be unique to each table.

•	 Names should reflect the business use.

•	 Select the appropriate data type, as discussed later in this chapter.

Note  Naming conventions for other objects are discussed when appropriate in context
throughout this book.

Once this governance is put into place, the updated schema for the earlier sample database resem-
bles Figure 5-2.

52   PART II  Designing Databases

Departments

DepartmentIDFK1

EmployeeDeptartment

DepartmentID
EmployeeIDFK1

Employee

EmployeeID

Address

AddressID
EmployeeIDFK1

FIGURE 5-2  This database schema has naming conventions.

All the tables now have a common naming standard. Every new word begins with an uppercase
letter, and the names are spelled completely. The main thing to notice is that each table name reflects
the contents of the table.

Understanding schemas

While a database is the primary container of all objects, schemas offer another level of containment
and organization within a database. Using a schema, a user can group objects of similar scope or
ownership together. By default, the database owner (dbo) schema is automatically created within a
database. Any object that is created is added to this schema. You can change this behavior in a couple
of ways, as you will learn later in this book.

Consider the schema shown in Figure 5-2. You could create a schema containing information
specific to the human resources department. However, if you extend the database to include sales
information for each employee, you can place the new objects in a Sales schema.

Create a database schema using SSMS

1.	 Open SSMS and connect to a SQL Server instance.

2.	 Expand the Databases folder.

3.	 Expand the SBSChp4SSMS database.

4.	 Expand the Security folder.

5.	 Right-click the Schema folder and select New Schema from the context menu.

6.	 In the Schema – New dialog box, type Sales in the Schema Name text box and dbo in the
Schema Owner text box.

	 Chapter 5  Creating your first table    53

7.	 Click OK.

Create a database schema using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this code to create a SQL Server database with a single data and log file
USE SBSChp4TSQL;
GO
CREATE SCHEMA Sales;
GO
CREATE SCHEMA HumanResources;
GO

Note  As a best practice, try to create all schemas prior to creating tables. However,
if that is not possible, you can always move a table or any other object from one to
another using the ALTER SCHEMA …TRANSFER statement.

54   PART II  Designing Databases

A final thing to mention about schemas is that you can grant users permissions to schemas.
In Chapter 25, "Security," you’ll look in depth at several security aspects of SQL Server, including
schemas.

Understanding SQL Server data types

SQL Server contains four distinct data type categories, as shown in Figure 5-3.

Numeric Date and Time

Strings Other

FIGURE 5-3  SQL Server contains four data type categories.

Each of the four categories contains subcategories. All columns within a table, declared variables,
and parameters must have a corresponding data type. A data type simply specifies what type of data
can be placed into the object (column, variable, parameter, and so on). Database integrity depends
heavily on appropriately scoped data types; therefore, you should not always depend or rely on an
application to enforce data type usage.

Numeric data types
The numeric data type has two subcategories: exact and approximate. Exact data types fit within a
finite range of numbers. Table 5-1 lists and defines each exact numeric data type.

TABLE 5-1  Exact Numeric Data Types

Data Type Range Storage

bigint –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 8 bytes

int –2,147,483,648 to 2,147,483,647 4 bytes

smallint –32,768 to 32,767 2 bytes

tinyint 0 to 255 1 byte

money –922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

smallmoney –214,748.3648 to 214,748.3647 4 bytes

If you need a column in a table that only stores values between 1 and 10, you should use a tinyint.

In addition to the data types in Table 5-1, the exact numeric category includes two more data
types: decimal and numeric. They are slightly different from the others in that they allow decimal

	 Chapter 5  Creating your first table    55

places, which are restricted by two values: precision and scale. Essentially, they are very similar in what
and how they store data. Precision is the total number of digits that can be stored on both sides of
the decimal place. This value can only be between 1 and 38. Scale is the number of digits that can be
stored to the right of the decimal place and is only specified when precision is provided. This value
will be between 0 and the specified precision. Therefore, if you wanted to store a four-digit number
with only two digits to the right of the decimal place, you would use decimal(4,2). Table 5-2 lists preci-
sion ranges and their corresponding storage requirements.

TABLE 5-2  Precision Ranges and Storage Requirements

Precision Storage

1–9 5 bytes

10–19 9 bytes

20–28 13 bytes

29–38 17 bytes

The approximate subcategory is similar to the decimal and numeric data types in that one accepts
a precision value, which is float. The other does not accept a precision value; instead, it can store up to
seven digits, which includes digits on both sides of the decimal. For example, if you attempt to store
the number 1234.5678 in a real data type, the value rounds up to 1234.568. However, if you want to
maintain the precision of that value, you can store it in a float(25).

The main difference between the decimal and float data types is that you have a more precise level
of storage with decimal than float. Table 5-3 lists precision ranges and their storage requirements for
approximate numeric data types.

TABLE 5-3  Approximate Precision Ranges and Storage Requirements

nvalue Precision Storage

1–24 7 digits 4 bytes

25–53 15 digits 8 bytes

String data types
The string data type contains three subcategories: character, Unicode, and binary. Each contains three
specific data types. The data types are similar in that each subcategory contains a fixed-length data
type, a variable-length data type, and a data type that has been deprecated.

Note  n defines the string length that can be stored. For variable-length data types, max
can be specified for n, which indicates that the maximum storage size is 2 GB.

56   PART II  Designing Databases

The character string subcategory will store non-Unicode data. The three types are as follows:

■■ char(n)  Fixed-length string data type with a string length between 1 and 8,000.

■■ varchar(n)  Variable-length string data type that can store up to 2 GB of data.

■■ text  Deprecated data type. Replace it with a varchar(max).

The Unicode string subcategory will store both Unicode and non-Unicode data. The three types
are as follows:

■■ nchar(n)  Fixed-length string data type with a string length between 1 and 4,000.

■■ nvarchar(n)  Variable-length string data type that can store up to 2 GB of data.

■■ ntext  Deprecated data type. Replace it with nvarchar(max).

The binary string subcategory will store binary data. The three types are as follows:

■■ binary(n)  Fixed-length binary data type with a string length between 1 and 8,000.

■■ varbinary(n)  Variable-length binary data type with a string length up to 2 GB.

■■ image  Deprecated data type. Replace with varbinary(max).

As a best practice, you should use the fixed-length (char, nchar, binary) data types across all sub-
categories when the values being stored are a consistent size. When the values are not consistent, you
should use the variable-length data types (varchar, nvarchar, varbinary).

Date and time data types
Date and time data types are used widely in SQL Server databases. They offer the convenience of
storing the date and time in various ways. There are six date and time data types.

■■ time(n)  This data type stores the time of day without time-zone awareness based on a
24-hour clock. time accepts one argument, which is fractional seconds precision. You can only
provide values between 0 and 7. As the number increases, so does the fractional precision. If
you specify a data type of time(2), you can store a value similar to 11:51:04:24. Changing 2 to 3
increases the precision to three numbers, similar to 11:51:04:245.

■■ date  This data type stores a date value between 01-01-01 and 12-31-9999.

■■ smalldatetime  This data type stores a date and time value. The value of the date is between
1/1/1900 and 6/6/2079. The time precision is down to seconds. A value of 4/1/2012 11:15:04
can be stored using this data type.

■■ datetime  This data type is similar to smalldatetime, but it offers a larger date range and a
higher level of precision with regard to time. It offers the same date range as the date param-
eter, 01-01-01 to 12-31-9999, and it has a more precise value of time. A value of 4/1/2012
11:15:04:888 can be stored using this data type.

	 Chapter 5  Creating your first table    57

■■ datetime2(n)  This data type is similar to datetime, but it offers extended flexibility of time.
Unlike with datetime, you can control the fractional second precision with a value. You can
only provide values between 0 and 7. If you specify a data type of datetime2(2), you can store
a value similar to 4/1/2012 11:51:04:24. Changing 2 to 3 increases the precision to three num-
bers, similar to 4/1/2012 11:51:04:24.

■■ datetimeoffset  This data type includes all the capabilities of datetime2, and it also has time-
zone awareness. This makes it unique among the date and time data types. Using this data
type, you can store the time-zone offset along with the date and time. A value of 4/1/2012
03:10:24 -06:00 can be stored using this data type.

Other data types
In addition to the data types covered in the preceding sections, SQL Server includes several other
data types. Table 5-4 lists each additional data type with a brief description.

TABLE 5-4  Other SQL Server 2012 Data Types

Data Type Description

cursor A temporary copy of data that will be used for recursive or iterative processes. Of all the
data types, this is the only one that cannot be included as part of a table.

rowversion(timestamp) This data type automatically generates an 8-byte value similar to 0x0000000000000001.
rowversion replaces the timestamp data type, which has been deprecated. This data type
is typically used to detect changes in data.

hierarchyid This is a positional data type. It represents a position in a hierarchy. hierarchyid is used to
organize data such as a bill of materials and organizational charts.

sql_variant This is the chameleon of data types. sql_variant can assume the identity of just about
any data type in the list of SQL Server data types. Prior to performing any types of op-
erations on it, you must convert it to the respective data type. For example, if you want
perform addition, you must cast this data type to an int or some other numeric data
type that supports that operation.

xml You can store actual XML data using this data type.

geospatial SQL Server supports two geospatial data types: GEOGRAPHY and GEOMETRY.
GEOGRAPHY represents data in a round-earth coordinate system. GEOMETRY is a flat or
planar data type in which you can store points, lines, and other geometric figures.

filestream
This data type allows you to store common unstructured data such as documents and
images. SQL Server has been coupled with the NTFS file system, allowing the storage of
varbinary(max) on the file system.

Since the data types in Table 5-4 are typically used for advanced operations, details regarding how
to use them are beyond the scope of this book. If you feel the need to delve deeper into these data
types, you can search SQL Server Books Online for some great examples.

58   PART II  Designing Databases

Understanding column properties

You're almost ready to create your first table. Before doing so, however, you must understand that
a table contains one or more columns, which make up the rows of a table. Each column stores very
specific information. You can configure certain properties for a given column based on the selected
data type, which is a property itself.

The most common property is Allow Nulls. This simply means that you can insert a row into
the table without supplying a value. For example, say you have a table that contains FirstName,
MiddleName, and LastName. Every person does not have a middle name; therefore, that value should
be optional. When designing your table, consider the business logic behind the value when deciding
nullability.

Note  NULL is a special value in the database world. It does not mean empty; rather, it rep-
resents the absence of a value and is different from an empty string.

The second most common property is Is Identity. It is second because it is only available for most
numeric data types. When you set this value for a column, SQL Server automatically generates a num-
ber as each row is inserted. You can customize or configure the starting point and how the number
will increment using the properties that are available. You will learn how to configure the identity
value later in this chapter.

SQL Server 2012 introduces a new autonumber-generating mechanism called Sequence, which is
a schema-bound object that generates a sequence of numeric values based on certain options speci-
fied during its creation. Chapter 12, “Modifying Data,” discusses this topic at length.

Creating tables

Admittedly, creating tables with SSMS is much easier than with T-SQL. The biggest disadvantage to
using SSMS, though, is not having very portable code. Once T-SQL is written, it can be saved and
executed against the same instance or another instance of SQL Server without your having to re-
create the script, but this is not the case with SSMS. If you use the table designer to create a table, you
are required to perform the same steps on another instance of SQL Server if you want to re-create the
table. Nevertheless, it is worth knowing and understanding the steps. You should learn how to create
the table using T-SQL not only because most things on SQL Server are accomplished using T-SQL, but
also because it allows for easy portability.

Now it is time to create a table of your own. Create a table named Addresses using the information
provided in Table 5-5.

	 Chapter 5  Creating your first table    59

TABLE 5-5  Address Table Requirements

Name Data Type Length Allow Nulls Identity

AddressID int NA No Yes
(start at 1 increment by 1)

StreetAddress varchar 125 No NA

StreetAddress2 varchar 75 Yes NA

City varchar 100 No NA

State char 2 No NA

EmployeeID int NA No NA

Create a table using SSMS

1.	 With SSMS open, expand the Databases folder.

2.	 Expand the SBSChp4SSMS database.

3.	 Expand the Security folder.

4.	 Right-click the Schemas folder.

5.	 Select New Schema from the menu.

6.	 In the Schema – New dialog box, type HumanResources in the Schema Name text box.

7.	 Type dbo in the Schema Owner text box.

8.	 Click OK.

9.	 Right-click the Tables folder. The table designer opens.

10.	 Select New Table from the menu.

60   PART II  Designing Databases

11.	 In the Column Name column, type AddressID.

12.	 Click in the Data Type column and select int from the drop-down list.

13.	 In the Column Properties tab that is located at the bottom of the table designer window, scroll
down to and expand Identity Specification.

14.	 Set the Is Identity property to Yes.

15.	 In the next row of the column list, type StreetAddress in the Column Name column.

16.	 Click in the Data Type column and select varchar from the drop-down list, changing the char-
acter string length to 125.

17.	 Uncheck the box under the Allow Nulls column.

18.	 Repeat steps 16–18 for each additional column, setting the property according to the
specifications.

	 Chapter 5  Creating your first table    61

19.	 Select View | Properties. The Properties window opens.

20.	 Locate and click in the Schema property. Select HumanResources from the drop-down list.

21.	 Locate and expand the Regular Data Space Specification property. In the Filegroup or Partition
Scheme Name property, ensure that SBSSSMSGroup1 is selected.

22.	 Click the Save button.

23.	 Type Address in the text box in the Choose Name window.

24.	 Click OK.

62   PART II  Designing Databases

Create a table using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE SBSChp4TSQL;
CREATE TABLE HumanResources.Address
(
 AddressID int NOT NULL IDENTITY(1,1),
 StreetAddress varchar(125) NOT NULL,
 StreetAddress2 varchar(75) NULL,
 City varchar(100) NOT NULL,
 State char(2) NOT NULL,
 EmployeeID int NOT NULL
) ON [SBSTSQLGroup1];

Altering tables

Now you are equipped with the skills you need to create tables with T-SQL and SSMS, but what if
someone asks you to change one of your tables? How will you make that change? Not to worry— just
as you created the tables with T-SQL and SSMS, you can also modify the tables. You can add columns,
change columns, and drop columns using either tool.

Prior to walking through the next set of steps, execute the following script:

USE SBSChp4TSQL;
 CREATE TABLE HumanResources.Employee
	 (
 EmployeeID int NOT NULL IDENTITY(1,1),
 FirstName varchar(50) NOT NULL,
 MiddleName varchar(50) NULL,
 LastName varchar(50) NOT NULL
) ON [SBSTSQLGroup1]; USE SBSChp4SSMS;CREATE TABLE HumanResources.Employee
 (
 EmployeeID int NOT NULL IDENTITY(1,1),
 FirstName varchar(50) NOT NULL,
 MiddleName varchar(50) NULL,
 LastName varchar(50) NOT NULL
) ON [SBSSSMSGroup1];

Add a column to an existing table using SSMS

1.	 Ensure that SSMS is open and you are connected to your server.

2.	 Expand the Databases folder.

3.	 Expand the SBSChp4SSMS database.

4.	 Expand the Tables folder.

	 Chapter 5  Creating your first table    63

5.	 Right-click the HumanResources.Employee table and select Design.

6.	 Type Gender in the first empty row in the Column Name column.

7.	 In the Data Type column, type char(1).

8.	 In the Allow Nulls column, uncheck the box.

9.	 Click Save.

Add a column to an existing table using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this code to add the Gender column to the Employee table
USE SBSChp4TSQL;
ALTER TABLE HumanResources.Employee
 ADD Gender char(1) NOT NULL;

Understanding computed columns

Not only can you insert data directly into columns, but you can also derive columns from other col-
umns. These columns are known as computed columns. Typically, computed columns will extend or
enhance the data that is stored in traditional columns.

Add a computed column using SSMS

1.	 Ensure that SSMS is open and you are connected to your server.

2.	 Expand the Databases folder.

3.	 Expand the SBSChp4SSMS database.

4.	 Expand the Tables folder.

5.	 Right-click the HumanResources.Employee table and select Design.

6.	 Under Gender, in the next row, type FullName and press the Tab key.

64   PART II  Designing Databases

7.	 In the Column Properties section at the bottom of the table designer screen, locate and
expand the Computed Column Specification property.

8.	 In the Formula property, type LastName+', '+FirstName.

9.	 Click Save.

Add a computed column using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this code to add the Gender column to the Employee table
USE SBSChp4TSQL;
ALTER TABLE HumanResources.Employee
 ADD FullName AS LastName+', '+FirstName;

Adding constraints to a table

SQL Server 2012 allows you to add several constraints to a table. The primary goal of most constraints
is data integrity. In other words, their purpose is to improve the validity and consistency of your data.
This section covers five constraints: primary key, default, unique, check, and foreign key.

Primary key constraints
As previously stated, a primary key is a column that contains a unique list of values. Often an integer
column is added to a table with the identity property and is used as the primary key. However, you
can create a primary key from almost any column or combination of columns. The main limitations are
that the column cannot allow nulls, the values must be unique, and you can have only one primary key
per table. Since you’ve already created two tables, you’ll create primary keys on those tables. Both the
Employee and Address tables have ID values that are unique and can be used as primary keys.

	 Chapter 5  Creating your first table    65

Default constraints
Default constraints are perfect when you have a column that typically contains a specific value. A
really good candidate for this is a column that has a data type of bit. The bit data type only accepts
1 or 0 (true or false). If you add an Active column to the Employee table that specifies whether
an employee is currently working for the company, the default value will probably be true or 1.
Therefore, you should set the default value for that column accordingly.

Unique constraints
Unique constraints are sometimes confused with primary keys. These constraints simply ensure that
duplicate values cannot be inserted into the corresponding column. For example, assume that you
must add a column for Social Security numbers to the Employee table. Since Social Security numbers
are truly unique values, you should add a unique constraint to ensure that a given Social Security
number is entered only once.

Check constraints
The final constraint, check, allows you to check the value that is being inserted against logical expres-
sions. This constraint is similar to the foreign key column, in that it controls what values are inserted.
The foreign key column gets its values from another table, while check constraints use expressions.

Add constraints using SSMS

Execute the following query prior to following the steps in this exercise:

USE SBSChp4TSQL;
ALTER TABLE HumanResources.Employee
 ADD Active bit NOT NULL;

ALTER TABLE HumanResources.Employee
 ADD SocialSecurityNumber varchar(10) NOT NULL;

USE SBSChp4SSMS;
ALTER TABLE HumanResources.Employee
 ADD Active bit NOT NULL;

ALTER TABLE HumanResources.Employee
 ADD SocialSecurityNumber varchar(10) NOT NULL;

1.	 Ensure that SSMS is open and you are connected to your server.

2.	 Expand the Databases folder.

3.	 Expand the SBSChp4SSMS database.

4.	 Expand the Tables folder.

66   PART II  Designing Databases

5.	 Right-click the HumanResources.Employee table, and then select Design.

6.	 Right-click the EmployeeID column, and then select Set Primary Key from the context menu.

7.	 Select the Active column.

8.	 In the Properties window, locate Default Value or Binding property.

9.	 Type 1 as the property value.

10.	 In the menu bar, click the Manage Indexes and Keys icon.

11.	 Click the Add button in the Indexes/Keys window.

12.	 Locate the Name property and type UQ_Employee_SSN as the property value.

13.	 Locate the Is Unique property and set the value to Yes.

	 Chapter 5  Creating your first table    67

14.	 Locate the Type property and set the value to Unique Key.

15.	 Click Close.

16.	 In Object Explorer, expand the HumanResources.Employee table if it is not already expanded.

17.	 Right-click the Constraints column, and then select New Constraint from the context menu.

18.	 In the Check Constraint dialog box, change the value for the Name property to
CK_Employee_Gender_MF.

19.	 Click the Value box for the Expression property, and click the ellipsis that appears.

20.	 In the Expression box, enter ([Gender = 'Female' OR [Gender] = 'Male').

21.	 Click Close.

22.	 Click Save.

Add a computed column using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE SBSChp4TSQL;
ALTER TABLE HumanResources.Employee
 ADD CONSTRAINT PK_HumanResourcesEmployee_EmployeeID
 PRIMARY KEY (EmployeeID);

ALTER TABLE HumanResources.[Address]
 ADD CONSTRAINT PK_HumanResourcesAddress_AddressID
 PRIMARY KEY (AddressID);ALTER TABLE HumanResources.Employee
 ADD CONSTRAINT DF_HumanResourcesEmployee_Active_True DEFAULT(1) FOR Active;

ALTER TABLE HumanResources.Employee
 ADD CONSTRAINT UQ_HumanResourcesEmployee_SocialSecurityNumber
 UNIQUE (SocialSecurityNumber);

68   PART II  Designing Databases

Foreign key constraints
The integrity of data is the most important concern in a database. If you allow the insertion of bad
data, then that is what is going to come out. Foreign keys play a vital role in enforcing the referen-
tial integrity of the database. You may have noticed the EmployeeID column in the Address table. To
ensure that only employee IDs that exist in the Employee table are inserted into the Address table,
you need to create a foreign key constraint.

Create foreign key constraints using SSMS

Prior to following the steps of this exercise, execute this script:

USE SBSChp4SSMS
ALTER TABLE HumanResources.Address
 ADD CONSTRAINT PK_HumanResourcesAddress_AddressID
 PRIMARY KEY (AddressID);

1.	 Ensure that SSMS is open and you are connected to your server.

2.	 Expand the Databases folder.

3.	 Expand the SBSChp4SSMS database.

4.	 Expand the Tables folder.

5.	 Expand the HumanResources.Address table.

6.	 Right-click the Keys folder and select New Foreign Key.

7.	 In the Foreign Key Relationships dialog box, locate the Name property and type FK_
Employee_To_Address_On_EmployeeID as the value.

8.	 Click in the text box next to the Table and Columns Specification property.

9.	 Click the ellipsis button that appears.

	 Chapter 5  Creating your first table    69

10.	 In the Tables and Columns dialog box, select Employee(HumanResources) from the Primary
Key Table drop-down list.

11.	 Select EmployeeID from the drop-down list directly below the Primary Key Table drop-down
list.

12.	 In the drop-down list to the right, select EmployeeID.

13.	 Click OK.

14.	 Click Close.

15.	 Click Save.

16.	 If a warning window appears, click Yes.

Create foreign key constraints using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE SBSChp4TSQL;
ALTER TABLE HumanResources.Address
 ADD CONSTRAINT FK_Employee_To_Address_On_EmployeeID
 FOREIGN KEY (EmployeeID)
 REFERENCES HumanResources.Employee(EmployeeID);

Note  The foreign key constraint must be created on the table where the key column
is not the primary key.

Understanding the FileTable

SQL Server 2012 introduces a new type of table, the FileTable. This table builds on the existing
FileStream technology. Therefore, you must enable the FileStream capabilities prior to creating a
FileTable. The FileTable feature allows you to store various types of documents, and you can also
directly query the attributes exposed by the Windows file system using T-SQL.

FileStream is an advanced feature of SQL Server, and a detailed description of it is beyond the
scope of this book. However, an introduction to the FileTable is necessary because it offers some
unique capabilities to the RDBMS. It brings together SQL Server and the Windows file namespace. As
a result, integrated SQL Server services such as full-text and semantic search can query the unstruc-
tured data stored in the FileTable.

70   PART II  Designing Databases

Creating database diagrams

One of the most unused features of SSMS is the diagramming tool. Sure, it may not be as robust as
some third-party diagramming tools, but on the other hand, it is a very intuitive product. It has all the
features needed to provide a visual representation of a database.

Create a database diagram using SSMS

1.	 To create a database diagram, expand the AdventureWorks2012 database.

2.	 Expand the Database Diagram folder.

3.	 You are prompted to create support objects for diagramming if this is the first time you have
created a diagram in this database. Click Yes.

4.	 Right-click the Database Diagrams folder and select New Database Diagram. Select the tables
that are shown in the following image by holding down the Shift key as you click the tables.

5.	 Click Add.

You will see a database diagram that includes a complete list of columns for each table and,
most important, the foreign key relations between the tables.

	 Chapter 5  Creating your first table    71

Summary

This chapter has taken you on a journey through several new concepts, technologies, and tools. You
created tables that contain columns of varying data types. In addition, you learned how to add con-
straints to the tables and columns that assist in ensuring the consistency and validity of the inserted
or modified data. As you progress through this book, all the knowledge you gained in the chapter will
continue to be helpful as you build on what you have learned here—the ride has just begun.

		 73

C H A P T E R 6

Building and maintaining indexes

After completing this chapter, you will be able to

■■ Understand the structure of an index.

■■ Understand the different types of indexes.

■■ Create different types of indexes.

■■ Add included columns and filters to an index.

■■ Place an index in a filegroup.

■■ Disable and drop an index.

An index is an on-disk data structure that is based on tables and views. Indexes make the retrieval
of data faster and efficient, in most cases. However, overloading a table or view with indexes could
adversely affect the performance of other operations such as inserts or updates.

In this chapter, you will be introduced to the basic structure of clustered, nonclustered, and
columnstore indexes, and you will learn the differences between each of the aforementioned index
types. You will also learn how to create, alter, and drop clustered and nonclustered indexes.

Index structure overview

Indexes can be categorized into two primary types: clustered and nonclustered. There are several
other types of indexes, and detailing these is beyond the scope of this book, but you can find more
information in SQL Server Books Online. The indexes are created on a column or columns on tables
and views. The purpose of clustered and nonclustered indexes is to improve how the Microsoft SQL
Server Database Engine accesses the data.

While both index types may improve read operations, there is also a possibility that they could
negatively affect the performance of some operations like inserts and updates. Therefore, you need
to be selective when creating indexes. In most cases, highly transactional databases are indexed dif-
ferently than those that support mostly read operations. In the next set of exercises, you will create a
clustered index.

74   PART II  Designing Databases

Create your first clustered index using SSMS

1.	 Open SQL Server Management Studio (SSMS) and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the dbo.DatabaseLog table.

6.	 Right-click the Indexes folder.

7.	 Select New Index | Clustered Index.

8.	 In the New Index dialog box, click the Add button.

	 Chapter 6  Building and maintaining indexes    75

9.	 In the Select Columns dialog box, check the box next to the PostTime column.

10.	 Click OK.

11.	 Click Ascending in the New Index dialog box.

12.	 In the newly available drop-down list, select Descending.

76   PART II  Designing Databases

13.	 In the Name text box, type CIX_DatabaseLog_PostTime.

14.	 Click OK.

Note  In Chapter 5, “Creating Your First Table,” you learned how to create primary
keys. By default, a primary key will create a clustered index; however, this is not a
requirement.

Create a clustered index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to create a clustered index
USE AdventureWorks2012;
CREATE CLUSTERED INDEX CIX_DatabaseLog_PostTime
ON dbo.DatabaseLog
(
 PostTime DESC
)
WITH(DROP_EXISTING = ON);

Note  In the preceding script an index option, DROP_EXISTING, is used, which drops
the index if it exists and re-creates it. Additional index options are discussed later in
this chapter.

Clustered index structure
Before continuing with the index, let's take a brief detour to discuss the structure of a clustered index.
Each table or view can have only one clustered index. This is because a clustered index changes the
way the data is stored and sorted. Both clustered and nonclustered indexes store information in a
balanced tree, or B-tree. A B-tree identifies similar data and groups it together. The fast access of the
data that an index provides can be attributed to the fact that searches on a B-tree are based on key
values. Since a B-tree groups records with similar keys together, the Database Engine will need to
navigate only a few pages to find the records.

See Also  You can find more information about creating indexed views in Chapter 15, “Views.”

	 Chapter 6  Building and maintaining indexes    77

Let’s start at the top. Both indexes have a single root page where navigation begins. This root page
contains index pages that hold index rows. Figure 6-1 shows the root level.

Index Rows
Ro

ot 1-20

FIGURE 6-1  The root level of a clustered index.

Within these index rows are keys and pointers. The keys are the columns you included when
you created the index. The pointers bring you to the next levels of the tree. They could point to the
intermediate level or the leaf level. Where they point depends on the size of the index rows and the
number of rows in the table. Figure 6-2 displays the root and intermediate levels of a clustered index.

Index Rows

Ro
ot

In
te

rm
ed

ia
te Index Rows Index Rows

1-20

1-10 11-20

FIGURE 6-2  The root and intermediate levels of a clustered index.

Notice how the data is evenly distributed across the two pages at the intermediate level.

Note  If you create a very large key clustered index that has multiple key columns, fewer
keys will fit on a page. As a result, you could have more pages and maybe even more levels.
As a best practice, consider choosing a narrow key, which should minimize the number of
pages in the intermediate level. For this reason, integers make an excellent choice for clus-
tered indexes, especially when using identity columns.

78   PART II  Designing Databases

The bottom level, or leaf level, contains all the data. In other words, the data is stored in the clus-
tered index, but only at the leaf level. Thus, the clustered index keeps the data in the table ordered by
the key. To get to this leaf level, you will have pointers from either the root or the intermediate level
(see Figure 6-3).

Index Rows

Ro
ot

In
te

rm
ed

ia
te

Le
af

Index Rows

Data Pages Data Pages Data Pages Data Pages

Index Rows

1-5 6-10 11-15

1-20

1-10 11-20

16-20

FIGURE 6-3  A complete clustered index B-tree.

As you navigate the B-tree, notice how the data becomes more granular and spread out, but it
remains well balanced. This is what makes the B-tree so powerful.

Note  A table that does not have a clustered index is called a heap. Data stored in a heap
does not have any organization and could return data very slowly. As a best practice, con-
sider adding a clustered index to all tables in your database.

Nonclustered index structure
The B-tree structure of the nonclustered index is similar to that of a clustered index. The B-tree has a
root and leaf level, as depicted in Figure 6-4.

	 Chapter 6  Building and maintaining indexes    79

Ro
ot

In
te

rm
ed

ia
te

Le
afN

on
cl

us
te

re
d

In
de

x
Cl

us
te

re
d

In
de

x
Index Rows

Index Rows Index Rows Index Rows Index Rows

Data Rows Data Rows Data Rows

FIGURE 6-4  A nonclustered index structure.

Notice that the \leaf level of the nonclustered index contains index rows instead of data rows.
The leaf level contains bookmarks that direct it to data rows (leaf level) in the clustered index that
contains the data. Since the nonclustered index does not contain any data, it does not affect the way
data is stored or sorted. As a result, you can have multiple nonclustered indexes on a single table. In
Microsoft SQL Server, you can create an index that includes a column or columns that are already part
of an existing index. As a result, you should always consider changing or replacing an existing index
prior to adding new indexes.

Note  You can create a nonclustered index on tables that are heaps. In that case, the leaf
level of the nonclustered index will contain row identifier lookups. While you can create
nonclustered indexes on heaps, the results may not be the same because a clustered index
does not exist.

80   PART II  Designing Databases

Create your first nonclustered index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Right-click the Indexes folder.

7.	 Select New Index | Non-Clustered Index.

8.	 In the Index Name text box, type IX_SalesOrderHeader_OrderDate.

9.	 Click Add.

10.	 Check the box next to the OrderDate column.

11.	 Click OK.

12.	 Click OK.

Create a nonclustered index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to create a nonclustered index
USE AdventureWorks2012;
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_DueDate
ON Sales.SalesOrderHeader
(
 DueDate
);

Columnstore index structure
SQL Server 2012 introduces a new type of nonclustered index called the columnstore index, which is
available only if you're using the Enterprise version of SQL Server. Instead of storing the data rows
contiguously across pages, all the data contained within a column is stored contiguously down a set
of pages. Figure 6-5 illustrates how the data is stored.

	 Chapter 6  Building and maintaining indexes    81

C1 C2 C3 C4

Segment

Row
 G

roup

C5

FIGURE 6-5  The columnstore index structure.

So instead of storing all the data in one structure, it is horizontally partitioned into row groups.
Within a columnstore index is a segment. A segment contains all the values from one column of a row.
The segments are broken down into row groups. Segments for the same sets of rows are stored within
a row group.

This is a very different type of index than the traditional clustered and nonclustered indexes.
Therefore, you should carefully consider your needs prior to using the columnstore index in your
database. Here are few scenarios in which you should use a columnstore index:

■■ The database is mostly read.

■■ Most updates are appending the new data.

■■ The database is a data warehouse.

These characteristics are uncommon in traditional operational databases. As a result, it is recom-
mended that columnstore indexes be used only on data warehouses. Another contributing factor
to why columnstore indexes should currently be used only on data warehouses is that you cannot
update a table that has a columnstore index. This may or may not change in future releases of SQL
Server. The index has to be removed for any updates to occur. As a result, you should avoid creating
this type of index on tables that are frequently updated or that require small lookup queries.

82   PART II  Designing Databases

Adding index options

Now that you have some basic index creation skills, it’s time to add a few options to your indexes to
make them a little more flexible and robust. While SQL Server indexes boast a long list of available
options, in this section you will focus on only the more common ones. A brief description will be pro-
vided for those options that are not fully explained and described.

The most common option is FILLFACTOR. If you think about the name of the option, you can
almost derive its purpose. Each data page on the leaf level of a clustered index holds a maximum
amount of data, approximately 8,060 bytes. There are some variances, but describing them is beyond
the scope of this book. FILLFACTOR tells SQL Server how full the leaf-level pages of the index should
be when rebuilding or reorganizing an index. Rebuilding and reorganizing and index are part of index
maintenance and will be discussed at length in Chapter 21, “Managing and Maintaining Indexes and
Statistics.” If you do not specify a FILLFACTOR during index creation, it will be 100. This means the
data pages will be completely full. When the data changes through insert, update, or delete opera-
tions, then the page will have to change or, as we say in the database world, split. When a page splits,
50 percent of the data will be on one page and 50 percent will be on the other. A few page splits are
not too bad, but if this is a regular occurrence, the performance of your database could suffer. While
the explanation of how to determine what a FILLFACTOR should be is a very advanced topic, as a
baseline, if you have a table that is frequently modified, consider setting the FILLFACTOR between 70
and 80. If a table is not updated too often, a FILLFACTOR of 90 should be sufficient.

Note  FILLFACTOR can be set at the index level, but it can also be set at the server level. If
you open the Properties dialog box on the server and go to Database Settings, you can set
the Default Index fill factor.

The next option, which is tightly coupled with FILLFACTOR, is PAD_INDEX. This option has the
same effect on pages in the index structures as FILLFACTOR, but instead of data pages, it controls
how full the intermediate-level pages will be. Unlike with FILLFACTOR, you cannot set a value for
PAD_INDEX; it inherits the value from FILLFACTOR.

When an index is created, the data has to be sorted, and this requires the containing database to
have sufficient space for this operation, which could cause performance problems. However, using the
SORT_IN_TEMPDB option relocates the sort operations to tempdb. As a best practice, tempdb should
be stored on a separate set of disks from other databases. Not only can doing this improve perfor-
mance, but it also allows you to transfer disk space requirements to tempdb.

Table 6-1 provides a list of the additional index options and a brief description of each.

	 Chapter 6  Building and maintaining indexes    83

TABLE 6-1  Additional Index Options

Option Description

IGNORE_DUP_KEY During a multirow insert that contains duplicate key values, setting this option to
ON will ensure that only one unique row is inserted and the integrity of the index is
not violated.

STATISTICS_NORECOMPUTE Statistics are vital to SQL Server with regard to determining how a query will be
executed. As such, statistics need to be updated regularly. You can stop statistics
from automatically recomputing by setting this option to ON.

ONLINE Index maintenance is pivotal. You must rebuild and reorganize your indexes on a
regular basis. However, when these operations are performing, users cannot access
the data. Setting this option to ON allows data access. Please note that you must
own the Enterprise version of SQL Server to use this option; Chapter 21 discusses this
option further.

ALLOW_ROW_LOCKS When accessing data, if this option is set to ON, SQL Server will lock the accessed
rows.

ALLOW_PAGE_LOCKS When accessing data, if this option is set to ON, SQL Server will lock the accessed
pages.

MAX_DOP Using this option, you can control how many processors are used during index
creation.

DATA_COMPRESSION This option is available only in the Enterprise version of SQL Server. There are two
types of compression: ROW and PAGE. Both are discussed in detail in Chapter 7,
“SQL Server Compression.”

Take some time and explore the index options. Create indexes with some of these options for prac-
tice and to further extend your knowledge.

Change index options using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the dbo.DatabaseLog table.

6.	 Expand the Indexes folder.

7.	 Right-click the CIX_DatabaseLog_PostTime index and select Properties.

84   PART II  Designing Databases

8.	 In the Index Properties dialog box, select Options from the Select a Page section.

9.	 Locate the Sort in tempdb property and change the value to True.

10.	 Locate the Fill Factor property and change the value to 80.

11.	 Locate the Pad Index property and change it to True.

	 Chapter 6  Building and maintaining indexes    85

12.	 Click OK twice.

Change index options using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to add index options to an index
USE AdventureWorks2012;
CREATE CLUSTERED INDEX CIX_DatabaseLog_PostTime
ON dbo.DatabaseLog
(
 PostTime DESC
)
WITH(DROP_EXISTING = ON, SORT_IN_TEMPDB = ON, FILLFACTOR = 80, PAD_INDEX = ON);

Adding included columns

Recall from the discussion of nonclustered indexes that the leaf level contains bookmark lookups to
the leaf level of the clustered index. This operation can sometimes slow down the processing of a
query. To circumvent this issue, SQL Server allows you to add additional information in the leaf level
of a nonclustered index. You do so by adding the INCLUDED argument to your index creation script.

86   PART II  Designing Databases

In short, the included column improves the performance of a query by eliminating the need for it
to obtain data from the clustered index. This technique is synonymous with a tuning strategy known
as covering indexes. A covering index is a nonclustered index that has all the information at the leaf
level to satisfy a query.

Add included columns to an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Indexes folder.

7.	 Right-click the IX_SalesOrderHeader_OrderDate index and select Properties.

8.	 In the Index Properties dialog box, select the Included Columns tab.

9.	 Click the Add button.

10.	 Check the boxes next to the Status and AccountNumber columns.

11.	 Click OK.

12.	 Click OK twice.

	 Chapter 6  Building and maintaining indexes    87

Add included columns to an index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to add included columns to an index
USE AdventureWorks2012;
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader
(
 OrderDate
)
INCLUDE(Status, AccountNumber)
WITH(DROP_EXISTING = ON);

Adding filters to indexes

Just as included columns enhance the capabilities of a nonclustered index, so do filters. Filtered
indexes optimize nonclustered index performance by using a filtered predicate to refine data down
to a small subset. As a result, you have a smaller index that requires less storage and maintenance,
and offers improved performance. Filtered indexes are ideal for columns that contain a smaller set of
pertinent values for queries.

Add a filter to an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Indexes folder.

7.	 Right-click the IX_SalesOrderHeader_OrderDate index and select Properties.

8.	 Click Filter in the Select a Page section of the Index Properties dialog box.

9.	 Type OnlineOrderFlag = 0 in the Filter Expression text box.

88   PART II  Designing Databases

10.	 Click OK twice.

Add a filter to an index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to add a filter to an index
USE AdventureWorks2012;
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader
(
 OrderDate
)
INCLUDE(Status, AccountNumber)
WHERE(OnlineOrderFlag = 0)
WITH(DROP_EXISTING = ON);

	 Chapter 6  Building and maintaining indexes    89

Placing indexes

The last argument determines where the index will reside on disk. If you do not provide a location,
the index will be placed in the same filegroup as the base table. We discussed filegroups earlier.
However, if you prefer, you can place an index in a different filegroup or partition.

See Also  Chapter 4, “Designing SQL Server Databases,” discusses filegroups, and Chapter 8, “Table
Partitioning,” covers partitions in depth.

If you want to place an index in a filegroup other than the PRIMARY filegroup, you must first have
a filegroup that includes a data file. The following code adds a second filegroup and one data file to
the AdventureWorks2012 database:

USE master;
ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP AW2012FileGroup2;

ALTER DATABASE AdventureWorks2012
ADD FILE
(
 NAME = IndexFile,
 FILENAME = 'C:\SQLData\IndexFile.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP AW2012FileGroup2;

Now with the pieces in place, in the next exercise you’ll modify an existing index to move it to the
new filegroup.

Place an index in a filegroup using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Indexes folder.

7.	 Right-click the IX_SalesOrderHeader_OrderDate index and select Properties.

8.	 Select Storage in the Select a Page section.

9.	 Select AW2012FileGroup2 from the Filegroup drop-down list.

90   PART II  Designing Databases

10.	 Click OK twice.

Place an index in a filegroup using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to place an index in a filegroup
USE AdventureWorks2012;
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader
(
 OrderDate
)
INCLUDE(Status, AccountNumber)
WHERE(OnlineOrderFlag = 0)
WITH(DROP_EXISTING = ON)
ON AW2012FileGroup2;

Disabling and dropping indexes

Often an index is created and after some time a database administrator or developer may realize that
it is really not needed. As a result, the administrator or developer typically will want to remove the
index. In some cases, instead of removing the index, it may be a good idea to disable it. This will allow
you to verify how performance is affected without actually dropping the index.

	 Chapter 6  Building and maintaining indexes    91

Disable an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Indexes folder.

7.	 Right-click the IX_SalesOrderHeader_OrderDate index and select Disable.

8.	 Click OK.

Disable an index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to disable an index
USE AdventureWorks2012;
ALTER INDEX IX_SalesOrderHeader_OrderDate
 ON Sales.SalesOrderHeader DISABLE;

92   PART II  Designing Databases

Drop an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Indexes folder.

7.	 Right-click the IX_SalesOrderHeader_OrderDate index and select Delete.

8.	 Click OK.

Drop an index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to drop an index
USE AdventureWorks2012;
DROP INDEX CIX_DatabaseLog_PostTime
 ON dbo.DatabaseLog;

Summary

Developing indexing strategies for any RDBMS system is more of an art than a science. Each
database—and more specifically, each table—has different characteristics that may force you to
adopt techniques that encompass one or more of the concepts explained in this chapter. In some
cases, you may give birth to a new method that has never been used. Regardless of your approach,
you should carefully consider every argument and option when deciding your strategy.

		 93

PART III

Advanced database
design topics

CHAPTER 7	 Table compression . 95

CHAPTER 8	 Table partitioning . 105

CHAPTER 9	 Database snapshots . 111

CHAPTER 10	 The SELECT statement . 117

		 95

C H A P T E R 7

Table compression

After completing this chapter, you will be able to

■■ Understand the different types of compression.

■■ Understand how to compress a table or index.

■■ Determine when to compress a table or index.

We often hear that disk space is cheap and that we should not be too concerned if databases are
growing at an excessive rate. Just buy more disks. Well, what most managers do not realize is that
we are not talking about disks that you buy at some large electronic store. Microsoft SQL Server and
other RDBMSs require fast redundant sets of disks. That coupling takes disk price from cheap to often
very expensive. In addition, if you must include high availability and disaster recovery as part of your
topology, then your costs are doubled.

To offset some of the cost, SQL Server includes a feature that allows you to compress your data at
different levels—specifically, tables and indexes. You can actually compress any of the following:

■■ A table that is stored as a heap (it does not have a clustered index)

■■ A table that has a clustered index

■■ A nonclustered index

■■ An indexed view

■■ A partition (see Chapter 8, “SQL Server Partitioning”)

Not only can you reduce the disk requirements of SQL Server with compression, but in most cases
you can also improve the overall performance of your disk subsystems and query request times. The
actual compression rate is dependent upon two primary factors: data characteristics and the corre-
sponding data type. While not all data types are affected by compression, most are. Table 7-1 lists the
affected data types.

96   PART III  Advanced Database Design Topics

TABLE 7-1  Data Types Affected by Compression

smallint int bigint decimal numeric

real float money smallmoney bit

datetime datetime2 datetimeoffset char nchar

binary rowversion

SQL Server has two types of compression: data and backup. Throughout this chapter, you will focus
on data compression.

Note  Data compression is supported only in the Enterprise version of SQL Server 2012.

Understanding row compression

The great thing about SQL Server compression is that it is completely transparent to applications that
need to access the underlying data. While compression does change how the data is physically stored,
developers do not have to change anything syntactically in their code.

Row compression, by nature, is not a very complicated process. Basically, it identifies the data type
of each column, converts it to variable length, and finally reduces the amount of required storage to
only what is needed. As a result, compression increases the amount of data that can be stored on a
page. In addition, it may reduce the amount of metadata associated with a record.

For example, if you have a column that has a data type of smallint, by default it will allocate 2 bytes
of storage. However, the value inserted into the column may require only 1 byte of storage. If that
is the case, enabling compression on that table will reduce the amount of allocated storage to only
what is needed: 1 byte. This process is repeated for every column in the table or index.

As stated, you can compress a table or index. During creation, you have the option of specifying a
table option that will compress the data within a table. Continuing the trend, you can compress data
with T-SQL and Microsoft SQL Server Management Studio (SSMS).

Compress a table or index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the server node in Object Explorer.

	 Chapter 7  Table compression    97

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder and right-click the Sales.SalesOrderDetail table.

5.	 From the context menu that appears, select Storage | Manage Compression.

6.	 When the Data Compression Wizard appears, check the box labeled Do Not Show This
Starting Page Again, and click Next.

The next page, Select Compression Type, is where all the magic happens.

7.	 Check the box labeled Use Same Compression Type for All Partitions.

8.	 Select Row from the drop-down list, and click Calculated in the bottom-right corner.

As you can see, you will save approximately 3 MB of disk space by implementing row com-
pression on the table.

9.	 Click Next.

The Select an Output Option page is where you specify how and when to compress the data.

98   PART III  Advanced Database Design Topics

10.	 Click Run Immediately.

11.	 Click Next and the Summary page appears.

	 Chapter 7  Table compression    99

12.	 Review the summary information and click Finish.

13.	 The Compression Wizard Progress page appears.

Note  Compressing the heap or the clustered index does not compress the nonclus-
tered indexes. If you want to compress the nonclustered indexes, you must do so
individually.

Compress a nonclustered index using SSMS

1.	 In Object Explorer, expand Sales.SalesOrderHeader.

2.	 Expand the Indexes folder.

3.	 Right-click the IX_SalesOrderHeader_SalesPersonID nonclustered index and select Storage |
Manage Compression.

100   PART III  Advanced Database Design Topics

4.	 Repeat steps 9–13 from the previous exercise.

Row Compression with T-SQL
If you prefer using T-SQL over SSMS, you can execute the following code to compress the clustered
index on the Sales.SalesOrderHeader table and the IX_SalesOrderHeader_SalesPersonID nonclustered
index:

 --Use this code to row compress the Sales.SalesOrderHeader table
USE AdventureWorks2012
ALTER TABLE [Sales].[SalesOrderHeader]
 REBUILD WITH(DATA_COMPRESSION = ROW);

--Use this code to row compress a nonclustered index on the Sales.SalesOrderHeader table
ALTER INDEX IX_SalesOrderHeader_SalesPersonID
 ON Sales.SalesOrderHeader
 REBUILD WITH(DATA_COMPRESSION = ROW);

You can also compress a table during initial creation with T-SQL. The following code creates a table
that has a primary key that will be row compressed:

--Use this code to row compress a table during creation
USE myDatabase;
CREATE TABLE dbo.Ch7RowCompression
(
 ID int PRIMARY KEY,
 FirstName varchar(50),
 LastName varchar(50),
 BirthDate datetime
)
WITH (DATA_COMPRESSION = ROW);

Note that nothing about creating a table changes—however, you must add the option at the end,
which appears in bold in the previous script. Now whenever data is inserted into the table, it will be

	 Chapter 7  Table compression    101

row compressed. Using this method will compress the clustered index on the table or, if the clustered
index does not exist, it will compress the heap.

Understanding page compression

Page compression further extends row compression by performing a few additional steps. Page com-
pression performs three operations:

■■ Row compression

■■ Prefix compression

■■ Dictionary compression

As you can see, page compression includes row compression as part of its process. Nothing
changes with the row compression process—it’s just the first step in page compression. After the row
compression is complete, the next step is prefix compression.

During this step, each column is scanned for a value that will reduce the storage space for each
column. Once the value is identified, a row for each column is stored in the page header. All the
information is called the compression information (CI), which is stored below the page header. The
identified values (prefixed values) are located in each column and replaced with a pointer to the value
in the CI section. Figure 7-1 illustrates the process.

Page Header

Prior to Prefix Compression

iiikkk iiiikk jjjj

iiijkk jjjj ijkl

iiijj iiiij ijkl

Page Header

After Prefix Compression

3kkk [empty] 0jjjj

[empty] 0jjjj [empty]

4j 4j [empty]

iiijkk iiiikk ijkl

FIGURE 7-1  Prefix compression is the first step of page compression.

102   PART III  Advanced Database Design Topics

The prefixes that will reduce the size of the data are moved to the page header, and the actual
column values are modified to include pointers to the CI, as shown in Figure 7-1. The value 3kkk rep-
resents the first three characters in the prefix and kkk.

The next step is dictionary compression, which scans the entire page instead of a single column.
The values that are repeated—for example, 4j—are moved to the CI section of the page header and
replaced with references to the values, as shown in Figure 7-2.

Page Header

After Prefix Compression

3kkk [empty] 1

[empty] 1 [empty]

0 0 [empty]

4j 4j

iiijkk iiiikk ijkl

FIGURE 7-2  Dictionary compression is the final step of page compression.

The process of page compression with SSMS or T-SQL is exactly the same as with row compression.
The difference is that you specify PAGE instead of ROW.

Compress a page using SSMS

1.	 Repeat steps 1–7 from the “Compress a table or row using SSMS” exercise.

2.	 On the Select Compression Type page, select Page from the drop-down list.

3.	 Click Calculate. It may take a few seconds to yield results.

4.	 Click Next.

5.	 Click Run Immediately.

6.	 Click Next.

7.	 Click Finish.

	 Chapter 7  Table compression    103

Page compression with T-SQL
Just as with row compression, you have the ability to page compress data with T-SQL. The follow-
ing script will page compress the clustered index on the Sales.SalesOrderDetail table and one of the
nonclustered indexes:

--Use this code to page compress the Sales.SalesOrderDetail table
USE AdventureWorks2012
ALTER TABLE Sales.SalesOrderDetail
 REBUILD WITH(DATA_COMPRESSION = PAGE);

--Use this code to page compress a nonclustered index on the Sales.SalesOrderDetail table
ALTER INDEX IX_SalesOrderDetail_ProductID
 ON Sales.SalesOrderDetail
 REBUILD WITH(DATA_COMPRESSION = PAGE);

The biggest advantages of using T-SQL are the portability and reusability of the code. While SSMS
offers a very intuitive and flexible user interface, if you want to reproduce the steps in a different
environment, you have to replicate the steps for each table or index. However, when you use T-SQL, it
is as simple as executing a query.

Estimating effects of compression

Refer back to Figure 7-1, which shows a button labeled Calculated that returns an estimate of how
much space will be used from row or page compressing a table or index. Performing the steps to
estimate space savings on each individual table or index in a database can be an arduous task.
Fortunately, SQL Server provides a stored procedure (discussed in detail in Chapter 17, “Stored
Procedures") that you can use to perform the same action.

Moreover, with a little time and skill, you can build a process that loops over every table or index in
a database and yields the results of the stored procedure call. The following script estimates the space
savings for a single index on the Production.TransactionHistory table:

exec sp_estimate_data_compression_savings
 @schema_name = 'Production',
 @object_name = 'TransactionHistory',
 @index_id = 1,
 @partition_number = NULL,
 @data_compression = 'row'

This script could take several minutes to execute depending on how much data there is and the
type of compression that you select. The size_with_requested_compession_setting(KB) column esti-
mates the size of the table or index if compressed. You should consider these results along with other
factors mentioned in the next section when determining whether to compress a table or index.

104   PART III  Advanced Database Design Topics

Compression considerations

You will want to carefully consider whether to implement row or page compression prior to doing so.
As with most things, compression does not come without a cost. While the data remains compressed
in memory, when it is selected, it is decompressed. In addition, when new rows are inserted, the data
is row and/or page compressed. When rows are updated or deleted, row-compressed objects should
persist their current level of compression. However, page compression may be recalculated depend-
ing upon the number of changes that occur to the data.

As a result, determining which objects to compress is highly dependent upon what activities
are performed on the corresponding objects. As a general starting point, those objects that are
updated frequently should be row compressed. Those objects that are mostly read should be page
compressed. There are certainly other issues to think about, but these are a good starting point.
Also, tables that are only appended to (in other words, data is added to the end) should be page
compressed.

Summary

Deciding what to compress and when takes some definite testing and analysis of your current data-
base. Compression in most cases should save space, and it may even provide some performance
improvements to your overall database environment. The process of compression can be applied to
certain objects in your database using SSMS or T-SQL. This chapter examined the two types of com-
pression, row and page, and you walked through the steps to implement both types of compression.
In addition, you learned how to estimate the amount of space savings that you can expect to gain by
either implementation.

		 105

C H A P T E R 8

Table partitioning

After completing this chapter, you will be able to

■■ Understand table partitioning.

■■ Create a partition function.

■■ Create a partition scheme.

■■ Partition a table.

The concept of partitioning is not very difficult to explain or comprehend. For example, assume you
have a table that contains sales data, and you would like to divide the data into segments based on
the year of sale. Logically, the table would resemble Figure 8-1.

10/2/2012SUS66
2/2/2012SUS55
4/5/2011SUS44
3/2/2011SUS33
1/2/2010SUS22
1/1/2010SUS11

OrderDateOrderNumberOrderID

2010

2011

2012

FIGURE 8-1  Logical table partitioning.

As shown in Figure 8-1, dividing the data by year is simple to illustrate. When data is added to
the table, it will be placed in the appropriate location based on the year of the sale. Partitioning
tables offers several benefits, primarily in the form of simplified maintenance, potential performance
improvements, and the ability to physically store data in a single database across several disks.

So how can partitioning be handled physically as data is inserted into a Microsoft SQL Server
table? The process consists of the following three steps:

1.	 Create a partition function.

2.	 Create a partition scheme.

3.	 Apply the partition scheme to a table.

You will examine each step in the sections that follow.

V413HAV
Typewritten Text
V413HAV

106   PART III  Advanced Database Design Topics

Creating a partition function

While the logical—or you could even say manual—partitioning process is straightforward, the pro-
cess of partitioning a table in SQL Server is not that much more difficult. The first step is to create a
partition function. This function is what will be used to align or map the data to the corresponding
partition based on a column in the table.

Note  Use the “Readeraid” style for all normal text paragraphs inside of a readeraid box.

Using partition function arguments
When creating a partition function, you must specify or provide a few pieces of information. The first
and most obvious is a name. The next is the input parameter type, which is the data type of the col-
umn that will be used for partitioning. The only data types that cannot be used are text, ntext, image,
xml, timestamp, varchar(max), nvarchar(max), and varbinary(max); alias data types; and common
language runtime (CLR) user-defined data types. Typically, a date or integer column is used for the
partitioning function. The final two, the boundary and the side of the boundary (RIGHT or LEFT), work
together as a team to determine specifically how the data will be partitioned. The first is the boundary
value, which acts as a constraint on each partition. This value is equal to n + 1 the number of values
supplied. For example, refer back to Figure 8-1 and note that the values would be 2010, 2011, and
2012, and a fourth partition that contains all the data greater than 2012. The last argument defines on
which side of the boundary, LEFT or RIGHT, the boundary will reside.

Note  In Microsoft SQL Server 2012, the number of partitions that can be created on a table
or index has been increased to 15,000.

Note  For ease of maintenance and, often, improved performance, it is recommended that
you place each partition in a separate filegroup. When creating your filegroups, you must
always include one more than the number of boundaries specified in your partition func-
tion. The filegroups should be placed on different disks to physically separate I/O. The fol-
lowing script adds several filegroups to the AdventureWorks2012 database:

ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP Sales2005;
--Use this code to add multiple filegroups to the AdventureWorks2012 database
USE master;
ALTER DATABASE AdventureWorks2012
ADD FILE

	 Chapter 8  Table partitioning    107

(
 NAME = 'Sales2005',
 FILENAME = 'C:\SQLData\Sales2005File.ndf',
 SIZE = 5MB,
 MAXSIZE = 200MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP Sales2005;

ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP Sales2006;

ALTER DATABASE AdventureWorks2012
ADD FILE
(
 NAME = 'Sales2006',
 FILENAME = 'C:\SQLData\Sales2006File.ndf',
 SIZE = 5MB,
 MAXSIZE = 200MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP Sales2006;

ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP Sales2007;

ALTER DATABASE AdventureWorks2012
ADD FILE
(
 NAME = 'Sales2007',
 FILENAME = 'C:\SQLData\Sales2007File.ndf',
 SIZE = 5MB,
 MAXSIZE = 200MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP Sales2007;

ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP Sales2008;

ALTER DATABASE AdventureWorks2012
ADD FILE
(
 NAME = 'Sales2008',
 FILENAME = 'C:\SQLData\Sales2008File.ndf',
 SIZE = 5MB,
 MAXSIZE = 200MB,
 FILEGROWTH = 5MB
)

108   PART III  Advanced Database Design Topics

TO FILEGROUP Sales2008;
ALTER DATABASE AdventureWorks2012
 ADD FILEGROUP Sales2009;

ALTER DATABASE AdventureWorks2012
ADD FILE
(
 NAME = 'Sales2009',
 FILENAME = 'C:\SQLData\Sales2009File.ndf',
 SIZE = 5MB,
 MAXSIZE = 200MB,
 FILEGROWTH = 5MB
)
TO FILEGROUP Sales2009;

While SQL Server 2012 offers a very robust user interface that encompasses all the steps required
to partition a table or index, you will use T-SQL initially to work through the partitioning process.

Create a partitioning function using T-SQL

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this code to create a partition function
USE AdventureWorks2012;
CREATE PARTITION FUNCTION fnPOOrderDate (datetime)
AS RANGE LEFT
FOR VALUES('20051231','20061231','20071231','20081231')

The preceding script results in the division or partitioning illustrated in Figure 8-2.

1 2 3 54Partition

OrderDate
<=

12/31/2005

OrderDate
between 1/1/2006
and 12/31/2006

OrderDate
between 1/1/2007
and 12/31/2007

OrderDate
>

12/31/2008

OrderDate
between 1/1/2008
and 12/31/2008

Values or
Ranges

Anything Less
Than 2006 Only 2006 Only 2007 Anything Greater

Than 2008Only 2008

FIGURE 8-2  Partition function data distribution.

	 Chapter 8  Table partitioning    109

Creating a partition scheme

As mentioned previously, using filegroups as part of your partitioning strategy offers several advan-
tages. To ensure that you place the correct data in the correct filegroup, you will use a partition
scheme. The partition scheme assigns or maps the partitions created by the function to filegroups.

Specifying partition scheme arguments
You can specify five arguments when creating a partition scheme:

■■ The name, whose definition and purpose are obvious.

■■ The name of the partition function, which must be created prior to creating the scheme. The
partitions created by the specified function will be mapped to the filegroups provided when
creating the scheme.

■■ ALL, which when used limits the number of filegroups to one.

■■ The last argument, which accepts a comma-delimited list of filegroups.

The partitions are assigned to the filegroups in the order in which they are listed, starting with the
first partition specified in the function.

Create a partitioning scheme using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this code to create a partition function
USE AdventureWorks2012;
CREATE PARTITION SCHEME schPOOrderDate
AS PARTITION fnPOOrderDate
TO(Sales2005, Sales2006, Sales2007, Sales2008, Sales2009)

Partitioning tables and indexes

As previously stated, both tables and indexes can be partitioned. More specifically, you can partition
the following:

■■ A table without a clustered index (heap)

■■ A clustered index

■■ A unique index

■■ A nonclustered index

110   PART III  Advanced Database Design Topics

When partitioning a clustered index, the column that has been specified as the partitioning col-
umn must be included in the clustering key. If you are partitioning a clustered or nonclustered index
that is not unique, the partitioning column is not required as part of the key. However, if you do not
include it, SQL Server will add it to the index by default. With regard to unique indexes, clustered or
nonclustered, you must include the partitioning column as part of the unique index key.

Partition a table using SSMS

1.	 Open SSMS and connect to a server.

2.	 In the query editor, enter and execute the following T-SQL code:

USE [AdventureWorks2012];
IF(OBJECT_ID('dbo.PurchaseOrderHeader')) IS NOT NULL
 DROP TABLE dbo.PurchaseOrderHeader
GO
CREATE TABLE dbo.[PurchaseOrderHeader](
 [PurchaseOrderID] [int] NOT NULL,
 [RevisionNumber] [tinyint] NOT NULL,
 [Status] [tinyint] NOT NULL,
 [EmployeeID] [int] NOT NULL,
 [VendorID] [int] NOT NULL,
 [ShipMethodID] [int] NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 [ShipDate] [datetime] NULL,
 [SubTotal] [money] NOT NULL,
 [TaxAmt] [money] NOT NULL,
 [Freight] [money] NOT NULL,
 [TotalDue] money,
 [ModifiedDate] [datetime] NOT NULL
);

3.	 In Object Explorer, expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Right-click the dbo.PurchaseOrderHeader table.

7.	 Select Storage | Create Partition from the context menu.

	 Chapter 8  Table partitioning    111

8.	 On the Create Partition Wizard page, click Next.

9.	 On the Select a Partitioning Column page, click the radio button next to the OrderDate
column.

112   PART III  Advanced Database Design Topics

10.	 Click Next.

11.	 On the Select a Partition Function page, click Existing Partition Function and select fnPOOr-
derDate from the drop-down list.

12.	 On the Select a Partition Scheme page, click Existing Partition Scheme and select schPOOrder-
Date from the drop-down list.

13.	 Because you chose an existing function and scheme, the Map Partitions page should be pre-
filled with the correct values, as shown in the following image.

14.	 Click Next.

15.	 On the Select an Output Option page, click Run Immediately.

16.	 Click Next.

17.	 Review the summary information, and then click Finish.

18.	 Click Close.

	 Chapter 8  Table partitioning    113

Partition a table using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE [AdventureWorks2012];
IF(OBJECT_ID('dbo.PurchaseOrderHeader')) IS NOT NULL
 DROP TABLE dbo.PurchaseOrderHeader
GO
CREATE TABLE dbo.[PurchaseOrderHeader](
 [PurchaseOrderID] [int] NOT NULL,
 [RevisionNumber] [tinyint] NOT NULL,
 [Status] [tinyint] NOT NULL,
 [EmployeeID] [int] NOT NULL,
 [VendorID] [int] NOT NULL,
 [ShipMethodID] [int] NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 [ShipDate] [datetime] NULL,
 [SubTotal] [money] NOT NULL,
 [TaxAmt] [money] NOT NULL,
 [Freight] [money] NOT NULL,
 [TotalDue] money,
 [ModifiedDate] [datetime] NOT NULL
) ON schPOOrderDate(OrderDate);

Note  The preceding script creates a standard table. However, note that the last line
in bold tells SQL Server to create the table using the specified partition scheme and
OrderDate as the partition column.

Partition a table using SSMS

1.	 Open SSMS and connect to a server.

2.	 In the query editor, enter and execute the following T-SQL code:

USE [AdventureWorks2012];
CREATE CLUSTERED INDEX CIX_PurchaseOrderHeader_OrderDate
ON dbo.PurchaseOrderHeader(OrderDate)

3.	 In Object Explorer, expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand Indexes.

114   PART III  Advanced Database Design Topics

7.	 Right-click the CIX_PurchaseOrderHeader_OrderDate index and select Properties from the
context menu.

8.	 Click Storage in the Select a Page section.

9.	 Click Partition Scheme and select schPOOrderDate from the drop-down list.

10.	 Click under the Table Column column (toward the bottom of the screen).

11.	 Select OrderDate from the drop-down list.

12.	 Click OK.

Partition an index using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE [AdventureWorks2012];
CREATE CLUSTERED INDEX CIX_PurchaseOrderHeader_OrderDate
ON dbo.PurchaseOrderHeader(OrderDate)
WITH(DROP_EXISTING = ON)
ON schPOOrderDate(OrderDate);

	 Chapter 8  Table partitioning    115

Summary

This chapter presented a brief overview of SQL Server partitioning, including an introduction to the
key concepts and terms needed to gain a general understanding of the partitioning process. You fol-
lowed a step-by-step demonstration on how to create a partition function and scheme that you can
use to partition a table or index. You will need to investigate several advanced topics once you have
acquired a basic understanding of partitioning. As your database architectures become more com-
plex and your data space requirements grow, consider looking into further partition topics, including
modifying, splitting, and aligning partitions.

		 117

C H A P T E R 9

Database snapshots

After completing this chapter, you will be able to

■■ Understand database snapshots.

■■ Identify database snapshot prerequisites.

■■ Create and view a database snapshot.

■■ Drop a database snapshot.

■■ Revert to a database snapshot.

A database snapshot is a static, read-only copy of an existing Microsoft SQL Server database. The
existing database is referred to as the source database when discussing database snapshots. When a
snapshot is created, it is an exact read-only replica of the source database at that point in time. As the
source database changes, the snapshot will be updated to ensure that it is synchronized.

This chapter covers the information you need to determine when, how, and why to implement
snapshots. Specifically, the chapter outlines the limitations and prerequisites of using snapshots, and
you will learn next steps that demonstrate how to create snapshots and view snapshots. Finally, you
will learn how to use a snapshot as a backup in the event that a backup does not exist, and also how
to drop a snapshot when it is no longer needed.

Understanding database snapshot
prerequisites and limitations

When creating a database snapshot, you must ensure that your source database constantly and con-
sistently remains available. The following is a list of the most common prerequisites and limitations of
the source database:

■■ Database snapshots are supported only in the Enterprise version of SQL Server 2012.

■■ The source and the snapshot database must reside on the same SQL Server instance.

■■ The source database cannot be dropped, detached, or restored.

■■ Source database files cannot be dropped.

■■ Performance could be negatively affected due to increased I/O on the source.

118   PART III  Advanced Database Design Topics

While the snapshot itself provides a read-only copy of the source database, you should consider
several limiting factors prior to implementing snapshots in your environment. The following is a list of
the common snapshot limitations:

■■ The snapshots must reside on the same server as the source database.

■■ Snapshots cannot be backed up, restored, or detached.

■■ Changes in the source database will cause the snapshot database to grow. Therefore, you
should ensure that you have disk space available equal to the size of your source database.

■■ If a snapshot runs out of space, it must be deleted and re-created.

Again, this is not an exhaustive list of the limitations, but these are the ones that typically impact if
and when database snapshots will work in your environment.

Creating and viewing database snapshots

T-SQL is the primary mechanism used to create database snapshots. The syntax is similar to a tradi-
tional database creation script, with a few small modifications. The following pseudocode depicts a
sample syntax script:

CREATE DATABASE <database snapshot name>
ON
(
 NAME = <Logical Name of source database file>,
 FILENAME = <File Path where file will be stored and the name of the file>
)
AS SNAPSHOT OF <source database name>

If the source database has multiple data files, you must specify each in the script. This is demon-
strated in the following exercise.

Create a database snapshot using T-SQL

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to create a snapshot of a database
USE master;
CREATE DATABASE SBSChp4TSQL_snapshot_42012200
ON
(
 NAME = SBSChp4TSQL1,
 FILENAME = 'C:\SQLDATA\SBSChp4TSQL1_snapshot_data.ss'
),

	 Chapter 9  Database snapshots    119

(
 NAME = SBSChp4TSQL2,
 FILENAME = 'C:\SQLDATA\SBSChp4TSQL2_snapshot_data.ss'
)
AS SNAPSHOT OF SBSChp4TSQL;

View a database snapshot with SSMS

1.	 Open SSMS and connect to a server.

2.	 In Object Explorer, expand the Databases folder.

3.	 Expand the Database Snapshots folder.

Dropping database snapshots

At some point, you may decide that a database snapshot is no longer useful, or you may decide that
it is consuming too much space and you would like to start with a fresh snapshot. You can drop a
snapshot using SSMS or T-SQL.

Drop a database snapshot using SSMS

1.	 Open SSMS and connect to a server.

2.	 In Object Explorer, expand the Databases folder.

3.	 Expand the Database Snapshots folder.

4.	 Right-click the database snapshot that you want to drop, and select Delete from the context
menu.

120   PART III  Advanced Database Design Topics

5.	 Check the box labeled Close Existing Connections.

6.	 Click OK.

	 Chapter 9  Database snapshots    121

Drop a database snapshot using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to create a snapshot of a database
USE master;
CREATE DATABASE SBSChp4TSQL_snapshot_42012400
ON
(
 NAME = SBSChp4TSQL1,
 FILENAME = 'C:\SQLDATA\SBSChp4TSQL14_snapshot_data.ss'
),
(
 NAME = SBSChp4TSQL2,
 FILENAME = 'C:\SQLDATA\SBSChp4TSQL24_snapshot_data.ss'
)
AS SNAPSHOT OF SBSChp4TSQL;

3.	 Open a new query window.

4.	 In the new query editor window, enter and execute the following T-SQL code:

--Use this script to drop a database snapshot
USE master;
DROP DATABASE SBSChp4TSQL_snapshot_42012400;

Reverting to a database snapshot

One of the biggest advantages you can leverage by creating database snapshots is that you may be
able to use them as a backup to a database backup. For example, assume that someone has acci-
dently deleted data from a table in your database, or a table has been dropped. How would you
restore that object? You could use a database backup; however, if you created a database snapshot,
you could use that snapshot instead. The snapshot may offer an even more recent version of the
database schema and data than your last backup.

Revert to a database snapshot using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to create a snapshot of a database
USE master;
RESTORE DATABASE SBSChp4TSQL FROM DATABASE_SNAPSHOT = 'SBSChp4TSQL_snapshot_42012400';

122   PART III  Advanced Database Design Topics

Restoring from a database snapshot is a viable option in some cases, but it is not a complete copy
of the database. Therefore, if the source database becomes corrupt, you cannot revert to the snap-
shot. Here are a few more limitations that you may encounter:

■■ The source database must have only one snapshot.

■■ If any of the files are read-only or offline, you cannot revert to a snapshot.

■■ Any changes that occurred after the reverted snapshot was taken will be lost.

Summary

As discussed in this chapter, database snapshots offer organizations several ways to leverage a copy
of the data and schema that may have not been available before. They are commonly used as sources
for reports and ad-hoc querying. In addition, you can use them as a source of backup in the case
of data loss. Regardless of your reason for leveraging snapshots, you must take into account the
additional disk space requirements and the potential for performance degradation when you consider
using this feature.

		 123

C H A P T E R 1 0

The SELECT statement

After completing this chapter, you will be able to

■■ Write a SELECT statement.

■■ Sort your results.

■■ Filter a SELECT statement with the WHERE clause.

■■ Use comparison operators.

■■ Use the BETWEEN operator.

■■ Use the WHERE clause with multiple conditions.

■■ Search for a list of values.

■■ Use a wildcard search.

■■ Create aliases.

■■ Use the JOIN operator.

■■ Limit the data returned in your result set.

■■ Use the UNION keyword to combine result sets.

So far in this book, you have learned how to create databases and tables, but what happens after an
application has added data to the database? How do you get the data out? Microsoft SQL Server data
retrieval is a very straightforward and simple process. To retrieve or access data inside a SQL Server
database, you use a SELECT statement, which is the topic of this chapter.

Writing a SELECT statement

While the SELECT statement offers a plethora of arguments that can make it very complex, in its sim-
plest form it consists of two keywords: a list of columns and a table name.

124   PART IV  Using Transact-SQL (T-SQL)

Write a SELECT statement

1.	 Open Microsoft SQL Server Management Studio (SSMS) and connect to a server.

2.	 In Object Explorer, expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the HumanResources.Department table.

6.	 Open the query editor in SSMS.

7.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to select data from the Person.Person table in the AdventureWorks2012
database
USE AdventureWorks2012;
SELECT
FROM

8.	 Click and drag the Columns folder underneath the table in Object Explorer to the right of the
keyword SELECT. Ensure that there is a space after the SELECT keyword.

9.	 Click and drag the HumanResources.Department table from Object Explorer to the right of
the keyword FROM. Ensure that there is a space after the FROM keyword.

--Use this query to select data from the HumanResources.Department table
in the AdventureWorks2012 database
USE AdventureWorks2012;
SELECT DepartmentID, Name, GroupName, ModifiedDate
FROM [HumanResources].[Department]

10.	 Execute the query and review the results.

	 Chapter 10  The SELECT statement    125

Note  If you want to return every column in a table, you can replace the column list
with an asterisk (*) because every column was included in the SELECT statement:

USE AdventureWorks2012;
SELECT *
FROM [HumanResources].[Department]

Sorting results

Now that you can retrieve data, you may want to do certain things with the results of the query. For
example, often you’ll want to sort data. To sort data in SQL Server 2012, you use the ORDER BY clause.
This clause sorts the data in the order specified, either ascending (ASC) or descending (DESC).

Order the result set

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to sort the results of a query
USE AdventureWorks2012;
SELECT *
FROM [HumanResources].[Department]
ORDER BY DepartmentID DESC

Instead of returning the results starting with DepartmentID 1, as shown in the previous image,
the results start with DepartmentID 16. The following image shows the new results.

126   PART IV  Using Transact-SQL (T-SQL)

Note  If a clustered index exists on the table, and ORDER BY is not specified, the
results are usually returned in the order specified when the clustered index was cre-
ated. However, when logic is relying on data ordered in a specific way, you should
always specify ORDER BY.

Filtering data with the WHERE clause

So far, you have simply returned all the rows in a table. In the real world, this is probably not what you
will do—most times, you will need to return only subsets of data. For example, assume you want to
write a query that searches for a specific department or all departments that start with the letter P.
To accomplish this, you will include the WHERE clause as part of your SELECT statement. The WHERE
clause always follows the FROM statement and precedes the ORDER BY clause. There are several dif-
ferent implementations of the query clause, among them the following, which are discussed in the
sections that follow:

■■ Comparison operators

■■ The BETWEEN operator

■■ A WHERE clause with multiple conditions

■■ A search for a list of values

■■ A wildcard search

Using comparison operators
SQL Server offers several comparison operators, such as = (equals), < (less than), > (greater than), and
>= (greater than or equal to), among others. Coupling these operators with the WHERE clause can
assist you in limiting data in several ways.

Use the equality operator

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter data using the equality operator
USE AdventureWorks2012;
SELECT *
FROM [HumanResources].[Department]
WHERE DepartmentID = 4

	 Chapter 10  The SELECT statement    127

Use the greater than operator

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter the results of query using the greater than operator
USE AdventureWorks2012;
SELECT *
FROM [HumanResources].[Department]
WHERE DepartmentID > 4

Using the BETWEEN operator
In some cases, you may want to search your data for a sequential range of data. For example, you may
want to return all the sales from May 1, 2007, through December 12, 2007. You could use a couple
of the comparison operations, but SQL Server offers you a more elegant solution: the BETWEEN
operator.

Use the BETWEEN operator

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter the results of a query using the BETWEEN operator
USE AdventureWorks2012;
SELECT
 AccountNumber,
 SalesOrderID,
 OrderDate
FROM Sales.SalesOrderHeader
WHERE
 OrderDate BETWEEN '5/1/2007' AND '12/31/2007'

Note  When using the BETWEEN operator, note that it is an inclusive range for
numbers, which means that the two values specified in the clause will be included in
the filter.

128   PART IV  Using Transact-SQL (T-SQL)

In the previous example, the result set would include all order data that occurred between
5/1/2001 12 AM and 12/31/2007 12 AM. As such, it would not return anything that happened during
the day of 12/31/2007 after midnight. If you were required to include the values for that data, you
could write the query as follows:

SELECT
 AccountNumber,
 SalesOrderID,
 OrderDate
FROM Sales.SalesOrderHeader
WHERE
 OrderDate >= '5/1/2007 00:00:00' AND OrderDate<= '12/31/2007'

Using the WHERE clause with multiple conditions
Sometimes you may need to specify multiple filters in one statement. For example, perhaps you want
to find sales in a certain date range but also only for a specific product. In that case, you can use the
AND or OR operator to combine both filters.

Write a WHERE clause with multiple conditions

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter the results with multiple conditions
USE AdventureWorks2012;
SELECT
 SalesOrderDetailID,
 OrderQty,
 ProductID,
 ModifiedDate
FROM Sales.SalesOrderDetail s
WHERE
 ModifiedDate BETWEEN '5/1/2007' AND '12/31/2007' AND
 ProductID = 809

	 Chapter 10  The SELECT statement    129

Searching for a list of values
Another typical scenario involves retrieving a result set based on a list of values. For example, you
may need to return all sales for a particular list of products. Using the IN operator, SQL Server deter-
mines whether items in a specified list match the specified value.

Use the IN operator

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter the results with the IN operator
USE AdventureWorks2012;
SELECT
 SalesOrderDetailID,
 OrderQty,
 ProductID,
 ModifiedDate
FROM Sales.SalesOrderDetail s
WHERE
 ProductID IN (776, 778, 747, 809)

Using a wildcard search
The final variation of the WHERE clause covered here is the wildcard search. For example, suppose you
want to return all the departments at your organization that start with the letters PR. To do this, you
use a LIKE comparison. When you use LIKE, SQL Server can determine if a specified character or string
of characters matches a value in your database.

Use the LIKE comparison

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to filter the results using LIKE
USE AdventureWorks2012;
SELECT
 *
FROM HumanResources.Department
WHERE
 Name LIKE 'Pr%'

The Pr% used in the preceding query tells SQL Server to return all departments whose name starts
with Pr and any following characters.

130   PART IV  Using Transact-SQL (T-SQL)

The LIKE syntax does not use a typical regular expression wildcard set. As demonstrated in the
previous script, the % represents any string of zero or more characters. In addition, other wildcard
characters are as follows:

■■ _ (a single character)

■■ [abc] (a single character in a set)

■■ [^abc] (a single character not in the set)

Creating aliases

You can create aliases, which can be a shorter or more understandable name, for table and column
names, making it easier to work with aggregations, expressions, and queries that involve multiple
tables. In addition, your database may contain very cryptic column names, and you may want to
provide names that are more meaningful to applications and end users. Using aliases allows you to
rename or shorten the names of tables and columns.

Alias a table and column

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to alias a table and column
USE AdventureWorks2012;
SELECT
 DepartmentID,
 Name AS DepartmentName,
 GroupName AS DepartmentGroupName
FROM HumanResources.Department AS d

In the preceding query, the Name column is renamed DepartmentName, the GroupName column
is renamed DepartmentGroupName, and the table has been aliased as simply d. Now you can refer-
ence the table as d instead of the entire table name throughout the query. The use of table aliases is
explained in the next section.

Note  The AS keyword used in the previous query is optional when aliasing items within
a SQL Server query. This means the original table name cannot be used any longer, so
HumanResources.Department.DepartmentName will no longer resolve in the query.

	 Chapter 10  The SELECT statement    131

Using the JOIN operator to return data from multiple tables

You have focused primarily on retrieving data from a single table thus far. In practice, it is highly
unlikely that your queries will reference just one table—most of the time, you will be required to
return data from multiple tables. To do this, you use the JOIN operator. While there are several types
of JOINs, in this chapter, you will focus on the three most commonly used:

■■ INNER

■■ LEFT OUTER

■■ RIGHT OUTER

Using INNER JOIN
Of the three most commonly used JOIN operators, INNER JOIN is the one that you will likely use on a
regular basis. INNER JOIN is an equality match between two or more tables. For example, assume you
have a table that contains products and another that contains sales, and you want to find only the
products that have been sold. Basically, you are looking for the intersection of the two tables on some
value. Figure 10-1 illustrates the intersection.

Product Sales

FIGURE 10-1  An INNER JOIN intersection.

The shaded section of Figure 10-1 depicts the rows that will be returned from a query that would
join the Sales and Product tables.

The JOIN Syntax
Regardless of whether you are writing an INNER join or an OUTER join, you start with a basic SELECT
statement. You’ll use the following query as your starting point:

USE AdventureWorks2012;
SELECT
 p.FirstName,
 p.LastName
FROM Person.Person p

132   PART IV  Using Transact-SQL (T-SQL)

The table in the FROM clause should include a column with values that exist in the table you plan
on joining. In this case, you would like to include an email address in the result set. To accomplish this,
you must reference a second table in the query, as illustrated in the following query:

USE AdventureWorks2012;
SELECT
 p.FirstName,
 p.LastName,
 ea.EmailAddress
FROM Person.Person AS p
INNER JOIN Person.EmailAddress AS ea
 ON p.BusinessEntityID = ea.BusinessEntityID

The INNER JOIN keywords have been included, which allows you to specify a second table in the
query. The INNER JOIN or any JOIN must be coupled with the ON keyword. In the ON clause, you
specify which column or columns will be used to connect (JOIN) the two tables. The key to success-
fully joining any two tables is to identify their intersecting data, which is commonly aligned across
primary key and foreign key relationships (see Chapter 5, "Creating Your First Table"). If you want to
perform a LEFT OUTER or RIGHT OUTER JOIN in the preceding query, you replace INNER with either
LEFT OUTER or RIGHT OUTER.

Note  You can join multiple tables in one SELECT statement by including additional JOIN
and ON couplings.

Write an INNER JOIN query

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use the query to perform an INNER JOIN on two tables
USE AdventureWorks2012;
SELECT
 p.ProductID,
 p.Name AS ProductName,
 sd.OrderQty,
 sd.UnitPrice
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail sd
 ON p.ProductID = sd.ProductID

Using OUTER JOINs
There are two basic types of OUTER JOINs: LEFT and RIGHT. They both provide very similar function-
ality, but there is a slight difference that depends on the order of the tables in the query. Using the
previous product sales example, if you begin reading the query from left to right, which table do you
encounter first? The Production.Product table, which makes it the left table. The second table you

	 Chapter 10  The SELECT statement    133

encounter (continuing to read to the right) is Sales.SalesOrderDetail, the right table. This trend contin-
ues throughout the query.

Therefore, if you want to retrieve a list of products regardless of their existence in the Sales.
SalesOrderDetail table, a LEFT OUTER JOIN should be your choice. Figure 10-2 illustrates a LEFT
OUTER JOIN.

Product Sales

FIGURE 10-2  A LEFT OUTER JOIN intersection.

On the other hand, if you are trying to retrieve all sales, whether or not they are associated with a
product, you should choose a RIGHT OUTER JOIN. Figure 10-3 illustrates a RIGHT OUTER JOIN.

Product Sales

FIGURE 10-3  A RIGHT OUTER JOIN intersection.

Regardless of the type of OUTER JOIN, the syntax is similar to that of an INNER JOIN. You replace
INNER with either LEFT OUTER or RIGHT OUTER.

Write an OUTER JOIN query

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to perform a LEFT OUTER JOIN
SELECT
 p.ProductID,
 sd.ProductID,
 p.Name AS ProductName,
 sd.OrderQty,
 sd.UnitPrice
FROM Production.Product AS p

134   PART IV  Using Transact-SQL (T-SQL)

LEFT OUTER JOIN Sales.SalesOrderDetail sd
 ON p.ProductID = sd.ProductID

The following image shows the results of the LEFT OUTER JOIN query.

If you scroll down the result set, you should start to see NULL values in those columns that are part
of the Sales.SalesOrderDetail table. This is a direct result of using an OUTER JOIN. Recall the shaded
area of Figure 10-2 illustrating the result set of a LEFT OUTER JOIN. The rows returned by the query
are what you should expect. Not only are the products associated with sales returned, but so are
those without sales.

Limiting the data returned in your result set

Besides using a WHERE clause in your query, you have several other ways to limit the data returned
in your result set. While there is a long list of methods and techniques you can use, SQL Server offers
keywords that provide a very simplistic approach to limiting your result set.

Using TOP
The TOP keyword limits the number of rows that are returned in a result to either a specific number of
rows or a specific percentage of rows. TOP should always be used with the ORDER BY clause. In most
cases, you will be looking for the highest or lowest set of values for a given column, and sorting the
data will provide you with that information. For example, if you want to return the top five sales in
your Sales table, you add TOP (5) immediately following the keyword SELECT. In addition, you include
an ORDER BY clause specifying the column that contained the actual sales value for each row as the
ordering column.

	 Chapter 10  The SELECT statement    135

Write a TOP query

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to return the top 5 sales
USE AdventureWorks2012;
SELECT TOP(5)
 SalesOrderID,
 OrderDate,
 SalesOrderNumber,
 TotalDue
FROM Sales.SalesOrderHeader
ORDER BY
 TotalDue DESC

Using DISTINCT and NULL
DISTINCT returns a unique or distinct list of values of each specified column in a SELECT statement. If
there are any duplicate values in the list, all but one duplicate value will be removed. For example, if
you execute the following query, the result returns a list of products with some of the product names
repeated several times:

USE AdventureWorks2012;
SELECT
 p.Name AS ProductName
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail sd
 ON p.ProductID = sd.ProductID

By placing DISTINCT immediately following the SELECT keyword, you remove any duplicates from
the list.

Moreover, if you want to limit the result to only products that have not shipped, you add the
WHERE clause. In this example, the WHERE clause needs to identify all the SalesOrderProduct rows
that contain a NULL CarrierTrackingNumber.

The NULL value is a special value. It is actually not a value at all—it's the absence of a value. As a
result, there are special comparison values that can be used when referencing it in a WHERE clause. If
you are searching for NULLs, you would use the following:

WHERE <column name> IS NULL

If you are searching for columns that are NOT NULL, you would use this:

WHERE <column name> IS NOT NULL

In this example, you are searching for all products that have not shipped—in other words, all the
rows in the result set that have a NULL value for the SalesOrderDetail CarrierTrackingNumber column.

136   PART IV  Using Transact-SQL (T-SQL)

The next step is to remove all columns, if any are listed, besides the Product Name column from
the column list. If not, then the distinctness of each row will be based on all the columns in the SELECT
statement instead of solely on the Product Name column. Finally, if it has not already been included,
place the DISTINCT keyword between the SELECT keyword and the column name.

Write a query that includes DISTINCT

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to return a distinct list of products that have not been shipped
USE AdventureWorks2012;
SELECT DISTINCT
 p.Name AS ProductName
FROM Production.Product AS p
INNER JOIN Sales.SalesOrderDetail sd
 ON p.ProductID = sd.ProductID
WHERE
 sd.CarrierTrackingNumber IS NULL
 order by productname

Using UNION to combine result sets

Often you will have two SELECT statements that may need to be combined into one result for con-
sumption by an application or end user. Using the UNION keyword, you can accomplish just that.
UNION has two variations:

■■ Just UNION, which removes any duplicate rows in your result set.

■■ UNION ALL, which includes duplicates. If duplicates are possible, you should use UNION ALL;
it is much faster because it does not have to include DISTINCT.

The following pseudocode illustrates the use of UNION:

SELECT column1, column2 FROM TABLE1
UNION
SELECT column1, column2 FROM TABLE2

When writing a query with UNION, both SELECT statements must contain the same number of col-
umns, and the data types must match for each column. When using UNION, provide only one ORDER
BY clause after the last SELECT statement.

	 Chapter 10  The SELECT statement    137

Write a query that includes UNION

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this query to return a list of products that are black and silver
USE AdventureWorks2012;
SELECT
 Name AS ProductName
FROM Production.Product
WHERE
 Color = 'Black'
UNION
SELECT
 Name AS ProductName
FROM Production.Product
WHERE
 Color = 'Silver'

Summary

The potential of the SELECT statement is limited only by your knowledge of the table and data
relationships and how you can manipulate them with the SELECT syntax. In this chapter, you learned
about the commonly used SELECT methods, which should provide a solid foundation for your T-SQL
experimentation. You explored several methods that will assist you in joining data from multiple
tables and then limiting the result.

		 139

PART IV

Using Transact-SQL
(T-SQL)

CHAPTER 11	 Advanced data retrieval topics 141

CHAPTER 12	 Modifying data . 151

CHAPTER 13	 Built-in scalar functions . 161

		 141

C H A P T E R 1 1

Advanced data retrieval topics

After completing this chapter, you will be able to

■■ Write PIVOT and UNPIVOT queries.

■■ Write a paging query.

■■ Write a common table expression.

■■ Use a variable.

Chapter 10, “The SELECT Statement,” provided a solid introduction to data retrieval using the SELECT
query. In this chapter, you will build on that introductory knowledge and examine a few advanced
topics that will enhance how you return the data and what data is returned. As you interact with
Microsoft SQL Server data more and more, you may encounter situations in which the basic concepts
are not enough. This chapter will supply you with additional skills to help you solve more advanced
problems.

Pivoting and unpivoting data

The concept of pivoting data in SQL Server refers to restructuring the data into another format. There
are two forms available: PIVOT and UNPIVOT.

Using the PIVOT operator
Assume that the data is stored in a format similar to that shown in Table 11-1.

TABLE 11-1  Row-by-Row Data

SalesOrderID CustomerID SalesPersonID

43659 29825 279

43660 29672 279

43661 29734 282

43662 29994 276

43663 29565 280

43664 29898 283

142   PART IV  Using Transact-SQL (T-SQL)

Each row in the table represents an order placed by a customer and the salesperson who took the
order. Instead of displaying this information on a row-by-row basis, you can use the PIVOT operator
to return the number of orders placed for each customer, grouped by salesperson. Table 11-2 illus-
trates the pivoting of a small sample of the data.

TABLE 11-2  Pivoting Data

SalesPersonID 29825 29672 29734 29994 29565 29898

279 5 1 0 2 1 0

282 6 2 1 3 2 1

275 7 3 2 4 3 2

280 2 5 5 2 1 1

283 3 6 6 3 2 2

The first column in the table represents the salespeople, and each subsequent column represents a
customer and how many sales were made to that customer. The first row in each column, besides the
column that contains SalesPersonID, contains a CustomerID.

In the next exercise, you will write your own pivot query.

Write a pivot query

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT SalesOrderID, CustomerID, SalesPersonID
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL

This query represents the foundation of the pivot. It returns the row-by-row data.

3.	 Directly above this query, enter the following T-SQL code:

USE AdventureWorks2012;
SELECT
 SalesPersonID, [29486] AS Cust1,
 [29487] AS Cust2, [29488] AS Cust3, [29491] AS Cust4,[29492] AS Cust5, [29512] AS
Cust6
FROM
(

This part of the query represents how the data will be returned.

V413HAV
Typewritten Text
V413HAV

	 Chapter 11  Advanced data retrieval topics    143

4.	 Finally, directly below the query in step 2, enter the following query:

) AS p
PIVOT
(
COUNT(SalesOrderID)
FOR CustomerID IN
(
[29486],[29487],[29488],[29491],[29492],[29512])
) AS pvt
ORDER BY SalesPersonID

This part of the query specifies the PIVOT operator, what to aggregate, and which customers
to include in the result set.

5.	 The final query should resemble the following:

USE AdventureWorks2012;
SELECT SalesPersonID, [29486] AS Cust1, [29487] AS Cust2, [29488] AS Cust3,
[29491] AS Cust4,[29492] AS Cust5, [29512] AS Cust6
FROM
(
SELECT SalesOrderID, CustomerID, SalesPersonID
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL
) AS p
PIVOT
(
COUNT(SalesORderID)
FOR CustomerID IN
(
[29486],[29487],[29488],[29491],[29492],[29512])
) AS pvt
ORDER BY SalesPersonID

6.	 Execute the query and it will return the following pivoted results.

As you can see, each row aggregates to show a distinct list of salespeople and how many sales
have been made to each customer in the pivot list.

144   PART IV  Using Transact-SQL (T-SQL)

Using the UNPIVOT Operator
If your data resembles the data shown in the previous figure, and you want to have each row repre-
sent a customer sale, you use the UNPIVOT operator. The result set would look exactly as shown in
Table 11-1. In the next exercise, you’ll write an UNPIVOT query.

Write an UNPIVOT query

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012
GO
IF(OBJECT_ID('dbo.unPvt')) IS NOT NULL
 DROP TABLE dbo.unPvt
GO
CREATE TABLE dbo.unPvt
(
 SalesPersonID int,
 Cust1 int,
 Cust2 int,
 Cust3 int,
 Cust4 int,
 Cust5 int,
 Cust6 int
)
GO
INSERT INTO dbo.unPvt
(
 SalesPersonID, Cust1, Cust2, Cust3, Cust4, Cust5, Cust6
)
VALUES
 (274, 5, 6, 4, 2, 6, 7),
 (275, 1, 7, 2, 3, 6, 8),
 (276, 0, 2, 8, 9, 6, 3),
 (277, 6, 3, 1, 7, 6, 1),
 (278, 5, 4, 9, 0, 2, 0),
 (279, 2, 1, 0, 1, 8, 9)
GO

This is not actually part of the UNPIVOT query, but it is data that needs to be provided in
order to show a practical example.

3.	 Open a new query window in SSMS and enter the following:

 SELECT SalesPersonID, Cust1, Cust2, Cust3, Cust4, Cust5, Cust6
 FROM unPvt

This is the foundation of the UNPIVOT query that provides the base data.

	 Chapter 11  Advanced data retrieval topics    145

4.	 Directly above this query, enter the following:

USE AdventureWorks2012
GO
SELECT SalesPersonID, Customer, Sales
FROM
(

This represents the data that will be returned when the final query is executed.

5.	 Directly below the statement in step 2, enter the following:

) up
UNPIVOT
(
 Sales FOR Customer IN
 (
 Cust1, Cust2, Cust3, Cust4, Cust5, Cust6
)
)AS unpvt;
GO

This part of the query includes the UNPIVOT operator that, instead of aggregating data like
PIVOT, includes a list of customers that will be included in the row-by-row result set.

6.	 The final query will resemble the following:

USE AdventureWorks2012
GO
SELECT SalesPersonID, Customer, Sales
FROM
(
 SELECT SalesPersonID, Cust1, Cust2, Cust3, Cust4, Cust5, Cust6
 FROM unPvt
) up
UNPIVOT
(
 Sales FOR Customer IN
 (
 Cust1, Cust2, Cust3, Cust4, Cust5, Cust6
)
)AS unpvt;
GO

7.	 Execute the query.

As shown here, each row represents the number of sales made to a given customer.

146   PART IV  Using Transact-SQL (T-SQL)

Paging Data

A common request for application functionality is paging data. Instead of having the entire result
returned, it is often preferable to have a short list broken down by a page and some number of rows.
Prior to SQL Server 2012, developers or DBAs could use several techniques to simulate paging, but
with SQL Server 2012, we now have true native database-side paging.

SQL Server 2012 introduces a keyword coupling that provides an elegant and efficient paging
solution. Using OFFSET and FETCH, you can write a single query that returns data one page at a time
to a client application or end user:

■■ OFFSET  Denotes how many rows to skip before the query starts returning rows

■■ FETCH  Specifies how many rows to return after OFFSET has been processed

OFFSET is synonymous with the page number and FETCH with the number of rows that will be
displayed per page.

Both OFFSET and FETCH have a few additional arguments that must be included in the syntax. The
following is sample syntax for writing a paging query:

SELECT <column list>
FROM <table name>
ORDER BY <column name>
OFFSET <rows to start on> ROWS
FETCH NEXT <number of rows to return> ROW ONLY

With OFFSET, you can provide an integer value or an expression (see Chapter 14, "Advanced T-SQL
Topics") that specifies the starting row. You must also include the ROWS keyword. FETCH requires the
NEXT keyword, an integer or expression that specifies the number of rows to return, and the ROWS
keyword.

	 Chapter 11  Advanced data retrieval topics    147

Write a paging query

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to write a paging query
USE AdventureWorks2012;
SELECT
 ProductID,
 ProductNumber,
 Name AS ProductName,
 ListPrice
FROM Production.Product
ORDER BY ProductID
OFFSET 0 ROWS
FETCH NEXT 10 ROWS ONLY

An additional, and probably the most important, requirement is that this pair must be pre-
ceded by an ORDER BY clause. The column specified in the ORDER BY clause determines the
order and what rows will be returned. The following query is modified slightly, so that instead
of starting at the first row, the offset is changed to 10:

USE AdventureWorks2012;
SELECT
 ProductID,
 ProductNumber,
 Name AS ProductName,
 ListPrice
FROM Production.Product
ORDER BY ProductID
OFFSET 10 ROWS
FETCH NEXT 10 ROWS ONLY

When OFFSET is changed, notice that a new set of products is returned.

Writing Expressions

You will often need to combine the values of two columns together into a single value. A brief intro-
duction to this concept appeared in the “Understanding Computed Columns” section of Chapter 5,
“Creating Your First Table,” where the FirstName and LastName columns of table were concatenated
together to form one column. You can also do this inline during a SELECT statement, as shown in the
following script:

USE AdventureWorks2012;
SELECT
 FirstName+' '+LastName AS FullName
FROM Person.Person

148   PART IV  Using Transact-SQL (T-SQL)

Note  In SQL Server, the plus sign (+) is used for concatenating strings.

The results of this query will be a single column that contains the value of both columns with a
space in between, as shown in Figure 11-1.

FIGURE 11-1  This abbreviated result of a query uses an inline expression.

While the preceding example is very basic, SQL Server does allow you to create expressions that
are based on constants, other expressions, scalar functions, or variables. By using these arguments,
you can perform logical, Boolean, and ranking calculations. To demonstrate, in the next exercise you’ll
write a query with a constant expression.

Write a query with a constant expression

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

--Use this script to write a query with an expression
USE AdventureWorks2012;
SELECT
 (SubTotal+TaxAmt)*1.05 AS TotalDue
FROM SaleS.SalesOrderHeader

Using variables

During data retrieval, you may encounter a situation where you need to temporarily store a value for
later use in your query. It may be a value from a SELECT statement or a constant value that will be
used later in a query. In order to use a variable, you must first declare it. Next, you prefix the variable

	 Chapter 11  Advanced data retrieval topics    149

with an at (@) symbol. Finally, you specify the data type that will be stored in the variable. The syntax
for declaring a variable is as follows:

DECLARE @variable int

Once the variable is declared, you assign values to it. There are three methods to do so: you can
use the SET keyword, which is the preferred method; you can assign a value using the SELECT state-
ment; or you can assign a value during the declaration of the variable. The syntax for assigning values
to a variable using these methods is as follows:

--Use this syntax to assign a value using the SET keyword
DECLARE @variable int
SET @variable = <value>

--Use this syntax to assign a value using a SELECT statement
SELECT @variable = <column or expression>
FROM <table name>

--Use this syntax to assign a value to a variable when it is declared
DECLARE @variable int = <value>

Write a query that uses a variable

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
DECLARE @ProductID int = 1;

This part of the code declares and assigns a value to the ProductID variable.

3.	 In the query editor, directly below the statement entered in step 2, enter the following T-SQL
code and execute the query:

SELECT
 ProductID,
 ProductNumber,
 Name AS ProductName
FROM Production.Product
WHERE ProductID = @ProductID

This part of the code selects product information with an equality WHERE clause using the
variable as the filter value.

150   PART IV  Using Transact-SQL (T-SQL)

Summary

The topics introduced in this chapter provided a glimpse of how powerful the T-SQL programming
language can be. You learned how to use the PIVOT and UNPIVOT operators to physically change the
structure of a result set. In addition, you were introduced to the new paging constructs in Microsoft
SQL Server 2012. Finally, you learned how to write expressions and return them as part of a result
set. These concepts can assist you in solving more complex problems, and you will be introduced to
several more throughout this book.

		 151

C H A P T E R 1 2

Modifying data

After completing this chapter, you will be able to

■■ Insert data into SQL Server tables.

■■ Update data in tables.

■■ Delete data from tables.

■■ Merge data.

■■ Return output data.

So far in this book, you have worked with tables that contain data. In most cases, a client-based
application will be the primary mechanism for inserting and modifying data in Microsoft SQL Server
tables. However, a situation may arise in which you need to add or modify data inside your database
tables. SQL Server offers several different ways of modifying data. In this chapter, you will learn how
to perform simple inserts, updates, and deletes. You will also see how to merge data from two sources
into one and return output data.

Inserting data into SQL Server tables

Although you can use several techniques and methods to insert data into SQL Server tables, the best
approach is to start with the two simplest ways:

■■ INSERT INTO statement

■■ SELECT INTO statement

Using the INSERT INTO statement
The first method to insert data into SQL Server tables involves using an INSERT INTO statement, which
can add one row or multiple rows. Using this method, you can insert data into all columns, specific
columns, identity columns, and several other variations.

152   PART IV  Using Transact-SQL (T-SQL)

Insert a single row into a table using the INSERT INTO statement

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department(Name, GroupName, ModifiedDate)
VALUES('Payroll', 'Executive General and Administration', '6/12/2012');

Note  The column list is optional in the INSERT INTO statement, but for purposes of
clarity, it's always recommended. If it is not included, the values are inserted into the
table based on the order of the columns. The identity columns are not included in
the order.

Every column in the table does not have to appear in the INSERT statement. You must specify
a value in the VALUES clause for all columns that have been listed. In the preceding query,
DepartmentID was omitted from the column list. Executing the following query will show the
new row:

USE AdventureWorks2012;
SELECT
 DepartmentID, Name, GroupName, ModifiedDate
FROM HumanResources.Department
ORDER BY DepartmentID DESC;

Since DepartmentID is an identity column, a value was automatically inserted into the column. If
you want to insert a value into an identity column, you can use the SET IDENTITY_INSERT statement.
When inserting into an identity column, you must explicitly list each column in the column list.

	 Chapter 12  Modifying data    153

Insert data into an identity column using the INSERT INTO statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
SET IDENTITY_INSERT HumanResources.Department ON
INSERT INTO HumanResources.Department(DepartmentID, Name, GroupName, ModifiedDate)
VALUES(18, 'International Marketing', 'Sales and Marketing', '5/26/2012');
SET IDENTITY_INSERT HumanResources.Department OFF

Both of the aforementioned approaches insert only a single row. By leveraging the VALUES clause,
you can insert multiple rows into a table with a single statement.

Insert multiple rows into a table using the INSERT INTO statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department
VALUES
 ('International Sales', 'Sales and Marketing', '5/26/2012'),
 ('Media Control', 'Quality Assurance', '5/26/2012')

Instead of writing a single INSERT statement for each row, you can supply a comma-delimited
list of values for each row in the VALUES clause. The following figure illustrates the result of
the multirow insert.

In addition to using the VALUES clause to insert multiple rows, you can insert multiple rows from
an existing table into another table using a SELECT statement.

154   PART IV  Using Transact-SQL (T-SQL)

Insert data using a SELECT statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department(Name, GroupName, ModifiedDate)
SELECT
 Name+' USA', GroupName, ModifiedDate
FROM HumanResources.Department
WHERE DepartmentID IN (20, 19)

Using the SELECT INTO statement
The second method you can use to insert data into SQL Server tables is the SELECT INTO statement.
This method actually creates a new table and inserts all the rows from the SELECT statement into that
newly created table.

Insert data into a table using a SELECT INTO statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
SELECT
 DepartmentID, Name, GroupName, ModifiedDate
INTO dbo.Department
FROM HumanResources.Department

The new table may have similar characteristics to the table schema that acts as the source.
However, column lengths—both string and numerical—may change, and the keys, indexes, and
constraints will not be created on the new table. Therefore, you should avoid using SELECT INTO as a
permanent table.

Updating data in tables

Now that you have some data in the database, you will learn how to change that data just in case the
incorrect values were inserted. SQL Server includes an UPDATE statement that you can use to modify
one row or several rows. You should be cautious when issuing an UPDATE statement, as it is highly
unlikely that every row in a table needs updating. Therefore, always consider including a WHERE
clause with every UPDATE statement. If WHERE is not included, you could accidentally update every
row, which could cost you your job.

	 Chapter 12  Modifying data    155

Update a single row

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
UPDATE HumanResources.Department
SET Name = Name +' Europe'
WHERE DepartmentID = 19

This UPDATE statement uses an expression to append Europe to the Name column for a single
row in the Department table.

As a precaution, you should add an additional filter to the WHERE clause to ensure that the
UPDATE statement is not repeatable. In other words, if the query was accidently run twice, it would
have no effect on the data. This is especially important when performing a concatenation or math-
ematical change. The following query shows how to accomplish this:

USE AdventureWorks2012;
UPDATE HumanResources.Department
SET Name = Name +' Europe'
WHERE DepartmentID = 19
AND NAME NOT LIKE '% Europe'

The new filter that uses LIKE ensures that if you rerun the query, it will have no effect on the data
that would have previously updated.

Updating rows while referencing multiple tables
You may encounter a situation where you need to reference additional tables when updating a row.
The additional tables could be used to limit the rows that will be updated, or they could provide a
value that will be used in an expression as part of the update. Using the JOIN clause, you can refer-
ence additional tables just as you do with a SELECT statement.

156   PART IV  Using Transact-SQL (T-SQL)

Update rows while referencing multiple tables

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

UPDATE Production.Product
SET ListPrice = p.ListPrice * 1.05
FROM Production.Product p
INNER JOIN Production.ProductSubcategory ps
 ON p.ProductSubcategoryID = ps.ProductSubcategoryID
WHERE
 ps.Name = 'Socks'

The preceding query uses the Production.ProductSubcategory table to limit the number of
rows updated to only those that are included in the Socks subcategory. The ListPrice for each
row that is in this subset is increased by 5 percent.

Deleting data from tables

Before moving on to a discussion on removing data from SQL Server tables, please heed the follow-
ing statement and try never to forget it: as with the UPDATE statement, always consider including
a WHERE clause when executing a DELETE statement. If you do not include WHERE as part of the
DELETE statement, all the data will be removed after the query is executed. SQL Server does not
explicitly have an undo button. There are ways to incorporate a mechanism that will offer an undo
operation, but you should always practice including a WHERE clause.

There are two primary methods of removing data from SQL Server: the DELETE statement and the
TRUNCATE statement. Both remove data, with the main difference being that you can limit the num-
ber of rows deleted when using the DELETE statement and you cannot do so with TRUNCATE.

Use DELETE to delete a single row

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
DELETE FROM HumanResources.Department
WHERE DepartmentID = 22

	 Chapter 12  Modifying data    157

Delete rows while referencing multiple tables

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
DELETE FROM HumanResources.Department
FROM HumanResources.Department d
LEFT OUTER JOIN HumanResources.EmployeeDepartmentHistory ed
 ON d.DepartmentID = ed.DepartmentID
WHERE ed.DepartmentID IS NULL

In the preceding query, the HumanResources.EmployeeDepartmentHistory table is used to
identify those departments in the HumanResources.Department table that are not associated
with any rows in the referenced table. Coupling that LEFT OUTER JOIN reference with the
WHERE clause ensures that only those rows are deleted.

Use TRUNCATE to delete all rows

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
TRUNCATE TABLE dbo.Department

Remember that the TRUNCATE statement removes all rows from the referenced table. Prior to
executing this statement, you should ensure that this is exactly what you intend to do. Once
the statement is executed, all the data will be removed.

Merging data

The MERGE statement is a hybrid that can insert, update, and delete data in a single query.
Depending on how you write the query, it can perform almost any combination of insert, update, and
delete. A MERGE statement is typically used to perform an upsert, which is a logical combination of
inserting and updating data. MERGE checks for the existence of a row, and if the row does not exist, a
new row is added. If the row does exist, then it is updated.

In general, the MERGE statement joins between a source table and a destination table. The source
table contains the data that will be either added to or updated in the destination table. The destina-
tion table will accept the inserts or updates.

158   PART IV  Using Transact-SQL (T-SQL)

Use MERGE to insert and update data

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
MERGE dbo.Department destination
 USING HumanResources.Department source
 ON destination.Name = source.Name
 WHEN MATCHED THEN
 UPDATE
 SET destination.Name = source.Name,
 destination.GroupName = source.GroupName,
 destination.ModifiedDate = source.ModifiedDate
 WHEN NOT MATCHED BY TARGET THEN
 INSERT (Name, GroupName, ModifiedDate)
 VALUES (source.Name, source.GroupName, source.ModifiedDate);

In the preceding query, the dbo.Department table is the destination table and will be either
updated or inserted into. The HumanResources.Department table is the source table and will
provide the data to the destination table. Similar to JOIN, the ON keyword is used to perform
the match between the two tables. In other words, if there is a match between the two values
from each table (WHEN MATCHED), then update the rows. If there is not a match (WHEN NOT
MATCHED), then insert those rows.

Note  You can use additional keywords to further extend the functionality of
the MERGE statement. You can base inserts and updates on either the target or the
source.

Returning output data

After performing INSERT, UPDATE, DELETE, or MERGE operations, you may have a need to archive or
audit the affected rows. Using the OUTPUT clause, you can return that data to whatever interface is
processing the request. The results of OUTPUT can be inserted into a table or simply returned to the
calling client.

	 Chapter 12  Modifying data    159

Output the results of an INSERT statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department
 OUTPUT inserted.DepartmentID, inserted.Name, inserted.GroupName, inserted.
ModifiedDate
VALUES('International Marketing', 'Sales and Marketing', '5/26/2012');

The OUTPUT statement simply returns those rows affected by the input to the client. To
output the data from an insert, you reference a logical table name inserted. This table exists
within the scope of the query, and the data can only be accessed then.

Output the results of an UPDATE statement

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
UPDATE HumanResources.Department
SET Name = Name +' Europe'
OUTPUT
 deleted.Name AS OldName,
 inserted.Name AS UpdateValue
WHERE DepartmentID = 25

When outputting data from an update, you will have access not only to the logical inserted
table, but also to a deleted table. The deleted table contains the values before the update, and
the inserted table contains the values after the update.

As previously mentioned, the typical use of the OUTPUT clause is to audit changes to data. More
often than not, companies require that applications track deletions in their databases. By taking
advantage of the OUTPUT clause, you can implement a mechanism that does just that.

160   PART IV  Using Transact-SQL (T-SQL)

Insert OUTPUT data into a table

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
GO
CREATE TABLE dbo.Department_Audit
(
 DepartmentID int NOT NULL,
 Name nvarchar(50) NOT NULL,
 GroupName nvarchar(50) NOT NULL,
 DeletedDate datetime NOT NULL
 CONSTRAINT DF_Department_Audit_DeletedDate_Today DEFAULT(GETDATE())
)

Note  The default constraint in the preceding script uses the GETDATE scalar func-
tion, which will insert the current date and time when a row is added to the table.
You could also track user names, host names, and other connection string proper-
ties by using other system scalar functions. Scalar functions are discussed in detail in
Chapter 13, “Built-in Scalar Functions.”

3.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
DELETE FROM dbo.Department
OUTPUT deleted.Departmentid, deleted.Name, deleted.GroupName
INTO dbo.Department_Audit(DepartmentID, Name, GroupName)
WHERE DepartmentID = 16

The preceding query deletes a single row from the Department table and also inserts the
contents of the deleted row into an audit table.

4.	 To view the current contents of the audit table, execute the following query:

USE AdventureWorks2012;
SELECT *
FROM dbo.Department_Audit

You will see the exact data that the Department table contained prior to the deletion.

Summary

The ability to manipulate data is vital in any RDBMS. Typically, the sources of most data modifica-
tions are from a client application. However, there will always be times when you need to use T-SQL
to make changes to your data. As you learned in this chapter, SQL Server provides a powerful set of
methods that offer the flexibility and extensibility to handle most of your data changes.

		 161

C H A P T E R 1 3

Built-in scalar functions

After completing this chapter, you will be able to

■■ Return and manipulate date and time values using date and time functions.

■■ Convert data with the CAST and CONVERT functions.

■■ Manipulate string values.

■■ Add logic to T-SQL statements using built-in functions.

Microsoft SQL Server boasts a plethora of built-in scalar functions whose purposes and results vary
depending on type and use. Within SQL Server, scalar functions are grouped into 12 categories. Of
those, we will discuss four categories in this chapter: date and time, conversion, string, and logical.
Several new scalar functions have been added to SQL Server 2012.

Note  If you would like to explore all the available built-in scalar functions, refer to the
“Built-in Functions (Transact-SQL)” page on MSDN: http://msdn.microsoft.com/en-us/library/
ms174318.

Using date and time functions

As stated in Chapter 5, "Creating Your First Table," SQL Server allows date and time values to be stored
in several formats. While you are able to store date and time values in almost any possible format, it’s
optimal to use SQL Server functions to return date and time values in a format that meets your needs.
Using these functions, you can do the following:

■■ Return date and time values of varying precision

■■ Return parts of date and time values

■■ Derive date and time values from date and time parts (a new feature in SQL Server 2012)

■■ Get date and time differences

■■ Modify date and time values

■■ Validate date and time values

162   PART IV  Using Transact-SQL (T-SQL)

Return date and time values

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT GETDATE() AS GETDATE, SYSDATETIME() AS SYSDATETIME;

The result set will be a single date and time value equal to the date and time you executed the
query.

You should notice immediately that the precision of the values is different. The GETDATE() function
returns a DATETIME data type, and the SYSDATETIME function returns a datetime2(7). The latter of the
two is a more precise value, which is the reason you see more numbers after the final decimal place.

Return parts of data and time values

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 DAY(GETDATE()) AS DAY,
 MONTH(GETDATE()) AS MONTH,
 YEAR(GETDATE()) AS YEAR,
 DATENAME(WEEKDAY, GETDATE()) AS DATENAMEWeekDay,
 DATEPART(M, GETDATE()) AS DATEPART,
 DATEPART(WEEKDAY, GETDATE()) AS DatePartWeekDay,
 DATENAME(MONTH, GETDATE()) AS DateNameMonth

The following image shows the result set from the query.

The return values for the first three functions, DAY, MONTH, and YEAR, are obvious. However, the
last two functions, DATENAME and DATEPART, offer a little more functionality. Unlike the first three
functions, both DATENAME and DATEPART accept an additional parameter known as datepart. The
datepart parameter tells the function which part of the date to return. Table 13-1 lists all the available
dateparts that can be used as parameters.

	 Chapter 13  Built-in scalar functions    163

TABLE 13-1  Valid datepart Arguments

datepart Abbreviations

year yy, yyyy

quarter qq, q

month mm, m

dayofyear dy, y

week wk, ww

weekday dw

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs

nanosecond ns

TZoffset tz

ISO_WEEK Isowk, isoww

Each datepart argument typically returns an integer value. However, you may have noticed that
string values are included in the previous figure when using month and weekday as the datepart
argument for the DATENAME function. This is the main distinction between the two functions. The
DATEPART function returns the data type as an integer value. Since the DATENAME function can
return string values, its return data type is nvarchar.

Deriving dates from parts
Prior to the release of SQL Server 2012, you could derive dates from other values and expressions
using T-SQL. While it was possible, this approach often required lots of coding and, in some cases,
produced inconsistent results. As a result, in SQL Server 2012 Microsoft has included several new
functions that allow you derive date and time parts.

Use the DATEFROMPARTS scalar function

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 DATEFROMPARTS (1972, 5, 26) AS DATEFROMPARTS,
 DATETIME2FROMPARTS (1972, 5, 26, 7, 14, 16, 10, 3) AS DATETIME2FROMPARTS,
 DATETIMEFROMPARTS (1972, 5, 26, 7, 14, 16, 10) AS DATETIMEFROMPARTS,
 DATETIMEOFFSETFROMPARTS (1972, 5, 26, 7, 14, 16, 10, 12, 0, 3) AS
DATETIMEOFFSETFROMPARTS,
 SMALLDATETIMEFROMPARTS (1972, 5, 26, 7, 14) SMALLDATETIMEFROMPARTS,
 TIMEFROMPARTS(7, 14, 16, 10, 3) TIMEFROMPARTS

164   PART IV  Using Transact-SQL (T-SQL)

The result for this query resembles the following image.

Now you can produce varying date and time values of different precision levels by using built-
in functions instead of writing custom T-SQL code.

Differencing, modifying, and validating date values
In addition to offering the aforementioned functions, T-SQL allows you to perform calculations
against date values and validate date values. For example, you can calculate the number of days
between two dates, or you can add a month or year to a date. In SQL Server 2012, Microsoft intro-
duced the EOMONTH function, which determines the last date of a given month.

Perform date calculations and validations

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 DATEDIFF(dd, GETDATE(), '5/26/2013') AS DaysUntilMyBirthday,
 DATEADD(y, 1, GETDATE()) AS DateAdd,
 EOMONTH(GETDATE()) AS EOMonth, --New to SQL Server 2012
 ISDATE(GETDATE()) AS IsValidDate,
 ISDATE('13/1/2122') AS InvalidDate

Using DATEDIFF, you are able to find out how many days, months, or years exist between
two date values. The datepart argument, which is dd, determines which date part to return.
DATEADD also uses a datepart argument; however, it can add or subtract from a date value.
The EOMONTH function, which is new to SQL Server 2012, returns the last day of the month
for a given date value. Finally, you can determine whether or not a date is valid by using the
ISDATE function. The following figure shows the results of the previous query. Notice that 1 is
returned when the date is valid, and 0 is returned for invalid dates.

	 Chapter 13  Built-in scalar functions    165

Using conversion functions

Conversion functions are divided into two categories:

■■ CAST

■■ CONVERT

The primary purpose of both types is to change a value from one data type to another. CONVERT
differs from CAST in that it provides you with the ability to format the output of a conversion. SQL
Server 2012 introduces four new conversion functions:

■■ PARSE

■■ TRY_PARSE

■■ TRY_CAST

■■ TRY_CONVERT

An example of each is provided in the upcoming "Convert data using CONVERT" exercise.

Note  Regardless of the type of function, you can use the resulting value in a variable
assignment or as a value in a SELECT statement. If you need a refresher on variable assign-
ment, please refer to the “Using Variables” section in Chapter 11, “Advanced Data Retrieval
Topics.”

Convert data using CAST

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE AdventureWorks2012;
SELECT TOP(10)
 SalesOrderNumber,
 TotalDue,
 CAST(TotalDue AS decimal(10,2)) AS TotalDueCast,
 OrderDate,
 CAST(OrderDate AS DATE) AS OrderDateCast
FROM Sales.SalesOrderHeader;

166   PART IV  Using Transact-SQL (T-SQL)

The following image shows the result set for the preceding query.

In the preceding query, the original values from the TotalDue column were stored, allowing
up to four numbers after the decimal place. By using the CAST function, you can change the
number of decimal places returned as shown in the TotalDueCast column. In addition, instead
of returning a date and time value for the order date, you can use the CAST function to return
only the date value, which you can see in the OrderDateCast column.

While the CONVERT and CAST functions perform the same primary function, the CONVERT func-
tion offers some added flexibility over CAST in that you can format the output of your result set using
the style argument. You can apply styles to date, time, real, float, money, xml, and binary data types.

Note  You can find a detailed list of the codes used for each type of style in the CAST and
CONVERT section of SQL Server Books Online and at http://msdn.microsoft.com/en-us/
library/ms187928.

Convert data using CONVERT

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 CONVERT(VARCHAR(20), GETDATE()) AS [Default],
 CONVERT(VARCHAR(20), GETDATE(), 100) AS DefaultWithStyle,
 CONVERT(VARCHAR(10), GETDATE(), 103) AS BritishFrenchStyle,
 CONVERT(VARCHAR(8), GETDATE(), 105) AS ItalianStyle,
 CONVERT(VARCHAR(8), GETDATE(), 112) AS ISOStyle,
 CONVERT(VARCHAR(15), CAST('111111.22' AS MONEY), 1) AS MoneyWithCommas

What you should notice immediately is that the CONVERT function accepts three arguments.
The first argument is the target data type or the date type you want to convert a given value
to. The second argument is the actual value that will be converted, and the final argument is

	 Chapter 13  Built-in scalar functions    167

the style. This final argument is optional, and if it is not provided, SQL Server will use default
values. The following image shows the results of executing the previous query:

The first five columns represent date conversions to different country styles. The last column
illustrates the use of the CONVERT function to add commas to a value that is of the money
data type. In the query, the CAST function is used in the last line of code to convert the string
to money, and then the CONVERT function is used to convert that value to back to a string
with commas.

New SQL Server 2012 conversion functions
SQL Server 2012 introduced four new conversion functions. PARSE and TRY_PARSE are completely
new to SQL Server, while TRY_CONVERT and TRY_CAST are extensions of the existing CONVERT
and CAST functions. You should use PARSE only when converting from strings to date/time and
number data types. The other functions, which are prefixed with TRY_, add functionality to the base
CONVERT, CAST, and PARSE functions. Converting a value using one of the aforementioned func-
tions fails the entire statement. However, when you use any of the TRY versions of the function, a
NULL value will be returned.

Convert dates using the new SQL Server 2012 functions

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 TRY_CAST('PATRICK' AS INT) TryCast,
 TRY_CONVERT(DATETIME, '13/2/2999', 112) AS TryConvert,
 PARSE('Saturday, 26 May 2012' AS DATETIME USING 'en-US') AS Parse,
 TRY_PARSE('Patricks BirthDay' AS DATETIME USING 'en-US') AS TryParse

The following figure illustrates the use of all the new functions.

Instead of failing the execution of the query, the new TRY functions provide a more elegant
approach in returning NULL values.

168   PART IV  Using Transact-SQL (T-SQL)

Using string functions

SQL Server 2012 includes 25 built-in scalar string functions, including two new functions:

■■ CONCAT

■■ FORMAT

Each function performs some operation on a provided string or numeric value. One thing to note
is that if you are attempting to combine or concatenate a string and a numeric value, the numeric
value must be converted to a string first.

Note  While numerous functions are available, this book focuses only on the most com-
monly used ones. If you are interested in learning about all the functions, visit the
“String Functions (Transact-SQL)” page of MSDN: http://msdn.microsoft.com/en-us/library/
ms181984.

Use SQL Server string functions

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

SELECT
 'LEBLANC '+', '+' PATRICK' RawValues,
 RTRIM('LEBLANC ')+', '+LTRIM(' PATRICK') TrimValue,
 LEFT('PatrickDTomorr', 7) [Left],
 RIGHT('DTomorrLeBlanc', 7) [Right],
 SUBSTRING('DTomorrPatrick',8,LEN('DTomorrPatrick')) [SubString],
 '12/'+CAST(1 AS VARCHAR)+'/2012' WithoutConcat,
 CONCAT('12/',1,'/2012') WithConcat

The following image shows the use of several string functions.

The first two columns in the result set concatenate two string values. The difference between
the two is that one contains spaces before and after the comma, and the other does not. By
using the RTRIM and LTRIM functions, you can remove spaces to the right (RTRIM) and left
(LTRIM) of the string. The next two columns use the LEFT and RIGHT functions, which sim-
ply return the leftmost or rightmost value of the provided string value based on the second
argument. In the preceding query, the LEFT function returns the first seven characters starting
from the left, and the RIGHT function does the same but starting from the right.

	 Chapter 13  Built-in scalar functions    169

The SUBSTRING function returns a part of a string based on a starting point and an end-
point, which are the last two arguments provided to the function. In the preceding query, the
function is used to return a value starting at character 8 and ending at the end of the string
expression provided as the first argument. This ending value is derived using the LEN func-
tion, which returns the length of a string. In the last two columns, dates are derived from three
different values. Note that in the WithoutConcat column, a CAST function is used to convert
the integer value to a string to ensure that the concatenation succeeds. However, when you
use the new CONCAT function, the need for CAST is mitigated because it converts nonstring
values to strings automatically.

Using logical functions

SQL Server 2012 includes two new logical functions that allow more inline data selection with very
little code:

■■ CHOOSE

■■ IIF

CHOOSE returns a value from a list based on a specified index. IIF returns a value based on the
evaluation of a Boolean expression to true or false.

Use the CHOOSE and IIF functions

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

declare @choosevar int = 3
SELECT
 CHOOSE(@choosevar, 'ONE', 'TWO', 'PATRICK', 'THREE') [Choose],
 IIF(DATENAME(MONTH, GETDATE()) = 'July', 'The 4th is this month', 'No Fireworks') AS
[IIF]

In the preceding query, you are able to select the third item of a list of strings by using the
CHOOSE function. If you changed 3 to 1, the function would return the first value, ONE, from
the list of strings instead of the third. In the final line of code in the preceding query, the IIF
function is used to determine which of the two strings to return. The first argument used
in the IIF function evaluates to either true or false. In this example, an expression is used to
determine if the current month is July. If the expression evaluates to true, the first string value
is returned; otherwise, the second value is returned.

170   PART IV  Using Transact-SQL (T-SQL)

The following image shows the results of the previous query:

Summary

As you learned in this chapter, Microsoft SQL Server includes several types of built-in functions. In the
coming chapters, you will be introduced to other types of built-in functions. While only a select set
will be discussed throughout this book, you should take time to review SQL Server Books Online and
explore the various capabilities of all available functions.

		 171

PART V

Creating other
database objects

CHAPTER 14	 Advanced T-SQL topics . 173

CHAPTER 15	 Views . 189

CHAPTER 16	 User-defined functions . 199

CHAPTER 17	 Stored procedures . 211

CHAPTER 18	 Data manipulation triggers 221

		 173

C H A P T E R 1 4

Advanced T-SQL topics

After completing this chapter, you will be able to

■■ Perform aggregating, grouping, and windowing.

■■ Use SQL Server temporary objects.

■■ Handle T-SQL errors inside of queries.

■■ Add control logic around and inside T-SQL statements.

So far, the T-SQL statements and logic you have constructed have been very basic and straight-
forward. In this chapter, you will learn about additional constructs to enhance the functionality
of T-SQL code. First, you will examine how to perform aggregations, windowing, and grouping
with T-SQL. Next, you will learn how to use temporary objects in Microsoft SQL Server. Finally,
you will see examples of how to handle errors and control the flow of T-SQL queries.

Aggregating, Windowing, and Grouping

Typically when data is stored in a relational database, each row represents a single value. For example,
in a sales database, you may record a row for each sale that a salesperson makes. Or in a banking
database, you may record a row for each transaction that occurs on a customer’s account. Regardless
of the data that is stored, at some point, that data will need to be aggregated in some way. In the
sales example, you may want to see all the sales for each salesperson, while in the banking example,
you may want to see the account balance for each customer. Using T-SQL syntax, you can aggregate
the data with built-in aggregate scalar functions and group the data using the GROUP BY keyword to
perform these operations.

In addition to aggregating the data, you can use windowing functions to perform ranking opera-
tions over a set of rows. Windowing, which will be discussed in detail later in this chapter, performs
operations across a data set, typically in relation to the current row.

174   PART IV  Using Transact-SQL (T-SQL)

Performing Aggregations
The most common aggregation that is performed is summation, which adds all the values of a given
data set. The summation of data is supported through T-SQL’s SUM function:

SUM([ALL | DISTINCT] expression)

The ALL keyword will apply the aggregation to every value in the result, while DISTINCT will
aggregate only the unique values. The ALL keyword is used by default; therefore, you do not need
to specify it as part of the query. The supplied expression must be a numeric data type that can be a
constant, variable, column, or function.

Perform a simple aggregation

1.	 Open the query editor in Microsoft SQL Server Management Studio (SSMS).

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
SELECT
 SUM(poh.TotalDue) AS TotalDue
FROM Purchasing.PurchaseOrderHeader poh

3.	 Execute the query and review the results.

This query presents the total due for all purchase orders that have been placed.

4.	 Add three new aggregations to the query that average the total due and count the number of
employees in two different ways:

USE AdventureWorks2012;
SELECT
 SUM(poh.TotalDue) AS [Total Due],
 AVG(poh.TotalDue) AS [Average Total Due],
 COUNT(poh.EmployeeID) [Number Of Employees],
 COUNT(DISTINCT poh.EmployeeID) [Distinct Number Of Employees]
FROM Purchasing.PurchaseOrderHeader poh

5.	 Execute the query and review the results.

	 Chapter 14  Advanced T-SQL topics    175

This query adds three new columns to the result set. Remember that all of the aggregations in
the previous image are at the same level of granularity.

•	 Average Total Due uses the AVG function to calculate the average over the entire result set.
It sums the total due, counts the number of rows, divides the two values, and then returns
the average.

•	 Number Of Employees uses the COUNT function to every employee in the result, including
duplicate values of the supplied column, EmployeeID.

•	 Distinct Number Of Employees uses the COUNT function but includes the DISTINCT key-
word to ensure that duplicates are ignored.

You may have noticed that the syntax for each function used in the preceding query is very similar.
This is the case for most of the aggregation functions. There are a few slight variations, but this syntax
is standard.

Performing Aggregations with Groupings
Holistically aggregating the data within a result is probably not something you see in regular use.
Typically, the data is broken down or grouped into categories or segments such as year, territory,
country, or salesperson. Using the GROUP BY keyword, you can summarize the selected result set
by one or more columns or expressions. To use groupings with a T-SQL query, you could start with a
basic SELECT statement ending with a GROUP BY clause. The following is sample syntax:

SELECT
FROM
GROUP BY <column1>, <column2>,…

Any columns that are not used by an aggregation function that is listed in the SELECT statement
must be included in the GROUP BY clause. However, a column may be included in the GROUP BY
clause but not in the SELECT statement.

Perform aggregations with the GROUP BY clause

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
SELECT
 sm.Name AS ShippingMethod
 SUM(poh.TotalDue) AS [Total Due],
 AVG(poh.TotalDue) AS [Average Total Due],
 COUNT(poh.EmployeeID) [Number Of Employees],
 COUNT(DISTINCT poh.EmployeeID) [Distinct Number Of Employees]
FROM Purchasing.PurchaseOrderHeader poh
INNER JOIN Purchasing.ShipMethod sm
 ON poh.ShipMethodID = sm.ShipMethodID

176   PART IV  Using Transact-SQL (T-SQL)

3.	 Execute the query and review the results.

You should have received the following error:

Msg 8120, Level 16, State 1, Line 3
Column 'Purchasing.ShipMethod.Name' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.

If you carefully read the error, it tells you how to correct the problem.

4.	 Add the GROUP BY clause to the end of the statement.

USE AdventureWorks2012;
SELECT
 sm.Name AS ShippingMethod,
 SUM(poh.TotalDue) AS [Total Due],
 AVG(poh.TotalDue) AS [Average Total Due],
 COUNT(poh.EmployeeID) AS [Number Of Employees],
 COUNT(DISTINCT poh.EmployeeID) AS [Distinct Number Of Employees]
FROM Purchasing.PurchaseOrderHeader poh
INNER JOIN Purchasing.ShipMethod sm
 ON poh.ShipMethodID = sm.ShipMethodID
GROUP BY sm.Name

5.	 Execute the query and review the results.

By including the GROUP BY clause with the Name column from the ShippingMethod table, the
query was able to provide aggregations for each individual shipping method that was used.
You can group by more than one column or expression.

6.	 Add an expression that derives the year from the OrderDate column in the
PurchaseOrderHeader table:

USE AdventureWorks2012;
SELECT
 sm.Name AS ShippingMethod,
 YEAR(poh.OrderDate) AS OrderYear,
 SUM(poh.TotalDue) AS [Total Due],
 AVG(poh.TotalDue) AS [Average Total Due],
 COUNT(poh.EmployeeID) AS [Number Of Employees],
 COUNT(DISTINCT poh.EmployeeID) AS [Distinct Number Of Employees]
FROM Purchasing.PurchaseOrderHeader poh
INNER JOIN Purchasing.ShipMethod sm
 ON poh.ShipMethodID = sm.ShipMethodID
GROUP BY
 sm.Name,
 YEAR(poh.OrderDate)

	 Chapter 14  Advanced T-SQL topics    177

7.	 Execute the query and review the results.

The results show that by adding a second column to the group, you can even further aggre-
gate the data. Now within each shipping method the data is aggregated by year.

Using the HAVING Clause
The HAVING clause behaves similarly to a SELECT statement. However, it can leverage aggregation.
You can use it only with a SELECT statement, and it is typically used with a GROUP BY clause.

Limit aggregated rows with a HAVING clause

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
SELECT
 sm.Name AS ShippingMethod,
 YEAR(poh.OrderDate) OrderYear,
 SUM(poh.TotalDue) AS [Total Due],
 AVG(poh.TotalDue) AS [Average Total Due],
 COUNT(poh.EmployeeID) AS [Number Of Employees],
 COUNT(DISTINCT poh.EmployeeID) AS [Distinct Number Of Employees]
FROM Purchasing.PurchaseOrderHeader poh
INNER JOIN Purchasing.ShipMethod sm
 ON poh.ShipMethodID = sm.ShipMethodID
GROUP BY sm.Name,YEAR(poh.OrderDate)
HAVING SUM(poh.TotalDue) > 5000000

178   PART IV  Using Transact-SQL (T-SQL)

3.	 Execute the query and review the results.

Now instead of returning every row, the result is limited to only those shipping methods
whose annual total due is greater than 5 million.

Using SQL Server temporary objects

When working with T-SQL, you may often find you need to temporarily store a data set for later use.
Take the preceding GROUP BY queries, for example. If you were to aggregate by salesperson, showing
first name, middle name, last name, and address, the query could become very costly because of the
number of columns in the GROUP BY clause and the number of JOINs involved.

Therefore, instead of joining every table and grouping on all the returned columns, you can use a
temporary object to store the aggregated data and join any additional tables returning the columns
needed. SQL Server 2012 has three primary temporary objects:

■■ Common table expressions

■■ Table variables

■■ Temporary tables

When and how they should be used depends on several factors.

Common table expressions
A common table expression (CTE) is a temporary result set that is defined during the execution of
a SELECT, INSERT, UPDATE, DELETE, or CREATE VIEW statement. The CTE is available only for the
duration of the query and is not stored like other objects in the database. Typical uses of CTEs are to
replace views, group data, perform recursion, and create multiple references to a single table. The
syntax is as follows:

WITH <expression_name> [(column_name [,...n])]
AS
(CTE_query_definition)

expression_name is how the CTE will be referenced in the query, and it is required. The column list-
ing is optional but recommended; if the column names in the query definition are not unique, you will
get an error when executing the query. You can either use the column listing to correct the problem
or fix it in the query definition with aliasing.

	 Chapter 14  Advanced T-SQL topics    179

Immediately following the CTE definition, you should issue a query that references the CTE. As
mentioned previously, it could be an INSERT, UPDATE, or DELETE statement.

Create and use a common table expression

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
WITH EmployeePOs (EmployeeID, [Total Due])
AS
(
 SELECT
 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
 FROM Purchasing.PurchaseOrderHeader poh
 GROUP BY
 poh.EmployeeID
)
SELECT *
FROM EmployeePOs

3.	 Execute the query and review the results.

In the CTE definition, the aggregation is defined and can now be used in the SELECT state-
ment that immediately follows the CTE.

4.	 Add a JOIN to the Person table to add the employees’ first and last names.

WITH EmployeePOs (EmployeeID, [Total Due])
AS
(
 SELECT
 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
 FROM Purchasing.PurchaseOrderHeader poh
 GROUP BY
 poh.EmployeeID
)

180   PART IV  Using Transact-SQL (T-SQL)

SELECT
 ep.EmployeeID,
 p.FirstName,
 p.LastName,
 ep.[Total Due]
FROM EmployeePOs ep
INNER JOIN Person.Person p

 ON ep.EmployeeID = p.BusinessEntityID

5.	 Execute the query and review the results.

Now you have aggregated the data for each employee without incurring the overhead of running
a summation that includes multiple columns.

Table Variables
Table variables behave similarly to local variables. They are typically used to store small amounts of
data (less than 500 rows) and are only available within the scope of the batch, function, or stored
procedure in which they are declared. The syntax for declaring a table variable is as follows:

DECLARE @local_variable [AS] table
(
 [(column_definition) [,...n])]
)

In the preceding script, you can replace local_variable with the name you prefer, but you must
prefix it with an at (@) symbol. Next, you must define each column in the table. Each column will be
defined in the same way you define columns when creating an actual table.

Declare and use table variables

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

	 Chapter 14  Advanced T-SQL topics    181

USE AdventureWorks2012;

DECLARE @EmployeePOs AS TABLE
(
 EmployeeID int,
 TotalDue money
)

INSERT INTO @EmployeePOs
SELECT
 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
FROM Purchasing.PurchaseOrderHeader poh
GROUP BY
 poh.EmployeeID

In the preceding query, a table variable is declared and the results of a query are inserted into
the table variable.

3.	 In the query editor, add a SELECT statement that references the table variable and joins it to
the Person table.

DECLARE @EmployeePOs AS TABLE
(
 EmployeeID int,
 TotalDue money
)

INSERT INTO @EmployeePOs
SELECT
 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
FROM Purchasing.PurchaseOrderHeader poh
GROUP BY
 poh.EmployeeID

SELECT
 ep.EmployeeID,
 p.FirstName,
 p.LastName,
 ep.[TotalDue]
FROM @EmployeePOs ep
INNER JOIN Person.Person p
 ON ep.EmployeeID = p.BusinessEntityID

4.	 Execute the query and review the results.

182   PART IV  Using Transact-SQL (T-SQL)

Note  A table variable must be aliased when you plan on referencing it in a query.

The results are exactly the same as those returned when using the CTE. However, the advantage
table variables have over CTEs is that they can be accessed during the entire batch or session.

Temporary Tables
You can create local and global temporary tables. Local temporary tables are available within the
scope of the current session and are dropped at the end of a session. They must be prefixed with a
pound (#) sign.

Global temporary tables are available for all sessions and are dropped when the session that cre-
ated them and all referencing sessions are closed. They must be prefixed with two pound (##) signs.

The syntax for creating either is exactly the same as for creating a traditional table, but you must
include the pound sign(s) as just specified. Unlike with the other two temporary objects, space is
allocated for temporary tables. Note that table variables are not typically written to disk, but in some
cases they may use resources.

Create and use temporary tables

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
CREATE TABLE #EmployeePOs
(
 EmployeeID int,
 TotalDue money
)

INSERT INTO #EmployeePOs
SELECT

	 Chapter 14  Advanced T-SQL topics    183

 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
FROM Purchasing.PurchaseOrderHeader poh
GROUP BY
 poh.EmployeeID

This code creates the temporary table and then inserts the results of a query into the tempo-
rary table.

3.	 In the query editor, add a SELECT statement that references the temporary table and joins it to
the Person table.

USE AdventureWorks2012;
CREATE TABLE #EmployeePOs
(
 EmployeeID int,
 TotalDue money
)

INSERT INTO #EmployeePOs
SELECT
 poh.EmployeeID,
 CONVERT(varchar(20), SUM(poh.TotalDue),1)
FROM Purchasing.PurchaseOrderHeader poh
GROUP BY
 poh.EmployeeID

SELECT
 ep.EmployeeID,
 p.FirstName,
 p.LastName,
 ep.[TotalDue]
FROM #EmployeePOs ep
INNER JOIN Person.Person p
 ON ep.EmployeeID = p.BusinessEntityID

4.	 Execute the query and review the results, which will be exactly the same as the results
returned in the CTE steps.

If you run the query again in the same query window, you will receive an error stating that the
temporary table already exists. This is because the session is still open. If you open a new query edi-
tor and rerun the query, it will succeed. Once a session that references the temporary table is closed
or ended, then the temporary table is automatically dropped. This is the one disadvantage of using
temporary tables as opposed to CTEs and table variables. While the latter two are automatically
removed, the temporary table must be explicitly dropped within the same session or the session must
be ended. It should be noted that table variables and temporary tables can be declared with primary
keys and indexes to improve performance. However, indexes should not be added to temporary
tables after they are created because doing so could negatively affect execution plans.

184   PART IV  Using Transact-SQL (T-SQL)

Handling T-SQL errors

As with any programming language, T-SQL provides elegant methods for handling errors and excep-
tions during execution. T-SQL uses TRY…CATCH, similar to Microsoft Visual C#. When writing T-SQL,
you wrap the code in the TRY block, and if an error occurs, the control is sent to the CATCH block.
Within the CATCH block, you should enclose T-SQL code that will handle the errors. The following is
the TRY…CATCH syntax:

BEGIN TRY
 { sql_statement |statement_block}
END TRY
BEGIN CATCH
 [{ sql_statement |statement_block}]
END CATCH

sql_statement is any single T-SQL statement, and statement_block is any set or batch of T-SQL
statements. This applies to both the TRY and CATCH blocks. The TRY and CATCH blocks must be con-
structed together.

Finally, in SQL Server 2012, Microsoft introduced the THROW statement, which raises an exception
and transfers execution to a CATCH block.

THROW [{ error_number | @local_variable },
 { message | @local_variable },
 { state | @local_variable }
] [;]

error_number must be between 50,000 and 2,147,483,647, and it can be a constant or variable, but
it's optional when implementing error handling using T-SQL. message describes the error and can be
a string or variable. state must be between 0 and 255 and can be a constant or variable. The state-
ment preceding the THROW statement must end with a semicolon (;).

Implement error handing using T-SQL constructs

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

BEGIN TRY
 SELECT 1/0;
END TRY
BEGIN CATCH

END CATCH

	 Chapter 14  Advanced T-SQL topics    185

3.	 Execute the query and view the results.

Notice that the query returned an empty set, but more important, it did not return an error.
Instead of returning or displaying an error, the CATCH block consumes the error.

4.	 Within the CATCH block, add a THROW statement.

BEGIN TRY
 SELECT 1/0;
END TRY
BEGIN CATCH
 THROW;
END CATCH

5.	 Execute the query and view the results.

Adding the THROW statement to the CATCH block forces the client to display the error mes-
sage. THROW returns more accurate results and, in most cases, provides the developer with
enough information to effectively handle the error.

6.	 If you want to customize the error that will be provided by SQL Server, replace the THROW
statement in step 4 with the following:

THROW 51000, 'You divided my ZERO!!!', 1;

Now when the query is executed, you will receive the error that you specified in the THROW
statement.

Controlling flow keywords

Determining when and how code should react or work together is a pivotal part of any programming
language. T-SQL includes a set of keywords that allow you to group a series of statements and make
run-time decisions based on logic within the code. The keywords are as follows:

■■ BEGIN…END

■■ BREAK

■■ CONTINUE

■■ GOTO

■■ IF…ELSE

■■ RETURN

■■ WAITFOR

■■ WHILE

186   PART IV  Using Transact-SQL (T-SQL)

Technically, the TRY...CATCH block and the THROW statements are included as control flow key-
words; they have been omitted from the list since they were discussed in the previous section. The
following sections detail the BEGIN…END, IF…ELSE, and WHILE keywords.

BEGIN…END
The BEGIN…END keyword coupling simply encloses a group or series of T-SQL statements. BEGIN…
END blocks can be nested.

BEGIN
{
 sql_Statement | statement_block
}
END

Use the BEGIN…END block

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
BEGIN
 DECLARE @StartingHireDate datetime = '12/31/2001'

 SELECT e.BusinessEntityID, p.FirstName, p.LastName, e.HireDate
 FROM HumanResources.Employee e
 INNER JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID
 WHERE HireDate <= @StartingHireDate
END

3.	 Execute the query and review your results.

In the preceding query, first a variable is declared and assigned a variable. Then the variable
is used to limit the result to only employees whose hire date is less than or equal to the value
assigned to that variable.

	 Chapter 14  Advanced T-SQL topics    187

IF…ELSE
The IF…ELSE block simply tells the programming language to perform a T-SQL statement or a set of
statements if the specified condition is met, or another T-SQL statement or set of statements if it is
not. The IF can exist without the ELSE, but the ELSE cannot exist without the IF.

IF Boolean_expression { sql_statement | statement_block }
 [ELSE { sql_statement | statement_block }]

Use the IF…ELSE block

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

IF(DATENAME(M, GETDATE())='December')
BEGIN
 SELECT 'Time for the holidays!!!!' Results
END
ELSE
BEGIN
 SELECT 'Not sure what''s going on now :(' Results
END

3.	 Execute the query and review the results.

Since the month is not December, the Boolean expression returned false. Therefore, control was
sent to the ELSE block and the statement within that block was executed.

WHILE
WHILE is a looping mechanism based on a Boolean expression. As long as the expression evaluates
to true, the specified T-SQL statement or code block will execute. Two optional keywords, BREAK and
CONTINUE, can be included with the WHILE keyword to assist in controlling logic inside the loop. If at
any point during the WHILE loop the BREAK keyword causes the execution of the query to exit, any
T-SQL code following the END keyword will be executed. The CONTINUE keyword, on the other hand,
causes the loop to restart. Any statements after the CONTINUE keyword are ignored.

WHILE Boolean_expression
 { sql_statement | statement_block | BREAK | CONTINUE }

V413HAV
Typewritten Text
V413HAV

188   PART IV  Using Transact-SQL (T-SQL)

Use the WHILE loop with BREAK and CONTINUE

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

DECLARE @count int = 0
WHILE (@count < 10)
BEGIN
 SET @count = @count + 1;
 IF(@count < 5)
 BEGIN
 SELECT @count AS Counter
 CONTINUE;
 END
 ELSE
 BREAK;
END

3.	 Execute the query and view the results.

This query uses a variable in the expression of the WHILE loop. During each execution of the
loop, the variable is incremented by 1, and once it reaches 10, the loop should exit. However,
since additional logic is added that causes it to escape the loop using BREAK if the counter is
not less than five, it results in only four iterations of the loop.

Each of the previously described keywords has the ability to logically change the flow of a T-SQL state-
ment. While RETURN and GOTO have not been discussed, they both—when used effectively—can assist
in improving how a query flows. The RETURN keyword immediately completes a query. For example, you
could terminate the execution of a query based on logic included in the query. The GOTO keyword sends
the execution context of the statement from its current point to the line specified in the GOTO.

Summary

While this chapter has only skimmed the surface of more advanced T-SQL programming constructs,
you should have a solid starting point from which to build your skills as a T-SQL programmer. Logically
controlling execution is essential to any programming language. The control flow keywords often offer
efficiencies and performance improvements by eliminating the execution of unnecessary code.

		 189

C H A P T E R 1 5

Views

After completing this chapter, you will be able to

■■ Understand views.

■■ Create, alter, and drop views.

■■ Create index views.

Part IV of this book focused on the T-SQL language as a whole and many of the available con-
structs and keywords. All of the T-SQL code you’ve written so far has been disposed, meaning it is
not reusable. In this part of the book, you are going to focus on writing code that creates reusable
objects within the database. The discussion will begin with views and move on to other reusable
T-SQL objects.

What are views?

A view is a virtual object or table whose result set is derived from a query. It is very similar to a real
table because it contains columns and rows of data. The only time a view is materialized, or stored on
disk, is when it is indexed. Indexed views are discussed later in this chapter. The following are some
typical uses of views:

■■ Filter data of underlying tables

■■ Filter data for security purposes

■■ Centralize data distributed across several servers

■■ Create a reusable set of data

You can create views using a graphical user interface (GUI) within Microsoft SQL Server
Management Studio (SSMS) or using T-SQL. Before you create any views, you should understand
the following:

■■ Views are often used as an abstraction layer for database developers. They are also sometimes
used to secure data in various ways. For example, you may create a view that exposes only
specific data. In turn, instead of granting users permissions to the underlying table, you can
grant them permissions to the view that exposes some of the columns.

190   PART V  Creating Other Database Objects

■■ As a best practice, you should avoid using SELECT * in views. As table schemas change, so
will the views column listing if SELECT * is used. When writing queries, you should return only
those columns that are required.

■■ You should not use ORDER BY in views because they will not be valid; they are valid only when
used with TOP. In that case, ORDER BY is used to determine which rows are returned.

Create views with SSMS and T-SQL

1.	 Open SSMS and connect to a server.

2.	 If the Object Explorer window is not open, open it. If you have not connected to a database
server, do so.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Right-click the folder labeled Views and select New View from the context menu.

The Add Table dialog box will appear.

	 Chapter 15  Views    191

6.	 Scroll down the list, and locate and select the Employee(HumanResources) table. Click Add.
The Employee table will appear in the Diagram pane.

7.	 Scroll down the list, and locate and select the Person(Person) table. Click Add and then click
Close.

Your screen should resemble the following image. The two tables appear linked in the
designer because of the existing foreign key relationships.

8.	 In the diagram pane, click the box next to the Title, FirstName, MiddleName, and LastName
columns in the Person table.

9.	 In the diagram pane, click the box next to the JobTitle, BirthDate, and Gender columns in the
Employee table.

192   PART V  Creating Other Database Objects

Now your screen should resemble the following image.

10.	 Click the save icon in the SSMS menu bar and the Choose Name dialog box will appear. Type
vwEmployeeInformation in the Enter a Name for the View text box and click OK.

	 Chapter 15  Views    193

11.	 Click the X in the corner of the new view tab to close the view.

12.	 In Object Explorer, expand the Views folder and you will see the view you just created.

13.	 Open a new query window and type the following code:

USE AdventureWorks2012;
SELECT * FROM dbo.vwEmployeeInformation

14.	 Execute the query and view the results.

Now instead of your having to writing a query that joins the two tables each time you need this
information, end users and applications can use the view to quickly access the data.

Just as a view can be created using SSMS and T-SQL, it can also be altered and dropped.

194   PART V  Creating Other Database Objects

Alter and drop views

1.	 Open SSMS and connect to a server.

2.	 If the Object Explorer window is not open, open it.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Views folder.

6.	 Right-click the dbo.vsEmployeeInformation view and select Design from the context menu.

7.	 In the Column section, in the first available column, which should be after Gender, enter the
following:

FirstName+' '+LastName

	 Chapter 15  Views    195

8.	 In the column labeled Alias, replace Expr1 with FullName.

Notice that as you make changes to the column section, the T-SQL section is updated as well.

9.	 Click the Save button and close the view

10.	 Open a new query window and execute the following query:

USE AdventureWorks2012;
SELECT * FROM dbo.vwEmployeeInformation

You will now see the FullName column added to the result set.

11.	 To drop the view, right-click the dbo.vwEmployeeInformation view in Object Explorer and
select Delete from the context menu. The Delete Object dialog box will appear.

196   PART V  Creating Other Database Objects

12.	 Click OK and the view will be dropped.

Creating indexed views

An indexed view is different from other views because it is materialized and stored on disk in the
same way as a table. An interesting point about an indexed view is that the query optimizer may
reference a view to improve performance even if it is not referenced in the query. This feature is avail-
able only in the Enterprise edition of SQL Server.

Referenced table requirements
Before you can create an indexed view, you need to make sure that all the referenced tables meet
a few requirements. First, all referenced tables must be contained within the same database. If any
computed columns in the base tables are not deterministic, they must be removed. Deterministic is
defined as always returning the same value or result set. Since a requirement of an indexed view is
that it be deterministic, all the columns in the base table must also be deterministic. You can use the
following code, which leverages the COLUMNPROPERTY scalar function to determine if the column
is deterministic:

	 Chapter 15  Views    197

USE AdventureWorks2012;
GO
SELECT COLUMNPROPERTY(OBJECT_ID('Sales.SalesOrderDetail'),'LineTotal'
,'IsDeterministic')AS 'Column Length';
GO

In addition to being deterministic, the computed column may also need to be marked PERSISTED.
This depends on whether the data type is imprecise. Any float or real data type is considered impre-
cise and cannot be a key of an index unless it is marked PERSISTED.

Finally, the ANSI_NULLS and QUOTED_INDENTIFIER options must have been set to true when the
referenced tables were created.

Indexed view requirements
In addition to the referenced table requirements, you need to ensure a few more things prior to cre-
ating a view and as part of view creation. The following SET options must be ON:

■■ ANSI_NULLS

■■ ANSI_PADDING

■■ ANSI_WARNINGS

■■ ARITHABORT

■■ CONCAT_NULL_YIELDS_NULL

■■ QUOTED_IDENTIFIER

The NUMERIC_ROUNDABORT option must be set to OFF. Prior to creating the view, you must set
these options.

Next, you must verify that the view is deterministic. As previously mentioned, this means the view
will return the same values each time it is queried. When you are creating the view, you must use the
WITH SCHEMABINDING option, which binds the view to the schema of the underlying tables. Finally,
the first index must be a UNIQUE CLUSTERED index.

Create an indexed view

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012;
GO
--Set the options to support indexed views
SET NUMERIC_ROUNDABORT OFF;
SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,
 QUOTED_IDENTIFIER, ANSI_NULLS ON;

198   PART V  Creating Other Database Objects

GO
--Check to see if a view with the same name already exists
IF(OBJECT_ID('Purchasing.vwPurchaseOrders')) IS NOT NULL
 DROP VIEW Purchasing.vwPurchaseOrders
GO
--Create the view
CREATE VIEW Purchasing.vwPurchaseOrders
WITH SCHEMABINDING
AS
SELECT
 poh.OrderDate,
 pod.ProductID,
 SUM(poh.TotalDue) TotalDue,
 COUNT_BIG(*) POCount
FROM Purchasing.PurchaseOrderHeader poh
INNER JOIN Purchasing.PurchaseOrderDetail pod
 ON poh.PurchaseOrderID = pod.PurchaseOrderID
GROUP BY poh.OrderDate, pod.ProductID
GO

--Add a unique clustered index
CREATE UNIQUE CLUSTERED INDEX CIX_vwPurchaseOrders_OrderDateProductID
ON Purchasing.vwPurchaseOrders(OrderDate, ProductID)

3.	 Execute the query.

Just as with the normal view, you can now write queries that will access this data. The advantage
is that other queries that do not directly reference the view can be used by the optimizer to improve
performance. The disadvantage is that you must maintain the index, and now this view consumes disk
space. As the data in the underlying tables grows, so will the views. You are now essentially storing
multiple copies of the same data.

Summary

Views offer advantages over tables, as they can be consumed in the same way as regular tables
without incurring the cost, unless you are indexing the view. However, as you learned in this chapter,
there are certain advantages to indexing views. On the other hand, since indexed views are material-
ized to disk, you can realize performance gains without making any changes to queries that use the
base table. Regardless of your method, both regular views and indexed views create reusable code
that can simplify query writing and improve data access.

		 199

C H A P T E R 1 6

User-defined functions

After completing this chapter, you will be able to

■■ Understand user-defined functions.

■■ Create, alter, and delete functions.

■■ Understand the difference between scalar and table-valued functions.

User-defined functions are similar to functions in other programming languages. Microsoft SQL
Server 2012 allows you to create two types of functions: scalar and table-valued. These functions allow
for a modular type of programming, where code and logic can be included inside the function. Other
applications, routines, and database objects can then use the function. This approach also allows you
to place standards and governance around how the code is developed and deployed.

Functions are T-SQL code that can accept parameters, perform logic and complex calculations,
and return data. Scalar functions return a single value, and table-valued functions return a result set.
Functions can be used as CHECK CONSTRAINTS in tables, by views, to define a column, in a SELECT
statement, and in many other ways.

In this chapter, you will learn the differences between the two types of user-defined functions. You
will create, alter, and drop these functions. In addition, you will use the functions in T-SQL queries.
Finally, you will learn the differences between scalar and table-valued functions.

Functions vs. Stored Procedures
While functions are very similar to stored procedures, they differ in several ways. The most
notable difference is that table-valued functions can be used in a SELECT statement, so they
can be joined to tables, views, and even other functions. Stored procedures, however, cannot
be used in this way.

200   PART V  Creating Other Database Objects

Understanding user-defined scalar functions

A user-defined scalar function is a routine that returns a single value. These functions are often used
to centralize the logic of a complex calculation that may be used by several other database or applica-
tion resources. The syntax is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]

Very few items are required in the preceding syntax. The only items that you must specify are
function_name, the RETURNS data type, and the BEGIN…END code block that contains the actual
T-SQL code.

Parameterizing functions
Although this section specifically discusses scalar functions, parameterizing applies to both types of
functions. A parameter, in the scope of T-SQL function programming, is an input value that can be
passed from the calling function into the code. A parameter can be set to a constant, a column from a
table, an expression, and other values. Functions can contain three types of parameters:

■■ Input  This is the value passed into the body of the function.

■■ Optional  As the name indicates, this parameter is not required to execute the function.

■■ Default  This parameter indicates when a value is assigned to the parameter during creation.
In other words, it is a value that is specified when the function is created.

The following sample script demonstrates how to specify each parameter:

--Input Parameter
CREATE FUNCTION dbo.Input
@parameter1 int
…
--Optional Parameter
CREATE FUNCTION dbo.Optional
@parameter1 int = NULL
…

	 Chapter 16  User-defined functions    201

--Default Parameter
CREATE FUNCTION dbo.Default
@parameter1 int = 1
…

As you can see, if the input parameter does not have a default value, a value must be provided
when the function is called. The optional parameter is set to NULL during creation so that when
you use the function, it can be called without providing a value. Finally, the default parameter has a
value assigned to it during creation, but when it is executed, you can specify DEFAULT in place of the
parameter.

Create, alter, and drop a user-defined scalar function

1.	 Open Microsoft SQL Server Management Studio (SSMS) and connect to a server.

2.	 Open the Object Explorer window if it is not open already.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Programmability folder.

6.	 Right-click the Functions folder and select New | Scalar-valued Function.

7.	 A query window opens with a template you can use as a starting point for creating the scalar
function.

8.	 A few modifications have been added to the template. Open a new query window and paste
in the following code:

202   PART V  Creating Other Database Objects

USE AdventureWorks2012
-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Patrick LeBlanc
-- Create date: 7/8/2012
-- Description: Scalar function that will be used to return employee age
-- ===
CREATE FUNCTION dbo.GetEmployeeAge
(
	 @BirthDate datetime
)
RETURNS int
AS
BEGIN
 -- Declare the return variable here
 DECLARE @Age int
 -- Add the T-SQL statements to compute the return value here
 SELECT @Age = DATEDIFF(DAY, @BirthDate, GETDATE())
 -- Return the result of the function
 RETURN @Age
END
GO

The preceding code creates a scalar function that accepts a date value as a parameter and
returns an integer that is calculated in the BEGIN…END code block of the code.

9.	 Execute the query.

10.	 Open a new query window and paste in the following code:

USE AdventureWorks2012;
SELECT TOP(10)
 p.FirstName, p.LastName, e.BirthDate,
 dbo.GetEmployeeAge(BirthDate) EmployeeAge
FROM HumanResources.Employee e
INNER JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID

11.	 Execute the query and view the result set.

	 Chapter 16  User-defined functions    203

User-defined scalar functions are used with the same syntax as the built-in functions discussed
in Chapter 13, “Built-in Scalar Functions.” If the parameter is optional, you can call the function
without specifying a value. On the other hand, if a default value was assigned to the function,
the function call would resemble the following syntax:

dbo.GetEmployeeAge(DEFAULT)

The keyword DEFAULT tells the SQL Server Engine to use the value that was assigned to the
parameter when it was created.

A key advantage to using functions is that now instead of performing the calculation inline, a
function can be used to return the age. This function can be reused by other programmers,
providing a consistent mechanism for calculating the data. You may have noticed that the age
is not calculated correctly—instead of returning the years, the function returns the days. Next,
you’ll alter the function to return years instead of days.

12.	 In Object Explorer, expand the Functions folder.

13.	 Expand the Scalar-valued Functions folder.

14.	 Right-click the dbo.GetEmployeeAge function and select Modify from the context menu.

15.	 In the query editor, locate the SELECT statement and change the word day to year.

Your code will resemble the following. The bold section of the code denotes the change.

204   PART V  Creating Other Database Objects

USE [AdventureWorks2012]
GO
/****** Object: UserDefinedFunction [dbo].[GetEmployeeAge] Script Date: 7/8/2012 1:03:20
PM
******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Patrick LeBlanc
-- Create date: 6/8/2012
-- Description: Scalar function that will be used to return employee age
-- ===
ALTER FUNCTION [dbo].[GetEmployeeAge]
(
 @BirthDate datetime
)
RETURNS int
AS
BEGIN
 -- Declare the return variable here
 DECLARE @Age int

 -- Add the T-SQL statements to compute the return value here
 SELECT @Age = DATEDIFF(Year, @BirthDate, GETDATE())

 -- Return the result of the function
 RETURN @Age
END

16.	 Rerun the query from step 10 and the results should display days instead of years.

17.	 To drop the function, execute the following T-SQL. (Alternatively, you can right-click the func-
tion in Object Explorer and select Delete from the context menu.)

DROP FUNCTION dbo.GetEmployeeAge

Executing scalar functions
Scalar functions can be called using two methods:

■■ Within a SELECT statement (as demonstrated in step 10 in the “Create, alter, and drop a user-
defined scalar function” exercise)

■■ By using the EXECUTE keyword

Regardless of the method you use to select the output, if the parameter values are consistent, the
results from either execution will be the same.

	 Chapter 16  User-defined functions    205

Calling scalar functions inline
As previously stated, a scalar function can be included in a SELECT statement. The parameters can be
a column, constant, or expression.

SELECT dbo.GetEmployeeAge ('5/26/1972')

This is the typical use of a scalar function. This method is pretty straightforward and only presents
a challenge when multiple types of parameters (input, optional, and default) are specified as param-
eters. If you have a single input parameter and any other combination of other types of parameters,
you must ensure that the order in which they are passed corresponds to the order in which they are
specified in the function. In the following function, there are two parameters:

■■ A default parameter

■■ An optional parameter

USE [AdventureWorks2012]
GO
IF(OBJECT_ID('dbo.GetEmployeeAge')) IS NOT NULL
 DROP FUNCTION dbo.GetEmployeeAge
GO
CREATE FUNCTION [dbo].[GetEmployeeAge]
(
 @BirthDate datetime = '5/26/1972', --DEFAULT
 @Temp datetime = NULL --OPTIONAL
)
RETURNS int
AS
BEGIN
 -- Declare the return variable here
 DECLARE @Age int
 -- Add the T-SQL statements to compute the return value here
 SELECT @Age = DATEDIFF(Year, @BirthDate, GETDATE())
 -- Return the result of the function
 RETURN @Age
END

In the following code snippet, the first SELECT statement calls the function with a single parameter.
It succeeds since the second parameter is an optional input parameter. Assigning the NULL value
to the second parameter tells SQL Server that it is optional. The second SELECT statement has two
parameters. Since both values are provided, it succeeds. The only challenge now is to make sure that
you are passing the values in the correct order.

--Single Input Parameter
SELECT dbo.GetEmployeeAge('5/26/1972')
--First parameter is Default and second is Input
SELECT dbo.GetEmployeeAge('5/26/1972', '1/10/1972')

As a best practice, you should always supply a value, regardless of the type. The following code
snippet uses the function created at the beginning of this section:

206   PART V  Creating Other Database Objects

--Input and Optional Parameters
SELECT dbo.GetEmployeeAge('5/26/1972', NULL)
--Default and Input Parameters
SELECT dbo.GetEmployeeAge(DEFAULT, '1/10/1972')

In the first line of code, the function accepts an input and optional parameter. Notice that an
actual date is provided for the first parameter because it is an input parameter. Since the second
parameter is optional, a NULL is specified. This tells SQL Server not to specify a value.

On the next line, the first parameter is a default parameter and the second is an input. Because
DEFAULT is specified as the first value, SQL Server will use the value assigned to that parameter, and
the date value will be assigned to the input parameter.

Calling scalar functions using the EXECUTE keyword
In the previous section, you learned how to call a scalar function inline. A scalar function can also
be called using the EXECUTE keyword, which is discussed in more detail in Chapter 17, “Stored
Procedures.” For now, it is sufficient to know that you can use this keyword to execute scalar func-
tions. To obtain the output of a scalar function using the EXECUTE keyword, you must declare a
variable that will hold the output:

USE AdventureWorks2012;
GO
DECLARE @Age int;
EXECUTE @Age = dbo.GetEmployeeAge @BirthDate = '5/26/1972'
SELECT @Age;

In the previous script, the @Age variable is declared. Then, using the EXECUTE keyword, the func-
tion is called, assigning the return value to the variable. Finally, a SELECT statement is issued to obtain
the results.

Another thing to point out is that the parameter name is not required. However, if you specify
multiple parameters of different types, as a best practice you should explicitly specify the names.
This ensures that the correct value is assigned to the appropriate parameter. For example, assume
that a function has been created that requires two date parameters. If the parameter values are
specified in the wrong order, the results could be incorrect, but the function would still successfully
execute, potentially returning misleading data. Specifying the parameter names helps to mitigate that
problem.

To complicate things further, assume that you have a function that has an input parameter, a
parameter that is optional, and a parameter that has a default value. At a minimum, you must include
the parameter name of the input parameter. If you want to override or specify a value for the other
two types, you must also include the parameter names.

Regardless of the types of parameters and the method of execution, the key is to specify a
value for each parameter and ensure that the order of the values corresponds to the order of the
parameters.

	 Chapter 16  User-defined functions    207

Understanding table-valued functions

Table-valued functions come in two types:

■■ Inline

■■ Multistatement

The inline function simply returns a result set, and the multistatement function offers the ability to
include logic within the body of the function. Both return a complete result, similar to selecting from
a table or view, but the multistatement function can perform logic and return data. Sample syntax for
both is as follows:

--Inline Table-Valued Function Syntax
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS TABLE
 [WITH <function_option> [,...n]]
 [AS]
 RETURN [(] select_stmt [)]
[;]

--Multistatement Table-Valued Function Syntax
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS @return_variable TABLE <table_type_definition>
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN
 END
[;]

As with the scalar function, most of the code is optional. What you should notice here is that both
can return a table. The inline function only returns the result of a SELECT as its set, while the multi-
statement function uses a table variable that can be defined. The rows of data are added to the table
as per the code and can be manipulated before the data is returned. This is unlike the inline table-
valued function, where any data manipulations or filters must be done in the actual query.

208   PART V  Creating Other Database Objects

Create an inline table-valued function

1.	 Open SSMS and connect to a server.

2.	 Open the Object Explorer window if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Programmability folder.

6.	 Right-click the folder labeled Functions and select New | Inline Table-valued Function.

A query window opens with a template you can use as a starting point for creating the scalar
function. A few modifications have been added to the template.

7.	 Open a new query window and paste in the following code:

USE AdventureWorks2012;
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Patrick LeBlanc
-- Create date: 6/8/2012
-- Description: Returns the line items for a given orderid
-- ===
CREATE FUNCTION dbo.GetOrderDetails
(
 @SalesOrderID int
)
RETURNS TABLE
AS
RETURN
(
 SELECT
 sod.SalesOrderID,
 sod.SalesOrderDetailID,
 sod.CarrierTrackingNumber,
 p.Name ProductName,
 so.Description
 FROM Sales.SalesOrderDetail sod
 INNER JOIN Production.Product p
 ON sod.ProductID = p.ProductID
 INNER JOIN Sales.SpecialOffer so
 ON sod.SpecialOfferID = so.SpecialOfferID
 WHERE
 sod.SalesOrderID = @SalesOrderID
)
GO

	 Chapter 16  User-defined functions    209

The inline table-valued function accepts one parameter, SalesOrderID. This parameter is used
in the function to limit the result set to only rows that are associated with that value. Inside the
function is a single T-SQL statement that is limited by the parameter.

8.	 Execute the query.

9.	 Open a new query window and paste in the following code:

USE AdventureWorks2012;
SELECT *
FROM dbo.GetOrderDetails(43659);

10.	 Execute the query and review the results.

Using table-valued functions
A table-valued function can be used in the same way as a table or view is used in a SELECT statement,
as demonstrated in step 10 of the “Create an inline table-valued function” exercise. You can join to
this function as if it were a table, or you can insert the results into a table variable or temporary table.

More important, the use and types of parameters are the same as those used with scalar functions.
You should take care when mingling input, default, and optional parameters.

SELECT *
FROM dbo.GetOrderDetails(43659, DEFAULT, NULL)

In the preceding script, the function accepts all three parameter types—input, default, and
optional—and in that order. If you tried to execute the function without specifying NULL, it would
fail. Therefore, if you have default values, you must either supply a value or use the DEFAULT keyword.
Also, if you have an optional parameter, you must specify a value or supply NULL.

You follow the same steps to alter or drop the function as when altering or dropping the scalar
function.

Limitations of functions

Just as with any object inside SQL Server, user-defined functions have limitations. One limitation is
that you cannot use a TRY…CATCH block inside a function. Therefore, you have to create your own
error-handling mechanisms to elegantly handle errors. A limitation specific to scalar functions is that
they cannot return text, ntext, image, cursor, or timestamp data types. Finally, user-defined functions
cannot be used to modify the database state. Using functions in a SELECT statement could adversely
affect the performance of the query. This is because the function will be called once for every row
returned. Therefore, be cautious using complex functions when returning large result sets.

210   PART V  Creating Other Database Objects

Summary

This chapter covered the two types of user-defined functions available in Microsoft SQL Server 2012:
scalar and table-valued. They both offer modular programming to developers; however, their primary
purposes are different. Scalar functions return a single value, while table-valued functions return a
complete set. As you learned in this chapter, there are some limitations to using functions, but they
offer clear benefits in that they are stored in the database and can be reused.

		 211

C H A P T E R 1 7

Stored procedures

After completing this chapter, you will be able to

■■ Understand stored procedures.

■■ Work with stored procedures.

■■ Create, alter, and delete stored procedures.

■■ Use different types of parameters with stored procedures.

Stored procedures are a set of SQL statements (one or more) typically grouped together to perform
a specific routine. Stored procedures can be created in any user-defined database and system data-
base except the resource database. They are comparable to multistatement functions, but they boast
features and flexibilities that are not possible within functions. Some of the benefits of using stored
procedures are as follows:

■■ They offer improved performance because of compiled code.

■■ They are easy to maintain because changes are central instead of inline with code.

■■ Since database operations can be performed inside the stored procedures, they provide a
strong level of security. Instead of access being granted to the underlying object, permission
can be granted only to the stored procedure. Essentially, stored procedures create a level of
abstraction for permissions—instead of the user being granted SELECT, INSERT, UPDATE, or
DELETE rights, the user can be granted EXECUTE rights to a stored procedure.

Microsoft SQL Server 2012 has four types of stored procedures:

■■ User-defined

■■ System

■■ Temporary

■■ Extended user-defined

The extended user-defined stored procedures have been replaced with common language
runtime (CLR) procedures. If you want more information on CLR stored procedures, visit the “CLR
Stored Procedure” section of SQL Server Books Online.

212   PART V  Creating Other Database Objects

In this chapter, you will focus on user-defined stored procedures. The basic syntax for creating a
stored procedure is follows:

-- Stored Procedure Syntax
CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]
<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE AS Clause]

When creating a stored procedure, similar to a function, you are able to set several options.
However, only the procedure_name and the actual sql_statement(s) are required.

Working with stored procedures

Basically, you can create stored procedures only by using T-SQL. However, just as with functions,
Microsoft SQL Server Management Studio (SSMS) provides templates you can use as a starting point.

Create stored procedures

1.	 Open SSMS and connect to a server.

2.	 If the Object Explorer window is not already open, open it.

3.	 Expand the server node, and expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Programmability folder.

6.	 Right-click the Stored Procedures folder and select New Stored Procedure.

	 Chapter 17  Stored procedures    213

7.	 A query window will open with a template you can use as a starting point for creating the
stored procedure. A few modifications have been added to the template.

8.	 Open a new query window and paste in the following code:

USE AdventureWorks2012;
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Patrick LeBlanc
-- Create date: 6/9/2012
-- Description: <Description,,> Get PurchaseOrder Information
-- ===
CREATE PROCEDURE dbo.PurchaseOrderInformation
AS
BEGIN
 SELECT
 poh.PurchaseOrderID, pod.PurchaseOrderDetailID,
 poh.OrderDate, poh.TotalDue, pod.ReceivedQty, p.Name ProductName
 FROM Purchasing.PurchaseOrderHeader poh
 INNER JOIN Purchasing.PurchaseOrderDetail pod
 ON poh.PurchaseOrderID = pod.PurchaseOrderID
 INNER JOIN Production.Product p
 ON pod.ProductID = p.ProductID
END
GO

In the preceding code, a simple stored procedure has been created that does not expect any
parameters and contains a single T-SQL statement.

9.	 Execute the query.

10.	 In Object Explorer, expand the Stored Procedures folder. dbo.PurchaseOrderInformation will
appear in the list of available stored procedures.

214   PART V  Creating Other Database Objects

Using the EXECUTE keyword

To execute a stored procedure using T-SQL, you use the EXECUTE keyword. The syntax is as follows:

EXECUTE | EXEC procedure_name [parameter1, parameter2, n…]

Note that you can use EXECUTE or EXEC. This keyword has been enhanced in SQL Server 2012.
In the latest release of SQL Server, you can change the names and data types of each column in the
result set or redefine the result set. The syntax is as follows:

 EXECUTE | EXEC procedure_name [parameter1, parameter2, n…]
 WITH RESULT SETS
(
 ([column_definition1, column_definition2, n…])
)

To change the result set, you issue the EXECUTE command as normal, but you add a WITH RESULT
SETS statement, and within the parentheses you provide a new column definition for each column in
the result set.

Execute stored procedures and redefine result sets

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter the following T-SQL code:

USE AdventureWorks2012
EXEC dbo.PurchaseOrderInformation

3.	 Execute the query and review the results.

	 Chapter 17  Stored procedures    215

This is an abbreviated result set. The query within the stored procedure actually returns all the
data from the referenced tables. Typically when you develop a stored procedure, the result
is filtered down so that it returns a set that is built to solve a specific problem. This is usually
accomplished using parameters and additional logic. Details on how to do this are discussed
in the next section on parameters. However, before you look at parameters, you’ll redefine the
result set using EXEC.

4.	 Open the query editor in SSMS and enter the following T-SQL code:

USE AdventureWorks2012;
EXEC dbo.PurchaseOrderInformation
WITH RESULT SETS
(
 (
 [Purchase Order ID] int,
 [Purchase Order Detail ID] int,
 [Order Date] datetime,
 [Total Due] Money,
 [Received Quantity] float,
 [Product Name] varchar(50)
)
)

In the preceding query, the EXEC keyword is used for a standard stored procedure execu-
tion. However, the columns and data types have been changed to make the column names
user-friendly.

5.	 Execute the query and review the results.

216   PART V  Creating Other Database Objects

Notice the new column names in the preceding image as compared to the image in step 3.

Parameterizing stored procedures

Similar to functions, stored procedures can include parameters as part of their code. Creating a stored
procedure with parameters allows the calling programs to pass values into the procedure. Parameters
in stored procedures differ from those in functions in that you can specify direction, whether it is an
input or output parameter. In other words, you can specify whether the parameter will accept a value
(input) or whether it will return a value (output). You can use OUTPUT parameters to assign a value
produced by a stored procedure directly to a variable or an application in the execution context.

Stored procedures can have optional and default parameters similar to functions. How and what
you assign to the values are slightly different, but the meanings and how they are syntactically speci-
fied are the same.

If your stored procedure contains a default parameter, unlike with a function you are not required
to supply the DEFAULT keyword. If you simply execute the stored procedure using the EXEC keyword,
the assigned value will be used at run time. The same applies if you include an optional parameter. As
a best practice, it is recommended that you specify each parameter name and assign a value to each.
This ensures that you are assigning the correct value to appropriate parameter, as follows:

EXEC [dbo].[PurchaseOrderInformation] @parameter1 = 1, @parameter2 = default, @parameter3 = null

The example stored procedure includes an input, default, and optional parameter. To protect
against any misalignment of values and parameters, each parameter is specified with a corresponding
value.

As previously mentioned, in addition to the types of parameters that functions and stored proce-
dures share, stored procedures also can change the direction of a parameter to OUTPUT. This means
that instead of assigning a value to the parameter when the stored procedure is executed, a value will
be returned and can be accessed via that parameter:

	 Chapter 17  Stored procedures    217

USE AdventureWorks2012;
GO
--Create Proc with OUTPUT param
CREATE PROC dbo.SampleOutput
@Parameter2 int OUTPUT
as
SELECT @Parameter2 = 10
--Execute Proc with OUTPUT param
DECLARE @HoldParameter2 INT
EXEC dbo.SampleOutput
 @HoldParameter2 OUTPUT
SELECT @HoldParameter2

In the first part of the preceding code, a stored procedure is created that has a single output
parameter. The output parameter includes the OUTPUT keyword. The stored procedure contains a
single T-SQL statement that assigns 10 to the parameter.

In the second part of the code, a variable is declared that will hold the value of the output param-
eter. The EXEC keyword is used to execute the stored procedure. In addition, the declared variable is
specified including the OUTPUT keyword. Finally, a SELECT statement is issued to display the value of
the output.

Alter a stored procedure to add parameters

1.	 Open SSMS and connect to a server.

2.	 If the Object Explorer window is not open, open it.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Programmability folder.

6.	 Expand the Stored Procedures folder.

7.	 Locate the dbo.PurchaseOrderInformation stored procedure, right-click it, and select Modify.
A new query window will open that contains the script for the stored procedure. You can then
modify the stored procedure.

8.	 Open a new query window and enter the following T-SQL:

USE AdventureWorks2012;
GO
ALTER PROCEDURE [dbo].[PurchaseOrderInformation]
@EmployeeID int,
@OrderYear int = 2005
AS
BEGIN
 SELECT
 poh.PurchaseOrderID, pod.PurchaseOrderDetailID,

218   PART V  Creating Other Database Objects

 poh.OrderDate, poh.TotalDue, pod.ReceivedQty, p.Name ProductName
 FROM Purchasing.PurchaseOrderHeader poh
 INNER JOIN Purchasing.PurchaseOrderDetail pod
 ON poh.PurchaseOrderID = pod.PurchaseOrderID
 INNER JOIN Production.Product p
 ON pod.ProductID = p.ProductID
 WHERE
 poh.EmployeeID = @EmployeeID AND
 YEAR(poh.OrderDate) = @OrderYear
END

In the preceding stored procedure, two parameters were specified: input and default. At the
end of the T-SQL query, a WHERE clause was included that limits the result based on the val-
ues of the two parameters.

9.	 Execute the query.

10.	 Open a new query window, and enter the following T-SQL code:

USE AdventureWorks2012;
EXEC [dbo].[PurchaseOrderInformation]
 @EmployeeID = 258;

Only the input parameter has been specified, which is fine because the other parameter has
a default value. While the query will succeed, as a best practice you should always specify a
value for all parameters.

USE AdventureWorks2012;
EXEC [dbo].[PurchaseOrderInformation]
 @EmployeeID = 258,
 @OrderYear = 2006;

In the previous code, the default value for the OrderYear parameter has been overwritten with
2006.

11.	 Execute the query and review the results.

	 Chapter 17  Stored procedures    219

This is only a subset of the actual data set that is returned, but the thing to pay attention to is
that the year for every OrderDate is 2006.

Dropping stored procedures

There are two ways to remove a stored a procedure from a database: using SSMS or using T-SQL.
With T-SQL, you issue the following statement:

DROP PROCEDURE schema_name.procedure_name

If you want to accomplish the same task with SSMS, you’ll need to follow a few steps.

Remove a stored procedure

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Programmability folder.

6.	 Expand the Stored Procedures folder.

7.	 Locate the dbo.PurchaseOrderInformation stored procedure, right-click it, and select Delete.

220   PART V  Creating Other Database Objects

Summary

This chapter discussed the stored procedure database object. Stored procedures are among the most
robust programming tools available in the Microsoft SQL Server database. As you learned in this
chapter, you can use stored procedures in several ways to accomplish many things. Typically, pro-
grammers centralize the data access of an application inside of stored procedures and include the
actual logic in the code. In some cases, the two are mingled together within the stored procedure; it
really is just a matter of preference.

		 221

C H A P T E R 1 8

Data manipulation triggers

After completing this chapter, you will be able to

■■ Explain the different types of triggers.

■■ Create, alter, and drop triggers.

■■ Explain practical uses of triggers.

Data manipulation triggers are sets of T-SQL statements that perform a specific action. They are often
referred to as a special kind of stored procedure. Unlike stored procedures, triggers are executed only
when a user or application attempts to modify data using Data Manipulation Language (DML). DML
includes INSERTs, UPDATEs, and DELETEs against views and tables.

In this chapter, you will look at different types of DML triggers. You will learn how to create, mod-
ify, and drop triggers. Finally, you will walk through the steps to enable or disable an existing trigger.

Types of triggers

Triggers, like most objects contained within a Microsoft SQL Server database, have multiple types.
There are three types: AFTER, INSTEAD OF, and CLR triggers. This chapter focuses on AFTER and
INSTEAD OF triggers.

As its name suggests, the AFTER trigger is executed after a DML event and is the default action for
a new trigger if a type is not specified. It is the most common type of trigger used. For example, sup-
pose an application issues an INSERT statement that adds a single row to a table that has an AFTER
trigger. Once the insert completes, then the code inside the trigger will execute, but within the same
transaction as the triggering insert. This is a very important fact to remember. It is the reason that
triggers can execute with relational integrity, but it may also reduce performance. The original trans-
action will not commit or roll back until the trigger has also committed or rolled back.

If an INSERT is executed on a table, the INSTEAD OF trigger will execute in place of the actual
INSERT. In other words, the INSERT is not run and the code within the DML trigger is executed
instead, as part of the triggering transaction.

222   PART V  Creating Other Database Objects

You can use the following pseudocode sample script as a starting point for creating a DML trigger:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }
<dml_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]
<method_specifier> ::=
 assembly_name.class_name.method_name

Note  Constraints, including foreign-key cascade operations, are checked prior to execut-
ing either type of trigger. If it is an INSTEAD OF trigger, the constraint is checked after the
trigger completes. If it is an AFTER trigger, the constraint is checked prior to executing the
trigger. Regardless of the type of trigger, when the trigger event is rolled back, it causes a
constraint violation. For INSTEAD OF triggers, the entire event is undone or rolled back, and
in the case of FOR triggers, nothing is executed.

Creating triggers

As mentioned, triggers are created on tables and views. Even though they are typically considered to
be special kinds of stored procedures, you will not see a folder for them under the Programmability
section in Object Explorer for a given database. You need to expand a table and view the triggers
there, as demonstrated in the next procedure.

View triggers on tables

1.	 Open SQL Server Management Studio (SSMS) and connect to a server.

2.	 Open Object Explorer if it is not open already.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand the HumanResources.Employee table.

7.	 Expand the Triggers folder. You will see the dEmployee trigger.

	 Chapter 18  Data manipulation triggers    223

Since a trigger can be associated to a specific view and table, you will need to go to this loca-
tion to find a list of triggers on an object.

Create a FOR trigger using T-SQL

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand the HumanResources.Department table.

7.	 Right-click the Triggers folder and select New Trigger.

A new query window will open that contains a trigger template script. You can use this script
as a good starting point for creating a trigger.

224   PART V  Creating Other Database Objects

8.	 Open a new query window and enter the following T-SQL code:

USE AdventureWorks2012;
GO
CREATE TRIGGER HumanResources.iCheckModifedDate
ON HumanResources.Department
FOR INSERT
AS
BEGIN
 DECLARE @modifieddate datetime, @DepartmentID int
 SELECT @modifieddate = modifieddate, @DepartmentID = departmentid FROM inserted;

 IF(DATEDIFF(Day, @modifiedDate, getdate()) > 0)
 BEGIN
 UPDATE HumanResources.Department
 SET ModifiedDate = GETDATE()
 WHERE DepartmentID = @DepartmentID
 END
END

9.	 Execute the query.

The preceding query creates a trigger that checks the modified date. It ensures that during
the insert of a new department, the modified date is the current day. If it is not, the row is
updated, setting ModifiedDate to the current date and time.

10.	 Open a new query editor and enter the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department
VALUES('Executive Marketing', 'Executive General and Administration', '2/12/2011');

SELECT *
FROM HumanResources.Department

11.	 Execute the query and review the results.

	 Chapter 18  Data manipulation triggers    225

In the last row of the result set, you will see the newly inserted row. Notice that the modified
date is not the value that was specified in the insert. It should be the current date and time of
the insert.

Note  In the code of the trigger, specifically the SELECT statement, a logical table called
inserted is referenced. There are actually two tables of this type—the second table is
deleted. These tables are available within the context of the trigger. You cannot modify the
structure or contents of these tables. The inserted table stores a copy of a row or rows that
were inserted, or a copy of the new values for rows that were updated. During an update,
the inserted table stores the new or updated data. The second (deleted) table stores the
data before an update and a row or rows that were deleted in a DELETE statement.

Altering triggers

As with all other programmable objects in SQL Server, a trigger can only be modified using T-SQL. A
situation may arise in which you will need to change the logic inside the trigger. Instead of dropping
and re-creating the trigger, you can use the ALTER keyword to quickly modify the trigger.

Alter an existing trigger

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

226   PART V  Creating Other Database Objects

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand the HumanResources.Department table.

7.	 Expand the Triggers folder.

8.	 Right-click the iCheckModifiedDate trigger and select Modify from the context menu.

The newly created trigger will appear in a new query window.

9.	 Locate the following statement:

SET ModifiedDate = GETDATE()

10.	 Change the preceding statement to the following:

SET ModifiedDate = DATEADD(day, -1, GETDATE())

11.	 Execute the query.

12.	 Open a new query window and enter the following T-SQL code:

USE AdventureWorks2012;
INSERT INTO HumanResources.Department
VALUES('Executive Purchasing', 'Executive General and Administration', '2/12/2011');

SELECT *
FROM HumanResources.Department

13.	 Execute the query and review the results.

In the last row of the results, you should see a modified date that is set to yesterday's date.

Dropping triggers

To drop triggers, you can use either T-SQL or SSMS. To drop a trigger using T-SQL, use the following
code:

DROP TRIGGER HumanResources.iCheckModifedDate

To drop a trigger using SSMS, follow the steps in this section.

	 Chapter 18  Data manipulation triggers    227

Drop a trigger using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand the HumanResources.Department table.

7.	 Expand the Triggers folder.

8.	 Right-click iCheckModifiedDate and select Delete from the context menu.

This action removes the trigger from the table.

Enabling and disabling triggers

In some cases, you may not want to delete a trigger, but you want to stop it from firing during a large
DML operation or for testing purposes. SQL Server provides you with the ability to disable a trigger,
and once you have completed the task, you can enable the trigger again. You can do so using T-SQL
or SSMS.

To disable or enable a trigger using T-SQL, use the following code:

USE AdventureWorks2012;
--Disable a Trigger with T-SQL
DISABLE TRIGGER HumanResources.iCheckModifedDate
ON HumanResources.Department;

--Enable a Trigger with T-SQL
ENABLE TRIGGER HumanResources.iCheckModifedDate
ON HumanResources.Department;

To disable or enable a trigger using SSMS, follow the steps in this section.

Disable and enable triggers using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and then expand the Databases folder.

228   PART V  Creating Other Database Objects

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

6.	 Expand the HumanResources.Department table.

7.	 Expand the Triggers folder.

8.	 Right-click iCheckModifiedDate and select Disable from the context menu. The Disable
Triggers dialog box appears.

The trigger is now disabled and will not execute in the event of an insert.

9.	 Right-click the trigger again and select Enable to enable the trigger.

Summary

In this chapter, you learned about triggers, which are associated to a specific table or view. In the
event of a DML operation on that table or view, the trigger will execute, performing some action.
There are three types of triggers: AFTER, INSTEAD OF, and CLR. This chapter focused on the AFTER
and INSTEAD OF triggers and their capabilities.

		 229

PART VI

SQL Server
replication

CHAPTER 19	 Replication . 231

		 231

C H A P T E R 1 9

Replication

After completing this chapter, you will be able to

■■ Understand the different types of replication.

■■ Understand the different replication agents.

■■ Configure and monitor replication.

Moving data from one server to another or from one data center to another is something you will
frequently do when working with enterprise data. The specific reasons vary, but typically there is a
need to have a secondary copy of reporting, backup, and possibly disaster recovery. Regardless of
the reason for moving the data, a viable solution should be available that will allow a seamless and
consistent procedure.

Replication is a group of Microsoft SQL Server 2012 technologies that you can use to copy and
move data and database objects from one database to another. Three primary types of replication are
discussed in this chapter. The type you choose depends on several factors, which could include data
size, frequency of movement, hardware, and location of computers. These are not the only factors to
consider, but they are among the most important.

There are typically three types of servers in a replication topology:

■■ Publisher  Database server that contains the source data.

■■ Subscriber  Database server where the data and database objects are copied.

■■ Distributor  Database server that stores changes. This information is stored in a database
called the distribution database.

Consistency of the data is maintained by a replication synchronization process.

In this chapter, you will learn about the different types of replication. A brief discussion of the rep-
lication components is provided, and you will be introduced to each component at a high level. You
will then walk through the process of configuring replication. Finally, you will learn how to monitor
replication using native SQL Server tools.

232   PART VI  SQL Server replication

Types of replication

There are five types of replication:

■■ Snapshot

■■ Transactional

■■ Merge

■■ Oracle Publisher

■■ Peer-to-peer

All five move or replicate data, but the frequency, the data that is delivered, and the direc-
tion can vary among them all. Throughout this chapter, you will focus on the first three: snapshot,
transactional, and merge. The last two are for specialized situations and are beyond the scope of this
book. Oracle Publisher is typically used when you want to move data from an Oracle database to a
SQL Server database. Peer-to-peer replication is built on the foundation of transaction replication, but
it is more of a scale-out and high-availability deployment.

Snapshot
Snapshot replication is exactly what the name implies: a snapshot of the data and database objects
as they exist at a point in time. When snapshot replication is configured, it is generally scheduled
to occur as some specific interval. An entire copy (snapshot) of the data is created and sent to the
Subscriber via the Distributor. Since the entire data set is sent, tracking DML changes is not required.
This has an added value because tracking changes adds overhead to the replication process. On the
other hand, if the snapshot is very large, distributing the data to the destination can be a lengthy
process. You can schedule the generation and deployment of the snapshot to best meet your needs.

Snapshot replication is typically used with the following:

■■ Small amounts of data

■■ High latency or intermittent network connections

■■ Data that changes infrequently

■■ Copies of data that can be an hour, day, week, or month old

Transactional
Transactional replication, like snapshot replication, begins with a snapshot. However, then the initial
snapshot data and schema changes at the Publisher are asynchronously (in order) sent to the distribu-
tion database. Subscribers then receive the transactions, keeping them up to date with the Publisher.

	 Chapter 19  Replication    233

Transactional replication is typically used in situations that require the following:

■■ Near real-time data on one or more subscribers

■■ Data that has to be incrementally loaded

■■ Data that is highly transactional or that changes frequently

Merge
Like the previous types, merge replication typically starts with a snapshot of the source database.
Then the changes are tracked with triggers. This type of replication is common when users work
in a disconnected manner and the data needs to be synchronized from a centralized repository to
mobile devices and vice versa. When a user connects, the changes are synchronized between the two
devices.

Note  Since snapshot replication does not track changes, it does not rely on the distribution
database. The change data within this database is actually only used by transactional and
peer-to-peer replication. In the case of merge replication, it uses the repository for process
history. The Distributor can reside on a Publisher or on a remote server. As a best practice,
it is recommended that you use a remote Distributor, as this allows you to offload some of
the processing, and the remote Distributor could act as a centralized repository for multiple
Publishers. A database name distribution will also be created on this server; this is where all
the metadata and the history of data changes will be stored for all types of replication.

Replication agents

Moving data and database objects between servers can be a huge undertaking. To accomplish this,
SQL Server uses four agents:

■■ Snapshot Agent

■■ Distribution Agent

■■ Log Reader Agent

■■ Merge Agent

Snapshot Agent
As previously stated, all replication types leverage a snapshot to initially start the process. As a result,
they all use this agent. The Snapshot Agent generates the snapshot file, which contains all the data
needed to move the data and database objects that you want to replicate. This agent writes all the
information to the file system. It runs on the SQL Server instance that acts as the Publisher.

234   PART VI  SQL Server replication

Distribution Agent
This agent is primarily used by snapshot and transactional replication. Snapshot replication uses the
Distribution Agent to apply the generated snapshots to all Subscribers. Transactional replication uses
it to apply all subsequent changes to the Subscribers since the initial snapshot. This agent runs on
the SQL Server instance acting as the Distributor for push subscriptions, and it runs on the Subscriber
SQL Server for pull subscriptions.

Log Reader Agent
This agent is used only by transactional replication. It moves transactions from the transaction log to
the distribution database. If you have multiple databases configured to use transactional replication,
you will have multiple Log Reader Agents, one for each database. The Log Reader Agent runs on the
SQL Server instance acting as the Distributor.

Merge Agent
This agent is used only by merge replication. The Merge Agent pushes the initial snapshot and suc-
cessive incremental changes from the Publishers to the Subscribers. It detects changes on both the
source (Publisher) and destination (Subscriber) databases since the last scheduled run of the Merge
Agent. Merge replication includes a set of features that handle conflict, including conflict tables
that store conflicting values. For example, assume that you have a row on the Subscriber that has a
primary key of 555, and a row also exists on the Publisher that has a primary key of 555. When the
synchronization happens, a conflict will occur and all the information will be logged to the conflict
table. You can view this information using the Replication Conflict Viewer. Like the Distribution Agent,
the Merge Agent runs on the SQL Server instance acting as the Distributor for push subscriptions, and
on the SQL Server acting as the Subscriber for pull subscriptions.

Configuring replication

Now that you are familiar with the basic replication terminology and components, it's time to delve
into configuring and deploying a replication topology. Typical replication topologies consist of at a
minimum a Publisher and a Subscriber, which in most cases are two separate servers. In addition to
those servers, a third server, the Distributor, may also be included to improve performance.

Configure the Distributor

1.	 Open SQL Server Management Studio (SSMS) and connect to an instance of SQL Server.

2.	 In Object Explorer, expand the Databases folder.

3.	 Right-click the Replication folder.

	 Chapter 19  Replication    235

4.	 Select Configure Distribution from the menu.

5.	 Click Next.

6.	 On the Distributor page, accept the defaults and click Next.

On the next page, Snapshot Folder, you will see a warning in reference to the location of the
snapshot folder. If you are configuring a remote Distributor, you must specify a UNC path:
\\Computer Name\folder path.

7.	 Click Next.

V413HAV
Typewritten Text
V413HAV

236   PART VI  SQL Server replication

8.	 On the Distribution Database page, change the name of the database and specify a new loca-
tion for the database and log files.

9.	 Accept the defaults and click Next.

10.	 On the Publishers page, you can enable other servers to use this server as a Distributor. By
default, the current server is automatically included.

	 Chapter 19  Replication    237

11.	 Accept the defaults and click Next.

12.	 On the final page, Wizard Actions, in addition to configuring distribution, you can generate a
script that contains all the steps from the wizard. For now, accept the defaults and click Next.

13.	 On the Complete the Wizard page, review the summary and click Finish.

14.	 Configuration begins and the progress is shown on the Configuring page. Click Close.

Configure a transactional Publisher

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 Expand the Replication folder.

3.	 Right-click the Local Publications folder and select New Publication from the menu.

4.	 Click Next on the New Publication Wizard page.

5.	 Select the AdventureWorks2012 database on the Publication Database page and click Next.

238   PART VI  SQL Server replication

6.	 On the Publication Type page, you are presented with four types. The type you select depends
on your requirements. Select Transactional Publication from the list and click Next.

7.	 The Articles page is where you specify the database objects that you would like to repli-
cate. As shown on the page, you can replicate several objects. You will focus primarily on
tables. Each replicated object is referred to as an article. Expand Tables, and then expand the
BusinessEntity table. You can holistically replicate the entire table or select only the columns
that you want to replicate.

	 Chapter 19  Replication    239

8.	 Select the box next to the BusinessEntity table.

9.	 To the right of the list of articles is an Article Properties button. Click the drop-down arrow
located on the button and select Set Properties of Highlighted Table Article.

Using the Article Properties dialog box, you specify whether or not you want to copy con-
straints, triggers, clustered indexes, and so on. Scroll through the list and familiarize yourself
with what is available.

240   PART VI  SQL Server replication

10.	 Accept all the defaults for now and click OK. On the Articles page, click Next.

In some cases, you may want to replicate only certain rows from a table. By using the filter
option, you can limit the rows with a WHERE clause.

11.	 You are going to replicate all the rows in the specified table, so just click Next.

As discussed earlier, prior to configuring all types of replication, a snapshot must be taken. On
the Snapshot Agent page, you can specify when to create a snapshot and how often. Select
the box next to the option Create a Snapshot Immediately and Keep the Snapshot Available to
Initialize Subscriptions.

12.	 Click Next.

13.	 On the Agent Security page, you must specify under which account the Snapshot Agent and
the Log Reader Agent will run. The Windows account that is used for the agents must be a
member of the db_owner database role in the distribution database and in the publication
database—in this case, AdventureWorks2012. In addition to these requirements, the Windows
account that is used for the Snapshot Agent must have read, write, and modify permissions on
the snapshot folder.

14.	 Click the Security Settings button next to the Snapshot Agent text box.

	 Chapter 19  Replication    241

15.	 In the Snapshot Agent Security dialog box, select the Run Under the SQL Server Agent Service
Account option. Note that the dialog box states that selecting this option is not recommended
as a best practice, but for testing purposes, it will suffice. However, when going to production
you should create a new Active Directory account for sole use by the Snapshot Agent.

16.	 In the lower section of the same dialog box, select the By Impersonating the Process Account
option.

17.	 Click OK. Remember, these settings are not a best practice since the service account running
the agent may have permissions beyond what is required by replication.

18.	 Back on the Agent Security page, you will see that both agents have been configured. This is
because by default the wizard uses the security settings from the Snapshot Agent for the Log
Reader Agent.

242   PART VI  SQL Server replication

You can override this default by clearing the Use the Security Settings from the Snapshot
Agent check box and manually configuring the settings.

19.	 For now, accept the defaults and click Next.

20.	 On the Wizards Actions page, ensure that the Create the Publication check box is selected. If
you want to generate a script, you can select the Generate a Script file with steps to create the
publication also. For now, leave it cleared.

21.	 On the Complete the Wizard page, enter BusinessEntity in the Publication Name text box,
review the summary, and click Finish.

Configuration begins and the progress is shown on the Creating Publication page.

22.	 Click Close.

You will see the newly created publication in Object Explorer under Replication | Local
Publications. In addition, a Snapshot Agent job and a Log Reader Agent job have been created
on your SQL Server instance; you can view these in Object Explorer under SQL Server Agent |
Jobs.

	 Chapter 19  Replication    243

Configure a transactional Subscriber

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 Open a new query window and enter the following T-SQL code:

USE master;
CREATE DATABASE ADRepl;

3.	 Execute the query.

4.	 Expand the Replication folder in Object Explorer.

5.	 Right-click the Local Subscriptions folder and select New Subscriber from the menu.

6.	 Click Next.

7.	 On the Publication page of the New Subscription Wizard, ensure that the BusinessEntity publi-
cation is selected and click Next.

8.	 Now you are presented with the choice of running the Distribution Agent on the Distributor
for push replication or on the Subscriber for pull replication. While running the Distribution
Agent on the Subscriber does offload some of the work from the Publisher, if it is on the

244   PART VI  SQL Server replication

Subscriber, the Subscriber will bear the load. When making this choice, consider how each
will be affected, and ensure that the selected choice has sufficient resources to support your
decision.

In general, place the Distributor on a more powerful machine or the machine with lowest
network connection latency. For now, accept the defaults and click Next.

9.	 On the Subscribers page, select the box to the available choice, which will be the local
machine, and select ADRepl from the Subscription Database column. You can optionally add a
new subscriber by clicking the Add Subscriber button.

10.	 Click Next.

11.	 In the Distribution Agent Security dialog box, click the ellipsis button. Similar to the Snapshot
Agent and Log Reader Agent, elect to run the agent under the SQL Server Agent services
account and connect to the Distributor and Subscriber using the process account. Again, as
a best practice, you should use a new Active Directory account that has been created specifi-
cally for this purpose.

	 Chapter 19  Replication    245

12.	 Click OK and click Next.

13.	 On the next page, Synchronization Schedule, select Run Continuously in the column labeled
Agent Schedule. You can also synchronize on demand or define a schedule. Click Next.

14.	 On the Initialize Subscriptions page, you have two choices: Initialize Immediately or At First
Synchronization. Accept the defaults and click Next.

15.	 On the final page, Wizard Actions, in addition to configuring distribution, you can generate a
script that contains all the steps from the wizard. For now, accept the default and click Next.

16.	 Review the summary and click Finish.

Configuration begins and the progress is shown on the Creating Subscriptions page.

17.	 Click Close.

18.	 Right-click the Replication folder in Object Explorer and select Refresh.

246   PART VI  SQL Server replication

19.	 Expand the Local Publications folder.

20.	 Expand the BusinessEntity publication, and you will see the new subscription.

21.	 Open a new query window and enter the following T-SQL code:

USE ADRepl;
SELECT * FROM Person.BusinessEntity

22.	 Execute the query.

You will now see that the table is created and the data has been copied.

Monitoring replication

Having an effective method of monitoring the availability and performance of any technology is
critical to its use and success. SQL Server provides several different ways to monitor replication. Using
SSMS, you can start and stop each individual agent and monitor them using SQL Server Agent. In
addition, you can launch Replication Monitor, which is a graphical interface that allows you to moni-
tor replication activity. Replication Monitor reports on the health of both Publishers and Subscribers.
If you are less interested in using prebuilt interfaces, you can leverage T-SQL or Replication
Management Objects (RMO) to monitor replication programmatically. Finally, you can configure some
of the predefined alerts for replication agents. Alerts are discussed in Chapter 27, “SQL Server Agent.”

Monitor replication using Replication Monitor

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 Right-click the Replication folder and select Launch Replication Monitor.

	 Chapter 19  Replication    247

3.	 By default, the server that you are connected to is automatically registered and displayed. In
the left section of the Replication Monitor screen, you can view that status of all publications
on the selected server. You can also monitor the activity of the Subscription Watch List and all
the agents that are currently running.

4.	 In the left navigation pane, expand your server and you will see the publication that was
created earlier. If multiple publications existed on that server, you would see an entire list.
Select the BusinessEntity publication and the view changes to only those items specific to that
publication.

Summary

This chapter discussed the different types of replication topologies that are available within Microsoft
SQL Server 2012. Each provides different techniques for solving various data movement scenarios
within an organization. Selecting a type and determining how to configure it requires careful consid-
eration and planning. The end result should provide an effective means of moving data and database
objects in a consistent and effective way that meets the needs of your organization.

		 249

PART VII

Database
maintenance

CHAPTER 20	 Backups . . 251

CHAPTER 21	 Managing and maintaining indexes
and statistics	 . 267

CHAPTER 22	 Maintenance plans . 279

		 251

C H A P T E R 2 0

Backups

After completing this chapter, you will be able to

■■ Understand the different types of backups.

■■ Perform a full backup.

■■ Perform a differential backup.

■■ Back up a database transaction log.

■■ Restore a database.

Maintenance is a vital task that should be included as part of any database administrator's (DBA’s)
daily workload. Database maintenance includes rebuilding indexes, updating statistics, monitoring
performance and security, and performing database backups. Each task should be done at regular
intervals, with the intervals based on the requirements and needs of the organization. Backups are
discussed in detail throughout this chapter, while the other tasks are explained later in the book.

Databases can be backed up to disk, to tape, or to a network path. Regardless of the destination,
database backups should be executed regularly to protect the database from data loss and downtime.
Using database backups, a DBA can restore from the last backup or to a specific point in time. In this
chapter, you will learn how to back up and restore a database.

Note  The tape backup feature has been deprecated; therefore, you should avoid using this
method.

Understanding backup devices

This first step in taking a database backup is to determine where you will store the files. As mentioned
in the chapter introduction, backups can be stored to disk, to tape, or to a network path. In addition,
to simplify the process, you can set up a backup device, a logical device that points to a physical loca-
tion. The physical location can be either a disk location or a tape drive. So instead of explicitly typing
or selecting the tape or disk location, you can specify the backup device. While doing so does simplify
the backup process, it does not provide the level of flexibility that is typically needed for an effective
and reliable backup strategy.

252   PART VII  Database maintenance

Create a backup device using SSMS

1.	 Open SQL Server Management Studio (SSMS) and connect to an instance of
Microsoft SQL Server.

2.	 In Object Explorer, expand the server tree.

3.	 Expand the Server Objects folder.

4.	 Right-click Backup Devices and select New Backup Device.

5.	 In the Backup Device dialog box, enter AdventureWorksFullBackups in the Device Name
text box.

6.	 By clicking the ellipsis button located to the right of the File text box, you can change the
physical file location. For now, accept the default.

7.	 Click OK.

	 Chapter 20  Backups    253

8.	 Repeat steps 5–7 twice, changing the device name to AdventureWorksDiffBackups and
AdventureWorksTLogBackups for each iteration.

Now when you take a backup, you can simply specify this device name instead of a disk or tape
location, which will be explained in the next section. While creating a device does simplify the backup
process, it is not a requirement. You can back up a database directly to the file or tape location.

Note  You should not place your backup files in the same location as your database and log
files, as this could add additional contention on those disks that may negatively affect the
performance of your database. Also, keeping the backup files separate from the database
and log files protects against having a single point of failure in the event of a disaster.

Full database backups

Now that you have created a device to store database backups, you will take an actual database
backup. SQL Server allows you to take a full database backup or a differential database backup. As
the name suggests, a full database backup is a backup of the entire database. The database recovery
model, as explained in Chapter 4, “Designing SQL Server databases,” determines whether or not a full
database backup alone is sufficient.

A single daily backup can be sufficient in some cases. If a database is in the simple recovery
model, then a single full backup may suffice. (For information on recovery models, see Chapter 4.)
This depends on how much data your organization can afford to lose. For example, assume that a full
backup was taken at midnight of the same day. If something catastrophic occurred that affected the
data at 5 p.m. the same afternoon, your recovery point would be from the last backup at midnight.
Your organization would lose any data changes that occurred between midnight and 5 p.m. This may
or may not be acceptable. If not, then you can put certain procedures into place to mitigate the data
loss, including differential and transaction log backups. You could take multiple full backups, but
depending on the database size, this could require a large amount of storage space.

254   PART VII  Database maintenance

SQL Server allows you to back up databases using T-SQL or SSMS. Regardless of the method you
select, you have several options available. While this book discusses very few of the options explicitly,
you should take time to review them. You can find more information on these options in the “BACKUP
(Transact-SQL)” section of SQL Server Books Online.

Perform a full database backup using SSMS

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 In Object Explorer, expand the server tree.

3.	 Expand the Databases folder.

4.	 Right-click the AdventureWorks2012 database.

5.	 Select Tasks | Back Up.

6.	 In the Back Up dialog box, you can select a different database to back up, but just accept
the selected database. You can also change the backup type from Full to Differential or
Transaction Log. For now, accept Full.

7.	 Directly below the backup type, you can specify if you want to take a Copy-Only Backup.
Copy-only does not start a new backup chain, so if this option is specified, you cannot take a
differential backup.

8.	 In the next section, Backup Set, you can specify a name and description for the database
backup. For now, accept the default and enter a description if preferred.

9.	 Also in the Backup Set section, you can specify when the backup will expire and can be
overwritten by SQL Server. It should also be noted that the backup files can be removed by
using other tools and through the operating system. Accept the default of 0, which means the
backup never expires.

10.	 In the Destination section, you can specify whether you will back up to disk or tape. The tape
option will not be enabled unless you have a device attached to the server.

11.	 Be default, the configured backup location is automatically included. If you had not created a
device, the backup could have been stored directly in the location specified. Click Remove to
delete that location.

	 Chapter 20  Backups    255

12.	 Click Add. In the Select Backup Destination dialog box, select File Name.

13.	 Click the ellipsis, and in the Locate Database Files dialog box, browse to this location:
C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\Backup\.

256   PART VII  Database maintenance

14.	 In the File Name text box in the Locate Database Files dialog box, enter
AdventureWorks2012.bak and click OK twice.

15.	 In the Select a Page pane of the Back Up Database dialog box, select Options.

16.	 In the first section, Overwrite Media, select the Overwrite All Existing Backup Sets option.
By selecting this option, you will empty the backup set. If you accept the default choice to
append, you will add a new backup file to the media set during each subsequent backup.

17.	 In addition to deciding whether to overwrite, you can also choose to check the media set
name and backup expiration. If you select this box, you can either enter an existing media set
name or leave the media set name blank to create new one. Leave this check box cleared.

18.	 You can also decide to back up to a new media set. Do not select this option—accept the
default, Back Up to the Existing Media Set.

19.	 In the Reliability section, you can specify three options:

•	 Verify Backup When Finished

•	 Perform Checksum Before Writing to Media

•	 Continue on Error

Leave these check boxes cleared for now.

20.	 Since you are performing a full backup, the Transaction Log section is not enabled, and since a
tape drive is not available, the Tape Drive section is also not enabled.

21.	 Finally, you can decide whether or not to compress a backup. If you specify to compress
the backup, SQL Server will reduce the size of the backup, which ultimately saves space. The
amount of space saved depends on several factors, primary the type of data within the data-
base. Compression can be set at the server level or individually. For now, accept the default.

	 Chapter 20  Backups    257

22.	 Click OK and the backup begins.

Once the backup is complete, browse to this directory: C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\Backup. Here you will see the backup file.

258   PART VII  Database maintenance

Perform a full database backup using T-SQL

To perform this task with T-SQL, execute the following script:

BACKUP DATABASE [AdventureWorks2012]
TO DISK
=
N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLServer\MSSQL\Backup\AdventureWorks2012.bak'
WITH
 NOFORMAT,
 NOINIT,
 NAME = N'AdventureWorks2012-Full Database Backup',
 SKIP,
 NOREWIND,
 NOUNLOAD,
 STATS = 10
GO

Note  Most of the options that were selected or not selected during the SSMS steps are
represented in the WITH section of the T-SQL statement.

Differential database backups

Differential backups are slightly different from full backups. Over time, the typical database grows,
and so does the backup file. Therefore, in most cases, it is impractical to take full database backups
throughout the day. This is primarily because the larger the database, the more space the backup file
will require, and the longer it will take to perform the backup. In addition, the backups could poten-
tially affect performance.

As a result, SQL Server allows you to perform incremental backups, or differential backups in
SQL Server terminology. Differential backups are smaller than full backups because they capture only
what has changed in the database since the last full backup. For this reason alone, it is a good idea
to consider including them as part of your backup strategy for large databases. A large database that
does not change much will generate very small differential backups. Moreover, instead of taking a full
backup several times a day to protect against data loss, you can take a differential backup which, in
most cases, is faster and requires less space.

To illustrate, assume that a full backup was taken at midnight, and then every four hours following
the full backup, differential backups were taken. In the event of a disaster, you could restore the full
backup and then the differential backup that was taken prior to the problems that occurred. As a result,
your organization is exposed to only a 4-hour window of data loss, as opposed to a 24-hour window.

Note  When restoring databases, you must set certain options to allow you to restore addi-
tional files. The upcoming section “Restoring databases” provides a detailed explanation.

	 Chapter 20  Backups    259

Perform a differential backup using SSMS

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 In Object Explorer, expand the server tree.

3.	 Expand the Databases folder.

4.	 Right-click the AdventureWorks2012 database.

5.	 Select Tasks | Back Up.

6.	 In the Back Up Database dialog box, select Differential from the Backup Type drop-down list.
Accept all the other defaults.

7.	 In the Destination section, click Remove to remove any existing items.

8.	 Click Add and select File Name.

9.	 Click the ellipsis, and in the Locate Database Files dialog box, browse to this loca-
tion: C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\Backup\.
In the File Name text box in the Locate Database Files dialog box, enter
AdventureWorks2012DiffBackups.bak and click OK twice.

10.	 If you browse to the directory C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\Backup, you should see two files. One is the full backup, and
the other is the differential backup. Notice how much smaller the differential backup is than
the full backup.

Perform a differential backup using T-SQL

As with a full backup, you can execute a differential backup using T-SQL:

BACKUP DATABASE [AdventureWorks2012]
TO DISK
=
N'C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLServer\MSSQL\Backup\AdventureWorks2012DiffBackups.bak'
WITH
 DIFFERENTIAL ,
 NOFORMAT, NOINIT,
 NAME = N'AdventureWorks2012-Differential Database Backup',
 SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO

The primary difference is the inclusion of the DIFFERENTIAL keyword in the WITH clause.

260   PART VII  Database maintenance

Transaction log database backups

So far, you have learned how to back up databases in simple recovery mode and restore only up until
the last backup. What if your database is in full or bulk-logged recovery? What if you want to restore
to a point in time? Performing transaction log backups can assist in these scenarios.

Since the transaction log contains a record of all the transactions that are performed against a
specific database, you can use transaction log backups to restore to a specific point in time. You need
to know about a couple of important requirements: a full backup must be taken prior to performing
any transaction log backups, and the database must be in full or bulk-logged recovery mode. Also,
once the database is not in simple recovery mode, the transaction log will grow until a log backup is
taken. Therefore, if you do not back up the log regularly, it could consume large amounts of storage
that may cause you to run out of disk space. A transaction log backup empties out committed, check-
pointed transactions in the transaction log, but it does not affect the actual log file size.

Typically, transaction log backups are taken more frequently than any other backup. This is
because they are usually small and require fewer resources. In rare instances, the transaction log may
grow larger than the database data file. This may occur if you have a highly transactional database,
like a banking system, in which most of the data in the database is changed. In this case, you will need
to back up the transaction log more frequently.

Perform a transaction log backup using SSMS

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 In Object Explorer, expand the server tree.

3.	 Right-click the AdventureWorks2012 database.

4.	 Select Tasks | Back Up.

5.	 In the Back Up Database dialog box, select Transaction Log from the Backup Type drop-down
list. Accept all other defaults.

6.	 In the Destination section, click Remove to remove any existing items.

7.	 Click Add and select File Name.

8.	 Click the ellipsis, and in the Locate Database Files dialog box, browse to this loca-
tion: C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\Backup\.
In the File Name text box in the Locate Database Files dialog box, enter
AdventureWorks2012TLogBackups.trn and click OK twice.

9.	 In the Select a Page pane of the Back Up Database dialog box, select Options.

	 Chapter 20  Backups    261

10.	 Notice that the Transaction Log section is now enabled. Ensure that the Truncate the
Transaction Log option is selected.

11.	 Click OK and the backup begins.

12.	 If you browse to the directory C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\Backup, you should see three files.

Perform a transaction log backup using T-SQL

Again, you can also replicate the previous steps with a single T-SQL statement:

BACKUP LOG [AdventureWorks2012]
TO Disk
=
'C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLSERVER\MSSQL\Backup\AdventureWorks2012TLogBackups.trn'

WITH
 NOFORMAT, NOINIT, NAME = N'AdventureWorks2012-Transaction Log Backup',
 SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO

262   PART VII  Database maintenance

Note  Have you noticed the trend with the backups using T-SQL? The main difference
between this statement and a full backup is that instead of using DATABASE after the
BACKUP keyword, you use LOG.

You have now successfully performed each type of backup. You should perform not only regu-
lar transaction log backups, but also full and differential backups. Again, the frequency of backups
depends on the level of data loss that is acceptable for your organization. Building a plan to regularly
back up your databases is discussed in more detail in Chapter 22, “Maintenance plans.”

Restoring databases

Backing up databases is the second most important task that a DBA should perform. So what is the
most important task? Recovering databases. This is why it is important that a DBA regularly take
backups. However, coupled with taking the backups, the DBA should regularly test those backups. The
best way to perform these tests is to restore the backups. As a best practice, a process should be put
in place to ensure the validity of the backups through restoration. In most cases, a separate instance
of SQL Server is configured and the databases are restored on that server. After the restore, user and
application access is a good test of whether or not the data is available and valid.

Using SQL Server, you can restore the following:

■■ An entire database

■■ A page in a database

■■ A part of a database

■■ The database transaction log

■■ A file or filegroup in a database

As you can see, you have several options available when restoring databases, ensuring that you
have the flexibility to address most scenarios that may arise. SQL Server allows you to restore data-
bases using both T-SQL and SSMS.

	 Chapter 20  Backups    263

Prior to restoring a database, you should always consider exactly what you are going to restore.
This is especially important when restoring using T-SQL. Assume that you must restore a full backup,
a single differential, and single transaction log backup, in that order. When restoring the FULL and
DIFFERENTIAL backup, you must include the NORECOVERY keyword in the WITH clause:

RESTORE DATABASE [AdventureWorks2012]
FROM
DISK
=
' C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLServer\MSSQL\Backup\AdventureWorks2012.bak'

 WITH
 FILE = 1,
 NORECOVERY,
 NOUNLOAD,
 STATS = 5
GO

After this restore, the database is in an unusable state, but this allows the DBA to apply subsequent
differential and transaction log backups. For this reason, most DBAs prefer to use SSMS for restoring
databases. SSMS recognizes the complete backup chain and will restore all backups that you specify,
and it will also place the database in a usable state when complete.

Restore a database using SSMS

1.	 Open SSMS and connect to an instance of SQL Server.

2.	 In Object Explorer, expand the server tree.

3.	 Right-click the AdventureWorks2012 database.

4.	 Select Tasks | Restore | Database.

264   PART VII  Database maintenance

Since you are using the GUI, it automatically recognizes all the backups that have been taken
and places them in the correct restore order.

5.	 SQL Server 2012 introduces new functionality to the Restore Database dialog box. If you click
the Timeline button next to the Restore To text box in the Source section, the Backup Timeline
dialog box opens.

	 Chapter 20  Backups    265

6.	 Using the timeline, you can easily restore to a specific point in time either by selecting the
Specific Date and Time option and specifying a date or by using the slider. Click Cancel.

7.	 In the Select a Page pane of the Restore Database dialog box, select Files. If you want to move
the database files to a new location during the restore, you can use this page.

8.	 Accept the defaults and select Options from the Select a Page pane.

You can specify several options in this dialog box, but the one that you will focus on is the
Recovery State. If you were restoring only a single backup file and wanted to restore addi-
tional files later in another operation, you would select RESTORE WITH NORECOVERY from the
drop-down list.

9.	 Ensure that RESTORE WITH RECOVERY is selected from the Recovery State drop-down list.

10.	 Before a database can restored, all existing connections must be closed. To ensure that all
connections are closed, select the Close Existing Connections to Destination Database option
in the Server Connections section.

11.	 Click OK.

The database has been restored using a database, differential, and transaction log backup. While
T-SQL offers you the ability to create reusable code, the GUI gives you a more seamless and less
error-prone method for restoring a database. It should also be noted that using maintenance plans
provides you with a mechanism of reusability from the GUI perspective. Maintenance plans are dis-
cussed in Chapter 22.

266   PART VII  Database maintenance

Summary

In this chapter, you learned the different techniques you can use to back up and restore databases. As
with most SQL Server tasks, you can use either T-SQL or SSMS to perform the same tasks. The method
you select often depends on whether you are doing ad hoc tasks or scheduled tasks. With regard to
backups, either method works, whether scheduled or ad hoc, but as a beginner, the best approach
may be to use SSMS to perform backups and restores. If you want to learn more about T-SQL, use the
Script option on the corresponding window to view the script that SQL Server will run via the GUI.

		 267

C H A P T E R 2 1

Managing and maintaining
indexes and statistics

After completing this chapter, you will be able to

■■ Understand the difference between reorganizing indexes and rebuilding indexes.

■■ Rebuild and reorganize indexes.

■■ Check index fragmentations.

■■ Defragment indexes.

■■ Create and update database statistics.

Performance is typically measured by how fast data is returned from your database to applications,
reports, and end users. While several other factors should be considered when evaluating perfor-
mance, most users are concerned only with how fast the data is returned. As mentioned in Chapter 6,
“Building and maintaining indexes,” creating indexes can help improve database performance.

As the data in the database is manipulated, the indexes can become fragmented. This means that
the pages may end up out of order or the pages may have varying amounts of free space. Whatever
the case, performance could be hindered. To remove fragmentation, you can either rebuild or reorga-
nize the index, which will be discussed later in this chapter.

Performance is also improved by statistics that can be automatically created, which is a best
practice. Additionally, manually created statistics help the Microsoft SQL Server query plan optimizer
understand the value of the distribution of data in a table. While a detailed discussion of statistics is
beyond the scope of this book, it is important to note that the statistics must be updated regularly to
protect against performance degradation. Later in this chapter, you will learn about how statistics are
created and updated.

268   PART VII  Database maintenance

Checking index fragmentation

The process of rebuilding and reorganizing an index begins with determining the fragmentation level
of the index. In earlier versions of SQL Server, performing this task required a lot of work. With the
recent releases of SQL Server, however, you can identify how much all the indexes in a database are
fragmented by executing the following query:

USE AdventureWorks2012
GO
SELECT
 DB_NAME(ips.database_id) DBName,
 OBJECT_NAME(ips.object_id) ObjName,
 i.name InxName,
 ips.avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats(db_id('AdventureWorks2012'),
default, default, default, default) ips
INNER JOIN sys.indexes i
 ON ips.index_id = i.index_id AND
 ips.object_id = i.object_id
WHERE
 ips.object_id > 99 AND
 ips.avg_fragmentation_in_percent >= 10 AND
 ips.index_id > 0

This query uses a dynamic management object (DMO) to reveal vital information that assists in
identifying fragmented indexes. DMOs are discussed in detail in Chapter 30, "Dynamic management
objects." The results of the preceding query list all the indexes that have fragmentation greater than
or equal to 10 percent. Using the results of this query, you can quickly determine which indexes are
fragmented, for whatever reason. Tables can become fragmented by massive UPDATE or DELETE
statements, frequent page splitting, or disk space contention. Tables can also become fragmented
by INSERT statements if the clustered index key is not a sequential key. Fragmentation is not the only
factor used to determine whether or when to perform index maintenance, but it is a good place to
start. The discussion on whether to rebuild or reorganize an index is coming up later in this chapter.

You may be wondering why you filter on indexes that have more than 10 percent fragmenta-
tion. In most cases, indexes with less fragmentation should not affect performance terribly. The time
spent performing maintenance on indexes with relatively small amounts of fragmentation will not be
beneficial to performance. That said, every environment is different, and you should carefully evaluate
index fragmentation on an index-by-index basis. If queries in your databases are performing poorly
and the corresponding indexes are fragmented, addressing that fragmentation may improve query
performance.

Defragmenting indexes

As previously mentioned, fragmentation can be reduced by reorganizing or rebuilding an index.
When to use which method depends primarily on three factors: the fragmentation level, the size of
the index, and the requirements for accessibility to the index during maintenance. Regardless of the

	 Chapter 21  Managing and maintaining indexes and statistics    269

method you use, you should always perform analysis and index maintenance on a regular basis—for
example, weekly.

Reorganizing indexes
When indexes are minimally fragmented, between 10 and 30 percent, they should be reorganized.
Why those values? Well, this range is typically recommended as a starting point, but as previously
mentioned, you should analyze each index to determine what works best in your environment.
SQL Server allows you to reorganize indexes with SQL Server Management Studio (SSMS), T-SQL, or
a maintenance plan (as discussed in Chapter 22, “Maintenance plans”).

If you are scheduling your index maintenance, the preferred method is to use either T-SQL or a
maintenance plan. However, in some cases, you will be required to reorganize an index during an
unscheduled time. In this case, the simplest and most direct approach is to use SSMS.

Reorganizing an index is not as resource intensive as rebuilding an index. Basically, this process
compacts the index pages and reorders the leaf levels to match the logical order of the leaf nodes in
the index B-tree. Reorganizing an index is always an online operation, meaning that the correspond-
ing index and the associated tables are available during the entire operation.

Reorganize an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open a new query window, and enter and execute the following T-SQL code:

USE AdventureWorks2012;
GO
--Create index if it does not exist
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader
(
 OrderDate
)
INCLUDE(Status, AccountNumber)
WHERE(OnlineOrderFlag = 0)
ON AW2012FileGroup2;
GO
UPDATE Sales.SalesOrderHeader
SET OrderDate = DATEADD(day, 1, orderdate)
where orderdate <= '8/31/2006'

The preceding query adds an index, and then changes enough data to cause fragmentation in
an index that contains the OrderDate column.

3.	 In Object Explorer, expand the Databases folder.

4.	 Expand the AdventureWorks2012 database.

5.	 Expand the Tables folder.

270   PART VII  Database maintenance

6.	 Expand the Sales.SalesOrderHeader table.

7.	 Expand the Indexes folder.

8.	 Right-click IX_SalesOrderHeader_OrderDate.

9.	 Select Reorganize from the menu.

The Reorganize Indexes dialog box opens. Note the amount of fragmentation.

	 Chapter 21  Managing and maintaining indexes and statistics    271

10.	 Click OK.

11.	 Repeat steps 9 and 10. Notice that the amount of fragmentation has been reduced
significantly.

12.	 Click Cancel to close the window.

Reorganize an index using T-SQL

To reorganize an index using T-SQL, execute the following query:

USE [AdventureWorks2012]
GO
ALTER INDEX [IX_SalesOrderHeader_OrderDate] ON [Sales].[SalesOrderHeader] REORGANIZE
GO

Note  Just as when you create an index, when you reorganize an index you can specify sev-
eral options, such as FILL_FACTOR and SORT_IN_TEMPDB.

Rebuilding indexes
For indexes with a small amount of fragmentation, reorganizing should be satisfactory. However,
when fragmentation is greater than 30 percent—again, a good benchmark from which to start—you
should consider rebuilding those indexes. When an index is rebuilt, it is completely dropped and re-
created. Three things happen:

■■ Disk place is reclaimed because the pages are compacted.

■■ The index rows are reordered.

■■ Fragmentation is removed.

Rebuilding can be a resource-intensive process since the index is dropped and re-created. By
default, the index and underlying table and data are not available during the index operation, as the
rebuild operation is an OFFLINE operation. Other SELECT, INSERT, UPDATE, and DELETE statements
will be blocked. The Enterprise edition’s ONLINE feature allows REBUILD operations to be performed
with minimal interruption of other connections. Therefore, setting the ONLINE option to ON can help
to mitigate the interruption of connections. Online indexing is available only in the Enterprise edition
of Microsoft SQL Server 2012.

272   PART VII  Database maintenance

Rebuild an index using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open a new query window, and enter and execute the following T-SQL code:

USE AdventureWorks2012;
UPDATE Sales.SalesOrderHeader
SET OrderDate = DATEADD(day, -1, orderdate)
where orderdate <= '8/31/2006'

3.	 The preceding query changes enough data to cause fragmentation in an index that contains
the OrderDate column.

4.	 Expand the Databases folder.

5.	 Expand the AdventureWorks2012 database.

6.	 Expand the Tables folder.

7.	 Expand the Sales.SalesOrderHeader table.

8.	 Expand the Indexes folder.

9.	 Right-click IX_SalesOrderHeader_OrderDate.

10.	 Select Rebuild from the menu.

11.	 The Rebuild Indexes dialog box opens. Note the amount of fragmentation.

12.	 Click OK.

13.	 Repeat steps 9 and 10. Notice that the amount of fragmentation has been reduced more
significantly than in the reorganization operation.

14.	 Click Cancel to close the window.

Rebuild an index using T-SQL

To rebuild an index using T-SQL, execute the following query:

/*This operation will work only in the Enterprise or Developer Edition*/
USE [AdventureWorks2012]
GO
ALTER INDEX [IX_SalesOrderHeader_OrderDate] ON [Sales].[SalesOrderHeader]
REBUILD WITH (ONLINE = ON)
GO

Rebuilding an index using SSMS does not provide the same flexibility as T-SQL. When using T-SQL,
you can specify several options. As you can see in the previous query, the ONLINE operation has
been specified in the WITH clause. This is critical for organizations that operate 24/7. In that case,
index operations can be performed at almost any time. There are some restrictions to rebuilding an
index online, but the process does satisfy most data needs. These restrictions could be the difference
between a rebuild being feasible or not in large enterprise environments.

	 Chapter 21  Managing and maintaining indexes and statistics    273

Checking index usage
While indexes can improve database performance, in some cases they can have an adverse effect.
In addition, they require administration and consume disk space resources. Ideally, indexes provide
a significant benefit to read operations on a table in exchange for a small overhead cost to INSERT/
UPDATE/DELETE operations. This is why having too many nonclustered indexes can be problematic.
Assuring that indexes are actually used is important. You want to make sure that write operation per-
formance is not suffering for improved read performance. For this reason, SQL Server includes a DMO
(sys.dm_db_index_usage_stats) that can assist in identifying indexes that are not being used.

By using this DMO, you can effectively decide whether an index is needed in your database. Once
you have determined an index is not needed, you should initially disable it instead of dropping it. By
not removing the index, you maintain the structure of the index. If you later determine that the index
is needed, you can simply enable the index instead of re-creating it. Using the index usage DMO too
soon after a server restart could result in valuable indexes being dropped—perhaps indexes that are
used in month-end or business cycle–end reporting.

Note  The information contained within DMOs is cleared when an instance of SQL Server
is restarted. Therefore, before using this information to make any decisions, ensure that
SQL Server has been running for a substantial amount of time. This time should span a
period that is inclusive of a workload that encompasses almost every scenario that may be
presented to your database.

View index usage

1.	 Open SSMS and connect to a server.

2.	 Open a new query window, and enter and execute the following T-SQL code:

USE AdventureWorks2012
SELECT
 DB_NAME(ius.database_id) DBName,
 OBJECT_NAME(ius.object_id) ObjName,
 i.name,
 ius.user_seeks,
 ius.user_scans,
 ius.user_lookups,
 ius.user_updates
FROM sys.dm_db_index_usage_stats ius
INNER JOIN sys.indexes i
 ON ius.object_id = i.object_id AND
 ius.index_id = i.index_id
WHERE
 DB_NAME(ius.database_id) = 'AdventureWorks2012'

The preceding query includes only an abbreviated list of columns from the DMO. The last
three columns return information that is a good starting point to determine index usage. All

274   PART VII  Database maintenance

three show how many times the index was used by a query, varying only by the type of usage.
Each time a query performs a seek, scan, or lookup of an index, the value in the correspond-
ing column is incremented.

3.	 The results of the query will vary depending on when your instance of SQL Server was last
restarted. An index will not appear in this DMO if it has never been read from or has not been
updated since the last server reboot. To ensure that some data is returned, open a new query
window, and enter and execute the following T-SQL code:

USE AdventureWorks2012;
SELECT *
FROM Sales.SalesOrderHeader
WHERE Orderdate = '2005-06-29 00:00:00.000'

4.	 Rerun the query from step 2.

5.	 Identify the row that contains the SalesOrderHeader table and the IX_SalesOrderHeader_
OrderDate index. Make note of the number of user seeks.

6.	 Rerun the query from step 3.

7.	 Rerun the query from step 2 and notice that the value in the user_seeks column from the
SalesOrderHeader table and IX_SalesOrderHeader_OrderDate index increased.

Again, the results from the query in step 2 can be used as a starting point in your determination.
Always keep in mind the amount of time that has passed since your server was last restarted. The
server uptime should encompass all regular business-cycle processes, reporting periods, period-end
data operations, and so on.

Creating and updating database statistics

To further improve query performance, SQL Server generates statistics based on the distribution of
data in a table or indexed view. These statistics are used by the query optimizer to create optimal
query execution plans. You can manually create and update the statistics, or you can allow SQL Server
to automatically handle the creation and updating of statistics. If an index is rebuilt, the statistics are
automatically updated. However, if an index is reorganized, you should manually update the statistics.
Therefore, as a best practice, you should implement a strategy that encompasses both manual and
automatic statistics updates.

Viewing database statistic options
You can set two database options to automatically create statistics and update statistics: Auto Create
Statistics and Auto Update Statistics. These two options are turned on by default and are recom-
mended best practices for most database environments.

	 Chapter 21  Managing and maintaining indexes and statistics    275

View database statistics options using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the server tree.

3.	 Expand the Databases folder.

4.	 Right-click the AdventureWorks2012 database and select Properties from the menu.

5.	 Select Options from the Select a Page pane.

6.	 Notice that both Auto Create Statistics and Auto Update Statistics are set to True. If you decide
not to allow SQL Server to perform these operations, set the options to False.

7.	 Click Cancel.

While you can manually create statistics, the optimizer generally does a good job at maintaining
statistics on its own. With the Auto Create Statistics and Auto Update Statistics options set to True,
most of the statistics work will be done for you automatically. In some isolated cases, you may find
that a query has missing statistics and you have a need to manually create them. Detecting missing
statistics is well beyond the scope of this book. However, manually updating statistics should be part
of any regular database maintenance plan.

276   PART VII  Database maintenance

Updating database statistics
You may be wondering, Why should statistics be manually updated if the Auto Update Statistics
option is set to True? Doesn't SQL Server do a good job at updating the statistics? In most cases,
the answer is yes, and you should not manually update statistics too often. Each time statistics are
updated, queries must be recompiled, requiring the optimizer to invalidate cached execution plans, so
the optimizer must generate a new execution plan for the query. If this process is constantly repeated,
it could negatively affect performance.

With the Auto Update Statistics option set to True, most of the statistics will be updated regularly
by SQL Server. However, there will be times when you need to manually update the statistics. Very
similar to indexes, statistics should be updated when query performance is slow or when there have
been changes to the underlying data—more specifically, inserts. In addition, you should consider
updating statistics after maintenance operations.

You can manually update statistics using SSMS or T-SQL. You can update only a single statistic at a
time using SSMS, but with T-SQL you can update a single statistic, all the statistics for a given table or
index, or all the statistics in a database.

Update statistics using T-SQL

Statistics can be updated using sp_updatestats or UPDATE STATISTICS. The following are sample
scripts that update statistics at various levels:

USE AdventureWorks2012
GO
--Update all statistics within the AdventureWorks2012 database
EXEC sp_updatestats
GO
--Update all statistics for a given index on the specified table
UPDATE STATISTICS [Sales].[SalesOrderHeader] [IX_SalesOrderHeader_OrderDate]
GO

Both sample scripts are the simplest forms available, but you should note that both have different
options that can be specified.

Update statistics using SSMS

1.	 Open SSMS and connect to a server.

2.	 Expand the Databases folder.

3.	 Expand the AdventureWorks2012 database.

4.	 Expand the Tables folder.

5.	 Expand the Sales.SalesOrderHeader table.

6.	 Expand the Statistics folder.

	 Chapter 21  Managing and maintaining indexes and statistics    277

7.	 Right-click PK_SalesOrderHeader_SalesOrderID and then click Properties.

The Statistics Properties dialog box opens.

8.	 Toward the bottom of the screen, select the Update Statistics for These Columns check box.

9.	 Click OK.

The statistics are now up to date.

Note  While you are able to use SSMS to update statistics, it is definitely not as flex-
ible as using T-SQL. In the event of an emergency, you could use this method to
quickly update a particular statistic, but you should defer to T-SQL as a more holistic
and effective approach.

Summary

This chapter covered the different techniques you can use to maintain indexes and statistics. While
the techniques used for each are completely different, you should perform both on a regular basis.
In the next chapter, you will learn how to create a scheduled maintenance plan that will maintain
indexes and update statistics.

		 279

C H A P T E R 2 2

Maintenance plans

After completing this chapter, you will be able to

■■ Understand the importance of maintenance plans.

■■ Check for database consistency.

■■ Use the Maintenance Plan Wizard.

Maintenance plans are an essential part of ensuring database availability, consistency, and perfor-
mance. Most plans include at least four steps:

■■ Database backup and backup retention policy

■■ Index maintenance

■■ Statistics maintenance

■■ Database consistency checking

At some point, these steps may run together on a daily basis, or they may run on an individual
basis daily, weekly, monthly, or according to another schedule that satisfies the needs of your
organization.

Prior chapters have focused on backups, index maintenance, and statistics maintenance, which are
integral steps in the execution plan. In this chapter, you are going to add one more task to the list:
database consistency checking. After a brief discussion about consistency, the focus will shift to build-
ing a complete execution plan for the databases in your environment.

Performing database consistency checks

Performing a database consistency check against a Microsoft SQL Server database involves validating
the logical and physical integrity of all database objects. The schema, data allocations, page and stor-
age consistency, and many other aspects of the database are verified for consistency. Under the hood,
several individual consistency checks at various levels are executed.

After all of that, you may think that performing a consistency check is a huge undertaking.
Actually, only two keywords are needed to perform an entire check: DBCC checkdb. Of course, you
have several options that you can append to this statement to limit the results, display additional

280   PART VII  Database maintenance

information, or even correct consistency problems. However, those two keywords alone will provide
you with the fundamental tasks needed to fully accomplish the job.

Check database consistency with T-SQL

1.	 Open SSMS and connect to a server.

2.	 Open a new query window, and enter and execute the following T-SQL code:

USE AdventureWorks2012
GO
DBCC checkdb;

3.	 Click the Messages tab in the results pane.

Any found consistency errors will be displayed in this listing.

Creating maintenance plans

Now that all the tasks that make up the maintenance plan have been discussed, the final step is to cre-
ate a maintenance plan that executes on a regular schedule. You have two options when creating your
plans: T-SQL or the Maintenance Plan Wizard. Note that the actual scheduling of the maintenance plan
is done using SQL Server Agent, which is discussed at length in Chapter 27, “SQL Server Agent.” The
important thing to remember for now is that SQL Server Agent can be used to schedule tasks.

Using the Maintenance Plan Wizard
The Maintenance Plan Wizard is probably the easiest way to develop maintenance plans in SQL
Server. However, it does lack flexibility compared to T-SQL. For example, you cannot limit what
indexes are rebuilt; it’s either all or nothing. As a beginner, you should start with the wizard, and as
your skills increase, you can begin building more plans using T-SQL.

	 Chapter 22  Maintenance plans    281

Use the Maintenance Plan Wizard

1.	 Open SSMS and connect to a server.

2.	 In Object Explorer, expand the server tree.

3.	 Expand the Management folder.

4.	 Right-click the Maintenance Plans folder and select Maintenance Plan Wizard.

5.	 Click Next on the Maintenance Plan Wizard Introduction page.

6.	 On the Select Plan Properties page, enter AdventureWorks Maint Plan in the Name text
box.

7.	 Ensure that the Single Schedule for the Entire Plan or No Schedule option is selected.

282   PART VII  Database maintenance

8.	 Click the Change button to create a schedule. The New Job Schedule dialog box appears.

9.	 In the New Job Schedule dialog box, enter Nightly AW Maint Schedule in the Name
text box.

10.	 In the Frequency section, change the Occurs drop-down list to Daily. Several further options
are available, and you should review each section, but for now accept all the other defaults.

11.	 Click OK.

12.	 Click Next.

13.	 On the Select Maintenance Tasks page, select the following options:

•	 Check Database Integrity

•	 Rebuild Index

•	 Back Up Database (Full)

Note  You may have noticed that you have two choices with regard to indexes:
Rebuild Index or Reorganize Index. If you choose Rebuild Index, then the statistics
are automatically updated and you do not need to select Update Statistics. However,
if you select Reorganize Index, then you must select Update Statistics because that
process does not update the statistics.

V413HAV
Typewritten Text

V413HAV
Typewritten Text
V413HAV

	 Chapter 22  Maintenance plans    283

You have several options to choose from, but for the sake of brevity, only a few are selected.
You can create additional maintenance plans to perform other tasks. For example, you can
create a new maintenance plan to perform differential or transaction log backups.

14.	 Click Next.

On the Select Maintenance Task Order page, you can order the tasks.

284   PART VII  Database maintenance

15.	 Change the order to the following:

•	 Back Up Database (Full)

•	 Rebuild Index

•	 Check Database Integrity

16.	 Click Next.

17.	 On the Define Back Up Database (Full) Task page, select AdventureWorks2012 from the
Database(s) drop-down list. Click OK.

18.	 Accept all the other defaults and click Next.

19.	 On the Define Rebuild Index Task page, select AdventureWorks2012 from the Database(s)
drop-down list.

20.	 In the Advanced Options section, select the Keep Index Online While Reindexing check box,
and select the Rebuild Indexes Offline option.

21.	 Click Next.

22.	 On the Define Database Integrity Task page, select AdventureWorks2012 from the Database(s)
drop-down list.

23.	 Click Next.

24.	 On the Select Report Operations page, you can specify if and where you want to create a log
file. Also, if you have any operators created, you can have the report emailed. (Operators are
discussed further in Chapter 27.)

25.	 Accept the defaults and click Next.

26.	 Review your selected options on the Complete the Wizard page and click Finish.

The Maintenance Plan Wizard Progress page appears, and each action should successfully
complete.

	 Chapter 22  Maintenance plans    285

27.	 Click Close.

28.	 Finally, to verify that a job was created, in Object Explorer expand the SQL Server Agent Jobs
folder.

29.	 Right-click the job and select Properties to view the details.

Note  You will learn more about SQL Server Agent jobs in Chapter 27.

Summary

This chapter discussed database consistency checking, which is the final task involved in building a
complete database maintenance plan. You learned how to build a maintenance plan using a wizard
that covers a broad scope of items. What you select and when you schedule it to run depends on
your environment. Regardless, you should always ensure that you are maintaining your database at all
the levels discussed in this chapter.

		 287

PART VIII

Database
management

CHAPTER 23	 SQL Server Profiler . 289

CHAPTER 24	 Extended events . 299

CHAPTER 25	 SQL Server security . . 309

CHAPTER 26	 Resource Governor . 329

CHAPTER 27	 SQL Server Agent . 341

CHAPTER 28	 Database mail

CHAPTER 29	 Data definition triggers

CHAPTER 30	 Dynamic management objects

		 289

C H A P T E R 2 3

SQL Server Profiler

After completing this chapter, you will be able to

■■ Understand how and when to use SQL Server Profiler.

■■ Create a trace.

■■ Understand the advantages of running a server-side trace.

At the core of most enterprise applications is a relational database. Unfortunately, when the database
is experiencing performance issues, so will any system that depends on it. Identifying the cause of a
slowdown and correcting the associated issues can be problematic. When it comes to relational data-
bases, there can be any number of problems, including but not limited to high CPU usage, memory
limitations, high disk activity, or slow queries.

For a new database administrator (DBA), identifying these problems can be like looking for a
needle in a haystack. To make matters somewhat simpler, Microsoft SQL Server includes a tool,
SQL Server Profiler, that has the ability to capture almost any type of activity that can be executed
against an instance of the SQL Server database engine.

In this chapter, you’ll learn what SQL Server Profiler is and how and when to use it. You’ll go
through the steps to create, run, pause, and stop a trace. In addition, you will learn how to create a
trace template that you can reuse. Finally, you will learn how to create a server-side trace that cap-
tures information in a less intrusive manner than interactively running the SQL Server Profiler GUI.

Understanding SQL Server Profiler

SQL Server Profiler can capture any event, from blocking to long-running queries. Over time, it may
become one of the most used tools in your DBA toolbox. SQL Server Profiler can be run interactively
or as a server-side operation. If you plan to run SQL Server Profiler for only a short period of time,
using the GUI is a good option. However, if you plan to run it for an extended period of time, you
should avoid using the GUI because it can degrade the performance of your SQL Server instance.
Instead, create a server-side T-SQL trace using a T-SQL script on the server. Both methods are
explained later in this chapter.

290   PART VIII  Database management

Typical uses of SQL Server Profiler
SQL Server Profiler has become a popular tool. However, with the release of SQL Server 2012, it has
been placed on the deprecated list and will eventually be removed from the product altogether.

Note  SQL Server Profiler is being replaced by the SSMS-embedded Extended Events
(XEvents) tool, which is discussed in Chapter 24, "Extended Events."

Even though SQL Server Profiler is going to be removed, as a beginner you should consider using
it as a precursor to Extended Events. Most of the information that can be collected in SQL Server
Profiler will be available with Extended Events, and you will be able to duplicate the typical uses of
SQL Server Profiler with Extended Events. Some of these uses are as follows:

■■ Performance tuning

■■ Detecting deadlocks

■■ Auditing

■■ Detecting blocking

Again, these are only a few of the tasks that can be performed with either, and as time goes on
and your skills improve, you will find several other uses for SQL Server Profiler.

Creating traces

Before you begin to use SQL Server Profiler, you will need to understand a few terms. The first term
to become familiar with is trace. The SQL Server Profiler GUI creates a trace to capture server and
database activity. The activity that is captured is stored in a trace file, which you can use to diagnose
problems that may exist. No matter if you are using the GUI or running the trace on the server, all the
events are written to a trace file.

Trace files are composed of events, which could be the execution of a query or stored procedure, a
successful or failed login, a database data or log file growth event, or the acquisition of locks, to men-
tion a few. The trace file contains rows, and each row equates to a trace event, with complete infor-
mation on the connection, the start and end time of the event, the application and host origin and,
in many cases, the actual T-SQL text executed against the server. The events are grouped into event
categories such as the following:

■■ Locks

■■ Security audit

■■ Stored procedures

■■ T-SQL

	 Chapter 23  SQL Server Profiler    291

This is a very short list of the event classes available via SQL Server Profiler. It is unlikely that you
will ever use all the events that are included, but as time goes on, you will identify those that can be
useful as situations arise.

Create, filter, and run a trace using SQL Server Profiler

1.	 Click Start | All Programs | SQL Server 2012 | Performance Tools | SQL Server Profiler.

2.	 Select File | New Trace from the SQL Server Profiler menu.

3.	 In the Connect to Server dialog box, enter your server name in the Server Name text box.

4.	 Click Connect.

5.	 In the Trace Properties dialog box, enter Long Running Stored Procedures in the Trace
Name text box.

6.	 Ensure that Standard (Default) is selected in the Use the Template drop-down list.

Other templates are available. Selecting a different template will configure a predetermined
list of events on the Events Selection tab, which will be discussed later. You can always change
these events later.

7.	 In the next section, you can save the trace to either a file or a table. This is important when
you plan on analyzing the data later. You can always save the trace to a file or table later if you
fail to make a selection now. For now, don't select either. The trace will be displayed in the GUI
only for now, but later you can save it to another location.

292   PART VIII  Database management

8.	 The final option is to enable a trace stop time. While this is not a requirement if you are going
to run the trace interactively, you should definitely consider including a trace stop time. This
will ensure that the trace stops capturing information and does not affect the performance of
your server.

Select the Enable Trace Stop Time check box. By default, the time in the box is one hour from
the current time. You can change it to the time that meets your requirements.

9.	 Click the Events Selection tab at the top of the Trace Properties dialog box.

This is where you select the different events that will be captured by the trace. Each event is
grouped by event category.

10.	 Clear all events in the Events list.

11.	 Select the Show All Columns check box.

12.	 Select the Show All Events check box.

13.	 Scroll down to the Stored Procedures event category and select the box next to the
SP:Completed event. Scroll down further to the T-SQL event category and select the box next
to the SP:StmtCompleted event.

	 Chapter 23  SQL Server Profiler    293

14.	 Clear the Show All Events check box.

15.	 Click the Organize Columns button.

16.	 Scroll down the list until you locate TextData. Select it and click the Up button until it is at the
top of the list.

17.	 Click OK.

18.	 Click the Run button.

Depending on what is currently using your SQL Server instance, you may or may not see any
events being generated.

19.	 In the menu bar, select File | Stop Trace.

294   PART VIII  Database management

Note  When using the GUI to capture a trace, if you want to preserve the captured
information, do not stop the trace. Instead, pause and restart the trace. If you stop
the trace, all captured information will be lost.

Do not close this trace; you will use it in the upcoming sections.

Filtering a trace
You can do a couple of things to minimize the amount of information captured by a trace. The first
is to limit the number of data columns included in a trace event. A data column is an attribute of an
event class that can be stored in a trace file. The availability of a data column depends on whether or
not it is applicable to the selected event.

The second is to include trace filters. You can specify filters that limit the trace to a specific data-
base, to a specific connection, by the duration of a query, or by application name. Trace filters can be
based upon several other criteria.

Specify trace criteria

1.	 If you closed the trace that you were working on in the previous procedure, please repeat the
steps in that section. If the trace is open, skip this step and go to step 2.

2.	 If the trace is running, stop or pause it. Then select File | Properties.

3.	 Click the Events Selection tab.

4.	 Click the Column Filters button.

5.	 In the left pane, select DatabaseName.

6.	 Expand the Like tree, and type AdventureWorks2012 into the blank text box that appears
below Like.

	 Chapter 23  SQL Server Profiler    295

7.	 Select Duration from the left pane.

8.	 Expand the Greater Than or Equal To tree and type 5000 into the blank text box that appears
below Like.

Note  When filtering by duration, you must enter the value in milliseconds or one
thousandths (5000 ms is 5 seconds) of a second.

9.	 Click OK.

10.	 Open SSMS, connect to a server, and then open a new query window.

11.	 Type and execute the following T-SQL code in the new query window:

USE AdventureWorks2012;
IF(OBJECT_ID('dbo.uspGetDepartments')) IS NOT NULL
 DROP PROC dbo.uspGetDepartments
GO
CREATE PROC dbo.uspGetDepartments
AS
SET NOCOUNT ON
 WAITFOR DELAY '00:00:07'
 SELECT * FROM HumanResources.Department
SET NOCOUNT OFF

12.	 If SQL Server Profiler is stopped or paused, select File | Run Trace.

13.	 Open a new query window in SSMS, and type and execute the following T-SQL code:

USE AdventureWorks2012;
EXEC dbo.uspGetDepartments;

14.	 Return to SQL Server Profiler, and in about seven seconds, two events will be captured.

Notice that the first row that has TextData contains a T-SQL command, which causes the query
to essentially pause execution for the amount of time specified—seven seconds, in the case of
this stored procedure. If you return to the stored procedure and remove that statement, and
rerun the query while the trace is running, you should not see any events captured. Do not
modify the query, as you will use it as is later.

296   PART VIII  Database management

15.	 From the SQL Server Profiler menu, select File | Stop Trace.

16.	 Select File | Save As | Trace File.

17.	 If a Long Running Stored Procedures trace already exists, select it and click Save. If not, enter
Long Running Stored Procedures in the File Name text box and click Save.

You can browse to the directory where you saved the file and open it with SQL Server Profiler
to analyze the trace.

Do not close SQL Server Profiler, as you will use it in the next section.

Creating trace templates
By default, SQL Server Profiler includes several trace templates. Some can be useful at times; however,
you may find that you are running custom-configured traces repeatedly. Instead of configuring the
trace each time you run it, SQL Server Profiler allows you to save the trace as a template.

Create a trace template

1.	 If you closed the trace that you were working on in the previous procedure, repeat the steps
in that section. If the trace is open, skip this step and go to step 2.

2.	 Ensure that the trace is stopped.

3.	 Select File | Save As | Trace Template.

4.	 In the Template Name text box, type AW Long Running Stored Procedures.

	 Chapter 23  SQL Server Profiler    297

5.	 Click OK. You will get a successful save.

6.	 Click OK.

7.	 Select File | New Trace.

8.	 Connect to your server.

9.	 In the Trace Properties dialog box, expand the Use the Template drop-down list and scroll
down. You will see the newly created template.

Now instead of configuring the trace each time you want to capture long-running stored proce-
dures, you can leverage the template and quickly start the trace.

Running server-side traces

The GUI offers a quick method for gathering events and viewing the information. However, if you
capture an excessive number of events, you could adversely affect the performance of your server. As
an option, you can instead run the trace on the server side, which is less intrusive and has less of an
effect on the server.

Create and run a server-side trace

1.	 Click Start | All Programs | SQL Server 2012 | Performance Tools | SQL Server Profiler.

2.	 Select File | New Trace from the SQL Server Profiler menu.

3.	 In the Trace Name text box in the Properties dialog box, type Long Running.

4.	 From the Use the Template drop-down list, select AW Long Running Stored Procedures (users).

5.	 Select the Enable Trace Stop Time check box and specify a date and time.

6.	 Click Run.

7.	 Select File | Stop Trace.

8.	 Select File | Export | Script Trace Definition | For SQL Server 2005 - SQL11.

9.	 In the Save As window, in the File Name text box, type serverSide and then click Save.

10.	 Open SSMS.

298   PART VIII  Database management

11.	 Select File | Open | File.

12.	 Browse to the location where the trace was exported and select the file.

13.	 Click Open.

14.	 Locate InsertFileNameHere in the script and replace it with C:\Program Files\
Microsoft SQL Server\MSSQL11.SQL2012\MSSQL\Log\LongRunning.

15.	 Execute the query.

Make note of the TraceID that is displayed in the results pane. If no other traces are running,
the value should be 2.

16.	 Open a new query window in SSMS, and type and execute the following T-SQL code:

USE AdventureWorks2012;
EXEC dbo.uspGetDepartments;

17.	 When the query completes, browse to C:\Program Files\Microsoft SQL Server\MSSQL11.
SQL2012\MSSQL\Log. You will see a new trace file, LongRunning.trc.

18.	 To stop the trace, open a new query window, and type and execute the following query:

USE master;
exec sp_trace_setstatus 2, 0
exec sp_trace_setstatus 2, 2

Stopping the trace is a two-step process. First, by using the system stored procedure
sp_trace_setstatus, you stop the trace. Then, in the next call of the procedure, you delete the
trace definition from the server. The first parameter is the traceid, which you should have
remembered from step 15. The second parameter sets the status of the trace, 0 stops the
trace, and 2 deletes it from the server.

19.	 Open the trace file with SQL Server Profiler and you should see information about the stored
procedure execution.

Summary

In this chapter, you learned some of the many uses of SQL Server Profiler. Even though SQL Server
Profiler will not be included in future releases of Microsoft SQL Server, it still remains a viable
performance-tuning option. Since this tool has a very intuitive GUI, it is a good starting point for any
DBA, and it should still be considered for use in modern troubleshooting.

		 299

C H A P T E R 2 4

Extended Events

After completing this chapter, you will be able to

■■ Create and configure Extended Events sessions.

■■ Use an Extended Events session to monitor system performance.

■■ Analyze captured Extended Events data in SQL Server Management Studio.

Extended Events (or XEvents) is the next-generation tracing and troubleshooting architecture for
SQL Server. If you've never heard of Extended Events before Microsoft SQL Server 2012, don't worry,
this chapter will provide a solid introduction to this highly flexible, user-configurable monitoring tool.

SQL Server Profiler is deprecated in SQL Server 2012, and SQL Trace will be replaced by the
Extended Events system in a future version of SQL Server. Extended Events offers many advantages
over the older tools, including much less overhead, better performance at scale, and the ability to
capture details that were previously not observable.

The most immediate advantage you may enjoy is that the default system Extended Events session
that is already passively running on SQL Server 2012 captures deadlocks. This means that for the first
time, you can diagnose a deadlock that happened in the past without setting up and catching a SQL
trace. This is a crucial advantage for DBAs!

This chapter will introduce you to Extended Events at a high level and run through a pair of
example scenarios that use the tool's powerful monitoring capabilities.

Understanding the Extended Events architecture

Extended Events is the all-purpose monitoring tool for SQL Server, from basic error capturing to
advanced troubleshooting. Let's go over some basic Extended Events architecture terminology:

■■ Extended Events is organized around sessions, which capture a configurable collection of
events, which are organized in categories. Events as they occur on SQL Server are sent to
targets to collect the data. The most basic and fastest data storage target is an event_file or
.xel file.

■■ Actions or global fields describe basic information that will be familiar to you from SQL
trace fields: database id, hostname, session id, object name, and statement. Event filters

300   PART VIII  Database management

or predicates allow you to refine the scope—for example, by filtering requests only in the
AdventureWorks2012 database.

■■ A package is a container of the previously described objects that are collectible from a
module, which is provided by a Windows process (such as the main executable of SQL Server,
sqlservr.exe).

Creating and configuring an Extended Events session

You'll get started by using Extended Events to monitor query activity on the database, much in the
same way you would use SQL Server Profiler to monitor database activity.

Create and configure an Extended Events session

1.	 Open SQL Server Management Studio (SSMS) and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server node, and expand the Management folder.

4.	 Expand the Extended Events folder, and then expand the Sessions folder.

You’ll see two sessions already set up, one for AlwaysOn_health and one for system_health
(you’ll use this later in the chapter).

Note  See Chapter 31, "AlwaysOn," for more information about AlwaysOn.

5.	 Right-click the Sessions folder and click New Session Wizard.

6.	 Skip past the Introduction page by clicking Next.

7.	 Type Query Monitoring in the Session Name text box. If you are attempting to troubleshoot
a startup issue, selecting the Start the Event Session at Server Startup check box may come in
handy on this page. For now, leave it cleared. Click Next.

8.	 On the next page, select the Use This Event Session Template option, and then select Query
Detail Tracking from the drop-down list.

Note  You will find each of the built-in templates already provided and their exten-
sive descriptions here. If you only want to manually add events and fields, select the
Do Not Use a Template option.

	 Chapter 24  Extended Events    301

9.	 Click Next.

On the Select Events to Capture page, note that the template has already selected a half-
dozen events to capture in this Extended Events session. These events are in the Selected
Events box on the right side of the page.

10.	 On the left side of the Select Events to Capture page, type login into the Event Library search
text box.

Notice how the library is quickly filtered, allowing you to search for commands easily.

11.	 Click the results row for login.

Note that below the search results window, a detailed description of the event is provided, as
well as fields predetermined for this event.

12.	 Click the > arrow to move the login event into the Selected Events window.

13.	 Click module_end in the Selected Events window.

14.	 Click the < arrow to remove the module_end event from the Selected Events window. Now
the module_end event will not show up in your session data.

302   PART VIII  Database management

15.	 Click Next.

16.	 The Capture Global Fields page already has some of these global fields (or actions) selected
for you, based on the template. Scroll down in this window and select the box next to data-
base_name. Click Next.

17.	 The Set Session Event Filters page allows you to limit the activity returned by the session. In
this case, you’ll add a filter to show only activity in the AdventureWorks2012 database.

In the white text box located in the Additional Filters (Applied to All Events) section, click the
Click Here to Add a Clause area.

18.	 In the Field drop-down box, select sqlserver.database_name.

19.	 You can change the selection in the Operator drop-down to any of a variety of comparison
choices. For now, leave this selection as equals (=).

20.	 Type AdventureWorks2012 in the text box under Value.

This will filter session data to only include events where the request’s database_name equals
AdventureWorks2012. You could just as easily have set up a filter on the database_id of the
AdventureWorks2012 database, the user name, or the client host_name.

	 Chapter 24  Extended Events    303

21.	 Click Next.

On the Specify Session Data Storage page, you’ll see two of the three primary targets. The
ring_buffer Target check box is enabled by default—this allows for continuous, rolling, in-
memory storage of event data. However, the fastest and most versatile target is event_file.

22.	 Select the box next to Save Data to a File for Later Analysis, and then clear the box next to
Work with Only the Most Recent Data.

By default, the location of event_file is <instance path>\MSSQL\Log\Query Monitoring.xel. You
can also limit the file size and have the file roll over to prevent one file from becoming too
large. This behavior is very similar to the SQL Server Profiler setting with the same name.

23.	 Change the Maximum File Size setting to 50 MB, and then clear the Enable File Rollover
option.

24.	 Click Next and then click Finish.

25.	 On the Create Event Session page, despite the appearance of a large green circle with a check
mark in it, you’re not done yet. The session has not yet been created.

26.	 Select the Start the Event Session Immediately After Session Creation check box.

27.	 Select the Watch Live Data on Screen As It Is Captured check box.

This is the third main way to access data, and it will open a new screen for the SSMS streaming
data provider. This is the easiest way to access data, but it should be used only briefly—it also
has the most overhead of the three Extended Events targets.

28.	 Click Close.

You will see the Query Monitoring: Live Data window is already running, and you may see it show-
ing some activity in your database. Keep this window open so you can perform the next set of steps
in the section that follows.

304   PART VIII  Database management

Using an Extended Events session
to monitor system performance

Now that you have an Extended Events session running on the server, you'll give it some activity to
capture. If you are familiar with tracing server activity using the SQL Server Profiler tool from any
previous version of SQL Server, you’ll notice similar behaviors in this modern interface.

You’ll be pleasantly surprised to see dramatic improvements in the ability to view captured data, all
done with less overhead on your database server. The Extended Events Live Data window uses less I/O
and CPU to display events than the SQL Server Profiler tool.

Use an Extended Events session to monitor system performance

You should see the Query Monitoring: Live Data window is already running, and you may see it show-
ing some activity in your database. To generate some activity, you'll run a simple SELECT statement.

1.	 In Object Explorer, expand the Databases folder.

2.	 Right-click the AdventureWorks2012 database, and then click New Query. Execute the follow-
ing query:

USE AdventureWorks2012;
select * from [Production].[TransactionHistory]

3.	 In SSMS, click the Query Monitoring: Live Data tab.

You should see a set of events just generated by yourself. Because this buffer reads the data
asynchronously, there may be as much as a five-second delay.

4.	 Locate the record where the Name column is sql_batch_completed, and click that record.
Information about that event will appear in the Details tab.

	 Chapter 24  Extended Events    305

5.	 On the Details tab, locate the row with a Field value of batch_text. This will show the query
you executed in the other tab, as it was captured by the Extended Events session.

6.	 Close the Query Monitoring: Live Data tab. Note that this does not stop the Extended Events
session; it is still running on SQL Server.

Now you’ll stop the Extended Events session back in Object Explorer.

7.	 If it's not already open, expand the server folder, expand Management, expand Extended
Events, and expand Sessions. Right-click the Query Monitoring session and then click Stop
Session.

Note that the icon changes from a green arrow pointing right to a red arrow pointing down.

8.	 Navigate to the operating system folder where you stored the .xel file, which should be
<instance path>\MSSQL\Log\.

Note that the actual file name has a uniquely identifying string appended to it—for example,
Query Monitoring_0_129993306334000000.xel.

306   PART VIII  Database management

9.	 Double-click the file. A new SSMS window opens with this file in the tab.

This interface is similar to the Live Data tab you saw earlier, and you can view the same details
for each recorded event.

10.	 In the SSMS toolbar, click the Grouping button. The Grouping dialog box opens.

11.	 Under Available Columns, click Name, and then click the > button to move Name to the
Columns Grouped On window.

12.	 Click OK.

On a lengthy Extended Events session, grouping the event name will offer additional insight
into the recorded events, which would look something like the following image.

13.	 On the toolbar located above the tab, click the Filters button.

14.	 In the Filters window, click the Set Time filter.

15.	 Use the sliders to restrict the current display of events to a time frame precise to the second.
You can add other filters here to help you make sense of a large Extended Events event_file
data set.

16.	 Click OK to accept your settings and to close the Filters window.

17.	 On the toolbar located above the tab, click the Choose Columns button.

In the Choose Columns window, you can add more fields to the dataset.

18.	 Locate database_name, duration, batch_text, and session_id in the Available Columns screen,
and use the > arrow to move each to the Selected Columns window. Use the up and down
arrows to arrange the columns in any order.

	 Chapter 24  Extended Events    307

19.	 Click OK.

20.	 Back in the Query Monitoring tab, expand the sql_batch_completed group.

You can now see more data for each event, including the statement you executed earlier that
begins with “use AdventureWorks2012”.

Summary

This chapter reviewed the basics of the state-of-the-art monitoring and troubleshooting Extended
Events feature of Microsoft SQL Server 2012. While Extended Events has been part of SQL Server
since the 2008 version, it now includes a GUI to manipulate and view the sessions. You learned
about the architecture of Extended Events and how to set up, tune, stop, and analyze a basic
Extended Events session.

		 309

C H A P T E R 2 5

SQL Server security

After completing this chapter, you will be able to

■■ Understand the SQL Server security model.

■■ Understand principals.

■■ Create SQL Server logins and users.

■■ Create user-defined server roles.

■■ Create database users.

■■ Create built-in database roles.

■■ Configure a contained database.

No matter if you work for a university, a bank, or a retail store, securing data is always a database
administrator’s (DBA’s) top priority. Who can access the data, what data they can access, and how to
access the data are often main topics of conversation inside and outside the information technology
(IT) department. Data access needs will vary across applications, departments, and individuals, but the
underlying requirement of governing permissions persists for every aspect of the data.

Microsoft SQL Server 2012 provides a very robust security structure that allows DBAs to control
access from the server down to a specific object within the database. For example, a DBA could be
given server-level permission without being granted any data-level access. Or an application or
individual could be given access to a database or database objects without being granted any server-
level permissions.

The topic of SQL Server security could fill an entire book itself because there are so many items
to consider. The following are just a few of the questions that should be asked and addressed with
regard to SQL Server security:

■■ Should SQL Server be network accessible?

■■ What port should SQL Server use?

■■ Who has access to backup files?

310   PART VIII  Database management

■■ Who can interactively log on to SQL Server?

■■ How should the SQL Server files be secured?

■■ How should SQL Server encryption keys and backups be configured and maintained?

Most of these questions are well beyond the scope of this book, and as a result this chapter
focuses primarily on instance-level and data-level access. This chapter’s more limited focus is not
meant to discount the importance of addressing the other questions and considerations surrounding
SQL Server security, however.

Understanding principals

A principal is an entity that has access to SQL Server resources. There are generally three levels of
principals:

■■ Windows

■■ SQL Server

■■ Database

A Windows account or group, whether local to the server or from Active Directory, can be a
principal. A Windows principal can be granted access to a SQL Server instance as a Windows authenti-
cated login. Active Directory can then handle activation or deactivation, password policy, and security
workflows. As an alternative to Active Directory, SQL Server can handle authentication itself with
SQL Server logins, where activation, deactivation, and security workflows must be handled by a DBA
inside SQL Server. You can, however, enforce Active Directory policy on a SQL Server login by specify-
ing an option, as you’ll learn later in this chapter. You must have enabled Mixed Mode Authentication
on the server for SQL Server authentication. In previous releases of SQL Server, server logins mapped
to database users. Logins handled authentication and server-level permissions. However, with the
release of SQL Server 2012, an alternative connection method is available with the concept of con-
tained databases, which is discussed in the last section of this chapter. Depending on the selected
authentication mode, which was discussed in Chapter 2, “Installing, configuring, and upgrading
Microsoft SQL Server 2012,” you may or may not be able to create SQL Server principals. You must
have configured Mixed Mode Authentication to do this. Finally, for databases, you will have a user
or role.

Note  In earlier releases of SQL Server, you must have already created a SQL Server login
before a database user could be created. With the release of SQL Server 2012, that proce-
dure has changed with the concept of contained databases, which is discussed in the last
section of this chapter.

	 Chapter 25  SQL Server security    311

Creating server logins

A login is a security principal that is based on a Windows account or group. In addition, a login can
be an account that is created on SQL Server. Server-level permissions, such as CREATE DATABASE
or BACKUP DATABASE, can be granted to logins. If a login needs to access a database, it must be
mapped to a database user, as discussed in the “Creating database users” section of this chapter.

By default, the sa login principal is created when SQL Server is installed. If you did not configure
Mixed Mode Authentication, the account will be disabled. The sa account is an administrator account
that has access to every SQL Server resource. As a best practice, avoid sharing the password for this
account, and ensure that the password is changed on a regular basis.

Create a Windows-based login using SSMS

1.	 Open SQL Server Management Studio (SSMS) and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Right-click the Security folder and select New | Login.

You must have an existing Windows account created in Active Directory or on your local
machine to continue.

5.	 On the General page, enter a Windows account in the Login Name text box. You must enter
the account in the following format: domain\username. For example, if the Windows account
alias is jdoe, you will enter domain\jdoe. Alternatively, you can click the Search button to find
the Windows entity that you want to enter.

6.	 Since this is a Windows-based account, ensure that the Windows Authentication option is
selected.

If this was a SQL Server login, you would select the SQL Server Authentication option. With
this option selected, a password must be entered and confirmed using the Password and
Confirm Password text boxes.

312   PART VIII  Database management

7.	 You have the choice to enforce Windows Active Directory password polices and password
expiration policies on this account by selecting the Enforce Password Policy and Enforce
Password Expiration check boxes. This means that whatever polices have been configured for
passwords and password expirations by your Active Directory administrator will be enforced
for this SQL Server login.

8.	 Finally, you can specify that the password must be changed when the account is initially used
by selecting the User Must Change Password at Next Login option. For now, ensure that the
Windows Authentication option is selected.

9.	 Leave the next options, Mapped to Certificate and Mapped to Asymmetric Key, cleared. You
can select only one or the other.

Note  Certificates and asymmetric keys are specific to encryption. You can learn
more about these topics in SQL Server Books Online.

10.	 Selecting the Map to Credential check box allows you to map this login to the credential
of another account. This option allows a SQL Server login to access resources external to
SQL Server under the context of the login specified in the credential. For now, leave the
box cleared.

11.	 When creating an account that will have database-level access, you should specify a default
database using the Default Database drop-down list. When first authenticated to the SQL
Server instance, a new connection will be in the default database's context. For example, if
a new query window is opened by SSMS, the current database displayed will be the default
database. If this is a login that will be used for data access, as a best practice always select a
user-created database and not a system database. Assume the person who owns this account
will be the DBA for this instance, so the default database can remain master.

	 Chapter 25  SQL Server security    313

12.	 The final drop-down list, Default Language, by default uses the default language configured
on the server. Alternatively, you can select a language. For the purposes of this exercise, use
the default.

13.	 In the Select a Page pane, select Server Roles.

14.	 A list of built-in server roles is displayed on this page. The public role is selected by default. A
description of each server role is provided in the “Creating user-defined server roles” sec-
tion of this chapter. For now, select the box next to the sysadmin server role, which allows the
system administrator to execute any task against the server.

314   PART VIII  Database management

15.	 In the Select a Page pane, select User Mapping.

16.	 If you want to explicitly grant this user access to a specific database, you can select that data-
base from the list displayed at the top of the page. Additionally, you can assign the user to
built-in database roles. Creating database users is discussed further in the “Creating database
users” section of this chapter. For now, do not select anything.

Note  The sysadmin role has unrestricted permissions to all databases without the
need to create database users. Therefore, think carefully before adding anyone to
this role.

17.	 In the Select a Page pane, select Securables.

This page lists items that can be secured and their corresponding permissions or the permis-
sions that can be assigned to that login. Security is typically set at the server or database level.
However, SQL Server provides you with the ability to set a much finer level of security.

	 Chapter 25  SQL Server security    315

18.	 Click the Search button. You are presented with three choices:

a.	 You can add access to specific server-level items or you can provide access to every item
by choosing the The Server 'Your Server Name' option.

b.	 If you select the Specific Objects option, you can add items of different types.

c.	 If you select All Objects of the Types option, you can holistically grant permissions to all
objects of a specific type.

19.	 For the purposes of this exercise, click Cancel.

20.	 In the Select a Page pane, select Status. On this page, you have the ability to grant or deny the
login permission to connect to the server. Ensure that the Grant option is selected.

21.	 Ensure that the Enabled option is selected.

22.	 Finally, if this was a SQL Server account, you could lock out the account, just as you can with
Active Directory. Click the OK button and the login will be created.

You can also use T-SQL to perform these steps. In the following procedures, the first exercise
repeats the steps outlined previously; the second exercise creates a SQL Server login. The
main differences between the two are that in the second query you must provide a password
and you can mimic Active Directory by explicitly including the MUST_CHANGE option and
enabling both the CHECK_EXPIRATION and CHECK_POLICY options.

Create a Windows-based login using T-SQL

To create a Windows-based login using T-SQL, execute the following query:

USE [master]
GO
CREATE LOGIN [DOMAIN\jdoe] FROM WINDOWS WITH DEFAULT_DATABASE=[master]
GO
ALTER SERVER ROLE [sysadmin] ADD MEMBER [DOMAIN\jdoe]
GO

316   PART VIII  Database management

Create a SQL-based login using T-SQL

To create a SQL-based login using T-SQL, first ensure that the password provided meets the Windows
policy for your domain, and then execute the following query:

USE [master]
GO
CREATE LOGIN [JDOE] WITH PASSWORD=N'password'
 MUST_CHANGE,
 DEFAULT_DATABASE=[master],
 CHECK_EXPIRATION=ON,
 CHECK_POLICY=ON
GO
ALTER SERVER ROLE [sysadmin] ADD MEMBER [JDOE]
GO

Creating user-defined server roles

In addition to the built-in server roles, in SQL Server 2012 you have the ability to create user-defined
server roles. Now you can create server roles that combine the capabilities of existing server roles, or
you can grant explicit permission to specific securables and create a more fine-grained server role.

Create a user-defined server role using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Security folder.

5.	 Right-click the Server Roles folder and select New Server Role from the menu.

6.	 In the New Server Role dialog box, type BulkAdminAndDBCreator.

7.	 In the Owner text box, type sa or click the ellipsis button and search for a login.

8.	 In the Securables section, select the box next to Servers.

9.	 In the Explicit section, select the box in the Grant column for both the Administer Bulk
Operations and Create Any Database permissions.

10.	 Select Members in the Select a Page pane.

	 Chapter 25  SQL Server security    317

11.	 Click Add.

12.	 In the Enter the Object Names to Select text box, type domain\jdoe, where domain is your
domain.

13.	 Click the Check Names button to verify the login.

14.	 Click OK.

15.	 Select Memberships in the Select a Page pane.

16.	 If you wanted to add this role to one of the built-in server roles, you could do so here. Leave
all boxes cleared and click OK.

V413HAV
Typewritten Text

V413HAV
Typewritten Text
V413HAV

318   PART VIII  Database management

Create a user-defined server role using T-SQL

To create a user-defined server role using T-SQL, execute the following query:

USE [master]
GO
CREATE SERVER ROLE [BulkAdminAndDBCreator]
GO
ALTER SERVER ROLE [BulkAdminAndDBCreator] ADD MEMBER [DOMAIN\jdoe]
GO
use [master]
GO
GRANT ADMINISTER BULK OPERATIONS TO [BulkAdminAndDBCreator]
GO
use [master]
GO
GRANT CREATE ANY DATABASE TO [BulkAdminAndDBCreator]
GO

Creating database users

Prior to SQL Server 2012, you created a SQL Server login before creating a database user. However,
with the latest release and the inclusion of SQL Server contained databases, that best practice has
been modified. With the new feature, you can create a user without a login and have user connec-
tions authenticate straight to the user database. This topic is discussed in detail in the “Configuring
contained databases” section of this chapter.

For now, you’ll focus on creating a user based on an existing login. A user can be based on a
SQL Server or Windows login. During or after the creation of a user, you can grant access to specific
objects such as tables, views, and stored procedures; access to all objects of a specific type; or access
to all objects within a schema.

Two database-level principals will appear in every database:

■■ By default, every user belongs to the public database role. The user will inherit all the per-
missions of this role if explicit permissions have not been granted to any objects within the
database.

■■ A guest user is disabled by default. The guest user is inherited by any login that has access to
the database. As a result, any permissions granted to this account are also inherited by those
users. Since data access will vary by user, you should avoid granting permissions to the guest
account.

In addition, there will be two schemas, which are not principals and cannot be modified or
dropped:

■■ sys contains all the system-related objects. It is often referred to as the system catalog.

■■ INFORMATION_SCHEMA contains views, which display METADATA about SQL Server internals.

	 Chapter 25  SQL Server security    319

Create a user using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Databases folder.

5.	 Expand the AdventureWorks2012 database.

6.	 Right-click the Security folder and select New | User from the menu. The Database User dialog
box opens.

7.	 In the User drop-down list, select Windows User.

8.	 In the User Name and Login Name text box, enter domain\jdoe.

9.	 In the Default Schema text box, enter dbo.

10.	 In the Select a Page pane, select Owned Schemas. Specifying a user as an owner of a schema
gives that user full control. Do not select any schemas.

11.	 In the Select a Page pane, select Membership. Selecting a role from the list grants the user all
the permissions of that role. Do not select any roles.

12.	 In the Select a Page pane, select Securables.

13.	 On the Securables page, click the Search button. Very similar to when you created a database
user, you can grant or deny access at the same levels.

14.	 With the Specific Objects option selected, click OK.

15.	 In the Select Objects dialog box, click the Object Types button.

16.	 In the Select Object Types dialog box, select Tables and click OK.

17.	 Click the Browse button.

18.	 Select the boxes next to the dbo.AWBuildVersion and dbo.DatabaseLog tables and click OK
twice.

19.	 In the Securables section, select the AWBuildVersion table.

20.	 In the Explicit section, select the boxes in the Grant section for the following permissions:
Delete, Insert, Select, and Update.

21.	 Repeat steps 19 and 20 for the DatabaseLog table.

320   PART VIII  Database management

22.	 In the Select a Page pane, select Extended Properties. If you want to include any metadata
about the login, you can do so here. For now, don't add anything.

23.	 Click OK.

Create a database user using T-SQL

To create a user using T-SQL, execute the following query:

USE [AdventureWorks2012]
GO
CREATE USER [domaim\jdoe] FOR LOGIN [domaim\jdoe] WITH DEFAULT_SCHEMA=[dbo]
GO
use [AdventureWorks2012]
GO
GRANT DELETE ON [dbo].[DatabaseLog] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT INSERT ON [dbo].[DatabaseLog] TO [domaim\jdoe]
GO

	 Chapter 25  SQL Server security    321

use [AdventureWorks2012]
GO
GRANT SELECT ON [dbo].[DatabaseLog] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT UPDATE ON [dbo].[DatabaseLog] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT DELETE ON [dbo].[AWBuildVersion] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT INSERT ON [dbo].[AWBuildVersion] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT SELECT ON [dbo].[AWBuildVersion] TO [domaim\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT UPDATE ON [dbo].[AWBuildVersion] TO [domaim\jdoe]
GO

To deny permission, replace the GRANT keyword with DENY. Also, if you want to not GRANT or
DENY, you can replace either with REVOKE. Remember that DENY will take precedence over GRANT.
To remove an existing GRANT or DENY permission on an object, use REVOKE in a T-SQL script.

Creating built-in database roles

In addition to the four previously mentioned principals, each database includes built-in database
roles. Table 25-1 lists and describes each role.

TABLE 25-1  Built-in database roles

Role Description

db_accessadmin These users control access to the database.

db_backupoperator These users can back up the database.

db_datareader These users have permissions to read all data within the database.

db_datawriter These users have permissions to insert, update, or delete from the database.

db_ddladmin These users have the ability to create, alter, and drop objects from the database.

db_denydatawriter These users cannot read any data within the database.

db_denydatareader These users cannot modify any data within the database.

db_owner In addition to having unrestricted access to all objects in the database, these users can ex-
ecute maintenance and configurations activities on the database. Most important, they can
also drop the database. Therefore, carefully consider which users should be assigned this
role.

db_securityadmin These users control role membership.

322   PART VIII  Database management

Create a built-in database role using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Databases folder.

5.	 Expand the AdventureWorks2012 database.

6.	 Expand the Security folder.

7.	 Right-click the Roles folder and select New | New Database Role from the menu.

8.	 The Database Role dialog box opens.

9.	 In the Role Name text box, type DBControlTable_reader.

10.	 In the Owner text box, type dbo.

11.	 Click Add.

12.	 The Select Database User or Role dialog box opens.

13.	 In the Enter the Object Names to Select text box, type domain\jdoe, where domain is your
domain and jdoe is a user in the database.

14.	 Click OK.

15.	 Select Securables from the Select a Page pane.

16.	 Click Search.

17.	 In the Add Objects dialog box, ensure that the Specific Objects option is selected and click OK.

18.	 In the Select Objects dialog box, click Object Types.

19.	 Select Tables from the list and click OK.

20.	 Click Browse.

21.	 In the Browse for Objects dialog box, select the boxes next to the dbo.AWBuildVersion, dbo.
DatabaseLog, and dbo.ErrorLog tables and click OK.

22.	 Click OK again.

23.	 With the AWBuildVersion table selected in the Securables section, in the Grant column of the
Explicit section, select the box on the Select row.

	 Chapter 25  SQL Server security    323

24.	 Repeat step 23 for the DatabaseLog and ErrorLog tables.

25.	 Click OK.

Now instead of explicitly granting read access to each table, you can add a login as a member of
this role and it will have the ability to view the contents of those tables.

Create a built-in database role using T-SQL

To create a built-in database role using T-SQL, execute the following query:

USE [AdventureWorks2012]
GO
CREATE ROLE [DBControlTable_reader] AUTHORIZATION [sa]
GO
USE [AdventureWorks2012]
GO
ALTER ROLE [DBControlTable_reader] ADD MEMBER [edustl\jdoe]
GO
use [AdventureWorks2012]
GO
GRANT SELECT ON [dbo].[DatabaseLog] TO [DBControlTable_reader]
GO
use [AdventureWorks2012]
GO
GRANT SELECT ON [dbo].[AWBuildVersion] TO [DBControlTable_reader]
GO
use [AdventureWorks2012]
GO
GRANT SELECT ON [dbo].[ErrorLog] TO [DBControlTable_reader]
GO

Configuring contained databases

As mentioned earlier, contained databases are a new feature introduced in SQL Server 2012. The
concept of containment means that the database is isolated from the instance of SQL Server on which
it is hosted. Certain information within the database is specific to the database and does not depend
on any features outside the database. In SQL Server 2012, databases can be only partially contained.
In other words, a database may use features that are available outside the database.

There are several levels of containment, but you will focus only on user authentication in this sec-
tion. A contained user can be created from a Windows login or a database user with a password. If
you base a database user on an existing login, it will not be contained. Before you can create any con-
tained users, you must enable Contained Database Authentication at the server and database level.

324   PART VIII  Database management

Configure Contained Database Authentication using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Right-click the server name and select Properties from the menu.

4.	 Select Advanced from the Select a Page pane.

5.	 In the Containment section, set the Enable Contained Databases option to True.

6.	 Click OK.

7.	 Open a new query window in SSMS.

8.	 Type and execute the following T-SQL statement:

USE master;
GO
CREATE DATABASE SBSContained;

	 Chapter 25  SQL Server security    325

9.	 In Object Explorer, expand the server.

10.	 Expand the Databases folder.

11.	 Right-click the SBSContained database and select Properties from the menu.

12.	 In the Select a Page pane, select Options.

13.	 Select Partial from the Containment Type drop-down list.

14.	 Click OK.

Configure Contained Database Authentication using T-SQL

To configure Contained Database Authentication using T-SQL, execute the following query:

use master
go
exec sp_configure 'contained database authentication', '1';
go
reconfigure;
USE [master]
GO
ALTER DATABASE [SBSContained] SET CONTAINMENT = PARTIAL
GO

Creating a contained user
The steps for creating a contained user are similar to those for creating an uncontained database user.
The primary difference is on the General page when creating a new database user.

Create a contained user using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Databases folder.

5.	 Expand the AdventureWorks2012 database.

6.	 Right-click the Security folder and select New | User. The Database User window opens.

326   PART VIII  Database management

7.	 Select SQL User with Password from the User Type drop-down list.

8.	 Enter SBS in the User Name text box.

9.	 Enter a valid password in the Password and Confirm password text boxes.

10.	 Select Owned Schemas in the Select a Page pane, and select the box next to db_owner.

11.	 Click OK.

Benefits and limitations of contained databases
As with most features, there are benefits and limitations to contained database security. Most of the
limitations are specific to containment’s operability with other SQL Server features. If database con-
tainment is enabled, you cannot use change data capture, change tracking, and replication.

	 Chapter 25  SQL Server security    327

The benefits of containment solve a problem that has been a thorn in the side of many DBAs for
a long time. Since user information was stored at the server level prior to containment, moving a
database posed certain challenges. The main challenge was that vital login information about the
user, which is stored at the server level, would not be available when the database was moved from
one SQL Server instance to another. As a result, several steps would have to be completed prior to the
user working properly.

With the advent of contained databases, this problem can be easily mitigated. Since all the infor-
mation is contained with the database, moving will not cause a problem. For example, if you have
configured AlwaysOn, in the event of a failover, a user can connect to the newer server without any
security issues.

Note  AlwaysOn is discussed in Chapter 31, “AlwaysOn.”

Summary

This chapter provided an explanation of several security concepts, including creating logins
at the server and database level. Security is important to most organizations, and having the
proper mechanisms and governance in place is vital to any application and database deployment.
Microsoft SQL Server 2012 provides flexible and effective security mechanisms that allow for fine-
grained control of the server, database, and database objects.

		 329

C H A P T E R 2 6

Resource Governor

After completing this chapter, you will be able to

■■ Use Resource Governor.

■■ Enable and disable Resource Governor.

■■ Create resource pools.

■■ Configure Resource Governor to manage workload and resource consumption.

■■ Create, register, and test classifier functions.

■■ Modify Resource Governor configurations.

Similar to most relational database management systems (RDBMs), Microsoft SQL Server uses mem-
ory and CPU to handle its workloads. In some cases, a particular workload may or should have access
to more of these resources than other workloads. For example, the CEO of an organization may run
a memory-intensive report first thing in the morning. At the same time, other users may be running
other workloads that are not as important. As a result, the workloads executed by the CEO will require
more memory. This is where Resource Governor comes into play.

By using Resource Governor, you can create a workload group mapped to a resource pool that
governs how the resources are allocated. Resource pools and workload groups are explained in detail
in the following sections. For now, understand that these two concepts are at the core of Resource
Governor and assist in assigning minimum and maximum values to the CPU and memory available
to an instance of SQL Server.

Minimum vs. maximum values
In some cases, assigning minimum values can be counterproductive. For example, one group
may require additional resources, but it can't access them because another group has allocated
the resources but is not using them. In this case, the minimum is detrimentally affecting the
group that needs the resources by holding the resources without using them. Therefore, think
carefully before assigning minimums.

330   PART VIII  Database management

This chapter provides a complete overview of how and when to use Resource Governor. You will
learn how to enable, configure, and disable Resource Governor, and you’ll explore how to set up each
Resource Governor component. Finally, you will learn how to test and validate the Resource Governor
configuration.

Enabling and disabling Resource Governor

Before you can start using Resource Governor, you must enable it. You have three ways to enable it,
two with SQL Server Management Studio (SSMS) and one with T-SQL. The following steps demon-
strate an SSMS method and a single T-SQL method.

Enable Resource Governor using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Management folder.

5.	 Right-click Resource Governor and select Enable from the menu.

	 Chapter 26  Resource Governor    331

Enable Resource Governor using T-SQL

To enable Resource Governor using T-SQL, execute the following query:

USE [master]
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

The RECONFIGURE statement in the preceding script not only enables Resource Governor, but
also applies any T-SQL changes that have been made prior to the execution of the statement. With
Resource Governor enabled, you can now start using it to manage workloads and system resources.

Disable Resource Governor using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Management folder.

5.	 Right-click Resource Governor and select Disable from the menu.

Disable Resource Governor using T-SQL

To disable Resource Governor using T-SQL, execute the following query:

USE [master]
GO
ALTER RESOURCE GOVERNOR DISABLE;
GO

Note  Keep this script handy, as it may be necessary for you to disable Resource Governor
in the case of an accidental misconfiguration on a production system. In addition, SQL
Server includes a dedicated administrator connection (DAC) you can use to connect if a
misconfigured classifier function renders the server inaccessible. The DAC connection is not
governed.

332   PART VIII  Database management

Creating resource pools

A resource pool represents the amount of system resources (memory or CPU) available to the server.
Two predefined pools exist by default:

■■ The internal pool cannot be dropped or altered. It represents the pool that critical SQL Server
functions workloads are placed in, and it has priority over all other pools.

■■ The default pool is a user-defined pool that cannot be dropped, but it can be altered. In addi-
tion, user-defined workload groups can be mapped to it.

Creating a resource pool is the first step in configuring Resource Governor to control workload
resource usage. When configuring a resource pool, you can specify the minimum and maximum
server memory and CPU. When specifying a minimum value for either, you must consider that the
sum of all minimums for the pools cannot be greater than 100 percent. Also, if the minimum value is
greater than zero for a given pool, the maximum value is adjusted. Calculating the new maximum is
beyond the scope of this book; if you are interested in learning more, visit the “Resource Governor”
section of SQL Server Books Online.

Create a resource pool using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Management folder.

5.	 Expand Resource Governor.

6.	 Right-click the Resource Pools folder and select New Resource Pool.

7.	 The Resource Governor Properties dialog box opens.

8.	 In the Resource Pools table, click in the column labeled Name on the row with the red-high-
lighted exclamation point.

9.	 In the Name column, type sbsPool.

10.	 In the Minimum CPU% column of the same row, enter 20.

11.	 In the Maximum CPU% column of the same row, enter 50.

12.	 In the Minimum Memory % column of the same row, enter 20.

13.	 In the Maximum Memory % column of the same row, enter 50.

	 Chapter 26  Resource Governor    333

14.	 Click OK.

15.	 Right-click the Resource Pools folder and select Refresh.

16.	 Expand the Resource Pools folder and you will see the new pool, sbsPool.

Create a resource pool using T-SQL

To create a resource pool using T-SQL, execute the following query:

Use master;
CREATE RESOURCE POOL [sbsPool] WITH(min_cpu_percent=20,
 max_cpu_percent=50,
 min_memory_percent=20,
 max_memory_percent=50)

GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

334   PART VIII  Database management

Creating a workload group

After the pool is created, the next step is to create a workload that will be mapped to that pool.
A workload group catches a database request with commonalities defined by a set of filters. The
filters are defined using a classifier function, which is explained in the next section. A workgroup
applies a uniform policy to all the requests in the group. Each connection in a workgroup is individu-
ally capped, for example. The resource pool divides resources among requests and applies caps to
requests as a whole.

Similar to resource pools, there are two default workload groups:

■■ The internal group cannot be modified in any way, but it can be monitored.

■■ Some modifications can be made to the default group. By default, requests are assigned to
this group when a session cannot be classified.

When creating a workload group, you can set six arguments, and you must map the group to a
resource pool. Table 26-1 describes the arguments.

TABLE 26-1  Workload group arguments

Argument Description Default value

importance Request the level of importance relative to all re-
quests. The value can be High, Medium, or Low.

Medium

request_max_memory_grant_percent Maximum amount of memory provided to a given
request relative to the group. Must be greater than
zero. The memory grant should not be changed, and
note that it is for a single query in a group.

25

request_max_memory_grant_timeout_sec Amount of time a request can wait for memory. 0

request_max_cpu_time_sec Maximum amount of CPU time provided to a given
request relative to a group. A zero value means it
defaults to the global maximum degree of parallelism.

Global value

max_dop Maximum degree of parallelism for each request. 0

group_max_requests Maximum number of concurrent requests that are
permitted to execute within a workgroup.

0 (unlimited)

Workload groups can be created using SSMS or T-SQL. If all the defaults are accepted, creating a
group and assigning it to a pool is simple. The following T-SQL query illustrates this:

use master;
CREATE WORKLOAD GROUP sbsTSQLdefaults
 USING sbsPool;
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

When the group is created, all the default values are assigned to the arguments.

	 Chapter 26  Resource Governor    335

Create a workload group using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server tree.

4.	 Expand the Management folder.

5.	 Expand Resource Governor.

6.	 Expand the Resource Pools folder.

7.	 Expand the sbsPool resource pool.

8.	 Right-click the Workload Groups folder and select New Workload Group from the menu.

The Resource Governor Properties dialog box opens.

9.	 In the Workload Groups for Resource Pool table, click in the column labeled Name on the row
with the red-highlighted exclamation point.

10.	 In the Name column, type sbsSSMSgroup.

11.	 In the Importance column, select Medium.

12.	 In the Maximum Requests column, accept 0.

13.	 In the CPU Time (Sec) column, enter 50.

14.	 In the Memory Grant % column, enter 25.

336   PART VIII  Database management

15.	 Accept the default for Grant Time-out (Sec) and Degree of Parallelism.

16.	 Click OK.

17.	 Right-click the Workload Groups folder and select Refresh. You will now see the new group.

Create a workload group using T-SQL

To create a workload group using T-SQL, execute the following code:

CREATE WORKLOAD GROUP [sbsSSMSgroup] WITH(group_max_requests=0,
 importance=Medium,
 request_max_cpu_time_sec=50,
 request_max_memory_grant_percent=50,
 request_memory_grant_timeout_sec=0,
 max_dop=0) USING [sbsPool]
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Using classifier functions

As mentioned earlier, requests are grouped or classified based on specific characteristics. These char-
acteristics are defined in a user-defined function. This function is referred to as the classifier function,
and it contains logic that assists in grouping the sessions. Resource Governor uses the logic to place
requests into existing workload groups. As sessions are created, they are classified into a group. When
your system is under heavy CPU and/or memory pressure, Resource Governor may cap requests that
have been sorted into a workgroup by the classifier function. This helps protect other requests on the
server from being starved for CPU or memory.

The classifier function should be created in the master database, and only one function at a time
can be specified as the Resource Governor classifier function. Typically, prebuilt system functions are
used to assist the classifier function with identifying requests. For example, if you want to identify a
request based on who is logged in, use the SUSER_NAME() function, which returns the login of the
user. On the other hand, if you want to classify requests by application name, use the APP_NAME()
function. In addition to those two functions, you can use the HOST_NAME() function to identify the
computer or server source of the session.

After the function is created, you will need to update the Resource Governor configurations. The
detailed steps for this are provided in the next section.

	 Chapter 26  Resource Governor    337

Create and register a classifier function using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, enter and execute the following T-SQL code:

USE master
GO
CREATE FUNCTION sbsClassifier()
RETURNS SYSNAME WITH SCHEMABINDING
BEGIN
 DECLARE @Group sysname

 IF(SUSER_SNAME()) = 'jdoe'
 BEGIN
 SET @Group = 'sbsSSMSgroup'
 END

 RETURN @Group
END
GO

In the preceding function, the SUSER_SNAME function is used to determine who the user is. If
the user is jdoe, then all sessions for that user are sent to the sbsSSMSgroup workload group.

3.	 Open another query window and execute the following T-SQL code:

USE MASTER
GO
ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.sbsClassifier)
ALTER RESOURCE GOVERNOR RECONFIGURE
GO

This code registers the function with Resource Governor, and then Resource Governor is
reconfigured so that it can begin using the function.

Testing classifier functions

Now that all the pieces are in place, how can you verify that functions are being used as expected?
Well, unless your system is under duress, you will not be able to observe pools or workgroups
being restricted. However, you can verify if the classification of incoming requests is working as
you intended.

338   PART VIII  Database management

Test a classifier function using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, execute the following T-SQL code:

USE [master]
GO
CREATE LOGIN [jdoe]
 WITH PASSWORD=N'pass@word1',
 DEFAULT_DATABASE=[AdventureWorks2012],
 CHECK_EXPIRATION=OFF,
 CHECK_POLICY=OFF
GO
USE [AdventureWorks2012]
GO
CREATE USER [jdoe] FOR LOGIN [jdoe]
GO
USE [AdventureWorks2012]
GO
ALTER ROLE [db_datareader] ADD MEMBER [jdoe]
GO

The preceding code creates a SQL Server login and a database user within the
AdventureWorks2012 database that can read all the contents of that database.

3.	 Open a new query window and connect as the user jdoe.

4.	 In the query editor, execute the following T-SQL code:

USE AdventureWorks2012;
SELECT *
FROM HumanResources.Department

5.	 Return to the first query window where the user was created and delete all the contents. In
the query editor, execute the following query:

SELECT
 s.group_id,
 CAST(g.name as nvarchar(20)) ResourceGroup,
 s.session_id,
 s.login_name,
 s.login_time,
 CAST(s.host_name as nvarchar(20)) HostName,
 CAST(s.program_name AS nvarchar(20)) ProgramName
FROM sys.dm_exec_sessions s
INNER JOIN sys.dm_resource_governor_workload_groups g
 ON g.group_id = s.group_id
WHERE
 g.name = 'sbsSSMSgroup'
ORDER BY
 g.name
GO

	 Chapter 26  Resource Governor    339

The results will include at least one row, which references the session that is connected as
jdoe.

If you opened additional sessions connected as that user, you will see more rows when the
query is executed. Finally, note that group_id is not one (the default workgroup). This column
identifies which Resource Governor workgroup the session was placed in.

Modifying Resource Governor configurations

If you ever find the need to change any of the Resource Governor configurations, you can do so easily
with SSMS or T-SQL. In addition, you can remove a pool, workload, or classifier. Before removing a
pool, you must first remove any workload groups that are associated with it. If you want to remove a
classifier function, you must first disassociate it from Resource Governor.

Alter an existing workload group using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, execute the following T-SQL code:

ALTER WORKLOAD GROUP [sbsTSQLdefaults]
WITH (REQUEST_MAX_MEMORY_GRANT_PERCENT = 50);
GO
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Now the requests classified to this workload will have access to additional memory. New
sessions would, but existing sessions would not. Existing sessions will continue to be gov-
erned even if you DISABLE Resource Governor; they will remain in their workgroup for a
period of time.

Drop existing workload groups and resource pools using SSMS

Note  Prior to following these steps, ensure that any connections that were open using the
jdoe user are closed.

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

340   PART VIII  Database management

3.	 Expand the server tree.

4.	 Expand the Management folder.

5.	 Expand Resource Governor.

6.	 Expand the Resource Pools folder.

7.	 Expand the sbsPool resource pool.

8.	 Expand the Workload Groups folder.

9.	 Right-click the sbsTSQLDefaults workload group and select Delete.

10.	 Repeat the steps, but instead delete sbsSSMSgroup.

11.	 Right-click sbsPool and select Delete from the menu. If any sessions are open that reference
the pool, you may receive an error.

Drop a classifier function using T-SQL

1.	 Open the query editor in SSMS.

2.	 In the query editor, execute the following T-SQL code:

USE [master]
ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = null)
ALTER RESOURCE GOVERNOR RECONFIGURE
GO
USE [master]
DROP FUNCTION dbo.sbsClassifier
GO

You must first set the classifier function for Resource Governor to a new function or null. Then
you will be able to drop the function.

Summary

This chapter provided an overview of the Resource Governor feature of Microsoft SQL Server. You
walked through the steps to properly configure Resource Governor, and you learned about certain
situations where controlling your system resources can benefit from Resource Governor. When per-
forming the configurations, carefully consider the impact that Resource Governor's restrictions will
have on users and applications. Carefully monitor Resource Governor after implementation to ensure
the desired effect of limiting heavy performance impacts.

		 341

C H A P T E R 2 7

SQL Server Agent

After completing this chapter, you will be able to

■■ Understand the components of SQL Server Agent.

■■ View SQL Server Agent Configuration Manager options.

■■ Configure SQL Server Agent properties.

■■ Create operators.

■■ Configure alerts and jobs.

■■ Create proxies.

As discussed in Chapter 22, "Maintenance plans," regularly scheduled tasks must be performed
to ensure that disaster recovery, retention policies, index performance, and monitoring goals are
maintained. To ensure that all of these tasks are accomplished via a single technology, Microsoft
SQL Server includes a Windows service known as SQL Server Agent. SQL Server Agent can execute
and schedule tasks, or jobs. The scheduled tasks should not be confused with Windows scheduled
tasks in Task Scheduler. SQL Server Agent can execute the following:

■■ SQL Server Integration Services (SSIS) packages

■■ T-SQL scripts

■■ PowerShell scripts

■■ ActiveX scripts

■■ Replication tasks

■■ Analysis Services tasks

■■ Operating system tasks (CmdExec)

Within a job, each of the aforementioned items can be executed as a step. The details relating to
creating and scheduling jobs are provided later in the chapter. First, you'll learn about SQL Server
Agent components.

342   PART VIII  Database management

SQL Server Agent components

As previously mentioned, SQL Server Agent executes jobs, and these jobs are one component used by
SQL Server Agent to execute the defined tasks. In addition to jobs, SQL Server Agent includes other
components. Table 27-1 lists and describes each component.

TABLE 27-1  SQL Server Agent components

Component Description

Job A sequential list of actions.

Schedule A description of when a job will run. A schedule is created for each job, but a new job can copy the
schedule of an existing job.

Operator The person to be notified when a certain action or event occurs on SQL Server or SQL Server Agent.

Alert A notification or response to a certain event. Alerts are based on SQL Server events, SQL Server per-
formance conditions, or WMI events. An operator may be notified if an alert is fired.

Proxy The context in which the job is executed.

As you may have noticed from the component descriptions, they typically work together as a
single unit of work. While this is not a requirement, it is something you will encounter over and over
again as you create each component. For example, a job may use a schedule to run automatically, an
operator may be notified if a job succeeds or fails, or an operator may be notified if an alert is fired.
You will learn how to create and manage each component later in this chapter.

Viewing SQL Server Agent Configuration Manager options

Certain aspects of SQL Server Agent are configurable. For example, which security account it should
start as, where the error log should be stored, and whether it should start automatically. You may also
want to start, stop, or pause SQL Server Agent. Some tasks can only be configured using SQL Server
Configuration Manager, while others can be configured using SQL Server Management Studio (SSMS).

View SQL Server Agent configuration options using SSMS

1.	 Click Start | All Programs | Microsoft SQL Server 2012 | Configuration Tools | SQL Server
Configuration Manager. SQL Server Configuration Manager opens.

2.	 Select SQL Server Services from the left navigation pane.

	 Chapter 27  SQL Server Agent    343

3.	 In the right section, right-click SQL Server Agent and select Properties from the menu.

4.	 On the Log On tab, you can stop SQL Server Agent by clicking Stop. You can also start,
pause, or restart it in other scenarios. In addition, you can specify which account the service
logs on as.

Important  It is very important to make any service account changes here in SQL
Server Configuration Manager. Making these changes in the Control Panel's Local
Services console could result in SQL Server permissions becoming broken.

344   PART VIII  Database management

5.	 Click the Service tab.

The only configurable option here is Start Mode. In most cases, you should set the value
to Automatic. However, if you are not using any of the SQL Server Agent functionality, you
should set it to Manual or Disabled. If you set the value to Manual, SQL Server Agent can still
be started; however, if you set the value to Disabled, you cannot start it. That said, there is no
good reason it should be stopped on a production server.

6.	 Click the Advanced tab.

On this tab, you can configure three options. The first is whether or not you want to provide
a customer feedback report. The second and probably the most important option you can
specify is where you want to place the SQL Server Agent error logs. You can accept the default
or you can move the logs to another location. To ensure that you have sufficient disk space
and you don't run out of space on your local C drive, you should consider relocating the error
logs to another location.

7.	 Click Cancel.

Configuring SQL Server Agent properties

While SQL Server Configuration Manager provides some very important configurable options for a
Windows service, SSMS exposes other options that you should definitely examine. Since SQL Server
Agent is typically a mechanism used to regularly execute critical tasks or tasks that could be resource
dependent or intensive, using SSMS you have the ability to control properties such as the following:

	 Chapter 27  SQL Server Agent    345

■■ Executing jobs based on resource availability

■■ When to restart SQL Server Agent

■■ How much information to persist in the error log

■■ Alerts and notifications

These properties are available via SSMS and are easily configured.

View and configure SQL Server Agent properties with SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Right-click SQL Server Agent and select Properties from the menu.

On the General page in the Agent Service section, you can control how SQL Server Agent
behaves if the server or SQL Server Agent stops.

346   PART VIII  Database management

It is highly recommended that you keep the first two check boxes selected at all times. In
addition, when you select the Include Execution Trace Messages check box in the Error Log
section, SQL Server Agent will send more information to the error log. If you decide to select
this box, ensure that you have sufficient disk space to accommodate the change. If you are
working with older technologies, you can also send messages via net send by entering the
user in the Net Send Recipient text box.

Note  In future versions of SQL Server, the net send option will be removed.
Therefore, you should avoid using this feature.

5.	 Click OK to accept the defaults.

6.	 In the Select a Page pane, click Advanced.

On the Advanced page, you can control the events and where they should be stored, locally
or remotely.

7.	 Click OK to accept the defaults.

8.	 In the Idle CPU Condition section, select the Define Idle CPU Condition check box. You now
have the ability to control when a job actually runs based on CPU usage.

	 Chapter 27  SQL Server Agent    347

9.	 In the Average CPU Usage Falls Below text box, enter 40.

10.	 In the And Remains Below This Level For text box, enter 30.

Specifying the preceding two values tells SQL Server Agent to execute jobs only when the
average CPU is below 40 percent for 30 seconds.

11.	 In the Select a Page pane, select History.

On this page, you can configure how much history to maintain about jobs and when to purge
log information.

12.	 Enter 5000 in the Maximum Job History Log Size (in Rows) text box. This setting limits the log
size to 5,000 rows for all jobs.

13.	 Enter 500 in the Maximum Job History Rows per Job text box. This setting tells SQL Server
Agent to store only 500 rows of log information for each job.

14.	 Select the Remove Agent History check box, enter 1 in the Older Than text box, and accept
the value Week(s) from the drop-down list.

This setting is a bit misleading; it is not a scheduled reoccurring process. Instead, it removes
the data within the specific values when OK is clicked.

15.	 Click OK.

348   PART VIII  Database management

Note  You may have noticed that three pages were skipped: Alert System, Job
System, and Connection. This is because the Alert System page is discussed in
Chapter 28, "Database Mail," and discussion of the Job System and Connection
pages is beyond the scope of this book.

Creating operators

Now that you have configured SQL Server Agent, it is time to start creating and configuring your
environment. The first step is to create operators. As mentioned earlier, an operator contains all the
pertinent information required to notify a person or group when a job completes, succeeds, or fails.
In addition, an operator may also be notified when an alert is fired. Jobs and alerts are discussed later
in the chapter.

The notification of an operator is conducted using email, pagers, or net send. To use the email
database, mail must be configured—you'll learn more about this in Chapter 28, "Database Mail." If
paging is used, some type of third-party software must be in place that will send the notifications.
However, similar to net send, paging is a deprecated feature, and you should avoid using both.

Create an operator using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Expand SQL Server Agent.

5.	 Right-click the Operators folder and select New Operator from the menu.

6.	 The New Operator window opens.

7.	 On the General page, enter WeekdayDBA in the Name text box.

	 Chapter 27  SQL Server Agent    349

8.	 Enter an email address in the E-mail Name text box.

In the Pager on Duty Schedule section, you can specify the availability of a person or group. In
this section, you have the flexibility to select certain days and times as needed.

9.	 Select all the weekday check boxes, but leave Saturday and Sunday cleared, because this per-
son is off on the weekends. Enter 7:00:00 AM in the Workday Begin text box.

10.	 Click OK.

Note  You may have noticed the Notification page in the Select a Page pane. You
will revisit that page once you have created an alert.

350   PART VIII  Database management

Create an operator using T-SQL

To create an operator using T-SQL, execute the following script:

USE [msdb]
GO
EXEC msdb.dbo.sp_update_operator @name=N'WeekdayDBA',
 @enabled=1,
 @weekday_pager_start_time=70000,
 @weekday_pager_end_time=180000,
 @pager_days=62,
 @email_address=N'jdoe@email.com',
 @pager_address=N'',
 @netsend_address=N''
GO

Configuring alerts

As a SQL Server database administrator (DBA), maintaining and monitoring your SQL Server environ-
ment is an integral part of the job. Being a reactive DBA instead of a proactive DBA could determine if
you are an employed or unemployed DBA, depending upon the situation. By using SQL Server Agent
alerts, you can proactively monitor SQL Server events and performance conditions.

Alerts are automated notifications that are fired when certain events are triggered. You can config-
ure alerts to fire for the following types of events:

■■ SQL Server

■■ SQL Server performance

■■ Windows Management Instrumentation (WMI)

With each option, SQL Server provides very granular configuration choices. For example, when
configuring a performance condition, you can specify a threshold that determines when the alert
should be fired. In the next procedure, you'll create an alert based on SQL Server's built-in counters
that look for use of deprecated features, including deprecated T-SQL code.

Create a SQL Server alert using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Expand SQL Server Agent.

	 Chapter 27  SQL Server Agent    351

5.	 Right-click the Alerts folder and select New Alert from the menu. The New Alert dialog box
opens.

6.	 In the Name text box, enter Deprecated Usage.

7.	 Select SQL Server Performance Condition Alert from the Type drop-down list.

8.	 Select Deprecated Features from the Object drop-down list.

9.	 Select Usage from the Counter drop-down list.

10.	 Select SET ROWCOUNT from the Instance drop-down list.

11.	 Select Rises Above from the Alert If Counter drop-down list.

12.	 Leave 0 in the Value text box.

13.	 In the Select a Page pane, select Response.

14.	 Select the Notify Operators check box.

V413HAV
Typewritten Text
V413HAV

352   PART VIII  Database management

15.	 In the Operator List section, select the check box in the E-mail column.

16.	 Select Options in the Select a Page pane.

You can add additional messages to the alert by using this page.

17.	 In the Include Alert Error Text In section, select the E-mail box and then click OK.

Create a SQL Server alert using T-SQL

To create a SQL Server alert using T-SQL, execute the following script:

USE [msdb]
GO
EXEC msdb.dbo.sp_add_alert @name=N'Deprecated Usage',
 @enabled=1,
 @delay_between_responses=0,
 @include_event_description_in=0,
 @performance_condition=N'Deprecated Features|Usage|SET ROWCOUNT|>|0',
 @job_id=N'00000000-0000-0000-0000-000000000000'
GO
EXEC msdb.dbo.sp_add_notification
 @alert_name=N'Deprecated Usage', @operator_name=N'WeekdayDBA', @notification_method = 1
GO

	 Chapter 27  SQL Server Agent    353

The first stored procedure, sp_add_alert, creates the alert, and the second stored procedure,
sp_add_notification, adds a notification for the specified operator.

Configuring jobs

SQL Server Agent jobs are typically used to automate maintenance tasks such as backups and index
rebuilds. While these are the most common uses, SQL Server Agent jobs can be used to automate
other tasks such as running an extraction, transformation, and loading (ETL) process for a data
warehouse. Not only does a job include steps or tasks that it may execute, but it also may include a
schedule, alert, and notification.

A job usually contains a series of steps scheduled to run by SQL Server Agent. You can configure
the job to send a notification when it completes, succeeds, or fails. Finally, you can include alerts as
part of a job.

Note  If a user is not part of the sysadmin role, the user must be added to the
SQLAgentUserRole, SQLAgentReaderRole, or SQLAgentOperatorRole in the msdb database
in order to create, modify, or delete jobs.

Create a job using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Expand SQL Server Agent.

5.	 Right-click the Jobs folder and select New Job from the menu.

6.	 The New Job dialog box opens.

7.	 Enter AdventureWorks2012 Nightly Full Backup in the Name text box.

8.	 Enter sa in the Owner text box.

Note  sa is used only for demonstration purposes here. You should not use it in
production scenarios. As a best practice, you should create a dedicated SQL Server
service account that will be used to execute jobs.

9.	 Select Database Maintenance from the Category drop-down list.

354   PART VIII  Database management

10.	 In the large Description text box, type Nightly full backup of the AdventureWorks
database that runs at midnight every day including weekends.

11.	 Select Steps from the Select a Page pane.

12.	 On the Steps page, click New.

13.	 In the Step Name text box, type Nightly Backup.

14.	 In the Type drop-down list, accept the default, Transact-SQL Script (T-SQL).

15.	 Accept the default for the Run As drop-down list, which is blank. You will return to this later.

16.	 Accept the default, master, in the Database drop-down list.

	 Chapter 27  SQL Server Agent    355

17.	 Execute the following T-SQL code in the Command text box:

use master
go
BACKUP DATABASE AdventureWorks2012
TO C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\Backup\
AdventureWorks2012.bak

18.	 In the Select a Page pane, select Advanced.

On this page, you can configure several settings. Review the options on this page. If there are
multiple steps in the job, you can specify which step to run depending upon the success or
failure of this step. You can also enter the number of retry attempts. You can log additional
information about the step and run a specific step as a different user.

19.	 Accept the defaults for now and click OK.

20.	 In the Select a Page pane, select Schedules. On the Schedules page, click the New button.

21.	 Type Nightly Midnight in the Name text box.

356   PART VIII  Database management

22.	 Select Daily from the Occurs drop-down list in the Frequency section.

23.	 Accept all the defaults for the other items and click OK.

24.	 In the Select a Page pane, select Notifications.

25.	 Select the E-mail check box.

26.	 Select WeekdayDBA from the drop-down list.

27.	 Click OK.

Note  Two pages were omitted during this discussion: Alerts and Targets. If you want
to include an alert with the job, you can specify it on the Alert page. If you want to
set up multiserver administration, you can use the Target page to do so.

	 Chapter 27  SQL Server Agent    357

Creating proxies

In some cases, you may need to execute a job as an account that has access to objects external to SQL
Server. To accomplish this, you use a proxy. A proxy is the security context that a job can impersonate
at run time for a specific and limited purpose. For example, you may use a proxy when executing an
SSIS package or to run a PowerShell script. Proxies depend on credentials. The credential is what pro-
vides the proxy access to the external objects. A credential typically contains the security information
of a Windows account: the user name and password. This account may be a system administrator with
network drive privileges. Prior to creating a proxy, you must create a credential.

Note  The Windows user that is used when creating the credential must be granted the
Logon as Batch Job permission on the server that hosts the SQL Server instance.

Create a credential using SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Expand the Security folder.

5.	 Right-click the Credentials folder and select New Credential. The New Credential dialog box
opens.

6.	 Enter a name in the Credential Name text box.

7.	 Enter the Windows user name in the Identity text box. Alternatively, click the ellipsis button to
search for the account.

8.	 Enter the password for that account in both the Password and Confirm Password text boxes.

Note  The Encryption Provider section is disabled because this section is intended
for use with an Enterprise Key Management (EKM) provider.

358   PART VIII  Database management

9.	 Click OK.

With the credential created, you can create a proxy that can use the permissions of this
Windows account.

Create and use a proxy with SSMS

1.	 Open SSMS and connect to a server.

2.	 Open Object Explorer if it is not already open.

3.	 Expand the server.

4.	 Expand SQL Server Agent.

5.	 Right-click the Proxies folder and select New Proxy from the menu. The New Proxy Account
dialog box opens.

6.	 Type BackupAccount in the Proxy Name text box.

7.	 Type a credential in the Credential Name text box, or click the ellipsis button and select from a
list of available credentials.

	 Chapter 27  SQL Server Agent    359

8.	 In the Active to the Following Subsystems section, select the box next to PowerShell.

9.	 In the Select a Page pane, select Principals. This is where you grant any additional accounts
access to this proxy.

10.	 Click OK.

11.	 Expand the Jobs folder.

12.	 Right-click the AdventureWorks2012 Nightly Full Backup job and select Properties.

13.	 Select Steps from the Select a Page pane.

14.	 Click New.

15.	 Select PowerShell from the Type drop-down list.

16.	 Select Backup Account from the Run As drop-down list. This forces SQL Server Agent to
execute the step under the context of this proxy.

17.	 Click Cancel.

360   PART VIII  Database management

Summary

In this chapter, you learned about the various SQL Server Agent components, and you explored
how to use SQL Server Configuration Manager to change SQL Server Agent properties. You
learned how to create operators and alerts that can be used as a means of notification. Finally,
you learned how to create jobs that can assist in streamlining and automating daily tasks.

	Cover
	Copyright
	Contents at a glance
	Part I: Getting started with Microsoft SQL Server 2012
	Chapter 1: Overview of Microsoft SQL Server 2012
	Chapter 2: Installing, configuring, and upgrading Microsoft SQL Server 2012
	Chapter 3: Using SQL Server 2012 administration and development tools

	Part II: Designing databases
	Chapter 4: Designing SQL Server databases
	Chapter 5: Creating your first table
	Chapter 6: Building and maintaining indexes

	Part III: Advanced database design topics
	Chapter 7: Table compression
	Chapter 8: Table partitioning
	Chapter 9: Database snapshots
	Chapter 10: The SELECT statement

	Part IV: Usinging Transact-SQL (TSQL)
	Chapter 11: Advanced data retrieval topics
	Chapter 12: Modifying data
	Chapter 13: Built-in scalar functions

	Part V: Creating other database objects
	Chapter 14: Advanced TSQL topics
	Chapter 15: Views
	Chapter 16: User-defined functions
	Chapter 17: Stored procedures
	Chapter 18: Data manipulation triggers

	Part VI: SQL Server replication
	Chapter 19: Replication

	Part VII: Database maintenance
	Chapter 20: Backups
	Chapter 21: Managing and maintaining indexes and statistics
	Chapter 22: Maintenance plans

	Part VIII: Database management
	Chapter 23: SQL Server Profiler
	Chapter 24: Extended events
	Chapter 25: SQL Server security
	Chapter 26: Resource Governor
	Chapter 27: SQL Server Agent

