
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering NetBeans

Master building complex applications with NetBeans to
become a more proficient programmer

David Salter

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering NetBeans

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1250815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-264-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
David Salter

Reviewers
Michel Graciano

Halil Karaköse

Mario Pérez Madueño

Commissioning Editor
Nadeem Bagban

Acquisition Editor
Larissa Pinto

Content Development Editor
Anand Singh

Technical Editor
Ankita Thakur

Copy Editor
Swati Priya

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Salter is an enterprise software developer and architect who has been
developing software professionally since 1991. His relationship with Java goes right
back to the beginning, when he used Java 1.0 to write desktop applications and applets
for interactive websites. He has been developing enterprise Java applications using
both Java EE (and J2EE) and open source solutions since 2001. He has also written
NetBeans IDE 8 Cookbook and Seam 2.x Web Development and coauthored Building
SOA-Based Composite Applications Using NetBeans IDE 6, all by Packt Publishing.

First and foremost, I would like to thank my wife and family for
putting up with my many hours at the computer while writing this
book. Special thanks and love to my wife for all her encouragement
and support.

I'd also like to say thanks to all the people at Packt Publishing
for helping me with this book. Thank you, Larissa, for your
encouragement from the beginning. I would also like to thank
Anand and Ankita for their hard work in helping me complete
this book.

Finally, thanks to everyone who has worked on NetBeans, making it
the product it is today. Without you all, this book would not exist.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michel Graciano is highly familiar with development techniques, such as
object- and component-oriented programming, design patterns' applicability,
and software analysis. An expert in application development with open source
software, he is currently working as an instructor at Código Efetivo, a training
company in Brazil.

He is actively involved with open source projects, such as NetBeans, and has
delivered talks at JustJava, The Developer's Conference, and JavaOne conferences.

His longtime contributions to NetBeans started with the Portuguese translation
project and continued through his participation in the NetFIX and NetCAT
programs, leading to him becoming a NetBeans Dream Team member.

I would like to thank my wife for all her encouragement and
support, in this and the other projects I get involved in.

Halil Karaköse is a freelance software architect who graduated from Işik
University Computer Engineering Department in 2005.

He worked in the telecommunications industry as a software developer and software
architect for 10 years, including companies such as Turkcell and Ericsson. In 2014, he
quit Ericsson to establish his own software consultancy company, kodfarki.com.

He has keen interest in Java tools, which speed up development, such as NetBeans
and Intellij IDEA. He loves mouseless driven development.

www.allitebooks.com

http://www.allitebooks.org

Mario Pérez Madueño graduated in computer engineering from the Open
University of Catalonia (UOC), Spain, in 2010. He is an early adopter of Java tech
and advocates agile development methodologies. He has been a member of the
NetBeans Community Acceptance Testing (NetCAT) program for many years.
He has also contributed as a technical reviewer to Building SOA-Based Composite
Applications Using NetBeans IDE 6 and Java EE 7 Development with NetBeans 8,
both by Packt Publishing.

I would like to thank my wife, María, for her unconditional help and
support in all the projects I get involved in. I would also like to thank
Martín and Matías for giving me the strength to go ahead.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with NetBeans 1

Choosing a download bundle of NetBeans 1
Downloading and installing NetBeans 2

Installing other versions of NetBeans 5
NetBeans user directory 7

Updating NetBeans to the latest version 8
Obtaining the NetBeans source code 9

Downloading a zipped archive of the NetBeans source code 9
Cloning the NetBeans source code from Mercurial 9

Cloning specific versions of NetBeans 11
Cloning the NetBeans source code from within NetBeans 12
Browsing the NetBeans source code online 16

Building NetBeans 16
Building NetBeans via the command line 17
Building NetBeans from within NetBeans 18

NetBeans configuration 22
User and cache directories 24
NetBeans default options 24
NetBeans JDK 25
Additional module clusters 25
Further options 26

Summary 26
Chapter 2: Editing Files and Projects 27

The NetBeans screen layout 28
The explorer style windows 30
The Favorites window 31
The Navigator window 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The source code editor window 32
The History view 34

The Palette window 36
The Properties window 37
The Output window 37
Window management 38

Specifying default templates for files 42
Code templates and code snippets 47

Inserting code using code templates 47
Code snippets – the NetBeans Palette window 49

Deleting palette items – the Palette Manager 50
Editing palette items 52

Macro recording and playback 53
Assigning shortcuts for macro playback 55
Recording new macros 56

Splitting windows 57
Code folds 58
Project groups 60
Summary 62

Chapter 3: The NetBeans Developer's Life Cycle 63
Running applications 63
Debugging applications 67

Breakpoints 68
The Variables debug window 73
The Watches window 74

Evaluating expressions 75
The Call Stack window 76
The Loaded Classes window 77
The Sessions window 78
The Threads window 79
The Sources window 80
The Debugging window 80

Deadlock detection 83
Analyze Stack Window 84
Variable formatters 86
Debugging remote applications 89

Profiling applications 90
Application monitoring 91
Performance monitoring 94
Memory monitoring 96

Table of Contents

[iii]

Testing applications 98
Code coverage 102

Performing TDD within NetBeans 105
Summary 110

Chapter 4: Managing Services 111
Databases 112

Connecting to Java DB 113
Connecting to MySQL 114
Connecting to other databases via JDBC 116
Managing databases 118

Web Services 120
Application Servers 125
Maven Repositories 128
Cloud services 130
Hudson Builders 131
Task Repositories 134
Summary 136

Chapter 5: Database Persistence 137
Java EE Persistence 137

JPA entities 138
Creating blank entity classes 138

Editing the persistence.xml file 142
Creating entity classes from databases 144
Creating JPA controllers for entities 150
Creating database scripts from entity classes 153

Summary 156
Chapter 6: Desktop Development 157

Java Swing applications 158
Creating Swing frames 158
Designing Swing forms 162

Anchoring and autoresizing components 164
Defining properties and events 168
Editing properties 169
Editing bindings 171
Editing events 178
Editing code 180
Creating connections 181

JavaFX applications 186
JavaFX Scene Builder 187

Summary 188

Table of Contents

[iv]

Chapter 7: Creating the Business Layer 189
Creating enterprise projects 189

Creating a NetBeans multi-module project 191
A Maven multi-module project 196

Creating a Maven multi-module project 197
Creating EJBs 203

Creating a session bean façade for entity classes 214
The Java Bean Validation framework 220

Creating a Bean Validation constraint 220
Contexts and Dependency Injection 226

Adding CDI support 226
CDI injection points editor support 228

Summary 228
Chapter 8: Creating the Web Tier 229

Creating web projects 229
Configuring application servers 230
Creating a web application 233

Creating a NetBeans web application 234
Creating a Maven web application 241
The web project's Run options 243

Adding components to a web application 246
Creating Spring web applications 249

Changing the version of Spring used 252
Spring application development shortcuts 255

Modern Spring development 258
Enhancing Spring Boot support 259

CSS preprocessors 261
Configuring Less and SASS in NetBeans 262
Configuring Less and Sass on a project basis 264

Creating CSS rules 267
Adding JavaScript to a web application 269

Checking JavaScript files 270
Summary 271

Chapter 9: Creating and Consuming Web Services 273
Creating web services 274

Creating a SOAP web service 276
Creating a SOAP web service from scratch 277
Creating a SOAP web service from WSDL 281

Managing SOAP-based web services 283
Testing web services 285
Message handlers 287

Managing web services graphically 289

Table of Contents

[v]

Consuming SOAP web services 290
Creating RESTful web services 293

The Simple Root Resource option 295
The Container-Item option 296
The Client-Controlled Container-Item option 296

Summary 296
Chapter 10: Extending NetBeans 297

Creating NetBeans plugins 298
NetBeans rich client platform applications 305

Creating a NetBeans RCP application 306
Branding the application 309
Application properties 312

Creating platform application components 314
Creating a NetBeans window 316

Summary 318
Index 319

[vii]

Preface
NetBeans is the only IDE that can be downloaded with Java itself. It provides
developers with many cutting-edge features that are not available with all the
other IDEs.

This book will teach you how to master the NetBeans IDE. You will learn how to
utilize and master the NetBeans IDE to become a proficient developer.

This book is packed with many hints, tips, and time-saving techniques. Reading
this book will teach you about the features provided by NetBeans that newcomers
to the IDE are not aware of and experienced programmers make extensive use of
on a day-to-day basis.

What this book covers
Chapter 1, Getting Started with NetBeans, describes the different versions of NetBeans
that are available to download and shows you how to install NetBeans from an
installable package or from the source code.

Chapter 2, Editing Files and Projects, teaches you about the many different facilities
available while editing files. You will learn about macros, project groups, the
NetBeans windowing system, and much more.

Chapter 3, The NetBeans Developer's Life Cycle, explains how NetBeans helps with the
tasks that every developer does on a daily basis—running, debugging, testing, and
profiling applications.

Chapter 4, Managing Services, shows you how NetBeans manages external services
such as Maven repositories, PaaS, and continuous integration systems.

Chapter 5, Database Persistence, describes the features that NetBeans provides to help
write database applications, from both a code-first and data-first perspective.

Preface

[viii]

Chapter 6, Desktop Development, describes the excellent features provided by NetBeans
for developing desktop Swing applications.

Chapter 7, Creating the Business Layer, teaches you the tools provided to help
developers write the business layers of applications, describing subjects such
as EJBs and bean validation.

Chapter 8, Creating the Web Tier, explains the different features available for Java
web developers, including details of creating Spring web applications and using
CSS preprocessors.

Chapter 9, Creating and Consuming Web Services, explains how NetBeans makes it
straightforward to create and consume both RESTful and SOAP-based web services.

Chapter 10, Extending NetBeans, describes how to create NetBeans plugins for those
situations where you need to customize the IDE along with the details of how to
start using NetBeans as the platform for desktop applications.

What you need for this book
To use this book, you need to download and install the NetBeans IDE on either
Windows, Mac OS X, or Linux.

You also need to have a modern version of Java (preferably, Java 8). To benefit
the most when learning about web services and EJB-related technologies, a Java
EE application server is required. The enterprise download bundle of NetBeans is
supplied with full support for GlassFish 4 Open Source edition.

Who this book is for
This book is written for Java developers of all the levels who want to gain more
knowledge about how their IDE works and learn new techniques to enable them
to become more productive when using NetBeans.

A reasonable level of Java and Java EE knowledge is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[ix]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"From there, double-click on the included NetBeans xxx.mpkg file to start the
installation (the exact names of the .dmg and .mpkg files varies, depending
upon the version and bundle downloaded)."

A block of code is set as follows:

public class Main {
 public static void main(String args[]) {
 Greeter greeter = new Greeter();

 System.out.println(greeter.greet("David"));
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<#assign licenseFirst = "/*">
<#assign licensePrefix = " * ">
<#assign licenseLast = " */">
<#include "${project.licensePath}">

<#if package?? && package != "">
package ${package};

</#if>
/**
 * Project: ${project.name}
 * ${url}
 *
 * @author ${user}
 */
public class ${name} {

}

Any command-line input or output is written as follows:

chmod +x netbeans-<xxx>-linux.sh

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "From
here, we can customize NetBeans by clicking on the Customize button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/2645OS_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/2645OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/2645OS_ColorImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Getting Started with
NetBeans

NetBeans IDE 8 is the official IDE for Java 8, and the only IDE that can be
downloaded with official distributions of Java 8.

The latest version, NetBeans IDE 8.0.2, provides tools to allow developers to create
desktop, mobile, and web applications using all of the latest Java specifications such
as Java SE 8, Java ME 8, and Java EE 7.

This chapter will cover the following topics:

• Choosing a download bundle of NetBeans
• Downloading and installing NetBeans
• Updating NetBeans to the latest version
• Downloading NetBeans source code from Mercurial
• Building NetBeans
• NetBeans configuration

Choosing a download bundle of
NetBeans
There are three different installation bundles of NetBeans (which can be downloaded
from the NetBeans site) that are relevant to Java developers:

• Java SE
• Java EE
• All

Getting Started with NetBeans

[2]

In addition to these three bundles, C/C++ and HTML5 & PHP bundles are also
available for download. These bundles are not targeted at Java developers though,
so they will not be discussed further in this book.

The Java SE bundle provides the standard NetBeans Platform SDK along with
support for Java SE and Java FX developers.

The Java EE bundle contains everything that the SE bundle includes, but adds
support for Java EE and HTML5 developers. GlassFish Server Open Source
Edition 4.1 and Apache Tomcat 8.0.15 are also included with the Java EE bundle.

The All bundle contains everything that the EE bundle includes, but adds support
for C/C++, Groovy, and PHP developers.

Downloading and installing NetBeans
Downloading an installation of NetBeans (Java SE, Java EE, or All) is achieved by
selecting the bundle to download and then clicking on the Download button for
that bundle, as shown in the preceding screenshot.

All of the examples and screenshots in this book have been created with the Java EE
bundle of NetBeans. It is recommended that you use the Java EE download bundle
of NetBeans to adhere as closely as possible to the examples in this book.

To install any version of NetBeans 8, the Java JDK Version 7 Update 10
or later, or Java JDK 8 or later, is required. These can be downloaded,
if not already installed on your target system, from http://www.
oracle.com/technetwork/java/javase/downloads.

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

Chapter 1

[3]

Having downloaded the appropriate NetBeans bundle installer for your operating
system, you can install NetBeans on your development system. The installation
procedure differs slightly for the three main operating systems NetBeans is
available for.

For Windows, simply launch the NetBeans installer by double-clicking on the file,
netbeans-<xxx>-windows.exe (the exact filename differs depending upon the
version and bundle downloaded).

For Mac OS X, double-click on the downloaded file, netbeans-<xxx>-macosx.dmg,
to mount the installation device. From there, double-click on the included NetBeans
xxx.mpkg file to start the installation (the exact names of the .dmg and .mpkg files
vary, depending upon the version and bundle downloaded).

For Linux, NetBeans is installed via a command-line script, so first we must change
the permissions of the downloaded file to be executable. From a terminal window,
execute the following command:

chmod +x netbeans-<xxx>-linux.sh

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. You can also download the code
samples from https://github.com/doobrie/masteringnb.

To continue with the installation on Linux, we must now execute the downloaded
installer. From a terminal window, execute the following command:

./netbeans-xxx-linux.sh

The installation of the JDK can sometimes be complex on some Linux
distributions. Fortunately, NetBeans can be easily executed with an
unpacked JDK. If installation of the JDK is complex, simply unpack the
JDK files into a <jdk_folder> folder and then execute the installer
with the –javahome argument passing in the JDK folder, for example,
/netbeans-xxx-linux.sh –javahome <jdk_folder>.

On all of the major operating systems (Windows, Mac OS X, and Linux), the
procedure for installing NetBeans is now very similar. After launching the setup
procedure, the installer takes you through the several steps in a wizard style to
install NetBeans.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/doobrie/masteringnb

Getting Started with NetBeans

[4]

Having agreed to the NetBeans license and selected a folder for installation, the
installer displays the Installation Type window:

From here, we can customize NetBeans by clicking on the Customize button.

On Windows and Linux, the preceding screenshot will
differ slightly, showing the different application servers
that can be installed with NetBeans.

The next screenshot shows the customization options for the Java EE bundle. The
options may differ depending upon which bundle you choose to download. For the
Java EE bundle, different base components of the NetBeans Platform can be installed,
namely Base IDE, Java SE, HTML5, and Java EE.

Chapter 1

[5]

The Java EE bundle (and also the All bundle) gives the option of installing GlassFish
Open Source Edition and Tomcat 8. If either GlassFish or Tomcat is chosen for
installation, NetBeans will automatically configure them as servers within the IDE.

Installing other versions of NetBeans
Usually, installing the latest released version of NetBeans is the best course of action.
With NetBeans, however, it is possible to download and install the previous versions
or even daily builds.

Be careful with daily builds; they have not been through the
rigorous testing procedure that the full release builds had,
and may contain bugs!

Getting Started with NetBeans

[6]

To download the previous released versions of NetBeans, browse to the NetBeans
download page at http://www.netbeans.org/downloads and click on the Archive
link in the top-right corner of the page, as shown in the following screenshot:

For easy access, the previous version of NetBeans is available for
downloading by clicking on the appropriate link at the top of the
page (version 8.0.1 in the preceding screenshot) rather than clicking
on the Archive link and manually selecting a version to install.

From the resultant page, select the previous release you wish to download (for
example, NetBeans 7.3) and then click on the Continue button. From here, you can
choose whether to download the Java SE, Java EE, or All distributions of NetBeans.
The following screenshot shows the previous versions of NetBeans that are currently
available for download:

http://www.netbeans.org/downloads

Chapter 1

[7]

To download the latest daily build of NetBeans, simply click on the Development
link in the top-right corner of the NetBeans download page. Again, from the
resulting page, select the download bundle (Java SE, Java EE, or All) you require
and follow the standard NetBeans installation procedure for your operating system,
as outlined previously.

NetBeans user directory
When installing NetBeans, a special directory is created on your computer that stores
all the user configuration data for NetBeans; this folder is referred to as a userdir or
user directory. This folder contains information on what plugins you have activated
in NetBeans, what editor settings you've configured, and much more data. In fact,
everything that makes your instance of NetBeans unique to you is stored in this folder.

On Mac OS X, the user directory is located at ~/Library/Application Support/
NetBeans.

On Windows, it is located at c:\Users\<user>\AppData\Roaming\NetBeans.

On Linux, the user directory is located at ~/.netbeans.

In the user directory are the separate directories for each different version of
NetBeans that you have installed. With this technique, it is therefore possible to
have different configurations for different versions of NetBeans that are installed.

In addition to a user directory, NetBeans also makes use of a hidden cache directory,
often referred to as a cachedir. The cache directory contains large amount of cache
data and thus, it can become a large directory. Due to the information that's written
into the cache directory, it must be stored in a different location to the user directory.
The contents of the cache directory can be deleted without any settings being lost; it
will be recreated the next time NetBeans is executed.

On Mac OS X, the cache directory is located at ~/Library/Caches/NetBeans.

On Windows, the cache directory is located at c:\Users\<user>\AppData\Local\
NetBeans\Cache.

On Linux, the cache directory is located at ~/.cache/netbeans.

Getting Started with NetBeans

[8]

An easy way to find out the location of the user and cache directories is to display
the NetBeans About dialog. In this dialog, the location of these directories is given
along with the information about the version of NetBeans and Java that are in use:

Updating NetBeans to the latest version
When new versions of NetBeans are released, one simple way to upgrade to the
latest version is to download the new version and install it, as shown previously.

When you install NetBeans this way and already have an installation of NetBeans
on your computer, NetBeans will ask whether you wish to use the settings from the
previous version:

Selecting Yes to this option will import all of the user directory settings from the
previous version of NetBeans into the newly installed version. Selecting No will
start NetBeans with a clean and empty user directory.

After installing a new version of NetBeans, it's always a good idea
to check whether there are any updates to plugins by going to the
plugin manager and selecting Check for Updates.

Chapter 1

[9]

Obtaining the NetBeans source code
The source code for NetBeans itself is available under the Common Development
and Distribution License (CDDL) v1.0 and GNU General Public License (GPL) v2.

It's possible to obtain the source for NetBeans either as a .zip file, containing the
entire source for a specific release, by cloning the code from the NetBeans Mercurial
repository or by viewing the files from within a browser.

Downloading a zipped archive of the
NetBeans source code
If you just want to look at the NetBeans source code and aren't interested in making
changes, you can download the source as a .zip archive from the relevant download
page for any release. At the bottom of each download page, there is a link to
download the source in the ZIP file format, as shown in the following screenshot:

Cloning the NetBeans source code from
Mercurial
The alternative to downloading a ZIP archive of the NetBeans source code is to clone
the code from the NetBeans Mercurial repository. To perform this operation, you
must have the Mercurial client installed on your computer. It can be downloaded
for Windows and Mac OS X. For Linux and Mac OS X, it can be installed via the
operating system's appropriate package manager, for example, apt-get on Ubuntu
or yum install on Fedora. The Mercurial site at http://mercurial.selenic.com
provides all the details on how to install Mercurial.

www.allitebooks.com

http://mercurial.selenic.com
http://www.allitebooks.org

Getting Started with NetBeans

[10]

The NetBeans source code can be cloned from Mercurial from either the command
line or from within NetBeans. Let's first look at how to achieve this using the
command line.

Having installed Mercurial, we are in a good position to clone the NetBeans source
code using the hg clone operation.

The NetBeans source code is stored within several branches and tags in the Mercurial
repository. The main development for the next version of NetBeans is performed
within the main-silver branch. This branch contains the latest development that
has been picked up by the latest automatic stable build of NetBeans.

To check out this branch, execute the following command from within a terminal or
command prompt:

hg clone http://hg.netbeans.org/main-silver

If this is your first check out of a branch, Mercurial may take a long time to clone the
repository. Depending on your computer and network connection, this may take
several hours.

Due to the way Mercurial works, hidden files are created on the local filesystem
during the first phase of a Mercurial clone operation. No console output is provided
during the checkout phase either, so it may appear that the clone operation is not
working correctly as there is no visible feedback that the sources are being cloned.

It's possible to tell Mercurial to output status information so that you can see that
all is working correctly. This can be especially useful on the first clone of a branch,
which can be a lengthy operation. To clone a branch and get status updates output to
the console, we must add the --debug parameter onto the clone operation:

hg --debug clone http://hg.netbeans.org/main-silver/

Chapter 1

[11]

After cloning the NetBeans source files from the Mercurial repository, we
have many subdirectories within the main-silver directory, as shown in
the following screenshot:

Cloning specific versions of NetBeans
In the previous section, we showed how to clone the main-silver branch from
the NetBeans Mercurial repository. What if we don't want the latest cutting edge
development, but want to look at the source code for a specific version of NetBeans?

Fortunately, each release of NetBeans has the source code tagged in the Mercurial
repository, so it's possible to check out any older release going back to December
1999 (this is the first tagged release within Mercurial).

Getting Started with NetBeans

[12]

The complete list of tagged releases is available at http://hg.netbeans.org/
releases/tags, as shown in the following screenshot:

To view any of these tagged releases, simply check out the releases branch and then
change to the specified folder for the requested release.

Cloning the NetBeans source code from
within NetBeans
To enable us to use Mercurial from within NetBeans, we must first ensure that
NetBeans is configured with the location of the Mercurial executable—hg.exe on
Windows and hg on Mac OS X and Linux.

To configure Mercurial within NetBeans, perform the following steps:

1. Open the NetBeans Options dialog. On Windows and Linux, this is achieved
by selecting Tools and then Options from the main menu. On Mac OS X,
clicking on NetBeans and then Preferences from the application menu opens
the Options dialog.

http://hg.netbeans.org/releases/tags
http://hg.netbeans.org/releases/tags

Chapter 1

[13]

2. In the Options dialog, click on the Team option and then choose the
Versioning tab.

3. On the Versioning tab, ensure that the Mercurial Executable Path field is set
as appropriate for your operating system. In the preceding screenshot, you
can see that it is set to /usr/local/bin, which is the folder that contains the
hg executable on my computer.

Getting Started with NetBeans

[14]

Once we've configured the Mercurial support within NetBeans, we can clone the
source code repository by performing the following steps:

1. Open the Clone External Repository wizard by clicking on Team and then
Mercurial and eventually, Clone Other… from the application menu.

2. Enter the repository URL as http://hg.netbeans.org/main-silver.

Chapter 1

[15]

3. Continue on through the wizard until the Destination Directory stage is
displayed. On this page, enter the parent directory into which the NetBeans
source code will be cloned and ensure that the Scan for NetBeans Projects
after Clone option is checked. With this option checked, NetBeans will
automatically open the cloned project after the repository is cloned.

4. Click on the Finish button to commence the cloning process.

Cloning the NetBeans source code in this way via NetBeans does not
provide any visual feedback on the progress of the cloning operation.
If you wish to see visual feedback so that you know something is
happening, consider cloning the repository via the command line, as
described earlier.

Getting Started with NetBeans

[16]

Browsing the NetBeans source code online
The NetBeans source code is available to browse online at http://hg.netbeans.
org/main/file. Viewing the source code this way can be very useful for the casual
observer who wants to see how something is done within the NetBeans source code,
but does not want to download the entire source code to their computer.

The following screenshot shows the top level of the NetBeans source code in a
browser window:

Building NetBeans
Once we've downloaded the source code for NetBeans, we can build it either using
the command line or via NetBeans.

To build the NetBeans IDE from the source code, we need to have the following
software installed first:

• JDK 7
• Apache Ant

NetBeans can be built with JDK 8, but additional steps
are required for this; we'll see what these are shortly!

http://hg.netbeans.org/main/file
http://hg.netbeans.org/main/file

Chapter 1

[17]

Building NetBeans via the command line
To build NetBeans via the command line, open up a terminal or command prompt
and change the directory to the directory containing the source code. Executing the
ant command will build the source code, downloading any external dependencies
that are required:

[david:~/Develop/NetBeans/main-silver]$ ant

If you are running JDK 8 instead of 7, you will be presented with an error when
attempting to build the source code stating that builds are forbidden when using
JDK 8. This error is presented so as not to introduce any Java 8 features into the
source code.

If you wish to use JDK 8 to build the code, you can set the permit.jdk8.builds
property to true:

[david:~/Develop/NetBeans/main-silver]$ ant –Dpermit.jdk8.builds=true

Alternatively, if you have both JDK 7 and 8 installed, you can set the nbjdk.home
property to point to a valid JDK 7 installation and the build will then complete using
the specified JDK 7 instead of JDK 8.

Once you have successfully build NetBeans, you can execute the freshly built
instance by executing the ant tryme task:

[david:~/Develop/NetBeans/main-silver]$ ant tryme

Getting Started with NetBeans

[18]

This will execute the instance of NetBeans that you have just built using <build-
location>/nbbuild/testuserdir as the user directory. The actual instance of
NetBeans is stored within the <build-location>/nbbuild/netbeans folder.

Alternatively, you can also start the freshly-built instance of NetBeans by executing
the netbeans or netbeans.exe commands from within the <build-location>/
nbbuild/netbeans/bin directory, either from the command line of Windows /
Linux explorer or Mac OSX Finder.

Building NetBeans from within NetBeans
Now that we've seen how to build NetBeans via the command line, let's see how we
can build it from within NetBeans itself.

Chapter 1

[19]

If you cloned the NetBeans source code via the team support in NetBeans, then the
NetBeans Build System project will already be opened within NetBeans, ready for
building, as shown in the following screenshot:

If you cloned NetBeans via the command line, you will need to open the NetBeans
Build System project located within the main-silver/nbbuild directory.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with NetBeans

[20]

After opening the project, you will see that there are error badges shown against the
Ant Tasks and Tests for Ant Tasks project nodes within the Projects window. These
errors simply indicate that artifacts needed for the build haven't been downloaded
yet; the build process will download the necessary files, and once built, these error
badges will no longer appear.

To start building NetBeans, we must first build the necessary Ant tasks that the full
build process relies on. To perform this, right-click on the NetBeans Build System
project and select the Build option:

Once the build system is completed with no errors (you will see several warnings
displayed during the build process, but these can be safely ignored), you can build
NetBeans by right-clicking on the NetBeans Build System project and selecting the
Build IDE (No ZIP File) option:

Chapter 1

[21]

If you are using JDK 7, you will see that NetBeans is built correctly after a few
minutes of activity.

If you are using JDK 8, you will see a failure message in the NetBeans output
window, indicating that the project cannot be built using JDK 8, as shown in the
following screenshot:

Since NetBeans provides its own installation of Ant to build projects, if we wish to
use JDK 8 to build NetBeans, we must configure the permit.jdk8.builds property
before attempting to build.

To configure the Ant properties from within NetBeans, perform the following steps:

1. Open the NetBeans Options dialog. On Windows and Linux, this is achieved
by selecting Tools and then Options from the main menu. On Mac OS X,
clicking on NetBeans and then Preferences from the application menu opens
the Options dialog.

2. In the Options dialog, click on the Java option and then choose the Ant tab.

Getting Started with NetBeans

[22]

3. Within the Ant tab, append the permit.jdk8.builds=true line into the
Properties edit box:

4. Click on the OK button to save the configuration changes.

Now that we've configured the permit.jdk8.builds property for the internal
instance of Ant, we can build the project successfully using JDK 8. This is achieved
by right-clicking on the NetBeans Build System project within the Projects window
and selecting the Build IDE (No ZIP File) option.

NetBeans configuration
In the previous sections of this chapter, we saw how to choose an installation of
NetBeans and install it. We also saw how to download and build NetBeans from
its Java source code.

Chapter 1

[23]

Let's now take a look at the different options that are used to start NetBeans and see
how these can be configured.

The configuration options used to start NetBeans are defined as command-line
arguments in the netbeans.conf file supplied with a NetBeans distribution.

On Windows and Linux, this file is located within the NetBeans installation directory
at <NetBeans Install Dir>/etc/netbeans.conf.

On Mac OS X, this file is hidden due to the way Mac OS X packages are deployed.
To view and edit the netbeans.conf file on OS X, right-click on the NetBeans.app
executable file and select the Show Package Contents menu option:

The contents of the NetBeans.app package will then be displayed. The netbeans.
conf file is located at Contents/Resources.NetBeans/etc/netbeans.conf within
the package contents.

This configuration is a simple text file and can be opened with any text editor. In the
file, we can see several configuration properties that can be modified to suit your
requirements. Let's go through these now and see what options are available.

Getting Started with NetBeans

[24]

User and cache directories
Earlier in this chapter, we discussed the NetBeans user and cache directories and
what information is stored within them. If you wish to change the user directory for
a specific instance of NetBeans (for example, you may want to use a completely fresh
user directory or a user directory from a previous installation of NetBeans), this can
be achieved by specifying the netbeans_default_userdir parameter. Similarly,
the cache directory can be changed by specifying the netbeans_default_cachedir
parameter:

netbeans_default_userdir="${DEFAULT_USERDIR_ROOT}/8.0.2"

netbeans_default_cachedir="${DEFAULT_CACHEDIR_ROOT}/8.0.2"

Unless you have a specific reason, you're probably not going
to need to change the user and cache directories for NetBeans.

NetBeans default options
The NetBeans default startup options are probably the most likely of the
command-line arguments that you'll need to change for NetBeans. These
options are specified by the netbeans_default_options parameter:

netbeans_default_options="-J-client -J-Xss2m -J-Xms32m -J-XX:PermSize=32m
-J-Dapple.laf.useScreenMenuBar=true -J-Dapple.awt.graphics.UseQuartz=true
-J-Dsun.java2d.noddraw=true -J-Dsun.java2d.dpiaware=true -J-Dsun.zip.disa
bleMemoryMapping=true""true"

The preceding example options are from a Mac OS X installation of NetBeans 8.0.2.

The first option (-J-client) specifies that the JVM for NetBeans will run as a
client VM instead of server VM. The client VM is essentially useful for applications
requiring fast startup or small footprints. The server VM is typically used where
performance is more important.

For more information on client and server configurations,
check out http://www.oracle.com/technetwork/java/
hotspotfaq-138619.html#compiler_types.

The second set of options (-J-Xss2m -J–Xms32m –J-XX:PermSize=32m) define
the default memory allocation sizes used by the JVM running NetBeans (the thread
stack size, initial memory allocation pool size, and size of the permanent generation,
respectively). These options are specific for different version of the JDK, and all of
them may not apply to the version of the JDK you are using.

http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#compiler_types
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#compiler_types

Chapter 1

[25]

For more information on the Java 7 and Java 8 command-line
parameters, refer to https://docs.oracle.com/javase/7/
docs/technotes/tools/windows/java.html and
https://docs.oracle.com/javase/8/docs/technotes/
tools/windows/java.html.

The final parameters specified in the default options ensure that certain optimizations
are performed on the JVM to make it more stable and perform better. Some of these
parameters are operating system-specific and may not exist on configuration files for
different operating system.

NetBeans JDK
By default, NetBeans uses the system-defined JDK to run the IDE (you'll remember
this can be overridden using the --javahome argument to the NetBeans installer,
as discussed earlier in this chapter). This can be overridden in the netbeans.conf
file by defining the netbeans_jdkhome property to specify the base directory of a
different JDK installation:

netbeans_jdkhome="/path/to/jdk"

It's not usually necessary to change the JDK that NetBeans uses as this is set at the
time of installation. However, if you wish to use a newer (or older) JDK than the
one used when you installed NetBeans, it can be configured with this variable.

If you wish to run NetBeans as a one-off instance and do not wish to edit the
netbeans.conf file, you can pass the --jdkhome <jdk_home> parameter on
the command line instead when launching NetBeans.

Additional module clusters
A NetBeans cluster is a directory on disk that contains a set of modules such as the
NetBeans Platform or the Java EE support within the NetBeans IDE. Additional
clusters can be configured within NetBeans by adding the directory in which the
cluster resides onto the netbeans_extraclusters parameter:

netbeans_extraclusters="/absolute/path/to/cluster1:/absolute/path/to/
cluster2""cluster2"

It is most likely that you will not need to define the additional module clusters
to be loaded at the startup unless you are developing NetBeans rich client
platform (RCP) applications.

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

Getting Started with NetBeans

[26]

Installing additional module clusters is not to be confused
with installing NetBeans plugins. Plugins are installed into
the IDE directly within the IDE itself.

Further options
Several other NetBeans command-line arguments are available that provide more
control over the NetBeans user experience.

To run NetBeans in a locale different from that of the operating system, the
--locale option can be used. For example, --locale en:GB runs NetBeans
with the en:GB locale.

If you wish to increase the base font size of NetBeans, the --fontsize option allows
this to be achieved. For example, --fontsize 20 increases the base font size to 20px.
This can be useful when demoing code or showing NetBeans to larger audiences.

The full list of different command-line options that are available within NetBeans is
provided at http://wiki.netbeans.org/FaqStartupParameters.

Summary
In this chapter, we took a look at the different bundles of NetBeans that can be
downloaded for Java developers. We saw that there are three main bundles for
Java developers, namely the Java SE, Java EE, and All bundles. We looked at the
differences between those bundles, and saw how to configure the installation of
NetBeans for the Java EE and All bundles.

Having seen how to install NetBeans, we also learned how to upgrade an existing
NetBeans installation keeping the user directory so that all the configuration data
from previous versions of NetBeans is kept.

We then discussed the source code for NetBeans and saw how we can view it online,
download zipped distributions of it, and even cloned it from the NetBeans Mercurial
repository. We followed this up by learning how to build the NetBeans IDE, both
from the command line and from within NetBeans itself.

Finally, we looked at the different command-line options available to NetBeans, and
saw how we can change these to change how NetBeans operates.

In the next chapter, we'll look at creating projects and editing within NetBeans, and
see how we can become more productive using the IDE.

http://wiki.netbeans.org/FaqStartupParameters

[27]

Editing Files and Projects
NetBeans is an excellent integrated development environment (IDE), providing
many of the features that a modern Java developer requires. NetBeans provides
templates for many different types of projects, all the way from mobile to desktop to
enterprise projects. NetBeans also offers many features for editing these projects and
the files within them.

We don't give a second thought to some of these features, such as the Java source
code editor, as we would expect even a basic text editor to provide this functionality.
In this chapter, we'll see many of the features that NetBeans provides to make editing
projects and files a much quicker and efficient task.

In this chapter, we will cover the following topics:

• The NetBeans screen layout
• Specifying default templates for files
• Code templates and code snippets
• Macro recording and playback
• Splitting windows
• Code folds
• Project groups

Editing Files and Projects

[28]

The NetBeans screen layout
Upon running NetBeans for the first time, NetBeans Start Page is displayed,
as shown in the following screenshot. This page acts as a welcome to NetBeans,
providing links to demos, tutorial, the NetBeans community, and much more content
related to NetBeans. Control over whether this page is displayed when NetBeans
is started comes from the Show On Startup checkbox in the top-right corner of the
window. The default for this option is checked so that the start page is displayed
when NetBeans starts up.

Chapter 2

[29]

After reading the Start Page and creating a project, the standard NetBeans screen
layout is displayed. This consists of several windows, which can be rearranged.
The basic NetBeans screen layout is shown in the following screenshot:

The main screen is broken down into six main areas:

• The explorer style windows (Projects, Files, Services, and so on)
• The Navigator window
• The source code editor window
• The Palette window
• The Properties window
• The Output window

www.allitebooks.com

http://www.allitebooks.org

Editing Files and Projects

[30]

The explorer style windows
The explorer style windows are displayed at the top-left of the main NetBeans
window. This window displays tabs for browsing through projects, files, and services.

The explorer style windows are used for showing hierarchical data. The first of these
windows is the Projects window, which displays all the currently open projects
within NetBeans. Next, we have the Files window, which shows similar data to
the Projects window, but concentrates on the viewpoint of the files within the local
filesystem rather than the files used by a project. Finally, we have the Services
window, which displays different services such as databases, servers, or web services
that your application can interact with.

Chapter 2

[31]

The Favorites window
The Favorites window is where we can list all our favorite files irrespective of
whether they are in the currently open project or not.

At the top of the Favorites window is a folder representing the user's home directory
on the computer. Expanding this folder allows access to all the files within the user's
home directory. Right-clicking on any of the files or folders within this hierarchy and
selecting the Tools and then Add to Favorites… menu options will add the entry
into the Favorites window. This is, therefore, a very useful window if you have
many files that you constantly refer to as it allows them to be easily grouped together
in one accessible window.

Files and folders (including Java packages) can also be added to the Favorites
window from within both the Projects and Files windows by right-clicking and
selecting the Tools and then Add to Favorites… menu options.

If the Favorites window is not open, selecting the Favorites menu option from the
main Window menu will open it.

Editing Files and Projects

[32]

The Navigator window
Next, we have the Navigator window. This is displayed directly underneath the
explorer style windows. The Navigator window shows an outline of what is selected
for editing in the main editor window. So, for example, if a Swing form is being
edited, a hierarchy of the Swing controls will be displayed in the Navigator window.
If an HTML page is being edited in the main editor window, the DOM for the page
will be displayed in the Navigator window.

The source code editor window
In the middle of the NetBeans main window, we find the source code editor window.
The exact contents of this window changes depending upon the type of file that
is being edited. For example, when editing a Java source code file, the contents
of the file are displayed, as you would expect with a standard text editor. Or,
when editing Swing components, a graphical representation of the component
being edited is displayed.

NetBeans watches the files that you have open in the source code
editor window for external changes. If you make changes to, say, a
Java source code file outside of NetBeans, the file within NetBeans
will be refreshed as soon as any external changes are saved.

Chapter 2

[33]

In the source code editor window, there are many different keyboard shortcuts that
can be used to aid productivity. To become a proficient developer, it can be very
useful to memorize some of these shortcuts. Some of the more common shortcuts
that you will find useful when editing files are shown in the following table:

Alt + Insert / Ctrl + I Insert code
Ctrl + Shift + I / Cmd + Shift + I Fix import statements
Alt + Shift + S / Ctrl + Shift + S Reformat the selected code
Ctrl + click / Cmd + click Go to the definition of the object that was clicked

The shortcut keys that are assigned to different options can be configured in the
Keymap tab of the NetBeans Options dialog:

Within the Keymap options, each of the different keyboard shortcuts for NetBeans is
broken down into different categories (such as Build, Debug, Edit, and others). For
each action, the shortcut key can be defined or reset back to its original value.

Editing Files and Projects

[34]

It's worth looking through all the keyboard shortcuts to establish which
ones you use most often in your daily routine. The shortcut keys that you
use regularly may not be the same as the ones that another developer
uses, so learning your shortcut keys can make a huge difference.

The History view
When editing files, it is very common to see at the minimum, buttons for editing the
Source and for viewing the History of the file at the top of the code editor window.
This is shown in the following screenshot with the editor for HTML files:

The file's History window shows a complete set of local file changes for a file.
This can be especially useful when comparing the history of a file that has not been
checked into source control and the source control history is, therefore, not available.
The default setting is for the history for local files to be capped to 7 days, but this
can be configured to any number of days or even switched off completely so that the
local history is never reset. The configuration for the local history can be changed in
the NetBeans Options window on the Versioning tab within the Team options:

Chapter 2

[35]

When viewing the history of a file, all the edits are listed in the top half of the
History window. Each of these entries corresponds to when the file in question was
last saved. In the following screenshot, the file was created on October 28, 2014, and
then edited twice at 2:49:44 pm and 2:50:27 pm:

Clicking on any of the history items at the top of the window causes NetBeans to
compare the file at that point in time with the current version of the file. The earlier
instance of the file is shown on the left-hand side pane and the latest revision of the
file is shown on the right-hand side pane.

Editing Files and Projects

[36]

The Palette window
On the right-hand side of the main NetBeans window, we can see the Palette
window. In a similar fashion to the Navigator window, the Palette window is
context-sensitive and shows the components that are relevant to the file type that
is currently being edited. So, for example, when editing a Swing file, the Palette
shows different Swing components such as labels and buttons that can be dragged
onto the main editing window. For HTML files, the Palette displays a set of HTML
components such as tables and buttons that can be dragged into the HTML page. The
purpose of the Palette window is to allow predefined components to be dragged into
the main editor window to make editing more fluid. Of course, if the main editor
window is displaying information that does not support the dragging and dropping
of components onto it, the Palette window is not displayed.

If the Palette window is not open, selecting the IDE Tools and then Palette menu
options in the main Window menu will open it.

Chapter 2

[37]

The Properties window
Again, on the right-hand side of the main NetBeans window, underneath the Palette
is the Properties window. As with the Palette window, the Properties window is
only shown when appropriate. In this case, the Properties window is displayed
when something is selected in the main editor window that has properties that can
be edited. For example, when editing a Swing component, the Properties window
is displayed to show the properties (and events, bindings, and custom code) for the
Swing component that is currently selected:

The Output window
Finally, towards the bottom of the main NetBeans window is the Output window.
This window shows any output from the actions that are being performed from
within NetBeans. So, for example, output from a running application (such as that
generated by System.out.println) or output from checking out a file from Git,
or even the result of running unit tests is shown in this window.

Editing Files and Projects

[38]

Window management
Of course, within NetBeans, there are many other windows that can be opened in
the application. However, these windows are generally grouped into one of the six
locations we've detailed earlier:

• Top-left (for example, the Projects window)
• Bottom-left (for example, the Navigator window)
• Central (for example, the main editor window)
• Top-right (for example, the Palette window)
• Bottom-right (for example, the Properties window)
• Bottom (for example, the Output window).

A list of all the different windows that can be laid out within NetBeans is accessible
from the main Window menu option.

Some developers prefer to use keyboard shortcuts over mouse
shortcuts as this can offer a productivity boost. On the main
Window menu, each window has a shortcut that can be used
for selecting and opening a window (if it is not already opened).
Learning these shortcuts can be a worthwhile exercise.

Chapter 2

[39]

This layout of the different windows within NetBeans is just the default layout and
can be changed to suit a particular developer's needs. Each of these groups can be
minimized so that they are only displayed when required. To minimize a window,
right-click on the required window and select either the Minimize or Minimize
Group menu options. The window will then be minimized to the side of the main
NetBeans window, providing more space for the main central editor window.

All the windows can be minimized to the side of the main NetBeans window apart
from the code editor window, which cannot be minimized.

The Minimize option is displayed when there is more
than one window at a specified location. The Minimize
Group option is displayed every time irrespective of the
number of windows at a specific location.

www.allitebooks.com

http://www.allitebooks.org

Editing Files and Projects

[40]

Once a window has been minimized, moving the mouse over the window's name
or clicking on the window's name (for example, Projects in the preceding screenshot)
will cause the window to be displayed in a floating fashion, as shown in the
following screenshot:

When a window is floating, clicking anywhere outside the window will cause it to be
minimized again. To restore the window back to its docked state, click on the dock
button () at the top-right of the window.

Individual windows can be maximized as well as minimized. To maximize a
window, right-click on it and select the Maximize option. This can be particularly
useful for the main editor window so that when maximized, more code can be seen
without distraction from other windows.

A quick way to maximize a window is to double-click on the
window's title. For example, double-clicking on the filename
of the file being edited in the main editor window will
maximize the editor window.

Chapter 2

[41]

In addition to minimizing and maximizing windows, they can be floated away
from the main IDE and subsequently docked back into the IDE main window. To
float a window or window group, right-click on the window and select Float or
Float Group as appropriate. The following screenshot gives an example of floating
windows within NetBeans:

Once windows have been floated within NetBeans, they can be docked back into the
main NetBeans window by right-clicking on them and selecting the Dock or Dock
Group options.

Finally, if we don't like the position of windows within NetBeans, we can move
them to different docked locations by dragging the title bar to a different location in
the NetBeans main window. For example, we can drag the Navigator window from
the left-hand side of the NetBeans window and drop it on the right-hand side of the
NetBeans main window.

Now that we've seen how we can arrange the layout of the main NetBeans window,
let's take a look at how NetBeans can help us edit files and projects.

Editing Files and Projects

[42]

Specifying default templates for files
One of the first things we do within the editing component of NetBeans is to create
new files. NetBeans supports many different file formats that can be created by
selecting the File and then New File menu options.

Within NetBeans, FreeMarker (http://www.freemarker.org) is used as the
template engine when creating different file types. It's not important to understand
FreeMarker fully to edit NetBeans templates; however, if you wish to create
templates from scratch, a better understanding of FreeMarker would be beneficial.

http://www.freemarker.org

Chapter 2

[43]

To view all the templates that are currently defined within NetBeans for new file
types, select the Tools and Templates menu options. The Template Manager dialog
is then displayed, as shown in the following screenshot:

Down the left-hand side of the Template Manager dialog, we can see all the
templates that are currently defined within NetBeans. These templates are all
grouped into a hierarchy to categorize them and make them easier to find.

We can add existing FreeMarker templates by clicking on the Add… button or
duplicate the existing templates by the Duplicate button. New folders can be added
to the template hierarchy by the New Folder button, and templates can be moved up
and down the hierarchy using the Move Up and Move Down buttons. Templates
and folders can be deleted and renamed by using the Delete and Rename buttons.
Finally, if we want to remove all the customization we've added, we can click on
Revert to Default to return the templates to the state they were in from a fresh
installation of NetBeans.

Once a template has been selected in the Template Manager dialog, clicking
on the Open in Editor button will cause the selected FreeMarker template to
be opened for editing.

Editing Files and Projects

[44]

When editing a FreeMarker template, several predefined variables are available.
Entering any of these in to a template will cause the corresponding value to be used
when the file for the template is created. The following predefined variables
are available:

Variable Description
${date} The current date
${encoding} The default encoding for the file
${name} The name of the file
${nameAndExt} The name and extension of the file
${package} The package the file is created in
${time} The current time
${project.license} The license header
${project.name} The project's name
${project.displayName} The project's display name

In addition to these predefined variables, custom variables can be created.
Clicking on the Settings button in the Template Manager dialog opens up the
User.properties file into which any user-specific variables can be set. This file
is located in the User directory (see Chapter 1, Getting Started with NetBeans, for a
description of the User directory and where it is located) at:

<User Directory>\config\Templates\Properties\User.properties

In a fresh installation of NetBeans, the User.properties file has no variables
defined within it. NetBeans, however, makes extensive use of the ${user} variable
to insert the user's name into source files. As this is not defined in a fresh installation
of NetBeans, it is important to define this variable.

Chapter 2

[45]

Now that we've seen the predefined variables used in the NetBeans templates and
how to define custom variables, let's take a look at creating a template for a new file
type. Let's assume that we want to alter the default New Class template to include
the name of the project the class belongs to and also add a URL to a resource for the
project. We could edit the existing New Class template, but let's create a copy of this
so that we can see how the new template appears in the New File wizard. To do this,
perform the following steps:

1. Open the Template Manager window by selecting Tools and then
Templates from the main NetBeans menu.

2. In the Template Manager window, click on the Settings button to open the
User.properties file.

3. In the User.properties file, add a new variable:
url=http://www.packtpub.com

4. Open the Template Manager window again (it automatically closes after
step 2) and locate the Java Class template.

5. Press the Duplicate button to create a copy of the Java Class template and
then rename it to be called Java Class With Project Info. The Template
Manager screen should now look similar to the following screenshot:

Editing Files and Projects

[46]

6. Click on the Open in Editor button to open the template for editing and add
the project name and URL into the template, as shown in the following code:
<#assign licenseFirst = "/*">
<#assign licensePrefix = " * ">
<#assign licenseLast = " */">
<#include "${project.licensePath}">

<#if package?? && package != "">
package ${package};

</#if>
/**
 * Project: ${project.name}
 * ${url}
 *
 * @author ${user}
 */
public class ${name} {

}

7. Save the template and invoke the New File wizard by selecting File and then
New File from the main NetBeans menu. If we select the Java category, we
can see that our new file type, Java Class With Project Info, is available in
the list of File Types, as shown in the following screenshot:

Chapter 2

[47]

8. Upon completing the New File wizard, we can see that the project name and
the project-specific URL have been automatically added into the new class
file along with our name and e-mail address, as defined by the template:

Code templates and code snippets
In the previous section, we saw how to create and customize templates for different
file types. This can be very useful when creating new files.

NetBeans takes automatic code creation even further, however, with the ability to
define both code templates and code snippets. Code templates allow a short piece of
code to be entered within the main source code editor that is expanded into a larger
template upon pressing the Tab key.

Inserting code using code templates
First, let's take a look at code templates. NetBeans provides over 100 code templates
for the Java language and many more for JavaScript, HTML, and others. Some of the
more common code templates are shown in the following table:

Code template Description
pf Expands to public final
do Expands into a do … while loop
fori Expands to a for loop
log Expands to a Logger class to output a log entry
serr Expands to System.err.println("");
sout Expands to System.out.println("");
trycatch Expands into a try … catch statement

Editing Files and Projects

[48]

Code templates are managed from within the Editor section in the NetBeans Options
window, as shown in the following screenshot:

In the Code Templates window, the language for the code templates can be defined.
A list of templates for each language is displayed into which new templates can be
added, or existing templates can be created.

The final two options in the Code Templates window are the keys that cause the
template to be expanded and show what happens to the file upon expansion of
the template. The default key to expand templates is the Tab key, but this can be
changed to space, Shift + space, or Enter. Upon expansion of the template, the file
can be reformatted, reindented, or left as it is.

To see the code templates in use, open a Java source code file and type in psvm
and then press the Tab key. NetBeans will expand the psvm template into a public
static void main() {} statement.

Chapter 2

[49]

Learning the different NetBeans code templates can be a very
effective way of increasing your productivity with NetBeans.
It's worth spending some time looking at the different
templates, and see which ones are important to you.

Code snippets – the NetBeans Palette window
Now that we've looked at code templates, let's take a look at how code snippets can
also help increase a developer's productivity.

Code snippets are stored in the Palette window and can be dragged and dropped
onto the code editor window to allow code to be quickly built up. As we've seen
earlier in this chapter, the Palette window is not applicable to all the file types; for
example, it does not contain any entries for Java source code. However, the Palette
window is extremely useful when you develop HTML files.

When editing HTML files, new entries can be added into the Palette window by
simply highlighting the required HTML code to create a palette entry and then
dragging this onto the palette.

When the selected code is dragged onto the palette, the Add to Palette dialog is
displayed, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Editing Files and Projects

[50]

In the Add to Palette dialog, a name and a tooltip can be supplied for the palette
entry. The entry can be edited within the Content editor before clicking on the Add
to Palette button to create the new palette entry. Unfortunately, once an entry has
been added into the palette, there is no easy way to edit it. We'll see shortly how
editing and deleting palette entries can be performed though.

Once we've added an entry into the palette, it is available instantly for dragging and
dropping anywhere in another HTML file:

Deleting palette items – the Palette Manager
Using the Palette Manager, we can arrange items on the palette and create new
groups into which we can store the individual palette items. To access the Palette
Manager dialog, right-click anywhere in the Palette window and select the Palette
Manager menu option.

Chapter 2

[51]

In the Palette Manager dialog, we can move items up and down within their
respective categories, remove items and categories, and create new categories.
Finally, we can also reset the palette to the original state provided by NetBeans
when it was downloaded. This will remove all our customizations, so check
thoroughly before proceeding to do this!

It's important to note that we can move items up and down within a category in the
Palette Manager dialog using the Move Up and Move Down buttons. However,
if we wish to move an item from one category to another (for example, if we wish
to move an item from the HTML to the HTML Forms category, as shown in the
preceding screenshot), this can be accomplished by dragging the item from one
category to another.

Editing Files and Projects

[52]

Editing palette items
In the previous section, we stated that there is no easy way to edit items in the
NetBeans Palette window. Unfortunately, the current version of NetBeans (8.0)
doesn't provide a GUI for editing palette entries.

A simple way to edit items in the palette is to delete them and then re-add the
updated content. This, however, can be error prone, and isn't necessarily ideal.
A better solution is to edit the palette directly outside NetBeans.

All the custom palette entries, that is to say, the ones that you have created, are
stored in an XML file inside the User directory for NetBeans. Within the User
directory, palette entries for each category are stored in the config\HTMLPalette
directory with a subdirectory for each category. Within the category folders is the
XML file that holds the palette custom items:

These custom palette item XML files can be opened with any text editor, modified to
update the palette item and then saved again over the original file. When NetBeans is
reloaded, the palette item will effectively have been edited. Understandably, this isn't
an ideal situation, but is the best solution for editing palette entries until this feature
is added into NetBeans.

An example custom palette XML file looks similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE editor_palette_item PUBLIC "-//NetBeans//Editor Palette Item
1.1//EN" "http://www.netbeans.org/dtds/editor-palette-item-1_1.dtd">

<editor_palette_item version="1.0">
 <body>
 <![CDATA[
 <body>
 <h1>Hello World!</h1>
 </body>
]]>
 </body>
 <icon16 urlvalue =

Chapter 2

[53]

 "org/netbeans/modules/palette/resources/unknown16.gif" />
 <icon32 urlvalue =
 "org/netbeans/modules/palette/resources/unknown32.gif" />
 <inline-description>
 <display-name>Hello World <body></display-name>
 <tooltip>Hello World !</tooltip>
 </inline-description>
</editor_palette_item>

In the XML file, we can see that there are several important elements that hold
information about the palette entry:

• <body>: This holds the code snippet that will be inserted into the
HTML document

• <icon16>: This holds the path to a small icon for displaying in the
Palette window

• <icon32>: This holds the path to a large icon for displaying in the
Palette window

• <inline-description>: This holds the display name and tooltip for the
palette entry within the <display-name> and <tooltip> subelements

Macro recording and playback
In the previous sections, we've seen how to quickly insert stock code into a source
code file via both code templates and dragging and dropping palette items. The
next technique for modifying or inserting new code into a file that we will look
at is macros.

Within NetBeans, macros allow us to capture screen recording and then assign the
recording to a keyboard shortcut, which, when selected, will playback the recorded
keystrokes. This can be very useful for performing automated tasks against a source
code file or indeed, any editable file.

Editing Files and Projects

[54]

A basic installation of NetBeans is supplied with three existing macros. To view the
macros that are stored within NetBeans, access the NetBeans Options menu (select
Tools and then Options from the main menu on Windows and Linux or select
NetBeans and then Preferences… from the menu on a Mac). In the Options dialog,
select the Editor option and then the Macros tab to see how macros are defined
within NetBeans:

As can be seen in the preceding screenshot, there are three macros that are provided
with a fresh installation of NetBeans:

• cast-to-String: This casts the selected variable to a String
• debug-var: This adds a debug statement into Java code for a specified variable
• quote-word: This places quote marks around the selected word

Let's take a look at the quote-word macro and see how it can be used.

Chapter 2

[55]

Assigning shortcuts for macro playback
To run a macro, we need to assign a shortcut key to it. This is performed in the
Macros options screen, as shown earlier. Select the quote-word macro from the list of
macros and press the Set Shortcut… button. This will cause the Add Shortcut dialog
to be displayed, in which we can define the shortcut key for the macro:

To define a shortcut key for a macro, we simply press the combination of keys that
we wish to use to invoke the macro. Since the quote-word macro begins with the
letter "Q", it makes sense to add a memorable shortcut. In this example, you can see
that I've assigned the keyboard shortcut Ctrl + Shift + Q to this macro.

Once a key for a macro has been defined, we can close the Add Shortcut dialog
by pressing the OK button. Closing the Options dialog will then return us to the
NetBeans editor window so that we can try out the keyboard shortcut for the macro.

The Clear button in the Add Shortcut dialog clears the
currently selected shortcut, while the Tab button inserts
the tab character into the shortcut sequence.

Once back in the NetBeans editor, we can place the cursor inside a piece of text that
we wish to add quotes around:

Then, by simply pressing the shortcut key we defined (Ctrl + Shift + Q), the selected
text will become quoted:

Now that we've seen how to playback macros defined within NetBeans, let's see how
to record new macros.

Editing Files and Projects

[56]

Recording new macros
Macro recording simply records all the keystrokes entered by the user so that they
can be played back at a later date.

To start NetBeans recording macros, select the Edit and then Start Macro Recording
menu items from the main NetBeans menu. NetBeans will then indicate that it is
recording macros by showing the Recording text at the bottom-left of the main
IDE window.

To record a macro, we simply now enter the key strokes that we wish to record. For
example, to record a macro similar to the quote-word macro we just looked at, we
could record the following key strokes:

• Move to the beginning of the current word
• Insert quote mark
• Move to the end of the current word
• Insert quote mark

Once we've finished recording a macro, we select the Edit and Stop Macro Recording
menu options. This stops the recording and displays the New Macro dialog, allowing
us to name the newly recorded macro:

Chapter 2

[57]

From here, we can add a name to the macro and then assign a shortcut key for
subsequent use.

Shortcut buttons for recording and finishing recording macros are available in the
editor window toolbar. To start recording, press the record button () and to finish,
press the finish button ().

Splitting windows
When editing a file, such as a Java source code file or an HTML file, it can sometimes
be necessary to view two parts of the file at the same time. How many times have
you found yourself having to scroll to the top of a file to check something and then
having to scroll to the bottom of the file again to type some code?

In NetBeans, we can split a file horizontally so that we can see the top and bottom of
a file or vertically to see the left- and right-hand sides of a file, all at the same time.

So, how do we split views so that we can simultaneously view different aspects of
the file?

At the top-right of an editor window that supports file splitting is a small cross
(). To split a file vertically, drag this cross left so that the file is split vertically
into the correct proportions. To split it horizontally, drag this cross down until
the view is split as required.

Editing Files and Projects

[58]

After splitting the view onto a file, the file can be edited within either pane or the
split view. That is to say none of the panes are read-only. As a result of this, any
changes that are made within one pane are automatically displayed in the second
pane—both panes are just two different views onto the same file. Similarly, when
selecting a piece of code within one pane, this causes all the corresponding pieces of
code to be highlighted in the other pane. For example, if we highlight a Java variable
within one pane, all the visible instances of the variable will be highlighted in the
other pane as well as in the original pane.

Once the view onto a file has been split, it can be repositioned by simply dragging
the splitter bar left/right or up/down as required.

To close the splitter view and only display a single view onto a file, drag the splitter
window fully to any of the edges of the editor window. So, for example, to close the
splitter view on a horizontally split window, drag the splitter bar either fully to the
top or bottom of the window that is split.

Code folds
Splitting windows either horizontally or vertically is an excellent way to utilize
screen space when it is necessary to compare two sections of a file. Using code folds
is another excellent technique for "folding" or "collapsing" sections of code, thus
helping to provide more screen space. With a code fold, pressing the + or – buttons
on the left-hand side margin expands or collapses the code and can, therefore, be
used to get more code onto the current view of a file.

Creating a code fold is simply a matter of placing an especially formatted comment
around the piece of code that requires folding, as shown in the following code snippet:

 // <editor-fold desc="Variable definitions">
 int foo;
 String bar;
 // </editor-fold>

Chapter 2

[59]

The <editor-fold> XML defines that the enclosed code will be available within
NetBeans as a code fold and has several attributes, all of which are optional:

• desc: It is the description that is displayed within the NetBeans code editor
when the code fold is collapsed

• defaultState: It takes the value of "collapsed" to indicate that, by default,
the code fold will be collapsed

In addition to custom code folds, as defined by the <editor-fold> code comments,
NetBeans automatically adds a code fold wherever the scope of code changes, for
example, whenever new classes or new methods are created.

Whether these code folds are collapsed by default is defined in the NetBeans Folding
options. This is accessed within the Folding tab in the Editor options:

Editing Files and Projects

[60]

Project groups
So far in this chapter, we've looked at the layout of NetBeans and how to configure
and use different windows within the IDE. We've also looked at different shortcuts
for generating or altering code within a project. With large projects, it can be useful
to organize the projects themselves as well as the code within them. In this section,
we're going to see how we can organize projects into project groups.

In the Projects window, we are shown a list of all the currently open projects in
NetBeans, and can drill down into the project's hierarchy to see all the files and
resources used by the project. With a large project, it can be useful to organize
projects into the following categories, for example:

• Data repository projects
• Web projects
• Mobile projects
• Client projects

NetBeans allows us to group projects together and shows only the projects from the
currently open group within the Projects window.

To create a project group, click on the File and then Project Groups… menu items.
This causes the Manage Groups dialog to be shown, which lists all the defined
groups, in addition to facilitating new group creation and group editing.

Chapter 2

[61]

Initially, when NetBeans starts up, there are no groups defined (you could say that
there is one group called none). To create a new group, click on the New Group…
button. This opens up the Create New Group dialog where we can define which
projects belong to the group.

In the Create New Group dialog, we can specify the name of the new group along
with these three options for defining which projects belong to the newly created group:

• Free Group: This group is managed by the user and can have whatever
projects in it that are required. These can be manually selected after the group
is created or the Use Currently Open Projects checkbox can be checked to
create the group and populate it with all the currently open projects.

• Project and All Required Projects: This group is defined by selecting a
master project. Any subprojects used by the master project will be added
to the group along with the master project.

• Folder of Projects: This group is defined by any NetBeans projects that are
stored in the specified folder on the filesystem.

Editing Files and Projects

[62]

Upon defining the group and clicking on the Create Group button, NetBeans will
open the group. The title of the Projects window will be changed to append the
group name as an indicator of which group is currently open:

If we have created a free group, we can add and remove projects into the group from
the Projects window as we see fit. If we have created either of the remaining project
group types, the projects in the group will be automatically updated according to the
group's criteria.

To view a different group of projects, simply invoke the Manage Groups dialog by
selecting File and then Project Groups from the NetBeans File menu. From here,
select the required project group and click on the Select Group button.

Summary
In this chapter, we looked at the layout of NetBeans and the different windows (and
their content) that are available to help us develop applications. We saw how we can
rearrange the windows, including docking them to the main NetBeans window and
floating them away from it.

We looked at shortcuts to generating and amending code, learning about file
templates, code templates, and code drag and drop. We also saw how to create and
playback macros for those situations where we want to record keystrokes and then
play them back at a later date.

Finally, we saw how to manage project groups so that we can efficiently organize
large projects.

In the next chapter, we'll look at the NetBeans developer's lifecycle, taking a look at
running, testing, profiling, and debugging applications. We'll see how NetBeans can
aid developers in these areas.

[63]

The NetBeans Developer's
Life Cycle

On a day-to-day basis, developers spend much of their time writing and running
applications. While writing applications, they typically debug, test, and profile them
to ensure that they provide the best possible application to customers. Running,
debugging, profiling, and testing are all integral parts of the development life cycle,
and NetBeans provides excellent tooling to help us in all these areas.

In this chapter, we will cover the following topics:

• Running applications
• Debugging applications
• Profiling applications
• Testing applications
• Introducing test-driven development (TDD) with NetBeans

Running applications
Executing applications from within NetBeans is as simple as either pressing the
F6 button on the keyboard or selecting the Run menu item or Project Context
menu item. Choosing either of these options will launch your application without
specifying any additional Java command-line parameters using the default platform
JDK that NetBeans is currently using.

Sometimes we want to change the options that are used for launching applications.
NetBeans allows these options to be easily specified by a project's properties.

The NetBeans Developer's Life Cycle

[64]

Right-clicking on a project in the Projects window and selecting the Properties menu
option opens the Project Properties dialog. Selecting the Run category allows the
configuration options to be defined for launching an application.

From this dialog, we can define and select multiple run configurations for the project
via the Configuration dropdown. Selecting the New… button to the right of the
Configuration dropdown allows us to enter a name for a new configuration. Once a
new configuration is created, it is automatically selected as the active configuration.
The Delete button can be used for removing any unwanted configurations.

The preceding screenshot shows the Project Properties dialog for a standard Java
project. Different project types (for example, web or mobile projects) have different
options in the Project Properties window.

The source code for the StackTrace example application, shown
in the preceding screenshot, is provided as a part of the code
bundle for this chapter, which can be downloaded from this book's
web page (https://www.packtpub.com/books/content/
support/22286).

https://www.packtpub.com/books/content/support/22286
https://www.packtpub.com/books/content/support/22286

Chapter 3

[65]

As can be seen from the preceding Project Properties dialog, several pieces of
information can be defined for a standard Java project, which together make
up the launch configuration for a project:

• Runtime Platform: This option allows us to define which Java platform
we will use when launching the application. From here, we can select from
all the Java platforms that are configured within NetBeans. Selecting the
Manage Platforms… button opens the Java Platform Manager dialog,
allowing full configuration of the different Java platforms available (both
Java Standard Edition and Remote Java Standard Edition). Selecting this
button has the same effect as selecting the Tools and then Java Platforms
menu options.

• Main Class: This option defines the main class that is used to launch the
application. If the project has more than one main class, selecting the
Browse… button will cause the Browse Main Classes dialog to be displayed,
listing all the main classes defined in the project.

• Arguments: Different command-line arguments can be passed to the main
class as defined in this option.

• Working Directory: This option allows the working directory for the
application to be specified.

• VM Options: If different VM options (such as heap size) require setting,
they can be specified by this option. Selecting the Customize button displays
a dialog listing the different standard VM options available which can be
selected (ticked) as required. Custom VM properties can also be defined in
the dialog.

The NetBeans Developer's Life Cycle

[66]

For more information on the different VM properties for Java,
check out http://www.oracle.com/technetwork/java/
javase/tech/vmoptions-jsp-140102.html. From here,
the VM properties for Java 7 (and earlier versions) and Java 8 for
Windows, Solaris, Linux, and Mac OS X can be referenced.

• Run with Java Web Start: Selecting this option allows the application to be
executed using Java Web Start technologies. This option is only available if
Web Start is enabled in the Application | Web Start category.

For more information on Java Web Start technology,
check out http://www.oracle.com/technetwork/
java/javase/javawebstart/index.html.

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html

Chapter 3

[67]

When running a web application, the project properties are different from those of a
standalone Java application. In fact, the project properties for a Maven web application
are different from those of a standard NetBeans web application. The following
screenshot shows the properties for a Maven-based web application; as discussed
previously, Maven is the standard project management tool for Java applications, and
the recommended tool for creating and managing web applications:

We will learn more about the Run properties for web projects in Chapter 8, Creating
the Web Tier.

Debugging applications
In the previous section, we saw how NetBeans provides the easy-to-use features
to allow developers to launch their applications, but then it also provides more
powerful additional features. The same is true for debugging applications.

The NetBeans Developer's Life Cycle

[68]

For simple debugging, NetBeans provides the standard facilities you would expect,
such as stepping into or over methods, setting line breakpoints, and monitoring the
values of variables. For more details on these features, refer to my book, NetBeans
IDE 8 Cookbook, Packt Publishing.

When debugging applications, NetBeans provides several different windows, enabling
different types of information to be displayed and manipulated by the developer:

• Breakpoints
• Variables
• Call stack
• Loaded classes
• Sessions
• Threads
• Sources
• Debugging
• Analyze stack

All of these windows are accessible from the Window and then Debugging main
menu within NetBeans.

Breakpoints
NetBeans provides a simple approach to set breakpoints and a more comprehensive
approach that provides many more useful features.

Breakpoints can be easily added into Java source code by clicking on the gutter on
the left-hand side of a line of Java source code. When a breakpoint is set, a small pink
square is shown in the gutter and the entire line of source code is also highlighted
in the same color. Clicking on the breakpoint square in the gutter toggles the
breakpoint on and off.

Chapter 3

[69]

Once a breakpoint has been created, instead of removing it altogether, it can
be disabled by right-clicking on the bookmark in the gutter and selecting the
Breakpoint and then Enabled menu options. This has the effect of keeping the
breakpoint within your codebase, but execution of the application does not stop
when the breakpoint is hit.

Creating a simple breakpoint like this can be a very powerful way of debugging
applications. It allows you to stop the execution of an application when a line of
code is hit.

If we want to add a bit more control onto a simple breakpoint, we can edit the
breakpoint's properties by right-clicking on the breakpoint in the gutter and selecting
the Breakpoint and then Properties menu options. This causes the Breakpoint
Properties dialog to be displayed:

In this dialog, we can see the line number and the file that the breakpoint belongs to.
The line number can be edited to move the breakpoint if it has been created on the
wrong line. However, what's more interesting is the conditions that we can apply to
the breakpoint.

The Condition entry allows us to define a condition that has to be met for the
breakpoint to stop the code execution. For example, we can stop the code when
the variable i is equal to 20 by adding a condition, i==20.

The NetBeans Developer's Life Cycle

[70]

When we add conditions to a breakpoint, the breakpoint becomes known as
a conditional breakpoint, and the icon in the gutter changes to a square with
the lower-right quadrant removed, as shown in the following screenshot:

We can also cause the execution of the application to halt at a breakpoint when the
breakpoint has been hit a certain number of times. The Break when hit count is
condition can be set to Equal to, Greater than, or Multiple of to halt the execution
of the application when the breakpoint has been hit the requisite number of times.

Finally, we can specify what actions occur when a breakpoint is hit. The Suspend
dropdown allows us to define what threads are suspended when a breakpoint is hit.
NetBeans can suspend All threads, Breakpoint thread, or no threads at all. The text
that is displayed in the Output window can be defined via the Print Text edit box
and different breakpoint groups can be enabled or disabled via the Enable Group
and Disable Group drop-down boxes. But what exactly is a breakpoint group?

Simply put, a breakpoint group is a collection of breakpoints that can all be set or
unset at the same time. It is a way of categorizing breakpoints into similar collections,
for example, all the breakpoints in a particular file, or all the breakpoints relating to
exceptions or unit tests.

Chapter 3

[71]

Breakpoint groups are created in the Breakpoints window. This is accessible by
selecting the Debugging and then Breakpoints menu options from within the
main NetBeans Window menu.

To create a new breakpoint group, simply right-click on an existing breakpoint
in the Breakpoints window and select the Move Into Group… and then New…
menu options.

The Set the Name of Breakpoints Group dialog is displayed in which the name of
the new breakpoint group can be entered.

After creating a breakpoint group and assigning one or more breakpoints into it,
the entire group of breakpoints can be enabled or disabled, or even deleted
by right-clicking on the group in the Breakpoints window and selecting the
appropriate option.

Any newly created breakpoint groups will also be available in the Breakpoint
Properties window.

So far, we've seen how to create breakpoints that stop on a single line of code, and
also how to create conditional breakpoints so that we can cause an application to
stop when certain conditions occur for a breakpoint. These are excellent techniques
to help debug applications. NetBeans, however, also provides the ability to create
more advanced breakpoints so that we can get even more control of when the
execution of applications is halted by breakpoints.

The NetBeans Developer's Life Cycle

[72]

So, how do we create these breakpoints? These different types of breakpoints are all
created from in the Breakpoints window by right-clicking and selecting the New
Breakpoint… menu option.

In the New Breakpoint dialog, we can create different types of breakpoints by
selecting the appropriate entry from the Breakpoint Type drop-down list. The
preceding screenshot shows an example of creating a Class breakpoint. The
following types of breakpoints can be created:

• Class: This creates a breakpoint that halts execution when a class is loaded,
unloaded, or either event occurs.

• Exception: This stops execution when the specified exception is caught,
uncaught, or either event occurs.

• Field: This creates a breakpoint that halts execution when a field on a class is
accessed, modified, or either event occurs.

Chapter 3

[73]

• Line: This stops execution when the specified line of code is executed. It acts
the same way as creating a breakpoint by clicking on the gutter of the Java
source code editor window.

• Method: This creates a breakpoint that halts execution when a method is
entered, exited, or when either event occurs. Optionally, the breakpoint can be
created for all methods inside a specified class rather than a single method.

• Thread: This creates a breakpoint that stops execution when a thread is
started, finished, or either event occurs.

• AWT/Swing Component: This creates a breakpoint that stops execution
when a GUI component is accessed.

For each of these different types of breakpoints, conditions and actions can be
specified in the same way as on simple line-based breakpoints.

The Variables debug window
The Variables debug window lists all the variables that are currently within the
scope of execution of the application. This is therefore thread-specific, so if multiple
threads are running at one time, the Variables window will only display variables in
scope for the currently selected thread.

In the Variables window, we can see the variables currently in scope for the selected
thread, their type, and value, as shown in the following screenshot:

This screenshot is taken while debugging the MultiThread
application that is included as part of the code bundle for this
chapter. To gain a better understanding of the debugging process,
it is recommended to download this application and experiment
with setting breakpoints and examining the different debug
windows.

The NetBeans Developer's Life Cycle

[74]

To display variables for a different thread to that currently selected, we must select
an alternative thread via the Debugging window.

Using the triangle button to the left of each variable, we can expand variables and
drill down into the properties within them.

When a variable is a simple primitive (for example, integers or strings), we can
modify it or any property within it by altering the value in the Value column in the
Variables window. The variable's value will then be changed within the running
application to the newly entered value.

By default, the Variables window shows three columns (Name, Type, and Value),
as shown in the preceding screenshot. We can modify which columns are visible by
pressing the selection icon () at the top-right of the window.

Selecting this displays the Change Visible Columns dialog, from which we can
select from the Name, String value, Type, and Value columns:

The Watches window
The Watches window allows us to see the contents of variables and expressions
during a debugging session, as can be seen in the following screenshot:

Chapter 3

[75]

In this screenshot, we can see that the variable i is being displayed along with the
expressions 10+10 and i+20.

New expressions can be watched by clicking on the <Enter new watch> option
or by right-clicking on the Java source code editor and selecting the New Watch…
menu option.

Evaluating expressions
In addition to watching variables in a debugging session, NetBeans also provides
the facility to evaluate expressions. Expressions can contain any Java code that is
valid for the running scope of the application. So, for example, local variables, class
variables, or new instances of classes can be evaluated.

To evaluate variables, open the Evaluate Expression window by selecting the Debug
and then Evaluate Expression menu options.

Enter an expression to be evaluated in this window and press the Evaluate Code
Fragment button at the bottom-right corner of the window. As a shortcut, pressing
the Ctrl + Enter keys will also evaluate the code fragment.

Once an expression has been evaluated, it is shown in the Evaluation Result window:

The Evaluation Result window shows a history of each expression that has
previously been evaluated. Expressions can be added to the list of watched variables
by right-clicking on the expression and selecting the Create Fixed Watch expression.

The NetBeans Developer's Life Cycle

[76]

The Call Stack window
The Call Stack window displays the call stack for the currently executing thread:

The call stack is displayed from top to bottom with the currently executing frame
at the top of the list. Double-clicking on any entry in the call stack opens up the
corresponding source code in the Java editor within NetBeans.

Right-clicking on an entry in the call stack displays a pop-up menu with the
choice to:

• Make Current: This makes the selected thread the current thread
• Pop To Here: This pops the execution of the call stack to the selected location
• Go To Source: This displays the selected code within the Java source editor
• Copy Stack: This copies the stack trace to the clipboard for use elsewhere

When debugging, it can be useful to change the stack frame of the currently
executing thread by selecting the Pop To Here option from within the stack trace
window. Imagine the following code:

// Get some magic
int magic = getSomeMagicNumber();
// Perform calculation
performCalculation(magic);

During a debugging session, if after stepping over the getSomeMagicNumber()
method, we decided that the method has not worked as expected, our course of
action would probably be to debug into the getSomeMagicNumber() method. But,
we've just stepped over the method, so what can we do? Well, we can stop the
debugging session and start again or repeat the operation that called this section of
code and hope there are no changes to the application state that affect the method we
want to debug.

A better solution, however, would be to select the line of code that calls the
getSomeMagicNumber() method and pop the stack frame using the Pop To Here
option. This would have the effect of rewinding the code execution so that we can
then step into the method and see what is happening inside it.

Chapter 3

[77]

As well as using the Pop To Here functionality, NetBeans also offers several menu
options for manipulating the stack frame, namely:

• Make Callee Current: This makes the callee of the current method the
currently executing stack frame

• Make Caller Current: This makes the caller of the current method the
currently executing stack frame

• Pop Topmost Call: This pops one stack frame, making the calling method the
currently executing stack frame

When moving around the call stack using these techniques, any operations
performed by the currently executing method are not undone. So, for example,
strange results may be seen if global or class-based variables are altered within a
method and then an entry is popped from the call stack. Popping entries in the call
stack is safest when no state changes are made within a method.

The call stack displayed in the Debugging window for each thread behaves in the
same way as in the Call Stack window itself.

The Loaded Classes window
The Loaded Classes window displays a list of all the classes that are currently
loaded, showing how many instances there are of each class as a number and
as a percentage of the total number of classes loaded:

The NetBeans Developer's Life Cycle

[78]

Depending upon the number of external libraries (including the standard Java
runtime libraries) being used, you may find it difficult to locate instances of your
own classes in this window. Fortunately, the filter at the bottom of the window
allows the list of classes to be filtered, based upon an entered string. So, for example,
entering the filter String will show all the classes with String in the fully qualified
class name that are currently loaded, including java.lang.String and java.lang.
StringBuffer. Since the filter works on the fully qualified name of a class, entering a
package name will show all the classes listed in that package and subpackages. So,
for example, entering a filter value as com.davidsalter.multithread would show only
the classes listed in that package and subpackages.

The Sessions window
Within NetBeans, it is possible to perform multiple debugging sessions where either
one project is being debugged multiple times, or more commonly, multiple projects
are being debugged at the same time, where one is acting as a client application and
the other is acting as a server application.

The Sessions window displays a list of the currently running debug sessions,
allowing the developer control over which one is the current session:

Right-clicking on any of the sessions listed in the window provides the
following options:

• Make Current: This makes the selected session the currently active
debugging session

• Scope: This debugs the current thread or all the threads in the selected session
• Language: This options shows the language of the application being

debugged—Java
• Finish: This finishes the selected debugging session
• Finish All: This finishes all the debugging sessions

Chapter 3

[79]

The Sessions window shows the name of the debug session (for example the main
class being executed), its state (whether the application is Stopped or Running) and
language being debugged. Clicking the selection icon () at the top-right of the
window allows the user to choose which columns are displayed in the window.

The default choice is to display all columns except for the Host Name column, which
displays the name of the computer the session is running on.

The Threads window
The Threads window displays a hierarchical list of threads in use by the application
currently being debugged, as shown in the following screenshot:

The current thread is displayed in bold. Double-clicking on any of the threads in
the hierarchy makes the thread current. Similar to the Debugging window, threads
can be made current, suspended, or interrupted by right-clicking on the thread and
selecting the appropriate option.

The NetBeans Developer's Life Cycle

[80]

The default display for the Threads window is to show the thread's name and its state
(Running, Waiting, or Sleeping). Clicking the selection icon () at the top-right of the
window allows the user to choose which columns are displayed in the window.

The Sources window
The Sources window simply lists all of the source roots that NetBeans considers for
the selected project. These are the only locations that NetBeans will search when
looking for source code while debugging an application. If you find that you are
debugging an application, and you cannot step into code, the most likely scenario
is that the source root for the code you wish to debug is not included in the Sources
window. To add a new source root, right-click in the Sources window and select the
Add Source Root option.

The Debugging window
The Debugging window allows us to see which threads are running while
debugging our application. This window is, therefore, particularly useful
when debugging multithreaded applications.

Chapter 3

[81]

In this window, we can see the different threads that are running within our
application. For each thread, we can see the name of the thread and the call stack
leading to the breakpoint. The current thread is highlighted with a green band along
the left-hand side edge of the window. Other threads created within our application
are denoted with a yellow band along the left-hand side edge of the window. System
threads are denoted with a gray band.

We can make any of the threads the current thread by right-clicking on it and
selecting the Make Current menu option. When we do this, the Variables and
Call Stack windows are updated to show new information for the selected thread.

The current thread can also be selected by clicking on the
Debug and then Set Current Thread… menu options. Upon
selecting this, a list of running threads is shown from which
the current thread can be selected.

Right-clicking on a thread and selecting the Resume option will cause the selected
thread to continue execution until it hits another breakpoint.

For each thread that is running, we can also Suspend, Interrupt, and Resume the
thread by right-clicking on the thread and choosing the appropriate action.

The NetBeans Developer's Life Cycle

[82]

In each thread listing, the current methods call stack is displayed for each thread.
This can be manipulated in the same way as from the Call Stack window.

When debugging multithreaded applications, new breakpoints can be hit within
different threads at any time. NetBeans helps us with multithreaded debugging
by not automatically switching the user interface to a different thread when a
breakpoint is hit on the non-current thread. When a breakpoint is hit on any thread
other than the current thread, an indication is displayed at the bottom of the
Debugging window, stating New Breakpoint Hit (an example of this can be seen in
the previous window). Clicking on the icon to the right of the message shows all the
breakpoints that have been hit together with the thread name in which they occur.
Selecting the alternate thread will cause the relevant breakpoint to be opened within
NetBeans and highlighted in the appropriate Java source code file.

NetBeans provides several filters on the Debugging window so that we can show
more/less information as appropriate.

From left to right, these images allow us to:

• Show less (suspended and current threads only)
• Show thread groups
• Show suspend/resume table
• Show system threads
• Show monitors
• Show qualified names
• Sort by suspended/resumed state
• Sort by name
• Sort by default

Debugging multithreaded applications can be a lot easier if you give
your threads names. The thread's name is displayed in the Debugging
window, and it's a lot easier to understand what a thread with a proper
name is doing as opposed to a thread called Thread-1.

Chapter 3

[83]

Deadlock detection
When debugging multithreaded applications, one of the problems that we can see
is that a deadlock occurs between executing threads. A deadlock occurs when two
or more threads become blocked forever because they are both waiting for a shared
resource to become available. In Java, this typically occurs when the synchronized
keyword is used.

For more information on synchronization and concurrency, check
out the Java tutorial at http://docs.oracle.com/javase/
tutorial/essential/concurrency/index.html.

NetBeans allows us to easily check for deadlocks using the Check for Deadlock tool
available on the Debug menu.

When a deadlock is detected using this tool, the state of the deadlocked threads is
set to On Monitor in the Threads window. Additionally, the threads are marked as
deadlocked in the Debugging window. Each deadlocked thread is displayed with a
red band on the left-hand side border and the Deadlock detected warning message
is displayed:

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

The NetBeans Developer's Life Cycle

[84]

The preceding screenshot is taken from the Deadlock application
that is included as part of the code bundle for this chapter. It is
recommended that you download this example application and
examine its source and how it runs to gain a wider knowledge of
deadlock detection in NetBeans.

Analyze Stack Window
When running an application within NetBeans, if an exception is thrown and
not caught, the stack trace will be displayed in the Output window, allowing the
developer to see exactly where errors have occurred. From the following screenshot,
we can easily see that a NullPointerException was thrown from within the
FaultyImplementation class in the doUntestedOperation() method at line 16.
Looking before this in the stack trace (that is the entry underneath), we can see that
the doUntestedOperation() method was called from within the main() method of
the Main class at line 21:

In the preceding example, the FaultyImplementation class is defined as follows:

public class FaultyImplementation {
 public void doUntestedOperation() {
 throw new NullPointerException();
 }
}

The full source code for this example is provided within
the StackTrace application that is available in the code
bundle for this chapter.

Java is providing an invaluable feature to developers, allowing us to easily see where
exceptions are thrown and what the sequence of events was that led to the exception
being thrown. NetBeans, however, enhances the display of the stack traces by
making the class and line numbers clickable hyperlinks which, when clicked on, will
navigate to the appropriate line in the code. This allows us to easily delve into a stack
trace and view the code at all the levels of the stack trace. In the previous screenshot,
we can click on the hyperlinks FaultyImplementation.java:16 and Main.java:21
to take us to the appropriate line in the appropriate Java file.

Chapter 3

[85]

This is an excellent time-saving feature when developing applications, but what
do we do when someone e-mails us a stack trace to look at an error in a production
system? How do we manage stack traces that are stored in log files?

Fortunately, NetBeans provides an easy way to allow a stack trace to be turned into
clickable hyperlinks so that we can browse through the stack trace without running
the application.

To load and manage stack traces into NetBeans, the first step is to copy the stack
trace onto the system clipboard. Once the stack trace has been copied onto the
clipboard, Analyze Stack Window can be opened within NetBeans by selecting the
Window and then Debugging and then Analyze Stack menu options (the default
installation for NetBeans has no keyboard shortcut assigned to this operation).

Analyze Stack Window will default to showing the stack trace that is currently in
the system clipboard. If no stack trace is in the clipboard, or any other data is in the
system's clipboard, Analyze Stack Window will be displayed with no contents. To
populate the window, copy a stack trace into the system's clipboard and select the
Insert StackTrace From Clipboard button.

Once a stack trace has been displayed in Analyze Stack Window, clicking on
the hyperlinks in it will navigate to the appropriate location in the Java source
files just as it does from the Output window when an exception is thrown from
a running application.

You can only navigate to source code from a stack trace
if the project containing the relevant source code is
open in the selected project group.

The NetBeans Developer's Life Cycle

[86]

Variable formatters
When debugging an application, the NetBeans debugger can display the values
of simple primitives in the Variables window. As we saw previously, we can also
display the toString() representation of a variable if we select the appropriate
columns to display in the window.

Sometimes when debugging, however, the toString() representation is not the best
way to display formatted information in the Variables window, as can be seen in the
following screenshot:

In this window, we are showing the value of a complex number class that we have
used in high school math. The ComplexNumber class being debugged in this example
is defined as:

public class ComplexNumber {

 private double realPart;
 private double imaginaryPart;

 public ComplexNumber(double realPart, double imaginaryPart) {
 this.realPart = realPart;
 this.imaginaryPart = imaginaryPart;
 }

 @Override
 public String toString() {
 return "ComplexNumber{" + "realPart=" + realPart + ",
imaginaryPart=" + imaginaryPart + '}';
 }

 // Getters and Setters omitted for brevity…

}

The complete source code for this example is provided within the
VariableFormatters application that is included as part of the
code bundle for this chapter. It's recommended that you download
this sample application and examine it in NetBeans in order to aid
your understanding of variable formatters.

Chapter 3

[87]

Looking at this class, we can see that it essentially holds two members—realPart
and imaginaryPart. The toString() method outputs a string, detailing the
name of the object and its parameters which would be very useful when writing
ComplexNumbers to log files, for example:

ComplexNumber{realPart=1.0, imaginaryPart=2.0}

When debugging, however, this is a fairly complicated string to look at and
comprehend—particularly, when there is a lot of debugging information
being displayed.

NetBeans, however, allows us to define custom formatters for classes that detail how
an object will be displayed in the Variables window when being debugged.

To define a custom formatter, select the Java option from the NetBeans Options
dialog and then select the Java Debugger tab. From this tab, select the Variable
Formatters category, as shown in the following screenshot:

The NetBeans Developer's Life Cycle

[88]

On this screen, all the variable formatters that are defined within NetBeans are
shown. To create a new variable formatter, select the Add… button to display
the Add Variable Formatter dialog.

In the Add Variable Formatter dialog, we need to enter Formatter Name and a list
of Class types that NetBeans will apply the formatting to when displaying values in
the debugger. To apply the formatter to multiple classes, enter the different classes,
separated by commas.

The value that is to be formatted is entered in the Value formatted as a result of
code snippet field. This field takes the scope of the object being debugged. So, for
example, to output the ComplexNumber class, we can enter the custom formatter as:

"("+realPart+", "+imaginaryPart+"i)"

Chapter 3

[89]

We can see that the formatter is built up from concatenating static strings and the
values of the members realPart and imaginaryPart.

We can see the results of debugging variables using custom formatters in the
following screenshot:

Debugging remote applications
The NetBeans debugger provides rapid access for debugging local applications that
are executing within the same JVM as NetBeans.

What happens though when we want to debug a remote application? A remote
application isn't necessarily hosted on a separate server to your development
machine, but is defined as any application running outside of the local JVM (that is
the one that is running NetBeans).

To debug a remote application, the NetBeans debugger can be "attached" to the
remote application. Then, to all intents, the application can be debugged in exactly
the same way as a local application is debugged, as described in the previous
sections of this chapter.

To attach to a remote application, select the Debug and then Attach Debugger…
menu options.

The NetBeans Developer's Life Cycle

[90]

On the Attach dialog, the connector (SocketAttach, ProcessAttach, or SocketListen)
must be specified to connect to the remote application. The appropriate connection
details must then be entered to attach the debugger. For example, the process ID
must be entered for the ProcessAttach connector and the host and port must be
specified for the SocketAttach connector.

For more information on debugging "remote" application,
check out http://docs.oracle.com/javase/7/docs/
technotes/guides/jpda/conninv.html.

Profiling applications
Learning how to debug applications is an essential technique in software development.
Another essential technique that is often overlooked is profiling applications.

Profiling applications involves measuring various metrics such as the amount of
heap memory used or the number of loaded classes or running threads. By profiling
applications, we can gain an understanding of what our applications are actually
doing and as such we can optimize them and make them function better. NetBeans
provides first class profiling tools that are easy to use and provide results that are
easy to interpret. The NetBeans profiler allows us to profile three specific areas:

• Application monitoring
• Performance monitoring
• Memory monitoring

Each of these monitoring tools is accessible from the Profile menu within NetBeans.
To commence profiling, select the Profile and then Profile Project menu options.
After instructing NetBeans to profile a project, the profiler starts providing the choice
of the type of profiling to perform.

In this section, the Factorial and MultiThread applications from
the code bundle for this chapter are used to demonstrate profiling.

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html

Chapter 3

[91]

Application monitoring
Application monitoring provides us with three different views on the running state
of an application. To commence application monitoring, select the Monitor option on
the Profile dialog and then select the Run button. For each type of profiling, NetBeans
displays an indication of the overhead the profiling will have on the performance of
the running application. For application monitoring, the overhead is negligible.

The NetBeans Developer's Life Cycle

[92]

Once profiling has commenced, the Profiler window is automatically opened
showing the status of the running application and also providing basic telemetry,
such as the number of threads currently executing, the amount of memory in use,
and the time spent in garbage collecting.

In this window, we can see that there are three options to display different views on
the profiling data:

• VM Telemetry: This view displays a window showing the heap memory
used within the application, the surviving generations, and relative time
spent in garbage control.

Chapter 3

[93]

• Threads: This view displays the threads that have been instantiated within
the application and the state of the threads (Running, Sleeping, Wait, Park,
or Monitor). For each thread, the amount of time running is given as a
percentage and as a length of time in milliseconds.

The NetBeans Developer's Life Cycle

[94]

• Lock Contention: Finally, if lock contention monitoring has been selected
(the default option is to not monitor this), any locks within the threads are
profiled and displayed in the Lock Contention window.

While profiling an application, NetBeans provides facilities to dump the heap from
the currently running program by selecting the Dump Heap button from within the
Profiler window. Once the heap has been dumped, it can be opened in the Heap
Walker window. This allows us to view the state of the heap at a specific moment in
time. Information such as the number of bytes used, number of classes loaded, and
basic thread information can be obtained from the Heap Walker window. Details of
the biggest objects by retained size are also available. If several heap files have been
saved, they can be compared to give an indication of how the heap of the application
has changed over time.

Outside of a profiling session, heap dumps can be loaded by selecting the Profile and
then Load Heap Dump… menu options.

Performance monitoring
To begin performance monitoring of an application, select the CPU button on the
main Profile dialog.

Chapter 3

[95]

For performance monitoring, the user is given the option of performing either
quick or advanced profiling. Quick profiling samples the application periodically,
taking a stack trace at set intervals. As the application is not monitored constantly,
this has a lower overhead than advanced profiling, but is less accurate. Advanced
profiling works by instrumenting the methods of the application and therefore is
more accurate (method invocations cannot be missed between samples) but has a
higher overhead. When performing advanced performance monitoring, NetBeans
allows the developer to choose which classes will be instrumented. With more
classes being instrumented, there will be a higher performance overhead against a
profiled application, so it's a good idea to only instrument the classes that you wish
to monitor.

The NetBeans Developer's Life Cycle

[96]

When profiling performance of an application, the Live Results button is available to
show the method hot spots within the application. This window shows the amount
of time spent within the methods in the application together with the number of
invocations of each method.

Memory monitoring
Memory profiling displays the allocated objects used within an application and for
each one shows the number of bytes and objects allocated.

When running memory profiling, we again have the options of Quick and Advanced
profiling, similar to what we had for the CPU monitoring. Quick profiling samples
the application at predetermined intervals, whereas advanced instruments all the
classes that are loaded in the JVM. As quick profiling only samples the application
at the predefined intervals, it can only provide data on the live objects, whereas
advanced profiling can provide data about all the objects that are allocated during
the applications lifetime.

Chapter 3

[97]

When configuring memory profiling we have the option to record the full object life
cycle and stack trace for allocations. Recording the full life cycle of objects allows
profiling to record all the information about an object, including the number of
generations survived. Recording the full stack trace for object allocations allows the
call stack to be viewed from saved memory snapshots.

The Live Results window shows the memory allocations used within the application
while memory profiling is being performed, as shown in the following screenshot:

The NetBeans Developer's Life Cycle

[98]

While profiling an application, NetBeans allows us to take snapshots of the state of
the running application. These snapshots can then be compared at a later date so that
we can gain some understanding of performance/degradation of our applications.

Prior to performing profiling for the first time, NetBeans will display
a dialog stating that it needs to calibrate itself so that it can provide
accurate results. Calibration is performed once for each JDK used for
profiling. It basically performs some self-timings so that NetBeans
knows how much time to take of the timing results that it displays
during profiling.

Testing applications
Writing tests for applications is probably one of the most important aspects of
modern software development. NetBeans provides the facility to write and run both
JUnit and TestNG tests and test suites. In this section, we'll provide details on how
NetBeans allows us to write and run these types of tests, but we'll assume that you
have some knowledge of either JUnit or TestNG.

For more information on JUnit, check out http://junit.org.
You can read more about TestNG at http://testng.org.

TestNG support is provided by default with NetBeans, however, due to license
concerns, JUnit may not have been installed when you installed NetBeans. If JUnit
support is not installed, it can easily be added through the NetBeans Plugins system.

In a project, NetBeans creates two separate source roots: one for application sources
and the other for test sources. This allows us to keep tests separate from application
source code so that when we ship applications, we do not need to ship tests with them.

Some customers require that we ship tests with applications as
part of acceptance testing. If this is the case, we can still ship an
application as a set of one or more archives, and a test suite as a
set of one or more archives.

This separation of application source code and test source code enables us to write
better tests and have less coupling between tests and applications. The best situation
is for the test source root to have a dependency on application classes and the
application classes to have no dependency on the tests that we have written.

http://junit.org
http://testng.org

Chapter 3

[99]

To write a test, we must first have a project. Any type of Java project can have tests
added into it. To add tests into a project, we can use the New File wizard. In the Unit
Tests category, there are templates for:

• JUnit Tests
• Tests for Existing Class (this is for JUnit tests)
• Test Suite (this is for JUnit tests)
• TestNG Test Case
• TestNG Test Suite

The NetBeans Developer's Life Cycle

[100]

When creating classes for these types of tests, NetBeans provides the option to
automatically generate code; this is usually a good starting point for writing classes.

When executing tests, NetBeans iterates through the test packages in a project
looking for the classes that are suffixed with the word Test. It is therefore essential
to properly name tests to ensure they are executed correctly.

Once tests have been created, NetBeans provides several methods for running the
tests. The first method is to run all the tests that we have defined for an application.
Selecting the Run and then Test Project menu options runs all of the tests defined
for a project. The type of the project doesn't matter (Java SE or Java EE), nor whether
a project uses Maven or the NetBeans project build system (Ant projects are even
supported if they have a valid test activity), all tests for the project will be run when
selecting this option.

After running the tests, the Test Results window will be displayed, highlighting
successful tests in green and failed tests in red.

The screenshots shown in this section are taken from the kb
application—a simple Knowledge Base application that is included
as part of the code bundle for this chapter. This application provides
a good example of unit testing and code coverage. It is recommended
that you download this example application and browse the source
code to see how NetBeans can help with application testing.

Chapter 3

[101]

In the Test Results window, we have several options to help categorize and manage
the tests:

• Rerun all of the tests
• Rerun the failed tests
• Show only the passed tests
• Show only the failed tests
• Show errors
• Show aborted tests
• Show skipped tests
• Locate previous failure
• Locate next failure
• Always open test result window
• Always open test results in a new tab

The second option within NetBeans for running tests it to run all the tests in a
package or class. To perform these operations, simply right-click on a package in the
Projects window and select Test Package or right-click on a Java class in the Projects
window and select Test File.

The final option for running tests it to execute a single test in a class. To perform
this operation, right-click on a test in the Java source code editor and select the
Run Focussed Test Method menu option.

Just like application source code, unit tests can be debugged
to see where they are going wrong. To debug tests, choose
the debug variant of the options described in this section, for
example, Debug Focussed Test Method or Debug Package.

The NetBeans Developer's Life Cycle

[102]

After creating tests, how do we keep them up to date when we add new methods
to application code? We can keep tests suites up to date by manually editing them
and adding new methods corresponding to new application code or we can use the
Create/Update Tests menu. Selecting the Tools and then Create/Update Tests menu
options displays the Create Tests dialog that allows us to edit the existing test classes
and add new methods into them, based upon the existing application classes.

Code coverage
In some organizations, code coverage is an important metric to show how many tests
are available for application source code. Whether the actual level of code coverage
is useful is a debatable point. However, viewing the code coverage for an application
certainly helps a developer see what parts of an application aren't covered by tests.

NetBeans has built-in support for the JaCoCo code coverage engine.

Chapter 3

[103]

For more information on JaCoCo, check out
http://www.eclemma.org/jacoco/.

To enable code coverage on a Maven project, the project's pom.xml needs to have
some minor modifications to allow JaCoCo to run. Add the following into your
application's pom.xml to enable code coverage:

 <build>
 <plugins>

 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.2.201409121644</version>
 <executions>
 <execution>
 <id>default-prepare-agent</id>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>default-report</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>default-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>

 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

http://www.eclemma.org/jacoco/

The NetBeans Developer's Life Cycle

[104]

Once this has been entered into the project's pom.xml file, a Code Coverage menu
option will be available when one right-clicks on a project in the Projects window.
This menu has the following options:

• Collect and Display Coverage: When this option is selected, NetBeans will
automatically perform code coverage analysis whenever unit tests are run

• Clear Results: This option clears the stored code coverage results
• Show Report: This displays the Code Coverage report
• Show Editor Bar: This option displays the code coverage status bar at the

bottom of source code windows

To perform code coverage analysis, all we need to do is run our tests, and NetBeans
and JaCoCo take care of everything else. If we decide that we do not want to gather
code coverage information, we can stop the collection by unchecking the Collect and
Display Coverage option.

When code coverage analysis has been run, a window is opened within NetBeans,
showing how much coverage each class in the project has, as shown in the following
screenshot:

Chapter 3

[105]

Double-clicking on any of the entries in the Code Coverage report will open the
corresponding Java source code file. When code coverage data is being collected and
displayed, source code files are highlighted to show which lines have been tested and
which have not. Any source code that has been tested in a unit test is displayed with a
green background color, whereas any code that has not been executed as part of a unit
test is displayed with a red background color, as shown in the following screenshot:

Along the bottom of the application source code windows is the code coverage
toolbar. This shows the percentage of the file that has been covered by unit tests
along with the buttons to run the tests for the particular class, run all tests, clear the
coverage reports, show the coverage reports, or disable code coverage analysis.

Performing TDD within NetBeans
Now that we've seen all the different aspects of the development life cycle, let's
pull it all together and give a brief demonstration of how to use these techniques
to perform TDD within NetBeans.

TDD is a software development process where the developer writes a test for a piece
of functionality before writing the functionality itself. The test will obviously fail at
this point as the implementation has not been written. The next stage is to write just
enough of the implementation to get the test to succeed. Subsequently, the developer
needs to take stock of their code and refactor it to remove any unnecessary code.

The NetBeans Developer's Life Cycle

[106]

Due to the way that tests initially fail, then are fixed and then refactored, the TDD
cycle is often referred to as the Red-Green-Refactor cycle.

For more information about TDD, check out http://en.wikipedia.
org/wiki/Test-driven_development.

To give an overview of how to perform TDD within NetBeans, let's use TDD to
write a method that calculates the factorial of an integer. The factorial of a number is
described as the product of all positive integers less than or equal to the number. One
additional rule is that the factorial of 1 is 0. Let's see how we can apply these rules
with TDD to develop some code.

The sample application, Factorial, that is generated to
show TDD concepts is included as part of the code bundle
for this chapter.

The first stage is to create a NetBeans project. Use the New Project wizard and create
a Java Class Library called Factorial. At this stage, we should have no source code
in the library project and no tests.

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

Chapter 3

[107]

Remembering that the first stage of TDD is to write a failing test, let's create a
blank new JUnit Test class called com.davidsalter.masteringnb.factorial.
FactorialTest, as shown in the following screenshot (if NetBeans should ask
what version of JUnit to use, select JUnit 4.x as this provides a richer API for
modern development):

Let's now create our first failing test. Looking at our description of the problem, we
know that the factorial of 0 is 1, so the corresponding test would be:

 @Test
 public void factorialOfZeroIsOne() {
 Factorial factorial = new Factorial();
 int result = factorial.calculate(0);
 assertEquals("0! should equal 1", 1, result);
 }

Using the NetBeans code completion tools, we can create the first instance of our
Factorial class as:

public class Factorial {

 public int calculate(int i) {
 throw new UnsupportedOperationException("Not written yet");
 }
}

The NetBeans Developer's Life Cycle

[108]

We've now completed the first phase in the TDD cycle—we've written a test, which
we expect to fail as we've not written any application functionality yet. Sure enough,
if we press Shift + F6 to test the application, we get a failed test, just as expected.

The next step in the TDD cycle is to write just the minimum amount to get the test
working. In this instance, let's change the Factorial class so that it returns the
correct value for 0, as shown in the following code fragment:

 public int calculate(int i) {

 if (0 == i) {
 return 1;
 }
 throw new UnsupportedOperationException("Not written yet.");
 }

If we now press Shift + F6 to run the tests again, we can see that our singular test
has passed.

We've now completed the second phase of the TDD cycle—we've made our tests go
from red to green.

Chapter 3

[109]

The next phase is to look at our code and say, "Do I like what I've written? Can I
make the code better?" It's important not to go overboard here and add new features
though as the functionality of the code should remain constant. In our simple
example, there's not much refactoring we could do here, so we go back to the red
phase of the TDD cycle and write another failing test.

The next test that we could write is to verify that results are only returned from the
calculate method if a positive integer is passed into the method. Again, we need to
write a failing test first before writing code to make the test pass. We can therefore
write the following test:

@Test
public void factorialOfNegativeNumberIsZero() {
 Factorial factorial = new Factorial();
 int result = factorial.calculate(-10);
 assertEquals("Factorial of -ve number should be 0.", 0, result);
}

You get the procedure now. We've written a test that fails when we run it, so we
see red test results in the Test Results window. We will now need to write some
application code to fix the failing test. Again, we must be wary not to implement
too much functionality. We only want to write sufficient application code to make
our failing test work (ensuring that our other tests don't fail in the process). Our
application code can therefore be updated to the following (this fixes the failing test
but doesn't add any new functionality):

public int calculate(int i) {

 if (0 == i) {
 return 1;
 }

 if (i < 0) {
 return 0;
 }
 throw new UnsupportedOperationException("Not written yet.");
}

Running the tests for the project again at this stage should produce two successful
tests and no failing tests.

At this point, we should be fairly happy that we're writing good code, but we need
to look at refactoring the code again. We need to see whether there's anything we
can improve before moving on to the red phase of the TDD cycle—writing another
failing test.

The NetBeans Developer's Life Cycle

[110]

We've looked at a couple of cycles of the Red-Green-Refactor loop for TDD, so I'll
leave it as an exercise to complete the development of the Factorial class. For those
who want to check their results or simply to see the complete solution, the complete
project is available as part of the code bundle for this book.

Summary
In this chapter, we looked at the typical tasks that a developer does on a day-to-day
basis when writing applications. We saw how NetBeans can help us to run and debug
applications and how to profile applications and write tests for them. Finally, we took
a brief look at TDD, and saw how the Red-Green-Refactor cycle can be used to help us
develop more stable applications.

In the next chapter, we'll look at managing services within NetBeans and see how we
can manage and interact with them all from within the NetBeans IDE.

[111]

Managing Services
Historically, developers used to write monolithic applications that ran on a single
machine without interacting with any other systems. Of course, that was long time
ago (in terms of software development), and now, developers write all sorts of
applications that can run on a wide range of devices such as mobile telephones,
desktop computers, or remote servers that provide Platforms as a Service (PaaS).

In addition to running our applications on a range of devices, as developers, we
also consume a lot of different services—some within our applications, and some
purely to make our development easier and more robust. For example, we all use
bug-tracking systems, and many of us use continuous integration systems or remote
databases. Even something as ubiquitous as Maven is a service that we need to
manage effectively while using it.

In this chapter, we'll be looking at the different services that a Java developer
will typically use from within NetBeans and see how NetBeans can enhance our
effectiveness using these services. We'll be looking at the following services:

• Databases
• Web Services
• Application Servers
• Maven Repositories
• Cloud services
• Hudson Builders
• Task Repositories

Managing Services

[112]

Databases
Many applications require databases to store information, ranging from embedded
data using tools such as Apache Derby to large enterprise databases such as Oracle.
Java does not only provide many different APIs to access these databases, such as
JDBC and JPA, but also provides the facilities for managing databases, whether they
are local to the developer's machine or hosted remotely. We'll look at developing
against databases in the next chapter, but first, let's take a look at how we can
manage databases from within NetBeans.

The first entry in the Services window in NetBeans (on a fresh installation with no
additional plugins installed) is the Databases explorer:

Expanding the Databases node in the Services window allows us to see what
databases we have registered along with the database drivers that are installed
within NetBeans and any connections that we have made to the databases.

Chapter 4

[113]

Connecting to Java DB
NetBeans provides native support for Java DB (Apache Derby) and MySQL.
Connections to other databases can be made by JDBC connections. The preceding
screenshot shows an example of the default Java DB connection that is provided
with NetBeans; here, we can see that there is one connection to the sample database.
The default Java DB connection is to a Java DB instance that is provided with your
JDK. We can see and modify the connection details for the Java DB connection by
right-clicking on the Java DB node and selecting Properties.

The Java DB Properties dialog allows the Java DB installation folder (the location for
the .Jar files containing Java DB) to be specified along with the database location
(the location of the data files that make up the database).

We can start and stop the configured Java DB by right-clicking on the Java DB node
and selecting the Start Server and Stop Server options, respectively.

Finally, we can create new databases within the configured Java DB by right-clicking
on the Java DB node and selecting the Create Database… option.

Managing Services

[114]

When creating a database, we can gain access to the Java DB properties (the location
of the Java DB .Jar files and the location where the data files associated with the
database are stored) by clicking on the Properties… button.

After clicking on the OK button to create a database, the Java DB instance will be
started if it is not already running, and the database will be created. The newly
created database will then be displayed within the Java DB node in the Services
window and a connection to the new database will be made, as shown in the
following screenshot:

We'll take a look at how to use these connections in a moment, but first, let's see how
we can make connections to MySQL and other databases.

Connecting to MySQL
In addition to providing native support for Java DB, NetBeans provides native
built-in support for MySQL. By this, we mean that no additional drivers need to be
downloaded to connect to MySQL databases; everything is provided as standard
with NetBeans.

To create a connection to a MySQL database, right-click on the Databases node in the
Services window and select the Register MySQL Server… menu option. Selecting
this opens the MySQL Server Properties dialog, allowing both the basic and admin
properties to be specified:

Chapter 4

[115]

The basic properties are where the connection details for the MySQL Server instance
are specified. These include the server host, port number, and administrator
username and password.

The admin properties allow us to specify the commands and their arguments to start
and stop the MySQL Server if these are being managed from within NetBeans. The
path to the MySQL administration tool (for example, MySQL Workbench) can also
be specified on the Admin Properties page. If you are using web-based management
tools for MySQL (such as PhpMyAdmin), this can also be specified here instead of
the path to the executable administration tool. The specified administration tool
for MySQL can be launched from within NetBeans by right-clicking on the MySQL
Server instance within the Databases node of the Services window and selecting the
Run Administration Tool menu option. The database properties for MySQL can be
accessed after a connection to the MySQL Server has been defined by right-clicking
on the MySQL Server instance and selecting the Properties… menu option.

Upon expanding the MySQL Server node, a list of the databases in the server is
displayed. Any of these can be connected to and managed by right-clicking and
selecting the Connect… menu option. In a similar fashion to using Java DB, once
a connection is made to a database, it is displayed after the Drivers node in the
Services window.

Since MySQL allows multiple databases to be created within a single server,
NetBeans provides an option to perform this task as well. Right-clicking on the
MySQL Server instance in the Services window provides the Create Database…
menu option. From here, we can create new databases within the MySQL Server.

Managing Services

[116]

This functionality can also be performed by running the MySQL
administration tool discussed earlier; however, when databases
are created via the Create Database… menu option, connections
to them are automatically established in the Services window for
the ease of use.

Connecting to other databases via JDBC
Although NetBeans provides built-in native support for Java DB and MySQL, we
can connect to any database from within NetBeans if an appropriate JDBC driver is
available. The list of the recognized JDBC drivers is displayed within the Drivers node:

Although the Drivers list only shows the available JDBC drivers for Java DB,
MySQL, Oracle, and PostgreSQL, any database with a JDBC driver can be accessed
from within NetBeans. To register a new driver, simply right-click on the Drivers
node and select the New Driver… menu option.

In the New JDBC Driver dialog, we can specify the path to the .Jar file(s) that
implement the JDBC driver together with the driver class and the name that we wish
to reference the driver by. The following screenshot shows an example of the details
required to register a Microsoft SQL Server JDBC driver:

Chapter 4

[117]

Note that although Oracle is listed in the Drivers node of the
Services window, the actual Oracle JDBC drivers are not supplied
with NetBeans as this is not permitted by the Oracle license.
To connect to an Oracle database, the JDBC drivers need to be
downloaded either from http://oracle.com or used from
within your Oracle database installation.

For any registered JDBC drivers, a connection can be made to the specified database
by right-clicking on the driver and selecting the Connect Using… menu option.
Upon selecting this menu option, a dialog is displayed, asking for the connection
details to the database (username, host, password, and others). Once these have been
entered, a connection will be established and opened.

All of the connections within NetBeans to databases, irrespective of whether they are
to the Java DB, MySQL, or JDBC databases, are actually made by JDBC and are listed
after Drivers in the Services window, as shown in the following screenshot:

http://oracle.com

Managing Services

[118]

Open connections are shown with the symbol, (), whereas closed connections are
shown with the same symbol but with a tear down the middle of it ().

Right-clicking on a database connection provides the option to either Connect or
Disconnect to the specified database.

Managing databases
Once we have connected to a database, we can execute SQL commands against
it by right-clicking on the connection and selecting the Execute Command…
menu option. Selecting this menu option opens a SQL editor window within the
main part of the NetBeans IDE into which we can type and execute SQL statements
against the database.

In the SQL editor window, we can perform multiple database operations:

• Run SQL: This executes all the SQL statements in the SQL window
• Run Statement: This executes only the currently selected statement in the

SQL window
• Select Connection In Services: This selects the current JDBC connection in

the Services window
• SQL History: This displays the previously executed SQL statements

After executing a SQL statement, the results of the statement are displayed in the
Output window. This output will state whether the execution of the statement
was successful, how many rows were affected, and the time it took to perform the
operation. If a SQL statement returned data (such as a select statement), the result
set will be displayed in a paginated list at the bottom of the SQL window. When
executing statements in the SQL editor, NetBeans uses an auto commit feature so
that a database commit operation is performed after each statement or batch of
statements is executed.

Chapter 4

[119]

From within this window, we can perform much more than simply looking at the
results returned from the SQL operation. Right-clicking within the results pane
allows us to:

• Insert record: A dialog is displayed allowing us to enter data for the specific
table being viewed

• Delete selected record: This lets us delete the selected record from
the database

• Commit Selected Record(s): This feature commits any edited records into
the database

• Cancel Edits Selected Record(s): This cancels any changes made to the
existing records

• Truncate Table: This removes all the data in the selected table
• Copy Cell Values: This copies the selected cell values to the clipboard
• Copy Row Values: This copies the selected row values to the clipboard
• Copy Row Values (With Header): This copies the selected row values with

header to the clipboard
• Show SQL Script for CREATE: This displays a SQL script for creating the

selected table
• Show SQL Script for INSERT: This displays a SQL script for inserting the

selected entries
• Show SQL Script for DELETE: This displays a SQL script for deleting the

selected entries
• Show SQL Script for UPDATE: This displays a SQL script for updating the

selected entries with any changes made

Managing Services

[120]

• Print Table Data: This prints the table data to a printer
• Refresh Records: This refreshes the result set
• Set to NULL: This sets the selected entry to null
• Set to default: This sets the selected entry to its default value

As can be seen, the SQL window allows us to execute queries and statements against
the database while displaying the results in the Output window. We can also manage
databases directly from within the Services window.

If we expand a connection node in the Services window, the list of tables, views, and
procedures for the selected connection is displayed.

Right-clicking on any of these entries displays a context menu allowing us to interact
with the selected entry. For example, right-clicking on the Tables node and selecting
Create Table… displays a dialog where we can define the columns that make up a
database table and then create the table directly without having to enter any SQL.

Right-clicking on a table and selecting the View Data… command
acts as a shortcut to opening a SQL window and entering a select
* from statement to view all the data within a table.

Web Services
Invoking web services used to be a complicated procedure. You had to choose a
client web services library to use and then usually write an Ant script that would
parse a WSDL file and generate some client classes for you. Fortunately, NetBeans
has made this whole process a lot easier. With NetBeans, we can now simply
drag and drop a web service into a class, allowing us to easily invoke web service
operations. Let's take a look at exactly what we mean by this.

Chapter 4

[121]

Within the Web Services node of the Services window, NetBeans is preconfigured
with many web service definitions from the following vendors:

• Amazon
• Delicious
• Flickr
• Google
• StrikeIton
• WeatherBug
• Zillow
• Zvents

Each of these categories contains one or more different web services that we can
invoke from within our applications. For example, if we expand the Amazon node,
we can see that there are web services for Amazon—Associates Service, EC2 Service,
S3 Buckets Service, and S3 Service:

Expanding any service completely will result in individual web services being
discovered. In the preceding screenshot, we can see that the itemSearch web service
is located within the Amazon | Associates Service | [xml] category. Individual web
services are denoted with a red ball icon (), whereas their enclosing categories are
marked with a hand holding the red ball icon ().

Managing Services

[122]

To add code to your application to invoke the web service, simply drag the web
service (itemService in the preceding screenshot) from the Services window into
a Java source code file at the location you wish to invoke the web service. Upon
dropping the web service, NetBeans will display a dialog, asking for any parameters
for the web service to be defined; these, of course, will be web service-specific. The
following screenshot gives an example of the web service parameters required for
the Amazon Associates itemSearch web service:

Upon entering any required values, NetBeans will generate the required code to
invoke the web service creating the appropriate classes within your application;
typically, these classes are within the org.netbeans.saas package and subpackages.

Some web services require authentication to invoke their web
service API methods; Amazon and Google, for example, require
an API key. When running your application using these web
services, NetBeans will display an error message stating that
the API key needs to be defined along with the information on
what file the key needs to be defined within, for example, java.
io.IOException: Please specify your api key in the
amazonassociatesserviceauthenticator.properties file.

Chapter 4

[123]

Invoking web services from NetBeans has been made immeasurably easier using the
drag and drop technique described earlier, but how do we know what parameters a
web service takes and whether they are optional and so on? Fortunately, NetBeans
allows us to easily view the documentation for a web service by clicking on the
top-level service (for example, Associates Service) and selecting the View API
Documentation option. Selecting this option causes NetBeans to open your default
system browser and display the relevant documentation for the selected web service.
We can also view the WADL for an existing web service by right-clicking on the
service and selecting the View WADL option.

For the WSDL-based web services (for example, the StrikeIron web services), we can
do the same operations as described earlier, but we can also test the web services
directly from within the Services window without having to drag and drop them
into our applications. To test a web service, right-click on the web service itself and
select the Test Method menu option. NetBeans will display a dialog, allowing all
of the parameters for the web service method to be entered. Clicking on the Submit
button in the dialog will invoke the web service and display the results toward the
bottom of the dialog.

Managing Services

[124]

So far, we've seen how we can invoke and test a set of web service operations, all
from within NetBeans, but what if we want to invoke a different web service, for
example, one hosted elsewhere or even one we've written ourselves? Fortunately,
NetBeans allows us to add any number of web services to the Services window that
we can categorize into groups and then invoke by dragging and dropping into our
Java source code.

Right-clicking on the Web Service node (or any of its descendant groups) and
selecting the Add Web Service menu option displays a dialog where we can specify
the WSDL or WADL file for the web service. This can either be a local file or can be a
remote URL. We can also specify a default package for the web service to be stored
in so that the default of org.netbeans.saas is not used.

Finally, we can arrange the hierarchy of the web services in the Services window
simply by dragging and dropping web services into other groups that we have
made. Groups can be created at any point within the Web Services hierarchy by
right-clicking and selecting the Create Group menu option at the required place.

Chapter 4

[125]

Application Servers
The Servers node in the Services window allows us to manage application servers
such as GlassFish and Tomcat. The default enterprise distribution of NetBeans installs
Tomcat and GlassFish and automatically registers them under the Servers node.

Right-clicking on the Servers node allows additional application servers to be
registered within NetBeans. The following application server types can be registered:

• Apache Tomcat
• Apache TomEE
• GlassFish Server
• JBoss Application Server
• Oracle WebLogic Server
• WildFly Application Server

The procedure for registering an application server depends somewhat on the
application server itself, but the general procedure is to specify the location and
configuration of an application server, possibly registering the administrative
credentials that can be used for managing the server. The GlassFish Server
registration process is unique in that it allows you to download a copy of the
GlassFish Server while registering the application server. That is to say the GlassFish
application server does not need to already exist when adding an application server
into NetBeans. This is unique to GlassFish; all the other application servers require
an installed application server.

The Payara Server (http://payara.co) can be registered
as a GlassFish application server as the Payara Server is a
drop-in replacement for the GlassFish application server.

http://payara.co

Managing Services

[126]

Once an application server has been registered, it can be selected as the default
server for running Java EE applications; this is typically performed when the
application is created. When creating a new Java web application or EE application,
NetBeans requires a server to be specified, as shown in the following screenshot:

If the required application server has not been registered within NetBeans, it can be
added by pressing the Add… button.

Different application servers provide different functionality from within the Services
window. Common functionality between all the servers, however, is to start and stop
the server in either a run or debug configuration. For the GlassFish server, we can
also easily view the admin console for the running server and view the server's logs
and access the server's update center. All of this can be achieved by right-clicking on
the GlassFish Server instance in the Services window:

Chapter 4

[127]

Similarly, once a server has been started, different application servers provide
different functionality from within the Services window. With GlassFish, for
example, we can see the applications that are deployed to the server along with
any resources that are also deployed (such as JDBC resources and JDBC connection
pools). We can also see any JMS, JavaMail, and Web Services that are deployed to
the server, as shown in the following screenshot:

Managing Services

[128]

Maven Repositories
Maven is one of the most popular build systems for Java programmers. With Maven,
software libraries are published and stored on a central repository, unsurprisingly
called Maven central. This repository is hosted on an apache.org domain since
Maven is an Apache product. When a library is pulled from a Maven repository,
it is stored locally for caching purposes; the next time the library is required, it is
obtained from a local cache rather than from the central repository. You can imagine
that as time goes on, both the central and, to a lesser extent, the local repositories
grow at an enormous rate.

With the Maven repositories being so large, knowing the details about a package that
we wish to use becomes increasingly complex. Fortunately, the Maven Repositories
section of the Services window allows us to search and browse the packages that
are installed on both the Maven central and our own local Maven repositories.
Expanding the Repositories node shows a list of all the different Maven groups
and artifacts within each group.

Say, for example, we wish to add JUnit support to our application, but want to know
about the different version of JUnit and their dependencies. We can browse through
the Maven central repository until we find the junit Maven artifact within the
junit Maven group.

Extending the artifact, we can see a list of all the different versions of the artifact that
are available (for example, junit 4.12, junit 4.12-beta-3, and so on). Expanding
any artifact node lists all the classes and resources that are used within the particular
version of the library.

Chapter 4

[129]

Along with simply browsing for artifacts, we can search for them by right-clicking
on the Maven Repositories node and selecting the Find… menu option. The Find In
Repositories dialog is then displayed:

From here, we can specify criteria to find artifacts containing certain text. After
selecting OK and performing a search, a list of suitable artifacts is displayed as
the last node within the list of Maven Repositories.

Once we've found an artifact, either via searching or browsing the full repository,
right-clicking on an artifact provides us with the following options:

• View Details: This opens the details window where all the details of
the package such as its name, size, description, dependent projects,
and others is displayed

• Add as Dependency…: This displays a dialog listing all of the currently open
Maven projects, allowing us to add the selected artifact as a dependency of a
selected project

• Find Usages: This finds usages of the specified artifact in both open projects
and on the selected repository

• View Javadoc: This views the Javadoc for the selected artifact
• Open: This browses the packages and resources within the specified artifact
• Download: This downloads the artifact locally
• Download Sources: This downloads the source for the selected version of the

selected artifact
• Download Javadoc: This downloads the Javadoc for the selected version of

the selected artifact
• Copy: This copies the required Maven dependency so that the artifact can

easily be used within a pom.xml file

Managing Services

[130]

Sometimes, organizations deploy their packages to repositories other than the Maven
central. This is particularly common within organizations that do not wish to make
their code public. Fortunately, NetBeans allows us to register third-party Maven
repositories so that we can browse the packages installed on them and perform the
same operations as we can on the Maven central and local repositories.

To add a Maven repository into the Services window, simply right-click on the
Maven Repositories root node and select the Add Repository… menu option.
Entering the repository's ID, name, and URL adds it to the list of registered
repositories. Adding repositories to the Services window does not affect the way
that your applications are built, it simply allows you to browse and find artifacts
within the remote and local Maven repositories.

Cloud services
The Cloud services node in the Services window allows us to view and manage
different cloud services, all from within NetBeans. The default installation of
NetBeans provides support for viewing Amazon Beanstalk clouds; however, plugins
are available for other cloud vendors such as Jelastic, OpenShift, and Oracle Cloud.
These additional plugins can be installed by selecting the Plugins menu option from
the Tools menu.

To add a cloud service into the Services window, simply right-click on the Cloud
node and select the Add Cloud… menu option. Select the required cloud provider
from the Add Cloud Provider dialog, as shown in the following screenshot, and
complete the wizard to register the provider. Different cloud providers require
different information to be entered during the registration process, but typically,
authentication and endpoint information are required.

Chapter 4

[131]

Once a cloud provider has been registered, we can view the applications deployed
to the cloud provider, recycle them, and also view the logs for them. With the
OpenShift provider, we can even create new applications to be deployed to the
OpenShift cloud. The following screenshot depicts the Jelastic provider, showing
how we have access to any deployed applications along with access to the server
and log files created by the application:

Hudson Builders
Hudson is a continuous integration system that builds and runs tests on software at
set intervals. Within Hudson, we can configure builds to be run at certain intervals,
such as after code check-in or at timescales such as every hour. Each Hudson job
can be configured to run when required and can check out or clone source code
repositories to perform builds. Hudson then maintains a list of builds so that the
quality of software can be monitored.

For more information on Hudson, refer to http://hudson-ci.org.

http://hudson-ci.org

Managing Services

[132]

Within NetBeans, we can register one or more Hudson servers so that we can
monitor the status of builds directly from within the IDE. To add a new Hudson
server into NetBeans, right-click on the Hudson Builders node in the Services
window and select the Add Hudson Instance… menu option.

In the Add Hudson Instance dialog, we can enter name for the Hudson instance
together with URL. If we need to route via a proxy server to gain access to the
Hudson instance, we can configure this via the Proxy Configuration… button.

If we're running on a fresh instance of Hudson with no jobs defined, we can add
a new job directly into Hudson from NetBeans by right-clicking on the Hudson
instance and selecting the New Build… menu option. Upon selecting this menu
item, NetBeans will display the New Continuous Build dialog, asking for details
of Build Server, Build Name, and Project to Build. The Project to Build dropdown
lists all the currently open projects within NetBeans. If you do not have the project
open already, it can be opened by selecting the Browse… button:

Chapter 4

[133]

After creating a new continuous build, NetBeans will open the appropriate Hudson
job in the default system browser so that the job can be completely defined within
Hudson. Check out the Hudson documentation at http://www.hudson-ci.org for
details on how to create build jobs in Hudson.

If there are already build jobs configured within Hudson, these will automatically be
displayed within NetBeans, so there is no need to recreate the existing build jobs.

For each build job in Hudson, an entry will be displayed underneath the Hudson
instance in the Services window.

Each project is color coded with a ball icon to show whether the build has failed or
not, with failed builds being displayed in red. For each project, the remote workspace
can be viewed (this is the build workspace that Hudson used for the build) together
with a list of all the previous builds that have been performed for the project.

For each build, we can right-click and perform these options:

• Show Changes: This shows the changes made to the source for this build
• Show Console: This shows the build console for this build
• Show Test Failures: This shows which tests failed for this build
• Open in Browser: This opens the Hudson build job in the system's

default browser

http://www.hudson-ci.org

Managing Services

[134]

Task Repositories
NetBeans provides access to bug tracking systems such as Bugzilla, Jira, and
Mantis through the Task Repositories node in the Services window. Bugzilla and
Jira support are supplied prebundled with NetBeans, however, Mantis support
requires adding via installing the appropriate plugin from the Tools and then
Plugins menu options.

Configuring the different task repositories is a similar process for each of the
different systems; however, we'll take a look at configuring Mantis here.

For more information on Mantis, visit http://mantisbt.org.

To integrate a new task repository within NetBeans, simply right-click on the Task
Repositories node in the Services window and select the Create Task Repository…
menu option. On the Create Task Repository screen, enter the name we'll use
to recognize the repository, along with the URL for Mantis and a username and
password, as shown in the following screenshot:

Once the task repository has been registered, it is displayed in the Services window.
In the case of Mantis, right-clicking on the task repository provides four options:

• Find Tasks…: This displays the Find Tasks window, allowing issues within
the task repository to be searched for

• Report Task…: This displays the Report a New Task window, allowing new
issues to be created within the task repository

http://mantisbt.org

Chapter 4

[135]

• Edit: This edits the Mantis connection information
• Remove: This deletes the Mantis integration

With these options, we can, therefore, create new issues and search for the
existing issues, all from within NetBeans itself. What about when we check in
code to a source control system such as Subversion or Git? Can we mark issues
as completed automatically?

Yes, we can! Fortunately, the task repository integration within NetBeans is available
when code is committed to a source code repository. When the option is selected to
commit code, a task repository and a task within it can be selected. The task can be
updated with new information or can be marked as fixed. All of this is available from
within the Commit dialog within NetBeans.

Managing Services

[136]

Summary
In this chapter, we looked at many different types of services that developers typically
use and saw how NetBeans can help developers take advantage of them.

In the next chapter, we'll look at database persistence and see how to interact with
different databases from within NetBeans. We'll see how NetBeans can make the
whole process a lot easier.

[137]

Database Persistence
In the previous chapter, we looked at managing different services from within
NetBeans. One of the services we looked at was managing different database
connections and databases themselves. We saw how to perform SQL statements
against a database and return result sets from queries.

In this chapter, we're going to look at how NetBeans helps us to perform database
operations from within applications. We're going to look at the following topics:

• Creating persistence units
• Creating blank entity classes and entity classes from databases
• Creating JPA controllers
• Creating database schemas and database scripts from entity classes

Java EE Persistence
From Java EE 5 onward, the Java Persistence API (JPA) allows us to persist and
retrieve objects from databases. JPA provides an object/relational mapping tool
that maps between Java objects and SQL statements. With JPA, therefore, it is
not necessary to execute a number of PreparedStatement against the database
Connection objects to get a ResultSet back from the database, like was necessary
with JDBC. Additionally, as JPA abstracts developers away from SQL statements, we
no longer have to worry about different "flavors" of SQL. For example, with JPA, we
are generally removed from the problem of "how do we create auto-incrementing
fields with Oracle/SQL Server/MySQL".

In this chapter, we're not going to explain all the different concepts of JPA; we will
assume that you have some familiarity with it. The aim of this chapter is not to
introduce or teach JPA, but to show how NetBeans aids developers who are handling
relational data. We will concentrate on how NetBeans enhances our productivity
when interacting with databases.

Database Persistence

[138]

To learn more about JPA, refer to the Java Persistence API
tutorial at https://docs.oracle.com/javaee/6/
tutorial/doc/bnbpz.html.

JPA entities
JPA has the concept of entities that can be saved and retrieved to a database. To
make things simpler, Java EE 5 added the concept of annotations so that Java classes
could be annotated to add runtime information to classes. JPA provides a set of
annotations that can be applied to Java classes, allowing developers to easily persist
and retrieve objects from relational databases.

A simple Java class can be used to represent a JPA entity; however, there are several
defining features that an entity class must possess. In Java EE 7, for a class to
represent an entity, it must:

• Be annotated with the @Entity annotation located within the javax.
persistence package

• Not be declared final or contain instance variables that are declared final
• Have a minimum of one public or protected no argument constructor
• Implement the Serializable interface if it is to be exposed outside of a

remote session bean
• Ensure instance variables that are persisted are not public and can only be

accessed via the accessor or business methods

Creating blank entity classes
Now that we've seen the basic rules that allow a Java class to represent a JPA entity,
how do we create an entity class? We can either create a Java class manually and
ensure all the preceding rules are met, for example, adding the @Entity annotation as
required or we can use the NetBeans wizards to automatically create classes for us.

https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html

Chapter 5

[139]

To create a blank entity class, select the File and then New File… menu options from
the NetBeans main menu. On the New File dialog, select the Persistence category
and then Entity Class from the list of File Types:

Within the Persistence category, we can see that there is also an option to create
Entity Classes from Database. We'll see how this works shortly.

Upon selecting the Next > button, we're presented with the standard options to
create classes, namely a Class Name, Package, and Location to create the class
(Source Packages or Test Packages).

Database Persistence

[140]

What's different on this dialog from the standard New Java Class dialog is that
we can specify a primary key type. This defaults to Long, but can be changed
as appropriate to different types. Choosing Long is probably the best bet for
applications though unless you have a specific reason to use a different type. We
can also specify whether a persistence unit will be created upon completion of the
wizard. If we choose to not create a persistence unit, NetBeans will not allow the
wizard to continue if there is no existing persistence unit in the project.

Continuing through the wizard, clicking on the Next > button takes us to the Provider
and Database configuration screen where we can define settings that are stored in the
persistence unit for the application.

Chapter 5

[141]

This screen allows several key concepts within the persistence unit to be defined:

• Persistence Unit Name: This is the name of the persistence unit. JPA uses
this to distinguish between multiple persistence units defined in a project.

• Persistence Provider: JPA is a specification; however, there are multiple
products that implement the specification. Within NetBeans, the default is
EclipseLink, although Hibernate can also be chosen. If you wish to use a
different persistence provider such as Apache OpenJPA, a new provider can
be created by selecting the New Persistence Library… drop-down option
and specifying the relevant .Jar files for the provider.

• Data Source: This drop-down list displays all the data sources defined within
NetBeans. To create a new data source, select the New Data Source… option
and then specify a JNDI name and a database connection in the resulting
dialog. If you are unsure how to create data sources, refer back to Chapter 4,
Managing Services.

• Use Java Transaction APIs: This option allows us to decide whether we want
transactions to be managed for us or to have fine-grained programmatic
control over transactions. Unless you have a specific reason not to use the
Java Transactions API, this option should be kept selected.

If you are creating an entity class in a standard Java application, the
option to use the Java Transaction API will not be present. This option
depends upon additional features provided by the application servers
and is, therefore, generally only available for web applications.

• Table Generation Strategy: Here, we can specify how JPA creates and drops
tables within the database. There are three options to select from:

 ° Create: Database tables are created when the JPA application first runs.
 ° Drop and Create: Database tables are dropped and then recreated

when the JPA application first runs.
 ° None: JPA does not create or drop tables. Tables must be created

outside the application before it runs.

Upon completing the wizard, a blank entity class and a persistence unit are created
(assuming the option to create a persistence unit was selected).

Database Persistence

[142]

The basic form of the entity class is:

@Entity
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
}

The default persistence unit (persistence.xml) is defined as:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="MasteringNB_PU" transaction-type="JTA">
 <jta-data-source>jdbc/sample</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-generation.database.
action" value="drop-and-create"/>
 </properties>
 </persistence-unit>
</persistence>

Editing the persistence.xml file
Once we've created a persistence.xml file, we can edit it either as raw XML in a
text editor window within NetBeans or use the NetBeans Design view from within
the editor window.

Chapter 5

[143]

Selecting the Design, Source, and History options toggles the different views of the
persistence.xml file. When the Design view is selected, a pop-up menu is available
to the right of the History button (as shown in the preceding image). Selecting entries
from this dropdown selects different entries within the Design view. For example, if
we have multiple persistence.xml files, we can select the one to edit from here, we
can select the General details, or the specific Properties details for a persistence.
xml file to edit.

The first few options within the Design view of the persistence unit editor are the
same as when creating a persistence unit (Persistence Unit Name, Persistence
Provider, Data Source, Use Transaction APIs, and Table Generation Strategy).
Following on from these options, we have additional JPA configuration:

• Validation Strategy: This feature allows us to specify the validation mode
for the provider of the persistence unit and is available when using JPA 2.0
and above. Entries here map to the <validation-mode /> entry within the
persistence.xml file.

Database Persistence

[144]

• Shared Cache Mode: Here, we can specify the caching mode that is provided
by the persistence provider when using JPA 2.0 and above. Entries here map
to the <shared-cache-mode /> element within the persistence.xml file
and correspond to the javax.persistance.SharedCacheMode enumeration
values of ALL, NONE, ENABLE_SELECTIVE, and DISABLE_SELECTIVE. The
Unspecified option is the equivalent of the persistence.xml file, not
containing a <shared-cache-mode /> element.

• Include All Entity Classes in "Persistence" Module: When this option is
selected, all the classes annotated with @Entity will be included within the
persistence unit. If this option is not selected, individual classes can be selected
and removed from the persistence unit by selecting the Add Class… and
Remove buttons, respectively, to the right of the Include Entity Classes list.

Finally, the Properties section allows us to define any custom properties required by
the selected JPA provider.

When editing a persistence.xml file, the Navigator window shows
a hierarchical tree structure corresponding to the entries in the file.
Selecting any of the entries in the hierarchy in the Navigator window
highlights the corresponding entry in the source code editor window.

Creating entity classes from databases
In the previous section, we took a code first approach and learned how to create
empty entity classes within NetBeans. When applications using these entities are
executed, we saw how the table generation strategy for the persistence unit can be
used to create the schema for the database.

In this section, we're going to take a data first approach and see how NetBeans can
help us to create entities when we already have a database schema.

In this section, we're going to create entities from existing database tables. To describe
this feature, we're going to use the Java DB sample database that is provided as
standard with GlassFish 4. Using the Services window, we can see that there are
several tables in this database. Let's take a look at how these can be modeled as entities.

Chapter 5

[145]

To create entities from a database, we must first ensure that we have a connection
to the database we wish to model. If you are having difficulty creating a database
connection, please refer to Chapter 4, Managing Services, where we detailed how to
use the Services window to make connections to databases.

Once we have a connection to the appropriate database, we can start to map out the
database entities by selecting the File and then New File… menu options.

In the New File dialog, select Persistence from the list of Categories and Entity
Classes from Database from the list of File Types and continue with the wizard by
pressing the Next > button.

The New Entity Classes from Database dialog is displayed, as shown in the
following screenshot:

Database Persistence

[146]

At the top of the dialog, the Data Source dropdown lists all of the database
connections that we have defined within NetBeans in the Services window.
From this list, we select the database that we wish to create entities from.

On the left-hand side of the dialog is a list of Available Tables that are present
within the selected database. To map any of these tables into entities, we simply
highlight the table and click on the Add > button. The list of selected tables on
the right-hand side of the dialog shows which tables will be mapped to entities.
Individual tables can be added or removed here, or we can add or remove all of
the tables by pressing the Add All >> or << Remove All buttons, respectively.

If a table is already mapped (as in the Customer table in the
preceding screenshot), the entity class name is displayed in
brackets next to the table name.

Using the dropdown underneath the list of Available Tables, we can select to list:

• Any: All the available tables are listed and are available for mapping
• New Only: Only the new tables are available for mapping
• Update Only: Only the tables that have already been mapped to entity

classes are available for mapping

If the Include Related Tables checkbox is checked when adding tables to the
Selected Tables list, any tables that have foreign key relationships to the selected
table are automatically added into the Selected Tables list. These tables names are
displayed in gray to indicate that they have been automatically added. Hovering
the mouse over these table names displays a tooltip, showing the table they have a
foreign key to.

Chapter 5

[147]

Selecting the Next > button in the wizard causes the Entity Classes page of the
wizard to be displayed where we can map tables to the specific classes.

At the top of the dialog, a list of database tables that are to be mapped to entities is
displayed together with Class Name of the entity and Generation Type. Class names
default to the same name as the table, but are in camel case and have underscores
removed. So, for example, the DISCOUNT_CODE table is mapped to an entity named
DiscountCode. Double-clicking on the relevant Class Name field allows this to be
changed if you require a different Java class name.

The class name for existing entities cannot be changed using this
wizard as they are fixed to the name of an existing Java class.

Database Persistence

[148]

For tables that are not mapped to existing entities, the Generation Type is set to
New. This means that a new class will be created for each table. For tables that
are already mapped to entity classes (for example, Customer in the preceding
screenshot), the Generation Type defaults to Update. This means that the existing
Java class will be taken and updated to match the database schema. If you wish to
completely overwrite any existing classes, set the Generation Type to Recreate.

To change the Generation Type to either Update or Recreate for all the existing
classes listed in the dialog, select the … button below the table. You will then be
prompted to select Set All to Update or Set All to Recreate.

Next, we have the standard fields when creating a Java class, namely Project,
Location, and Package.

Finally, on the Entity Classes page, there are several checkboxes that describe the
generated entity class:

• Generate Named Query Annotations for Persistent Fields: The generated
entity class will have @NamedQueries defined for each of the fields in the
class if this option is selected.

• Generate JAXB Annotations: The generated entity class will be annotated
with @XmlRootElement so that it can be used from a Java Architecture for
XML Binding (JAXB) web service.

• Generate MappedSuperclasses instead of Entities: This option
causes NetBeans to generate a mapped superclass (annotated with
@MappedSuperclass) instead of an @Entity class for each mapped table.
If this option is selected, the option to generate named query annotations
for persistence fields is not available.

• Create Persistence Unit: This option allows NetBeans to create a persistence
unit for the specified data source. It is only available if an existing persistence
unit does not exist in the project.

Chapter 5

[149]

Selecting the Next > button takes us to the final page of the New Entity Classes from
Database wizard:

From the Mapping Options page, we can fine-tune how tables are mapped to entity
classes with these options:

• Association Fetch: This option specifies how table relationships are fetched
from the database as either eager or lazy fetching. For lazy fetching, the
fetch=FetchType.LAZY fetch type is added into relationships. For eager
fetching, the fetch=FetchType.EAGER fetch type is added into relationships.
The default setting adds no fetch type into a relationship.

• Collection Type: This specifies the Java collection type that is used for the
@OneToMany and @ManyToMany relationships. The different collection types
available are java.util.Collection, java,util.List, and java.util.
Set. Typically, a java.util.Set is used when repeated values are not
allowed in the collection.

• Fully Qualified Database Table Names: This option specifies that the
catalog and schema names are added into the @Table name when they exist.

• Use Column Names in Relationships: When this option is selected, the
relationship field names (for one to many, many to one, and one to one
relationships) are named after the database column names.

Database Persistence

[150]

• Use Defaults if Possible: This option specifies that default values for
annotations are to be used wherever possible, thereby reducing the
amount of code used within annotations.

• Generate Fields for Unresolved Relationships: This option specifies that
"default" fields be created within the entity for any table columns that are
not referenced by the database schema for the selected tables.

Once the Finish button is selected, the appropriate entity classes are created in the
project. If the database schema changes, running the wizard again will allow the
entity definitions to be updated.

Creating JPA controllers for entities
In the previous section, we saw how to create entities based upon an existing
database schema. Once we've modeled database tables as entities though, we need to
be able to perform CRUD operations—Create, Read, Update, and Delete operations
on those entities.

Typically, when using JPA, we implement a repository or Data Access Object
(DAO) pattern to enable us to perform CRUD operations on entities.

For more information on the DAO pattern, refer to
http://en.wikipedia.org/wiki/Data_access_object.

When you've written a data access object for a few classes, you realize that each DAO
is pretty much the same as the other DAO; it's only accessing a different database
table. Fortunately, NetBeans allows us to create DAOs for entity classes in a quick
and efficient manner.

To create JPA controller classes (this is simply just another name for a JPA-based data
access object), select File and then New File… from the NetBeans main menu. In the
New File dialog, select Persistence from the list of Categories and JPA Controller
Classes from Entity Classes from the list of File Types. Select Next > to continue.

http://en.wikipedia.org/wiki/Data_access_object

Chapter 5

[151]

At this stage in the wizard, NetBeans will search through your application looking
for all the entity classes. These classes will then be displayed within the Entity
Classes page of the wizard, as shown in the following screenshot:

This dialog is very similar to the New Entity Classes From Database dialog. On the
left-hand side of the dialog, NetBeans displays a list of all the entity classes that it has
found within the project. To create a JPA controller class for a specific entity, simply
select the entity and click on the Add > button to move it to the list of Selected
Entity Classes. Conversely, selecting a class from the list of Selected Entity Classes
and pressing the < Remove button will remove it from the list. As a shortcut, all the
entity classes can be added or removed by pressing the Add All >> or << Remove
All buttons, respectively.

If the Include Referenced Classes checkbox is checked when a class is added,
NetBeans will automatically add any classes that are joined to the originally
selected entity class.

Database Persistence

[152]

Pressing the Next > button moves the wizard onto the final stage where the Project,
Location, and Package for the selected JPA controller classes can be specified. Upon
selecting the Finish button, NetBeans will create the JPA controller classes in the
specified package.

Once created, a JPA controller class contains methods to perform the CRUD
operations for the given entity. For example, the Customer class we defined earlier
has a corresponding CustomerJpaController class with the following methods:

public void create (Customer customer) throws ….
public void edit(Customer customer) throws …
public void destroy(Integer id) throws …
public List<Customer> findCustomerEntities(int maxResults, int
firstResult);
public List<Customer> findCustomerEntities(Boolean all, int
maxResults, int firstResult);
public Customer findCustomer(Integer id);
public int getCustomerCount();

It's also important to notice that several custom exceptions are defined when creating
a JPA controller that is thrown at certain points within the CRUD life cycle. These
exception classes are stored in the exceptions package, underneath the package
containing the controller classes.

Chapter 5

[153]

Creating database scripts from entity classes
So far in this chapter, we've seen how to create entities and JPA controllers.
However, to complete the round trip, NetBeans also provides facilities to create
database schemas from the entities within our applications. This can be useful when
we want to hand our schema creation scripts to DBAs so that they can check them
over and possibly enhance them.

To create a database script from existing entities, we again invoke the New File…
wizard. Within the wizard, we select Persistence from the list of Categories and DB
Scripts from Entity Classes from the list of File Types.

When creating database schema scripts from a list of entities, there is very little
configuration to be specified.

Database Persistence

[154]

We need to specify Script File Name, Project, Location, and Package. Upon
completing the wizard, NetBeans will create the schema script in the correct
dialect for the specified data source and save it within the specified package.

In addition to creating a script that represents the database schema, we can also
create a database schema. Again, we use the New File… wizard to achieve this,
selecting Persistence from the list of Categories and Database Schema from the
list of File Types.

Creating a schema is a similar process to creating a database script except that we are
creating a NetBeans schema file rather than a .sql file.

Chapter 5

[155]

To complete the creation of the schema file, we must select a database connection
(creating a schema does not depend upon the entity classes within the project) and
then choose the tables and views to be included within the schema.

Once the schema file has been created, it is displayed within the standard package
structure of the project within the Projects and Files windows.

The display of the schema file is very similar to that displayed when browsing the
database schemas from the Services window. Within a schema file, however, we
have the option to Recapture Schema From Database when we right-click on the
schema node. When this option is selected, NetBeans requeries the database and
generates a new schema file. Since the schema file is stored internally as XML data,
we can then view the history of the file and see what changes were made to the
schema between different revisions of the file. Therefore, this can be a very useful
file to store within source control so that we can see how a database schema changes
over time.

Database Persistence

[156]

Summary
In this chapter, we learned how NetBeans can make developing with persistence
and JPA, in particular, a lot easier. We saw how we can create blank entity classes
and entity classes from existing database schemas. We also looked at this from the
opposite angle and saw how to create database schemas from the entity classes
within our projects. We'll look at persistence again later in the book when we will
learn to use it with session beans and web services.

In the next chapter, we'll take a look at desktop development and see the different
tools that NetBeans provides to enable us to build desktop applications efficiently.

[157]

Desktop Development
Java Standard Edition provides a native, lightweight toolkit for developing desktop
applications. This framework, Swing, is one of the more common Java frameworks
for developing desktop applications. Combined with the GUI editing tools, NetBeans
provides excellent features for the Swing developer.

In this chapter, we're going to look at how we can use NetBeans to create Swing
applications and how we can edit the bindings and interactions between components
within those applications.

In addition to Swing, the Java platform also provides the JavaFX framework for GUI
development. JavaFX isn't as well-known or commonly used as Swing, but we'll
provide a brief overview of what JavaFX is and will compare it with Swing.

We're going to look at the following topics in this chapter:

• What is Swing and what support does NetBeans offer
• How to create Swing frames
• How to design Swing forms
• How to edit properties, events, and custom code for components
• How to bind components together using beans bindings
• A comparison between Swing and JavaFX

Desktop Development

[158]

Java Swing applications
Swing is Java's lightweight widget toolkit for creating desktop applications. When
Java was first released, the Abstract Window Toolkit (AWT) was the standard.
This was a platform-independent API where each component that was drawn by
AWT depended upon the corresponding native component. AWT was the standard
GUI toolkit for Java until J2SE 1.2 was released. With this release of Java, Swing
was promoted as the GUI toolkit of choice. Swing provides many advantages over
AWT, most particularly that it does not depend upon native GUI components like its
predecessor AWT did. In fact, all the standard Swing components are all written in
pure Java and do not depend upon native controls. Swing is, therefore, considered a
lightweight GUI toolkit in comparison to AWT.

Swing support has been available within NetBeans since version 3. Swing support
was completely rewritten in NetBeans 5 with the addition of project Matisse. This
project was the new GUI builder that was added to NetBeans 5, and although it no
longer holds the name Matisse, you may still see some members of the community
referring to NetBeans Swing GUI builder as Matisse.

In this chapter, we're going to assume that you have some knowledge of
Swing development.

Creating Swing frames
In Swing, frames are top-level windows that typically have a title and a border. To
get started with Swing development, therefore, it seems sensible that we should
create an application with a frame (in Swing, frames are modeled via the JFrame
class). In NetBeans, however, there is no wizard to create a JFrame or even, a GUI
application. So, how do we get started with GUI development in NetBeans?

Since a GUI application is basically a standard Java application that displays
a graphical user interface (GUI), we create Swing applications as standard
Java applications. To create a GUI application, therefore, we open the standard
New Project… wizard and select Java from the list of Categories and then Java
Application form the list of Projects.

Chapter 6

[159]

Once we've created a Java application, we can add a top-level JFrame into it using
the New File… wizard.

In this wizard, selecting Swing GUI Forms from the list of Categories provides us
with several different file types that can be created:

• JDialog Form: This creates a new dialog within an application. Dialogs
are typically modal (user input is only allowed in the selected dialog) or
modeless (user input is allowed in all the windows of the application).

• JFrame Form: This creates a new form that is based on JFrame and is usually
used as the top-level form within an application.

• JInternalFrame Form: This creates a new form that is based on
JInternalFrame. Typically, these forms are used to implement multiple
document interface (MDI) applications. These applications are typically
identified as having multiple resizable windows that are all displayed within
the bounds of the application window.

• JPanel Form: This creates a JPanel that can be used within Swing containers
such as JPanels and JDialogs.

Desktop Development

[160]

• JApplet Form: This creates a Swing applet that can be run from within a
browser window rather than from within a desktop application. Typically,
applets have fallen out of favor and have been replaced by other technologies
such as HTML and JavaScript components. We won't be discussing applets
further in this book.

• Bean Form: This creates a new form based upon an existing Swing
component, for example, a JButton or JPanel.

• Application Sample Form: This creates a form that is based on JFrame with
standard File, Edit, and Help menus created within the form. This can be a
very useful starting point for the main window in an application. The sample
form also has a main() method declared in it that can act as the entry point
for the application. This main() method simply creates an instance of the
sample form and displays it on the screen.

• MDI Application Sample Form: This creates a sample form that is based on
JFrame with the intent of adding the forms that are based on JInternalFrame
within it to create an MDI application. As with the Application Sample Form,
the File, Edit, and Help menus are automatically added to the form along with
a main() method to instantiate and display the form.

• Master / Detail Sample Form: This creates a sample master/detail form
based upon a selected database table. During the creation of the form,
NetBeans asks for a database connection and a table from that connection.
A form is then generated, displaying a list of entries from the database table
with the options to add, update, and delete entries from within a selected
row in the table. Using this form can be a very effective way of creating data
input applications.

Chapter 6

[161]

• OK / Cancel Dialog Sample Form: This creates a new class responsible for
opening and displaying a sample dialog containing both OK and Cancel
buttons. The class can be instantiated to either display the dialog in a modal
or modeless fashion.

Desktop Development

[162]

Designing Swing forms
Upon opening a form for editing within NetBeans, the Design editing surface is
displayed in the main editing window, as shown in the following screenshot:

Within the main editing window are these three different views:

• Source: This displays the Java source code for the selected frame/dialog
being edited.

• Design: This displays the design surface where components can be dragged
and dropped onto the form to build up the user interface.

• History: This displays the local history of the class being edited. This can
be very useful for comparing different edits of a class and reverting to the
previous versions if required.

Of particular interest to GUI form developers is the Design view. This is where
we build up the layout of components and most of your time will be spent when
designing and developing forms.

Chapter 6

[163]

To help us design forms, the Palette window contains all of the different GUI
components that we can use within our applications. The Palette window is
broken down into several categories:

• Swing Containers: This category contains Swing containers. These are the
components that can hold other components such as JPanel, JScrollPane,
and JToolBar.

• Swing Controls: All of the visual components that are used to build up
forms are contained within this category. This includes controls such as
JLabel, JButton, and JTable.

• Swing Menus: This category contains menu bars, menu items, and
pop-up menus.

• Swing Windows: This contains the standard Swing windows, namely
Dialog, Frame, Color Chooser, File Chooser, and Option Pane.

• Swing Fillers: When laying out forms, it can be useful to add fillers between
the components such as horizontal or vertical fixed gaps. This category
contains these types of components.

• AWT: This category contains the original Java AWT components. It's most
likely that you will not use any components from this section as these
components have all been replaced by more lightweight Swing components.

• Beans: Any Java Beans from the application classpath can be selected within
this category.

• Java Persistence: Java Persistence components such as an Entity Manager
or Query are available within this category.

To add a component onto a form, drag the component from the Palette window
into the required location on the form. The Navigator window can be very useful to
view a hierarchical representation of which components are on a form. Selecting a
component within the Navigator window automatically selects it within the editor
window so that its properties can easily be edited.

Once a component has been placed on a form, its location can be defined either by
the layout of its parent container or its alignment to other components. This is where
the NetBeans GUI editor really excels.

Desktop Development

[164]

If the component that is being edited allows its layout to be defined (for example, a
JPanel), this can be achieved via the Set Layout context menu option. To specify the
layout of a component, right-click on the component and select the Set Layout menu
option. The following screenshot gives an example of the context menu displayed
when you right-click on a JPanel component:

From this menu, we can select a components layout as Free Design or one of the
standard Swing layout managers (Absolute Layout, Border Layout, Box Layout,
Card Layout, Flow Layout (Default), GridBag Layout, Grid Layout, Null, and
Overlay Layout).

For more information on layout managers, visit http://docs.oracle.
com/javase/tutorial/uiswing/layout/visual.html.

The Free Design layout allows us the most flexibility by providing us with the ability
to autoresize components and anchor components to other components.

Anchoring and autoresizing components
Typically, when a form is resized, we expect the components within the form
to be resized and moved accordingly. For example, if we make a form wider
and taller, we don't want all of our components to stay at the top-left of the form
surrounded by lots of whitespace. For a good user experience, we want the controls
to expand, contract, and move when we resize forms. Let's first take a look at
anchoring the components.

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Chapter 6

[165]

When we say we have anchored a component, what exactly do we mean? We mean
that the component remains at a fixed location relative to another component or
boundary on either the left, right, top, or bottom of the component.

When we anchor a component, we are basically saying that when we resize the form,
we want the component to stay aligned with another component. So, for example,
if we anchor a button to the right and bottom of a JFrame, when we expand and
contract the frame, the button will stay at the bottom-right. To indicate that an item
is anchored to another object, NetBeans displays a dotted horizontal or vertical
line, ending at the boundary that the component is anchored to. If a component is
not anchored on a particular edge, a zigzagged line is displayed indicating that the
location of the component may expand in the specified direction. In the following
screenshot, the button is anchored to the bottom-right of the frame. There is,
therefore, a dotted line between the button and the right and bottom edges of the
JFrame. There is a zigzagged line between the left and top edges of the JFrame:

When a component is anchored to another component, it therefore moves when the
form is resized, but the component itself does not resize. If we want a component to
resize when a form is resized, we must specify that the component can autoresize.

Components can be set to autoresize by right-clicking on them and selecting
the Auto Resizing menu option. From there, you can select to either autoresize
horizontally or vertically.

Desktop Development

[166]

When a component is set to autoresize, it is displayed within the NetBeans design
window with a straight dotted line on both sides of the component. If the component
is set to autoresize horizontally, there will be a straight dotted line to the left and
right of the component. Conversely, if the component is set to autoresize vertically,
there will be a straight dotted line to the top and bottom of the component. The
following screenshot gives an example of a button that is set to autoresize both
vertically and horizontally:

To complete the anchoring and resizing of components on forms, we need to be able
to specify the layout space around the components. This can be achieved in the first
instance by simply dragging the component to the desired location on the design
window. Sometimes, however, it's useful to have a finer grained control and to be able
to specify the layout space in pixels. This can be achieved by double-clicking on the
spacing on any of the four sides (top, right, bottom, and left) around the component.

Chapter 6

[167]

Upon double-clicking on the layout space, the layout space being edited is displayed
in green, as shown in the preceding screenshot. On the Edit Layout Space dialog, we
can specify the exact size in pixels of the layout, with the dialog indicating whether
we are editing a Vertical or Horizontal layout gap. From this dialog, we can also
specify whether the gap is resizable or not.

Right-clicking on a layout gap and selecting the Edit Layout Space… menu option
performs the same operation as double-clicking on it.

To help us lay out controls within a form, NetBeans provides a toolbar along the top
of the design view, containing tools to align and preview forms.

Selection Mode: This allows the components to be selected and edited
within the form.

Connection Mode: This allows connections to be made between two
components so that, for example, a click event on one component can
trigger an event on another component.
Preview Design: This displays the form in a pop-up window, showing the
expected layout at runtime.

Align Left In Column: When more than one component is selected, this
option allows them all to be aligned to the left in a column.

Align Right In Column: When more than one component is selected, this
option allows them all to be aligned to the right in a column.

Center Horizontally: When more than one component is selected, this
option allows them all to be centered horizontally in a column.

Align Top In Row: When more than one component is selected, this option
allows them all to be aligned at the top.

Align Bottom In Row: When more than one component is selected, this
option allows them all to be aligned at the bottom.

Center Vertically: When more than one component is selected, this option
allows them to be centered vertically.

Change Horizontal Resizability: When selected, this option specifies that
a component will resize horizontally rather than being anchored to the left
and right of other components.
Change Vertical Resizability: When selected, this option specifies that a
component will resize vertically rather than being anchored to the top and
bottom of other components.

Desktop Development

[168]

Defining properties and events
So far, we've looked at how to create forms (for example, various JFrame and
JDialog), by laying out components and specifying their layout relationship
to other components.

To complete a user interface, we need to define the properties and events for each
component. Fortunately, with NetBeans, this is relatively straightforward using the
Properties window:

The Properties window is broken down into four categories:

• Properties: All of the properties for a selected component can be edited
within this section.

• Binding: This allows events from components to trigger actions on other
components. For example, if we were writing an application to display pages
of a book, scrolling through the book using a scroll bar could automatically
update a label stating the page that was currently being viewed.

• Events: This section allows us to determine what actions are performed on
a component when certain events (for example, click, mouse moved, key
pressed) are triggered.

• Code: This allows us to define the code aspects of a component, for example,
the variable name or any pre/post initialization code.

Let's take each of these categories in turn and take a deeper look at each.

Chapter 6

[169]

Editing properties
The Properties category allows all the properties for the specified component to be
edited. The properties that exist differ depending upon the component selected, but
in general, they are categorized into Properties (the most common properties, such
as foreground color and text), the Layout properties (such as horizontal or vertical
resizable), the Accessibility properties (such as accessible name and description)
and the Other properties (everything else such as maximum and minimum size
or cursor).

For each property, the value can be changed either as text or via custom editors.
The custom editors for each property are accessed via the button to the right
of the property definition.

If we take the foreground property as an example, we can simply click on the color
([0,0,0] in the following example) and enter any color we want. So, for example, we
could enter a color as [255, 255, 255] to change the components foreground color
to white.

Again, for the foreground property, clicking on the custom editor button displays
a custom editor, allowing the color to be selected, as shown in the following
screenshot. For all the color-related properties, a graphical set of color choosers are
displayed, providing many ways of selecting colors (for example, via RGB, CMYK,
or System Palette):

Desktop Development

[170]

Each different property generally has a custom editor page that is displayed when
clicking on the custom edit button. On the dropdown at the top of every custom
editor, however, are the options to select a value from existing component and
to use custom code.

When selecting a value from an existing component, we have the option to select a
component and then choose either a property or method call on the component that
will return the required value:

When selecting to set a property via custom code, we are shown the code fragment
that NetBeans will create (helloButton.setForeground(…) in the following
screenshot) for setting the property. To complete the custom code, we need to enter
valid Java code within the edit box that returns the type expected by the Swing API.
This type is displayed underneath the edit box as a reminder of the required type.

NetBeans doesn't validate the custom code that you type into a
custom code editor, so you won't know until runtime that what
you've entered is valid. This is very powerful as you can enter
custom code that relies upon the existing members of a class
or create completely new objects to return the required value.
A consequence of this is that it's easy to write invalid code into
a custom code editor. Be mindful of this and try to keep your
custom code as clean and simple as possible to help reduce errors.

Chapter 6

[171]

Editing bindings
In the Binding category, we can "bind" components together. By this, we mean that
we can automatically wire up two components so that when an event occurs in one
component, an action is triggered in another.

When binding components within NetBeans, the JSR-295 framework
is used behind the scenes to perform the actual bindings. This
framework is not a part of standard Java framework, and as such, any
applications build that use bindings will have to be deployed with the
JSR-295 library jar.

Desktop Development

[172]

As can be seen in the preceding screenshot, the Binding category allows us to
choose a property on the source control that when changed will fire a property
changed binding.

To give a better understanding of how binding works, let's take a look at
implementing a simple binding between a JEdit control and a JLabel control.
To do this, perform the following steps:

1. Create a standard Java application within NetBeans and add a JFrame form
to the application called HelloSwingGui.

2. Within the form, add a JTextField called nameEdit and a JLabel called
helloLabel and layout the form so that it looks similar to the following:

All we've created here is a simple form with an edit box and a label. When we
change the text in the edit box, we are going to use bindings to automatically update
the text in the label. Let's now define the bindings between the edit box and the label:

1. Right-click on the helloLabel component and select Bind. NetBeans now
provides a list of all the properties that can be bound. From the list, select
text. This is the display text of the label component. The Bind properties
window will now be displayed:

Chapter 6

[173]

2. Within the Bind helloLabel.text dialog, NetBeans allows us to specify the
binding source and binding expression. Binding source is where we want to
get our source data from and binding expression is what we want to do with
that data.

3. From the Binding Source dropdown, select nameEdit. This signifies that we
are to be using data from the nameEdit control.

4. From the Binding Expression dropdown, select text java.lang.String. This
signifies that we want to use the input text on the edit box in our binding:

5. Click on the OK button to complete configuring the bindings.

Desktop Development

[174]

Let's quickly reap what we've achieved here. We've created an edit box and a label
and configured bindings on the label. We configured the bindings on the label so
that the text of the edit box is the source of our data and whatever that data is, we're
going to set it into the text property of the label. When we run the application, what
we expect to see now is that whatever we type into the edit box will be echoed into
the label.

If we run the application and enter some text into the edit box, we can see that this
does indeed happen.

This simple example shows the power of binding components without the need for
writing event change listeners.

Typically, when wiring up two components using standard Swing
events, we need to write code to get the text from one control and
set it into another. When we've written the code, we need to run our
application to see the effects on the screen. When we use bindings,
however, NetBeans is clever enough to use those bindings when
previewing a form. So, instead of running our application, we can
simply press the Preview Design button and potentially save a lot
of time during the development.

Chapter 6

[175]

Advanced binding properties
When specifying the bindings for a control, you may have noticed that there was a
tab to specify the advanced properties.

On this screen, we can configure extra properties, such as what to do when the
source value is null or how to convert the source value into the correct class.
The following properties can be set:

• Name: Here, you can name the binding.
• Update Mode: This specifies how the target and source properties are

updated. The update mode can take one of these three values:
 ° Always sync (read/write): Whenever a source is made to the target

or source property, the other property is updated. Both properties are
kept in sync. This is the default option.

Desktop Development

[176]

 ° Only read from source (read only): The target property is updated
when the source property is initially set and whenever changes are
made to the source property. Changing the target property never
causes the source property to be updated.

 ° Read from source once (read once): The target property is updated
only when the source property is initially set. Subsequent changes to
the source property do not update the target property. Changing the
target property never causes the source property to be updated.

• Converter: If both your source property and destination property are not
of the same type (or types that can be automatically converted), NetBeans
allows you to define a converter class to convert between the source and
target formats. We'll describe converter classes later.

• Validator: When you require changes to a source property to be validated
before they are written to the target property, you can specify a validator
class. We'll describe validator classes later.

• Null Source Value: This contains the binding value to use when the source
value is null.

• Unreadable Source Value: This contains the binding value to use when the
source value is unreadable, for example, when the binding expression cannot
be resolved.

When specifying the advanced properties for either a JTextField or a JSlider,
additional properties are available.

For a JTextField, the Update Source When property is available. This allows us to
specify that the target property can be updated while typing, when focus leaves, or
when Enter is pressed or focus is lost.

For a JSlider, the Ignore Adjusting property is available. When this is selected, the
target property is only updated after the user has finished dragging the slider. No
changes are made to the target property while the user is dragging the slider.

Converters
When binding components, the source and target properties are not always of the
same type. To convert between different types, NetBeans allows a converter class
to be supplied.

Chapter 6

[177]

As standard, the following conversions do not require a converter class and can be
converted both forward and backward automatically by the binding framework:

• BigDecimal to String
• BigInteger to String
• Boolean to String
• Byte to String
• Char to String
• Double to String
• Float to String
• Int to String
• Long to String
• Short to String
• Int to Boolean

Converter classes must be derived from the org.jdesktop.beansbinding.
Converter base class and must provide methods to perform a forward conversion
from the source to target property type and also a backward conversion from a target
to the source property type:

public class SampleConverter extends
 org.jdesktop.beansbinding.Converter {

 @Override
 public Object convertForward(Object source) {
 // Convert from source property to target property
 }

 @Override
 public Object convertReverse(Object target) {
 // Convert from target property to source property
 }

}

Desktop Development

[178]

Validators
A validator class allows you to perform validation on a source property before it
is written to a target property. To create a validator, a class must extend the org.
jdesktop.beansbinding.Validator class and must override the validate
method. This method must return null if the source has validated successfully or a
org.jdesktop.beansbinding.Result object if the validation has failed. In the case
of failed validation, an error code and description may be added to the Result class:

public class SampleValidator extends
 org.jdesktop.beansbinding.Validator {

 @Override
 public Result validate(Object value) {
 // Perform validation and return null or a Result
 }

}

Editing events
The Events category allows us to define what happens when events occur within
our application, such as when a key is pressed in an edit box, or when the mouse
is moved over a certain component.

Chapter 6

[179]

The list of events for each component is categorized in alphabetical order. Upon
clicking on the edit box to the right of an event, a popup is displayed, suggesting a
name for the event handler. This name consists of the name of the control being edited
together with the name of the event. For example, when creating a new event handler
for the key pressed event of the nameEdit control, NetBeans would suggest an event
handler name of nameEditKeyPressed, as shown in the following screenshot:

Upon selecting the name for the event handler, NetBeans automatically opens up
the Source window for the code, placing the caret ready for entering the event
handler code.

When editing GUI code, the standard Java source editor is slightly different from
editing standard Java classes as there are grayed out areas of text that cannot be edited.
This is shown in the preceding screenshot. This is required by NetBeans as a large
amount of GUI code is automatically generated by NetBeans depending upon the
layout and bindings of a form. If a developer were to edit this code outside of the GUI
editor, the chances of NetBeans being able to provide graphical editing of the file again
would be slim. NetBeans, therefore, takes precautions to stop the code it needs to allow
forms to be edited from being modified outside of the graphical editor.

The obvious consequence of this is that it's not possible from the source code editor
to delete the event handler code or to rename the event handler methods. If you try
to do this, you'll see that NetBeans won't let you type within the grayed out areas of
the code. So, how do we delete or rename event handler code?

Fortunately, NetBeans makes this a simple process. From the Events category in the

Properties window, we can simply press the button, , to the right of an event name.

Desktop Development

[180]

Selecting this option displays a dialog, listing all the handlers for the specified
method. From within this dialog, we can add new event handlers, remove the
existing ones, or simply rename the existing ones.

Editing code
The final option in the Properties window is the Code category. From here, we can
fine-tune how components are created.

Chapter 6

[181]

The important areas within the Code category are the code categories where we can
write custom Java code for different aspects of the components life cycle:

• Custom Creation Code: This allows us to write custom code for instantiating
the component

• Pre-Creation Code: This lets us write the code that is executed before the
component is created

• Post-Creation Code: This lets us write the code that is executed after the
component has been created

• Pre-Init Code: This lets us write the code that is executed after the
component has been instantiated, but before it's properties are set

• Post-Init Code: This lets us write the code that is executed after the
component's properties are set

• Post-Listeners Code: This lets us write the code that is executed after
all the components properties have been set and event listeners have
been registered

• Pre-Adding Code: This lets us write the code that is executed before the
component is added into its parent container

• Post-Adding Code: This lets us write the code that is executed after the
component has been added into its parent container

• After-All-Set Code: This lets us write the code that is executed after the
component has been completely configured

• Pre-Declaration Code: This lets us write the code that is executed before the
component is declared

• Post-Declaration Code: This lets us write the code that is executed after the
component has been declared

Creating connections
So far, we've seen how NetBeans can enable us to easily create bindings between
the components and how we can register and respond to events for individual
components. NetBeans, however, has one final tool that allows us to make
connections between the components. This is very similar to bindings, however, it
allows us to write the standard Swing code to listen for the events and then perform
actions. Using the Connection Mode tool does nothing that we can't write in the
standard code, but it makes it a lot easier to wire the components together.

Desktop Development

[182]

To see how this tool works, let's modify the application we wrote earlier to add
a clear button that clears the value in the input edit box. When complete, the
application should look similar to the following:

To add a Clear button, perform the following steps:

1. Add a JButton to the form we created earlier so that the form looks
similar to the preceding screenshot. Set the text property of the button
to read Clear.

2. Click the Connection Mode button () at the top of the Design window.
Upon clicking this button, NetBeans will display a message, asking for the
component that will generate the event to be selected:

3. Click on the Clear button. Upon selecting the component, NetBeans will
display a message, asking for the component that will receive the event
to be selected:

Chapter 6

[183]

4. Click on the nameEdit edit box as this is the target component. This is the
component that we want to update when an event occurs on the source
component. Upon selecting a component to receive the event, NetBeans
will display the Connection Wizard window:

Within the Connection Wizard window, all the events that can be triggered on the
source component are displayed. To connect the components, we need to select a
source event and then specify a target operation. For our sample application, the
source event will be the actionPerformed event of the button.

1. Select the actionPerformed event from the list of Events and change the
event handler method name to be clearButtonClicked.

2. Click on the Next > button.

Desktop Development

[184]

Now that we've specified the source event handler, we need to specify what happens
to the target controller. NetBeans displays the Specify Target Operation page to
allow us define this.

Within this page, we can specify that we want to update a property, call a method, or
define some custom user code.

Note that as before, any user code entered here is not validated,
so ensure that you check your code carefully before continuing.
It's better to add your code to a method and invoke it from user
code as it will be easier to manage, test, and debug this way.

For our sample application, we're simply going to empty the contents of the edit box
on the screen.

1. Ensure that the Set Property radio button is selected and select the text
property from the list of properties.

2. Click on the Next > button.

Chapter 6

[185]

NetBeans will now display the final page of the Connection Wizard.

Within this page, we can specify how any properties are set on the target component.
We can set the property via Value, Bean, Property, Method Call, or User Code.
These options are similar to how we've specified binding values previously.

For our sample application, we simply want to set the text of the nameEdit to an
empty string.

1. Ensure the Value radio button is checked and the corresponding edit box
contains no value.

2. Click on the Finish button to complete the wizard.

At this point, NetBeans closes the wizard and opens the source code editor to allow
any other modifications to be made. We can run our application at this stage and see
how it performs. You'll notice that within the application, we can now click on the
Clear button and the contents of the edit box will be cleared out.

Desktop Development

[186]

This is a very simple example, but it shows the power of the Connection Mode tool.
With this tool, we're able to wire up two components, and change the state of the
target component based upon some event occurring on the source component. All of
this can be achieved without writing a line of code.

JavaFX applications
JavaFX is the Java Platform's newest lightweight toolkit for developing rich client
applications and is described by Oracle as "the next step in the evolution of Java as a
rich client platform". JavaFX is intended to be the long-term replacement for Swing.
It was first announced in 2007 with version 1.0 being released shortly afterwards.
With the release of Java 7 Update 6, JavaFX was supplied as standard with the Java
JDK, whereas previously, it was a separate download. Since the release of Java 8,
JavaFX has used the same numbering system as that of Java itself; hence, the latest
version of JavaFX is version 8.

JavaFX allows developers to separate their user interface from their Java code in
a simple manner using FXML markup (essentially XML files) for defining user
interfaces that can then be styled using CSS.

To get an idea of the differences between Swing and JavaFX, consider the following
two code snippets to create a button.

In JavaFX, user interfaces are typically defined in FXML markup language (although
they can be defined within Java code if required). To create a button with the text
Click Me! having an onAction handler associated with it, we would typically
declare the following:

<Button text="Click Me!" onAction="#handleButtonAction" fx:id="button"
/>

To define a similar button within a Swing application, we would write the
following code:

JButton jButton = new javax.swing.JButton();
jButton.setText("Click Me!");
jButton.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 handleButtonAction(evt);
 }
});

Looking at these two code fragments, it's easy to see how the separation of
user interface markup into a separate file gives JavaFX a lot of power when
designing applications.

Chapter 6

[187]

JavaFX Scene Builder
Out of the box, NetBeans provides only basic text-based editing for FXML files—
it doesn't provide enhanced GUI development tools like it does for Swing. This
is fine for making quick changes to an FXML file or creating small files, but for
comprehensive user interfaces, we require a better FXML editing tool.

This is where Scene Builder comes in. It provides a similar set of design tools to those
that we've discussed earlier in this chapter, except for JavaFX applications instead of
Swing applications.

In early 2015, Oracle announced that it would no longer be providing binary
packages for Scene Builder. The final release of Scene Builder binaries from Oracle is
version 2.0 and can be downloaded http://www.oracle.com/technetwork/java/
javase/downloads/javafxscenebuilder-info-2157684.html.

For details of Oracle's announcement not to provide Scene Builder
binaries, visit http://www.oracle.com/technetwork/java/
javase/downloads/sb2download-2177776.html.

So, after discussing JavaFX, is this the end of Scene Builder? Fortunately, this is
not the case as a company called Gluon is building Scene Builder binaries and
distributing them to the JavaFX community. For more information on Gluon Scene
Builder, visit http://gluonhq.com/gluon-supports-scene-builder/.

http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://gluonhq.com/gluon-supports-scene-builder/

Desktop Development

[188]

Summary
In this chapter, we started by looking at how to create Swing applications within
NetBeans. We then continued and looked at creating Swing frames and saw how
these could easily be created from ready built templates. We also learned to design
forms by adding and arranging components onto a design surface. We then saw how
to control the properties, bindings, events, and custom code for all the components
we put on a form.

Finally, we took a brief look at JavaFX and saw how this differs from Swing. We saw
that Scene Builder can be used to provide similar GUI editing facilities to NetBeans
and got to know that a company called Gluon, instead of Oracle, now provides
binaries for Scene Builder.

In the next chapter, we'll move on to the next level of the application stack and see
how we can effectively create a business layer for our applications.

[189]

Creating the Business Layer
Java EE is one of the foremost Java technologies for developing enterprise applications.
In this chapter, we'll see how to become a productive EJB developer. We're going to
look at the following topics in this chapter:

• Creating enterprise projects
• Creating enterprise applications with multiple modules
• Creating EJBs
• Creating session beans for entity classes
• Performing bean validation
• CDI injection points/notifications within the editor window
• Adding CDI support to a project
• Creating qualifiers, stereotypes, interceptor bindings, and scope types

Creating enterprise projects
In Chapter 2, Editing Files and Projects, we learned about the Projects window within
NetBeans and saw how it is used for Java projects. In this section, we're going to
look at the "business" type of projects that NetBeans supports. Within a Java EE
environment, business projects typically correspond to EJB projects.

Creating the Business Layer

[190]

When we invoke the New Project wizard within NetBeans, there are several
additional NetBeans project types that are available within the EE distribution
of NetBeans:

• Enterprise Application: This creates a new enterprise application (packaged
as an .Ear archive) and provides the option of creating web and EJB modules
for inclusion within the .Ear archive (we will discuss web modules in the
next chapter).

• Enterprise Application with Existing Sources: This creates a new enterprise
application based upon existing sources. For this option to complete
successfully, the existing source must be stored within the format specified
by the J2EE BluePrints Project Conventions for enterprise applications.

• EJB Module: This creates a new EJB project and provides the option of
adding the EJB module into an existing .Ear archive.

• EJB Module with Existing Sources: This creates a new EJB project based
upon the existing sources. As with the EJB module, the option of adding the
module to an existing .Ear archive is available.

• Enterprise Application Client: This creates a new enterprise application
client project.

• Enterprise Application Client with Existing Sources: This creates a new
enterprise application client project based upon the existing sources.

Chapter 7

[191]

In addition to these new project types in the EE distribution of NetBeans, there are
several new Maven project types that support enterprise applications. We'll discuss
those shortly.

First, however, let's take a look at these new project types and see how we can create
a multi-module project within NetBeans.

Creating a NetBeans multi-module project
From the previous section, you'll remember that NetBeans allows us to create an
enterprise application, but what exactly is an enterprise application?

Simply put, an enterprise application is an archive containing any required
deployment descriptors, a collection of zero or more web archives, a collection of zero
or more EJB archives, and an optional client module. Enterprise archives can hold
more content than this (for example, libraries of .Jar files or resource adapters), but
for the purpose of this discussion, we'll be considering web, EJB, and client modules.

We'll be looking at web modules in the next chapter, so we'll just concentrate on EJB
and client modules in this chapter.

For simple applications, we can deploy all of our code (web and EJB) into a single
.War file, which may be sufficient for most purposes. When, however, we wish to
deploy multiple web applications connected to multiple EJB projects, the enterprise
application project type make a lot more sense.

Creating the Business Layer

[192]

Let's now walk through the steps required to create an enterprise application that
contains an EJB and a client module. The client module could be a Swing or Java FX
application, however, for this demonstration, we'll be using a simple command-line
application. The basic modules within our application will be as follows:

We're developing an application with an EJB and a client module, so why do we
need a third module? As we're implementing our business logic as a remote EJB, we
will need to reference the EJB in our client module. It's not a good practice for a client
module to depend explicitly on an EJB module, so we typically create a module that
contains only the EJB remote interfaces. The EJB and client module projects then both
refer to the module that contains the remote interfaces. That way, we have a clean
separation of code, and the client module does not have an explicit knowledge of
the EJB module. All of these modules will be packaged together into an enterprise
application, although it should be noted that recent versions of GlassFish do not
require this to be the case. From GlassFish v3.1 onwards, EJB and client modules can
be deployed separately to the server.

The first stage is to create an empty enterprise application within NetBeans by
performing the following steps:

1. Select the File and then New Project… menu options.
2. Select Java EE from the list of Categories and Enterprise Application from

the list of Projects.

Chapter 7

[193]

3. Click on Next > and then enter the project name as GreeterEnterprise.
Click on Next > to continue to the Server and Settings page.

On the Server and Settings page, we can specify whether we want to create a new
EJB or web application module. As we need to create an EJB module with remote
interfaces in a separate .Jar file, we will need to create these projects separately.
Follow these steps:

1. Ensure that Create EJB Module and Create Web Application Module are
unchecked. (Note that we could have left the Create EJB Module option
checked here to automatically create the modules when the project is created.
In this instance, we've chosen to show how to create an EJB module outside
of this new project wizard.)

2. Click on Finish to create the enterprise application.

Creating the Business Layer

[194]

The enterprise project will be created within NetBeans. If we expand all of the
nodes within the Projects window, we can see that there are no files in the enterprise
application, except a solitary, empty MANIFEST.MF file (this isn't surprising since we
elected not to create any modules in the application).

Now that we've created an enterprise application to host our code, let's create an EJB
module by performing the following steps:

1. Select the File and then New Project… menu options.
2. Select Java EE from the list of Categories and EJB Module from the list

of Projects.
3. Click on Next > and then enter the project name as GreeterEJB. Click on

Next > to display the Server and Settings page.

Chapter 7

[195]

The Server and Settings page is similar to that displayed when creating the enterprise
application, except that this time, there's an additional input where we can specify the
enterprise application to add the EJB module to. For our example application, we need
to ensure that the enterprise application we've just created is specified.

1. Ensure that GreeterEnterprise is selected in the Add to Enterprise
Application drop-down box and that a valid instance of GlassFish
is selected for the Server drop-down box.

2. Click on Finish to create the EJB module and add it to the enterprise application.

To enable us to store the remote interfaces for any EJBs we may write, we need to
create an empty Java Class Library project.

Use the New Project wizard to create a Java Class Library project named
GreeterEJBRemote.

The final project we need to create is for the Enterprise Application Client. This
project needs to be added to the enterprise application project in the same way
as the EJB module.

Use the New Project wizard to create an EJB module project named Greeter. Ensure
that GreeterEnterprise is selected in the Add to Enterprise Application drop-down
box and that a valid instance of GlassFish is selected on the Server and Settings page.

Once completed, the projects should be displayed within the Projects window,
as shown in the following screenshot. We've created four projects (Greeter,
GreeterEJB, GreeterEJBRemote, and GreeterEnterprise). From these projects, we
can see that GreeterEJB.jar and Greeter.jar are defined as Java EE modules in the
GreeterEnterprise application.

Creating the Business Layer

[196]

A Maven multi-module project
Creating a NetBeans multi-module project is an efficient way of creating enterprise
applications. Sometimes, however, we wish to build and run our applications
outside of NetBeans. In these situations, building a Maven multi-module project is
probably a better strategy as it provides all of the benefits of a Maven project such as
the ability to easily add dependencies or the ability to build and deploy the project
from a continuous integration system.

For more information about Apache Maven,
visit https://maven.apache.org.

Within NetBeans, there are many different types of Maven project that can be
created. From an EJB perspective, the following types of Maven projects can be
created using the New Project wizard:

• EJB Module: This creates a standard EJB Maven project, allowing the user to
specify the version of Java EE and the server to deploy to.

• Enterprise Application: This creates a Maven enterprise application project
optionally, comprising of an EJB and web modules. The generated Maven
project is assembled into a .Ear archive. As with the EJB project, the version
of Java EE and server to deploy to can be specified.

• Enterprise Application Client: This creates a standard enterprise application
client project, allowing the user to specify the version of Java EE and the
server to deploy to.

• POM Project: This creates a Maven POM project that can act as the parent
application, consisting of multiple Maven subprojects. No source code is
generated for this project type as it is a placeholder for subprojects.

• Project from Archetype: This creates a Maven project based upon a user-
selected Maven archetype. This type of project can be used to generate any
type of application (for example, EJB, web, or JavaFX) and is not specific to
EJB projects.

• Project from Existing POM: This allows an existing Maven project to be
opened. This type of project simply defers to the Open Project dialog,
allowing a Maven pom.xml project file to be opened.

https://maven.apache.org

Chapter 7

[197]

The most powerful of these project types are POM Project and Project from
Archetype as these allow us to build many different combinations of multi-module
projects. Let's take a look now at how we can create a multi-module Maven project
using these project types. To keep things simple, we'll create an application that uses
POJOs only rather than EJBs so that we can concentrate on how NetBeans interacts
with Maven projects. The techniques we will use are equally applicable for EJB
projects though (or for that matter, web, JavaFX projects, and so on).

Creating a Maven multi-module project
The first stage in creating a Maven multi-module is to create a parent POM project.
As discussed earlier, this is simply a placeholder for all the other modules, effectively
collecting all the child projects within one umbrella. Follow these steps to create a
parent POM project:

1. Invoke the New Project wizard and select Maven from the list of Categories
and POM Project from the list of Project Types. Click on Next.

2. Enter the name and location details as follows:
 ° Project Name: MavenGreeter
 ° GroupId: com.davidsalter.masteringnb
 ° Version: 1.0-SNAPSHOT
 ° Package: com.davidsalter.masteringnb.mavengreeter

3. Click on Finish to create the project.

At this stage, the project will be created within NetBeans. In the Projects window, we
can see that there is only one file, pom.xml, created in the project.

Creating the Business Layer

[198]

Indeed, if we look at this generated pom.xml file, we can see that we've declared a
project but not much else:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.davidsalter.masteringnb</groupId>
 <artifactId>MavenGreeter</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>
 </properties>
</project>

Adding a new module into this parent module is a simple procedure using
NetBeans. To show the power and simplicity of a multi-module Maven project,
we'll add two new modules. The first will be an application, while the second
will hold some business logic to greet clients.

1. Right-click on the Modules node within the MavenGreeter project in the
Projects window and select Create New Module.

2. The New Project wizard will now open defaulting to the Maven category.
From the list of projects, select Java Application and click on Next.

3. As we're declaring a child module of our parent project, a lot of default
details are already specified for us. On the Name and Location page, we
should only need to enter the project name as MavenGreeterClient.

4. Click on Finish to create the project.

We've just added a new Java project called MavenGreeterClient and added it as a
subproject of the MavenGreeter project. We now need to add another project that
can be used to hold business logic. Repeat steps 1 through 4, this time specifying the
project name as MavenGreeterBusiness.

Chapter 7

[199]

Within the Projects window, we should now see that we have three projects
created with our client and business projects listed as modules for the main
parent POM project.

If we look at the pom.xml file for the MavenGreeter project, we can also see that our
child projects have been added as modules:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.davidsalter.masteringnb</groupId>
 <artifactId>MavenGreeter</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <modules>
 <module>MavenGreeterClient</module>
 <module>MavenGreeterBusiness</module>
 </modules>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>
 </properties>
</project>

Creating the Business Layer

[200]

Since we have just created our projects, we need to set up the dependencies between
them. For our sample application, the MavenGreeterClient project is going to have
a dependency on the MavenGreeterBusiness project.

In order to specify the project dependencies with Maven, we first need to build the
projects so that they are installed into our local Maven repository. After building the
projects, we can open up the pom.xml file for the MavenGreeterClient project and
add a dependency on the MavenGreeterBusiness project.

Maven dependencies can be added manually by typing into the pom.xml file,
however, with NetBeans, we can right-click on the body of the pom.xml file and
choose the Insert Code… option.

Whenever inserting code this way, NetBeans provides context-sensitive insertion
options. For the case of a Maven pom.xml file, the following options are provided:

• Dependency: This adds a Maven dependency. The user is presented with a
search dialog, allowing them to find the required dependency to add.

• Dependency Exclusion: This allows the user to exclude dependencies from
the project.

• Plugin: This allows a Maven plugin to be added into the project. On the
resulting dialog, the user can query for the name of a plugin and then select
which goals the plugin will be configured for.

• Profile: This adds a new Maven profile into the pom.xml file. The name
of the profile can be defined along with the options of how the profile
can be activated.

• License: This displays a list of licenses known to NetBeans (for example, MIT,
BSD, GPL). Selecting a license adds the relevant code to the pom.xml file.

For now, we want to add a dependency within the MavenGreeterClient project.

1. Ensure the pom.xml file for the MavenGreeterClient project is open for
editing and then right-click within the editor and select Insert Code… and
then Dependency….

Chapter 7

[201]

2. The Add Dependency screen will now be displayed. Within here, enter
MavenGreeterBusiness in the Query edit box:

Within the Search Results list, all matches to the query entered will be
displayed. In this case, the MavenGreeterBusiness module is displayed.

3. Select version 1.0-SNAPSHOT from the Search Results list and click on Add
to add the dependency.

When adding dependencies, the Open Projects tab displays a list
of currently open Maven projects. Instead of searching for a project
previously, we could have simply selected the project from here
and added it as a dependency.

Creating the Business Layer

[202]

Looking at the pom.xml file for the MavenGreeterClient project, we can now see
that the required dependency has indeed been specified:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.davidsalter.masteringnb</groupId>
 <artifactId>MavenGreeter</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>MavenGreeterClient</artifactId>
 <packaging>jar</packaging>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>MavenGreeterBusiness</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
 <properties>
 <maven.compiler.source>1.7</maven.compiler.source>
 <maven.compiler.target>1.7</maven.compiler.target>
 </properties>
</project>

Now that we've defined all the dependencies required, we can finally add some
sample code to the projects to see how they work.

Add the com.davidsalter.masteringnb.mavengreeterbusiness.Greeter class
to the MavenGreeterBusiness project:

package com.davidsalter.masteringnb.mavengreeterbusiness;

public class Greeter {

 public Greeter() {
 }

 public String greet(String name) {
 return "Hi " + name;
 }
}

Chapter 7

[203]

Add the com.davidsalter.massteringnb.mavengreeterclient.Main class to the
MavenGreeterClient project:

package com.davidsalter.masteringnb.mavengreeterclient;

import com.davidsalter.masteringnb.mavengreeterbusiness.Greeter;

public class Main {
 public static void main(String args[]) {
 Greeter greeter = new Greeter();

 System.out.println(greeter.greet("David"));
 }
}

Finally, we can run the client application. Right-click on MavenGreeterClient and
select Run.

Creating EJBs
Within a Java EE application, business logic is usually implemented within EJBs or
behind an EJB façade.

NetBeans provides support for creating the different types of EJBs using the standard
New File wizard. Using this wizard, we can create:

• Session Bean: This creates either a stateless, stateful, or singleton session
bean optionally with a local or remote interface.

Creating the Business Layer

[204]

• Timer Session Bean: This creates either a stateless or singleton session bean
annotates with @Schedule optionally with a local or remote interface.

• Message Driven Bean: This creates a message-driven bean which is capable
of receiving messages from JMS queues or topics.

• Service Locator: This creates a J2EE service locator class. This pattern is
typically not used as much with Java EE applications.

• Caching Service Locator: This creates a J2EE service locator class which
caches lookups. As with the Service Locator pattern, this pattern is typically
not used as much with Java EE applications.

• Session Beans For Entity Classes: This creates an EJB session bean façade for
one or more entity classes.

• Standard Deployment Descriptor: This creates an empty ejb-jar.xml file.

Earlier in this chapter, we created an enterprise application called
GreeterEnterprise. Let's see how we can easily add an EJB with a remote interface
and then invoke that from an enterprise client. For this example, we'll create a
stateless session bean and invoke a business method from an application client.

Chapter 7

[205]

To create a stateless session bean, we use the New File… wizard within NetBeans:

1. Invoke the New File wizard on the GreeterEJB project and select Enterprise
JavaBeans from the list of Categories and Session Bean from the list of File
Types and then click on Next >.

2. On the Name and Location page, enter the following information:
 ° EJB Name: WelcomeBean
 ° Source Package: com.davidsalter.masteringnb.greeter
 ° Session Type: Stateless
 ° Create Interface: Ensure Remote in project is checked, selecting to

create the interface in the GreeterEJBRemote project:

3. Click on the Finish button to create the EJB.

NetBeans will now create the EJB in the GreeterEJB project and open the
WelcomeBean.java file for editing.

Creating the Business Layer

[206]

The WelcomeBeanRemote interface is automatically created
in the GreeterEJBRemote project.

The WelcomeBean class has been created as an implementation of a stateless
session bean. So far, we haven't added any business methods into the class,
so the implementation of the class is as follows:

package com.davidsalter.masteringnb.greeter;

import javax.ejb.Stateless;

@Stateless
public class WelcomeBean implements WelcomeBeanRemote {

 // Add business logic below. (Right-click in editor and choose
 // "Insert Code > Add Business Method")
}

Similarly, the WelcomeBeanRemote interface has no methods in it at present and is
implemented as follows:

package com.davidsalter.masteringnb.greeter;

import javax.ejb.Remote;

@Remote
public interface WelcomeBeanRemote {

}

Now that we've created an EJB, we can of course fill in the missing parts and add
a business method into the implementation class and then add the corresponding
method signature into the appropriate interface. This of course is error-prone
as there's a chance we will enter the method signature differently between the
implementation and the interface. We may even forget to add the method signature
to the interface all together. Additionally, if we're implementing both a local and a
remote interface, we will need to type the method signature three times: once in the
implementation class and once each in the local and remote interfaces.

Fortunately, NetBeans makes this whole process a lot easier as we can use NetBeans
to add our business method. NetBeans will then automatically add the method
signature to the corresponding interface files automatically.

Chapter 7

[207]

To add a business method into an EJB, we need to invoke the Insert Code… option
within the editor window of an EJB. This wizard has many options for a Java class,
but within an EJB, we have the additional options of Add Business Method… and
Call Enterprise Bean…. Let's take a look at both these methods now by adding a
business method and then invoking it.

If you remember, our GreeterEnterprise project has both an EJB and a client
application module. First, we'll add a method into the EJB and then invoke it from
the client application by performing these steps:

1. Ensure the WelcomeBean.java file from the GreeterEJB project is open
for editing. Right-click in the body of the class and select the Insert Code…
option. From the pop-up window, select Add Business Method….

2. On the Add Business Method… dialog, enter the following information:
 ° Name: greet
 ° Return Type: String
 ° Parameter Name: name
 ° Parameter Type: java.lang.String
 ° Use in Interface: Ensure Remote is checked

3. Click on OK to add the business method.

Creating the Business Layer

[208]

On the Add Business Method… dialog, NetBeans allows us to first specify the name
and return type of the business method to add. We can add and remove parameters
by pressing the Add or Remove buttons, respectively. For each parameter we add,
we can specify the parameter's name, type, and whether the parameter is declared as
final or not. We can then reorder the parameters using the Up and Down buttons.

When we created the EJB within NetBeans, we specified whether the EJB was to
implement a local, remote, or both interfaces. This choice is echoed on the Add
Business Method… dialog so that we can optionally choose which interfaces our
business method must implement.

If we require our business method to throw any exceptions, these can be declared
within the Exceptions tab of the dialog. Within this tab, we can search for exceptions
and then add them to the list of exceptions that are thrown from the method. As with
parameters to the method, we can add, remove, and reorder the exceptions that
are thrown.

Chapter 7

[209]

When searching for an exception on the Find Type dialog shown
previously, we can enter camel case shorthand or use wildcards
to find the names of exceptions we wish to throw. For example,
to find the IllegalArgumentException shown earlier, we
could search for either IllegalArgumentException, or IAE,
or *ArgumentEx*, or any number of combinations of these.

Upon completing the Add Business Method… wizard, NetBeans will create a blank
implementation of the business method:

 public String greet(String name) {
 return null;
 }

To continue with our example, let's implement the simplest possible version of this
method as:

 public String greet(String name) {
 return "Hello " + name;
 }

We can also open the WelcomeBeanRemote interface and verify that NetBeans has
added the correct method signature:

@Remote
public interface WelcomeBeanRemote {

 String greet(String name);

}

Now that we've implemented our EJB, let's write some code to invoke it from a
standalone Java client application.

Invoking an EJB is a straightforward process when the EJB implements a local
interface as we can simply inject the EJB into our code using the @EJB annotation.
We'll see use of this in the next chapter when we will look at invoking EJBs from
within a web application.

Creating the Business Layer

[210]

When an EJB implements a remote interface, we need to look up for a reference to
the EJB before we can use it. This typically involves creating an InitialContext
class and performing a lookup() on it, passing in the JNDI name for the EJB. As
we'd expect, however, NetBeans makes this process simple using the Insert Code…
wizard. To see how this wizard works, let's create a Java application and invoke our
EJB by following these steps:

1. Add a new Main class with a main(String args[]) method into the Greeter
project. This can be added using the New File… wizard and selecting to create
a new Java Main class from the Java Category. Ensure the class is called Main
and is in the com.davidsalter.masteringnb.greeter package.

2. Right-click on the body of the main(String[] args) method and select
Insert Code… and then Call Enterprise Bean….

The Call Enterprise Bean dialog will now be displayed. This dialog displays all of
the EJBs that can be found within the currently open NetBeans projects. From this
dialog, we can browse through the projects that support EJBs and select the EJB we
wish to invoke. Toward the bottom of the dialog, the interfaces for the selected bean
are displayed. Selecting one of these interfaces determines how the code is generated
for invoking the EJB.

For a remote interface, a lookup() method will be performed on an InitialContext
to get a reference to the bean. For a local interface, the EJB will be injected into the
client code using the @EJB annotation.

Chapter 7

[211]

Select the WelcomeBean within the GreeterEJB node and press the OK button to
add the code to the Main class.

Upon closing the dialog, NetBeans will insert the code into the Main class to lookup
the EJB, however, the code to invoke the EJB will not be written; this has to be
manually added. At this stage, the Main class looks similar to the following:

package com.davidsalter.masteringnb.greeter;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class NewMain {
 WelcomeBeanRemote welcomeBean = lookupWelcomeBeanRemote();

public static void main(String[] args) {
 // TODO code application logic here
 }

 private WelcomeBeanRemote lookupWelcomeBeanRemote() {
 try {
 Context c = new InitialContext();
 return (WelcomeBeanRemote) c.lookup("java:global/
GreeterEnterprise/GreeterEJB/WelcomeBean!com.davidsalter.masteringnb.
greeter.WelcomeBeanRemote");
 } catch (NamingException ne) {
 Logger.getLogger(getClass().getName()).log(Level.SEVERE,
"exception caught", ne);
 throw new RuntimeException(ne);
 }
 }
}

By looking at this code, we can gain an understanding of what NetBeans has
done to allow us to invoke a method on the EJB. NetBeans has created a local
variable welcomeBean of the type WelcomeBeanRemote. This bean is then assigned
the result of the lookupWelcomeBeanRemote() method. Within this method, an
InitialContext is created and the lookup() method is called passing in a JNDI
name of java:global/GreeterEnterprise/GreeterEJB/WelcomeBean!com.
davidsalter.masteringnb.greeter.WelcomeBeanRemote.

Creating the Business Layer

[212]

This JNDI name is used by GlassFish. If you are using a different
application server, check your documentation to find the exact
format of the JNDI name of a remote EJB.

To finally invoke a method on our EJB, we must call the business method on the
welcomeBean. This can be achieved by changing the Main class as follows:

package com.davidsalter.masteringnb.greeter;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class Main {

 com.davidsalter.masteringnb.greeter.WelcomeBeanRemote welcomeBean
= lookupWelcomeBeanRemote();

 public static void main(String[] args) {
 Main main = new Main();
 main.welcome();
 }

 private void welcome() {
 System.out.println(welcomeBean.greet("David"));
 }

 private com.davidsalter.masteringnb.greeter.WelcomeBeanRemote
lookupWelcomeBeanRemote() {
 try {
 Context c = new InitialContext();
 return (com.davidsalter.masteringnb.greeter.
WelcomeBeanRemote) c.lookup("java:global/GreeterEnterprise/GreeterEJB/
WelcomeBean!com.davidsalter.masteringnb.greeter.WelcomeBeanRemote");
 } catch (NamingException ne) {
 Logger.getLogger(getClass().getName()).log(Level.SEVERE,
"exception caught", ne);
 throw new RuntimeException(ne);
 }
 }

}

Chapter 7

[213]

To test out the application, ensure that GlassFish is started and deploy the
GreeterEnterprise application by right-clicking on the project and selecting
Deploy. A notification will be displayed in the GlassFish Server Output window
when the application is deployed.

Run the Greeter application by right-clicking on the Greeter project and
selecting Run.

In this example, we've seen how to create a stateless session bean and invoke it via
a remote instance. Creating a stateful or a singleton session bean follows the exact
same procedure, except that we specify the session type as appropriate within the
New Session Bean wizard.

Creating the Business Layer

[214]

Creating a session bean façade for entity
classes
In the previous section, we saw how we can use NetBeans to help us create business
methods within EJBs and easily invoke EJB from client applications.

In all but the most simple application, however, we usually have a database
component and a graph of database objects modeled with the @Entity annotation
within our application.

Since one of the benefits of EJBs is that they offer transactional support, EJBs make
a good candidate for a session façade for entity classes. A session façade is a design
pattern that abstracts the implementation of methods away from callers in order to
decouple business objects from callers. In this instance, NetBeans can create a session
façade that abstracts away all of the database functionality from clients, making
the clients unaware of how business objects are persisted. This is only one use of a
session façade though, and as a developer, we can add more methods into the façade
to provide the exact services that our clients need.

For more information on the session façade pattern,
visit http://www.oracle.com/technetwork/
java/sessionfacade-141285.html.

A typical database session façade provides CRUD (Create, Retrieve, Update, and
Delete) functionality to its clients. Let's take a look at how NetBeans can help us to
create a façade.

Let's assume we have a class, Customer, representing a customer in a relational
database. A simplified representation of a customer may look similar to the
following in Java code:

@Entity
public class Customer {

 @Id
 private long id;
 private String name;
 private BigDecimal creditAmount;
 private String emailAddress;

 public Customer() {
 }

 // Getters and setters omitted for brevity.
}

http://www.oracle.com/technetwork/java/sessionfacade-141285.html
http://www.oracle.com/technetwork/java/sessionfacade-141285.html

Chapter 7

[215]

To create a session façade for this entity, we can use the New File… wizard and
select the Session Beans For Entity Classes file type:

The first stage in creating a session façade is to select the @Entity classes that we
wish to create a façade for.

Creating the Business Layer

[216]

NetBeans searches through our codebase and displays a list of all the classes that
have the @Entity annotation. To continue, we must simply select the classes that we
wish to implement a façade for. If some classes reference other classes (for example,
we have @ManyToMany or @OneToMany relationships), we can easily add those by
checking the Include Referenced Classes option.

The next stage is to specify the package for our session façade and whether we
wish to use local or remote interfaces for the generated EJB(s). Typically, we only
implement local interfaces for session facades that access database logic. This is
because we do not want a remote EJB interface to have a dependency on JPA objects
(this is simply because a database is typically a server-side object and our clients
have no knowledge of our databases).

This stage of the wizard also gives us some information on the name of the created
façade files. In the preceding example, we will have the following files created for
each entity:

• <ClassName>Façade, for example, CustomerFacade.java
• <ClassName>FacadeLocal, for example, CustomerFacadeLocal.java

Chapter 7

[217]

Finally, if we have not specified a database provider and data source for our project,
the Provider and Database page will be displayed. If we're running through this
wizard for the second or more time on a particular project, this final page will not
be displayed as NetBeans will assume that we've already configured our database
connection details.

Within this final page of the wizard, we specify the persistence unit name,
persistence provider, data source, and table generation strategy. All of this
information is used to create a persistence unit. For more information on persistence
units and their support in NetBeans, refer to Chapter 5, Database Persistence.

For this example, the persistence.xml file created will look similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="SessionFacadePU" transaction-type="JTA">
 <jta-data-source>jdbc/__default</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.schema-generation.database.
action" value="create"/>
 </properties>
 </persistence-unit>
</persistence>

Creating the Business Layer

[218]

As shown on the Generate Session Beans page of the wizard, NetBeans creates a
façade consisting of several files when the wizard is complete.

A session bean interface, CustomerFacadeLocal, is generated, providing the
signatures for all of the CRUD methods we will expect:

@Local
public interface CustomerFacadeLocal {
 void create(Customer customer);
 void edit(Customer customer);
 void remove(Customer customer);
 Customer find(Object id);
 List<Customer> findAll();
 List<Customer> findRange(int[] range);
 int count();
}

This class is implemented by the CustomerFacade class:

@Stateless
public class CustomerFacade extends AbstractFacade<Customer>
implements CustomerFacadeLocal {
 @PersistenceContext(unitName = "SessionFacadePU")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public CustomerFacade() {
 super(Customer.class);
 }
}

Finally, an AbstractFacade class is created if it does not already exist. This class
uses JPA to implement the CRUD methods for each façade we choose to create:

public abstract class AbstractFacade<T> {
 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {

Chapter 7

[219]

 this.entityClass = entityClass;
 }

 protected abstract EntityManager getEntityManager();

 public void create(T entity) {
 getEntityManager().persist(entity);
 }

 public void edit(T entity) {
 getEntityManager().merge(entity);
 }

 public void remove(T entity) {
 getEntityManager().remove(getEntityManager().merge(entity));
 }

 public T find(Object id) {
 return getEntityManager().find(entityClass, id);
 }

 public List<T> findAll() {
 javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager().createQuery(cq).getResultList();
 }

 public List<T> findRange(int[] range) {
 javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 q.setMaxResults(range[1] - range[0] + 1);
 q.setFirstResult(range[0]);
 return q.getResultList();
 }

 public int count() {
 javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();

Creating the Business Layer

[220]

 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
 cq.select(getEntityManager().getCriteriaBuilder().count(rt));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 return ((Long) q.getSingleResult()).intValue();
 }
}

The Java Bean Validation framework
The Java Bean Validation framework 1.0 (JSR 303) was introduced into Java EE 6 to
allow validation constraints to be added onto Java beans. The latest release of the
Bean Validation framework, version 1.1 (JSR 349), further enhances the validation
model, allowing additional features such as method level validation and full support
for CDI.

Bean Validation works by adding a constraint onto a field, method, or class in the
form of an annotation. The framework provides many constraints as well as an API,
allowing new constraints to be developed. Some of the more common annotations are:

• @NotNull: The value of the property must not be null
• @Pattern: The value of the property conforms to the specified

regular expression
• @Max / @Min: The value of the property must be an integer with the

specified maximum/minimum value
• @Future / @Past: The value of the property must be a data in the

future/past

Of course, there are many more validation constraint annotations than these. For full
details, refer to the Bean Validation site at http://www.beanvalidation.org.

Creating a Bean Validation constraint
A lot of the time when you want to perform validation on Java Beans, the standard
validation constraints will suffice. For example, we typically want to check that a
value is not null or it has a maximum length or follows a particular pattern. In these
cases, we can use the standard constraints.

Sometimes, however, we wish to perform some other validation that just doesn't
quite fit into the standard constraints. Creating a new constraint can look daunting,
but with the help of NetBeans, creating new constraints is a straightforward matter.

http://www.beanvalidation.org

Chapter 7

[221]

Consider the following Java bean:

public class Customer {

 @Id
 private long id;

 @NotNull
 private String name;
 private BigDecimal creditAmount;

 private String emailAddress;

 public Customer() {
 }

 // Getters and setters omitted for brevity.
}

Within this class, we can see that there is a @NotNull constraint added to the name
property, ensuring that a name value is specified.

If we wanted to add a constraint onto the emailAddress property, to ensure that
the emailAddress is valid, we can do this using the New File wizard from within
NetBeans. To create a new constraint, we launch the New File wizard, select Bean
Validation Category and then choose Validation Constraint from the list of File Types.

Creating the Business Layer

[222]

After clicking on the Next > button, the Name and Location page of the wizard is
displayed. This is where we specify the details about the constraint that we wish
to add.

Here, Class Name is the name of the interface that represents the constraint
validation. In the following screenshot, Class Name of SimpleEmail will
correspond to an annotation of @SimpleEmail.

Next, we must specify the usual project, location, and package fields that are present
on most of the NetBeans New File wizards.

Finally, we can select the Generate Validator Class option. By selecting this option,
NetBeans will create a constraint with a @Constraint annotation on it. This simply
means that we have a separate class that can be used to validate a constraint. To
create a validator class, we must specify Validator Class Name and Java Type
to Validate. The validator class name is the name of the class that NetBeans will
generate to validate the constraint, whereas the Java type to validate specifies what
type of object this class will validate.

Chapter 7

[223]

Upon completing the wizard, NetBeans will create both the constraint and constraint
validator class. For the preceding example, these will be the SimpleEmail.java and
SimpleEmailValidator.java classes.

The SimpleEmail.java class specifies the constraint that we wish to implement.
It's basic structure is as follows:

@Documented
@Constraint(validatedBy = SimpleEmailValidator.class)
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.
ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface SimpleEmail {

 String message() default "{com.davidsalter.masteringnb.
beanvalidation.constaints.SimpleEmail}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};
}

The annotation is created using the @interface keyword, which is annotated by
several annotations:

• @Documented: This specifies that the annotation will be included in the JavaDoc
• @Constraint: This specifies which class will be used to validate the constraint
• @Target: This specifies whether the annotation will apply to methods, fields,

or annotations
• @Retention: This specifies that the annotation will be available at runtime

The constraint validator class, SimpleEmailValidator.java, is initially created with
a blank implementation:

public class SimpleEmailValidator implements ConstraintValidator<Simpl
eEmail, String> {

 @Override
 public void initialize(NewConstraint constraintAnnotation) {
 throw new UnsupportedOperationException("Not supported yet.");
 }

 @Override

Creating the Business Layer

[224]

 public boolean isValid(String value, ConstraintValidatorContext
context) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
}

The validator class contains two methods. The initialize() method can be used
to obtain any optional information required from the validator annotation, while the
isValid() method returns true or false depending upon whether the constraint is
successful or not.

To complete the @SimpleEmail constraint, we need to specify that the annotation is
only available to fields and not to methods or other annotations. To achieve this, we
need to amend the @Target annotation accordingly:

@Documented
@Constraint(validatedBy = SimpleEmailValidator.class)
@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface SimpleEmail {

 String message() default "{com.davidsalter.masteringnb.
beanvalidation.constaints.SimpleEmail}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};
}

To complete the implementation, we need to implement the isValid() method of
the EmailValidator.java class. For this example, checking that the e-mail address
contains an @ symbol will suffice:

This example has been chosen to showcase creating a constraint rather
than how to validate an e-mail correctly. A full approach to validating
e-mail addresses can be found in the third-party libraries such as in
the Apache Commons EmailValidator at http://commons.apache.
org/proper/commons-validator/apidocs/org/apache/
commons/validator/routines/EmailValidator.html.

public class SimpleEmailValidator implements ConstraintValidator<Simpl
eEmail, String> {

 @Override
 public void initialize(SimpleEmail constraintAnnotation) {

http://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/routines/EmailValidator.html
http://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/routines/EmailValidator.html
http://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/routines/EmailValidator.html

Chapter 7

[225]

 }

 @Override
 public boolean isValid(String value,
 ConstraintValidatorContext context) {
 if (value == null) {
 return true;
 }

 if (value.contains("@")) {
 return true;
 } else {
 return false;
 }
 }
}

The final stage of creating a custom constraint is to specify any messages that may
be returned to the client as a result of failed validation. Looking at the SimpleEmail.
java class, we can see the message property defining the name of a message within a
message bundle file:

 String message() default "{com.davidsalter.masteringnb.
beanvalidation.constaints.SimpleEmail}";

For constraint validation, the message bundle file must be called
ValidationMessages.properties. To define an appropriate message for
the SimpleEmail validator, the contents of this file will look similar to this:

com.davidsalter.masteringnb.beanvalidation.constaints.SimpleEmail=This
does not appear to be a valid email address

Having created a custom validator and defined any output messages, we can now
annotate our original class to ensure that it is defined correctly:

public class Customer {

 @Id
 private long id;

 @NotNull
 private String name;
 private BigDecimal creditAmount;

 @SimpleEmail

Creating the Business Layer

[226]

 private String emailAddress;

 public Customer() {
 }
 // Getters and setter omitted for brevity

}

Contexts and Dependency Injection
One of the hot new features in Enterprise Java over recent years has been the
Contexts and Dependency Injection (CDI) framework.

CDI allows us to interact with the context of objects by enabling binding to
the different lifecycle methods of stateful components using annotations such
as @PostContruct and @PreDestroy. It also provides a dependency injection
framework, allowing components to be injected into other components using the
@Inject annotation. We can choose different implementations of components to
inject at deploy time, allowing a looser coupling of components leading to better
and more structured architectures.

For more information about CDI, refer to the Java EE 6
tutorial at http://docs.oracle.com/javaee/6/
tutorial/doc/giwhb.html.

CDI is a huge subject that can be described in entire books such as JBoss Weld CDI for
Java Platform, Ken Finnigan, Packt Publishing. In this section, we're assuming that you
are familiar with CDI.

Adding CDI support
When using CDI, a special file, beans.xml, must be present in order for the runtime
to detect and initialize the CDI framework. Within an EJB JAR project, this file is
stored within the META-INF folder, whereas in a .War archive, the file is stored
within the WEB-INF folder.

http://docs.oracle.com/javaee/6/tutorial/doc/giwhb.html
http://docs.oracle.com/javaee/6/tutorial/doc/giwhb.html

Chapter 7

[227]

NetBeans provides support for creating a beans.xml file using the standard
New File wizard.

Using this wizard, we can also create other CDI components, namely:

• Qualifier Type: This defines a new @Qualifier. Qualifier types allow
different implementations of a component to be injected into other
components, for example, a JDBC or JPA factory can be defined using
different qualifier types.

• Stereotype: This defines a new @Stereotype. Stereotypes are annotations
that define a set of other CDI annotations such as scope and interceptor
bindings and alternative implementations for beans. A good use of a
stereotype would be to define a mock object, replacing an existing bean
with a mock implementation.

• Interceptor Binding Type: This creates a new @InterceptorBinding.
Interceptor bindings work with interceptors to allow methods to be invoked
around the execution of target class methods. This implements a cross-
cutting concern, and typically applies to tasks such as security or logging
where the activity being added is not related to the target methods logic,
hence the phrase cross-cutting is used.

• Scope Type: This defines a new @Scope.

Creating the Business Layer

[228]

CDI injection points editor support
When looking at the code that supports CDI, it can sometimes be a bit confusing
working out where components come from, and navigating between them.

NetBeans overcomes this issue by providing icons in the left gutter of the source
code editor, showing that a component is being injected into another component.

In the preceding screenshot, for example, we can see that an object of type
MongoSettings called mongoSettings is being injected. NetBeans displays a blue
I in the gutter on the left-hand side of the editor window to indicate that this is an
injection point. Clicking on this icon opens the source code for the Java object that is
being injected.

The preceding screenshot also shows an example of the use of a custom qualifier to
denote a MongoConnection.

Summary
In this chapter, we looked at how to create multi-module EJB projects using both
standard NetBeans projects and Maven. We saw how these projects can contain
multiple modules and how the Maven multi-module project type is especially
powerful as it allows an almost unlimited project hierarchy to be created. We also
noted that for simpler projects, a simple .War file deployment may be sufficient
instead of a multi-module EJB project.

We looked at the different types of EJBs that can be created within NetBeans and
created an example project to deploy an EJB and then invoke it from a remote client.
We also saw how we can use NetBeans to easily generate a session bean façade for
the existing @Entity classes within our applications.

Finally, we looked at some of the more advanced and newer features of Java EE.
We saw how NetBeans can help us perform bean validation and create new
bean validation constraints, and how it can be helpful when using CDI within
our applications.

In the next chapter, we'll move over to the web tier and see what features NetBeans
has to help us develop web applications.

[229]

Creating the Web Tier
One of the most common uses for Java EE is to create web applications that can be
deployed to servlet containers such as Apache Tomcat, or to full-blown application
containers such as WildFly or GlassFish. In this chapter, we're going to look at some of
the tools that NetBeans provides to help developers build modern web applications.

We're going to look at the following topics in this chapter:

• Creating/configuring web projects
• Configuring application servers
• Web project run options
• Creating Spring Web MVC projects
• Adding components to web applications
• CSS preprocessors
• JavaScript support

Creating web projects
NetBeans provides first class support for developers wishing to write web applications
whether they are simple HTML websites or complex Java web applications using
HTML, JavaScript, and backend Java code, or anywhere in between.

As with enterprise projects we saw in the previous chapter, NetBeans provides the
ability to create projects using either NetBeans project templates (based upon Apache
Ant) or as Maven applications.

Creating the Web Tier

[230]

To create and run a web application, we need to have an application server we can
deploy and run the application on. The Java EE distribution of NetBeans comes
bundled with GlassFish Server Open Source Edition Version 4.1 and Apache
Tomcat 8.0.15. GlassFish allows developers to deploy full Java EE stack applications,
including EJB and JMS among other Java EE technologies. Tomcat is more focused
on the web tier and is the de facto standard for Spring applications.

The application servers registered for web (and EJB) deployment are listed within
the Servers node of the Services window:

From within this window, we can start and stop application servers and view
the applications that are deployed to them. Different application servers provide
additional functionality, for example, with GlassFish, we can also view the admin
console or update center for the application server.

If GlassFish and Tomcat are not the application servers of choice, we can easily add
new application servers to be controlled from within NetBeans.

Configuring application servers
The easiest way to add and configure an application server is directly from within the
Services window by right-clicking on the Servers node and selecting Add Server….

Chapter 8

[231]

Selecting this option displays the Add Server Instance wizard, the first stage of
which is to select the new server type. In this list, the most common Java application
servers are displayed:

• Apache Tomcat or TomEE: This option allows us to configure a Tomcat
application server (http://tomcat.apache.org/) or an Apache TomEE
application server (http://tomee.apache.org/). NetBeans is supplied
with Apache Tomcat 8.0.15, so newer instances of Tomcat can be configured
via this option. Apache TomEE is a full Java EE Web Profile application
server composed of Apache Tomcat and other Apache components (such as
OpenEJB and MyFaces JSF). Since TomEE is based upon Tomcat, it can be
configured and controlled from within NetBeans in the same way as Tomcat.

• GlassFish Server: This is the reference implementation of Java EE. Prior to
version 4.1, Oracle provided a fully supported production-ready version
of GlassFish that could be configured via this option within NetBeans.
Since Oracle stated that they will not support a production-ready version
of GlassFish, Payara (http://www.payara.co) has taken up the challenge
and provides 24/7 support for GlassFish using Payara Server. This server
is based upon GlassFish and is indeed a drop-in replacement for GlassFish.
As such, Payara Server can be added and configured from within NetBeans
using this option.

http://tomcat.apache.org/
http://tomee.apache.org/
http://www.payara.co

Creating the Web Tier

[232]

• JBoss Application Server: JBoss was one of the first Java EE application
servers. Versions 4, 5, 6, and 7 of JBoss application server can be configured
using this option.

• Oracle WebLogic Server: WebLogic is Oracle's fully supported application
server and is described as "#1 Application Server Across Conventional and
Cloud Environments".

• WildFly Application Server: WildFly (http://wildfly.org/) is the
successor to JBoss Application Server and is RedHat's community-supported
Java EE 7 application server.

Upon choosing an application server, the Add Server Instance wizard continues and
requires details of the server instance to be configured. The first stage of this is to
configure the location of the application server. The following screenshot shows an
example of configuring WildFly 8.2.0 within NetBeans:

http://wildfly.org/

Chapter 8

[233]

Upon specifying the application server location, NetBeans continues and allows
any additional configuration data to be specified. In the case of WildFly, this is the
Domain, Host, and Port of the application server instance.

Creating a web application
Having configured a new application server or selected one of the existing GlassFish
or Tomcat instances, we can create a web application.

We can also define new application server instances while creating web projects. So,
if you've forgotten to define a server or wish to use a different server, they can be
configured in the New Project wizard.

In a similar fashion to how we created EJB projects in Chapter 7, Creating the Business
Layer, NetBeans allows us to create both NetBeans-formatted web projects and
Maven web projects. NetBeans projects are based upon Apache Ant and provide
an excellent quick start when developing web projects. With a Maven project,
however, we gain all of the advantages of Maven, including different archetypes,
dependencies, and ease of build/deployment on other machines (including
continuous integration).

Let's first take a look at the NetBeans standard project types for web applications.

Creating the Web Tier

[234]

Creating a NetBeans web application
To create a NetBeans web application, we use the standard New Project wizard and
select Java Web from this list of Categories:

NetBeans then provides the following project types:

• Web Application: This creates a new empty web application using an
IDE-generated Ant build script.

• Web Application with Existing Sources: This creates a new web application
using an IDE-generated Ant build script. This option allows the user to
specify the location of the existing sources for a web application and is useful
when an application has been developed outside NetBeans.

• Web Free-Form Application: This imports an existing Ant-based web
application into NetBeans. This option allows the user to specify the locations
of the web content, Java source, and Java test sources. The project-specific
Ant options (Build, Clean, Test, for example) can then be mapped to the
appropriate NetBeans menu and keyboard shortcuts.

Chapter 8

[235]

In addition to specifying project types and locations, NetBeans allows us to specify
any additional project options such as additional frameworks that are to be used by
the web application. Both the Web Application and Web Application with Existing
Sources project types allow us to configure additional frameworks. Let's now create
a standard web project and see what options we have to configure the project.

After launching the New Project wizard and selecting to create a web application,
NetBeans displays the Name and Location page where we can specify the project
name, location, and whether we want to use a dedicated folder for storing libraries
used by the application.

The Use Dedicated Folder for Storing Libraries option allows us to specify a folder
outside the project's structure that can be used for storing any third-party JAR files
that are to be used by this (or other) applications. This option is useful when the
project you are working on is to be accessed by more than one developer as it makes
it easy to share libraries between different instances of a project.

Creating the Web Tier

[236]

Upon defining a project's name and location, NetBeans allows us to configure the
server that the application is to be deployed against along with the version of Java
EE to use and whether we wish to add the web application to an existing enterprise
application. If we choose to add the web application to an enterprise application, the
generated .War file will be added into the enterprise application's .Ear file. If we
choose not to add the web application to an enterprise application, NetBeans will
generate a standalone .War file for deployment.

The Java EE version depends upon the application server that is selected. For
example, GlassFish 4 and WildFly 8 will allow Java EE 7 Web profile to be selected
for web applications.

Finally, we can specify the context path of the application we are creating. This is the
address that the application will deployed to and accessible from within a browser.

Chapter 8

[237]

After specifying the settings for a web application, NetBeans prompts for any
frameworks that may be used within the web application.

NetBeans allows the following frameworks to be specified:

• Spring Web MVC: This option allows a Spring Web MVC application
to be created using either Spring 4.x or 3.x. The configuration tab provides
the options to specify the name of Spring's dispatcher servlet and its
mappings. The option to include the JSTL library within the web application
is also provided.

For more information on Spring Web MVC development, check
out the Spring home page at http://spring.io. We will look
at the alternative ways of creating Spring Web MVC applications
later in this chapter.

http://spring.io

Creating the Web Tier

[238]

• Java Server Faces: Java Server Faces (JSF) is the standard view technology
for Java EE web applications. When selecting to use JSF within an
application, NetBeans provides the option of specifying which version of
JSF to use. We can opt to use Server Library (one that is supplied with our
chosen application server), Registered Libraries (one that is registered
within NetBeans, typically JSF 2.2 or JSF 1.2) or Create New Library. When
creating a new library, we can select a set of .Jar files that makes up the
library along with a name to give the new library.

 ° Configuration: This tab allows us to configure the JSF Servlet URL
pattern to be used by JSF. This defaults to /faces/*, but can be
changed to any other appropriate JSF mapping such as *.jsf
or *.page.

Chapter 8

[239]

 ° Components: Finally, we can specify which JSF component libraries
we wish to use within the web application. We can choose from
PrimeFaces, ICEFaces, and RichFaces. Clicking on the More… button
to the right of each libraries' name allows us to create the relevant
component library's within NetBeans. NetBeans comes bundled with
the libraries for PrimeFaces 5, but for ICEFaces and RichFaces, the
component libraries need to be downloaded prior to the configuration
so that the relevant libraries can be created successfully.

• Struts 1.3.10: Struts is one of the oldest web frameworks for Java web
applications, however, NetBeans still provides support for it. When selecting
Struts, we can configure the action URL pattern for the Struts action servlet.
This defaults to the typical configuration of *.do, but can be configured to any
other reasonable value. We can also configure the Struts application resource.
For more information about Struts, refer to https://struts.apache.org/.

https://struts.apache.org/

Creating the Web Tier

[240]

• Hibernate 4.3.1: The final framework we can add to our application is
Hibernate. It is an open source Object Relational Mapping framework used
to map Java classes to relational databases. When configuring Hibernate, we
can select a database connection; NetBeans will then automatically select the
appropriate database dialect for Hibernate to use. The Database Connection
dropdown lists all the database connections that have been defined within
NetBeans and also provides the facility to create new connections. Please
refer to Chapter 5, Database Persistence, for details on how to configure
database resources within NetBeans.

Modifying a NetBeans web application
After creating a web application, the chances are very high that we want to
add additional frameworks into the application. We can do this manually by
adding additional libraries into a web application and then adding any necessary
configuration files.

Fortunately, NetBeans allows us to easily add any of the preceding frameworks into
a web application in the same way as when the application was created.

By accessing the project properties (right-click on the project in the Projects window
and select Properties), we can change which frameworks are used in the project.

Chapter 8

[241]

In the Project Properties dialog, selecting the Frameworks category displays a list
of the frameworks that we have already added into an application and provides
the option to add any of the recognized frameworks (JSF, Struts, Spring Web MVC,
Hibernate) into the application if they are not already added.

Creating a Maven web application
In the previous section, we've seen how we can create a NetBeans web project and
add different frameworks into the application. The list of frameworks that we can
add, however, is fairly limited, and we're restricted by the versions that NetBeans
provides. To give us better control over the contents of web applications, we can
create them as Maven projects.

To create a Maven web project, we have two options:

• Create a Maven web project
• Create a Maven project from Archetype and select one of the many different

web project types

The first of these options creates a Maven web application project. This option
is accessible within the New Project wizard by selecting Maven from the list of
Categories and Web Application from the list of Projects.

Creating the Web Tier

[242]

Upon selecting to create this type of web project, we are first asked for the
following information:

• Project name
• Project location
• Maven group ID
• Version
• Default package

After entering this information, NetBeans asks for the server to deploy and run the
application against together with the version of Java EE to build the project against.
These are the same options as when creating a NetBeans web project.

When creating a Maven web project, we are not given the option of specifying
the context root of the web application. The context root defaults to the name of
the generated .War file, which is typically the project name concatenated to the
project version. For example, if we deploy the application created in the preceding
screenshot, the URL to access the application will be: http://localhost:8080/
mavenweb-1.0-SNAPSHOT/

The simplest way that will work with all application servers is to change the name
of the generated .War file to the name of the context root that is required. So,
for example, to change the context root to be the same as the artifactId, add a
<finalName /> element into the pom.xml file:

 <build>
 <finalName>${artifactId}</finalName>
 …
 </build>

Different application servers have different techniques for setting the context root for
an application. For WildFly, for example, changing the context root requires adding a
WEB-INF\jboss-web.xml file with the following contents:

 <?xml version="1.0" encoding="UTF-8"?>
<jboss-web version="8.0"
 xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
 http://www.jboss.org/schema/jbossas/jboss-web_8_0.xsd">
 <context-root>/mweb</context-root>
</jboss-web>

Fortunately, NetBeans helps us here again as we can set the context root from within
the project's Run options.

Chapter 8

[243]

The web project's Run options
Right-clicking on a project in the Projects window and selecting Properties displays
the Project Properties page. Selecting Run from the list of Categories displays the
project's Run options.

This page displays the options that are available to control how an application is
deployed and executed.

Creating the Web Tier

[244]

The first two options allow the server and Java EE version to be configured for
the application. When changing the Java EE version, a notification is displayed,
indicating that there could be potential problems when changing the versions of
Java EE:

Consider, for example, if you have developed a Java EE 7 application and you
change the supported Java EE version to Java EE 5. The Java EE 5 version supports
far fewer features than Java EE 7, so your code base will likely be referencing
features that do not exist. Care should also be taken when changing the application
server as there may be some features that are implemented slightly differently in
alternate application servers. NetBeans doesn't warn about changing the server, but
the same consideration needs to be thought of when changing the version of Java EE.

Next, we have the context path of the application. You'll remember that, in the
previous section, we stated that the default context path of a Maven web application
consists of artifactId and the version number, but we can easily change it by
modifying the name of the generated .War file. We also gave an example of how to
change the context path in WildFly. Changing the context path setting modifies a
web application accordingly for the specified application server. So, for example,
if we modify the context path for an application we are deploying to WildFly, the
appropriate entries will be changed in the WEB-INF\jboss-web.xml file.

Chapter 8

[245]

The relative URL and browser to use when running the application are configured
next. The relative URL specifies the address relative to the context path that
will be opened within the browser. So, for example, to open the page, http://
localhost:8080/mweb/manage/console.jsf, we would set Context Path to /
mweb and Relative URL to /manage/console.jsf. By default, the operating system's
default browser is opened (whether it is Firefox, Safari, Chrome, or something else).
The browser can be changed to open inside NetBeans by selecting Embedded WebKit
browser. With this option selected, a new tab is opened within NetBeans when the
application is executed and the page is rendered directly inside the IDE tab. For testing
mobile applications, a connected Android device or emulator can be selected. For
advanced debugging, Chrome with NetBeans Connector can be selected.

Finally, within the Run options, we can specify what to do when we run and save an
application. Display Browser on Run tells NetBeans to open up the defined browser
when the application is executed. This defaults to on, but if we are developing a
JAX-RS application, for example, we may wish to configure this to be off so that a
browser window is not opened every time we deploy the application. Copy Static
Resources on Save enables NetBeans to copy non-Java resource files to the build
directory whenever files are saved. This option defaults to on when the Deploy on
Save option is selected. Deploy on Save causes NetBeans to attempt to hot-deploy
the application when any files are saved, irrespective of whether they are static (for
example, .html or .css) or Java source code files. This option defaults to on and
can help to save considerable time as NetBeans performs a hot deploy (the .War file
is deployed without having to stop and start the application server). When turning
off the Deploy on Save option, NetBeans provides a warning about the possible
consequences. If this option is turned off, any modified files will not be deployed
to the application server and you are manually responsible for deploying your
application to the server. For large applications that can take a long period of time to
deploy, it is sensible to turn off the automatic deployment on saving files.

Creating the Web Tier

[246]

Finally, we can specify that NetBeans will always perform a build before running
the application. With this option selected, NetBeans will perform a build of the
application before running it. This defaults to off, but can be turned on if, for
example, you have a suite of tests that you wish to run as a part of your build
before running an application.

Adding components to a web application
Once a web application project has been created in NetBeans, either as a standard
NetBeans project or a Maven project, we can add additional components into the
project. These components can be anything from frontend code such as HTML or
CSS files, server-rendered code such as JSF pages, or general utility classes such as
service locators that can help when developing applications.

Using the New File wizard and selecting the Web category, we can add the
following types of files:

• JSP: This creates a new JSP page or JSP segment using either standard or
XML-based JSP syntax.

• JSF Page: This creates a new JSF page using either Facelets or JSP as the
view engine.

• Servlet: This provides the ability to create a new servlet. The servlet
can be optionally registered within the web.xml file or can be registered
using annotations.

• Filter: This provides the ability to create a new filter. The HTTP request
mappings or servlet that apply to the filter can be specified. The filter
declaration can optionally be registered within the web.xml file.

• Web Application Listener: This creates a web listener class, implementing
one or more of the following interfaces:

 ° Context Listener
 ° Context Attribute Listener
 ° HTTP Session Listener
 ° HTTP Session Attribute Listener
 ° Request Listener
 ° Request Attribute Listener

• WebSocket Endpoint: This provides the ability to create a web socket
endpoint at a specific URI.

• HTML: This creates an empty HTML page.

Chapter 8

[247]

• XHTML: This creates an empty XHTML page.
• Cascading Style Sheet: This creates an empty CSS file.
• JavaScript File: This creates an empty Java Script file.
• JSON: This creates a JSON file (a default entry is added to show the format

of the file).
• Tag Handler: This provides the ability to create a tag handler class used

for creating JSP tags extending either javax.servlet.jsp.target.
SimpleTagSupport or javax.servlet.jsp.tagext.BodyTagSupport.

• Tag Library Descriptor: This creates a tag library descriptor file.
• Tag File: It creates a JSP 2.0 tag file.
• Service Locator: This creates a class representing an instance of the J2EE

Service Locator design pattern.
• Caching Service Locator: This creates a class, representing an instance of the

J2EE Caching Service Locator design pattern.
• JSF Pages from Entity Classes: This creates a set of JSF pages (including

page and JPA controllers) based upon a set of the @Entity classes.
• Standard Deployment Descriptor (web.xml): This creates a standard web.

xml file within the project's WEB-INF folder.

NetBeans also provides wizards within other categories that allow us to quickly add
components into a web application. Some of the file types that can be created within
one category are duplicated in different categories. The resultant files that are created
are the same, but NetBeans simply puts them into multiple categories to make
finding them easier. For example, we can create an HTML file from within either the
Web or HTML5 category.

From within the HTML5 category of the New File wizard, we can create the following:

• HTML File: This creates an empty HTML page.
• JavaScript File: This creates an empty JavaScript file.
• Cascading Style Sheet: This creates an empty CSS file.
• Sass File: This creates and configures an empty Sass file. We will discuss Sass

files and their support in NetBeans later in this chapter.
• LESS File: This creates and configures an empty Less file. We will discuss

Less files and their support in NetBeans later in this chapter.
• JSON File: This creates a JSON file (a default entry is added to show the

format of the file).

Creating the Web Tier

[248]

• RESTful JavaScript Client: This creates a JavaScript client with the ability
to consume a RESTful web service. This can be a useful starting point
for a web application that communicates with the server via web services.
We will discuss web services further in the Chapter 9, Creating and Consuming
Web Services.

• Gruntfile.js: This creates a JavaScript Grunt file. This file type is useful for
JavaScript developers who wish to perform multiple tasks such as minifying
JavaScript and CSS files, running JavaScript tests, and so on. Roughly
translated, a grunt file provides similar facilities to an Ant file within the
Java ecosystem.

Finally, NetBeans provides facilities for creating components used by different
frameworks, namely JSF, Struts, and Spring (although the Spring support is more
geared towards Spring 3 than Spring 4).

Within the JavaServer Faces category of the New File wizard, NetBeans allows us
to create:

• JSF Page: This creates a new JSF page using either Facelets or JSP as the
view engine.

• JSF Managed Bean: This creates a new JSF Managed Bean. The name and
scope of the bean can be specified and optionally registered within the
faces-config.xml file for the project.

• JSF Faces Configuration: This creates a new faces-config.xml file in the
WEB-INF folder of the project.

• JSF Composite Component: This creates a JSF 2 composite component.
• JSF Pages from Entity Classes: This creates a set of JSF pages (including

page and JPA controllers) based upon a set of the @Entity classes.
• JSF Resource Library Contract: This creates a JSF Resource Library Contract,

optionally creating an initial template. The initial template specifies a header,
footer, left and right sidebars, and main content, and can be created using
either CSS or HTML tables for the layout.

• JSF Faces Component: This creates a new class annotated with
@FacesComponent.

• Facelets Template: This creates a new template, specifying a header, footer,
left and right sidebars, and main content. The template can be created using
either CSS or HTML tables for the layout.

• Faces Template Client: It creates a new JSF Facelets template client based
upon an existing template.

Chapter 8

[249]

Within the Struts category of the New File wizard, NetBeans allows us to create:

• Struts Action: This creates a new Struts action class
• Struts ActionForm Bean: This creates a new Struts ActionForm bean

Since 2013, the Apache Struts 1.x has reached its end of life and is
no longer officially supported. For more information on Struts 2,
refer to http://struts.apache.org.

Finally, the Spring Framework category of the New File wizard allows us to create:

• Spring XML Configuration File: This creates an empty Spring
configuration file

• Abstract Controller: This creates a Spring Web MVC controller
class that extends from org.springframework.web.servlet.mvc.
AbstractController

• Simple Form Controller: This creates a Spring Web MVC controller
class that extends from org.springframework.web.servlet.mvc.
SimpleFormController

Note that although NetBeans allows us to create
AbstractControllers and SimpleFormControllers, these are
not necessarily the best way to create controllers in modern versions
of Spring. For example, SimpleFormController was deprecated
in Spring 3.0. For more information on the latest version of the Spring
Framework and how to build controllers in its web-based counterpart,
Spring Web MVC, refer to http://spring.io.

Creating Spring web applications
So far, we've covered creating web applications, with the primary focus on standard
Java EE. NetBeans, however, also provides support for creating Spring applications.
The NetBeans support for Spring applications, however, is not completely up to date
with the latest version of Spring, so as well as highlighting the features available
to a Spring developer, we'll also discuss a more up-to-date way of creating Spring
applications in this section.

http://struts.apache.org
http://spring.io

Creating the Web Tier

[250]

An empty Spring application in NetBeans can be created using the standard New
Project wizard we've discussed earlier in this chapter. On the Frameworks page
of the New Web Application wizard, NetBeans allows Spring to be configured.

Upon selecting the Spring Web MVC framework, NetBeans allows the version of the
Spring Library to be configured. NetBeans provides options for using Spring 4.0.1
and Spring 3.2.7, depending upon the version of the Spring Framework that you
are targeting. These versions will get updated with new releases of NetBeans. For a
more fine-grained control of the versions of NetBeans, and greater control over all of
the versions of third-party libraries, a Maven project is recommended rather than a
standard web application.

If you are using JSP syntax for a Spring Web MVC application, you'll probably want
to check the Include JSTL checkbox to add JSTL support to the application. When
selected this will add the JSTL libraries into the web application, adding both the
jstl-impl.jar and jstl-api.jar libraries.

Chapter 8

[251]

Finally, when creating a Spring Web MVC application, the Configuration tab allows
the name of the dispatcher servlet to be defined along with its servlet mapping.

In the preceding screenshot, the dispatcher servlet is called dispatcher and has a
mapping of *.htm. NetBeans creates the relevant sections within the application's
web.xml file to support Spring:

<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

Creating the Web Tier

[252]

NetBeans creates that classic Spring structured application creating a sample view
(index.jsp) within the WEB-INF/jsp folder of the application. An application
context file for the dispatcher servlet is created at WEB-INF/dispatcher-servlet.
xml (the name here depends upon the name of the dispatcher servlet, for example,
if we'd defined the dispatcher servlet to be called myapp, the corresponding
configuration file would have been named WEB-INF/myapp-servlet.xml). Finally,
an application context XML file is created at /WEB-INF/applicationContext.xml
where Spring beans can be defined.

Changing the version of Spring used
When creating a web application with Spring support, NetBeans provides the
options of using Spring 4.0.1 or Spring 3.2.7. Given that the Spring Framework is
constantly being upgraded with new features and new fixes (for example, Spring 4.2
has now been released), we would probably want to use the latest version of Spring
within an application. How can we do this? If we're using Maven, we can simply
change the versions of the libraries we wish to use within the pom.xml file. If we're
developing a NetBeans web application, however, we need to update the library that
defines all of the Spring .Jars and dependencies.

To access the libraries used within the application, we must access the project's
Properties. This is achieved by right-clicking on the project within the Projects
window and selecting Properties. On the Properties screen, selecting Libraries
from the list of Categories displays all the libraries used within the application.

Chapter 8

[253]

Within the Project Properties window, we can add new dependencies to a project
(this is not specific to web projects, but can be done on any type of NetBeans project).
We can add a project, a library, or a .Jar file/folder as a dependency. This works
similar to the way Maven projects use dependencies so that we can have one
project depending upon some other code, which is possibly written by a third
party altogether.

For example, if we create a MyWebApp project and add a dependency to the MyEJBApp
project, we could define a set of EJBs within the MyEJBApp project and access them
from MyWebApp.

To change the version of a framework being used by an application, we have
two choices:

• Create a new library for the new version of the framework and set that as a
dependency instead of the original library being used

• Edit the existing library and change the set of .Jar files references within it
to those of the new version of the library

Creating the Web Tier

[254]

The choice of options here depends on whether the changes to the library are
significant and whether we'll possibly need to use the old version of the framework.
In the case of Spring, we have two libraries defined within NetBeans. We have the
Spring 4.0.1 and Spring 3.2.7 library. The creators of NetBeans decided that when
writing a Spring application, we would want to target the application at either
Spring 3 or Spring 4. In this case, we can simply add the Spring 3 or Spring 4 library
to an application to add the required support. Since its quite likely that we may want
to create different applications, targeting different versions of Spring, in this case,
we would probably be better off updating one of the existing Spring libraries rather
than creating a new one. For example, we could change the Spring 4.0.1 library
to reference Spring 4.2.0 (the latest version). This way, we still have two Spring
libraries, with one targeting Spring 3 and the other, Spring 4.

So, how do we update a library? Within the Libraries section of the project's
properties, we must select the library to update and then click on the Edit button.
This causes the Customize Library dialog to be displayed.

Chapter 8

[255]

In this dialog, we can select .Jar files from the Library Classpath list and click on
the Remove button to remove them from the library.

The Library Classpath list allows multiple .Jar files to be selected
at one time and then removed or moved up/down.

Once we've removed all of the old versions of a library, we can click on the Add JAR/
Folder… button and browse for the updated version of the library's .Jar files.

If the order of the .Jar files in the library is important (for example, if we always
want a particular .Jar file to be accessed before another), we can change the
ordering by selecting an entry in the Library Classpath list and clicking on either
the Move Up or Move Down buttons.

In addition to specifying the .Jar files within a library, we can also define
the sources and JavaDoc used by the library. Defining the source code and
documentation for a library helps when writing applications against it as we can
debug into the source code and get the pop-up tips, showing how APIs work. It's
recommended to enter this information for third-party libraries if at all possible.
With the default Spring libraries used within NetBeans, however, this information
is not specified as there are no source code or documentation files defined.
When updating the Spring libraries (or any other libraries for that matter), it's
recommended to update these sections.

Finally, if the version of the library has changed (for example we've upgraded from
Spring 4.0.1 to Spring 4.2.0), we can change the library name appropriately.

Spring application development shortcuts
After creating a Spring application, is there any other support that NetBeans
provides to make development easier?

As discussed earlier, the New File wizard in NetBeans allows us to create both
controllers (based upon AbstractController and SimpleFormController). These
two options do a little more than creating new classes. Of more interest, however, is
the ability to create new Spring XML configuration file(s).

Creating the Web Tier

[256]

When using XML configuration files for Spring, it's a best practice to store different
facets in different configuration files. For example, all the database-related beans
would be stored in one configuration file, while all the web-related beans would
be stored in a different configuration file. Each configuration file within a Spring
application can make use of different Spring namespaces. These allow us to define
what we can specify within the XML file. Getting the namespaces correct within
XML files is critical, and can be prone to errors when entered manually. Fortunately,
the New File wizard provides the option to select which Spring namespaces are
required when creating an XML configuration file.

On the final page of the New File wizard when creating Spring configuration files,
we are presented with a list of Spring namespaces from which we can choose those
that are required for the new file.

Upon completing the wizard, the XML configuration files are created with the
specified namespaces defined:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

Chapter 8

[257]

 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-4.0.xsd
">

</beans>

Once we've created a configuration file, we can use the Ctrl + Insert keyboard
shortcut to create a reference to a new bean within a file.

Right-clicking within a Spring configuration XML file doesn't
display a pop-up menu to insert code like you would see in
a Java source code file, so in this instance, the Ctrl + Insert
keyboard shortcut is a good one to remember.

Upon selecting the Declare Spring Bean option, the Declare Spring Bean dialog is
displayed in which you can enter the ID and class of the bean to be declared:

Selecting the OK button adds the bean definition to the configuration file:

<bean id="customerBean"
 class="com.davidsalter.masteringnb.springweb.CustomerBean"/>

Creating the Web Tier

[258]

Modern Spring development
In the previous sections, we've seen how we can use NetBeans to create Spring Web
MVC applications. We also saw how we can use Maven dependencies or edit the
project's libraries to change the versions of Spring being used.

With the recent versions of Spring, the trend has been to move away from
configuration stored within context XML files and to use annotations instead. The
current version of NetBeans doesn't provide any wizards to allow us to rapidly
create applications conforming to this pattern, but does, as you would expect, allow
us to develop these types of applications.

So, how do we create a Spring application in a "modern" way? We could simply
create a new Maven project and define all our dependencies. This would certainly
work and would provide excellent control over exactly what libraries and what
versions of libraries to use. An alternative, however, would be to use the Spring
Initializr at http://start.spring.io.

Although not NetBeans-specific, the Spring Initializr provides rapid support for
creating Spring applications as Maven projects that can then be loaded directly
into NetBeans.

http://start.spring.io

Chapter 8

[259]

Spring Initializr provides different options, allowing the definition of a project to be
specified along with details of which Spring aspects are required (for example, web,
security, template engines). Upon completion, a zipped archive can be downloaded that
includes a Maven project that can be opened directly within NetBeans. The downloaded
application uses Spring Boot to provide access to the latest Spring technologies.

For more information on Spring Boot, refer to
http://projects.spring.io/spring-boot/.

Enhancing Spring Boot support
Out of the box, NetBeans provides fantastic support for Maven applications, but very
little support for Spring Boot applications.

Within Spring Boot, a lot of application configuration can be achieved by editing
values in the application.properties file. For example, this file can specify the
database connection details for an application, or the default port that the embedded
Tomcat server uses.

NetBeans allows us to edit this file as a simple text file. This, however, doesn't
provide any advanced editing such as autocomplete support as the base NetBeans
product has no knowledge of Spring Boot. Fortunately, we can add support for
editing Spring Boot configuration files by installing the Spring Boot Configuration
Support plugin. To install this plugin, browse to the project's home page at http://
keevosh.github.io/nb-springboot-configuration-support/ and click on the
Download link to download the latest plugin to your local system.

At present this plugin is not available via the NetBeans Update
Center, so it has to be downloaded and installed manually.

Next, open up the NetBeans plugins by selecting Tools and then Plugins from the
main NetBeans menu. Click on the Downloaded tab and then the Add Plugins…
button to locate the downloaded file. The downloaded file will be called something
like this: nb-springboot-configuration-support-1.0.nbm

http://projects.spring.io/spring-boot/
http://keevosh.github.io/nb-springboot-configuration-support/
http://keevosh.github.io/nb-springboot-configuration-support/

Creating the Web Tier

[260]

Click on the Install button to complete the installation. At this point, NetBeans may
ask to restart the system.

Once the Spring Boot Configuration Support plugin has been installed, pressing
Ctrl + spacebar within an application.properties editor window will display
autocompletion help, as shown in the following screenshot:

Chapter 8

[261]

CSS preprocessors
When developing web applications, we typically style applications using CSS. It
gives us advantages when developing HTML in that the style of our applications
is kept separate from the markup for a page, thus allowing us to easily change the
styling of an application without modification to the page itself.

Unfortunately, CSS is a fairly simple rudimentary language and can, for example,
lead us to the duplication of definitions. Consider the case where we wish to declare
several classes with the same color font:

.main_text {
 color: #ff0000;
}

.sidebar_text {
 color: #ff0000;
}

In these two classes, we've had to duplicate the color value (#ff0000) twice. If we
wanted to change this to, say, #0000ff, we'd need to change it in multiple places
in the CSS file. An even bigger problem would be if we needed to change this color
depending upon some other trigger. Using CSS, it would become terribly complex
and error-prone to achieve these scenarios.

Fortunately, NetBeans allows us to use the CSS preprocessors—Less and SASS—
which will allow us to overcome these problems. Both these CSS preprocessors
enhance what we can do with CSS by adding features such as variables, mixins, and
functions, allowing us to maintain CSS in a much simpler way. CSS preprocessors
take an input file, perform some processing, and then generate a standard CSS file.

For more information on Less, refer to http://lesscss.org, and
for more information on SASS, visit http://sass-lang.com.

http://lesscss.org
http://sass-lang.com

Creating the Web Tier

[262]

To give an example on why we may want to use a preprocessor instead of CSS, let's
take a look at a simple scenario described earlier, but using Less instead of plain CSS.
Using Less, we can define our .main_text and .sidebar_text classes as:

@CompanyStyleColor: #ff0000;
.main_text {
 color: @CompanyStyleColor;
}

.sidebar_text {
 color: @CompanyStyleColor;
}

This is a fairly simple example, but shows the power of the Less CSS preprocessor.
The color used within the .main_text and .sidebar_text classes is defined in a
@CompanyStyleColor variable. Changing the value of this variable (in one single
place) would change all the references to it within the CSS file.

We said earlier that a CSS preprocessor takes an input file and then generates
standard CSS. How is this configured within NetBeans?

Configuring Less and SASS in NetBeans
In order to configure NetBeans so that it use Less and SASS, we first need to ensure
that our chosen preprocessor is installed correctly. Less is typically installed as a
NodeJS module, whereas SASS is installed via a Ruby gem. A thorough description
of NodeJS and Ruby gems is outside the scope of this book, however, the installation
process for both of these products is straightforward and described in detail on each
of the project's sites.

For Less installation details, refer to http://lesscss.org/
usage/index.html, and for SASS installation details, visit
http://sass-lang.com/install.

http://lesscss.org/usage/index.html
http://lesscss.org/usage/index.html
http://sass-lang.com/install

Chapter 8

[263]

To configure NetBeans, we need to access the Miscellaneous options from the
NetBeans Preferences main menu option. Within this screen, we must access the
CSS Preprocessors tab, as shown in the following screenshot:

Within this tab, there are the options to configure both the Sass path and Less
path. These must specify the full path to Sass and Less, respectively. The Browse
and Search buttons can be used to help locate your installation of the appropriate
preprocessor if you are unsure of its location. To the right of the dialog are two
links—Install Sass and Install LESS. Clicking on these links opens up your default
browser at the installation page for Sass and Less.

For each preprocessor, there are also two checkboxes—Open Output on Error
and Generate extra information (debug). When a Sass or Less file is saved within
NetBeans, it is automatically compiled into the corresponding CSS. If any errors
occur during the compilation stage, the NetBeans Output window will automatically
be opened if the Open Output on Error checkbox is selected.

If the Generate extra information (debug) option is selected, then a CSS .map file
will be created when the Sass or Less file is compiled. The .map file allows the
Chrome Developer Tools to edit the source Sass or Less file instead of the generated
CSS file when debugging through Chrome. We'll see an example of this shortly.

Creating the Web Tier

[264]

Configuring Less and Sass on a project basis
Once we've configured NetBeans and told it where the executables are for the CSS
preprocessors, we need to configure a project by defining which preprocessor to use
and where the source and destination files are. This is achieved within the Project
Properties dialog, which is accessible by right-clicking on a project in the Projects
window and selecting the Properties option. Selecting the CSS Preprocessors
category allows us to configure the project.

In this dialog, the first button that we see is the Configure Executables… button.
Clicking on this button takes us to the CSS Preprocessors tab within the NetBeans
Options dialog, as discussed earlier in this chapter. If NetBeans is already configured
with the locations of the Sass and Less executables, this option can be ignored.

Next, NetBeans provides two tabs, Sass and LESS, where we can configure
how NetBeans interacts with these file types. Each of these tabs offers the same
functionality except for the different preprocessors, so let's take a look at the LESS
tab. The first option, Compile LESS Files on Save, instructs NetBeans to compile
any configured Less files when they are saved. This means that every time you save
a Less file, the corresponding CSS file is generated along with the debug .map file if
this is configured within the NetBeans options.

Chapter 8

[265]

The Watch section allows us to configure which folders contain input LESS files and
where to store the generated CSS file after compilation. The default options here are
to store LESS files in a folder called /less and to store the generated CSS files in the
/css folder. Additional folders can be configured using the Add and Remove
buttons. These folders are relative to the web application's root folder.

Finally, any compiler options for Sass or Less can be configured within the
Compiler Options edit box. In the preceding screenshot, the compiler options
instruct NetBeans to use less-plugin-clean-css when compiling Less files.
This plugin has the effect of minimizing the generated CSS.

Given the preceding configuration, if we create a Less file—\less\site.less, when
the file is saved, a corresponding CSS and .map file will be created as \css\site.css
and \css\site.css.map, as shown in the following screenshot:

We can use the Less file \less\site.less as an example:

@Red: #f00;
@Green: #0f0;

@Bold: 700;
@Light: 100;

@CompanyStyleFontColor:@Green;
@CompanyStyleFontWeight:@Light;

h1 {
 color: @CompanyStyleFontColor;
 font-weight: @CompanyStyleFontWeight;
}

Creating the Web Tier

[266]

Here's the HTML:

<!doctype html>
<head>
 <link rel="stylesheet" href="css/site.css">
</head>
<body>
 <h1>The Less preprocessor made me narrow and green!</h1>
</body>
</html>

We can see exactly how the Less file is compiled into a CSS file, which has the simple
effect of changing the <h1> element's color and weight.

Chapter 8

[267]

The important thing to spot here, however, is that because we told NetBeans to
generate debug information, a .map file was created. This .map file allows the
Chrome Developer Tools to enable editing of the source Less file rather than the
generated CSS file. The following screenshot, for example, shows that the styles for
the <h1> element are defined within the site.less file at line 10:

Remember, when editing web application styles using an external tool
such as the Chrome Developer Tools or from within NetBeans itself,
any changes made to the CSS file will be lost when the Less or Sass files
are compiled. When using Less and Sass, only make changes to the
source files and not the generated CSS files.

Creating CSS rules
Within a CSS file, sometimes there is a need to define styles for the nested <div/>
elements. Consider the following HTML:

<div class="header">
 <h1>Header</h1>
 <div class="content">
 <h1>Content Header</h1>
 </div>
</div>

If we wanted to define the styling for the <h1/> element within the Content Header,
we could add a CSS rule:

.content h1 {
 // Some styling
}

Although this is a pretty simple example, it illustrates the cascading nature of CSS
and how we can declare selectors built up from more than a single class name or ID.

Creating the Web Tier

[268]

Within NetBeans, we can invoke the Css Rule code generator (by right-clicking
inside a CSS file or selecting the Ctrl + Insert keyboard shortcut) to help us create
this type of CSS.

Upon selecting this option, the Style Rule Editor dialog is displayed:

In this dialog, we can add either one or more of the following rules:

• Class: This adds a CSS class rule, for example, .content.
• HTML Element: This adds an HTML element rule, for example, h1.
• Element ID: This adds an HTML element ID rule, for example,

#submitButton. Note that it is not necessary to add the # for an ID as
NetBeans will automatically add this.

The rules that are created are displayed towards the right hand side of the dialog
within the Style Rule Hierarchy list. From within this list, we can reorder the style
rules by selecting a rule and clicking on either the Up or Down buttons. Selecting the
OK button creates the specified style rule within the open CSS, Less, or Sass file.

Chapter 8

[269]

Adding JavaScript to a web application
So far in this chapter, we've seen how to create both standard Java EE web and
Spring Web MVC applications and how to use CSS preprocessors. To complete our
look at creating web applications, let's now turn to JavaScript and see what support
does NetBeans offer.

The majority of modern web applications are now developed using some sort of
JavaScript framework. This ranges from adding simple scripts to a page to enhance
the user experience to developing complex single-page applications (SPAs) entirely
in JavaScript.

On any web project, NetBeans provides support to add different JavaScript
frameworks into the application. From within the Project Properties page, the
JavaScript Files category lists a huge number of JavaScript frameworks and libraries
that can easily be added to your applications.

The first list displays all of the JavaScript libraries that are available. To add a library
into your application, simply select it and click on the > button to move it into the
selected list. By default, all the selected libraries will be copied into the js/libs
folder of your web application.

Creating the Web Tier

[270]

The first time the JavaScript Files property page is displayed, the
Updated: never label is displayed underneath the list of available
libraries. Although not obvious, this link can be clicked to refresh
the list of available libraries. It's recommended to update this list
of libraries periodically to ensure the latest versions of the libraries
are available for use. Updating the libraries can take a few minutes
though, so be prepared to wait as you can't add and remove libraries
into your application while the update is proceeding.

This technique provides an excellent way of quickly adding JavaScript into
an application.

Checking JavaScript files
Given the nature of JavaScript as a dynamic language, it's easy to make errors in
JavaScript code that don't get caught when your Java web applications are compiled
and built. For anyone working with JavaScript within a web application, NetBeans
provides support for the popular JSLint tool. This tool examines JavaScript code and
reports code violations, and is an essential tool when developing with JavaScript in a
NetBeans web application.

To install JSLint support, access the NetBeans Plugins page from the main menu
and ensure that the JSLint plugin is installed. Once installed, you can right-click
on a JavaScript file and select the JSLint option. All the code violations are then
flagged within the gutter of the JavaScript file as a warning triangle, as shown in
the following screenshot; hovering the mouse over any of the violations provides
a tooltip showing further details:

Chapter 8

[271]

Summary
In this chapter, we started by looking at how to create web projects with NetBeans
and saw the differences between NetBeans and Maven web applications. We saw
how easy it is to add different components to web applications using NetBeans, and
how we can easily change a web project's run options, including its context path.

After looking at Java EE web applications, we looked at creating Spring Web MVC
applications, and saw how we can quickly create Spring Boot applications and start
developing them within NetBeans using Spring Initializr.

Finally, we looked at some of the tools NetBeans offers for styling via CSS and
CSS preprocessors. We also learned to add different JavaScript frameworks into
our applications.

In the next chapter, we'll continue looking at web applications, but our focus will
move onto web services, where we'll see how to create and consume web services
from within NetBeans.

[273]

Creating and Consuming
Web Services

In the world of enterprise computing, communication between different servers has
typically been used for data interchange so that clients can request services offered
by third-party servers. With the mobile revolution, this transferring of information
between computers and making remote requests for information has become
common in the mobile world as well.

Consider the simple weather application on your mobile device. Typically, this will
obtain its location as a latitude and longitude and will then invoke a remote server to
obtain the weather information before displaying it to you. There's no way that your
mobile device can forecast the weather for your current location, let alone for where
you're vacationing next week. This is where web services come into play.

Originally, data interchange between client and server used proprietary technologies
such as Common Object Request Broker Architecture (CORBA) or Remote Method
Invocation (RMI). These worked fine when everything was written in the same
framework by the same team, but as data interchange became more common, it
became clear that open standards were required. This gave birth to Simple Object
Access Protocol (SOAP).

SOAP defines a protocol for exchanging data using XML for the data format and
typically HTTP for transport (although other transport mechanisms such as SMTP
or JMS can also be used to implement SOAP). It is one of the dominant protocols for
information exchange.

Creating and Consuming Web Services

[274]

Around the year 2000, the RESTful architectural style was coined as a set of
guidelines and best practices for creating scalable web services that would offer
an alternative to SOAP. As with SOAP, Representational State Transfer (REST)
typically operates via HTTP to transmit information between client and server
devices. REST, however, is free to use whatever data format it likes, and typically,
REST web services use either XML or JSON to transmit data. Transmitting JSON data
via HTTP is now the de-facto standard for modern web applications due to the ease
and popular modern JavaScript frameworks that can easily consume JSON data into
native objects.

In this chapter, we'll be looking at both SOAP and REST web services. In particular,
we'll look at:

• Creating SOAP web services from scratch
• Creating SOAP web services from WSDL
• Consuming SOAP web services
• Managing SOAP web services
• Creating RESTful web services

Creating web services
As you'd expect, NetBeans provides a set of wizards allowing you to easily create
and test SOAP-based web services. Since web services are typically available via the
Internet, creating a web service requires a Java web application; this can be either a
standard NetBeans web application or a Maven web application, depending upon
your choice of technologies.

Once we have a web application, the NetBeans New File wizard provides several
options for creating web services:

• Web Service: This option creates an empty Java EE (JSR-109) web service.
This is the simplest way to create a new empty SOAP web service.

• Web Service From WSDL: This creates a SOAP web service based upon a
supplied Web Service Definition Language (WSDL) file. WSDL allows us to
easily define SOAP-based web services, including the transport and payload
for method and information exchange.

Chapter 9

[275]

• RESTful Web Services from Entity Classes: This creates RESTful web
services from a set of one or more classes annotated with @Entity.

• RESTful Web Services from Patterns: This creates RESTful web services
based upon the Simple Root Resource, Container-Item, or Client-Controlled
Container-Item patterns, all using the Java API for RESTful services (JSR-311).

• RESTful Web Services from Database: This creates RESTful web services
from a set of one or more tables in a relational database.

• RESTful Java Client: This creates a Java REST client from a REST service
defined within a NetBeans project or defined as a NetBeans service.

• RESTful JavaScript client: This creates a RESTful web service client using
JavaScript instead of Java.

• Cross Origin Resource Sharing (CORS) Filter: This creates a CORS filter,
allowing resources from different domains to be accessed.

• JAX RS 2.0 Filter: This creates a JAX RS filter that has the ability to process or
modify request and response headers.

• JAX RS 2.0 Interceptor: This creates a JAX RS interceptor that has the ability
to process or modify request and response message bodies.

• Web Service Client: This creates a Java web service client.
• Secure Token Service (STS): This creates a skeleton web service that can

have a secured access.
• Logical Handler: This creates a logical handler that has the ability to process

or modify the payload of a SOAP message.
• Message Handler: This creates a message handler that has the ability to

process or modify the entire SOAP message.

We could fill an entire book describing in detail all of these different types of
web services, so let's take a few of the more common and describe how NetBeans
implements them.

Creating and Consuming Web Services

[276]

Creating a SOAP web service
NetBeans allows us to create a simple web service and a web service from a WSDL,
but what exactly is the difference?

SOAP web services have an interface definition that is described by WSDL. If
you're developing a set of SOAP-based web services to supply to a third party, it's
useful to supply the definition of a web service, its WSDL, to the third party. This
is like supplying a Java interface to your customers. They won't know how you've
implemented the interface, but they'll have all the information they need to start
developing against your service.

For more information on WSDL, refer to http://www.w3.org/TR/wsdl.

When someone has access to WSDL, they can easily create client applications as they
know the methods and payloads that a web service requires.

If, on the other hand, you're creating a web service internally for your own use, or
you have some control over the web service's clients, creating a web service first (and
not placing so much reliance on WSDL) may be a better option. It's a decision that
needs to be made before implementing a web service—do I need to create WSDL first
or last?

Note that whenever you supply a WSDL to third parties (even to
your other applications), you'll want to keep modifications to a web
service's WSDL to a minimum so that your changes don't break
client applications. If you need to change a WSDL, it's useful to add
new services or methods and keep the existing methods constant.
Consider creating different versions of a web service where you
can phase out older versions over time. Remember, it's not usually
feasible for all of your web service clients to be updated at the same
time that you deploy a new version of a web service.

http://www.w3.org/TR/wsdl

Chapter 9

[277]

Creating a SOAP web service from scratch
To create a SOAP-based web service from scratch, we use the Web Service type
within the New File wizard:

Creating and Consuming Web Services

[278]

Upon selecting to create a web service, NetBeans displays the Name and Location
page for the new web service.

On this page, we can specify the new web service name along with the usual project,
location, and package for the created Java source code. We then have several options
for creating the web service:

• Create Web Service from Scratch
• Create Web Service from Existing Session Bean

For both these options, we also have the ability to implement the web service as a
stateless session bean.

Taking the first option and creating a web service from scratch, NetBeans creates a
simple Java class annotated with @WebService. A sample method is defined within
the class to indicate how to declare web service operations within the class:

@WebService(serviceName = "SampleWebServiceFromScratch")
public class SampleWebServiceFromScratch {

 /**
 * This is a sample web service operation
 */
 @WebMethod(operationName = "hello")
 public String hello(@WebParam(name = "name") String txt) {

Chapter 9

[279]

 return "Hello " + txt + " !";
 }
}

If the web service is created from scratch and we have configured it to be
implemented as a stateless session bean, NetBeans simply adds the @Stateless
annotation onto the class:

@WebService(serviceName = "SampleStatelessWebService")
@Stateless()
public class SampleStatelessWebService {

The second option for creating a web service is from an existing session bean. When
this option is selected, NetBeans displays a list of all the session beans within the
currently open projects, allowing one to be selected as the basis for the web service.

Upon selecting a bean, a web service class is created. Within the class, a reference to
the @EJB is stored and operations are created for each method on the EJB, as shown
in the following code fragment:

@WebService(serviceName = "SampleWebServiceFromEJB")
public class SampleWebServiceFromEJB {
 @EJB
 private WelcomeSessionBean ejbRef;

 @WebMethod(operationName = "sayHello")
 public String sayHello(@WebParam(name = "name") String name) {
 return ejbRef.sayHello(name);
 }
}

Creating and Consuming Web Services

[280]

As with the simpler method of creating a web service from scratch, implementing the
web service as a stateless session bean simply adds the @Stateless annotation onto
the web service class.

Once we've created a web service, we need to add operations into it to make it useful
to consumers. As can be seen from the previous examples, operations within a web
service class are simply public methods annotated with the @WebMethod annotation
whose parameters are annotated with @WebParam. As you'd expect, NetBeans
provides help here to quickly add web service operations into a web service class.

Right-clicking within the body of a web service class and selecting the Insert Code
option provides the Add Web Service Operation… facility.

From within the Add Operation dialog, we can add new web service operations,
specifying their names and return types. For each operation, we can define a set of
parameters again, specifying their name and type, and also whether the parameter is
declared as final or not. Finally, we can specify any exceptions that may be thrown
from the operation. Upon completing the Add Operation dialog, an empty web
service operation is added to the web service as defined:

@WebMethod(operationName = "goodbye")
public String goodbye(@WebParam(name = "name") final String name)
 throws UnsupportedOperationException {

Chapter 9

[281]

 //TODO write your implementation code here:
 return null;
}

From here, completing the web service is a matter of implementing the relevant
business logic within the newly created method.

Creating a SOAP web service from WSDL
The final technique for creating a SOAP web service that we will discuss is creating a
web service from WSDL. You'll remember from the previous section that we need to
house standard web services within a web project. This is the same for web services
that are created from WSDL. Once we've opened a web project, we can create a new
web service from WSDL again with the New File wizard.

Creating and Consuming Web Services

[282]

The web service name, project, location, and package are all defined in the same
way as they were when creating a web service from scratch. In this case, however,
we must specify a WSDL file as the basis of the web service. We can either enter or
browse to a local WSDL file (this browses the local filesystem and not local projects)
or enter the URL of a WSDL file located elsewhere. Upon entering a valid WSDL,
NetBeans will parse the WSDL and select a web service port if only one is found
within the WSDL file. If there are multiple web service ports defined, the appropriate
Browse button can be used to select the required port.

Finally, there are two additional options that can be used to define the web service:

• Implement javax.xml.ws.Provider Interface: The generated web service is
annotated with the @WebServiceProvider annotation, effectively providing
a single input to all the web service operations. If this option is not selected,
the web service is generated as a standard @WebService annotated class.

• Implement Web Service as Stateless Session Bean: If selected, annotates the
class with the @Stateless annotation to declare it as a stateless session bean.

Upon completing the wizard, NetBeans parses the WSDL file and generates code
artifacts to allow a web service to be created that exactly matches the WSDL file. For a
simple WSDL, the generated code would look something similar to the following (the
WSDL used to generate this code is included in the code bundle for this chapter):

@WebService(serviceName = "helloService",
 portName = "helloPort",
 endpointInterface =
 "com.davidsalter.helloservice.HelloPortType",
 targetNamespace =
 "http://www.davidsalter.com/HelloService/",
 wsdlLocation =
 "WEB-INF/wsdl/SampleWebServiceFromWSDL/WebService.wsdl")
 @BindingType(value =
 "http://java.sun.com/xml/ns/jaxws/2003/05/soap/bindings/HTTP/")
public class SampleWebServiceFromWSDL {

 public com.davidsalter.helloservice.HelloResponse greetings(
 com.davidsalter.helloservice.HelloRequest helloInputPart) {
 //TODO implement this method
 throw new UnsupportedOperationException("Not impl yet.");
 }
}

Chapter 9

[283]

Since NetBeans is following the WSDL structure exactly, you will see that there
are multiple artifacts created to reference the web service port, request, response,
and so on. All of these artifacts are standard Java code that can be examined within
NetBeans. Since you're not meant to edit these files, however (if you did, your
implementation of the web service wouldn't match the WSDL), NetBeans places
them outside of the standard Source Packages hierarchy in the Projects window and
places them within a Generated Sources (jax-ws) hierarchy:

Managing SOAP-based web services
So far, we've looked at creating SOAP-based web services. NetBeans provides many
more tools to manage web services however. For example, while it's a good practice
to create test harnesses and full test suites for all the code (including web service
implementations), sometime we will want to quickly test a web service and see what
parameters is takes and how it works. NetBeans provides tools to test, configure, and
edit web services, all from within the project.

Creating and Consuming Web Services

[284]

Within NetBeans, we can see and manage the web services that are available within a
project by viewing the Web Services node of the project. Within this node, all of the
web services defined within the project are displayed along with all the operations
that each web service exposes.

Right-clicking on a web service operation displays a pop-up menu, showing the
different ways that the web service can be managed:

• Open: This opens the Java source code editor for the selected operation
• Refresh…: This refreshes the selected web service
• Add Operation…: This adds a new web service operation to the currently

selected web service

Chapter 9

[285]

• Test Web Service: This tests the web service
• Edit Web Service Attributes…: This configures the quality of service for the

web service
• Configure Handlers…: This adds or removes message handlers to the

selected web service
• Generate and Copy WSDL…: This generates WSDL for the selected web

service and optionally places a copy of it within the project's structure at a
user-selected location

• Generate SOAP-over-HTTP Wrapper: This generates a RESTful web service
that wraps the SOAP web service

• Delete: This deletes the selected web service

Let's take a look at some of these options.

Testing web services
Selecting the option to test a web service opens the system's default browser at a
test page that lists all the operations in the selected web service. In the following
screenshot, you can see that SampleSatelessWebService is being tested. This web
service can be seen to have two operations—hello and goodbye.

The NetBeans project for this web service is included
with the code bundle for this book.

Creating and Consuming Web Services

[286]

To test a method within the web service, simply enter the required parameters
and click on the button corresponding to the web service operation. The web
service is then invoked, and the SOAP request and SOAP response are displayed
for diagnostic purposes.

Chapter 9

[287]

Message handlers
As stated earlier, a logical handler can access the payload of a message, whereas
a message handler can access the entire SOAP message. Message handlers can be
created using the New File wizard and selecting either the Logical Handler or
Message Handler options. To create a handler, no special options are required
within the preceding wizard, other than specifying the package and name of the
handler to create.

Upon creating a handler, the class is opened within NetBeans for editing:

public class LoggingMessageHandler implements
SOAPHandler<SOAPMessageContext> {

 public boolean handleMessage(SOAPMessageContext messageContext) {
 SOAPMessage msg = messageContext.getMessage();
 return true;
 }
 public Set<QName> getHeaders() {
 return Collections.EMPTY_SET;
 }
 public boolean handleFault(SOAPMessageContext messageContext) {
 return true;
 }
 public void close(MessageContext context) {
 }
}

Any required message handling is placed within the handleMessage method. The
sample message handler illustrated here is included as part of the code bundle for
this chapter. We're not going to go into any more detail about message handlers. Our
purpose here is to show how they can be created and then configured against a web
service within NetBeans.

For more information about message handlers, refer to
http://docs.oracle.com/cd/E13222_01/wls/
docs103/webserv_adv/handlers.html.

http://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers.html
http://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers.html

Creating and Consuming Web Services

[288]

Once we've created a handler, we need to configure its use within the web service so
that it is invoked correctly. To add the handler, select the Add Handler option from
the right-click context menu within the Web Services node of the project as described
previously. The Configure Message Handlers dialog will now be displayed.

From this dialog, we can add and remove message handlers and modify the order of
their invocation. Upon adding one or more handlers to a web service, we can go back
to the Java source code for the web service and see that the @HandlerChain has been
added onto the web service. This defines the handlers that are to be invoked for a
web service within an XML file; in this example, it is SampleStatelessWebService_
handler.xml. This file is located within the same package as the web service itself:

@WebService(serviceName = "SampleStatelessWebService")
@Stateless()
@HandlerChain(file = "SampleStatelessWebService_handler.xml")
public class SampleStatelessWebService {

If we look at this XML file, we can see that it's a regular XML file that simply lists all
of the handlers in the handler chain for the web service:

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-name>com.davidsalter.masteringnb.soap.handler.
LoggingLogicalHandler</handler-name>
 <handler-class>com.davidsalter.masteringnb.soap.handler.
LoggingLogicalHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

Chapter 9

[289]

Managing web services graphically
In addition to the management facilities we've seen so far for SOAP-based web
services, NetBeans also provides a graphical editing facility for web services. At the
top of a Java source code window for a web service class are the standard Source and
History buttons to display the Java source code and the history of the file. For web
services, there is also a Design button.

Selecting this button causes the design surface for the web service to be opened.
From within this design surface, we can see a graphical representation of the
operations available within the web service as well as the sample request and
response objects. The functionality available here is the same as when right-clicking
on a web service within the Projects window, however, the graphical representation
makes it easier to see the details of the web service at a glance.

Creating and Consuming Web Services

[290]

Consuming SOAP web services
So far, we've looked at how to create SOAP-based web services. Let's now take a
look at how we can consume those services from within NetBeans. Unlike web
services, web service clients can be used in all sorts of applications whether they
are standalone Java desktop applications, or running within an EJB framework, or
anywhere in between. To invoke a web service, we first need to define a web service
client. A web service client is configured with the WSDL for a web service and
therefore, knows all of the web service operations and parameters.

To create a web service client, invoke the New File wizard and select Web Service
Client from the list of File Types within the Web Services category.

Within the New Web Services client dialog, we are provided with four different
ways to select a WSDL file:

• Project: This allows a WSDL file to be selected by browsing through all of the
WSDL files available within the currently open projects in NetBeans.

• Local File: This allows the local filesystem to be browsed for a WSDL file.

Chapter 9

[291]

• WSDL URL: This allows a remote URL for a WSDL file to be specified.
• IDE Registered: This allows one of the WSDL files supplied with NetBeans

to be specified. NetBeans is currently supplied with registered web services
from Amazon, Delicious, Flickr, Google, StrikeIron, WeatherBug, Zillow,
and Zvents.

In order to increase your understanding of SOAP-based web services,
it's recommended to experiment with public web services and see how
they can be consumed from within NetBeans. A good source of public
web services can be found at http://www.webservicex.net that
includes WSDL for different services. For example, the GeoIP lookup
service, which maps IP addresses to countries, has a WSDL located at
http://www.webservicex.net/geoipservice.asmx. Please
remember to check any usage conditions though before using any
service.

Upon selecting a WSDL file, NetBeans parses the file in a similar fashion to when
we created a web service from a WSDL. Here, NetBeans creates classes to be used
by client applications though. For our SampleStatelessWebService created in the
previous sections of this chapter, NetBeans creates several JAX-WS files, which are
displayed within the Generated Sources (jax-ws) node of the project. As earlier,
we're not expected to edit these files, so they are still included within the project, but
are displayed separately from our main application classes.

http://www.webservicex.net
http://www.webservicex.net/geoipservice.asmx

Creating and Consuming Web Services

[292]

After creating a web service client, we are in a position to invoke the client and
therefore, our requested web service. To add code to invoke a web service client,
simply right-click within a Java method and select the Insert Code and then Call
Web Service Operation options.

A list of all the operations available to invoke is then displayed within the Select
Operation to Invoke dialog.

Upon selecting an operation, a new method is created within the currently open
Java class. The new operation has the same name as the web service operation
being invoked:

public class CustomerClient {

 public static void main(String[] args) {
 System.out.println(hello("David"));
 }

 private static String hello(java.lang.String name) {
com.davidsalter.masteringnb.ch9.soapclient.SampleStatelessWebService_
Service service = new com.davidsalter.masteringnb.ch9.soapclient.
SampleStatelessWebService_Service();
 com.davidsalter.masteringnb.ch9.soapclient.
SampleStatelessWebService port = service.
getSampleStatelessWebServicePort();
 return port.hello(name);
 }
}

Chapter 9

[293]

Creating RESTful web services
In addition to creating and consuming SOAP-based web services, NetBeans
also provides sophisticated tools to create and consume RESTful web services.
As with a SOAP-based web service, RESTful web services need to be deployed
within a web application.

You'll remember from earlier in this chapter that for RESTful web services, we can
choose to create from entity classes, patterns, and database tables. Creating RESTful
web services is much simpler than SOAP-based web services as all that is required
to create the RESTful service is the base entity or database table; we do not need to
worry about WSDL file, we simply need to state the source of the data that we wish
to expose as a RESTful web service.

Creating a RESTful service for an entity or database table is essentially the same
procedure. For each of these cases, a set of @Entity or database tables is selected and
then a set of RESTful web services are created to manage the lifecycle of the entities.

Creating and Consuming Web Services

[294]

For each @Entity or database table, a corresponding …FacadeREST class is created. For
example, in the case of a Customer entity, a CustomerFacadeREST class is created:

@Stateless
@Path("com.davidsalter.masteringnb.rest.customer")
public class CustomerFacadeREST extends AbstractFacade<Customer> {
 @PersistenceContext(unitName = "CustomerRestServicePU")
 private EntityManager em;

 public CustomerFacadeREST() {
 super(Customer.class);
 }

 @POST
 @Override
 @Consumes({"application/xml", "application/json"})
 public void create(Customer entity) {
 super.create(entity);
 }
 // @PUT, @DELETE @GET methods omitted for brevity.

The code supplied for this example is available with the code
bundle for this chapter. It's recommended that you download
this code and examine it while reading this section in order to
understand the workings of the example and the techniques
available within NetBeans.

Each of the REST verbs GET, PUT, POST, and DELETE are mapped to corresponding
Java methods to expose all of the CRUD functionality for the selected objects via
RESTful services.

For more details on the RESTful approach to web services and the
different uses of HTTP verbs, refer to http://en.wikipedia.
org/wiki/Representational_state_transfer.

As with SOAP web services, NetBeans provides the ability to manage RESTful web
services within a project. When a project contains RESTful web services, a RESTful
Web Services node is displayed within the Projects window. Unlike SOAP-based
web services, the number of management options here is limited to opening the Java
class that implements the RESTful web service and testing the service. As with SOAP
services, testing a RESTful web service causes a browser window to be displayed
from within which the web service operations can be exercised.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 9

[295]

When creating a RESTful web service from a pattern, we are given the choice of the
pattern to use.

The Simple Root Resource option
The Simple Root Resource option creates a simple REST-based web service where
the path to the resource and class representing the resource can be specified along
with the MIME type of the data returned to the client. The MIME type can be
configured as either application/xml, application/json, text/plain, or text/
html. For interaction with modern JavaScript web frameworks, application/json
is probably the most relevant MIME type as JSON objects can be easily consumed by
JavaScript as standard JavaScript objects.

Creating and Consuming Web Services

[296]

This creates a very simple RESTful web service with GET and PUT methods available
to clients.

The Container-Item option
The Container-Item option creates a complete set of RESTful web services to access
a resource and a collection of resources, for example, a singular customer and a
collection of customers. As with the Simple Root Resource option, the MIME type
can be specified to determine how data is returned to the client.

The Client-Controlled Container-Item option
The Client-Controlled Container-Item option creates a complete set of RESTful
web services to access a resource and a collection of resources similarly to the
Container-Item pattern. With this pattern, however, there is no POST method
on the resource, rather resources are created via the PUT method, thereby creating
a client-controlled URI resource creation rather than a server controlled URI.

Summary
In this chapter, we looked at both SOAP and RESTful web services. We saw how
NetBeans provides support for creating SOAP-based web services from scratch and
also from WSDL files. We saw that we can create RESTful web services from a set
of @Entity classes or database tables, or through several patterns. With both SOAP
and RESTful web services, we saw how NetBeans provides tools for creating and
managing web services. We also learned how we can easily consume SOAP web
services, and how JavaScript clients can easily consume RESTful web services.

In the next, final chapter of the book, we'll take a wider look at NetBeans and see
how we can create NetBeans plugins and rich client platform applications.

[297]

Extending NetBeans
NetBeans is developed as a suite of modules. This modular nature of NetBeans is
one of the main features of the IDE in that it allows additional modules to be easily
written that can provide extra functionality to developers. NetBeans provides a vast
amount of functionality as standard; however, there is still a thriving ecosystem
in third-party plugins that can provide additional functionality into the IDE. For
example, there are plugins that allow NetBeans to interact with NoSQL databases
such as MongoDB or modern web frameworks such as NodeJS.

The modular nature of NetBeans also means that NetBeans is ideally suited as a
basis for developing desktop applications. The NetBeans IDE is after all a NetBeans
Platform application that is tailored to developers' needs. All of the functionality
that is required for a modern desktop application is provided by different modules
that can equally be used by third-party developers to create standalone applications.
You may be wondering though, who wants a desktop application that looks a lot
like an IDE. NetBeans provides branding support for Platform applications so they
don't need to look like the IDE. Fortunately, developers can tailor NetBeans Platform
applications to their own demands—applications can have their own splash screens
and about screens; they can have any number of windows in whatever layout is
required and can use as much or as little of the framework as required.

In this chapter, we'll take a look at the features offered by NetBeans when creating
new plugins and Platform applications. We'll cover the following topics:

• Creating NetBeans plugins
• Creating NetBeans Platform applications

Extending NetBeans

[298]

Creating NetBeans plugins
NetBeans is developed as a very modular IDE with all of the functionality provided
by different modules or plugins. As mentioned previously, the majority of the
functionality required for day-to-day use of the IDE is already provided with
NetBeans, however, we can create additional functionality by creating new plugins.
These plugins can then be installed into NetBeans via the Update Center.

To create a new NetBeans plugin, we need to invoke the New Project wizard and
select the Module project type from within the NetBeans Modules category.

On the Name and Location page of the New Module wizard, we must specify
the standard attributes of a NetBeans project: Project Name, Project Location,
and Project Folder. We then have the choice of specifying whether the module
is standalone or whether it should be added to a module suite.

A standalone module is a single plugin that can be installed into either the NetBeans
IDE or into a NetBeans Platform application (we'll learn more about NetBeans
Platform applications later in this chapter). For a standalone module, we must
specify the NetBeans Platform that the module will be built against. The default
option is to use the current development IDE, but other versions of the NetBeans
Platform can be selected by pressing the Manage… button. A standalone module is
typically used to provide a small piece of functionality that can be distributed on its
own for clients to install into a larger application (or NetBeans itself).

Chapter 10

[299]

If we wish to develop a module for inclusion into a NetBeans Platform application,
we must select the Add to Module Suite option. The Module Suite dropdown lists
all of the module suites (including Platform applications) that are currently open
within the IDE. Alternatively, we can browse for previously created module suites
by clicking on the Browse… button.

The next page of the wizard is Basic Module Configuration:

Extending NetBeans

[300]

The code name base is a unique string that is used to name your module. As this has
to be unique, it's a good idea to use a similar naming scheme as for classes by using
a combination of reverse domain name and identifier for the module. For example,
in the preceding screenshot, the reverse domain name of com.davidsalter is used
together with the masteringnb.ch10.insertdate identifier.

Finally, we must choose the localization bundle along with, whether we want
to create the module as an open services gateway initiative (OSGi) bundle or a
standard NetBeans module.

OSGi defines a modular packaging structure for Java modules. Unless
you have a specific reason, creating standard NetBeans modules is the
recommended approach when creating modules. For more information
about OSGi, visit http://www.osgi.org/Main/HomePage.

Once we've created a standard NetBeans module, we can add functionality into it,
such as code generators, windows, or actions. Using the New File wizard, we can
create the following types of actions:

• Action: This creates an action. An action is something that can be
invoked from a user action such as selecting a menu item or clicking
on a toolbar button.

• Window: This creates a new window that is displayed within the main
NetBeans windowing system. The location of the window and its attributes
can be defined.

• Wizard: This creates a custom wizard that can be invoked from anywhere
within the code in the application, or a New File wizard that can be invoked
from the New File command.

• Options Panel: This creates a new options panel that is displayed within the
Options window of the application.

• File Type: This creates a new file type by associating a MIME type and a file
extension or XML root element so that custom file viewers can be created.

• Update Center: This creates a new Update Center for use with the
application so that any custom modules used within the application
can easily be updated.

http://www.osgi.org/Main/HomePage

Chapter 10

[301]

• Installer/Activator: This creates a class that can install and uninstall
the module.

• Quick Search Provider: This allows a class to be created that integrates into
the NetBeans Platform's quick search functionality so that the search results
can easily be provided within an application.

• JavaHelp Help Set: This creates a new JavaHelp Help set.
• Project Template: This defines a new template that can be added to the New

Project wizard.
• Java SE Library Descriptor: This defines a new library for use within the

Library Manager window.
• Code Generator: This creates a new option on the Insert Code pop-up

dialog, allowing the code to be added quickly into a file.
• XML Layer: This allows the advanced customization of a module to be

performed on modules that do not conform to the latest Platform APIs.
• Java Hint: This creates a popup Java hint that will be displayed with a Java

code file.
• Layout of Windows: This allows the layout definition of an application

to be modified.

Some of these file types (such as JavaHelp Help Sets or Java SE Library Descriptors)
are more applicable as NetBeans IDE modules, whereas others such as Actions and
Windows are applicable to both custom applications and the NetBeans IDE itself.

Let's take a look at the new Code Generator wizard.

This source code for the InsertDate code generator,
described in the next section, is available as a part of the
code bundle for this chapter.

A Code Generator wizard allows us to easily insert snippets of code into a source
code file using the Insert Code option (Ctrl + I, or Cmd + I on Mac OS).

Extending NetBeans

[302]

When creating a code generator, we need to enter the class name and package that
the generated class is to be defined within.

Next, we must specify MIME type. This specifies which files the code generator is
applicable to. For Java source code files, MIME type is text/x-java.

Upon completing the wizard, NetBeans creates the required Java source code files
and opens the newly created code generator class for editing.

When creating a code generator, we need to access the currently open Java source
code to be able to modify it. To do this, we need to add module dependencies to the
code generator (remember NetBeans is very modular, so there is naturally a module
that allows us to modify the existing source code).

To add dependencies to the project, right-click on the project within the Projects
window and select Properties and then select the Libraries category.

Chapter 10

[303]

This properties page allows additional module dependencies to be specified. This
is where all the dependencies are defined for other modules that provide required
functionality for an application. When creating a code generator for modifying
source code, we typically need to add dependencies on the Javac API Wrapper, Java
Source, and Utilities API modules. Clicking on the Add… button displays the Add
Module Dependency dialog from which dependencies can be browsed and selected.

Extending NetBeans

[304]

Within a code generator, there are two methods that need to be overwritten to
provide functionality. The getDisplayName() method provides the name that
is displayed to the user within the Insert Code popup:

 public String getDisplayName() {
 return "Current Date";
 }

The invoke() method needs to be implemented to perform the code modification. In
the case of simply inserting a value, we can use the Swing APIs to insert any string
we want. The following code shows how to insert the current date at the current
caret location:

 public void invoke() {
 Document doc = textComp.getDocument();
 try {
 Caret caret = textComp.getCaret();
 int dot = caret.getDot();
 doc.insertString(dot, new Date().toString(), null);
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

If, however, we want to modify the actual Java source code, for example, adding new
methods or variables, we can use the Java Source and Javac API Wrappers modules
to correctly modify the source code.

For more information on modifying source code, refer to the
API documentation at http://bits.netbeans.org/8.0/
javadoc/org-netbeans-modules-java-source/org/
netbeans/api/java/source/package-summary.html.

http://bits.netbeans.org/8.0/javadoc/org-netbeans-modules-java-source/org/netbeans/api/java/source/package-summary.html
http://bits.netbeans.org/8.0/javadoc/org-netbeans-modules-java-source/org/netbeans/api/java/source/package-summary.html
http://bits.netbeans.org/8.0/javadoc/org-netbeans-modules-java-source/org/netbeans/api/java/source/package-summary.html

Chapter 10

[305]

Upon creating a plugin, we can simply select the Run option on the project to open
a new instance of NetBeans with the plugin preconfigured. The plugin functionality
can then be exercised as required. Alternatively, we can create a .nbm file for the
plugin by right-clicking on the project within the Projects window and selecting the
Create NBM menu option. When this is selected, the project is built and a .nbm file is
created that can be distributed to other developers.

It's a good idea to never debug .nbm files within your development
instance of NetBeans. If something goes wrong with your .nbm file,
you want to keep a stable IDE to debug it; hence it's a good practice to
always debug these types of modules in a separate instance of NetBeans.

NetBeans rich client platform
applications
In addition to extending NetBeans by developing custom functionality as plugins,
NetBeans can also be used to develop rich client platform (RCP) applications.

You might be wondering why would you create an application using NetBeans as
the foundations of your application, why not just develop it as a Swing application?
NetBeans offers many advantages over building a standalone Swing application.

When you've developed desktop application, how many times have you had to write
code to handle toolbars or menu items? How many times have you had to write
code that allows you to manage windows and allows interaction between different
windows? The NetBeans RCP provides all of this functionality and more.

NetBeans provides a basic structure for an application that allows you to get started
quickly, so there's no more writing a main() method that creates a JFrame and
then creates toolbars and menus and all the other components that you expect to
see in a modern desktop application. Additionally, NetBeans provides a modular
system where components can easily find and interact with other components. So,
for example, you can create componentized functionality within your application,
which can then be used by many different components. All of these components
can be versioned, giving you a greater control over upgrading your application and
ensuring that all the different components work together.

When all of these features are brought together, it's easy to see how much time can
be saved by developing a NetBeans RCP application rather than a Swing-based
application. That's not to say that you don't use Swing components in your RCP
applications, but all of the mundane plumbing has already been written (and is being
maintained) by someone else.

Extending NetBeans

[306]

Now that we've seen some of the benefits of a NetBeans RCP application, let's see
how to create a simple RCP application.

Creating a NetBeans RCP application
A NetBeans RCP application is created using the New Project wizard in a similar
fashion to creating many different NetBeans projects. After invoking the wizard, the
option to create a NetBeans Platform Application project is provided within the
NetBeans Modules category, as shown in the following screenshot:

Chapter 10

[307]

Upon clicking the Next > button, we are presented with the standard NetBeans
options for specifying Project Name, Project Location, and Project Folder.
What's different here, however, is that we can specify NetBeans Platform.

The NetBeans Platform dropdown initially contains only one entry—Development
IDE. This is where the version of the NetBeans platform used as the basis for
applications is defined. The Development IDE means the current version of
NetBeans that the application is being developed with; this makes things easier as
the version of NetBeans used for development is the same as the version running
your application.

Selecting the Manage… button allows different platforms to be defined that can be
used as the basis for RCP applications. Upon selecting the Manage… option, the
NetBeans Platform Manager dialog is displayed, listing all the currently installed
platforms. New platforms can be added and removed via the Add Platform… and
Remove buttons. For each installed platform, the name of the platform (Platform
Label) and location (Platform Folder) are displayed along with a list of Modules,
Sources, Javadoc, and Harnesses used by the platform.

The list of modules shows all of the modules that are available to the platform. This
includes things as Editors, the core windowing framework, and the embedded
browser. When developing an RCP application, you will typically make use of one or
more of these modules.

Extending NetBeans

[308]

The source code for a particular platform can be registered along with the
corresponding Javadoc in the Sources and Javadoc tabs. Since the Javadoc is
included within the source code for a particular version of a platform, if you register
the source code, it is not necessary to also register the Javadoc as this is already taken
care of.

Finally, the Harness tab allows different build harnesses to be defined.

When adding different platforms on the Mac, the platforms are located
within the NetBeans<version>.app/Contents/Resources/
NetBeans folder. Simply browsing to the NetBeans<version>.app
folder will not locate the required platform.

Upon creating a NetBeans Platform application, the project is automatically opened
within the Projects window. Empty projects have no modules defined, but have
several important files defined that specify how the project is built and any custom
properties or internationalization used by the project.

The sample application used within the following section
is available as a part of the code bundle for this chapter.

Chapter 10

[309]

At this stage, we have a fully functional NetBeans Platform application. If we run the
application, we see a splash screen (albeit the NetBeans splash screen) and then the
application opens up, displaying a main frame with some of the more common menu
items contained within it.

Branding the application
The default settings for a NetBeans Platform application are to use the standard
NetBeans splash screen and about screen along with the standard NetBeans icons.
These can all be changed to any custom image using the project's branding. To access
the project's branding, right-click on the project within the Projects window and
select the Branding menu option.

Within this dialog, we are presented with several tabs, on each of which we can set
specific information about the application and its appearance.

Extending NetBeans

[310]

On the Basic tab, we can set the application's title along with the application's icon.

On the Splash Screen tab, we can specify whether a progress bar is to be used or
not via the Enabled checkbox. The color of the progress bar is specified by the first
Color field ([244, 0, 0] in the preceding screenshot), and its position is defined by the
first Positioning edit box ([0,207,500,6] in the preceding screenshot). The values for
the positioning are in the format: x position, y position, width, height with the x position
starting from the left and increasing to the right and the y position starting from the
top and increasing downward.

Along with a progress bar, messages are displayed showing the status of the
application while it loads (for example, specifying that modules are loading or
configuration files are being parsed). The size of this text is specified in the Size edit
box. The color of the text is defined within the second Color edit box (White in the
preceding screenshot) and its location is specified in the second Positioning edit box
([25,181,475,12] in the preceding screenshot).

Chapter 10

[311]

The preceding screenshot illustrated how predefined colors can be used for the
progress bar and text (for example, White), or custom colors can be defined by
selecting the Custom entry from the Color dropdown.

Next, is the Window System tab, which allows us to define the windows-specific
features that are enabled within the application:

• Window Drag and Drop
• Drag and Drop of Non-document window groups
• Drag and Drop of Document Groups
• Floating Windows
• Floating Non-document Window Groups
• Sliding Windows
• Sliding Window Groups
• Auto-slide Windows in Minimized Window Groups
• Maximized Windows
• Closing of Non-document Windows
• Closing of Document Windows
• Closing of Window Groups
• Window Resizing
• Respect Minimum Size When Resizing Windows

Extending NetBeans

[312]

The final two tabs, Resource Bundles and Internationalization Resource Bundles,
allow us to configure the resource bundles used within an application and
internationalize all the resources used within our application.

Application properties
For each NetBeans Platform application, the Project Properties window allows us to
define which modules are used by the application, how the application is distributed,
and what hints are to be available to the application.

Chapter 10

[313]

Let's take a look at the different categories of the project's properties:

• Sources : This category allows the different modules used by a NetBeans
Platform application to be defined. Selecting the Add button allows module
suites to be selected and configured for use within the current application.
Modules that have been previously created as either Module or Module
Suite project types within the New File wizard can be selected here.

• Libraries: Within this category, the Java platform and NetBeans platform
can be specified. Initially, these are set to the current Java platform that
is executing the current NetBeans development environment. Upon
configuring the Java and NetBeans platforms, different modules that are
to be used by the application can be specified. This lists all of the NetBeans
modules that are available within the currently selected NetBeans platform.
It is, however, possible to add modules from outside the currently selected
platform using the Add Project and Add Cluster buttons.

A NetBeans cluster is essentially a directory on disk
that contains a set of NetBeans modules.

• Application: Within this category, we can define whether a standalone
application will be built from the project, or whether a collection of modules
that can be loaded into an existing NetBeans Platform application will be
built. If a standalone application is to be built, the name of the executable can
be specified within the Branding Name edit box.

• Installer: When packaging an application, installers can be created for
different platforms. The license for the application can be specified along
with the platforms to create an installer for. Installers can be created for:

 ° Windows
 ° Linux
 ° Max OS X
 ° Solaris

• Hints: The final category of the project's properties allows us to define what
hints are displayed within the source code of the application while it is being
developed. This can be configured to use the IDE-wide hints, or a more
project-specific set of hints.

Extending NetBeans

[314]

Creating platform application components
In the previous section, we saw how to create a NetBeans Platform application and
configure the branding for it. An application isn't very useful though if all it has is a
splash screen and some menus.

The source code for the application illustrated in this section
is available as part of the code bundle for this chapter.

As the NetBeans Platform is highly modular, to add components into an application,
we need to create additional modules and add these modules into the application. To
create a module and automatically add it into the current application, right-click on
the modules node for the project and select the Add New… option.

Alternatively, selecting the Add New Library… option or the Add Existing… option
will allow any previously created modules to be added as either a library or module.

Upon selecting to create a new module, the New Module Project dialog is displayed.
As with most of the New Project wizards within NetBeans, a project name,
location, and folder must be specified first. After specifying these, the Basic Module
Configuration page is displayed.

Chapter 10

[315]

The Code Name Base field is used to uniquely identify a module, so typically a
combination of package name and module name is used here to ensure that the name
is unique. The Module Display Name field specifies how the module is displayed
within NetBeans, for example, in the following screenshot, we can see that there is a
module called HelloWorldModule that is being used within Hello World NetBeans
Platform Application.

Finally, we can specify the localization bundle for the application along with whether
we wish to create the bundle as an OSGi bundle or a standard NetBeans module.

Upon creating a module, different functionality can be added to the module
using the New File wizard. The Module Development category allows us to
add platform-specific items such as windows, wizards, or file types.

Extending NetBeans

[316]

The different file types that we can create here are the same as when we create
modules, as discussed earlier in this chapter. Again, some of them are more useful
for standalone modules, whereas others are equally important to standalone and
Platform application modules.

Let's take a look at the Window file type as this is one that is used within the
majority of NetBeans Platform applications.

Creating a NetBeans window
Upon selecting to create a window for a Platform application, the New Window
dialog displays the Basic Settings page.

The first setting for a new window is the Window Position. This can take one of
several values and defines where the window is initially displayed within NetBeans:

• bottomSlidingSide: This is displayed as a button at the bottom of the
application window

• editor: This is displayed where the main editor windows are shown
within NetBeans

• explorer: This is displayed where the explorer style windows are shown
within NetBeans

Chapter 10

[317]

• leftSlidingSide: This is displayed as a button on the left-hand side of the
application window

• output: This is displayed where the main output window is shown
within NetBeans

• properties: This is displayed where the properties windows are shown
within NetBeans

• rightSlidingSide: This is displayed as a button on the right-hand side of the
application window

• topSlidingSide: This is displayed as a button at the top of the application
window

For each window location, several options are available to define the actions and
abilities of a window:

• Open on Application Start
• Keep preferred size when slided-in
• Sliding not allowed
• Closing not allowed
• Undocking not allowed
• Dragging not allowed
• Maximization not allowed

The final page of the wizard allows the name, icon, and location of the class
to be specified.

Extending NetBeans

[318]

On this page, standard details such as a prefix for the class name, an icon for the
window, and the package for the new Java class are specified.

Upon completing the wizard, the new window class is opened within the standard
NetBeans GUI editor.

The code bundle for this chapter contains a simple NetBeans RCP application,
as shown in the following screenshot:

Summary
In this chapter, we introduced the NetBeans modular system and saw the benefits
that this can give us. We looked at creating standalone modules that can be installed
into the NetBeans IDE, and saw how to create a NetBeans code generator. We then
moved on and looked at the NetBeans Platform and saw all of the benefits it gives
to application developers, notably the speed of development and the use of the vast
array of NetBeans features. We looked at an example application and saw how to
create different windows within a Platform application.

After reading all of the chapters in this book, you should now be familiar with the
different functionality provided by NetBeans as both an IDE and a platform. With
this knowledge, you will now be better equipped and better enabled to develop
reliable applications using one of the best Java tools available. Congratulations,
and happy developing!

[319]

Index
A
Abstract Window Toolkit (AWT) 158
Analyze Stack Window 84, 85
Apache Commons EmailValidator

URL 224
Apache Maven

URL 196
Apache Tomcat application server

URL 231
applications

debugging 67, 68
profiling 90
running 63-67
testing 98-102

applications, debugging
about 67, 68
Analyze Stack Window 84, 85
breakpoints 68-73
Call Stack window 76, 77
Deadlock detection 83, 84
Debugging window 80-82
Loaded Classes window 77, 78
remote applications, debugging 89, 90
Sessions window 78, 79
Sources window 80
Threads window 79, 80
variable formatters 86-89
Variables debug window 73, 74
Watches window 74

application servers 125-127
applications, profiling

about 90
application monitoring 91-94
memory monitoring 96-98
performance monitoring 94-96

B
bean validation

URL 220
bindings, Swing forms

editing 171-174
properties 175, 176

blank entity classes
creating 138-142
persistence.xml file, editing 142-144

breakpoints 68-73

C
Call Stack window 76, 77
client and server configurations

URL 24
Client-Controlled Container-Item option

used, for creating RESTful web services 296
cloud services 130, 131
code folds 58, 59
code snippets 47-50
code templates

about 47
used, for inserting codes 47, 48

command-line options
URL 26

command-line parameters
URL 25

Common Object Request Broker
Architecture (CORBA) 273

concurrency
URL 83

conditional breakpoint 70
Container-Item option

used, for creating RESTful web services 296

[320]

Contexts and Dependency Injection (CDI)
framework

about 226
points editor support 228
support, adding 226, 227

converters 177
CSS preprocessors

about 261
CSS rules, creating 267, 268
Less, configuring in NetBeans 262, 263
Less, configuring on project basis 264-267
SASS, configuring in NetBeans 262, 263
SASS, configuring on project basis 264-267

D
Data Access Object (DAO)

about 150
URL 150

databases
about 112
connecting to, via JDBC 116, 117
entity classes, creating from 144-150
Java DB, connecting to 113, 114
managing 118-120
MySQL, connecting to 114, 115

database scripts
creating, from entity classes 153-155

Debugging window
about 80-82
Deadlock detection 83, 84

E
EJBs

creating 203-213
enterprise projects

creating 189-191
entity classes

creating, from databases 144-150
database scripts, creating from 153-155
JPA controllers, creating for 150-152

events, Swing forms
defining 168
editing 178, 179

explorer style windows 30

F
Favorites window 31
files

default templates, specifying 42-46
FreeMarker

URL 42

G
GeoIP lookup service

about 291
URL 291

graphical user interface (GUI) 158

H
Hudson Builders

about 131-133
documentation, URL 133
URL 131

I
integrated development

environment (IDE) 27

J
JaCoCo

URL 102
Java Architecture for XML Binding (JAXB)

web service 148
Java Bean Validation framework

about 220
constraint, creating 220-225

Java DB
connecting to 113, 114

Java EE 6 tutorial
URL 226

Java EE Persistence 137
JavaFX

applications 186
Scene Builder 187

Java Persistence API (JPA)
about 137
controllers, creating for entities 150-152

[321]

entities 138
URL 138

JavaScript
adding, to web application 269, 270
files, checking 270

Java Server Faces (JSF) 238
Java Swing applications 158
Java Web Start technology

URL 66
JUnit

URL 98

L
layout managers

URL 164
Less

configuring, in NetBeans 262, 263
configuring, on project basis 264-267
URL 261

Loaded Classes window 77, 78

M
macro playback

shortcuts, assigning 55
macros

new macros, recording 56, 57
recording 53, 54

Mantis
URL 134

Maven central 128
Maven multi-module project

about 196
creating 197-203

Maven repositories 128-130
Maven web application

creating 241, 242
Mercurial

NetBeans source code, cloning from 9-11
URL 9

message handlers
about 287, 288
URL 287

multiple document interface (MDI) 159
MySQL

connecting to 114, 115

N
Navigator window 32
NetBeans

about 297
building 16
building, from within NetBeans 18-22
building, via command line 17, 18
configuring 22
download bundle, selecting 1, 2
downloading 2-5
download page, URL 6
installing 2-5
Less, configuring 263
other versions, installing 5-7
plugins, creating 298-305
rich client platform (RCP) applications 305
SASS, configuring 263
screen layout 28, 29
source code, cloning from

within NetBeans 15
source code, URL 304
specific versions, cloning 11, 12
updating, to latest version 8
user directory 7
web application, creating 234-240
web application, modifying 240, 241

NetBeans 8
URL 2

NetBeans, configuring
about 23
cache directories 24
default options 24, 25
further options 26
module clusters, additional 25
NetBeans JDK 25
user directories 24

NetBeans multi-module project
creating 191-195

NetBeans source code
browsing, online 16
cloning, from Mercurial 9-11
cloning, from within NetBeans 12-14
obtaining 9
URL 16
zipped archive, downloading 9

[322]

O
open services gateway initiative (OSGi)

about 300
URL 300

Oracle
URL 117

Output window 37

P
palette items

deleting 50, 51
editing 52, 53

Palette Manager 50, 51
Palette window

about 36
code snippets 49, 50

Payara Server
URL 125

persistence.xml file
editing 142-144

platform application components
creating 314-316
NetBeans window, creating 316-318

Platforms as a Service (PaaS) 111
properties, Swing forms

defining 168
editing 169, 170

Properties window 37
public web services

URL 291

R
Red-Green-Refactor cycle 106
remote application

URL 90
Remote Method Invocation (RMI) 273
Representational State Transfer (REST) 274
RESTful web services

creating 293-295
creating, with Client-Controlled

Container-Item option 296
creating, with Container-Item option 296
creating, with Simple Root

Resource option 295, 296
reference link 294

rich client platform (RCP) applications
about 305, 306
branding 309-312
creating 306-309
properties 312, 313

S
SASS

configuring, in NetBeans 262, 263
configuring, on project basis 264-267
URL 261

screen layout
about 28, 29
explorer style windows 30
Favorites window 31
Navigator window 32
Output window 37
Palette window 36
Properties window 37
source code editor window 32, 33
Window management 38-41

session bean façade
creating, for entity classes 214-218

session façade pattern
URL 214

Sessions window 78, 79
Simple Object Access

Protocol (SOAP) 273, 274
Simple Root Resource option

used, for creating RESTful
web services 295, 296

single-page applications (SPAs) 269
SOAP web service

consuming 290-292
creating 276
creating, from scratch 277-281
creating, from WSDL 281-283
managing 283-285
message handlers 287, 288
testing 285, 286

source code editor window
about 32, 33
History view 34, 35

Sources window 80
Spring

URL 237

[323]

Spring Boot
support, enhancing 259, 260
URL 259

Spring Boot Configuration Support plugin
URL 259

Spring Initializr
URL 258

Spring web applications
creating 249-251
development shortcuts 255-257
modern Spring development 258, 259
Spring Boot support, enhancing 259, 260
version, modifying 252-255

SQL editor window 118
SQL operation 119
Struts

URL 239
Struts 2

URL 249
Swing forms, designing

about 162-164
binding properties, advanced 175, 176
bindings, editing 171-174
code, editing 180, 181
components, anchoring 164-167
components, autoresizing 164-167
connections, creating 181-186
converters 176
events, defining 168
events, editing 178, 179
properties, defining 168
properties, editing 169, 170
validators 178

Swing frames
creating 158
Swing GUI Forms 159-161

T
tagged releases

URL 12
task repositories 134, 135
TDD

performing, within NetBeans 105-109
URL 106

TestNG
URL 98

Threads window 79, 80
Tomcat application server

URL 231

V
validators 178
Variables debug window 73, 74
VM properties

URL 66

W
Watches window

about 74
expressions, evaluating 75

web application
components, adding 246-249
creating 233
JavaScript, adding 269, 270
JavaScript files, checking 270
Maven web application, creating 241, 242
NetBeans web application, creating 234-240
Run options, in web project 243-246

web projects
application servers, configuring 230-232
creating 229, 230
web application, creating 233

Web Service Definition Language (WSDL)
about 274
SOAP web service, creating 281-283
URL 276

web services
about 120-124
creating 274, 275
managing, graphically 289
options, for creating 274, 275
SOAP web service, creating 276
SOAP web service, managing 283-285

WildFly
URL 232

Window management 38-41
windows

spotting 57, 58

Thank you for buying
Mastering NetBeans

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

NetBeans IDE 8 Cookbook
ISBN: 978-1-78216-776-1 Paperback: 386 pages

Over 75 practical recipes to maximize your
productivity with NetBeans

1. Increase developer productivity using features
such as refactoring and code creation.

2. Test applications effectively using JUnit,
TestNG, and Arquilian.

3. A recipe-based guide filled with practical
examples to help you create robust applications
using NetBeans.

Java EE 7 Development with
NetBeans 8
ISBN: 978-1-78398-352-0 Paperback: 364 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use the features of the popular NetBeans
IDE to accelerate your development of
Java EE applications.

2. Covers the latest versions of the major Java EE
APIs such as JSF 2.2, EJB 3.2, JPA 2.1, CDI 1.1,
and JAX-RS 2.0.

3. Walks you through the development of
applications utilizing popular JSF component
libraries such as PrimeFaces, RichFaces,
and ICEfaces.

Please check www.PacktPub.com for information on our titles

Instant NetBeans IDE How-to
ISBN: 978-1-78216-344-2 Paperback: 70 pages

Develop different Java applications such as desktop,
web, enterprise, and mobile applications using
NetBeans IDE

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Explore the drag-and-drop features of
NetBeans IDE to write bug-free code
without writing anything.

3. Generate different code snippets and files with
only a few clicks.

Java EE Development with
NetBeans 7 [Video]
ISBN: 978-1-78216-246-9 Duration: 03:08 hours

Develop professional enterprise Java EE applications
by taking advantage of the time-saving features of the
NetBeans 7 IDE

1. Use the features of the popular NetBeans IDE
along with keyboard shortcuts to accelerate
development of Java EE applications.

2. Take advantage of the NetBeans debugger
to get rid of bugs that may creep into your
Java EE code.

3. Learn about all the major Java EE APIs
as well as tips on how to effectively use the
NetBeans IDE to save time when developing
Java EE applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with NetBeans
	Choosing a download bundle of NetBeans
	Downloading and installing NetBeans
	Installing other versions of NetBeans
	NetBeans user directory

	Updating NetBeans to the latest version
	Obtaining NetBeans source code
	Downloading a zipped archive of the NetBeans source code
	Cloning the NetBeans source code from Mercurial
	Cloning specific versions of NetBeans

	Cloning the NetBeans source code from within NetBeans
	Browsing the NetBeans source code online

	Building NetBeans
	Building NetBeans via the command line
	Building NetBeans from within NetBeans

	NetBeans configuration
	User and cache directories
	NetBeans default options
	NetBeans JDK
	Additional module clusters
	Further options

	Summary

	Chapter 2: Editing Files and Projects
	The NetBeans screen layout
	The explorer style windows
	The Favorites window
	The Navigator window
	The source code editor window
	The History view

	The Palette window
	The Properties window
	The Output window
	Window management

	Specifying default templates for files
	Code templates and code snippets
	Inserting code using code templates
	Code snippets – the NetBeans Palette window
	Deleting palette items – the Palette Manager
	Editing palette items

	Macro recording and playback
	Assigning shortcuts for macro playback
	Recording new macros

	Splitting windows
	Code folds
	Project groups
	Summary

	Chapter 3: The NetBeans Developer's Life Cycle
	Running applications
	Debugging applications
	Breakpoints
	The Variables debug window
	The Watches window
	Evaluating expressions

	The Call Stack window
	The Loaded Classes window
	The Sessions window
	The Threads window
	The Sources window
	The Debugging window
	Deadlock detection

	Analyze Stack Window
	Variable formatters
	Debugging remote applications

	Profiling applications
	Application monitoring
	Performance monitoring
	Memory monitoring

	Testing applications
	Code coverage

	Performing TDD within NetBeans
	Summary

	Chapter 4: Managing Services
	Databases
	Connecting to Java DB
	Connecting to MySQL
	Connecting to other databases via JDBC
	Managing databases

	Web Services
	Application Servers
	Maven Repositories
	Cloud Services
	Hudson Builders
	Task Repositories
	Summary

	Chapter 5: Database Persistence
	Java EE Persistence
	JPA entities
	Creating blank entity classes
	Editing the persistence.xml file

	Creating entity classes from databases
	Creating JPA controllers for entities
	Creating database scripts from entity classes

	Summary

	Chapter 6: Desktop Development
	Java Swing applications
	Creating Swing frames
	Designing Swing forms
	Anchoring and autoresizing components
	Defining properties and events
	Editing properties
	Editing bindings
	Editing events
	Editing code
	Creating connections

	JavaFX applications
	JavaFX Scene Builder

	Summary

	Chapter 7: Creating the Business Layer
	Creating enterprise projects
	Creating a NetBeans multi-module project
	A Maven multi-module project
	Creating a Maven multi-module project

	Creating EJBs

	Creating a session bean façade for entity classes
	The Java Bean Validation framework
	Creating a Bean Validation constraint

	Contexts and Dependency Injection
	Adding CDI support
	CDI injection points editor support

	Summary

	Chapter 8: Creating the Web Tier
	Creating web projects
	Configuring application servers
	Creating a web application
	Creating a NetBeans web application
	Creating a Maven web application
	The web project's Run options

	Adding components to a web application
	Creating Spring web applications
	Changing the version of Spring used
	Spring application development shortcuts

	Modern Spring development
	Enhancing Spring Boot support

	CSS preprocessors
	Configuring Less and SASS in NetBeans
	Configuring Less and Sass on a project basis
	Creating CSS rules

	Adding JavaScript to a web application
	Checking JavaScript files

	Summary

	Chapter 9: Creating and Consuming Web Services
	Creating web services
	Creating a SOAP web service
	Creating a SOAP web service from scratch
	Creating a SOAP web service from WSDL

	Managing SOAP-based web services
	Testing web services
	Message handlers

	Managing web services graphically

	Consuming SOAP web services
	Creating RESTful web services
	The Simple Root Resource option
	The Container-Item option
	The Client-Controlled Container-Item option

	Summary

	Chapter 10: Extending NetBeans
	Creating NetBeans plugins
	NetBeans rich client platform applications
	Creating a NetBeans RCP application
	Branding the application
	Application properties

	Creating platform application components
	Creating a NetBeans window

	Summary

	Index

