

NUMERICAL AND
ANALYTICAL

METHODS WITH
MATLAB®

93568_Book.indb 1 7/22/09 10:27:59 AM

Published Titles

ADVANCED THERMODYNAMICS ENGINEERING
Kalyan Annamalai and Ishwar K. Puri

APPLIED FUNCTIONAL ANALYSIS
J. Tinsley Oden and Leszek F. Demkowicz

COMBUSTION SCIENCE AND ENGINEERING
Kalyan Annamalai and Ishwar K. Puri

EXACT SOLUTIONS FOR BUCKLING OF STRUCTURAL MEMBERS
C.M. Wang, C.Y. Wang, and J.N. Reddy

THE FINITE ELEMENT METHOD IN HEAT TRANSFER AND FLUID DYNAMICS,
Second Edition

J.N. Reddy and D.K. Gartling

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS: THEORY
AND ANALYSIS, Second Edition

J.N. Reddy

NUMERICAL AND ANALYTICAL METHODS WITH MATLAB®

William Bober, Chi-Tay Tsai, and Oren Masory

PRACTICAL ANALYSIS OF COMPOSITE LAMINATES
J.N. Reddy and Antonio Miravete

SOLVING ORDINARY and PARTIAL BOUNDARY VALUE PROBLEMS in
SCIENCE and ENGINEERING

Karel Rektorys

CRC Series in
COMPUTATIONAL MECHANICS

 and APPLIED ANALYSIS
Series Editor: J.N. Reddy

Texas A&M University

93568_Book.indb 2 7/22/09 10:27:59 AM

NUMERICAL AND
ANALYTICAL

METHODS WITH
MATLAB®

WILLIAM BOBER
CHI-TAY TSAI

OREN MASORY

CRC Series in
COMPUTATIONAL MECHANICS and APPLIED ANALYSIS

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

93568_Book.indb 3 7/22/09 10:27:59 AM

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131120

International Standard Book Number-13: 978-1-4200-9357-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface...xi
Acknowledgments..xv
Authors...xvii

1. Numerical Modeling for Engineering...1
1.1	 Computer Usage in Engineering...1

1.1.1	 Importance of the Computer...1
1.1.2	 Computer Usage..1

1.2	 The Mathematical Model...2
1.3	 Computer Programming..2
1.4	 Preparing a Computer Program..3
1.5	 Recommended Procedures for Writing a Program..............................3
1.6	 Building Blocks in Writing a Program..3

2. MATLAB Fundamentals...5
2.1	 Introduction...5

2.1.1	 The MATLAB Windows...5
2.2	 Constructing a Program in MATLAB...8
2.3	 The MATLAB Program...8
2.4	 Program Examples..18
2.5	 Debugging a Program..26
2.6	 3-D and Contour Plots...28
Projects...29
References.. 44

3. Matrices...45
3.1	 Matrix Operations..45
3.2	 System of Linear Equations..48

3.2.1	 The inv Function...49
3.2.2	 The Gauss Elimination Function...49
3.2.3	 Examples...50

93568_Book.indb 5 7/22/09 10:28:00 AM

vi  ◾  Contents

3.3	 Gauss Elimination..55
3.4	 The Gauss–Jordan Method...61
3.5	 Number of Solutions..63
3.6	 Inverse Matrix... 64
3.7	 The Eigenvalue Problem...68
Exercises..72
Projects...72
Reference..76

4. Roots of Algebraic and Transcendental Equations................................77
4.1	 The Search Method... 77
4.2	 Bisection Method.. 77
4.3	 Newton–Raphson Method...79
4.4	 The fzero Function...80

4.4.1	 Example Programs.. 84
Projects...83
Reference..93

5. Numerical Integration...95
5.1	 Numerical Integration and Simpson’s Rule.......................................95
5.2	 Improper Integrals..98
5.3	 MATLAB’s Quad Function...100
5.4	 MATLAB’s DBLQUAD Function...101
Exercises..102
Projects...103

6. Numerical Integration of Ordinary Differential Equations................105
6.1	 The Initial Value Problem...105
6.2	 The Fourth-Order Runge–Kutta Method.......................................107
6.3	 System of Two First-Order Equations...108
6.4	 A Single Second-Order Equation..108
6.5	 MATLAB’s ODE Function.. 110
6.6	 Ordinary Differential Equations That Are Not

Initial Value Problems..112
6.7	 Solution of a Tri-Diagonal System of Linear Equations..................112
6.8	 Difference Formulas... 115
6.9	 Deflection of a Beam.. 118
Projects...121

7. Simulink..141
7.1	 Introduction...141
7.2	 Creating a Model in Simulink..141
7.3	 Typical Building Blocks in Constructing a Model..........................143

93568_Book.indb 6 7/22/09 10:28:00 AM

Contents  ◾  vii

7.4	 Constructing and Running the Model...146
7.5	 Constructing a Subsystem..146
7.6	 Using the mux and fcn Blocks..146
7.7	 The Relay Block..148
7.8	 The Switch Block..149
7.9	 Trigonometric Function Blocks..150
Projects... 152

8. Curve Fitting...155
8.1	 Curve-Fitting Objective.. 155
8.2	 Method of Least Squares.. 155
8.3	 Curve Fitting with the Exponential Function.................................158
8.4	 MATLAB’s Curve-Fitting Function...160
8.5	 Cubic Splines..162
8.6	 The Function Interp1 for Cubic Spline Curve Fitting.....................164
8.7	 Curve Fitting with Fourier Series...164
Projects...167

9. Optimization...171
9.1	 Introduction...171
9.2	 Unconstrained Optimization Problems..172
9.3	 Method of Steepest Descent...173
9.4	 Optimization with Constraints..176
9.5	 MATLAB’s Optimization Function...178
Exercises..182
Projects...182
Reference..186

10. Partial Differential Equations...187
10.1	 The Classification of Partial Differential Equations........................187
10.2	 Solution by Separation of Variables..188

10.2.1	 The Vibrating String..188
10.2.2	 Unsteady Heat Transfer I (Bar)..192
10.2.3	 Unsteady Heat Transfer II (Cylinder)................................199

10.3	 Unsteady Heat Transfer in 2-D... 206
10.4	 Perturbation Theory and Sound Waves... 211
10.5	 Review of Finite Difference Formulas...217
10.6	 Example of Applying Finite Difference Methods to Partial

Differential Equations..217
10.6.1	 The Explicit Method..218
10.6.2	 The Implicit Method.. 220

Projects...221

93568_Book.indb 7 7/22/09 10:28:00 AM

viii  ◾  Contents

11. Iteration Method...233
11.1	 Iteration in Pipe Flow Analysis...233
11.2	 The Gauss–Seidel Method..235
11.3	 The Hardy–Cross Method..238
Projects...241
References...248

12. Laplace Transforms...249
12.1	 Laplace Transform and Inverse Transform.....................................249
12.2	 Transforms of Derivatives...256
12.3	 Ordinary Differential Equations, Initial Value Problem.................257
12.4	 A Shifting Theorem... 260
12.5	 The Unit Step Function..263
12.6	 Laplace Transform of the Unit Step Function................................ 264
12.7	 Convolution.. 268
12.8	 Laplace Transforms Applied to Partial Differential Equations........271
12.9	 Laplace Transforms and Complex Variables...................................276

12.9.1	 Residues and Poles...278
Exercises..281
References...282

13. An Introduction to the Finite Element Method..................................283
13.1	 Finite Element Method for Stress Analysis.....................................283
13.2	 Structural Mechanics Plane Stress Analysis....................................283
13.3	 The Shape Function for a Linear Triangle Element.........................288

13.3.1	 3-Node Triangular Element for 2-D Stress Analysis..........290
13.3.2	 Shape Function in Area Coordinates.................................291
13.3.3	 Finite Element Formulation Using Triangular

Elements..292
13.4	 Finite Element Analysis Using MATLAB’s PDE Toolbox..............299
13.5	 Structural Mechanics Plane Strain Analysis...................................320
13.6	 Model Analysis of 2-D Structures..321
13.7	 Finite Element Analysis for Heat Transfer......................................325
Projects...339
References...341

14. Control Systems.. 343
14.1	 Introduction.. 343
14.2	 Representation of Systems in MATLAB.. 346

14.2.1	 Transfer Function Representation..................................... 348
14.2.2	 Zero-Pole-Gain Format of Transfer Function

Representation...350
14.2.3	 State Space Representation..352

93568_Book.indb 8 7/22/09 10:28:01 AM

Contents  ◾  ix

14.3	 Closed-Loop Systems..355
14.3.1	 DC Motor Modeling...355
14.3.2	 Block Diagrams...357
14.3.3	 MATLAB Tools for Defining the Closed-Loop System.....358

14.4	 MATLAB Tools for the Performance Analysis
of Closed-Loop Systems..361
14.4.1	 Root Locus Plots...361
14.4.2	 Nyquist Plots...363

14.5	 MATLAB’s SISOtool...367
14.5.1	 Example to Be Used with SISOtool...................................367
14.5.2	 SISOtool Main Features..370
14.5.3	 Using SISOtool to Design the Controller for Example

at Beginning of This Section..371
14.6	 Application of Simulink in Controls and Dynamic Systems...........377

14.6.1	 Example of Control of the Fluid Level in Coupled
Tanks...377

14.6.2	 Design of a Feed-Forward Loop Using Optimality
Criteria..385

14.6.3	 Active Suspension..391
14.6.4	 Sampled Data Control System...394
14.6.5	 Implementation of ADC and DAC in Simulink................397

14.7	 Simulink’s Data Acquisition Toolbox...405
14.7.1	 Analog Input.. 406
14.7.2	 Analog Output..407
14.7.3	 Digital Input.. 408
14.7.4	 Digital Output... 408

Projects...412
Endnotes...417

Appendix A...419

Appendix B...423

Appendix C..429

Index..439

93568_Book.indb 9 7/22/09 10:28:01 AM

93568_Book.indb 10 7/22/09 10:28:01 AM

xi

Preface

I have been teaching computer applications in mechanical engineering (ME) at
Florida Atlantic University (FAU) for many years. The Department of Mechanical
Engineering at FAU offers two courses in computer applications in ME. The first
course is usually taken in the student’s sophomore year, while the second course is
usually taken in the student’s junior or senior year. Students entering FAU from
the community colleges are given credit for the first course if they have completed
a course in C or C++. Both computer classes are taught as a lecture–computer lab
course. The MATLAB® software program is used in both courses. To familiarize
students with engineering-type problems, approximately six to seven engineering-
type projects are assigned during the semester. Students have, depending on the
difficulty of the project, either one or two weeks to complete the project. Since I
have not found a satisfactory MATLAB text for the type of course that I teach, I
have written supplementary material manuals for these courses, which students are
required to purchase from our department office. I believe that the best source for
students to complete my assigned projects is my Supplementary Material Manual.
As a result, I have converted and expanded this material into a textbook, which
other schools may use. The textbook includes many of the projects that I have
assigned to my classes over several years. In addition I have asked two of my col-
leagues to contribute to the textbook. Dr. T. C. Tsai has contributed a chapter
on the finite element method using MATLAB (“MATLAB’s Partial Differential
Equation Toolbox”) and Dr. Oren Masory has contributed a chapter on control
systems using MATLAB (“MATLAB’s Control System Toolbox”).

The advantage of using the MATLAB software program over other software
programs is that it contains built-in functions that numerically solve systems of
linear equations, systems of ordinary differential equations, roots of transcendental
equations, integrals, statistical problems, optimization problems, control systems
problems, stress analysis problems using finite elements, and many other types of
problems encountered in engineering. A student version of the MATLAB pro-
gram is available at a reasonable cost. However, to students, these built-in func-
tions are essentially black boxes. By combining a textbook on MATLAB with basic

93568_Book.indb 11 7/22/09 10:28:01 AM

xii  ◾  Preface

numerical and analytical analyses (although I am sure that MATLAB uses more
sophisticated numerical techniques than are described in this text), the mystery of
what these black boxes might contain is somewhat alleviated. The text contains
many sample MATLAB programs (scripts) that should provide guidance to the
student on completing the assigned projects. I believe that the projects in this textbook
are more like what a graduate engineer might see in the industry rather than the usual
small problems that are contained in many textbooks on the subject.

Furthermore, we believe that there is enough material in this textbook for two
courses, especially if the courses are run as lecture–computer laboratory courses.
The advantage of running these courses (especially the first course) as a lecture–
laboratory course is that the instructor is in the computer laboratory to help the
student debug his or her program. This includes the sample programs as well as
the projects. The first course should be at a lower level, perhaps during the first or
second semester of the sophomore year. Chapters 1 through 6 would be appropriate
for this first course. These chapters include:

Chapter 1: Numerical Modeling for Engineering
Chapter 2: MATLAB Fundamentals
Chapter 3: Matrices
Chapter 4: Roots of Algebraic and Transcendental Equations
Chapter 5: Numerical Integration
Chapter 6: Numerical Integration of Ordinary Differential Equations

Chapters 7 through 14 are appropriate for a course at the senior or first year gradu-
ate levels. These chapters include:

Chapter 7:    Simulink
Chapter 8:    Curve Fitting
Chapter 9:    Optimization
Chapter 10: Partial Differential Equations
Chapter 11: Iteration Method
Chapter 12: Laplace Transforms
Chapter 13: An Introduction to the Finite Element Method (requires the Partial

Differential toolbox)
Chapter 14: Control Systems (requires the Control System toolbox)

All chapters, except for Chapters 1 and 12, contain projects. Chapters 3, 5, and
12 also contain several exercises. Projects differ from exercises in that the student
is required to write a computer program in MATLAB that will produce tables or
graphs, or both. Exercises only require the student to use pencil and paper and
produce a single answer.

Schools offering a course in computer applications similar to FAU’s
Computer Applications in ME II, but not having offered an earlier course using

93568_Book.indb 12 7/22/09 10:28:01 AM

Preface  ◾  xiii

MATLAB, would have to include Chapter 2 as part of the course, since it covers
MATLAB fundamentals.

The governing equations for most projects are derived either in the main body
or in the project description itself, or in the Appendices. A chapter on Laplace
Transforms has been included because the control systems chapter (Chapter 14)
utilizes Laplace Transforms; this chapter also utilizes Simulink. An introduction to
Simulink is covered in Chapter 7.

MATLAB is a registered trademark of The MathWorks, Inc. For product infor-
mation, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

93568_Book.indb 13 7/22/09 10:28:01 AM

93568_Book.indb 14 7/22/09 10:28:01 AM

xv

Acknowledgments

The authors wish to thank Jonathan Plant of Taylor & Francis Group/CRC Press
for his confidence and encouragement in writing this textbook. We also wish to
thank Jennifer Ahringer and Linda Leggio for guiding us through the textbook
submission process. Finally, we wish to express our deep gratitude to our wives for
tolerating the many hours we spent on preparation of this manuscript, time which
otherwise would have been devoted to our families.

93568_Book.indb 15 7/22/09 10:28:01 AM

93568_Book.indb 16 7/22/09 10:28:01 AM

xvii

Authors

William Bober, Ph.D., received his B.S. degree in civil engineering from City
College of New York (CCNY), his M.S. degree in engineering science from Pratt
Institute, and his Ph.D. in engineering science and aerospace engineering from
Purdue University. At Purdue University he was on a Ford Foundation Fellowship
and was assigned to teach one engineering course during each semester. After
receiving his Ph.D., Dr. Bober went to work as an associate engineering physi-
cist in the Applied Mechanics Department at Cornell Aeronautical Laboratory, in
Buffalo, New York. After leaving Cornell Labs, he was employed as an associate
professor in the Department of Mechanical Engineering at the Rochester Institute
of Technology (RIT) for the following 12 years. After leaving RIT he was, and
still is, employed at Florida Atlantic University in the Department of Mechanical
Engineering. While at RIT, Dr. Bober was the principal author of a textbook on
fluid mechanics (Fluid Mechanics, 1980), published by John Wiley & Sons. He
has written several papers for the International Journal of Mechanical Engineering
Education (IJMEE).

C. T. Tsai, Ph.D., is a professor of mechanical engineering at Florida Atlantic
University. Before joining the FAU faculty in August 1990, he was a research sci-
entist at the Air Force Institute of Technology, Wright Patterson Air Force Base,
Ohio. He is the author and coauthor of more than 80 articles in national and inter-
national journals and conferences. Dr. Tsai is one of the first pioneers for modeling
dislocation multiplication in semiconductor crystals and has made significant con-
tributions for developing a numerical model to predict the quantity of dislocations
generated in the semiconductor crystals grown from the melt. His computational
model has been cited by the Handbook of Crystal Growth (Elsevier Science B.V.,
1994) as the first numerical model for predicting the dislocation densities generated
in the growing of semiconductor crystals.

Dr. Tsai received his Ph.D. in engineering mechanics from the University of
Kentucky in 1995. He has guided five Ph.D. students and nine master’s students to
graduation. He was the recipient of the Presidential Research Development Award

93568_Book.indb 17 7/22/09 10:28:01 AM

xviii  ◾  Authors

in 2001, NASA summer faculty fellowship in 1991, and Air Force summer faculty
research fellowship in 1994, 1995, and 1997. He is listed in Who’s Who in the World,
Who’s Who in American Education, and Who’s Who in Science and Engineering.

Oren Masory, Ph.D., is currently serving as the Chairman of the Department of
Mechanical Engineering at Florida Atlantic University. He earned his B.Sc., M.Sc.,
and Ph.D. from the Technion, Israel Institute of Technology, Haifa, Israel, in 1974,
1977, and 1980, respectively. During his academic career he has taught a variety
of courses including mechanics, vibrations, controls, manufacturing methods,
automatic assembly, industrial automation, computer control of manufacturing
systems, robotics application, controls, mechatronics, and microelectromechanical
systems (MEMS). Dr. Masory has been employed by Florida Atlantic University
since 1988. He worked for Gould Inc. (1980–1983) on the development of a robotic
assembly line for the assembly of nonstandard electrical components. He has also
consulted and performed research for General Dynamics, Pratt & Whitney,
Sensormatic Electronics Corporation, Motorola, and others. Dr. Masory’s interests
include robotics, automation, vehicle dynamics, and product liability.

93568_Book.indb 18 7/22/09 10:28:01 AM

1

1Chapter

Numerical Modeling
for Engineering

1.1 � Computer Usage in Engineering
1.1.1 � Importance of the Computer
Nearly all engineering firms today utilize the computer in one way or another.
Therefore, if a student has a programming capability, he will be more valuable to
the firm that hires him than someone without such a capability.

1.1.2 � Computer Usage
In engineering, the computer is mainly used in

	 a.	Solving mathematical models of physical phenomena.
	 b.	Storing and reducing experimental data.
	 c.	Controlling machine operations.

The engineer’s interest lies in

	 a.	Design of equipment.
	 b.	Evaluation of performance of equipment.
	 c.	Research and development.

93568_Book.indb 1 7/22/09 10:28:02 AM

2  ◾  Numerical and Analytical Methods with MATLAB﻿

These can be accomplished by

	 a.	Full-scale experiments. May be prohibitively expensive.
	 b.	Small-scale model experiments. Still very expensive and extrapolation is fre-

quently questionable.
	 c.	A mathematical model, which is the least expensive and fastest. It can give

more detailed answers and different cases under different conditions can be
run quickly. If there is confidence in a mathematical model it will be used in
preference to an experiment.

1.2 � The Mathematical Model
Physical phenomena are described by a set of governing equations. Numerical
methods are frequently used to solve the set of governing equations. Reason: We
don’t have methods for obtaining closed-form solutions for many types of problems
involving general geometric conditions.

Numerical methods invariably involve the computer. The computer per-
forms arithmetic operations upon discrete numbers in a defined sequence of
steps. The sequence of steps is defined in the program. A useful solution is
obtained if

	 a.	The mathematical model accurately represents the physical phenomena; that
is, the model has the correct governing equations.

	 b.	The numerical method is accurate. Note: If the governing equations aren’t
correct, the solution will be worthless regardless of the accuracy.

	 c.	The numerical method is programmed correctly.

This book is mainly concerned with items (b) and (c).

1.3 � Computer Programming
The advantages of using the computer include:

	 a.	It can carry out many, many calculations in a fraction of a second.
	 b.	To get the computer to carry out the calculations, one has to write a set of

instructions.

The modern electronic digital computer consists of the following:

	 a.	Input unit—provides data and instructions to the computer.
	 b.	Memory/storage unit—in which data and instructions are stored.

93568_Book.indb 2 7/22/09 10:28:02 AM

Numerical Modeling for Engineering  ◾  3

	 c.	Arithmetic-logic unit—which performs the arithmetic operations and pro-
vides the decision-making ability (or logic) to the computer.

	 d.	Control unit—takes instructions from memory; interprets and executes the
instructions.

	 e.	Output unit—prints out results of the program or displays results on a
screen.

The control unit + the arithmetic logic unit are considered the central processing
unit (CPU).

1.4 � Preparing a Computer Program
For problems of interest in this book, the digital computer is only capable of per-
forming arithmetic, logical, and graphical operations. Therefore, arithmetic pro-
cedures must be developed for solving differential equations, evaluating integrals,
determining roots of an equation, solving a system of linear equations, etc. The
arithmetic procedure usually involves a set of algebraic equations. A computer solu-
tion for such problems involves developing a computer program that defines a step-
by-step procedure for obtaining an answer to the problem of interest. The method
of solution is called an algorithm.

1.5 � Recommended Procedures for Writing a Program
	 a.	Study the problem to be programmed.
	 b.	List the algebraic equations to be used in the program.
	 c.	Create a flow chart or outline.
	 d.	Carry out a sample calculation by hand.
	 e.	Write the program using the outline and the list of algebraic equations.

1.6 � Building Blocks in Writing a Program
	 a.	Arithmetic Statements
	 b.	Input/Output Statements
	 c.	Loop Statements (for loop and while loop)
	 d.	Alternative Path Statements (if and elseif)
	 e.	Functions (built in and self-written)

93568_Book.indb 3 7/22/09 10:28:02 AM

93568_Book.indb 4 7/22/09 10:28:02 AM

5

2Chapter

MATLAB Fundamentals

2.1 � Introduction
MATLAB® is a software program for numeric computation, data analysis, and
graphics. One advantage that MATLAB has for engineers over software packages
such as C/C++ or Fortran is that the MATLAB program includes functions that
numerically solve large systems of linear equations, a system of ordinary differential
equations, roots of transcendental equations, integrals, statistical problems, opti-
mization problems, control system problems, and many other types of problems
encountered in engineering. MATLAB also contains toolboxes, which must be
purchased separately, that are designed to solve problems in very specialized areas.

2.1.1 � The MATLAB Windows
By clicking on the MATLAB icon on the desktop, several MATLAB windows
open (the default is the MATLAB desktop; see Figure 2.1).

Command window◾◾ (in the center; in older versions, the command window
is on the right)—In the command window you can enter commands and
data, make calculations, and print results. You can write a program (or script)
in the command window and execute the program. However, it will not be
saved. Thus, if an error is made, the entire program needs to be retyped. By
clicking the up (↑) arrow key on your keyboard the previous command can
be reentered.
Command history window◾◾ (bottom right)—This window lists commands that
the user has used in the command window.

93568_Book.indb 5 7/22/09 10:28:02 AM

6  ◾  Numerical and Analytical Methods with MATLAB﻿

Current directory window◾◾ (on the top in the center of the task bar area)—
This small window lists the current working directory. To run a MATLAB
program, the program needs to be in the directory listed in this window. The
directory listed in this window can be changed by clicking on the little box
just to the right of the window. This produces a drop-down menu allowing
one to select the directory in which the program resides (see Figure 2.2). If
the working directory is not listed in the drop-down menu, one can click on
the little box containing the three dots, which allows one to browse for the
directory containing the program of interest (see Figure 2.3).
Second window◾◾ also called the current directory (on the left)—This window
lists all the directories that are available.
Workspace window◾◾ (upper right)—This window lists all the files in the cur-
rent workspace.
Editor window◾◾ —Programs are best written in the editor window. Programs
are then saved as m files. These files have the extension m, such as heat.m.
To execute the program, return to the command window and type in the
name of the program without the extension (.m). The editor window can be
obtained from the command window by clicking on File in the task bar sec-
tion and selecting New-M-file.

Figure 2.1  MATLAB windows: command, current directory, command history,
and workspace windows. (From MATLAB. With permission.)

93568_Book.indb 6 7/22/09 10:28:03 AM

MATLAB Fundamentals  ◾  7

Figure 2.2  Drop-down menu from current directory window. (From MATLAB.
With permission.)

Figure 2.3  Browse for folder menu from current directory window. (From
MATLAB. With permission.)

93568_Book.indb 7 7/22/09 10:28:03 AM

8  ◾  Numerical and Analytical Methods with MATLAB﻿

2.2 � Constructing a Program in MATLAB
	 1.	Start the MATLAB program by double clicking on the MATLAB icon on the

desktop, bringing up the Command Window.
	 2.	Click on File-New-M-file. This brings up the editor window.
	 3.	Type program in the editor window.
	 4.	Save the program in a directory of your own choosing. It is best that this

directory contain only your own MATLAB programs.
	 5.	To run the program, return to the Command Window and in the current

directory slot (upper center) select the directory in which the program has been
saved. Then in the Command Window type in the program name without
the .m extension. Example: Suppose the program has been saved as heat.m,
then after the (>>) characters type in heat.

2.3 � The MATLAB Program
Variable names◾◾

Must start with a letter.−−
Can contain letters, digits, and the underscore character.−−
Can be of any length, but must be unique within the first 19 characters.−−

MATLAB is case sensitive in variable names, as well as in commands.◾◾
Semicolon is usually placed after variable definition and program statements; ◾◾
otherwise, the defined variable appears on the screen; example:

	 A = [3  4  7  6]

In the command window, you would see◾◾

	 A =
	 3  4  7  6

% sign is used for a comment line.◾◾
There is a graphics window to display plots and graphs.◾◾
There are several commands for clearing windows.◾◾
clc—clears the command window.
clf—clears the graphics window.
clear—removes all variables and data from memory.
ctrl-c—aborts a program that may be running in an infinite loop.
Commands are case sensitive; use lowercase letters for commands.◾◾
quit ◾◾ or exit terminates a program.
save◾◾ —saves variables or data in workspace.
functions◾◾ —are also saved as M. files.

93568_Book.indb 8 7/22/09 10:28:03 AM

MATLAB Fundamentals  ◾  9

Scripts (programs) and functions are saved as ASCII text files. Thus, they ◾◾
may be written in either the built-in editor, in notepad, or in a word processor
(saved as a text file).
The basic component in MATLAB is a matrix.◾◾
A matrix is designated by brackets; example:◾◾

	
A 1 3

6 5
=













=; or A [1 3 ; 6 5]

A matrix of 1 row and 1 column is a scalar; example:◾◾

	 A [3.5]=

However, MATLAB accepts A ◾◾ = 3.5 (without brackets) as a scalar.
A matrix consisting of 1 row and several columns, or 1 column and several ◾◾
rows is considered a vector; example:

A = [2 3 6 5] ; (row vector)	 A

2
3
6
5

=



















; (column vvector)

A matrix can be defined by including a second matrix as one of the elements; ◾◾
example:

	 B = [. .];1 5 3 1

	 C [4.0 B [4.0 1.5 3.1]= =]

A specific element of matrix ◾◾ C can be selected by writing

	 a = C(2);  then,  a = 1.5

The Colon Operator may be used to◾◾
	 1.	 Create a new matrix from an existing matrix; examples:

	

A
5 7 10
2 5 2
1 3 1

=
















	

x x= =
















A gives(:,);1
5
2
1

93568_Book.indb 9 7/22/09 10:28:05 AM

10  ◾  Numerical and Analytical Methods with MATLAB﻿

		 The semicolon in the expression (:,1) implies all the rows, and the 1 implies
column 1.

	

x gives x= =




A (:, :);2 3
7 10
5 2
3 1













	 2.	 Generate a series of numbers; for example:

	 n = 1 : 8;  gives n = [1 2 3 4 5 6 7 8]

		 To increment in steps of 2 use

	 n = 2 : 2 : 8;  gives n = [2 4 6 8].

Elementary math functions. (A complete set can be obtained by typing “help ◾◾
elfun” in the Command Window.)
Trigonometric functions:

sin	 Sine
sinh	 Hyperbolic sine
asin	 Inverse sine
asinh	 Inverse hyperbolic sine
cos	 Cosine
cosh	 Hyperbolic cosine
acos	 Inverse cosine
acosh	 Inverse hyperbolic cosine
tan	 Tangent
tanh	 Hyperbolic tangent
atan	 Inverse tangent
atan2	 Four quadrant inverse tangent
atanh	 Inverse hyperbolic tangent
sec	 Secant
sech	 Hyperbolic secant
asec	 Inverse secant
asech	 Inverse hyperbolic secant
csc	 Cosecant
csch	 Hyperbolic cosecant
acsc	 Inverse cosecant
acsch	 Inverse hyperbolic cosecant
cot	 Cotangent
coth	 Hyperbolic cotangent
acot	 Inverse cotangent
acoth	 Inverse hyperbolic cotangent

93568_Book.indb 10 7/22/09 10:28:05 AM

MATLAB Fundamentals  ◾  11

Exponential, logarithm, square root, and error function◾◾
exp	 Exponential
log	 Natural logarithm
log10	 Common (base 10) logarithm
sqrt	 Square root
erf	 Error function
Complex numbers◾◾
abs	 Absolute value
conj	 Complex conjugate
imag	 Complex imaginary part
real	 Complex real part
Other useful functions◾◾
size(X)—Gives the size of matrix X (or vector X).
sum(X)—For vectors, sum(X) gives the sum of the elements in X. For matri-

ces, sum(X) gives a row vector containing the sum of the elements in each
column of the matrix.

max(X)—For vectors, max(X) gives the maximum element in X. For matrices,
max(X) gives a row vector containing the maximum in each column of the
matrix. If X is a column vector, it gives the maximum absolute value of X.

min(X)—Same as max(X) except it gives the minimum element in X.
sort(X)—For vectors, sort(X) sorts the elements of X in ascending order. For

matrices, sort(X) sorts each column in the matrix in ascending order.
factorial(n)—n!.
See Table 2.1 for special values and special matrices.◾◾
Sometimes one needs to define the size of a matrix. This can be done by estab-◾◾
lishing a matrix of all zeros or all ones; examples:

	

A = =












zeros(3)
0 0 0
0 0 0
0 0 0

	
B = zeros(3,2) =













0 0
0 0
0 0

Table 2.1  Special Values

Symbol Value

pi π

i or j -1

Inf ∞
Ans A value computed by an expression in the Command window.

93568_Book.indb 11 7/22/09 10:28:06 AM

12  ◾  Numerical and Analytical Methods with MATLAB﻿

	

A ones 3= =
















()
1 1 1
1 1 1
1 1 1

	
A ones 2,3= =









() 1 1 1

1 1 1

The identity matrix symbol is eye; example:

	

eye 3() =
















1 0 0
0 1 0
0 0 1

If you wish to have your program pause to have an input from the keyboard, use ◾◾
the input function; for example, suppose we wish to enter a 2 × 3 matrix, use
Z = input (‘Enter values for Z in brackets \n’);
type in:
[5.1  6.3  2.5;  3.1  4.2  1.3]
Note: \n means move the cursor to the next line.
To display a matrix X just type X and matrix X will appear on the screen.
The display command—prints contents of a matrix or alpha-numeric infor-◾◾
mation; example:
p = 14.7;
disp (p); disp (‘psia’);
The following will be displayed on the screen:
14.7000
psia
The fprintf command; example:◾◾
p = 14.7;
fprintf (‘the press is %f psia \n’, p);
The following will appear on the screen:
the press is 14.7000 psia
The default for ◾◾ f format is 4 decimal places.
One can specify the number of spaces for the variable as well as the number ◾◾
of decimal places by using
% 8.2 f
This will allow 8 spaces for the variable to 2 decimal places.◾◾
Other formats:◾◾
% i—used for integers.
% e—exponential notation (default is 6 decimal places).

93568_Book.indb 12 7/22/09 10:28:07 AM

MATLAB Fundamentals  ◾  13

% g—computer decides whether to use f format or e format.
% s—used for a string of characters.
% c—used for a single character.
Strings and a character must be enclosed by apostrophe marks.
To print to a file use◾◾
p = 14.7
fid = fopen (‘output.dat’,‘w’);
fprintf (fid, ‘press = % 5.2 f psia’, p)
To access the file output.dat after the program has run, the program had to ◾◾
include a statement fclose(fid) after all the output statements in the program
or at the end of the program.
To read from a file use◾◾
A = zeros (n,m);
fid = fopen (‘filename.dat’, ‘r’);
[A] = fscanf (fid, ‘%f’, [n,m]);
where n×m is the number of elements in the data file.
The n×m matrix is filled in column order. To use the data in its original order
transpose the read-in matrix.
To transpose a matrix◾◾ B, type in B′. This changes columns to rows and rows
to columns.
A data file can also be entered into a program by the load command; example:◾◾
load filename.dat
x = filename (: , 1);
y = filename (: , 2);
The input file must have the same number of rows in each column.
Arithmetic Operators◾◾
+	 addition
–	 subtraction
*	 multiplication
/	 division
^	 exponentiation
The ◾◾ for loop provides the means to carry out a series of statements with just a
few lines of code.
Syntax:
for m = 1 : 20

statement;
statement;
-----;

end
The computer sets the index m to 1, carries out the statements between the
for and end statements, then returns to the top of the loop, changes m to 2,

93568_Book.indb 13 7/22/09 10:28:07 AM

14  ◾  Numerical and Analytical Methods with MATLAB﻿

and repeats the process. This continues until m is set to 21, in which case the
computer leaves the loop.
The ◾◾ while loop
Syntax:
n = 0;
while n < 10

n = n +1;
y (n) = n^2;

end
In the while loop, the computer will carry out the statements between the while
and end statements as long as the condition in the while statement is satisfied.
if◾◾ statement
Syntax:
if logical expression

statement;
statement;

else
statement;
statement;

end
	 If the logical expression is true, the upper set of statements is executed.
	 If the logical expression is false, the bottom set of statements is executed.

Logical expressions are of the form◾◾

a = = b;	 a < = b;
a < b;	 a > = b;
a > b;	 a ~= b;

Compound logical expressions◾◾

a > b	 &&	 a ~= c	 (and)

a > b	 ||	 a < c	 (or)

The ◾◾ if-elseif  ladder

Syntax:
if (logical expression 1)

statements;
elseif (logical expression 2)

statements;
else

statements;
end

93568_Book.indb 14 7/22/09 10:28:07 AM

MATLAB Fundamentals  ◾  15

	  The if-elseif ladder works from top down. If the top logical expression is
true, the statements related to that logical expression are executed and the
program will leave the ladder. If the top logical expression is not true, the
program moves to the next logical expression. If that logical expression is
true, the program will execute the group of statements associated with that
logical expression and leave the ladder. If that logical expression is not true,
the program moves to the next logical expression and continues the process.
If none of the logical expressions are true the program will execute the state-
ments associated with the else statement. The else statement is not required. In
that case, if none of the logical expressions are true, no statements within the
ladder will be executed.
The break command may be used with an ◾◾ if  statement to end a loop; example:

for m = 1 : 20
-----;
-----;
if m > 10

break;
end
-----;

end

In this example, the for loop is ended when m = 11.

The ◾◾ switch group

Syntax:
switch(var)
case var1

statement; …; statement;
case var2

statement; …; statement;
case var3

statement; …; statement;
otherwise

statement; …; statement;
end

where var takes on values of var1, var2, var3, etc.

	 If var equals var1, those statements associated with var1 are executed and
the program leaves the switch group. If var does not equal var1, the pro-
gram tests if var equals var2; if yes, the program executes those statements
associated with var2 and leaves the switch group. If var does not equal any
of var1, var2, etc., the program executes the statements associated with the
otherwise statement. If var1, var2, etc., are strings, they need to be enclosed

93568_Book.indb 15 7/22/09 10:28:07 AM

16  ◾  Numerical and Analytical Methods with MATLAB﻿

by apostrophe mark. It should be noted that var cannot be a logical expres-
sion, such as var1 > = 80.

For plot commands see Table 2.2.◾◾
Multiple plots◾◾

plot(x,y,w,z),  gives 2 plots,  y vs. x and z vs. w.

Example, suppose◾◾

	

A

t y z w

t y z w
t . . .

: : : :
t y z w

1 1 1 1

2 2 2 2

3

n n n n

=

























=







,T

t
t
t

.
:

t

1

2

3

A






















=









,Y

y

y

.

.

.
y

1

2

n




















=


























, .
.
.

Z

z

z

zn

1

2



=

























,W

w
w

.

.

.
w

1

2

n

Then to plot Y vs. T, Z vs. T, and W vs. T all on the same graph, use
plot (A(: , 1), A(: , 2), A(: , 1), A(: , 3), A(: , 1), A(: , 4))
or plot (T,Y, T,Z, T,W);

To label the x and y axes as well as adding a title to the plot use:
xlabel(‘T  ’), ylabel(‘Y, Z, W   ’), and title(‘Y, Z, W vs. T  ’).

You can add a grid to the plot with the command
grid.

You can also add text to the plot with the command
text(x position, y position, ‘text’).

Greek letters and mathematical symbols can be used in xlabel, ylabel, title,
and text by writing “\Greek symbol name”. Example:

ylabel(‘ \omega’), title(‘ \omega vs. t’), text(10,5,’\omega1’);
To obtain a list of Greek symbols, in the command window, select from the

upper task bar “help—product help—index—G,” then scroll down until
you reach “Greek letters and mathematical symbols.” This will provide a
list of Greek symbols that can be used with the plot commands.

Table 2.2  Plot Commands

Command Type

plot(x,y) linear plot of y vs. x

semilogx(x,y) semi-log plot; log scale for x axis, linear scale for y axis

semilogy(x,y) semi-log plot; linear scale for x axis, log scale for y axis

loglog(x,y) log-log plot; log scale for both x and y axes

93568_Book.indb 16 7/22/09 10:28:08 AM

MATLAB Fundamentals  ◾  17

Subplot command◾◾
Suppose one chooses to plot each of the curves in the previous example as a

separate plot, but all on the same page. The subplot command provides
the means to do so. The command subplot(m,n,p) breaks the page into an
m×n matrix of small plots; p selects the matrix position of the plot. The
following code would create the 3 plots in the previous example all on
the same page.

for i=1:3
	 subplot(2,2,i),
	 if i==1
		 plot(T,Y),grid,title(‘Y VS. T’),xlabel(‘T’),ylabel(‘Y’);
	 end
	 if i==2
		 plot(T,Z),grid,title(‘Z VS. T’),xlabel(‘T’),ylabel(‘Z’);
	 end
	 if i==3
		 plot(T,W),grid,title(‘W’ VS. T’),xlabel(‘T’),ylabel(‘W’);
	 end
end

Function Files (saved as m files)◾◾
Functions are useful if one has a complicated program and wishes to break it

down into smaller parts. Also, if a series of statements is to be used many
times, it is convenient to place them in a function.

Syntax:
function [output variables] = function_name (input variables)

The function file name is to be saved as function_name.m (see Table 2.3).
The first executable statement in the function must be “function.” If there is

more than one output value, one needs to put the output variables in brack-
ets. If there is only one output value, no brackets are necessary. If there are
no output values, use brackets that are blank.

A function differs from a script in that the arguments may be passed to another
function or to the command window. Variables defined and manipulated
inside the function are local to the function.

For an example of the calculation of ex see Table 2.4.
To determine ex by series, one approach is to start with sum = 1, evaluate each

term using exponentiation and MATLAB’s factorial function, and add the

Table 2.3  Examples of “Function” Usage

Function Definition Line File Name

function [q, Q, tf] = heat (x, y, tinf) heat.m

function ex = exf (x) exf.m

function [] = output (x, y) output.m

93568_Book.indb 17 7/22/09 10:28:08 AM

18  ◾  Numerical and Analytical Methods with MATLAB﻿

obtained term to the sum. For some series expressions, MATLAB’s facto-
rial function will not be applicable. As a result, another approach will be
needed. It can be seen from this example that term 3 can be obtained from
term 2 by multiplying term 2 by x and dividing term 2 by the index; i.e.,

	 (term3 = term2 × x/3), similarly (term4 = term3 × x/4), etc.

This example is used in several of the following sample programs. Example
programs demonstrating the use of for loops, while loops, if statement,
if-elseif statement, input statement, fprintf statement, fscanf statement, save
command, load command, plot command, and the use of a self-written
function follow.

2.4 � Program Examples
Example 2.1
% exa.m
% This program calculates e^x by series and by MATLAB’s exp() function.
% e^x = 1+x+x^2/2!+x^3/3!+x^4/4! +...+
% The “for loop” ends when the term only affects the seventh significant
% figure.
clear; clc;
x=5.0;
sum=1.0;
for n=1:100
	 term=x^n/factorial(n);
	 sum=sum+term;
	 if(abs(term) <= sum*1.0e-7)
		 break;
	 end
end
ex1=sum;
ex2=exp(x);
fprintf(‘x=%3.1f ex1=%8.5f ex2=%8.5f \n’,x,ex1,ex2);
% Note: A variable name cannot be the same as the name of a file.
% Therefore, use exa as the file name and not ex.

Example 2.2
% exB.m
% CALCULATION OF e^x WHERE x IS INPUTTED FROM THE KEYBOARD
% The function ”sum” is used to sum all the terms determined in the
% “for loop”
clear; clc;

Table 2.4  ex Series

Term ndex

! ! !

I 1 2 3 4

1
2 3 4

2 3 4

e x x x xx = + + + +

93568_Book.indb 18 7/22/09 10:28:08 AM

MATLAB Fundamentals  ◾  19

fprintf(‘Calculation of e raised to a power x \n’);
x=input(‘enter a value for the exponent of e \n’);
for n=1:100
	 term(n)=x^n/factorial(n);
end
ex1=1.0+sum(term);
ex2=exp(x);
fprintf(‘x=%5.2f  ex1=%10.5f  ex2=%10.5f \n’,x,ex1,ex2);

Example 2.3
% while1.m
% CALCULATION OF e^5 USING A WHILE LOOP
% In this example term(n) is obtained from term (n-1) by multiplying
% term(n-1)by x and dividing by index n.
clear; clc;
x=5.0; sum=1.0; term=1.0; n=1;
while abs(term) > sum*1.0e-7
	 term=term*x/n;
	 sum=sum+term;
	 n=n+1;
	 if n > 50
		 break;
	 end
end
ex=sum;  disp(x);  disp(ex);

Example 2.4
% matrix1.m
% INPUTTING A 3 BY 3 MATRIX FROM THE KEYBOARD
% NESTED LOOPS ARE USED
clear; clc;
for n=1:3
	 for m=1:3
		 fprintf(‘n=%i m=%i ‘,n,m);
		 a(n,m)=input(’Enter a(n,m) ’);
		 fprintf(’\n’);
	 end
end
a

Example 2.5
% exf.m
% ESTABLISHING A FUNCTION TO EVALUATE e^x
% In this example term(n) is obtained from term(n-1) by multiplying
% term(n-1) by x and dividing by index n.
function ex=exf(x)
sum=1.0; term=1.0;
for n=1:100
	 term=term*x/n;
	 sum=sum+term;
	 if abs(term) <= sum*1.0e-5
		 break;
	 end

93568_Book.indb 19 7/22/09 10:28:08 AM

20  ◾  Numerical and Analytical Methods with MATLAB﻿

end
ex=sum;
% In Command Window type in
% exf(5.0) or y=exf(5.0)

Example 2.6
% table_plot.m
% This program creates a simple table and a simple plot.
% First a table of y1=n^2/10 and y2=n^3/100 is created.
% Then y1 and y2 are plotted.
clear; clc;
for n=1:10
	 t(n)=n;
	 y1(n)=n^2/10;
	 y2(n)=n^3/100;
end
fo=fopen(‘output.dat’,’w’);
% By printing the output to a file, one can edit the output
% such as lining up column headings, etc. This cannot be
% done if one prints to the screen.
% Column headings
fprintf(fo,’t	 y1	 y2	 \n’);
fprintf(fo,’--------------------------------------\n’);
for n=1:10
	 fprintf(fo,’%8.1f  %10.2f  %10.2f \n’,t(n),y1(n),y2(n));
end
% Creating the plot, y1 is red, y2 is in green.
% Plot identification is also established by adding text to the plot;
plot(t,y1,’r’,t,y2,’g’),grid, title(‘y1 & y2 vs. t’);

% After viewing the plot, text can be entered to identify which
% curve is y1 and which curve is y2.
text(6.5,2.5,’y1’), text(4.2,2.4,’y2’);
% The data t, y1 and y2 can be saved in a data file and loaded later
% to be used in another program. By the use of the ‘clear’ command
% the data file is removed from the workspace. The load command
% brings it back into the workspace and can be used in another program.
data1=[t y1 y2];
% data1 is saved as a mat file in the working directory.
save data1;
clear;
% the clear command removes data1 from the workspace.
% Color types
% blue	 b
% green	 g
% red	 r
% cyan	 c
% yellow	 y
% black	 k

Example 2.7
% plotc.m
% This script is a sample of a plot program loading data obtained
% in another program
clear; clc;

93568_Book.indb 20 7/22/09 10:28:08 AM

MATLAB Fundamentals  ◾  21

load data1
x=data1(:,1);
y=data1(:,2);
z=data1(:,3);
plot(x,y,’--’,x,z,’-.’);
xlabel(‘x’), ylabel(‘y,z’), title(‘y & z vs. x’), grid,
text(5.4,3.4,’y’),text(7.2,3.5,’z’),
% print;
% curve types:
% solid		 default
% dashed	 --	 (minus sign)
% dashed-dot	 -.
% doted	 :
% point	 .
% plus	 +
% star	 *
% circle	 0
% x-mark 	 x
% The point and below are points on the plot that are not connected.

A neat table can also be created by copying the output data to EXCEL. To do
this, follow these steps:
	 1.	First create the data either in a file or on the screen.
	 2.	Highlight the data to be copied and from the menu bar, select “edit” and

“copy” from the drop-down menu list (the copy option can also be obtained
by right-clicking the mouse).

	 3. 	Open the EXCEL program and click on “edit” in the menu bar. Select
“paste” from the drop-down menu list giving a single block of data.

	 4.	Then enlarge column “A” to include the entire data set.
	 5.	Now select “data” from the menu bar, and select “text to columns” from the

drop-down menu.
	 6.	Click on “finish,” then highlight the table area and select the “center” option

in the menu bar to center the data in each column.
	 7.	To add table headings, place the cursor in the top left margin and select

“insert” from the menu bar and “rows” from the drop-down menu.
	 8.	Type in table headings in each column.
	 9.	To add lines separating rows and columns, first highlight the area that is to

have the separating lines, then select “format” from the menu bar and “cells”
from the drop-down menu list. Then select “border” from the “Format Cells”
page. Click on the separating lines that you wish to appear in your table.

	 10.	To print the table, click on the print icon in the menu bar.

Example 2.8
% subplot1.m
% This program is an example of the use of the subplot command.
% Values of y1 and y2 are taken from the saved data file ‘data1’
% Separate plots of y1 vs. t & y2 vs. t are plotted on the same page.
clear; clc;

93568_Book.indb 21 7/22/09 10:28:09 AM

22  ◾  Numerical and Analytical Methods with MATLAB﻿

load data1;
for i=1:2
	 subplot(1,2,i);
	 if i==1
		 plot(t,y1), xlabel(‘t’), ylabel(‘y1’), title(‘y1 vs. t’), grid;
	 end
	 if i==2
		 plot(t,y2), xlabel(‘t’), ylabel(‘y2’), title(‘y2 vs. t’), grid;
	 end
end

Example 2.9
% plotg.m
% This program is a demonstration of creating a semi-log plot
clc; clear;
x=1:0.5:5;
for i=1:9
	 y(i)=3.0*exp(x(i));
end
semilogy(x,y), title(‘semi-log plot of y & x’), xlabel(‘x’), 			
	 ylabel(‘y’),grid;

Before running Example 2.10 the data file “GAUSS6.DAT” needs to be
created. To do this, from the COMMAND window click on
file-Blank M-file. Type in the following data (numbers only):

	 8.77	 2.40	 5.66	 1.55	 1.0
	 4.93	 1.21	 4.48	 1.10	 1.0
	 3.53	 1.46	 2.92	 1.21	 1.0
	 5.05	 4.04	 2.51	 2.01	 1.0
	 3.54	 1.04	 3.47	 1.02	 1.0
	 -32.04	 -20.07	 -8.53	 -6.30	 -12.04

	 Save the file as GAUSS6.DAT in the working directory.

Example 2.10
% amatrix7.m
% MATRIX A(I,J) IS READ FROM A FILE
% amatrix7.m
% MATRIX A(I,J) IS READ FROM A FILE NAMED “GAUSS6.DAT”
% NOTE: BEFORE RUNNING THIS PROGRAM THE DATA FILE GAUSS6.DAT MUST
% FIRST BE CREATED AND SAVED IN THE WORKING DIRECTORY.
clear; clc;
n=5;
A=zeros(n); B=zeros(1,n);
fin=fopen(‘GAUSS6.DAT’,’r’);
[A]=fscanf(fin,’%f’,[n,n]);
[B]=fscanf(fin,’%f’,[n]);
fclose(fin);
size(A)
fo=fopen(‘output.dat’,’w’);
fprintf(fo,’  output.dat \n’);
fprintf(fo,’  Matrix A elements \n’);
for i=1:n
	 for j=1:n

93568_Book.indb 22 7/22/09 10:28:09 AM

MATLAB Fundamentals  ◾  23

		 fprintf(fo,’  %8.3f  ’,A(i,j));
	 end
	 fprintf(fo,’\n’);
end
% Note that rows become columns and columns become rows.
fprintf(fo,’\n\n Matrix B elements \n’);
for i=1:n
	 fprintf(fo, ’ %8.3f \n’,B(i));
% The A matrix is returned to its original state.
end
fclose(fo);
C=[A’ B];
moutput(C);

This is the GAUSS6.DAT data file (this statement is not in the data file; only
numbers should be in this file).
% moutput.m
% This Function is to be created with “amatrix7.m”
% This function accepts matrix A & matrix B and prints them out to
% output2.dat
function D=moutput(C)
n=5;
A=C(:,1:n)
B=C(:,n+1)
fo=fopen(‘output2.dat’,’w’);
fprintf(fo,’  output2.dat \n’)
fprintf(fo,’  Matrix A elements \n’)
for i=1:n
	 for j=1:n
		 fprintf(fo,’  %8.3f’,A(i,j));
	 end
	 fprintf(fo,’\n’);
end
fprintf(fo,’\n\nMatrix B elements \n’);
for i=1:n
	 fprintf(fo,’  %8.3f \n’,B(i));
end
fclose(fo;

Example 2.11
% charmatrix.m
% Sometimes one might wish to print out a string of characters in a
% loop. This can be done by declaring a 2-D character string matrix as
% shown in this example. Note that all row character strings
% must have the same number of columns and that character strings must
% be enclosed by apostrophe marks.
clear; clc;
char=[‘Internal modem	 ’
		 ‘Graphics circuit board’
		 ‘CD drive	 ’
		 ‘DVD drive	 ’
		 ‘Floppy drive	 ’
		 ‘Hard disk drive	 ’];

93568_Book.indb 23 7/22/09 10:28:09 AM

24  ◾  Numerical and Analytical Methods with MATLAB﻿

for i=1:5
	 fprintf(‘%22s \n’,char(i,1:22));
end

Example 2.12
% char1.m
% This example is a modification of Example 2.11. The program asks the
% user if he/she wishes to have the output go to the screen or to a
% file.
% This example illustrates the use of the switch statement.
clear; clc;
char=[‘Internal modem	 ’
		 ‘External modem	 ’
		 ’Graphics circuit board’
		 ’CD drive	 ’
		 ’Hard disk drive	 ’];
fprintf(’you have a choice, you can have the output go to the’);
fprintf(’screen or go to a file named output.dat \n’);
var=input(’enter s for screen or f for file ...
		 each enclosed by apostrophe mark \n’);
switch(var)
	 case ’s’
		 for i=1:5
			 fprintf(’%22s \n’,char(i,1:22));
		 end
	 case ’f’
		 fo=fopen(’output.dat’,’w’);
		 for i=1:5
			 fprintf(fo,’%22s \n’,char(i,1:22));
		 end
	 otherwise
		 fprintf(’you did not enter an s or an f, try again \n’);
		 exit;
		 fclose(fo);
end

Example 2.13
% grades.m
% This example uses the if-elseif ladder.
% The program determines a letter grade depending on the score the user
% enters from the keyboard.
clear; clc;
gradearray=[‘A’; ‘B’; ‘C’; ‘D’; ‘F’];

score=input(‘Enter your test score \n’);
fprintf(‘score is:%i \n’,score);
	 if score > 100,
		 fprintf(‘error: score is out of range. Rerun program \n’);
		 break;
	 elseif (score >= 90 && score <= 100)
		 grade=gradearray(1);
	 elseif (score >= 80 && score < 90)
		 grade=gradearray(2);
	 elseif (score >= 70 && score < 80)
		 grade=gradearray(3);

93568_Book.indb 24 7/22/09 10:28:09 AM

MATLAB Fundamentals  ◾  25

	 elseif (score >= 60 && score < 70)
		 grade=gradearray(4);
	 elseif (score < 60)
		 grade=gradearray(5);
	 end
fprintf(‘grade is:%c \n’,grade);

Example 2.14
% grades3.m
% This example uses a loop to determine the correct interval of
% interest. For a large number of intervals, this method is more
% efficient (fewer statements) than the method in Example 2.13.
% The program determines a letter grade depending on the score the user
% enters from the keyboard.
clear; clc;
gradearray=[‘A’; ‘B’; ‘C’; ‘D’; ‘F’];
sarray=[100 90 80 70 60 0];
score=input(‘Enter your test score \n’);
fprintf(‘score is:%i \n’,score);
% The following 2 statements are needed for the case when score = 100.
if score = = 100
	 grade=gradearray(1);
else
	 for i=1:5
		 if (score >= sarray(i+1) && score < sarray(i))
			 grade=gradearray(i);
		 end
	 end
end
fprintf(‘grade is:%c \n’,grade);

MATLAB function interp1 (the last character is a one). The format for the func-
tion is
	 y2 = interpl (, ,)x y x2

where x,y are the set of data points and x2 is the set of x values at which the set of
y2 values is to be determined by linear interpolation. Arrays x and y have to be of
the same length.

Example 2.15
% interp1f.m
% This program uses MATLAB’s function interp1 to interpolate for
% specific volume of air. Air table values for specific volume (m^3/kg)
% vs. temperature (K) are given.
clear; clc;
Tt=[150 200 250 300 350 400 450 500];
vt=[0.04249 0.05665 0.07082 0.08498 0.09914 0.11330 0.12747 0.14163];
fprintf(‘This program interpolates for specific volume,v, at \n\n’);
fprintf(‘a specified temp, T. Table temperature range ...
		 is 150-500(K) \n\n’);
T=input(‘Enter T at which v is to be determined \n\n’);
v=interp1(Tt,vt,T);
fprintf(’ T=%6.1f (K)	 v=%9.5f (m^3/kg) \n’,T,v);

93568_Book.indb 25 7/22/09 10:28:09 AM

26  ◾  Numerical and Analytical Methods with MATLAB﻿

2.5 � Debugging a Program
It is not uncommon that in typing up a program, one makes a typographical
error, such as omitting a parenthesis, a comma in a 2-D array, etc. This type of
error is called a syntax error. When this occurs, MATLAB will provide an error
message pointing out the line in which the error has occurred. However, there
are cases where there are no syntax errors, but the program either doesn’t run
or gives an obvious incorrect answer. When this occurs, one should consider
using the debug feature in MATLAB. The debug feature allows you to set break
points in your program. The program will run up to the line containing the break
point. To set a break point just left click the mouse in the narrow column next
to the line that you wish to be a break point. A small red circle will appear next
to the break-point line as shown in Figure 2.4. One can then click on the debug
listing in the task bar and select several options from the drop-down menu (see
Figure 2.5). One option is to have MATLAB execute one line at a time. This is
done by successively selecting the step option in the debug drop-down menu (see
Figure 2.6). If the program contains a self-written function, one can execute
one line at a time in the function by selecting the step in option in the debug
drop-down menu. Selecting the step out option returns the control to the main
program. Selecting Clear Breakpoints in All Files will remove all break points
from the program.

Figure 2.4  Selecting a break point. (From MATLAB. With permission.)

93568_Book.indb 26 7/22/09 10:28:10 AM

MATLAB Fundamentals  ◾  27

Figure 2.5  Stepping through a program execution. (From MATLAB. With
permission.)

Figure 2.6  Debug drop-down menu. (From MATLAB. With permission.)

93568_Book.indb 27 7/22/09 10:28:10 AM

28  ◾  Numerical and Analytical Methods with MATLAB﻿

2.6 � 3-D and Contour Plots
Given z = f(x,y), one can create a 3-D plot of z vs. x,y. To create the 3-D or contour
plot, one first needs to create a meshgrid. The command is [X,Y] = meshgrid(x,y).
The number of elements in the grid will equal the number of elements in x times the
number of elements in y. For each grid point there is an X element and a Y element.
Suppose –3 <= x <= 3 in steps of 1 and –2 <= y <= 2 in steps of 1. Then, the X and
Y matrices will appear as shown below.

	

X =

– – –
– – –
– – –
– – –
– – –

3 2 1 0 1 2 3
3 2 1 0 1 2 3
3 2 1 0 1 2 3
3 2 1 0 1 2 3
3 2 11 0 1 2 3























	

Y =

– – – – – – –
– – – – – – –
2 2 2 2 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 22 2 2 2























The meshgrid statement is used to produce several different types of 3-D plots.
The example below uses the meshgrid statement to produce a 3-D surface plot and
a contour plot. In expressing the surface equation, one needs to do element-by-
element multiplication and division.

Example 2.16
% contour2.m
% This program develops a 3-D surface plot of an elliptic cone
% and a contour plot.
clear; clc;
x=–5:0.1:5;
y=–4:0.1:4;
a=5; b=4; c=3;
[X,Y]=meshgrid(x,y);
% Elliptic cone
Z=c*sqrt((X/5).^2+(Y/4).^2);
% the mesh (x, y, Z) statement creates a meshed surface plot.
mesh(x,y,Z)
figure;
% The surf(x, y, Z) statement creates a surface plot.
surf(X,Y,Z), xlabel(‘x’), ylabel(‘y’), zlabel(‘z’),grid;
figure;
% The contour(X, Y, Z) statement creates a contour plot.
ct=contour(X,Y,Z); clabel(ct); xlabel(‘x’); ylabel(‘y’);

93568_Book.indb 28 7/22/09 10:28:11 AM

MATLAB Fundamentals  ◾  29

To produce plots of complete spheres and ellipsoids use ellipsoid and sphere
functions. A description of these MATLAB functions can be obtained by typing

help ellipsoid
help sphere
help cylinder

in the command window.

Projects
Project 2.1
Determine the Taylor Series expansion of cos(x) about x = 0 and develop a com-
puter program in MATLAB that will evaluate the function from –π ≤ x ≤ π in
steps of 0.1 π by

	 a.	An arithmetic statement.
	 b.	Series allowing for as many as 50 terms. However, stop adding terms when

the last term only affects the 6th place in the answer.

Print out a table (to a file) in the format shown in Table P2.1; use 6 decimal
places for cos(x).

Also create a plot of cos(x) for –π ≤ x ≤ π.

Table P2.1  Table Format

X
cos(x)

(by arithmetic stm)
cos(x)

(by series)
Terms in the

series

–1.0 π

–0.9 π

–0.8 π

—

—

—

0.9 π

1.0 π

93568_Book.indb 29 7/22/09 10:28:11 AM

30  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 2.2
Determine the Taylor Series expansion of sin(x) about x = 0 and develop a computer
program in MATLAB that will evaluate the function from –π ≤ x ≤ π in steps of
0.1 π by

	 a.	An arithmetic statement.
	 b.	Series allowing for as many as 50 terms. However, end adding terms when the

last term only affects the 6th place in the answer.

Create a table similar to the table shown in Project 2.1, except replace cos(x) with
sin(x). Also create a plot of sin(x) for –π ≤ x ≤ π.

Project 2.3
Using the Taylor Series expansion for ex, show that eix = cos (x) + i sin (x) and that
e−ix = cos (x) – i sin (x), where i = -1.

Project 2.4
Develop a computer program in MATLAB that will evaluate the following func-
tion for –0.9 ≤ x ≤ 0.9 in steps of 0.1 by

	 a.	An arithmetic statement.
	 b.	Series allowing for as many as 50 terms. However, end adding terms when the

last term only affects the 6th place in the answer.

The function and its series expansion is

	
f x x x x x() () /= + = - + ⋅

⋅
- ⋅ ⋅

⋅ ⋅
+ ⋅-1 1 1

2
1 3
2 4

1 3 5
2 4 6

12 1 2 2 4 6 33 5 7
2 4 6 8

8⋅ ⋅
⋅ ⋅ ⋅

- +x �

Print out a table (to a file) in the format shown in Table P2.4; use 6 decimal places
for f  (x).

Table P2.4  Table Format for Project 2.4

X
f(x)

(by arith stm)
f(x)

(by series)
No. of terms

used in the series

–0.9 —

–0.8 —

–0.7 —

— —

— —

0.7 —

0.8 —

0.9 —

93568_Book.indb 30 7/22/09 10:28:11 AM

MATLAB Fundamentals  ◾  31

Project 2.5
The binomial expansion for ()1 + x n, where n is an integer, is as follows:

	

() ()
!

()()
!

()

1 1 1
2

1 2
3

1

2 3

+ = + + - + - -

+ + -

x nx n n x n n n x

n n

n

�
(() ()

()!
n n r x

r
x

r
n- - +

-
+ +

-2 2
1

1…
�

Construct a MATLAB program that will evaluate ()1 + x n by both the above series
and by an arithmetic statement for n = 10 and1 0 10 0. .≤ ≤x in steps of 0.5. Print
out the results in a table as shown in Table P2.5.

Project 2.6
Although atmospheric conditions vary from day to day, it is convenient for design
purposes to have a model for atmospheric properties as a function of altitude. The
U.S. Standard Atmosphere, modified in 1976, is such a model. The model consists
of two types of regions, one in which the temperature varies linearly with altitude,
and the other where the temperature is a constant. The temperature and approxi-
mate pressure relations are as follows:

Table P2.5  Table Format for Project 2.5

x
(1 + x)n

(by arith stm)
(1 + x)n

(by series)

1.0 —

1.5 —

2.0 —

2.5 —

— —

— —

— —

10.0 —

93568_Book.indb 31 7/22/09 10:28:13 AM

32  ◾  Numerical and Analytical Methods with MATLAB﻿

	 a.	For a region where the temperature varies linearly,

	
p p

z z
Ti

i

i

g
R

= -
-





1
l l(

	 T T z zi i= - -l()

	
r = p

RT

where
	 z = the altitude.
	 zi = the altitude at the beginning of the region of interest.
(pi , Ti ) = the pressure and temperature at the beginning of the region of interest.
	 l = the lapse rate.
	 R = the air gas constant.
	 g = �the gravitational constant, which varies slightly with altitude. The

above expression for p assumes that within the region of interest, g is a
constant; otherwise the expression for p would be a lot more compli-
cated than the one shown above.

	 r = air density.

	 b.	For a region where the temperature is constant

	

p p
g z z

RT

T T

i
i

i

i

= -
-





=

exp
()

Table P2.6 gives the values of pressure, temperature, and the gravitational constant
at the beginning of each region, as well as the lapse rate of the region.

Determine the property values of (T, p, r) for every 1,000 m from sea level
(z = 0) to z = 80,000 m and

	 a.	Save the results as a data file to be used in Project 2.7.
	 b.	Print the results in a table format for every 1,000 m.

93568_Book.indb 32 7/22/09 10:28:14 AM

MATLAB Fundamentals  ◾  33

Project 2.7

Project 2.6 provided a table of pressure, p, temperature, T, and density, r , every
1,000 m of altitude. Atmospheric property values at altitudes between table val-
ues can be determined by linear interpolation. The linear interpolation formula
is as follows:

	 y y z z y y z z= + - × - -1 1 2 1 2 1() ()/()

where y represents an atmospheric property to be determined, z is the altitude at
which the unknown property is to be determined, y1 and y2 are the nearest table
property values, and z1 and z2 are the altitudes at y1 and y2.

Construct a MATLAB program to determine by linear interpolation the prop-
erties of (T, p, r) at the following altitudes: 5,170 m, 8,435 m, 13,320 m, 22,250 m,
34,370 m, 48,550 m, and 64,220 m. Make the program interactive; that is, the
program is to ask the user to enter the above elevations one at a time. After each

Table P2.6  Regional Properties of U.S. Standard Atmosphere

Region z (km) T (K) p (Pa) l (K/m) g (m/s2)

0 288.15 101325 9.810

1 0.0065

11.0 216.65 22632.05 9.776

2 0.0000

20.0 216.65 5474.88 9.749

3 –1.0000

32.0 228.65 868.02 9.712

4 –0.0028

47.0 270.65 110.91 9.666

5 0.0000

51.0 270.65 66.88 9.654

6 0.0028

71.0 214.65 3.956 9.594

7 0.0020

84.9 186.95 0.373 9.553

93568_Book.indb 33 7/22/09 10:28:14 AM

34  ◾  Numerical and Analytical Methods with MATLAB﻿

entry the program is to print the results to the screen and then ask the user if he/she
wishes to enter another altitude. The program is to continue as long as the response
to the question is ‘Y.’

Project 2.8
Repeat Project 2.7, but this time create a function interp, with input arguments (z,
z1, z2, y1, y2), that will do the interpolation and that will return the requested prop-
erty to the main program. The variable y is to represent an atmospheric property of
either pressure, temperature, or density at an altitude z entered from the keyboard; z1
and z2 are the nearest altitudes to z and y1 and y2 are the property values at z1 and z2,
respectively.

Project 2.9
The properties of specific volume, v, and pressure, p, as a function of temperature,
T, for three gasses based on the Redlich-Kwong equation of state are given in Tables
P2.9a, P2.9b, and P2.9c. Table P2.9d specifies the gas and the temperature at which
the gas properties are to be determined by interpolation using MATLAB’s interp1
function.

Write a computer program in MATLAB that will do the following:

	 a.	Construct three different data files, each containing the gas properties tabu-
lated in Tables P2.9a, P2.9b, and P2.9c. Name the first air.dat; the second
O2.dat; and the third CO2.dat. Note: The data files do not contain column
headings.

	 b.	Request the user to enter from the keyboard the gas type and the temperature
at which the gas properties are to be obtained. The user is to enter, one at a
time, the gas type and temperature as shown in Table P2.9d.

	 c.	The program is to use a switch statement to select the proper table for interpo-
lation and MATLAB’s built-in function interp1.

	 d.	After the user selects the gas and the temperature, the program should print
to the screen the desired properties identifying the gas, the temperature, T,
the specific volume, v, and the pressure, p, including units.

	 e.	After each entry from the keyboard, the program should ask the user if he/she
wishes to make another entry at which the properties are to be determined.
The user is to enter ‘Y’ for yes and ‘N’ for no. The program is to continue
determining gas properties by interpolation until the user enters ‘N.’ At that
point, the program should terminate.

93568_Book.indb 34 7/22/09 10:28:14 AM

MATLAB Fundamentals  ◾  35

Table P2.9a  Air Properties

 T
(K)

v
(m3/kmol)

p
(N/m2)

350 0.28 10430330

400 0.32 10565630

450 0.36 10638510

500 0.40 10677250

550 0.44 10696520

600 0.48 10704340

650 0.52 10705300

700 0.56 10702130

750 0.60 10696500

Table P2.9b  Oxygen Properties

T
(K)

v
(m3/kmol)

p
(N/m2)

350 0.28 10188750

400 0.32 10371810

450 0.36 10477620

500 0.40 10540230

550 0.44 10577460

600 0.48 10599220

650 0.52 10611290

700 0.56 10617160

750 0.60 10619010

Table P2.9c  Carbon Dioxide Properties

T
(K)

v
(m3/kmol)

p
(N/m2)

350 0.28 7649998

400 0.32 8573591

450 0.36 9159231

500 0.40 9547238

550 0.44 9813341

600 0.48 10000960

650 0.52 10136240

700 0.56 10235580

750 0.60 10309620

Table P2.9d  Gas Type and Temperature

Gas Air CO2 Air O2 CO2 O2

Temp (K) 366 523 728 364 572 685

93568_Book.indb 35 7/22/09 10:28:14 AM

36  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 2.10
We wish to plot the various motions that can occur with a mass-spring-dashpot
system. A sketch of such a system is shown in Figure P2.10. Development of the
governing equation [1] describing the motion of the mass follows:

Equilibrium state:

	 W k y- =0 0

Nonequilibrium state:

	 W k y c y m y- - ′ = ′′ 	 (P2.10a)

where
	 k = the spring constant
	 c = the damping factor
	 m = the object mass

	

y
y

=
′

mass displacement from unstretched position
,, ′′ =y velocity and acceleration of the mass, resspectively.

Let y be the mass displacement from the equilibrium position, then

	 y y y y y y y= + ′ = ′ ′′ = ′′0 , and

cy´ ky
Static

equilibrium
position

W

M M

W

y

W

k

Unstretched
position

y

y + y0 = y –

–

–

y0
–

Figure P2.10  Spring-dashpot system.

93568_Book.indb 36 7/22/09 10:28:16 AM

MATLAB Fundamentals  ◾  37

Substituting these values into Equation (2.10a) gives

	 W k y y c y m y- + - ′ = ′′()0

SinceW k y- =0 0, the above equation reduces to

	
′′ + ′ + =y c

m
y k

m
y 0

	
(P2.10b)

We seek a function that satisfies this differential equation. Such a function is one in
which its derivatives reproduce the function multiplied by a constant. A function
that satisfies this condition is e pt . Assume that y a e pt= , then

	 ′ = ′′ =y p a e y p aept pt, and 2

 Substituting these terms into the differential equation gives

	
p c

m
p k

m
ae pt2 0+ +



 =

Now e pt ≠ 0, so

	
p c

m
p k

m
2 0+ +



 =

Thus,

	
p c

m
c
m

k
m

c
m

c
m

k
m

= - ± 



 - = - ± 



 -1

2
1
2

4 1
2 2

2 2

	
(P2.10c)

We see that there are two solutions that satisfy the differential equation. It can be
shown that the sum of the two solutions is also a solution to the differential equa-
tion. The general solution is

	

y A c
m

t c
m

k
m

t B c
m

t c= - + 



 -











+ - -exp exp
2 2 2 2

2

mm
k
m

t



 -











2

93568_Book.indb 37 7/22/09 10:28:19 AM

38  ◾  Numerical and Analytical Methods with MATLAB﻿

or

y c
m

t A c
m

k
m

t B= -









 -











+exp exp exp
2 2

2

-- 



 -























c
m

k
m

t
2

2

	
(P2.10d)

where exp(x) = ex. The type of motion depends on the variables k, c, and m.

If then the above equation is thec
m

k
m2

2




 > , oone to use. The system is said to

be overdamped .

If c
m

k
m2

2




 < , then the square root term becomes imaginary and the system

is said to be underdamped. Noting that e x i x e x i xix ix= + = --cos sin cos sin ,and
Equation (P2.10d) reduces to

y c
m

t A k
m

c
m

t B= -



 - 















+exp cos sin
2 2

2 kk
m

c
m

t- 


























2

2

	

(P2.10e)

If c
m

k
m2

2




 = , then the square root term is zero and the system is said to be criti-

cally damped. For this case, the solution is

	
y A c

m
t= -



exp

2 	
(P2.10f)

	 (a)	 Given the following parameters:

	
m kg k N

m
c N s

m
= = = -75 87 5 875, . ,

		 develop a computer program to determine the coefficients A and B for the
following cases:

	
1 0 0 5 0 1 0. () . , () . .y m y m

s
= ′ =

	
2 0 0 5 0 1 0. () . , () . .y m y m

s
= ′ = -

	
3 0 0 5 0 0. () . , () .y m y m

s
= ′ =

93568_Book.indb 38 7/22/09 10:28:21 AM

MATLAB Fundamentals  ◾  39

For each case:

	 a.	Determine y (t) for 0 10≤ ≤t seconds in steps of 0.1 seconds.
	 b.	Print out a table of y vs. t every 1 second.
	 c.	Plot y vs. t for all three cases on the same graph. Label each curve with the

value of ′y .

	 (b)	 Given the following parameters:

	
m kg k N

m
c N s

m
= = = -25 200 5, ,

	
y m y m

s
() , ()0 5 0 0= ′ =

The envelope of the solution graph for this case is given by

	
y A c

m
t= ± -



exp

2

Determine y (t) for 0 40≤ ≤t seconds in steps of 0.1 seconds.
Plot y vs. t for both the oscillating function and its envelope on the same graph.

Project 2.11
We wish now to consider the system described in Project 2.10 to be subjected to a
driving force Fo. The governing equation then becomes

	
′′ + ′ + =y c

m
y k

m
y

F
m

t0 sinw
	

(P2.11a)

The solution can be obtained by assuming the solution is the sum of the comple-
mentary solution plus a particular solution. The complementary solution is the
solution to the homogeneous equation, which was obtained in Project 2.10. To
obtain the particular solution, yp , assume

	
y a t b tp = +sin cosw w

	 (P2.11b)

then

	
′ = -y a t b tp w w w(cos sin)

93568_Book.indb 39 7/22/09 10:28:23 AM

40  ◾  Numerical and Analytical Methods with MATLAB﻿

and

	
′′ = - -y a t b tp w w w2(sin cos)

Substituting these expressions into Equation (2.11a) gives

- - +



 + - + +



a c

m
b k

m
a t b c

m
a k

m
bw w w w w2 2sin cosww wt

F
m

t= 0 sin
	

(P2.11c)

Collecting coefficients of the sin and cos terms on the left side of Equation (P2.11c) and
equating them to the sin and cos coefficients on the right side of that equation gives

	

k
m

a
c
m

b
F
m

-



 - =w w2 0

	

c
m

a k
m

b
w w+ -



 =2 0

Solving the above two equations for a and b gives

	

a
F
m

k
m

c
m

k
m

= ×
-





 + -





0

2

2
2

2

w

w w
	

(P2.11d)

	

b
F
m

c
m

c
m

k
m

= - ×




 + -





0
2

2

w

w w
	

(P2.11e)

Substituting Equations (P2.11d) and (P2.11e) into Equation (P2.11b) gives

	

y
F
m c

m
k
m

k
m

tp = ×




 + -





-





0
2

2
2

21
w w

w wsin --







c
m

t
w wcos

	

(P2.11f)

We can rewrite Equation (P2.11f) using the trig identity

	 α w b w g w φsin cos sin()t t t+ = -

where

	 g α b= +2 2

93568_Book.indb 40 7/22/09 10:28:26 AM

MATLAB Fundamentals  ◾  41

and

	
φ b

α
= -tan 1

Applying these relations to Equation (2.11f) gives

	

y
F
m k

m
c
m

tp = ×

-



 + 





-0

2
2 2

1

w w
w φsin()

	

(P2.11g)

For a system with no driving force and no damping, the system would oscillate at

a frequency, wn
k
m

= (see Equation P2.10e). It is convenient to introduce the ratio

ζ = c
cc

where cc = 2m nw . After some algebraic manipulation, Equation (P2.11g) can

be put into the form

	

y
F
k

tp

n n

=

-






+






-0
2 2

1

1 2w
w

ζ w
w

w φsin()

	

(P2.11h)

The term

	

F
k

n n

0
2 2

1

1 2-






+






w
w

ζ w
w

is the amplitude of the oscillation. For a given F
k

0 , the larger the term

1

1 2
2 2

-






+






w
w

ζ w
wn n

,

the larger is the ampplitude.

	
Let ampl =

1

1 2
2 2

-






+






w
w

ζ w
wn n

.

Construct a MATLAB program to create a plot of ampl vs. w w/ n for values of ζ = 1.0,
0.5, 0.25, 0.10, 0.05, and 0 < w w/ n < 2 in steps of 0.01. What happens as w w→ n?

Project 2.12
The motion of a piston in an internal combustion engine is shown in Figure
P2.12a,b. The piston’s position, s, as seen from the crank shaft center can be

93568_Book.indb 41 7/22/09 10:28:29 AM

42  ◾  Numerical and Analytical Methods with MATLAB﻿

Displacement

Rotation of crankshaft

Piston

Piston rod

Journal

Figure P2.12a  Sketch of a typical piston-cylinder engine.

S

θ
r

b

Figure P2.12b  Geometry of piston motion.

93568_Book.indb 42 7/22/09 10:28:30 AM

MATLAB Fundamentals  ◾  43

determined by the Law of Cosines; that is,

	 b s r sr2 2 2 2= + - cosq

or

	 s r s r b2 2 22 0- + - =(cos) ()q 	 (P2.12a)

where
	 b = the length of the piston rod.
	 r = the radius of the crankshaft.

Equation (P2.12a) is a quadratic equation in s and therefore

	
s r r r b r r= + - - = + -1

2
2 4 4 12 2 2 2 2 2(cos cos ()) cos (cosq q q q)) + b2

or

	 s r b r= + -cos sinq q2 2 2
	 (P2.12b)

The piston is constrained to move in the vertical direction and its position, s, varies
as the crankshaft rotates. The angle, q, varies with time, t, and can be expressed in
terms of the rotational speed, w, of the crankshaft. The angle q is thus given by

	 q πw= 2 t 	 (P2.12c)

where w is in revolutions per second. Substituting Equation (P2.12c) into Equation
(P2.12b) gives

	 s t r t b r t() cos() sin ()= + -2 22 2 2πw πw 	 (P2.12d)

The piston velocity, v, can be obtained by taking the derivative of Equation (P2.12d)
with respect to time, giving

	
v() sin() sin()cos()t r t r t t

b r
= - -

-
2 2 2 2 22

2
πw πw πw πw πw

22 2 2sin ()πwt 	
(P2.12e)

The piston acceleration, a, can be obtained by taking the derivative of Equation
(P2.12e) with respect to time, giving

	

a t r t r t() cos() sin ()cos (= - -4 2 4 2 22 2
2 2 4 2 2

π w πw π w πw πwtt
b r t

r t
b r

)
[sin ()]

cos ()
s

/2 2 2 3 2

2 2 2 2

2 2

2

4 2

-

-
-

πw

π w πw
iin ()

sin ()
sin ()2

2 2 2 2

2 2 22
4 2

2πw
π w πw

πwt
r t

b r t
+

- 	

(P2.12f)

93568_Book.indb 43 7/22/09 10:28:32 AM

44  ◾  Numerical and Analytical Methods with MATLAB﻿

	 (a)	 In MATLAB, create a matrix consisting of s vs. t, v vs. t, and a vs. t for
0 ≤ t ≤ 0.01 second. Use 50 subdivisions on the t domain. Take r = 9 cm,
w = 100 revolutions per second, and b = 14 cm. Plot s vs. t, v vs. t, and a vs. t
on three separate graphs.

	 (b)	 Using MATLAB’s max function and the matrix obtained in part (a), deter-
mine the approximate maximum velocity and maximum acceleration in one
revolution, and print out those values.

	 (c)	 Plot on a single graph s vs. t for w = [50 100 150 200] revolutions per
second.

References
	 1.	 Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, Englewood

Cliffs, NJ, 1972.

93568_Book.indb 44 7/22/09 10:28:32 AM

45

3Chapter

Matrices

3.1 � Matrix Operations
A rectangle array of numbers of the form shown below is called a matrix.◾◾

	

a a a

a a a

a a a

m

m

m m mm

11 12 1

21 22 2

1 2

..

..
. . ..
. . ..

..























The numbers aij in the array are called the elements of the matrix.

A matrix of M rows and one column is called a column vector.◾◾
A matrix of one row and n columns is called a row vector.◾◾
Matrices obey certain rules of addition, subtraction, and multiplication.◾◾
If matrices A and B have the same number of rows and columns, then◾◾

	

C A B

a b a b a b

a b a
= + =

+ + +
+

() () (). .

() (
11 11 12 12 13 13

21 21 222 22 23 23

1 1 2 2

+ +

+ +






 b a b

a b a bm m m m

) (). .

.
() ()…















93568_Book.indb 45 7/22/09 10:28:33 AM

46  ◾  Numerical and Analytical Methods with MATLAB﻿

	

C A B

a b a b a b

a b
= - =

- - -
-

() () (). .

() . . .
11 11 12 12 13 13

21 21 ..
.

() ()a b a bm m m m1 1 2 2- -



















…

Addition and subtraction of matrices A and B are only defined if A and B ◾◾
have the same number of rows and columns.
The product AB is only defined if the number of columns in A equals the ◾◾
number of rows in B.
If C ◾◾ = AB, where

	

A
a a a

a a a
B

b b

b b

b b
=













=11 12 13

21 22 23

11 12

21 22

31

,

332



















then

	

C
a b a b a b a b a b a b

=
+ + + +() ()

(
11 11 12 21 13 31 11 12 12 22 13 32

aa b a b a b a b a b a b21 11 22 21 23 31 21 12 22 22 23 32+ + + +






) ()







If A has m rows and B has k columns, then C ◾◾ = AB will have m rows and k
columns.

	

c a bi j i k k j
k

K

=
=

∑
1

In MATLAB®, the multiplication of matrices A and B is A*B.

Transpose of a matrix (rows become columns and columns become rows). If◾◾

	

A =



















2 5 1
7 3 8
4 5 21

16 3 10

then

	

AT =



















2 7 4 16

5 3 5 3

1 8 21 10

93568_Book.indb 46 7/22/09 10:28:34 AM

Matrices  ◾  47

In MATLAB, AT = A′

Dot product of two vectors◾◾

	
A B a bi i⋅ = ∑

If A = [4  –1  3], B = [–2  5  2],
then A B⋅ = - - + = -8 5 6 7
In MATLAB

	 A B dot A B⋅ = (,)

Matrix Inverse◾◾

The inverse of a matrix, denoted A–1, is a matrix such that

	

A A AA I- -= = =
















1 1
1 0 0
0 1 0
0 0 1  

(for a 3 × 3 matrix)

In MATLAB, A–1 = inv(A)

The Identity Matrix, I◾◾

I is a matrix where the main diagonal elements are all 1 and all other elements are 0.

	 I A = A I = A

	

a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

1 0 0
0 1 0
0 0 1

































=
+ + + + + +
+ +

() () ()
()
a a a
a

11 12 13

21

0 0 0 0 0 0
0 0 (() ()

() () ()
0 0 0 0

0 0 0 0 0 0
22 23

31 22 33

+ + + +
+ + + + + +


a a

a a a













The Determinant of a Matrix◾◾

In MATLAB the determinant of matrix A is written

	 det (A)

Element-by-Element Operations◾◾

Given: A = [a1 a2 a3], B = [b1 b2 b3],

	 C A B a b a b a b= ∗ =. []1 1 2 2 3 3

	
C A B

a
b

a
b

a
b

= =








. / 1

1

2

2

3

3

93568_Book.indb 47 7/22/09 10:28:36 AM

48  ◾  Numerical and Analytical Methods with MATLAB﻿

	 sum (A) = a1 + a2 + a3

	

Given: A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

	 sum A a a a a a a a a a() [() () ()= + + + + + +11 21 31 12 22 32 13 23 33]]

Given:◾◾ A = [a1 a2 a3], B = [b1 b2 b3]

	 A B sum A B sum a b a b a b a b a b a b⋅ = ∗ = = + +(.) ([])1 1 2 2 3 3 1 1 2 2 3

The following example illustrates several matrix operations.

Example 3.1
% matrixalg.m
% This program demonstrates matrix algebra in MATLAB
clear; clc;
a=[1 5 9]
b=[2 6 12]
c=a+b
d=dot(a,b)
e=a.*b
f=a./b
g=sum(a.*b)
h=a*b’

3.2 � System of Linear Equations
Given the set of equations

	

a x a x a x a x c

a x a x a x

n n11 1 12 2 13 3 1 1

21 1 22 2 23 3

+ + + + =

+ + +

�

�++ =

+ + + + =

a x c

a x a x a x a x c

n n

n n n nn n n

2 2

1 1 2 2 3 3

�

� 	

(3.1)

93568_Book.indb 48 7/22/09 10:28:37 AM

Matrices  ◾  49

This set can be represented by the matrix equation

	 AX = C	 (3.2)

where

	

A

a a a a
a a a a

a a a a

n

n

n n n nn

=









11 12 13 1

21 22 23 2

1 2 3

�

�

�
�














=





















=






, ,X

x
x

x

C

c
c

cn n

1

2

1

2

� �















Matrix A has n rows and n columns
Matrix X has n rows and one column
Matrix C has n rows and one column
In matrix algebra, X can be obtained by multiplying both sides by A–1; that is,

	
A A X A C IX X A C

I

- - -= ⇒ = =1 1 1
�

3.2.1 � The inv Function
To solve a system of linear equations in MATLAB, one can use

	 X = inv (A) * C	 (3.3)

The method of solving a system of linear equations by using the inv function is more
complicated than a method called Gauss elimination, which is discussed below.

3.2.2 � The Gauss Elimination Function
MATLAB represents the Gauss Elimination method by use of the backslash; that
is, if AX = B, then

	 X = A\B (X will be solved by Gauss elimination)

The following example solves the three-linear-equation system shown below:

	 3x1 + 2x2 – x3 = 10

	 –x1 + 3x2 + 2x3 = 5

	 x1 – x2 – x3 = –1

93568_Book.indb 49 7/22/09 10:28:38 AM

50  ◾  Numerical and Analytical Methods with MATLAB﻿

3.2.3 � Examples

Example 3.2
% matrix2.m
% This program solves a simple linear system of equations
clc; clear;
A=[3 2 –1; –1 3 2; 1 –1 –1]
C=[10 5 –1]’
x=inv(A)*C
y=A\C
A*x
% To print the A matrix & x to a file use:
fid=fopen(‘output.dat’,’w’);
fprintf(fid,’The A matrix is:\n’);
for i=1:3
	 for j=1:3
		 fprintf(fid,’ %3.1f’,A(i,j));
	 end
	 fprintf(fid,’\n’);
end
fprintf(fid,’\n’);
% An alternative way of printing out the matrix.
fprintf(fid,’The A matrix is:\n’);
for i=1:3
	 fprintf(fid,’%5.1f %5.1f %5.1f \n’,A(i,:));
end
fprintf(fid,’\n’);
fprintf(fid,’ x= %5.2f %5.2f %5.2f’,x);
fclose(fid);

Example 3.3 � An Example in Statics

An engineering example involving a large system of linear equations can be found
in the field of statics. The problem is to solve for the internal forces in a truss. For
illustration purposes a truss consisting of five structural members is considered (see
Figure 3.1).

6 m

6 m

F3

F2

F4B C

A D

F1 F5

6 m

6 m 6 m

2 kN

Figure 3.1  Simple truss.

93568_Book.indb 50 7/22/09 10:28:38 AM

Matrices  ◾  51

As can be seen in Figure 3.1, there are five structural members; thus, there are five
unknowns (reactions can be obtained from the equilibrium equations involving
only the external forces and are thus considered to be known). Also note that there
are four joints. We can write two scalar equations at each joint; that is,

	
() ()F Fx

n
n y n

n
∑ ∑= =0 0and

	
(3.4)

However, we can only use five independent equations. We will write two scalar
equations at Joints A and B and one scalar equation (in the x direction) at Joint C.
The system of equations can then be represented by the matrix equation:

	 AF = P	 (3.5)

where
	 A = coefficient matrix
	 F = column matrix of the unknown internal forces
	 P = column matrix involving given external forces

The coefficient matrix A will be made up of elements aij where the first index is the
equation number and the second index represents the force member associated with
that element. In writing the equations, take all unknown internal forces to be in
tension. If Fi comes out negative, then the internal force is in compression. First we
solve for the reactions at A and D (see Figure 3.2).

	
M DA y∑ = = - ° × ° - ° × +0 6 2 30 6 60 2 30 6 1cos() sin() sin() (cos(())60°

or

	
Dy = =18

6
3 kN

	

F A A

F A D

x x x

y y y

∑

∑

= = + ° ⇒ = - °

= = + -

0 2 30 2 30

0 2

cos() cos() kN

ssin() sin()30 2 30° ⇒ = - + °A Dy y kN

93568_Book.indb 51 7/22/09 10:28:39 AM

52  ◾  Numerical and Analytical Methods with MATLAB﻿

Internal forces at Joint A (see Figure 3.3):◾◾

	
F F F Ax x= = ° + +∑ 0 601 3cos()

	
(1)

	 a11 = cos (60°), a13 = 1, P1 = –Ax

	
F F Ay y∑ = = ° +0 601 sin()

	
(2)

	 a21 = sin (60°), P2 = –Ay

Internal forces at Joint B (see Figure 3.4):◾◾

	
F F F Fx∑ = = + ° - °0 60 604 2 1cos() cos()

	
(3)

	 a32 = cos (60°), a31 = –cos(60°), a34 = 1, P3 = 0

	
F F Fy∑ = = - ° - °0 60 601 2sin() sin()

	
(4)

	 a41 = –sin (60°), a42 = –sin (60°), P4 = 0

60°

F1

F3A4

Ay

A

Figure 3.3  Internal forces at Joint A.

6 m

2 kN
6 m

Ay

Ax

Dy

B

D
A

6 m

6 m60°

60° 30°
60°

60°

60°

6 m

C

Figure 3.2  Reactions of simple truss.

93568_Book.indb 52 7/22/09 10:28:42 AM

Matrices  ◾  53

Internal forces at Joint C (see Figure 3.5):◾◾

	
F F Fx∑ = = - - ° + °0 60 2 304 5 cos() cos()

	
(5)

	 a54 = –1, a55 = –cos (60°), P5 = –2 cos (30°)

Since Joint D has not been used in establishing the coefficient matrix, it can be used
as a check on the obtained solution; that is, the sum of all the forces acting at Joint
D, both in the x yand directions, must be zero.

Forces at Joint D (see Figure 3.6):◾◾

	 CKDx F F F= - - ° + °3 2 560 60cos() cos() 	 (3.6)

	
CKDy F F Dy= ° + ° +2 560 60sin() sin()

	 (3.7)

The following program solves for the internal forces in the truss.

60°60°

F2

F4

F1

B

Figure 3.4  Internal forces at Joint B.

2 cos 30°

2 sin 30°

60°
F4

F5

C

Figure 3.5  Internal forces at Joint C.

93568_Book.indb 53 7/22/09 10:28:43 AM

54  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 3.4
% STATICS_TEST_F07.m
% This program solves for the internal forces in a truss by the matrix
% method
clear; clc;
th60=pi/3; th30=pi/6; ie=5; je=5;
a=zeros(5); p=zeros(5,1);
sth60=sin(th60); cth60=cos(th60); sth30=sin(th30); cth30=cos(th30);
% Calculation of reactions:
% Sum of moments about Joint A gives the vertical component of
% the reaction at joint
Dy=(2*cth30*6*sth60+2*sth30*6*(1+cth60))/6;
% Sum of external forces in the x direction gives the horizontal component
% of the reaction at Joint A.
Ax=-2*cth30;
% the sum of external forces in vertical direction gives the vertical
%component of the reaction at Joint A.
Ay=2*sth30-Dy;
fid=fopen(‘output.dat’,’w’);
fprintf(fid,’ statics_problem.m \n’);
fprintf(fid,’ Program solves for the internal forces of a truss \n\n’);
fprintf(fid,’ Reactions in N \n’);
fprintf(fid,’ Ax=%8.3f \t\t Ay=%8.3f \t\t Dy=%8.1f \n\n’,Ax,Ay,Dy);
% Overwrite the non-zero elements of matrix a and matrix p.
a(1,1)=cth60; a(1,3)=1.0; p(1)=-Ax;
a(2,1)=sth60; p(2)=-Ay;
a(3,1)=-cth60; a(3,2)=cth60; a(3,4)=1.0;
a(4,1)=-sth60; a(4,2)=-sth60;
a(5,4)=-1.0; a(5,5)=-cth60; p(5)=-2*cth30;
fprintf(fid,’ A matrix \n\n’);
jindex=1:je;
fprintf(fid,’ ‘);
for i=1:ie
	 fprintf(fid,’%6i’,jindex(i));
end
fprintf(fid,’\n’);
fprintf(fid,’ ---\n’);

60°60°
F3

F2 F5

Dy

D

Figure 3.6  Internal forces at Joint D.

93568_Book.indb 54 7/22/09 10:28:44 AM

Matrices  ◾  55

for i=1:ie
	 fprintf(fid,’%4i ‘,i);
	 for j=1:je
		 fprintf(fid,’%8.4f’,a(i,j));
	 end
fprintf(fid,’\n’);
end
F=a\p;
fprintf(‘f1=%5.2f \n,f2=%5.2f \n,f3=%5.2f \n,f4=%5.2f \n,f5=%5.2f \n’,F);
fprintf(fid,’\n\n’);
fprintf(fid,’Internal forces,F(1)-F(5)& external forces p(i),in N \n\n’);
fprintf(fid,’ Member # F(i) Equation # p(i) \n’);
fprintf(fid,’	 ==\n’);
for i=1:ie
	 fprintf(fid,’ %3.0f %9.4f %3.0f %5.3f \n’,i,F(i),i,p(i));
end
% check if the sum of the horizontal components at Joint D is zero:
fprintf(fid,’\n check if sum of the y components at Joint D is zero \n’);
ckDx=-F(2)*cth60+F(5)*cth60-F(3);
fprintf(fid,’ ckDx=%12.4e \n’,ckDx);
% check if the sum of the vertical components at Joint D is zero:
fprintf(fid,’\n check if sum of the y components at Joint D is zero \n’);
ckDy=Dy+F(2)*sth60+F(5)*sth60;
fprintf(fid,’ ckDy=%12.4e \n’,ckDy);
fclose(fid);

3.3 � Gauss Elimination
In engineering we are frequently confronted with the problem of solving a set of
linear equations. For n equations in n unknowns, it is convenient to express the set
in the following form:

	 a x a x a x a x cn n11 1 12 2 13 3 1 1+ + + + =�

	 a x a x a x a x cn n21 1 22 2 23 3 2 2+ + + + =�

	 . . .

	 . . .

	 a x a x a x a x cn n n nn n n1 1 2 2 3 3+ + + + =� 	 (3.8)

Cramer’s rule gives a theoretical method for obtaining a solution. Use for n ≤ 3 .
However, for larger n, the calculations become excessive. For example, for n = 10, the
number of calculations required by the use of determinants is approximately 3 × 108.
Using the Gauss–Jordan method, this is reduced to approximately 600 calculations.
The system of equations, Equation (3.8), can be expressed in matrix form; that is,

	 AX C= 	 (3.9)

93568_Book.indb 55 7/22/09 10:28:45 AM

56  ◾  Numerical and Analytical Methods with MATLAB﻿

where

	

A

a a a a
a a a a

a a a a

n

n

n n n nn

=









11 12 13 1

21 22 23 2

1 2 3

�

�

�
�














	

X

x
x
x

x

C

c
c
c

cn n

=























=












1

2

3

1

2

3

� �

,












Note: The number of columns in A has to equal the number of rows in X, otherwise
matrix multiplication is not defined. In the Gauss Elimination method, the origi-
nal system is reduced to an equivalent triangular set that can readily be solved by
back substitution.

The reduced equivalent set would appear like the following set of equations:

	

� � � � � �

� �

a x a x a x a x c

a x a x

n n11 1 12 2 13 3 1 1

22 2 23 3

+ + + + =

+ +�� � �

� � � �

�

�

�

+ =

+ + =

- - -

a x c

a x a x c

a x

n n

n n

n n n

2 2

33 3 3 3

1 1 1, ++ =

=

- -� �

� �

a x c

a x c

n n n n

n n n n

1 1,

,

Then

	

x c a

x
a

c a x

n n n n

n
n n

n n n n

=

= --
- -

- -

� �

�
� �

/

()

,

,
,1

1 1
1 1

1

etc..

93568_Book.indb 56 7/22/09 10:28:47 AM

Matrices  ◾  57

To accomplish the reduced equivalent set it is convenient to augment the coefficient
matrix with the C matrix; that is,

	

A

a a a a c

a a a a c

a a a c

n

n

=

11 12 13 1 1

21 22 23 2 2

31 32 33 3

�

�

|
|
|

.... |

... |
|a a a a cn n n nn n1 2 3 �



























	

(3.10)

The following procedure is used to obtain the reduced equivalent set:

Multiply the first row of Equation (3.10) by ◾◾ a21/a11 and subtract from the
second row, giving

	
′ = - × ′ = - ×a a

a
a

a a a
a
a

a21 21
21

11
11 22 22

21

11
12,

	
′ = - ×a a

a
a

a23 23
21

11
13 , .etc

	
′ = - ×c c

a
a

c2 2
21

11
1

	 This gives ′ =a21 0

For the third row: Multiply the first row of Equation (3.10) by ◾◾ a31/a11 and
subtract from row 3, giving

	
′ = - × ′ = - ×a a

a
a

a a a
a
a

a31 31
31

11
11 32 32

31

11
12,

	
′ = - ×a a

a
a

a33 33
31

11
13 , .etc

	
′ = - ×c c

a
a

c3 3
31

11
1

	 This gives ′ =a31 0

93568_Book.indb 57 7/22/09 10:28:49 AM

58  ◾  Numerical and Analytical Methods with MATLAB﻿

This process is carried out for rows 2, 3, 4,…, n. The original row 1 is kept in its
original form. All other rows have been modified and the new coefficients are des-
ignated by a′. Except for the first row in Equation (3.10), the resulting set does not
contain x1.

For this step, the first row of Equation (3.10) was used as the pivot row and a11
as the pivot element. We now use the new row 2 as the pivot row.

Multiply the new row 2 by ′
′

a
a

32

22

 and subtract from row 3, giving

	
′′ = ′ -

′
′

× ′ ′′ = ′ -
′
′

× ′a a
a
a

a a a
a
a

a32 32
32

22
22 33 33

32

22

, 223

	
′′ = ′ -

′
′

× ′a a
a
a

a34 34
32

22
24 ,

 
etc.

 	
′′ = ′ -

′
′

× ′c c
a
a

c3 3
32

22
2

	 This gives ′′ =a32 0

Multiply the new row 2 by ′
′

a
a

42

22

and subtract from row 4, giving

	
′′ = ′ -

′
′

× ′ ′′ = ′ -
′
′

× ′a a
a
a

a a a
a
a

a42 42
42

22
22 43 43

42

22

, 223

	
′′= ′ -

′
′

× ′c c
a
a

c4 4
42

22
2

	 This gives ′′ =a42 0

This process is continued for rows 3, 4, 5,…, n.
Except for the second row 2 the set does not contain x2.
The next row is used as a pivot row and the process is continued until the (n – 1)

row is used as the pivot row. When this is complete the new system is triangular
and the system can be solved by back substitution.

The general expression for the new coefficients is

	

′ = - × = + +

= + +

a a
a

a
a for i k k n

j k k

i j i j
i k

k k
k j 1 2

1 2

, , ,

, , ,

…

… nn

where k is the pivot row.

93568_Book.indb 58 7/22/09 10:28:52 AM

Matrices  ◾  59

These operations only affect the aij and cj terms. Thus, we need only operate on the
A and C matrices.

Example 3.5

Given:

	

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3 4

3 4 3 10

2 3 2 18

- + = -

- + + = -

+ - =

The augmented coefficient matrix is

	

Aaug =

- -

- -

-



















1 3 1 4

3 4 3 10

2 3 2 18

|

|

|

multiply rrow 1 by

and subtract from row 2

a
a

21

11

3
1

= -

	 row 2 becomes: (), (), (), () (, ,- + - + - - = -3 3 4 9 3 3 10 12 0 5 6,,)- 22

The new matrix is

	

Equiv Aaug =

- -

- -

-



















1 3 1 4

0 5 6 22

2 3 2 18

|

|

|

multtiply row 1 by

and subtract from row 3

a
a

31

11

2
1

=

	 row 3 becomes: (), (), (), () (, , ,2 2 3 6 2 2 18 8 0 9 4 2- + - - + = - 66)

The new matrix is

	

Equiv Aaug =

- -

- -

-



















1 3 1 4

0 5 6 22

0 9 4 26

|

|

|

93568_Book.indb 59 7/22/09 10:28:53 AM

60  ◾  Numerical and Analytical Methods with MATLAB﻿

We now use row 2 as the pivot row.

	

Equiv Aaug =

- -

- -

-



















1 3 1 4

0 5 6 22

0 9 4 26

|

|

|

multtiply row 2 by

and subtract from row 3

a
a

32

22

9
5

= -

row 3 becomes:

(), , ,0 0 9 9
5

5 4 9
5

6 26- - ×



 - + ×



 -- ×



 = -





9
5

22 0 0 34
5

68
5

, , ,

The new matrix is

	

Equiv Aaug =

- -

- -

-




















1 3 1 4

0 5 6 22

0 0 34
5

68
5

|

|



The system is now triangular.

	 Equiv A X = C

gives

	

x x x

x x

x

1 2 3

2 3

3

3 4

5 6 22

34
5

68
5

- + = -

- + = -

= -

	

34
5

68
5

2

1
5

22 6 2 2

4 3 2 2 4

3 3

2

1

x x

x

x

= - ⇒ = -

= + - =

= - + + =

[()]

()

93568_Book.indb 60 7/22/09 10:28:54 AM

Matrices  ◾  61

Two important considerations:

	 1.	If akk is zero, where k is the pivot row, then the process cannot be carried out.
	 2.	Greater accuracy in the solution is obtained if the pivot element is the abso-

lute maximum available from the set. That is, if the pivot row is k, one com-
pares the aik’s for i = k + 1, k + 2,…, n (see Figure 3.7). If aikmax ≠ akk, then
the row containing the aikmax is interchanged with the kth row. This only
affects the ordering of the equations and does not affect the solution.

If after row interchange is carried out and one of the akk’s remains zero, then the
system is singular and no solution can be obtained.

One last consideration: It can be shown that if the magnitude of the pivot ele-
ment is much smaller than other elements in the matrix, the use of the small pivot
element will cause a decrease in the accuracy of the solution. To check if this is the
case, one can first scale the equations; that is, divide each equation by the absolute
maximum coefficient in that equation. This makes the absolute maximum coeffi-
cient in that equation equal to 1.0. If | akk | in the pivot row <<1, then the solution
may be inaccurate.

3.4 � The Gauss–Jordan Method
The Gauss–Jordan method is a modification of the Gauss Elimination method. It
also treats the problem of solving a system of linear equations of the form AX =
C. In this method the objective is to obtain an equivalent coefficient matrix that,
except for the main diagonal, all elements are zero. The method starts out, as in the
Gauss Elimination method, by finding an equivalent matrix that is triangular. It
then continues, assuming that A is an n × n matrix, using the n row as the pivot row,
multiplying the nth row by an-1,n/an,n, and subtracting the result from row n - 1, thus
making the new an-1,n = 0. The process is repeated for rows n - 2, n - 3,… , 1.

kth row

Compare
for max |aik|

Figure 3.7  Row interchange.

93568_Book.indb 61 7/22/09 10:28:55 AM

62  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 3.6

As an example, this method is applied to Example 3.5. Starting from the triangular
equivalent matrix

	

Equiv Aaug =

- -

- -

-




















1 3 1 4

0 5 6 22

0 0 34
5

68
5

|

|



multiply row 3 by a23 /a33 = 6 × 5/34 and subtract from row 2. Row 2 becomes

	 (0 – 30/34 × 0), (–5 – 30/34 × 0), (6 – 30/34 × 34/5),

	 (–22 + 30/34 × 68/5) = (0 –5  0 –10)

Multiply row 3 by a13/a33 = 5/34 and subtract from row 1. Row 1 becomes

(1 – 5/34 × 0), (–3 –5/34 × 0), (1 – 5/34 × 34/5), (–4 + 5/34 × 68/5) = (1 –3    0 –2)

The new Equiv Aaug becomes

	

Equiv Aaug =

- -

- -

-



















1 3 0 2

0 5 0 10

0 0 34
5

68
5

|

|

|



Now row 2 is used as the pivot row. Multiply row 2 by a12/a22 = 3/5 and subtract
from row 1. Row 1 becomes

	 (1 – 3/5 × 0), (–3 + 3/5 × 5), (0 – 3/5 × 0), (–2 + 3/5 × 10) = (1  0  0  4)

The new Equiv Aaug becomes

	

Equiv Aaug = - -

-





















1 0 0 4

0 5 0 10

0 0 34
5

68
5

|

|

93568_Book.indb 62 7/22/09 10:28:56 AM

Matrices  ◾  63

Thus, the equivalent set of equations becomes

	 x1 = 4, –5 x2 = –10, 34/5 x3 = –68/5

	 or x1 = 4, x2 = 2, x3 = –2

which is the same answer that was obtained earlier by the Gauss Elimination method.

3.5 � Number of Solutions
Suppose a Gauss Elimination program is carried out and the following results
are obtained:

	

a x a x a x a x c
a x a x a x

n n

n n

11 1 12 2 13 3 1 1

22 2 23 3 2

+ + + + =
+ + +

�

� ==
+ + =

+
+

+ =

c
a x a x c

a x c

n n

rr r r

2

33 3 3 3

0

�

��������
������

�

==
=

=

+

+

c
c

c

r

r

n

1

20

0

�
�

where and , , are not zero. There are two pr n a a arr< 11 22 …, oossible cases:

(1) No solution if any one of the thrcr+1 oough is not zero.
(2) Infinitely many solutions if

c
c

n

r++

=

1

11 22

through are all zero.

If and , are nnn

c

r n a a a

n

,… oot zero, then the system would appear as follows:

a x11 1 ++ + + + =
+ + + =

a x a x a x c
a x a x a x c

a

n n

n n

12 2 13 3 1 1

22 2 23 3 2 2

…
…

333 3 3 3x a x c

a x c

n n

nn n n

+ + =
+

+
=

…
…………………
………………

For this caase there is only one solution.

93568_Book.indb 63 7/22/09 10:28:57 AM

64  ◾  Numerical and Analytical Methods with MATLAB﻿

3.6 � Inverse Matrix
Given:

	 AX = B

	 A–1AX = IX = X = A–1B

MATLAB’s method of solution

	 X = inv(A) *B (solves by A–1)

or

	 X = A/B (solves by Gauss Elimination)

Let us see what is involved by determining A–1:

	 A–1A = I

Let B = A–1, then B*A = I
It will be demonstrated for a 3 × 3 matrix.

	

b b b

b b b
b b b

a a a

a
11 12 13

21 22 23

31 32 33

11 12 13















221 22 23

31 32 33

1 0 0
0 1 0
0 0 1

a a
a a a

















=
















First row of B*A

	

Element

Element

(,): |

(,

1 1 1

1 2

11 11 12 21 13 31b a b a b a+ + =

)): |

(,):

b a b a b a

b a b

11 12 12 22 13 32

11 13

0

1 3

+ + =

+Element 112 23 13 33 0a b a+ = |  

A

a a a

a a a

a a a

T =



















11 21 31

12 22 32

13 23 33

Here b11, b12, and b13 are the unknowns.

	

Let thenB
b
b
b

A BT
1

11

12

13

1

1
0
0

=
















=













,


Solve for b11, b12, b13 by Gauss Elimination.

93568_Book.indb 64 7/22/09 10:28:58 AM

Matrices  ◾  65

Second row of B*A

	

Element

Element

(,):

(,)

2 1 0

2 2

21 11 22 21 23 31b a b a b a+ + =

::

(,):

b a b a b a

b a b

21 12 22 22 23 32

21 13 22

1

2 3

+ + =

+Element aa b a23 23 33 0+ =

Here b21, b22, and b23 are the unknowns.

	

Let thenB
b
b
b

A BT
2

21

22

23

2

0
1
0

=
















=













,


Solve for b21, b22, and b23 by Gauss Elimination.

Third row of B*A

	

Element

Element

(,):

(,)

3 1 0

3 2

31 11 32 21 33 31b a b a b a+ + =

::

(,):

b a b a b a

b a b

31 12 32 22 33 32

31 13 32

0

3 3

+ + =

+Element aa b a23 33 33 1+ =

Here b31, b32, and b33 are the unknowns.

	

Let thenB
b
b
b

A BT
3

31

32

33

3

0
0
1

=
















=













,


Solve for b31, b32, and b33 by Gauss Elimination.
An alternative [1] to the method described above is to augment the coefficient

matrix with the identity matrix, then apply the Gauss–Jordan method making the
coefficient matrix the identity matrix. The original identity matrix then becomes
A–1. The starting augmented matrix for a 3 × 3 coefficient matrix is shown below:

	

a a a

a a a

a a a

11 12 13

21 2 2 23

31 32 33

1 0 0

0 1 0

0 0 1

|

|

|





















93568_Book.indb 65 7/22/09 10:28:59 AM

66  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 3.7

This method is illustrated by the following example:

	  

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3 4

3 4 3 10

2 3 2 18

- + = -

- + + = -

+ - =

	

Aaug =

1 3 1 1 0 0

3 4 3 0 1 0

2 3 2 0 0 1

-

-

-



















|

|

|

Multiply row 1 by –3/1 and subtract from row 2, giving:

	 (–3 + 3 × 1), (4 – 3 × 3), (3 + 3 × 1), (0 + 3 × 1), (1 + 3 × 0),

	 (0 + 3 × 0) = (0  –5  6  3  1  0)

Multiply row 1 by 2/1 = 2 and subtract from row 3, giving:

	 (2 – 2 × 1), (3 – 2 × (–6)), (–2 – 2 × 1), (0 – 2 × 1), (0 – 2 × 0),

	 (1 – 2 × 0) = (0  9  –4  –2  0  1)

	

equiv Aaug =

1 3 1 1 0 0

0 5 6 3 1 0

0 9 4 2 0 1

-

-

- -



















|

|

|

Multiply row 2 by –9/5 and subtract from row 3, giving:

	 (0 + 9/5 × 0), (9 + 9/5 × (–5)), (–4 + 9/5 × 6), (–2 + 9/5 × 3),

	 (0 + 9/5 × 1), (1 + 9/5 × 0) = (0  0  34/5  17/5  9/5  1)

	

equiv Aaug =

1 3 1 1 0 0

0 5 6 3 1 0

0 0 34 5 17 5 9 5 1

-

-



















|

|

/ | / /

93568_Book.indb 66 7/22/09 10:29:00 AM

Matrices  ◾  67

Multiply row 3 by 30/34 and subtract from row 2, giving:

	 (0 – 30/34 × 0), (–5 – 30/34 × 0), (6 – 30/34 × 34/5), (3 – 30/34 × 17/5),

	 (1 –30/34 × 9/5), (0 – 30/34 × 1) = (0  –5  0  0  –20/34  –30/34)

Multiply row 3 by 5/34 and subtract from row 1, giving:

	 (1 – 5/34 × 0), (–3 – 5/34 × 0), (1 – 5/34 × 34/5), (1 –5/34 × 17/5),

	 (0 – 5/34 × 9/5), (0 – 5/34 × 1) = (1  –3  0  1/2  –9/34  –5/34)

	

equiv Aaug =

1 3 0 12 9 34 5 34

0 5 0 0 20 34 30 34

0 0 34 5 17 5

- - -

- - -

| / / /

| / /

/ | / 99 5 1/



















Multiply row 2 by 3/5 and subtract from row 1, giving:

	 (1 – 3/5 × 0), (–3 – 3/5 × (–5)), (0 –3/5 × 0), (1/2 – 3/5 × 0),

	 (–9/34 + 3/5 × 20/34), (–5/34 + 3/5 × 30/34) = (1  0  0  1/2  3/34  13/34)

	

equiv Aaug =

1 0 0 12 3 34 13 34

0 5 0 0 20 34 30 34

0 0 34 5 17 5 9

| / / /

| / /

/ | / /

- - -

55 1



















Divide row 2 by –5 and row 3 by 34/5, giving:

	

equiv Aaug =

1 0 0 12 3 34 13 34

0 1 0 0 4 34 6 34

0 0 1 12 9 34 5 34

| / / /

| / /

| / / /



















Thus,

	

A- =


















1

12 3 34 13 34

0 4 34 6 34

12 9 34 5 34

/ / /

/ /

/ / / 

It is left as a student exercise to show that AA I- =1 .

93568_Book.indb 67 7/22/09 10:29:02 AM

68  ◾  Numerical and Analytical Methods with MATLAB﻿

3.7 � The Eigenvalue Problem
One very important application of the eigenvalue problem is in the theory of vibra-
tions. Consider the two-degrees-of-freedom problem shown in Figure 3.8.

The governing differential equations describing the motion of the two masses are

	 m x k x x k x1 1 2 2 1 1 1�� = - -() 	 (3.11)

	 m x k x x k x2 2 2 2 1 3 2�� = - - -() 	 (3.12)

We wish to determine the modes of oscillation such that each mass undergoes har-
monic motion at the same frequency. To obtain such a solution, set

	 x A i t1 1= exp()w 	 (3.13)

	 x A i t2 2= exp()w 	 (3.14)

Substituting Equations (3.13) and (3.14) into Equations (3.11) and (3.12) gives

	

k k
m

A
k
m

A1 2

1

2
1

2

1
2 0

+
-







- =w
 	

(3.15)

	
- +

+
-







=
k
m

A
k k

m
A2

2
1

2 3

2

2
2 0w

	
(3.16)

Equations (3.15) and (3.16) are two homogeneous linear algebraic equations in two
unknowns. There is a theorem in linear algebra that says that the only way for two

x1

m1

k1

k1x1 k3x2

k2 k3

m1
k2(x1–x2) m2

x2

m2

Figure 3.8  Two-degrees-of-freedom vibration system.

93568_Book.indb 68 7/22/09 10:29:04 AM

Matrices  ◾  69

homogeneous linear algebraic equations in two unknowns to have a nontrivial solu-
tion is for the determinant of the coefficient matrix to be zero.

	

k k
m

k
m

k
m

k k
m

1 2 2 2

1

2

2

2 3

2

2

+
-





-

-
+

-






w

w

Letting

	

k k
m

a
k
m

a
k
m

a
k k

m
a and1 2

1
11

2

1
12

2

2
21

2 3

2
22

+
= - = - =

+
=, , , w22 = l

The equation for l becomes

	 l l2
11 22 11 22 12 21 0- + + - =() ()a a a a a a 	 (3.17)

The solution of Equation (3.17) gives the eigenvalues, l l1 2and , which are the
square of the two natural frequency of oscillations for this system. The ratio of the
amplitudes of the oscillation of the two masses can be obtained by substituting
the values of  l into Equation (3.15) or Equation (3.16); that is,

	

A
A

a a
m
k

k k
m

2

1
11 1 12

1

2

1 2

1
1= - - =

+
-







()/l l for the first mode

and

	

A
A

a a
m
k

k k
m

2

1
11 2 12

1

2

1 2

1
2= - - =

+
-







()/l l for the second mode

The eigenvector, V1, associated with l1 is

	

A
A a a
1

1 11 1 12- -








()/l

and the eigenvector, V2, associated with l2 is

	

A
A a a
1

1 11 2 12- -








()/l

93568_Book.indb 69 7/22/09 10:29:06 AM

70  ◾  Numerical and Analytical Methods with MATLAB﻿

Since A1 is arbitrary, we can select A1 = 1, then

	
V

a a1
11 1 12

1
=

- -








()/l 	 (3.18)

and

	
V

a a2
11 2 12

1
=

- -








()/l 	 (3.19)

If [1] V is an eigenvector of a matrix a corresponding to an eigenvalue l, so is bV
with any b ≠ 0.

MATLAB’s eig Function

MATLAB has a built-in function that gives the eigenvalues of a square matrix X.
MATLAB’s description of the function follows:

E = eig(X) is a vector containing the eigenvalues of a square matrix X.
[V,D] = eig(X) produces a diagonal matrix D of eigenvalues and a full matrix V

whose columns are the corresponding eigenvectors so that X*V = V*D.

For the problem under discussion, matrix a replaces matrix X. Thus, the statement
[V, D] = eig(a) gives the eigenvectors associated with λ1 and λ2. V(:,1) is associated
with λ1 and V(:,2) is associated λ2.

Example 3.8

Suppose in Figure 3.8 the following parameters were given:

	 m m kg k N m k N m k N m1 2 1 2 31500 3250 3500 3000= = = = =, / , / , /

A program that will determine

	 1.	The eigenvalues of the system by both Equation (3.17) and by MATLAB’s eig
function

	 2.	The eigenfunctions by both Equations (3.18) and (3.19) and MATLAB’s
[V,D] function

follows.

93568_Book.indb 70 7/22/09 10:29:06 AM

Matrices  ◾  71

Example 3.9
% eigen2.m
% Eigenvalues and eigenvectors.
% E = eig(a) is a vector containing the eigenvalues of a square matrix a.
% [V,D] = eig(a) produces a diagonal matrix D of eigenvalues and a
% full matrix V whose columns are the corresponding eigenvectors so
% that a*V = V*D.
% Units are in SI units.
	 clear; clc;
	 k1=3250; k2=3500; k3=3000; m1=1500; m2=1500;
	 a(1,1)=(k1+k2)/m1;
	 a(1,2)=-k2/m1;
	 a(2,1)=-k2/m2;
	 a(2,2)=(k2+k3)/m2;
% Lamda^2-(a(1,1)+a(2,2))*Lamda+(a(1,1)*a(2,2)-a(1,2)*a(2,1))=0
	 b=-(a(1,1)+a(2,2)); c=a(1,1)*a(2,2)-a(1,2)*a(2,1);
	 Lamda1=(-b-sqrt(b^2-4*c))/2;
	 Lamda2=(-b+sqrt(b^2-4*c))/2;
	 E=eig(a);
	 fprintf(‘Lamda1=%7.5f Lamda2=%7.5f \n’, Lamda1,Lamda2)
	 fprintf(‘E(1)= %7.5f E(2)=%7.5f \n’,E(1),E(2));
	 v1=[1;-(a(1,1)-Lamda1)/a(1,2)]
	 v2=[1;-(a(1,1)-Lamda2)/a(1,2)]
	 [V,D] = eig(a);
	 V1=V(:,1)
	 V2=V(:,2)
	 D

The following results were obtained:

Lamda1=2.08185	 Lamda2=6.75149
E(1)=2.08185	 E(2)=6.75149
v1 =
	 1.0000
	 1.0364
v2 =
	 1.0000
	 –0.9649
V1 =
	 –0.6944
	 –0.7196
V2 =
	 –0.7196
	 0.6944
D =
	 2.0818		 0

	 0			 6.7515

Examining the results, it can be seen that Lamda1 = E(1) and Lamda2 = E(2). Also,
V1 is a scalar multiple of v1 and V2 is a scalar multiple of v2.

93568_Book.indb 71 7/22/09 10:29:07 AM

72  ◾  Numerical and Analytical Methods with MATLAB﻿

Exercises
Exercise 3.1
Use pencil and paper and the Gauss Elimination method to solve the following
system of equations:

	 a.		 2x1 +3x2 – x3 = 20
		 4x1 – x2 + 3x3 = –14

		 x1 + 5x2 + x3 = 21

	 b.		 4x1 + 8x2 + x3 = 8
		 –2x1 – 3x2 + 2x3 = 14

		 x1 + 3x2 +4x3 = 30

	 c.		 2x1 + x2 + x3 – 11x4 = 1
		 5x1 – 2x2 + 5x3 – 4x4 = 5

		 x1 – x2 + 3x3 – 3x4 = 3

		 3x1 + 4x2 – 7x3 + 2x4 = – 7

Projects
Project 3.1
For the following truss structure (see Figure P3.1) write a MATLAB program
that will determine the internal forces in the structural members by the method
described in Example 3.3. Print out the reactions, the coefficient matrix, the mem-
bers’ internal forces, and a check on the solution.

B D F

A
C E G I K

12'

L

6 bays at 9 ft each

4kN

4kN 2kN2kN 4kN 6kN
F2 F4

F1
F3

F8 F12

F9 F11F5
F7

F16 F20

F17

F19 F21F15

F10 F14 H JF6 F18

Figure P3.1  Truss structure for Project 3.1.

93568_Book.indb 72 7/22/09 10:29:07 AM

Matrices  ◾  73

Project 3.2
For the truss structure shown in Figure P3.2 write a MATLAB program that will
determine the internal forces in the structural members by the method described in
Example 3.3. Print out the reactions, the coefficient matrix, the members’ internal
forces, and a check on the solution.

Project 3.3
An automobile suspension system is simulated by two springs connected by a bar
supporting the automobile’s weight as shown in Figure P3.3a. We shall assume that
the ends of the spring are at the same elevation and X is measured downward from
this position (Figure P3.2b). The automobile weight is applied on the bar at point
G. The equilibrium position of the bar is shown in Figure P3.3c. The governing
equations at the equilibrium position follow:

	
F k X L k X L Wx i

i
, () ()∑ = = - - - + +0 1 0 1 0 2 0 2 0ϑ ϑ 	 (P3.3a)

	
M k X L L k X L LG i

i
,∑ = = - - +0 1 0 1 0 1 2 0 2 0 2() ()ϑ ϑ 	 (P3.3b)

If the system is disturbed and released, it will vibrate at its natural frequencies. The
system has two degrees of freedom, resulting in a vertical and a rotational vibration.

B

A

15 kN 15 kN

D
F F18 F16 F12 F7

F17

F14 F10

F15 F13 F11 F9
F8

F1
F2

F3

F4 F5
F6

H

J

6 m

6 m

6 m

8 m8 m8 m CE

G I

K

5 kN

5 kN

5 kN

Figure P3.2  Truss structure for Project 3.2.

93568_Book.indb 73 7/22/09 10:29:08 AM

74  ◾  Numerical and Analytical Methods with MATLAB﻿

Let x be measured from the equilibrium position, then

	 X = X0 + x  and  �� ��X x=

The governing equations describing the vibrating system follow:

	 M x k X x L k X x L W��= - + - + - + + + +1 0 1 0 2 0 2 0[()] [()]ϑ ϑ ϑ ϑ 	 (P3.3c)

	
I k X x L L k X x L Lz z
��ϑ ϑ ϑ ϑ ϑ= + - + - + + +1 0 1 0 1 2 0 2 0 2[()] [()]

	 (P3.3d)

	 Mx k X L k X L W k x L k x��= - - - - + - - - +1 0 1 0 2 0 2 0 1 1 2() () () (ϑ ϑ ϑ LL2ϑ) 	 (P3.3e)

Unstretched position

(d)

(c)

(b)

(a)G φ

X

Unstretched position
Equilibrium position X0

θ0

θ0
θ

Unstretched position
Equilibrium position

x x

x = x0 + x

X0

l1

k1 k2

l2

Figure P3.3  Automobile suspension system.

93568_Book.indb 74 7/22/09 10:29:10 AM

Matrices  ◾  75

By Equation (P3.3a), the sum of the first three terms on the right-hand side of
Equation (P3.3e) is zero. Thus,

	 M x k x L k x L��= - - - +1 1 2 2() ()ϑ ϑ 	 (P3.3f)

Similarly, Equation (P3.3d) can be rewritten as

	
I k X L L k X L L k x L Lz z
��ϑ ϑ ϑ ϑ= - - + + - -1 0 1 0 1 2 0 2 0 2 1 1 1() () () kk x L L2 2 2()+ ϑ

		
		 (P3.3g)

By Equation (P3.3b), the sum of the first two terms on the right-hand side of
Equation (P3.3g) is zero. Thus,

	 I k x L L k x L Lzz
��ϑ ϑ ϑ= - - +1 1 1 2 2 2() () 	 (P3.3h)

We wish to determine the modes of oscillation such that the vertical and rotational
vibrations are at the same frequency. To obtain such a solution, set

	 x A i t= exp()w 	 (P3.3i)

	 ϑ w= B i texp() 	 (P3.3j)

Substituting Equations (P3.3i) and (P3.3j) into Equations (P3.3f) and (P3.3h),
respectively, gives

	

k k
M

A
k L
M

k L
M

B1 2 2 2 2 1 1 0
+

-





- -





=w
	

(P3.3k)

	

k L k L
I

A
k L k L

I
B

z z z z

2 2 1 1 2 2
2

1 1
2

2 0
-







 +

+
-









 =w

	
(P3.3l)

Using MATLAB’s eig function, determine the natural frequencies of oscillation
for the system. Use the following variable values:

	 k1 = 35 kN/m, k2 = 38 kN/m, L1 = 1.4 m, L2 = 1.7 m, M = 1500 kg,

	 Iz z = 2170 kg-m2.

Project 3.4
Suppose a manufacturer wishes to purchase a piece of equipment that costs
$40,000. He plans to borrow the money from a bank and pay off the loan in
10 years in 120 equal payments. The annual interest rate is 6%. Each month the

93568_Book.indb 75 7/22/09 10:29:11 AM

76  ◾  Numerical and Analytical Methods with MATLAB﻿

interest charged will be on the unpaid balance of the loan. He wishes to determine
what his monthly payment will be. This problem can be solved by a system of
linear equations.

Let xj = the amount in the jth payment that goes toward paying off the princi-
pal. Then the equation describing the jth payment is

	

jth payment M x P x Ij n
n

n j

= = + -










=

= -

∑
1

1

	
(P3.4a)

where
	M = the monthly payment.
	 P = the amount borrowed.
	 I = the monthly interest rate = annual interest rate/12.

The total number of unknowns is 121 (120 x values and M).
Applying Equation (P3.4a) to each month gives 120 equations. One additional

equation is

	
P xn

n

n

=
=

=

∑
1

120

	
(P3.4b)

Develop a computer program that will

	 1.	Ask the user to enter from the keyboard the amount of the loan (P), the
annual interest rate, I, and the time period, Y, in years.

	 2.	Set up the system of linear equations, using An,m as the coefficient matrix of
the system of linear equations. The n represents the equation number and m
represents the coefficient of xm in that equation. Set x121 = M.

	 3.	Solve the system of linear equations in MATLAB.
	 4.	Print out a table consisting of four columns. The first column should be the

month number, the second column the monthly payment, the third column
the amount of the monthly payment that goes toward paying off the princi-
pal, and the fourth column the interest payment for that month.

Reference
	 1.	 Kreyszig, E., Advanced Engineering Mathematics, 8th Ed., John Wiley & Sons, 1999.

93568_Book.indb 76 7/22/09 10:29:12 AM

77

4Chapter

Roots of Algebraic and
Transcendental Equations

4.1 � The Search Method
The equation whose roots are to be determined should be put into the form of
Equation (4.1), as shown below:

	 f(x) = 0	 (4.1)

First a search is made to obtain intervals in which real roots lie. This is accom-
plished by subdividing the x domain into N equal subdivisions, giving

	 x1, x2, x3,…, xN+1 and xi+1 = xi + ∆x

Then locate where f(x) changes sign (see Figure 4.1). This occurs when

	 f(xi) f(xi+1) < 0

The sign change usually indicates that a real root has been passed. However, it may
also indicate a discontinuity in the function. (Example: tan x is discontinuous at
x = π/2.) Once the intervals in which the roots lie have been established, one can
use several methods for obtaining the real roots.

4.2 � Bisection Method
Suppose it has been established that a root lies between xj and xj+1. Cut the interval
in half (see Figure 4.2), then

	
x x x

j j+ = +1 2 2/
D

93568_Book.indb 77 7/22/09 10:29:12 AM

78  ◾  Numerical and Analytical Methods with MATLAB﻿

Now compute f(xj) f(xj+1/2).

Case 1: If f(xj) f(xj+1/2) < 0, then the root lies between xj and xj+1/2.
Case 2: If f(xj) f(xj+1/2) > 0, then the root lies between xj+1/2 + xj+1.
Case 3: If f(xj) f(xj+1/2) = 0, then xj or xj+1/2 is a real root.

For cases 1 and 2, select the interval containing the root and repeat the process.

Continue repeating the process until ()D Dx x
f r=

2
is sufficiently small, where r is the

number of bisections. Then the real root lies within the last interval.

Note: For 20 bisections,

	
() .D D Dx x xf = ≈ × × -

2
1 05 1020

6

f(x)

x
xj xj+1xj+½

Figure 4.2  Selecting the interval containing the root in the Bisection Method.

x

f(x)

f(x1)

f(x2)

f(x4)

f(x3)

x1 x2

x4 x5 x6 xN xN+1

Figure 4.1  Selecting the interval in which a root lies.

93568_Book.indb 78 7/22/09 10:29:14 AM

Roots of Algebraic and Transcendental Equations  ◾  79

Program method:

Set

If root l

x x

x x

x x x

f x f x

A j

B j

C A B

A C

=

=

= +

<

+1

1
2

0

()

() () (iies between
Set and

and repe

x x
x x

x x x

A C

B C

C A B

&)

()

=

= +1
2

aat the process

If root lies between

.

() () (&f x f x xA C B> 0 xx
t x x

x x x

C

A C

C A B

)

()

.

Se and

and repeat the process

=

= +1
2

 

If
Either or is a root.

f x f x
x x
A C

A C

() () = 0

4.3 � Newton–Raphson Method
This method uses the tangent to the curve f(x) = 0 to estimate the root. One needs to
obtain an expression for ′f x(). One also needs to make an initial guess for the root,
say, x1 (see Figure 4.3). ′f x() gives the slope of the tangent to the curve at x.

f(x)

x

f(x1)

x1x2

Figure 4.3  Predicting root in the Newton–Raphson Method.

93568_Book.indb 79 7/22/09 10:29:15 AM

80  ◾  Numerical and Analytical Methods with MATLAB﻿

On the tangent to the curve

	

f x f x
x x

f x
() ()

()1 2

1 2
1

-
-

= ′

Set f (x2) = 0 and solve for x2; that is,

	
x x

f x
f x2 1

1

2

= -
′
()
()

Check if | f (x2)| < ∈. If yes, quit. x2 is the root—print out x2. If no, set x1 = x2 and
repeat the process.

Continue repeating the process until | f  (x2)| < ∈. An alternate condition for
convergence is

	 |÷ f(x1)/ ′f x()1 ÷| < ∈

This method is widely used for its rapid convergence. However, there are cases
where convergence will not occur. This can happen if

	 a.	 ′f x() changes sign near the root.
	 b.	The initial guess for the root is too far from the true root.

If one combines the Newton–Raphson method with the search method for obtain-
ing a small interval in which the real root lies, convergence will not be a problem.

4.4 � The fzero Function
MATLAB® has a built-in function to obtain the real roots of a transcendental equation.
It is the fzero function. To get started click on the Command window and type in:
>> help fzero

This gives several options on using the fzero function, some of which are shown
below. The first is appropriate if one has some idea where the root lies. The sec-
ond is more appropriate when there is more than one root and all roots need to
be obtained. The second should be used in combination with the search method
described earlier.

X = FZERO(FUN,X0) tries to find a zero of the function FUN near
X0. FUN accepts real scalar input X and returns a real scalar function
value F evaluated at X. The value X returned by FZERO is near a point
where FUN changes sign (if FUN is continuous), or NaN if the search fails.

X = FZERO(FUN,X0), where X is a vector of length 2, assumes X0 is an
interval where the sign of FUN(X0(1)) differs from the sign of FUN(X0(2)).
An error occurs if this is not true. Calling FZERO with an interval
guarantees FZERO will return a value near a point where FUN changes sign.

X = FZERO(FUN,X0,OPTIONS) minimizes with the default optimization

93568_Book.indb 80 7/22/09 10:29:17 AM

Roots of Algebraic and Transcendental Equations  ◾  81

parameters replaced by values in the structure OPTIONS, an
argument created with the OPTIMSET function. See OPTIMSET for
details. Used options are Display and TolX. Use OPTIONS = [] as a
place holder if no options are set.

X = FZERO(FUN,X0,OPTIONS,P1,P2,...) allows for additional arguments which
are passed to the function

[X,FVAL]= FZERO(FUN,...) returns the value of the objective
function, described in FUN, at X.
Examples
FUN can be specified using @:
X = fzero(@sin,3)
returns pi.
FUN can also be an inline object:
X = fzero(inline(‘sin(3*x)’),2);

Several examples using both the search method and the fzero function are shown
below.

4.4.1 � Example Programs

Example 4.1
% search.m
% This program determines the real roots of a third degree polynomial.
% The program produces a plot of the function. Next the program searches
% for intervals where there are sign changes, then it calls the fzero
% function to obtain the real roots.
clear; clc;
xmin=-10.0; xmax=10.0; N=50; nr=0;
dx=(xmax-xmin)/N;
fprintf(‘Searching for roots, root is obtained by fzero function \n’);
fprintf(‘ x			 f\n’);
for n=1:N+1
	 x(n)=xmin+(n-1)*dx;
	 fx(n)=func(x(n));
	 fprintf(‘	 %6.2f	 %10.3f \n’,x(n),fx(n));
end
plot(x,fx), title(‘f(x) vs. x’), xlabel(‘x’), ylabel(‘f(x)’), grid;
for n=1:N
	 p=fx(n)*fx(n+1);
	 if p < 0.0
		 nr=nr+1;
		 xr(1)=x(n);
		 xr(2)=x(n+1);
		 rt(nr)=fzero(‘func’,xr);
	 end
	 if p==0.0
		 nr=nr+1;
		 rt(nr)=x(n+1);
		 n=n+1;
	 end
end

if nr ~= 0
	 fprintf(‘\n\n Roots of function f(x)=0 \n\n’);

93568_Book.indb 81 7/22/09 10:29:17 AM

82  ◾  Numerical and Analytical Methods with MATLAB﻿

	 fprintf(‘root no. root \n’);

	 for n=1:nr
		 fprintf(‘ %i %10.4f \n’,n,rt(n));
	 end
else
	 fprintf(‘\n\n No roots lie within xmin <= x <= xmax’);
end

% func.m
function f=func(x)
f=x^3-4.7*x^2-35.1*x+85.176;

There are two ways to enter parameters into the function func.m. These are

	 a.	The use of the global statement: Add the following two statements to Example
4.1 just after the clear; clc; statements:

global a0 a1 a2 a3;
a3=1.0; a2=-4.7; a1=–35.1; a0=85.176;
Then add the exact global statement to func.m just after the function
statement as shown below:
function f=func(x)
global a0 a1 a2 a3;
f=a3*x^3+a2*x^2+a1*x+a0;

	 b.	By modifying the fzero function to include parameters a3, a2, a1, and a0. For
this case

a3=1.0; a2=–4.7; a1=–35.1; a0=85.176; would still be added
after the clear; clc; statements.
The statement rt(nr)=fzero(‘func’,xr); would be replaced by:
rt(nr)= fzero(‘func’,xr, [], a3,a2,a1,a0);
and the corresponding function statements would be replaced by
function f=func(x,a3,a2,a1,a0)
 f=a3*x^3+a2*x^2+a1*x+a0;

The coefficients a3, a2, a1, and a0 can be replaced by a row vector, then for case (a),
the added statements would be

global a;
a(4)=1.0; a(3)=-4.7; a(2)=-35.1; a(1)=85.176;
function f=func(x)
global a;
f=a(4)*x^3+a(3)*x^2+a(2)*x+a(1);

Note : The index of a vector starts with 1 and not 0.
For case (b), the coefficients a3, a2, a1 and a0 can also be replaced by a row vector,
then the added statements would be

a(4)=1.0; a(3)=-4.7; a(2)=-35.1; a(1)=85.176;
rt(nr)=fzero(‘func’,xr,[],a);

93568_Book.indb 82 7/22/09 10:29:17 AM

Roots of Algebraic and Transcendental Equations  ◾  83

function f=func(x,a)
f=a(4)*x^3+a(3)*x^2+a(2)*x+a(1);

MATLAB’s Roots Function

MATLAB has a function to obtain the roots of a polynomial. The function is roots.
To obtain the use of the function, in the COMMAND window type in

>> help roots (this gives)
ROOTS(C) computes the roots of the polynomial whose coefficients
are the elements of the vector C. If C has N+1 components,
the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).

MATLAB gives the coefficients of the polynomial whose roots are V. To obtain the
use of the function, in the COMMAND window type in:

>> help poly (this gives)
POLY(V),where V is a vector whose elements are
the coefficients of the polynomial whose roots are the
elements of V. For vectors, ROOTS and POLY are inverse
functions of each other, up to ordering, scaling, and
roundoff error.
real(x) gives the real part of x
imag(x) gives the imaginary part of x

Example 4.2
% roots_poly.m
% This program determines the roots of a polynomial using
% the built in function ‘roots’.
% The first polynomial is: f=x^3-4.7*x^2-35.1*x+85.176. The
% roots of this polynomial are all real.
% The second polynomial is: f=x^3-9*x^2+23*x-65. The roots of
% this polynomial are both real and complex. Complex roots must
% be complex conjugates.
% To obtain more info on complex numbers do the following.
% In the command window type in “help complex numbers”.
clear; clc;
c(1)=1.0; c(2)= –4.7; c(3)= –35.1; c(4)=85.176;
v=roots(c);
fprintf(‘The roots are: \n’);
v
fprintf(‘The coefs. of the polynomial whose roots are v are:\n’);
coef=poly(v)
fprintf(‘--\n’);
a(1)=1.0; a(2)= –9.0; a(3)=23.0; a(4)= –65.0;
w=roots(a);
fprintf(‘The roots are: \n’);
w
fprintf(‘The coefs. of the polynomial whose roots are v are:\n’);
coef=poly(w)
re=real(w)
im=imag(w)

93568_Book.indb 83 7/22/09 10:29:17 AM

84  ◾  Numerical and Analytical Methods with MATLAB﻿

Projects
Project 4.1
The temperature distribution of a thick flat plate*, initially at a uniform tempera-
ture, T0, and which is suddenly immersed in a huge bath at a temperature T∞, is
given by (see Figure P4.1a)

	

T x t T T T

x
L

en n
a t Ln

(,) ()
sin()cos /

= + -









∞ ∞

-

2 0

2
δ δ δ 22

1
cos()sin()δ δ δn n nn

+
=

∞

∑
	

(P4.1a)

where
	 L = 1/2 of the plate thickness.
	 a = the thermal diffusivity of the plate material.
	δn are the roots of the equation:

	
F hL

k
() tanδ δ

δ
= - = 0

	
(P4.1b)

where
	 h = the convective heat transfer coefficient for the bath.
	 k = the thermal conductivity of the plate material.

There are an infinite number of roots that satisfy Equation (P4.1b), these being δ1,
δ2, δ3,…,δn. Figure P4.1b shows that the intersection of the curve hL/kδ with the
curves tan δ gives the roots of Equation (P4.1b). Note that δ1 lies between 0 and
π/2, δ2 lies between π and 3π/2, δ3 lies between 2π and 5π/2, etc. SubtractingT∞
from Equation (P4.1a) and dividing byT T0 - ∞, we obtain Equation (P4.1c).

	
TRATIO

T x
L

t T

T T

x
Ln n

=





 -

-
=





∞

∞

, sin()cos

0

2
δ δ 

+

-

=

∞

∑
e a t L

n n nn

nδ

δ δ δ

2 2

1

/

cos()sin()
	

(P4.1c)

*	 For a derivation of this equation, see Section 10.2.

h, T∞

x

LL

Figure P4.1a  A thick plate undergoing convective heat transfer.

93568_Book.indb 84 7/22/09 10:29:19 AM

Roots of Algebraic and Transcendental Equations  ◾  85

A plot of TRATIO vs. time for several different values of x/L should appear as
shown in Figure P4.1c.

Finally, the heat transfer ratio, Qratio, from the plate to the bath in time t is
given by

QRATIO Q t
Q

hL
k

n n

n n n n

= =
+

() sin cos
[sin cos]0

2
2 1

δ δ
δ δ δ δ

-- - 
=

∞

∑ e at L

n

nδ2 2

1 	
(P4.1d)

where
	Q(t) = the amount of heat transferred from the plate to the bath in time t.
	Q0 = the amount of heat transferred from the plate to the bath in infinite time,

which equals the change in internal energy in infinite time.

tanδ, hL/kδ

δ1 δ2

kδ

δ3 δ4
δ

3π2π

3π/2

hL

5π/2π/20

π

tanδ

Figure P4.1b  Intersection of hL/kd and tan d curves.

Tratio

t

x/L = 0.0

x/L = 0.2
x/L = 0.4

x/L = 0.6
x/L = 1.0

1.0

0

Figure P4.1c  Typical Tratio vs. t curves.

93568_Book.indb 85 7/22/09 10:29:20 AM

86  ◾  Numerical and Analytical Methods with MATLAB﻿

	 1.	Write a computer program that will solve for the roots δ1, δ2, …, δ50 using the
fzero function in MATLAB. Print out the δ values in 10 rows and 5 columns.
Also print out the functional values at the roots, i.e.; f (δn).

		 Note: Only 50 δ values were asked to be computered.
	 2.	Solve Equation (P4.1c) for TRATIO for x/L = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0,

and t = 0, 10, 20,…200 seconds. Print out results in table form as shown in
Table P4.1.

		 Also use MATLAB to produce a plot as shown in Figure P4.1c.
	 3.	Construct a table for QRATIO vs. t for times 0, 10, 20, 30,…, 200 seconds.
	 4.	Use MATLAB to produce a plot of QRATIO vs. t. Use the following values

for the parameters of the problem:

T0 = 300°C, T∞ = 30°C, h = 45 w/m2-°C
k = 10.0 w/m-°C, L = 0.03 m, a = 0.279 × 10-5 m2/s

Project 4.2
We wish to consider the temperature distribution in a semi-infinite slab (see Figure
P4.2), initially at a uniform temperature, whose surface is suddenly subjected to
convective heat transfer from the surrounding air. The temperature, T, in the slab
will be a function of position and time; that is, T = T (x,t). It will also depend on
the parameters: h, Ti, T∞, k, and α, where h = convective heat transfer coefficient, Ti
= the initial temperature of the slab, T∞ is the air temperature, and k and α are the
thermal conductivity and diffusivity of the slab material, respectively. The problem
can be solved by Laplace Transforms. The solution is

	
1

2
1

2

2

2
-







- × - +

+










erf x
t

erf x
t

h
hx
k

h t
k

α α

α

e ααt
k

T x t T
T T

i

i






















- -

-
=

∞

(,)
0

Given: Ti = 10°C, T∞ = 70°C, k = 386.0 W/m-°C, α = 1.1234 × 10-4 m2/s, and
h = 100 w/m2-°C. We wish to determine the time, t, when the temperature in the

Table P4.1  Temperature Ratio, TRATIO

Time(s)

X/L

0.0 0.2 0.4 0.6 0.8 1.0

0 1.0 1.0 1.0 1.0 1.0 1.0

10 — — — — — —

20 — — — — — —

200 — — — — — —

93568_Book.indb 86 7/22/09 10:29:20 AM

Roots of Algebraic and Transcendental Equations  ◾  87

slab reaches the following temperatures and at the following positions:

	 T = [15, 20, 25, 30]°C and x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] m

Use MATLAB to solve for the time for each condition and construct a table as
shown by Table P4.2.

Use the search method to find an interval in which the functionTR x t(,)
changes sign.

Assume that 0 60000≤ ≤time s and subdivide the time domain into 200
intervals.

Also create plots of time (h) vs. x for the four temperature cases listed in Table
P4.2. All four plots should be on the same graph.

Table P4.2  Time to Reach Specified Temperature

x(m) T(C) 15 20 25 30

0.1

0.2

0.3

..

..

1.0

x

h T∞

Figure P4.2  Semi-infinite slab undergoing heat transfer.

93568_Book.indb 87 7/22/09 10:29:21 AM

88  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 4.3
The equation of state for a substance is a relationship between pressure (p), tem-
perature (T), and specific volume (v). Many gases at low pressures and moderate
temperatures behave approximately as an ideal gas. The ideal gas equation of state
with p in N/m2, v in m3/kmol, T in K, and R in (N m)/(K kmol) is

	
p RT

v
=

where R is the universal gas constant. As temperature decreases and pressure
increases, gas behavior deviates from ideal gas behavior. The Redlich–Kwong’s
equation of state is often used to approximate nonideal gas behavior. Redlich–
Kwong’s equation of state is [1]

	
p RT

v b
a

v(v b)T1/2=
-

-
+

The values for R, a, and b for three gases are tabulated in Table P4.3a.
We wish to determine the percent error in the specific volume by using the ideal

gas relationship while assuming that Redlich–Kwong’s equation of state is the cor-
rect equation of state for the three gases listed in Table P4.3a. Vary the temperature
from 350 K to 700 K in steps of 50 K, while holding the pressure constant at 1.0132 ×
107 N/m2. Using the specified temperatures and pressure determine the specific
volumes, v , by both the ideal gas equation and the Redlich–Kwong’s equation and
determine the percent error in the specific volume resulting from the use of the
ideal gas equation. Take the percent error in the specific volume to be

	
% error =

| |v v
v

ideal gas Redlich Kwong

Redlich Kwong

-
×-

-

100

Table P4.3a  Equation of State Variables for Air, Oxygen, and Carbon Dioxide

Gas # Gas a
N m K

kmol

4 1/2

2







b
m

kmol

3





R
N m

K kmol






1 Air 15.989 × 105 0.02541 8314

2 Oxygen 17.22 × 105 0.02197 8314

3 Carbon dioxide 64.43 × 105 0.02963 8314

93568_Book.indb 88 7/22/09 10:29:24 AM

Roots of Algebraic and Transcendental Equations  ◾  89

Write a MATLAB program utilizing the fzero function to calculate the specific
volume by Redlich–Kwong’s equation. Assume that v varies between 0.1 and 1.1
m3/kmol. Use 50 subdivisions on the v domain. Construct a table as shown by
Table P4.3b.

Repeat table for gases 2 and 3. In your program, use a for loop to select all three
gases. Use an if-elseif ladder to select the proper constants for the gas.

Project 4.4
Repeat Project 4.3, but replace the Redlich–Kwong’s equation with van der Waals’
equation [1], which is

	
p RT

v b
a
v

=
-

- 2

The constants a and b are tabulated in Table P4.4.

Table P4.3b  Table for Gas 1 (Air)

Ideal Gas Redlich-Kwong Eq % Error in v

T(°K) p(N/m2) v (m3/kmol) v (m3/kmol)

350 1.0132×107 — — —

400 1.0132×107 — — —

— — — — —

— — — — —

700 1.0132×107 — — —

Table P4.4  Tabulation of Constants a and b

Gas # Gas
a

N m
kmol

4

2







b
m

kmol

3





R
N m

K kmol






1 Air 1.368 × 105 0.0367 8314

2 Oxygen 1.369 × 105 0.0317 8314

3 Carbon dioxide 3.647 × 105 0.0428 8314

93568_Book.indb 89 7/22/09 10:29:26 AM

90  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 4.5
A wood circular cylinder, having a specific gravity, S, of 0.54, floats in water as
shown in Figure P4.5. For a floating body, the weight of the floating body equals
the weight of fluid displaced, thus

	 S R L Vw wg π g2 = 	 (P4.5a)

where
	 S = the specific gravity of the wood.
	gw = the specific weight of water.
	 R = the radius of the cylinder.
	 L = the cylinder length.
	V = the volume of water displaced.

	 dV LdA Lx y dy L R y dy= = = -2 2 2 2()

	

V L R y dy L y R y R
y
R

R

d R

= - = - +









-

-

-∫2 2 1
2

2 2 2 2 2 1sin 

-

-

R

d R

	
(P4.5b)

The integral was obtained from integral tables. Substituting the limits of integra-
tion gives

	
V L d R R d R R d R

R
R= - - - + - - -{ }- -() () sin sin ()2 2 2 1 2 1 1

	
(P4.5c)

	 sin () / .- - = -1 1 2π

x(y) =±√R2 – y2

y

dy

Free surface

d
x

R

2x(y)

Figure P4.5  Floating log having a circular cross-section.

93568_Book.indb 90 7/22/09 10:29:27 AM

Roots of Algebraic and Transcendental Equations  ◾  91

Substituting Equation (P4.5c) into Equation (P4.5a) and rearranging terms and
dividing by R2 gives

	
f d

R
d
R

d
R

d
R

d
R





 = -



 - 



 + -


-1 2 1

2
1sin  - - =(.)S 0 5 0π

If R = 1 ft, determine d using the fzero function.

Project 4.6
Do parts (a) and (b) of Project 2.12 and then, using MATLAB’s fzero function,
determine

	 a.	The time when the velocity of the piston, described in that project, reaches ½
of its maximum velocity.

	 b.	The time when the acceleration of the piston, described in that project, reaches
½ of its maximum acceleration.

Project 4.7
In order to solve the temperature distribution of a thick rod having a circular cross-
section, initially at a uniform temperature, T0, and which is suddenly immersed
in a huge bath at a temperature T∞, one needs to determine the roots of J x1(),
where J1 is the Bessel function of the first kind of orrder 1. However, in this project,
the roots of J0, where J0 is the Bessel function of the first kind of order 0, is also to
be determined.

MATLAB has functions that evaluate the Bessel functions. The MATLAB
functions for J1(x) and J0(x) are besselj(1,x) and besselj(0,x), respectively.

	 1.	Create vectors for J0(x) and J1(x) for 0 40≤ ≤x , subdividing the x domain
into 400 subdivisions (dx = 0.1).

	 2.	Create plots of J0(x) and J1(x) vs. x on two separate graphs.
	 3.	Using MATLAB’s fzero function, determine the roots of J0(x) and J1(x) for

0 40≤ ≤x . Print out the roots in two separate tables.

Project 4.8
The temperature distribution of a thick rod having a circular cross-section, initially
at a uniform temperature, T0, and which is suddenly immersed in a huge bath at a
temperature T∞, is given by

TR r t
T r t T

T T
R

R hR
k

n

n
n

(,)
(,)

()
=

-
-

=
+ 





∞

∞ =0 2
2

1

2l

l

∞∞
-∑ ×

J R J r
J R

en n

n

a tn1 0

0
2

2() ()
[()]
l l

l
l

	

(P4.8a)

93568_Book.indb 91 7/22/09 10:29:29 AM

92  ◾  Numerical and Analytical Methods with MATLAB﻿

where

J J1 0and are Bessel functions of the first kind.
	 h = the convective heat transfer coefficient.
	 k = the thermal conductivity of the rod material.
	 R = the radius of the rod.
	 a = the thermal diffusivity of the rod material.

	lnR = the nth root of Equation (P4.8b):

	
F R

J R
J R

R k
hR

()
()
()

l
l
l

l= - =0

1

0
	

(P4.8b)

MATLAB has functions that evaluate the Bessel functions J0 (x) and J1 (x). These are

		 J0(x) = besselj(0,x) and J1(x) = besselj(1,x). Plots of J0 (x) and J1(x) are shown
in Figure P4.8a and Figure P4.8b, respectively. It can be seen that both
functions have an infinite number of zeros. But F R()l is singular wherever
J1(lR) = 0. Before we can evaluate TR(r, t) we need to determine the values
of lR that satisfy Equation (P4.8b). The project is to determine the values
of lR that satisfy Equation (P4.8b). Designate these values as lnR , for n =
1,2,3, .… To accomplish this, first determine the zeros of J1 by the fzero func-
tion; designate these values as () ,() , ., ,l lR Rj j11 1 2 … etc ; then, knowing that

0
–0.5

0

0.5

J 0

J0 vs. x
1

5 10 15 20
x

25 30 35 40

Figure P4.8a  Plot of J0(x) function.

93568_Book.indb 92 7/22/09 10:29:31 AM

Roots of Algebraic and Transcendental Equations  ◾  93

the roots of Equation (P4.8b) lie between the zeros of J1, determine lnR for
n = 1, 2, 3, … , –30 by the fzero function. For example: ()l1R lies between
() (), ,l e l eR Rj j11 1 2+ -and , ()l2R lies between () (), ,l e l eR Rj j1 2 1 3+ -and ,
etc. The plus and minus e is used because J1 is singular at the zeros of J1.

Use the following values:

	
h k R=

- °
=

- °
=890 0 35 0 0 12. , . , .w

m C
w

m C
m2

Print out a table of the first 30 values of lnR in columns of five. Also print out
F Rn()l in columns of five, but in e format.

Reference
	 1.	 Moran, M. J. and Shapiro, H. N., Fundamentals of Thermodynamics, John Wiley &

Sons, Hoboken, NJ, 2004.

0
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
J 1

J1 vs. x

5 10 15 20
x

25 30 35 40

Figure P4.8b  Plot of J1(x) function.

93568_Book.indb 93 7/22/09 10:29:33 AM

93568_Book.indb 94 7/22/09 10:29:33 AM

95

5Chapter

Numerical Integration

5.1 � Numerical Integration and Simpson’s Rule
We want to evaluate the integral, I, where

	
I =

A

B

∫ f(x) dx	 (5.1)

Subdivide the x axis from x ◾◾ = A to x = B into n subdivisions, where n is an
even integer.
Simpson’s rule consists of connecting groups of three points on the curve ◾◾
f(x) by second-degree polynomials (parabolas) and summing the areas
under the parabolas to obtain the approximate area under the curve (see
Figure 5.1).

Expand f(x) in a Taylor Series about xi using three terms; that is,

	 f(x) = a(x – xi)2 + b(x – xi) + c	 (5.2)

Then,

	

A2 strips =
x

x

i

i

-

+

∫
1

1

f(x)dx = ∫
-

+

x x

x x

i

i

D

D

[a (x – xi)2 + b (x – xi) + c] dx

	
(5.3)

Let x = x – xi

93568_Book.indb 95 7/22/09 10:29:34 AM

96  ◾  Numerical and Analytical Methods with MATLAB ﻿

Then

	 dx = dx

and when x = xi – Dx, x = –Dx, and when x = xi + Dx, x = Dx
Making these substitutions into Equation (5.3) gives

	 A2 strips = ∫
-

+

x

x

i

i

1

1

f(x) dx = ∫
-D

D

x

x

[ax2 + bx + c] dx

	
= + +











-

a b c
x

x
x x x

3 2

3 2 D

D

	
= - - + - - + - -a x a x b x b x x c x

3 3 2 2
3 3 2 2() () () ()) ()D D D D D Dc

Collect like powers of Δx gives

	
A2 strips = 2

3
3a x()D

+ 2c Dx

Now f(xi) = fi = c

	 f(xi+1) = fi+1 = a(Dx) 2 + b Dx c+

	 f(xi–1) = fi–1 = a(– Dx) 2 + b(– Dx) + c

Adding the two above equations gives: fi+1 + fi–1 = 2a D x2 + 2c

fi+1

fn+1

xi+1

fif1
fi–1

xn+1x1 xi–1 xi

Δx

f

x

Δx

Figure 5.1  Arbitrary three points on the curve f(x).

93568_Book.indb 96 7/22/09 10:29:37 AM

Numerical Integration  ◾  97

Solving for a gives:

	
a = 1

2 2Dx
[fi+1 + fi–1 – 2 fi]

Then,

	 A2 strips = 2
3

 1
2 2Dx

[f i+1 + fi–1 – 2fi] ()Dx3 + 2fi Dx

	 = Dx
3

[fi +1 + fi–1 – 2fi + 6fi]

or

	 A2 strips = Dx
3

[fi–1 + 4fi + fi+1]	 (5.4)

To obtain an approximation for the integral, I, we need to sum all the two-strip
areas under the curve from x = A to x = B (see Figure 5.2); that is,

	 A1 = Dx
3

[f1 + 4f2 + f3]

	 A2 = Dx
3

[f3 + 4f 4 + f5]

	 A3 = Dx
3

[f5 + 4f6 + f7]

	 .
	 .

	 An2 = Dx
3

[fn-1 + 4fn + fn+1]

fn

An/2

fn+1

fn–1

f3f1
f2

xn+1x1 x2 x3

A1 A2 A3

f

x

Figure 5.2  Integration areas.

93568_Book.indb 97 7/22/09 10:29:40 AM

98  ◾  Numerical and Analytical Methods with MATLAB ﻿

Thus,

	 I =
x A

x Bn

1

1

=

=+

∫ f(x) dx = Dx
3

[f1 + 4f2 + 2f3 + 4f4 + 2f5 + … + 4fn + fn+1]	 (5.5)

This is Simpson’s rule for integration.

5.2 � Improper Integrals
Example 5.1

	

I
x

x
dx= +∫ log()1

0

1

The above integral is improper since both the numerator and denominator are zero
at the lower limit (x = 0). The exact value of I can be obtained by Residue Theory in

Complex Variables. It is I = π2

12
0 822467= .

Let

where

I
x

x
dx I I

I
x

x
dx

= + = +

= +

∫

∫
∈

log()

log()

1

1

0

1

1 2

1

1

aand

I
x

x
dx2

0

1= +
∈

∫ log()

To evaluate I2, expand log(1 + x) in a Taylor Series about x = 0, giving

	
log()1 1

2
1
3

1
4

1
5

2 3 4 5+ = - + - + - +x x x x x x �

93568_Book.indb 98 7/22/09 10:29:41 AM

Numerical Integration  ◾  99

then

	

log()1
1 1

2
1
3

1
4

1
5

2 3 4+ = - + - +x
x

x x x x

	

I x x x x x x dx

I

2
2 3 4 5 6

0

2

1 1
2

1
3

1
4

1
5

1
6

1
7

= - + - + - + - +{ }
= ∈-

∈

∫
11
4

1
9

1
16

1
25

1
36

1
49

2 3 4 5 6 7∈ + ∈ - ∈ + ∈ - ∈ + ∈ - +

Evaluate I1 by Simpson’s rule.
To obtain Taylor Series expansion of log(1 + x) use

	

f x f f x f x f x

f

() () () ()
!

()
!

() l

= + ′ + ′′ + ′′′ + +

=

0 0 0
2

0
3

0

2 3

oog()

log() ; ()

()

1 0

1 1
1

0 1

1
1 2

=

′ = + =
+

′ =

′′ = -
+

f d
dx

x
x

f

f
x

;; ()

()
; ()

()

′′ = -

′′′ = +
+

′′′ =

= - ⋅
+

f

f
x

f

f
x

IV

0 1

2
1

0 2

3 2
1

3

44

5

0 3 2

4 3 2
1

0 4 3 2

; ()

()
; ()

.

log

f

f
x

f

etc

IV

V V

= ⋅

= + ⋅ ⋅
+

= ⋅ ⋅

(()1 0 1
2

2
3 2

3 2
4 3 2

4 3 2
5 4 3 2

2 3 4+ = + - +
⋅

- ⋅
⋅ ⋅

+ ⋅ ⋅
⋅ ⋅ ⋅

x x x x x x55

2 3 4 5 6

1
2 3 4 5 6

log()+ = - + - + - + -x x x x x x x

93568_Book.indb 99 7/22/09 10:29:42 AM

100  ◾  Numerical and Analytical Methods with MATLAB ﻿

5.3 � MATLAB’s Quad Function
The MATLAB function for evaluating an integral is quad. A description of the
function can be obtained by typing help quad in the command window.

Q = quad(FUN,A,B) tries to approximate the integral of function FUN
from A to B to within an error of 1.e-6 using recursive adaptive Simpson
quadrature. The function Y = FUN(X) should accept a vector argument X and
return a vector result Y, the integrand evaluated at each element of X.

Q = quad(FUN,A,B,TOL) uses an absolute error tolerance of TOL instead
of the default, which is 1.e-6. Larger values of TOL result in fewer
function evaluations and faster computation, but less accurate results.
quad(FUN,A,B,TOL,TRACE,P1,P2,…) provides for additional arguments P1,
P2,… to be passed directly to function FUN, FUN(X,P1,P2,…). Pass empty
matrices for TOL or TRACE to use the default values.

Use array operators .*, ./, and .^ in the definition of FUN so that it
can be evaluated with a vector argument.

Function quadl may be more efficient with high accuracies and smooth
integrands.

Example
FUN can be specified as:
An inline object:
	 F = inline(‘1./(x.^3-2*x-5)’);
	 Q = quad(F,0,2);
A function handle:
	 Q = quad(@myfun,0,2);
	 where myfun.m is an M-file:
		 function y = myfun(x)
		 y = 1./(x.^3-2*x-5);
See also quadl, inline, @.

It has been found that the quad function is able to evaluate certain improper
integrals (see Exercises 5.1d, 5.1e, and 5.1f).

Example 5.2
% integralk.m
% This program evaluates the integral of function fk between a & b
% by MATLAB’s integration program QUAD
clear; clc;
a=0.0; b=10.0;
integr=quad(‘fk’,a,b);
fprintf(‘Evaluation of the integration of fk over interval a,b \n’);
fprintf(‘by MATLABs integration program \n\n’);
fprintf(‘fk=x^3+3.2*x^2-5.4*x+20.2 \n\n’);
fprintf(‘integral=%f \n\n’,integr);

% fk.m
% This function is used in an integration program named integralk
% function is f1=x^3+3.2*x^2-5.4*x+20.2
function f1=fk(x)
f1=x.^3+3.2*x.^2-5.4*x+20.2;

93568_Book.indb 100 7/22/09 10:29:42 AM

Numerical Integration  ◾  101

Example 5.3
% integralg.m
% This program evaluates the integral of function f1 between a & b
% by MATLAB’s integration program quadl
clear; clc;
integr=quad(‘funct2’,a,b,1.0e-5);
fprintf(‘\n\n integration of f1 over interval a,b \n’);
fprintf(‘by MATLABs integration program \n\n’);
fprintf(‘funct2=t/(t^3+t+1) \n\n’);
fprintf(‘integral=%f \n\n’,integr);

% funct2.m
% This function is used in an integration program
% named integralg. The function is f1=t/(t^3+t+1)
function f1=f(t)
f1=t./(t.^3+t+1.0);

Example 5.4
% integralc.m
% This program evaluates the integral of function f1 between a & b
% by MATLAB’s integration program quad or quad8
clear; clc;
eps=0.001; a=eps; b=1.0;
integral1=quad(‘funct3’,a,b);
integral2=eps-0.25*eps^2+1.0/9.0*eps^3-1.0/16*eps^4+1.0/25.0*eps^5.0
–1.0/35.0*eps^6+1.0/49.0*eps^7;
integral=integral1+integral2;
fprintf(‘Evaluation of the integration of f1 over interval a,b \n’);
fprintf(‘by MATLABs integration program \n\n’);
fprintf(‘functc=log(1+x)/x \n\n’);
fprintf(‘integral1=%f integral2=%f \n\n’,integral1,integral2);
fprintf(‘integral=%f \n\n’,integral)

% funct3.m
% This function is used in an integration program
% named integralb
% function is f1=log(1.0+x)/x
function f1=f(x)
f1=log(1.0+x)./x;

5.4 � MATLAB’s DBLQUAD Function
The MATLAB function for numerically evaluating a double integral is DBLQUAD.
A description of the function can be obtained by typing help DBLQUAD in the
command window. The description follows:

Q = DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX) evaluates the double integral of
FUN(X,Y) over the rectangle XMIN <= X <= XMAX, YMIN <= Y <= YMAX. FUN is a
function handle. The function Z=FUN(X,Y) should accept a vector X and a
scalar Y and return a vector Z of values of the integrand.

93568_Book.indb 101 7/22/09 10:29:42 AM

102  ◾  Numerical and Analytical Methods with MATLAB ﻿

Example

Q = dblquad(@ integrnd, pi, 2*pi, 0, pi)

where integrnd is the M-file function:

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Note the integrand can be evaluated with a vector x and a scalar y.
Nonsquare regions can be handled by setting the integrand to zero outside
of the region.

A program to evaluate the volume of a hemisphere follows.

Example 5.5
% two_D_integral.m
% This program calculates the volume of a hemisphere of radius =1
% The dblquad function calculates a double integral over a rectangular
% region XMIN <= X <= XMAX, YMIN <= Y <= YMAX.
Clear; clc;
V=dblquad(‘fun2D’,-1,1,-1,1);
fprintf(‘V=%10.4f \n’,V);

%fun2D
function z=fun2D(x,y)
if (1-(x.^2+y.^2)>=1)
	 z=0;
else
	 z=sqrt(1-(x.^2+y.^2));
end

Exercises
Exercise 5.1
Use MATLAB’s quad function to evaluate the following integrals (note that integ
rals d, e, and f are improper integrals).

	 a.	I dx
e ex x=

+ -∫ 5 23 3

0

3

	 b.	I xdx
x

=
-

-
∫ sin

sin
/

/

1 4 2
2

2

π

π

	 c.	I x x dx= ⋅
-
∫ sinh cos
π

π

93568_Book.indb 102 7/22/09 10:29:43 AM

Numerical Integration  ◾  103

	 d.	I e dx
x

x

=
-∫ 3

1 2
0

1

	 e.	I
xdx
x

=
-∫ log

()1
0

1

	 f.	I
xdx
x

=
-∫ log

()1 2

0

1

Projects
Project 5.1
The solution for the displacement,Y x t(,), from the horizontal of a vibrating string
(see Section 10.2) is given by

	
Y x t a n x

L
n ct

Ln
n

(,) sin cos=
=

∞

∑
1

π π

where

	
a

L
f x n x

L
dxn

L

= ∫2
0

()sin π

Use MATLAB’s quad function to determine an, for n = 1, 2,…, 10. Create a
table and a plot of an vs. n. Take L = 1.0 m and

	
f x

x x L

x L x L
()

. , .

. . , .
=

<= <=

- <= <=







0 4 0 0 75

0 12 0 12 0 75

Project 5.2
In determining the temperature distribution in a cylinder of radius R (see Unsteady
Heat Transfer II in Section 10.2.3), the following integral involving the Bessel
function, J0, arises:

	

I r J r drm m

R

= ∫ 0

0

()l
	

(P5.2a)

93568_Book.indb 103 7/22/09 10:29:46 AM

104  ◾  Numerical and Analytical Methods with MATLAB ﻿

where lm is determined by the equation

	

J R
J R

R k
hR

0

1

0
()
()
l
l

l- = 	 (P5.2b)

where h is the convective heat transfer coefficient and k is the thermal conductivity of
the cylinder material. In Project 10.3 the values in Table P5.2 of lm were obtained.

Use MATLAB’s quad function to determine Im. Take R = 0.12 m. Construct a
table of Im vs. index m.

Table P5.2  λm vs. m

Index m lm

1 14.96759

2 37.26053

3 37.26053

4 61.80180

5 87.17614

93568_Book.indb 104 7/22/09 10:29:48 AM

105

6Chapter

Numerical Integration
of Ordinary Differential
Equations

6.1 � The Initial Value Problem
Initial Value Problem◾◾ —The values of the dependent variable and the neces-
sary derivatives are known at the point at which the integration begins.
Modified Euler Method◾◾ (Self-Starting Method)—Given the differential equa-
tion and initial condition

	

′ = =

=

y
dy
dx

f x y

y y

(,)

()0 0

	 (6.1)

Subdivide the x domain into N subdivisions. Method involves marching in the
x direction.

Since the initial condition is known, we can assume that for some arbitrary ◾◾
position xi, the variable yi is known. We wish to predict yi+1.

Suppose we use a Taylor Series expansion about xi and only use the first two terms, then

	
y y y hi

P
i i+ = + ′1

1 	 (6.2)

where ′ = ′ = -+y y x h x xi i i i() and 1 (see Figure 6.1).

93568_Book.indb 105 7/22/09 10:29:49 AM

106  ◾  Numerical and Analytical Methods with MATLAB﻿

For the configuration shown in Figure 6.1, yi
P
+1
1 overshoots the true value of yi+1.

Suppose in Equation (6.2) we use ′+yi 1 instead of ′yi giving

	
y y y hi

P
i i

P
+ += + ′1 1
2 ()

where

	
() ,′ = ()+ + +y f x yi

P
i i

p
1 1 1

1 	 (6.3)

For the configuration shown in Figure 6.1, yi
P
+1
2

 undershoots the true value of yi+1. A
better estimate for yi+1 is obtained by using the average of the two derivatives. The
corrected value for yi+1, denoted yi

C
+1
1 , is given by

	
y y

h
y yi

C
i i i

P
+ += + ′ + ′ 1 1
1

2
() 	 (6.4)

Equation (6.4) is known as the corrector equation.
We now substitute Equation (6.4) into Equation (6.1) and obtain

	
() ,′ = ()+ + +y f x yi

C
i i

C
1 1 1

1 1 	 (6.5)

Now substitute Equation (6.5) into Equation (6.4), giving

	
y y

h
y yi

C
i i i

C
+ += + ′ + ′



1 1

2 1

2
() 	 (6.6)

If | |y yi
C

i
C

+ +- < ∈1 1
2 1 stop iteration for yi+1 and move on to the next step to determine 

y yi i+ +′2 2, , .etc If | |y yi
C

i
C

+ +- > ∈1 1
2 1

 continue iteration; that is, substitute yi
C
+1

2
 into

y

x

xi

yi

yP1

xi+1

i+1

yP2i+1

yi+1

Figure 6.1  Estimate of yi+1.

93568_Book.indb 106 7/22/09 10:29:53 AM

Numerical Integration of Ordinary Differential Equations  ◾  107

Equation (6.5), obtaining ()′+yi
C

1
2 then substitute ()′+yi

C
1

2 into Equation (6.4), obtain-
ing yi

C
+1

3 , etc.

	
Error estimate, whereE y h x xi i= - ′′′ < < +

1
12

3
1() , .x x

The easiest way to determine the accuracy of your answer is to double the number ◾◾
of subdivisions and compare answers. If the desired accuracy is not obtained,
continue doubling the number of subdivisions until the desired accuracy is
obtained.

6.2 � The Fourth-Order Runge–Kutta Method
The fourth-order Runge–Kutta method uses a weighted average of derivative esti-
mates within the interval of interest.

Suppose we are given the equations

	
′ = = =y

dy
dx

f x y y y(,) ()and 0 0

In the Euler method we use

	
y y

h
y yi i i i

C j
+ += + ′ + ′



1 12

()

In the Runge–Kutta method, we use

	
y y

h
k k k ki i+ = + + + +1 1 2 3 46

2 2[]

where

	

k f x y y y x

k f x h y h k

i i i i

i i

1

2 12 2

= = ′ → ′

= + +

(,)

,

value of at



 → ′ +

= + +




estimate of aty x h

k f x h y h k

i

i i

2

2 23 2,  → ′ +

= + +

a second estimateof aty x h

k f x h y hk

i

i i

2

4 3(,) →→ ′ +estimate of aty xi 1

93568_Book.indb 107 7/22/09 10:29:55 AM

108  ◾  Numerical and Analytical Methods with MATLAB﻿

6.3 � System of Two First-Order Equations
Consider the following two first-order ordinary differential equations:

	

d
dx

f x y y y

dy
dx

g x y

u u

u u u

= =

= =

(, ,); ()

(, ,); ()

0

0

0

0

Take

	

y y
h

l l l l

h
k k k

i i

i i

+

+

= + + + +

= + + + +

1 1 2 3 4

1 1 2 3

6
2 2

6
2 2

[]

[u u kk4]

where

	

k f x y

l g x y

k f x
h

y
h

l

i i i

i i i

i i

1

1

2 12 2

=

=

= + +

(, ,)

(, ,)

, ,

u

u

uii

i i i

h
k

l g x
h

y
h

l
h

k

k

+






= + + +






=

2

2 2 2

1

2 1 1

3

, , u

ff x
h

y
h

l
h

k

l g x
h

y
h

l

i i i

i i

+ + +






= + +

2 2 2

2 2

2 2

3 2

, ,

, ,

u

uu

u

i

i i i

i

h
k

k f x h y hl hk

l g x h

+






= + + +

= +

2 2

4 3 3

4

(, ,)

(,, ,y hl hki i+ +3 3u

where h x= D .

6.4  A Single Second-Order Equation
For a single second-order ordinary differential equation, the method of solution is
to reduce the equation to a system of two first-order equations.

93568_Book.indb 108 7/22/09 10:29:56 AM

Numerical Integration of Ordinary Differential Equations  ◾  109

Given the following single second equation with the initial conditions:

	

′′ = = ′

= ′ = ′

y
d y
dx

f x y y

y y y y

2

2

0 00 0

(, ,)

() ()and

Let then and′ = ′′ = = ′ = ′ = =y y d
dx

f x y y g x yu u u u u, (, ,) (, ,) uu. Then for the
notation used for a system of two first-order equations (see Section 6.3),

	
l l

h
k l

h
k l hki i i i1 2 1 3 2 4 32 2

= = + = + = +u u u u, , ,

Example 6.1

Solve the following two first-order ordinary differential equations by the Runge–
Kutta method

	

dr
dt

re ry f t r y

dy
dt

y ry g r y

t

t= - =

= - + =

≤ ≤

-2 2

0

0 1. (, ,)

(,)

110

0 1 0

0 3 0

r

y

k f or
dr
dt

l g or
dy
dt

() .

() .

~

~

=

=

The problem follows:

% runge2.m
% This program solves a system of 2 first order ordinary differential
% equations by the Runge-Kutta method. The equations are:
% dr/dt=2*r*exp(–0.1*t) –2*r*y=f(t,r,y)
% dy/dt=–y+ry=g(r,y)
fo=fopen(‘output.dat’,’w’);
fprintf(fo,’RUNGE-KUTTA PROBLEM \n’);
fprintf(fo,’	 t	 r	 y \n’);
fprintf(fo,’-------------------------------------\n’);
n=1000; dt=0.01; r(1)=1.0; y(1)=3.0; t(1)=0.0;
for i=1:n
	 t(i+1)=i*dt;
	 k(1)=rprimef(t(i),r(i),y(i));
	 L(1)=yprimef(r(i),y(i));

93568_Book.indb 109 7/22/09 10:29:57 AM

110  ◾  Numerical and Analytical Methods with MATLAB﻿

	 k(2)=rprimef(t(i)+dt/2,r(i)+dt/2*k(1),y(i)+dt/2*L(1));
	 L(2)=yprimef(r(i)+dt/2*k(1),y(i)+dt/2*L(1));
	 k(3)=rprimef(t(i)+dt/2,r(i)+dt/2*k(2),y(i)+dt/2*L(2));
	 L(3)=yprimef(r(i)+dt/2*k(2),y(i)+dt/2*L(2));
	 k(4)=rprimef(t(i)+dt,r(i)+dt*k(3),y(i)+dt*L(3));
	 L(4)=yprimef(r(i)+dt*k(3),y(i)+dt*L(3));
	 r(i+1)=r(i)+dt/6*(k(1)+2*k(2)+2*k(3)+k(4));
	 y(i+1)=y(i)+dt/6*(L(1)+2*L(2)+2*L(3)+L(4));
end
for i=1:10:n+1
	 fprintf(fo,’%10.2f %16.4f %16.4f \n’,t(i),r(i),y(i));
end
fclose(fo);
plot(t,r,t,y,’--’), xlabel(‘t’), ylabel(‘r,y’), title(‘r & y vs t’),
grid;

% rprimef.m
% This function is used with runge2.m program
function drdt=rprimef(t,r,y)
drdt=2.0*r*exp(–0.1*t) –2.0*r*y;

% yprimef.m
% This function is used with runge2.m program
function dydt=yprimef(r,y)
dydt=–y+r*y;

6.5 � MATLAB’s ODE Function
MATLAB has an ODE function named ODE45. A description of the function fol-
lows. This description can be obtained by typing “help ODE45” in the command
window.

ODE45 Solve nonstiff differential equations, medium-order method.

[T,Y] = ODE45(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates the
system of differential equations y’ = f(t,y) from time T0 to TFINAL with
initial conditions Y0. Function ODEFUN(T,Y) must return a column vector
corresponding to f(t,y) . Each row in the solution array Y corresponds to a
time returned in the column vector T. To obtain solutions at specific
times T0,T1,…,TFINAL (all increasing or all decreasing), use TSPAN = [T0
T1 … TFINAL].

[T,Y] = ODE45(ODEFUN,TSPAN,Y0,OPTIONS) solves as above with default
integration properties replaced by values in OPTIONS, an argument created
with the ODESET function. See ODESET for details. Commonly used options
are scalar relative error tolerance ‘RelTol’ (1e-3 by default) and vector
of absolute error tolerances ‘AbsTol’ (all components 1e-6 by default).

[T,Y] = ODE45(ODEFUN,TSPAN,Y0,OPTIONS,P1,P2…) passes the additional
parameters P1,P2,… to the ODE function as ODEFUN(T,Y,P1,P2…), and to all
functions specified in OPTIONS. Use OPTIONS = [] as a place holder if no
options are set.

93568_Book.indb 110 7/22/09 10:29:57 AM

Numerical Integration of Ordinary Differential Equations  ◾  111

Example 6.2
% ode45_ex.m
% This program solves a system of 3 differential equations
% by using ode45 function
% y1’=y2*y3*t, y2’=–y1*y3, y3’=–0.51*y1*y2
% y1(0)=0, y2(0)=1.0, y3(0)=1.0
clear; clc;
initial=[0.0 1.0 1.0];
tspan=0.0:0.1:10.0;
options=odeset(‘RelTol’,1.0e-6,’AbsTol’,[1.0e-6 1.0e-6 1.0e-6]);
[t,Y]=ode45(@dydt3,tspan,initial,options);
P=[t Y];
disp(P);
t1=P(:,1);
y1=P(:,2);
y2=P(:,3);
y3=P(:,4);
fid=fopen(‘output.txt’,’w’);
fprintf(fid,’	 t	 y(1)	 y(2)	 y(3) \n’);
fprintf(fid,’---\n’);
for i=1:2:101
	 fprintf(fid,’	%6.2f	 %10.2f	 %10.2f	 %10.2 \ n’, . . .
	 t1(i),y1(i),y2(i),y3(i))
end
fclose(fid);
plot(t1,Y(:,1),t1,Y(:,2),’-.’,t1,Y(:,3),’--’), xlabel(‘t’),
ylabel(‘Y(1),Y(2),Y(3)’),title(‘Y vs. t’),
grid,
text(6.0, –1.2,’y(1)’), text(7.7, –0.25,’y(2)’), text(4.2,0.85,’y(3)’);

% dydt3.m
% functions for example problem
% y1’=y2*y3*t, y2’=–y1*y3, y3’=–0.51*y1*y2
function Yprime=dydt3(t,Y)
Yprime=zeros(3,1);
Yprime(1)=Y(2)*Y(3)*t;
Yprime(2)= –Y(1)*Y(3);
Yprime(3)= –0.51*Y(1)*Y(2);

Example 6.3
% ode_vib.m
% This program solves the motion of a spring-dashpot system. The governing
% equation is a Second Order Ordinary Differential Equation (x vs. t)by
% MATLAB’s ode45 function.
% m=10 kg, k= 4 N/m, c= 2.0 N-s/m, alpha=0.05 N, omega= 2 rad/s
% y(1)= x, y(2)= xdot=v, yprime1=y(2);
% yprime(2)=alpha*sin(omega *t)-c/m*v-k/m*y(1)
clear; clc;
initial=[0.5 0];
tspan=0:0.1:50;
[t,y]=ode45(‘dydt_vib’,tspan,initial);
P=[t y];
t1=P(:,1);
x=P(:,2);
v=P(:,3);

93568_Book.indb 111 7/22/09 10:29:57 AM

112  ◾  Numerical and Analytical Methods with MATLAB﻿

fprintf(‘	 t	 x	 v	 \n’);
for i=1:5:501
	 fprintf(‘ %10.2f	 %10.4f	 %10.4f	 \n’,t1(i),x(i),v(i));
end
plot(t1,x), xlabel(‘t’), ylabel(‘x’), title(‘x vs. t’), grid;
figure;
plot(t1,v), xlabel(‘t’), ylabel(‘v’), title(‘v vs. t’), grid;

% dydt_vib.m
% m=10 kg, k= 4 N/m, c= 2.0 N-s/m, alpha=0.05 N, omega= 2 rad/s
% y(1)= x, y(2)= xdot=v, yprime1=y(2);
% yprime(2)=alpha*sin(omega *t)-c/m*v-k/m*y(1)
function yprime=dydt_vib(t,y)
yprime=zeros(2,1);
m=10; k=4; c=2.0; alpha=0.05; omega=2;
yprime(1)=y(2);
yprime(2)=alpha*sin(omega*t)-c/m*y(2)-k/m*y(1);

6.6 � Ordinary Differential Equations That
Are Not Initial Value Problems

When an ordinary differential equation involves boundary conditions, instead of ini-
tial conditions, then it is convenient to use a numerical approach to solving the prob-
lem. An example of this type of problem is the deflection of a beam where boundary
conditions at both ends of the beam are specified. With certain types of boundary
conditions, the numerical method will reduce to solving a set of linear equations that
fall into the category of a tri-diagonal matrix. The solution of a set of linear algebraic
equations that are classified as a tri-diagonal system involves fewer calculations than
the solution of the set by Gauss Elimination. This is only important if the system of
equations is large. The solution of a tri-diagonal system is discussed next.

6.7 � Solution of a Tri-Diagonal System
of Linear Equations

Suppose we have a system of equations of the form

	

1 0 0 0

1 0 0

0 1 0

0 0 1

0 0 0 1

1

2 2

3 3

4 4

5

-

- -

- -

- -

-










a

b a

b a

b a

b



















x

x

x

x

x

1

2

3

4

5



























=

c

c

c

c

c

1

2

3

4

5



























	 (6.7)

This system is designated as a tri-diagonal system. The set of equations becomes

	 x1 – a1 x2 = c1	 (6.8)

	 –b2 x1 + x2 – a2 x3 = c2	 (6.9)

93568_Book.indb 112 7/22/09 10:29:58 AM

Numerical Integration of Ordinary Differential Equations  ◾  113

	 –b3 x2 + x3 – a3 x4 = c3	 (6.10)

	 –b4 x3 + x4 – a4 x5 = c4	 (6.11)

	 –b5 x4 + x5 = c5	 (6.12)

Concept:

	 1.	One can solve Equation (6.8) for x1 and substitute it into Equation (6.9), giv-
ing an equation involving x2 and x3, which is designated as Equation (6.9′).

	 2.	One can then solve Equation (6.9′) for the x2 in terms of x3 and substitute
into Equation (6.10). This gives an equation just involving x3 and x4, which is
designated as Equation (6.10′).

	 3.	This process is continued until the last equation. When x4 is substituted into
Equation (6.12), an equation only involving x5 is obtained. Thus, x5 can be
determined.

	 4.	Then by back substitution, one can obtain all the other xi values.

Method:

	 1.	Put the set of equations in the general form shown in Equation (6.13):

	 xi = ai x i+1 + bi x i-1 + ci	 (6.13)

	 Note: b1 = 0 and for m equations, am = 0.

	 2.	By the substitution procedure outlined above, one obtains a set of equations
of the form

	 xi = di + eixi+1	 (6.14)

	 Note: For i = m, ei = 0.
	 Then,

	 xm = dm

	 xm-1 = dm-1 + em-1xm

	 :

	 x1 = d1 + e1x2

Therefore, if a general expression for di and ei can be obtained, one could solve
the system for xi. We start with the assumption that we can put the (i–1) equation
in the form

	 xi-1 = di-1 + ei-1 xi	 (we showed that we can do this for i = 2)

93568_Book.indb 113 7/22/09 10:29:58 AM

114  ◾  Numerical and Analytical Methods with MATLAB﻿

Then, the equation

	 xi = aixi+1 + bixi-1 + ci

becomes

	 xi = ai xi+1 + bi (di-1 + ei-1xi) + ci

	 (1 – bi ei-1) xi = (ci + bi di-1) + aixi+1

or

	
x =

c b d

1 b e

a

1 b e
x = d + e xi

i i i 1

i i 1

i

i i 1
i 1 i i

+
-

+
-

-

- -
+ ii+1

Thus,

	
d

c b d
1 b e

e
a

1 b ei
i i i 1

i i 1
i

i

i i 1

=
+
-

=
-

-

- -

; 	 (6.15)

valid for i = 2, 3,…, m.
Note: The very first equation in the system is already in the form xi = di + ei xi-1

and also that

	 am = 0

Thus,

	 d1 = c1,  e1 = a1,  and  b1 = 0	 (6.16)

Then, xm = dm and by back substitution

	 xm-1 = dm-1 + em-1xm

	 :
		 (6.17)
	 :

	 x1 = d1 + e1x2

Summary:

Set up the equations in the form of Equation (6.13), that is,

	 xi = ai xi+1 + bixi-1 + ci	

establishing values for ai, bi, and ci.
Determine d1 and e1 from Equations (6.16).
Determine di and ei from Equations (6.15), for i = 2, 3,…,m.
Determine xm.
Detemine xi, for i = m-1, m-2,…,x1, from Equations (6.17).

93568_Book.indb 114 7/22/09 10:29:59 AM

Numerical Integration of Ordinary Differential Equations  ◾  115

An example of the use of the tri-diagonal method for solving a system of linear dif-
ferential equations using the finite difference method is shown in Section 6.9. Finite
difference formulas are developed by the use of just a few terms in a Taylor Series
expansion. This is shown in the next section.

6.8 � Difference Formulas
Difference formulas obtained by Taylor Series expansion are useful in reducing dif-
ferential and partial differential equations to a set of algebraic equations.

Given y = f (x), a Taylor Series expansion about point xi is

	
y x h y x y x h

y x
h

y x
hi i i

i i() () ()
()
!

()
!

+ = + ′ +
′′

+
′′′

+
2 3

2 3 ��

where h = D x.
Let

	
y x h y y x y y x yi i i i i i() () , () ,+ = = ′ = ′+1 and etc.

Then the Taylor Series expansion equation can be written as

	
y y y h

y h y h y h
i i i

i i i
IV

+ = + ′ +
′′

+
′′′

+ +1

2 3 4

2 3 4! ! !
� 	 (6.18)

Also, for equally spaced points on the x axis,

	
y x h y y y h

y h y h
i i i i

i i() ()
()
!

()
- = = + ′ - +

′′ -
+

′′′ -
-1

2
3

2 3!!
()

!
+

-
+

y hi
IV 4

4
�

or

	
y y y h

y h y h y h
i i i

i i i
IV

- = - ′ +
′′

-
′′′

+ - +1

2 3 4

2 3 4! ! !
� 	 (6.19)

Returning to Equation (6.18) and using two terms in the expansion gives

	
y y y hi i i+ = + ′1

Solving for y′ i,

	
′ =

-+y
y y

hi
i i1 	 (6.20)

93568_Book.indb 115 7/22/09 10:30:01 AM

116  ◾  Numerical and Analytical Methods with MATLAB﻿

Using y
y y

hi
i i=

-+1 involves an error or order h. This is the forward difference
formula for ′yi of order h. Similarly from Equation (6.19), using only two terms in
the expansion gives

	
′ =

- -y
y y

hi
i i 1 	 (6.21)

Using ′ =
- -y

y y

hi
i i 1 involves an error of order h. This is the backward difference

formula for ′yi of order h.
Now suppose we subtract Equation (6.19) from Equation (6.18), keeping only

three terms in each equation. This gives

	
y y y hi i i+ -- = ′1 1 2

Solving for ′yi gives

	
′=

-+ -y
y y

hi
i i1 1

2
	 (6.22)

Using ′ =
-+ -y

y y

hi
i i1 1

2
involves an error of order h2. This is the central difference

formula for ′yi of order h2.
If we add Equation (6.18) and Equation (6.19), keeping only three terms in each

equation, we obtain

	
y y y y hi i i i+ -+ = + ′′

1 1
22

Solving for yi
′′ gives

	
y

y y y

hi
i i i′′ =

+ -+ -1 1
2

2
	 (6.23)

Using y
y y y

hi
i i i′′ =

+ -+ -1 1
2

2
involves an error of order h2. This is the central

difference formula for yi
′′ of order h2.

Sometimes in numerical analysis, when a boundary condition involves the
first derivative, ′y , one might wish to use a one-sided estimate for ′y of order h2.
This can be accomplished by writing

	
y y y h y h y hi i i i i+ = + ′ + ′′ + ′′′ +2

2 32
1
2

2
1
3

2()
!

()
!

() � 	 (6.24)

By Equation (6.18)

	
y y y h y h y hi i i i i+ = + ′ + ′′ + ′′′ +1

2 31
2

1
3! !

� 	 (6.25)

93568_Book.indb 116 7/22/09 10:30:05 AM

Numerical Integration of Ordinary Differential Equations  ◾  117

Using only three terms in Equations (6.24) and (6.25) and multiplying Equation
(6.25) by (–4) gives

	
- = - - ′ -

′′
+4 4 4

4
21

2y y y h
y

hi i i
i

!
	 (6.26)

The three-term equation of Equation (6.24) is

	
y y y h

y
hi i i

i
+ = + ′ +

′′
2

22
2

2()
!

() 	 (6.27)

Adding Equations (6.26) and (6.27) gives

	
y y y y hi i i i+ +- = - - ′2 14 3 2

Solving for ′yi gives

	
′ =

- + -+ +y
y y y

hi
i i i2 14 3

2
	 (6.28)

Equation (6.28) involves an error of order h2. This is the one-sided forward differ-
ence formula for y¢ i of order h2.

This formula can be useful in applying a boundary condition involving ′y at x1,
the starting point of the x domain. Similarly,

	
y y y h y h y hy hi i i i i i- = + ′ - + ′′ - = - ′+ ′′2

2 22
1
2

2 2
4
2

()
!

()
!

yyi 	 (6.29)

Again use only three terms in Equation (6.19) and Equation (6.29), and multiply
Equation (6.19) by (–4) and add the result to Equation (6.29); that is,

	
- = - + ′- ′′-4 4 4

4
21

2y y hy h yi i i i!

	
y y hy h yi i i i- = - ′+ ′′2

22
4
2 !

Adding gives

	
y y y hyi i i i- -- = - + ′2 14 3 2

Solving for ′yi ,

	
′ =

- +- -y
y y y

hi
i i i2 14 3

2
	 (6.30)

93568_Book.indb 117 7/22/09 10:30:08 AM

118  ◾  Numerical and Analytical Methods with MATLAB﻿

Equation (6.30) involves an error at order h2. This is the one-sided backward
difference formula for ′yi

of order h2.
This formula can be useful in applying a boundary condition involving ′y at

xN+1, the end point in the x domain that is subdivided into N subdivisions.

6.9 � Deflection of a Beam
The governing equation for the deflection of a beam is (for a derivation of this equa-
tion see Appendix A)

	

d y
dx

M x
EI x

2

2 = ()
()

	 (6.31)

where
	 y = deflection of the beam at x.
	M = internal bending moment.
	 E = modulus of elasticity of the beam material.
	 I = moment of inertia of the cross-sectional area.

Consider the beam shown in Figure 6.2. To obtain the finite difference form
of the governing equation, subdivide the x axis into N subdivisions, giving x1, x2,
x3,…, xN+1. Let the deflections at these points be

	 y1, y2, y3,…, yN+1

The finite difference for d y
dx

2

2 , as discussed in Section 6.8, is given by

	

d y
dt

x
y y y

xn
n n n

2

2
1 1

2

2
()=

+ -+ -

D
	 (6.32)

A

y

w (lbf/ft)

B
L1

R1
R2

L2

P1

L

Figure 6.2  Beam loading.

93568_Book.indb 118 7/22/09 10:30:10 AM

Numerical Integration of Ordinary Differential Equations  ◾  119

Thus, the governing differential equation becomes

	

y y y

x

M
EI

n Nn n n n

n

+ -+ -
= =1 1

2

2
2 3 4

D
, , , , ,for …

or

	
y y y

M x
EIn n n
n

n

= + -+ -

1
2

1
2 21 1

2D
	 (6.33)

Boundary conditions:

	 y1 = 0	 (6.34)

	 yN+1 = 0	 (6.35)
The system of equations is a tri-diagonal system.

To obtain an expression for the bending moment Mn, first solve for the reactions
R1 and R2.

	
M R w PA = = - × -∑ 0

22 1
1

1 2L L
L

L

Solving for R2 gives

	
R

w P
2

1
2

1 2

2
= +

L
L

L
L

	 (6.36)

	
M P w RB = = - + -







-∑ 0

21 2 1
1

1()L L L L
L

L

Solving for R1 gives

	
R P wL1 1

2
1

11 1 1
2

= -






+ -







L
L

L
L 	 (6.37)

Internal bending moments are taken about the neutral axis of the section at x. For
0 1≤ ≤x L (see Figure 6.3),

	
M x wx

x
R x() + ⋅ - =

2
01

Solving for M(x) and expressing the equation in finite difference form gives

	
M R x

w
xn n n= -1

2

2
	 (6.38)

93568_Book.indb 119 7/22/09 10:30:12 AM

120  ◾  Numerical and Analytical Methods with MATLAB﻿

For L L1 2< ≤x (see Figure 6.4),

	
M x w x R x() + -







- =L

L
1

1
12

0

Solving for M(x) and expressing the equation in finite difference form gives

	
M R x w xn n n= - -






1 1
1

2
L

L
	 (6.39)

R1

NA

x

M

w (lbf/ft)

(a)

M
NA

(b)

Figure 6.3  Sketch indicating (a) internal moment at section x, where 0 ≤ x ≤ L1;
(b) stress distribution.

w

M

L1

R1

x

Figure 6.4  Sketch indicating internal moment at section x, where L1 < x ≤ L2.

93568_Book.indb 120 7/22/09 10:30:14 AM

Numerical Integration of Ordinary Differential Equations  ◾  121

For L L2 < ≤x (see Figure 6.5a)

	
M x P x w x R x() ()+ - + -





- =1 2 1
1

12
0L L

L

Solving for M(x) and expressing the equation in finite difference form gives

	
M R x P x w xn n n n= - - - -



1 1 2 1

1

2
()L L

L
	 (6.40)

For this section, it is more convenient to select the section from the right side of the
beam (see Figure 6.5b).

	 - + - =M x R x() ()2 0L

Solving for M(x) and expressing the equation in finite difference form gives

	
M R xn n= -2()L 	 (6.41)

Equation (6.41) is equivalent to Equation (6.40) for Mn for the region L L.2 < ≤x
The system of equations is tri-diagonal and thus can be solved by the method

described in Section 6.7. (See Projects 6.8 and 6.9.)

Projects
Project 6.1
An airplane flying horizontally at 50 m/s and at an altitude of 300 m is to drop a
food package weighing 2000 N to a group of people stranded in an inaccessible area

w

M

P

L–x

L1

L2

R1
R2

x

(a) (b)

Figure 6.5  Sketch indicating internal moment at section x, where, L2 < x ≤ L, (a)
as seen from the left side and (b) as seen from the right side.

93568_Book.indb 121 7/22/09 10:30:16 AM

122  ◾  Numerical and Analytical Methods with MATLAB﻿

resulting from an earthquake. A wind velocity,Vw , of 20 m/s flows horizontally in the
opposite airplane direction (see Figure P6.1). A drag force,

�
D , acts on the package in

the direction of the free stream,
�

V∞, as seen from the package (see Figure P6.1). We
wish to determine the (, , ,)t x u v values when the package hits the ground, where

(x,y) = the position of the package at time t.
(u,v) = the horizontal and vertical components of the package velocity, respectively.

Governing equations:

	

M
d V
dt

Mg j D

V ui j dx
dt

i
dy
dt

j

D C
V

d

�
� �

� � � � �

�

= +

= + = +

= ∞

v

r
2

22

2 2

Ae

V u Vw

�

∞= + +() v

where
�
i and

�
j are unit vectors in the x and y directions, respectively, �e is a unit vec-

tor in the direction of the free stream velocity as seen from the package, Cd is the
drag coefficient, r is the air density, and A is the frontal area of the package.

Equations reduce to

	

du
dt

C V A
M

d= - ∞r
ϑ

2

2
cos 	 (P6.1a)

	

d
dt

g
C V A

M
dv = - ∞r

ϑ
2

2
sin 	 (P6.1b)

Ground

x

x

y

Vw

–V
V∞

Vairp
Vw

V

Figure P6.1  Airplane dropping food package.

93568_Book.indb 122 7/22/09 10:30:19 AM

Numerical Integration of Ordinary Differential Equations  ◾  123

	
dx
dt

u= 	 (P6.1c)

	
dy
dt

= v 	 (P6.1d)

	
cos sinϑ ϑ=

+
=

∞ ∞

u V
V V

w and
v

	 (P6.1e)

Initial conditions:

	 x y u() , () , () , ()0 0 0 0 0 50 0 0= = = =m/s v

Use the following parameters:

	 Cd = 2.0,  ρ = 1.225 kg/m3,  A = 2.0 m2

Using the MATLAB function ODE45 to obtain values for (t, x, y, u, v) at
intervals of 0.10 seconds for 0 <= t <= 10.0 seconds.

	 (a)	 Create plots of x and y vs. t both on the same graph.
	 (b)	 Create plots of u and v vs. t both on the same graph.
	 (c)	 Create a table containing (t, x, y, u, v) at intervals of 0.10 seconds. Stop

printing the table the first time y > 300 m.
	 (d)	 Use MATLAB’s function interp1 to interpolate for the (t, x, u, v) values when

the package hits the ground. Print out these values.

Project 6.2
A small rocket with an initial mass of 350 kg, including a mass of 100 kg of fuel,
is fired from a rocket launcher (see Figure P6.2). The rocket leaves the launcher at

Ground

θo

θ(t)

vo

v
y

x

x

y –

–

3,000 m

15 m

Figure P6.2  Rocket trajectory.

93568_Book.indb 123 7/22/09 10:30:21 AM

124  ◾  Numerical and Analytical Methods with MATLAB﻿

velocity vo and at an angle of θo with the horizontal. Neglect the fuel consumed
inside the rocket launcher. The rocket burns fuel at the rate of 10 kg/s, and develops
a thrust T = 6000 N. The thrust acts axially along the rocket and lasts for 10 sec-
onds. Assume that the drag force also acts axially and is proportional to the square
of the rocket velocity. The governing differential equations describing the position
and velocity components of the rocket are as follows:

	

d
dt

T
m

K
m

xv v= -cos cosq q
2

	 (P6.2a)

	

d

dt
T
m

K
m

g
v vy = - -sin sinq q

2
	 (P6.2b)

	
dx
dt

= v x 	 (P6.2c)

	
dy
dt

= v y 	 (P6.2d)

where

	
v v v2

x
2

y
2= +

	q is the angle the velocity vector makes with the horizontal.
	m is the mass of the rocket (varies with time).
	vx,vy are the x and y components of the rocket’s velocity relative to the ground.
	K is the drag coefficient.
	g is the gravitational constant.
	(x, y) are the position of the rocket relative to the ground.
	t is the time of rocket flight.
	cos q = vx/v and sin q = vy/v.

Substituting for cos q and sin q in Equations (P6.2a) and (P6.2b) they become

	

d
dt

T

m

K

m
v v

v v

v v v
x x

x
2

y
2

x x
2

y
2

=
+

-
+

	 (P6.2e)

	

d

dt

T

m

K

m
g

v v

v v

v v vy y

x
2

y
2

y x
2

y
2

=
+

-
+

- 	 (P6.2f)

The target lies on ground that has a slope of 5%. The ground elevation, yg, relative
to the origin of the coordinate system of the rocket is given by

	
y xg = + -15 0 05 3000. () 	 (P6.2g)

93568_Book.indb 124 7/22/09 10:30:23 AM

Numerical Integration of Ordinary Differential Equations  ◾  125

Using Equations (P6.2e), (P6.2f), (P6.2c), and (P6.2d), write a computer program
in MATLAB using the fourth-order Runge–Kutta method described in Sections
6.3 and 6.4 that will solve for x, y, vx, and vy for 0 ≤ t ≤ 60 seconds. Use Equation
(P6.2g) to solve for yg.

Use a fixed time step of 0.01 second. Take x(0) = 0, y(0) = 0, vx(0) = vocos θo,
vy(0) = vosin θo, vo =150 m/s, K = 0.045 N–s2/m2, g = 9.81 m/s2, θo = 60°, and

	 (a)	 Print out a table for x, y, yg, vx, vy at every 1.0 seconds. Run the program for
0 ≤ t ≤ 60 seconds.

	 (b)	 Use MATLAB to plot x, y, and yg vs. t and vx, vy vs. t.
	 (c)	 Assume a linear trajectory between the closest two data points where the

rocket hits the ground. The intersection of the two straight lines gives the
(x,y) position of where the rocket hits the ground.

Project 6.3
Repeat Project 6.2, but this time use MATLAB’s ODE45 function to solve the
problem. Use a tspan = [0: 1:60] seconds.

Project 6.4
We wish to examine the time temperature variation of a fluid, Tf , enclosed in a
container with a heating element and a thermostat. The walls of the container are
pure copper. The fluid is engine oil, which has a temperature Tf that varies with
time. The thermostat is set to cut off power from the heating element when the Tf
reaches 65°C and to resume supplying power when Tf reaches 55°C.

Wall properties:

	 k = 386.0 w/m-°C, c = 0.3831 kJ/kg-°C, ρ = 8954 kg/m3

Engine oil properties:

	 k = 0.137 w/m-°C, c = 2.219 kJ/kg-°C, ρ = 840 kg/m3

The inside size of the container is (0.5 m × 0.5 m × 0.5 m). The wall thickness is
0.01 m. Thus,

Inside surface area, As,i = 1.5 m2.
Outside surface area, As,o = 1.5606 m2.
Engine oil volume, Voil = 0.125 m3.
Wall volume, Vwall = 0.0153 m3.

The power, Q, of the heating element = 10,000 w.
The inside convective heat transfer coefficient, hi = 560 w/m2-C.
The outside convective heat transfer coefficient, ho = 110 w/m2-C.

93568_Book.indb 125 7/22/09 10:30:23 AM

126  ◾  Numerical and Analytical Methods with MATLAB﻿

Using a lump parameter analysis (assume that the engine oil is well mixed) and the
First Law of Thermodynamics, the governing equations describing the time tem-
perature variation of both materials are as follows:

	

d

dt
a af

f w

q
q q= - - +1 5() 	 (P6.4a)

	

d
dt

a a a a aw
f w w f

q
q q q q q= - - = - +2 3 2 2 3() () 	 (P6.4b)

where

	

q

q

f f

w w

i s i

f f

i s i

w w

T T

T T

a
h A

m c
a

h A

m c
a

= -

= -

= = =

∞

∞

1 2 3
, ,, ,

hh A

m c
a a a a

Q
m c

o s o

w w f f

, , ,4 2 3 5= + =

Initial conditions:

	 Tf(0) = Tw(0) = 15°C
	 T∞ = 15°C

Using ODE45 function, construct a simulation of this system. Run the time for
3600 seconds. Print out values of Tf and Tw vs. t at every 100 seconds. Construct
plots of Tf and Tw vs. t.

Project 6.5
We wish to determine the altitude and velocity of a helium-filled spherically shaped
balloon as it lifts off from its mooring. We will assume that atmospheric conditions
can be described by the U.S. Standard Atmosphere. We will assume that there is no
change in the balloon’s volume. The governing equation describing the motion of the
balloon is

	
M d z

dt
B W D

2

2 = - - ∗(sgn) 	 (P6.5a)

where
	 z = altitude of the centroid of the balloon.
	 B = buoyancy force acting on the balloon.
	M = the total mass of the balloon material, ballast, and the gas.
	W = the total weight of the balloon material, ballast, and the gas = Mg.
	D = the drag on the balloon.

	 sgn = +1, if d z
dt

≥ 0 and sgn = -1, if d z
dt

< 0.

93568_Book.indb 126 7/22/09 10:30:24 AM

Numerical Integration of Ordinary Differential Equations  ◾  127

The U.S. Standard Atmosphere as applied to this balloon problem consists of the
following governing equations:

	

dp
dz

g
dp
dz

dp
dt

dt
dz

dp
dt

g= - = - = = = -g r r,
1
v

or

	

dp
dt

g= -r v 	 (P6.5b)

	 T T z= -i l 	 (P6.5c)

where
	 p = the outside air pressure at the centroid of the balloon.
	 g = the gravitational constant that varies with altitude.
	 R = the gas constant for air.
	T = the outside air temperature at the centroid of the balloon.
	 v = the vertical velocity of the balloon.
	Ti = the air temperature at the earth’s surface = 288.15 K.
	 l = the lapse rate.

The second-order ordinary differential equation, Equation (P6.5a), can be reduced to
two first-order differential equations, by letting

	
dz
dt

= v 	 (P6.5d)

Then

	

d
dt M

B W Dv = - - ∗1 (sgn) 	 (P6.5e)

The three equations—Equations (P6.5e), (P6.5d), and (P6.5b)—represent three
coupled ordinary differential equations that can be solved using MATLAB’s
ODE45 function. The buoyancy force, B, is given by

	 B g= ∀r 	 (P6.5f)

and

	
g g

r
z r

e

e

=
+






0
	 (P6.5g)

where
	 r = the air density at the centroid of the balloon.
	∀ = the volume of the balloon.

93568_Book.indb 127 7/22/09 10:30:26 AM

128  ◾  Numerical and Analytical Methods with MATLAB﻿

	rb = the radius of the balloon.
	 re = the radius of the earth.
	g0 = the gravitational acceleration near the earth’s surface.
	 g = the gravitational acceleration at an elevation of the centroid of the balloon.

For low Reynolds number, Re, less than 0.1, the drag force D is given by the Stokes
formula, which is

	
D rb= 6 π mv 	 (P6.5h)

For flow speeds with Re > 0.1, use

	
D C Ad= r

2
2v 	 (P6.5i)

where
	Cd = the drag coefficient.
	 A = the frontal area of the balloon = πrb

2.
	 m = the fluid viscosity.

	
Re

v
=

2r
m

rb 	 (P6.5j)

The fluid viscosity, m, can be determined by the Sutherland formula, which is

	
m m=







+
+






0
0

1 5

0T
T

T S
T S

.

	 (P6.5k)

For air, S = 110.4 K, m0 = 1.71e-5 N-s/m2, T0 = 273 K.
The drag coefficient, Cd, is given by

	
Cd = +

+
+24 6

1 0
0 4

Re . Re
. 	 (P6.5l)

Write a computer program, using MATLAB’s ODE45 function, that will deter-
mine the balloon’s altitude as a function of time. Create a table of 100 lines giving
the balloon’s altitude, velocity, and the pressure of the atmosphere at the balloon’s
centroid. Also, create plots of z vs. t, v vs. t, and p vs. t. Use the following values:

M = 2200 kg,  rb = 7.816 m,  ∀ = 4 3 3/ πrb m3,  R = 287 J/(kg-K),  Ti = 288.15 K,
l = 0.0065 K/m,  g0 = 9.81 m/s2, re = 6371e+3 m.

Use a tspan = 0.0:0.1:1000 and the following initial conditions:

	 z(0) = rb,  v(0) = 0,  p(0) = 1.0132e+5

93568_Book.indb 128 7/22/09 10:30:28 AM

Numerical Integration of Ordinary Differential Equations  ◾  129

Project 6.6
A small tank with its longitudinal axis in a vertical position is connected to a pressurized
air supply system as shown in Figure P6.6. The tank contains two gate valves, one that
controls the pressurization of the tank and the other that controls the discharge of the
tank through a converging nozzle. The tank is instrumented with a copper-constantan
thermocouple and a pressure transducer. We wish to predict the temperature and pres-
sure time histories of the air inside the tank as it is being discharged. We shall assume
that the air properties inside the tank are uniform. Due to its large heat capacity, as
compared to the air inside the tank, we shall assume that the wall temperature remains
nearly constant during the discharge phase of the problem. We will also assume that
the change in kinetic and potential energy inside the tank is negligible. Applying the
energy equation to a control volume enclosing the interior of the tank gives

	

d
dt

m u m u
p V Q

ta a e
e w a

() = - + +






+





 →

�
r

δ
δ

2

2 	 (P6.6a)

where

	

m
u
p

V

=
=
=
=
=

mass
internal energy
pressure
density
velo

r
ccity

the mass flow rate of air exiting the�me = ttank

the rateof heat transfer from the
δ
δ
Q
t

w a







=
→

wwall to theair inside the tank

subscript air
subscri

a =
ppt wall

subscript conditionsat the exit
w
e

=
=

For air supply

To data acquisition device

To data acquisition device

Pressure transducer

Thermocouple

Converging muzzle

Figure P6.6  Air pressurized tank.

93568_Book.indb 129 7/22/09 10:30:29 AM

130  ◾  Numerical and Analytical Methods with MATLAB﻿

	
u c Ta v a a= , 	 (P6.6b)

	
u

p
h c T

e
e p e e+







= =
r , 	 (P6.6c)

where
	 h = enthalpy.
	 cp = specific heat at constant pressure.
	 cv = specific heat at constant volume.
	T = temperature.

	

δ
δ
Q
t

hA T T
w a

s i w a







= -
→

, () 	 (P6.6d)

where

	

h
As i

=
=
the convective heat transfer coefficient.

int, eerior surface area of the tank.

The equation describing the rate of change of mass in the tank is

	

dm
dt

ma
e= - � 	 (P6.6e)

Substituting Equations (P6.6b) through (P6.6e) into Equation (P6.6a) gives

	

dT
dt

T
m

m
A h

c m
T T

m
m

k T
ma a

a
e

s i i

v a a
w a

e

a
a e

e= + - - -�
� �,

,

()
VV

c m
e

v a a

2

2 ,

	 (P6.6f)

where

	

c

k

v a

a

, =

=

air specific heat at constant volume.

rattio of specific heats for air =
c

c
p a

v a

,

,

.

We have assumed that cv,a and cp,a do not vary significantly in the temperature
range of the problem. The functional relation for �me in terms of the other variables
is obtained from one-dimensional compressible flow-through nozzles. Two pos-
sible cases exist, depending on the ratio of  

p
p

b

a

. The pressure pb is the back pressure,
which is the surrounding air pressure.

Case 1:

	

p
p

b

a

> 0 528.

93568_Book.indb 130 7/22/09 10:30:32 AM

Numerical Integration of Ordinary Differential Equations  ◾  131

Then

	

p p

M
k

p
p

e b

e
a

e

a

k ka a

=

=
-

-
























-
2

1
1

1()/

	

T
T

k
M

e
a

a
e

=
+

-
1

1
2

2

	

c k R T

V M c

e a a e

e e e

=

=

	
�m

p
R T

A Ve
e

a e
e e=

Case 2:

	

p
p

b

a

< = 0 528.

Then

	

p p

M

T
T
k

V c k R T

m
p

R

e a

e

e
a

a

e e a a e

e
e

=

=

=
+

-

= =

=

0 528

1 0

1
1

2

.

.

�
aa e

e eT
A V

where c Mis the speed of sound and is the Mach number.
From these relations it can be seen that �me is an implicit function of the vari-

ables T m ta a, , .and These equations, along with Equations (P6.6e) and (P6.6f),

93568_Book.indb 131 7/22/09 10:30:34 AM

132  ◾  Numerical and Analytical Methods with MATLAB﻿

form two coupled differential equations of the form

	

dT
dt

f t T ma
a a= 1 (, ,)

	

d m
dt

f t T ma
a a= 2 (, ,)

This system of equations can be solved using the ODE45 solver in MATLAB.
However, before this can be done, one needs to determine h . We shall assume that
the heat transfer from the wall to the air inside the tank occurs by natural convec-
tion. We will also assume that the wall temperature remains nearly constant, since
it has a much larger heat capacity than the air. The empirical relation for natural
convection for vertical plates and cylinders is

	

h
k
L

Grt a= +

+






,

/

/
.

. (Pr)

.
Pr

0 825
0 387

1 0 492

1 6

9 16

























8 27

2

/ 	 (P6.6g)

where

	
Gr

g T T Lw a

a a

= =
-

Grashof number
b

m r
()

(/)

3

2 	 (P6.6h)

Pr is the Prandtl number, kt,a is the thermal conductivity of air, L is the cylinder
length, ma is the viscosity of air, b is the coefficient of expansion, and g is the gravi-
tational constant. The properties of Pr, kt,a, ma are evaluated at the film temperature,
Tf , which is

	
T T T

p
RTf w a f

f

= + =






0 5. () and r

For an ideal gas, b= 1
T

. Since b is a fluid property, take b = 1
T f

. Air property values
for these variables are given in Table P6.6.

Using MATLAB’s ODE45 function, determine the air temperature, Ta, air pressure,
pa, and mass, ma, in the tank as a function of time. Use a tspan = 0:0.1:70 seconds.

Print out a table of these values at every 1 second. Also, create plots of Ta vs. t,
pa vs. t, and ma vs. t. Use the following values for the program:

	 D = 0.07772 m,  L = 0.6340 m,  de = 0.001483 m,  cp,a = 1.006e+3 J/(kg-K),

	 cv,a = 0.721e+3 J/(kg-K),  ka = 1.401,  g = 9.807 m/s2,  pb = patm = 1.013e+5,

	 pa,I = 704648 N/m2,  Ta,I = 294.5 K,  Tw = 294.5 K, and Ra = 287.2 J/(kg-K)

93568_Book.indb 132 7/22/09 10:30:36 AM

Numerical Integration of Ordinary Differential Equations  ◾  133

where
	 D = the inside diameter of the tank.
	 L = the inside length of the tank.
	De = the diameter of the nozzle.
	Ta,I = the initial air temperature inside the tank.
	Pa,I = the initial air pressure inside the tank.

Project 6.7
Low-speed rear-end collisions between two vehicles are very common in urban con-
gested areas. In this kind of collision very little or no damage is observed after the
accident. This indicates that most of the energy involved in the impact is absorbed
by damping mechanisms attached to the dampers (piston, honeycombs, etc.).
Therefore, one may use a linear model in which each vehicle can be represented
as a lumped mass with a spring-dashpot energy-absorbing bumper. A linear three-
degree-of-freedom model for such a collision is shown in Figure P6.7. The mass and
position of the struck vehicle are m1 and x1, respectively; the mass and position of

Table P6.6  Air Properties vs. Temperature

T (K) m (N-s/m2) k (W/(m-K) Pr

100 6.9224e-6 0.009246 0.77

150 1.0283e-5 0.013735 0.753

200 1.3289e-5 0.01809 0.739

250 1.4880e-5 0.02227 0.722

300 1.9830e-5 0.02624 0.708

350 2.075e-5 0.03003 0.697

x3 x1

k1k2

x2

x 2́ = v0 at t = 0

m2

c2 c1

m1

Figure P6.7  Linear three-degree-of-freedom model for low-speed car collision.
(SAE Paper 980360. Copyright 1998 SAE International. With permission.)

93568_Book.indb 133 7/22/09 10:30:37 AM

134  ◾  Numerical and Analytical Methods with MATLAB﻿

the striking vehicle are m2 and x2, respectively; and the mass and position of the two
bumpers are m3 and x3, respectively. It is assumed that the two bumpers remain in
contact during the investigation period.

The governing dynamic equations for the system are given in Equations (P6.7a)
through (P6.7c).

	

d x

dt

C
m

dx
dt

dx
dt

k
m

x x g
2

1
2

1

1

1 3 1

1
1 3= - -









 - - ±() m 	 (P6.7a)

	

d x

dt

C
m

dx
dt

dx
dt

k
m

x x g
2

2
2

2

2

3 2 2

2
3 2= -









 + - ±() m 	 (P6.7b)

d x

dt

k
m

x x
k
m

x x
C
m

dx
dt

dx
dt

2
3

2
1

3
1 3

2

3
3 2

1

3

1 3= - - - + -() ()








 - -











C
m

dx
dt

dx
dt

2

3

3 2 	 (P6.7c)

For the m term in Equation (P6.7a), use the – sign if  
dx
dt

dx
dt

1 10 0> + <, .and the sign if

Similarly, for the m term in Equation (P6.7b), use the – sign if
dx
dt

2 0> ,
 and the sign if+ <

dx
dt

2 0.
The initial conditions are

	
x x x1 2 30 0 0 0 0 0() , () , ()= = = 	 (P6.7d)

	

dx
dt

dx
dt

V
dx
dt

V1 2
0

3
00 0 0 0() , () , ()= = = 	 (P6.7e)

where k1, k2, C1, and C2 are the springs’ and the dampers’ constants of the vehicles.
V0 is the speed of the striking vehicle and m is the coefficient of friction.

The linear spring and dashpot constants are deduced from an analysis of the
time history data coming from destructive tests. Use the following constants:
	 C1 = C2 = 20000 N s/m
	 k1 = k2 = 6600 kN/m
	 m1 = 930 kg, m2 = 960 kg, m3 = 150 kg
	 V0 = 2.77 m/s

For Equation (P6.7a),

	
take 0.04 if and ifm m= > = =

dx
dt

dx
dt

1 10 0 0.

For Equation (P6.7b),

	 take 0.04 if and ifm m= > = =
dx
dt

dx
dt

2 20 0 0.

93568_Book.indb 134 7/22/09 10:30:39 AM

Numerical Integration of Ordinary Differential Equations  ◾  135

Develop a MATLAB program that will solve the collision model problem using the
ODE45 function for 0 0 4≤ ≤t s. . Use a tspan = [0:001:0.4].

	 (a)	 Print out a table for x1, x2, x3,
dx
dt

dx
dt

dx
dt

d x
dt

d x
dt

d x
dt

1 2 3
2

1
2

2
2

2

2
3

2, , , , , and every
0.01 second.

	 (b)	 Plot x1, x2, and x3 on one graph, dx
dt

dx
dt

dx
dt

1 2 3, , and on a second graph, and

d x
dt

d x
dt

d x
dt

2
1

2

2
2

2

2
3

2, , and on a third graph.

Project 6.8
A small fin is used to increase the heat loss from an electronic element. A sketch of
the fin is shown in Figure P6.8.

The temperature distribution in the fin is governed by the following equation:

	

d
dx

A
dT
dx

hP
k

T T






= - ∞()

or

	

dA
dx

dT
dx

A
d T
dx

hP
k

T T+ = - ∞

2

2 ()

where T is the temperature in the fin at position x, T∞ is the surrounding air tem-
perature, A is the fin cross-sectional area, h is the corrective heat transfer coefficient,
k is the thermal conductivity of the fin, and P is its perimeter.

w

L1

L

x
th

Side View

Top surface of
electronic device

y

w1

Figure P6.8  Fin attached to an electronic device.

93568_Book.indb 135 7/22/09 10:30:41 AM

136  ◾  Numerical and Analytical Methods with MATLAB﻿

	

A x y th P x y th

y
w

L x
L

w
w

L L
L

A
w t

() (), ()

,

(

= = +

= - =
-

=

2 2

1

2

1

1

1 hh
L

L x
dA
dx

w th
L

)
(),

()
- = - 1

The Governing Differential Equation is

	

w th
L

L x
d T
dx

w th
L

dT
dx

h
k

w
L

L x th1
2

2
1 12

2
()

()
()

() (- - = - +)) ()








 - ∞T T 	(P6.8a)

The boundary conditions are
	 T(0) = Tw	 (P6.8b)
To obtain the second boundary condition write:

The rate that heat leaves the fin at (x = L1) per unit surface area
   = the rate that heat is carried away by convection per unit surface area.

The above statement can be written mathematically as

	
- = - ∞k

dT
dx

L h T L T() [()]1 1 	 (P6.8c)

We wish to solve this problem numerically using the finite difference method.
First subdivide the x axis into I subdivision giving x1, x2, x3,…,xI+1. Take the

temperature at xi to be Ti. The finite difference formulas for d T
dx

2

2
and dT

dx
(see

Section 6.8) are

	

d T
dx

x
T T T

xi
i i i

2

2
1 1

2

2
() =

+ -+ -

D

	

dT
dx

x
T T

xi
i i() =

-+1

D

The finite differential form of Equation (P6.8a) is

	

w th
L

L x
T T T

x

w th
L

T
i

i i i i1 1 1
2

1 12()
()

()
-

+ -





-+ - +

D
--






= - +








 - ∞

T
x

h
k

w
L

L x th T T

i

i i

D

2
21 () () ()

93568_Book.indb 136 7/22/09 10:30:43 AM

Numerical Integration of Ordinary Differential Equations  ◾  137

Solving for Ti gives

	

T
w th

L
L x

w th
L

x
h x

k
w
L

L x ti i i= - - + - +
2 2

21 1
2

1()
()

()
() (D D

hh

w th
L

L x
w th

L
xi

)

()
()

()















× - -





-1

1 1 D TT
w th

L
L x T

h x
k

w
L

L x th

i i i

i

+ -+ -




+ - +

1
1

1

2
12

2

()
()

() (
D

))









∞T
	

(P6.8d)

Equation (P6.8d) is valid for i = 2, 3, …, I.
The finite difference form for Equation (P6.8c) is

	
-

-
= - 

+
+ ∞k

T T
x

h T TI I
I

1
1D

Solving for TI+1 gives

	
T T

h x
k

T
h x

k
I I+ ∞=

+
+







1

1
1 D

D

Also, T1 = TW.
The rate of heat loss, Q, through the fin is given by

	
Q

kA
x

T T= - -1
2 1D

()

where A1 is the cross-sectional area of the fin at x = 0+.
Using the method described in Section 6.7 for a tri-diagonal system of equa-

tions, write a computer program that will solve for the temperature distribution in
the fin and the rate of heat loss through the fin. Use the following values:

Tw = 200°C,  T ∞ = 40°C,  k = 204 W/m-°C,  h = 60 W/m2 -°C,
I = 80,  w1 = 2 cm,  L = 6 cm,  L1 = 4 cm,  th = 0.2 cm.

The output of your program should include the values of h, k, Tw, T∞, Q , and a table
of T vs. x at every 0.1 cm.

Project 6.9
We wish to obtain the reactions, the bending moment, and the deflection of the
statically indeterminate beam as shown in Figure P6.9a. The problem can be solved
by the method of superposition. First solve for the deflection y(x) by the finite

93568_Book.indb 137 7/22/09 10:30:44 AM

138  ◾  Numerical and Analytical Methods with MATLAB﻿

difference method utilizing the tri-diagonal method to obtain a solution for the
statically determinate structure shown in Figure P6.9b. Then determine y(L1) for
the structure shown in Figure P6.9b. Next determine the value of F in the structure
shown in Figure P6.9c that would cause the deflection at L1 in that structure to be
–y(L1). You may use the following formula to determine the F value that would give
the required deflection at x = L1 (see Figure P6.9d).

A

y

w

C
x

B

P

L1

L2

L4

L3

L

Figure P6.9a  Indeterminate beam structure.

A

y

w

x
B

P

L2

L4

L3

L

Figure P6.9b  Determinate beam structure.

A B

F

L1

Figure P6.9c  Beam with single concentrated load.

93568_Book.indb 138 7/22/09 10:30:45 AM

Numerical Integration of Ordinary Differential Equations  ◾  139

	

y x Fbx
LEI

x L b x a

Fb
LEI

x L b x

() [()] ()

()

= - - ≤

= - -

6

6

2 2 2

3 2 2 -- -





≥L
b

x a x a() ()3

Finally, superimpose both solutions to give the true values for the reactions, RA, RB,
and RC, the bending moment M(x) and the deflection y(x). Print out the final reac-
tions, RA, RB, and RC. Print out a table of M(x) and y(x) vs. x at every other node.
Use MATLAB to plot M(x) and y(x).

Let w = 40 kN/m, EI = 1.5 × 103 kN-m2, P = 35 kN, L = 3 m, L1 = 1.3 m,
L2 = 0.5 m, L3 = 1.5 m, L4 = 0.5 m. Let the number of subdivisions on the x axis
be 150.

F
a

L

x
y

b

Fb
LR =1

Fa
LR =2

Figure P6.9d  Beam loaded with a single concentrated load.

93568_Book.indb 139 7/22/09 10:30:46 AM

93568_Book.indb 140 7/22/09 10:30:46 AM

141

7Chapter

Simulink

7.1 � Introduction
Simulink* is used with MATLAB® to model, simulate, and analyze dynamic systems.
With Simulink, models can be built from scratch, or additions can be made to
existing models. Simulations can be made interactive, so a change in parameters
can be made while running the simulation. Simulink supports linear and nonlin-
ear systems, modeled in continuous time, sample time, or a combination of the
two.

Simulink provides a graphical user interface (GUI) for building models as block
diagrams, using click-and-drag mouse operations.

The program includes a comprehensive library of components (blocks). Using
scopes and other display blocks, simulation results can be seen while the simulation
is running.

7.2 � Creating a Model in Simulink
	 1.	Click on the Simulink icon on the menu bar in the MATLAB command

window or type Simulink in the MATLAB command window. This brings
up the Simulink library browser window (see Figure 7.1).

	 2.	Click on file in the Simulink library browser window.

*	 MATLAB®, Simulink®, and Stateflow® are trademarks of The MathWorks, Inc. and are used
with permission. The MathWorks does not warrant the accuracy of the text or exercises in this
book. This book’s use or discussion of MATLAB, Simulink, and Stateflow software or related
products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB, Simulink, and Stateflow software.

93568_Book.indb 141 7/22/09 10:30:46 AM

142  ◾  Numerical and Analytical Methods with MATLAB﻿

	 3.	Select a “new model” (for a new model) or “open” for an existing model. This
will bring up an untitled model window (for the case of a new model) or an
existing model window.

	 4.	To create a new model you need to copy blocks from the library browser
window into the new model window. This can be done by highlighting a
particular block and dragging it into the model window. To simplify the con-
nections of blocks, you may need to rotate a block 90° or 180°. To do this
highlight the block and click on format in the menu bar; select rotate block
(for 90°) or flip block (for 180°).

Simulink has many categories for distributing the library blocks; those of inter-
est for this book are commonly used blocks, continuous, discontinuities, math
operations, ports and subsystems, signal routing, sinks, sources, and user-defined
functions.

The blocks that will be used in this chapter are constant, product, gain, sum,
integrator, scope, display, relay, switch, to workspace, mux, and fcn. The product,
gain, and sum are in the math category, the integrator is in the continuous category,
the scope, display, and to workspace are in the sink category, the constant, step,
and sine wave are in the source category, the relay is in the nonlinear category, the
mux and switch are in the signal routing category, and the fcn is in the user-defined
functions category.

Figure 7.1  Simulink windows. (From MATLAB. With permission.)

93568_Book.indb 142 7/22/09 10:30:47 AM

Simulink  ◾  143

7.3 � Typical Building Blocks in Constructing a Model
	 1.	Addition of two constants (see Figure 7.2). To set the value for the constants,

highlight the block, click on the right button to open a dialog box, select
update parameters, and type in the value of the constant. To run the program
click on simulation in the menu bar and select start.

	 2.	Subtraction (see Figure 7.3).
	 3.	Product of two blocks (see Figure 7.4).
	 4.	Division of two blocks (see Figure 7.5).
	 5.	Integrate a sine wave (see Figure 7.6). In sine wave block parameters set fre-

quency to 2 rads/second.

sin dx [cos] [cos] [cos2 1
2

2 1
2

2 1 1
2

1 2
0

0x x t t
t

t∫ = - = - - = -]] (range 0→1)		
		 (7.1)

	 6.	Solution of a simple ordinary first-order differential equation. The method
of solution is illustrated in Example 7.1, which considers the temperature
change of a small, good heat-conducting object that is suddenly immersed in
a fluid of temperatureT∞. The temperature, T, of the object varies with time.
The governing equation is given by Equation (7.2).

Display

+
+

20

30

Constant

Constant 1

50

Figure 7.2  Constants, summation, and display blocks for addition.

Display 1
+–

30

20

Constant 2

Constant 3

–10

Figure 7.3  Constants, summation, and display blocks for subtraction.

93568_Book.indb 143 7/22/09 10:30:48 AM

144  ◾  Numerical and Analytical Methods with MATLAB﻿

Display 2

30

20

Constant 4

Constant 5

Product

× 600

Figure 7.4  Constants, product, and display blocks for multiplication.

Display 3

30

20

Constant 6

Constant 7

Product 1

×
÷

1.5

Figure 7.5  Constants, product, and display blocks for division.

Sine wave Integrator

1
s

Scope

Figure 7.6  Sine wave, integration, and scope blocks.

93568_Book.indb 144 7/22/09 10:30:49 AM

Simulink  ◾  145

Example 7.1

First put the equation in the form

	
dT
dt

f T t= (,)

	
dT
dt

hA
mc

T
hA
mc

Ts s= -∞ 	 (7.2)

where
	m = the mass of the object.
	As = the surface area.
	 c = the specific heat of the object.
	 h = the convective heat transfer coefficient.

The following parameters for Equation (7.2) were used:

	

hA
mc s

T

s = ×

= °

-

∞

8 7 10 1

10

4.

C

Block diagram for Equation (7.2) is shown in Figure 7.7.

0

Display

Scope

8.7E–4

Constant 1

8.7e–3

Constant

1
s

×

Integrator

T
ha/mc

haT/mc

haTinf/mc

dT/dt
T

T

Product

–+

Figure 7.7  Block diagram for solving Equation (7.2).

93568_Book.indb 145 7/22/09 10:30:51 AM

146  ◾  Numerical and Analytical Methods with MATLAB﻿

7.4 � Constructing and Running the Model
	 1. To connect lines from the output of a block to the input of a second block,

place the pointer on the output (or input) of the block, right click on the
mouse, and drag the line to the input (or output) of the second block.

	 2. To connect a point on a line to the input of a block, place the pointer on the
line and right click on the mouse and drag the line to the input of the block.

	 3. To add alphanumerical information above a line double click (left button) on
the line. A small box will appear on the line. Type in desired info and click
elsewhere.

	 4. To view the results on the scope, use the right mouse button and click on
the scope. Select open block. A graph appears. To select the graph axis, right
click on graph and select axis properties or autoscale. In most cases selecting
autoscale is sufficient.

	 5. To select the initial condition, right click on integrator box, select integrator
parameters, and type in the initial condition; select OK.

	 6. To select start and stop run times, click on Simulation in menu bar, select
simulation parameter, and edit start and stop time boxes.

	 7. To run the simulation, click on simulation in the menu bar and click on start.

7.5 � Constructing a Subsystem
Suppose we are building a large system consisting of many blocks and we wish to
reduce the number of blocks appearing in the overall block diagram. This can be
done by creating a subsystem. The subsystem will appear as a single block. To cre-
ate a subsystem, place the pointer in the vicinity of the region that is to become a
subsystem and right click the mouse. This produces a small dashed box that can
be enlarged by dragging the mouse over the region enclosing the number of blocks
to be included in the subsystem. When the mouse button is released, a drop-down
menu appears. Select create a subsystem. In the above example, the constant, con-
stant 1, and product blocks have been included in the subsystem. Note that the
subsystem will have one input and two outputs (see Figure 7.8). These three blocks
will appear as a single subsystem block (see Figure 7.9). A block diagram of the
subsystem is shown in Figure 7.10.

7.6 � Using the mux and fcn Blocks
An alternative to the block diagram for Example 7.1 is shown in Figure 7.11. In
this solution the mux and fcn blocks are used to solve the problem. The mux block
allows you to select the number of inputs (right click on the block, select mux

93568_Book.indb 146 7/22/09 10:30:51 AM

Simulink  ◾  147

parameters, and type in the number of inputs). The uppermost input is designated
as u [1], the one below is designated as u [2], etc. The output from the mux block
should go to the input of the fcn block. The math expression in the fcn block needs
to be in terms of the u []’s. See block sketch, Figure 7.11.

0

Display

Scope

8.7E–4

Constant 1

8.7e–3

Constant

1
s

×

Integrator

T
ha/mc

haT/mc

haTinf/mc

dT/dt
T

T

Product

–+

Figure 7.8  Constructing a subsystem.

0

Display

Scope

1
s

Out 1
In 1

Integrator

dT/dt
T

T

Out 2

Subsystem

–+

Figure 7.9  Block diagram for solving Equation (7.2).

93568_Book.indb 147 7/22/09 10:30:51 AM

148  ◾  Numerical and Analytical Methods with MATLAB﻿

7.7 � The Relay Block
Suppose a model involves the addition of a heating/cooling element to a system
controlled by a thermostat. A relay may be used to simulate the thermostat behav-
ior. This concept can be represented by this simple differential equation in which y
is to go from 0 to 10 and then fluctuate between 5 and 10.

	

dy
dt

c c
y
y

= =
≤

- ≥






where

if
if

20 5
20 10

The block diagram for this system consists of an integrator, a constant, a relay, a
product, and a scope. The relay parameters are

Scope

To workspace

1 Tsu[1]*u[2]–u[1]*u[3]

Fcn Integrator
dT/dt

10.0

Constant 1
Tinf = u[2] T = u[3]

T = u[3]

8.7e–4

mux

Constant
hA/(mc) = u[1]

Figure 7.11  Block diagram for solving Equation (7.2) using the mux and fcn
blocks.

haT/mc

ha/mc
Product

×

In 1
1

Out 1
1

Out 2
2

8.7E–4

Constant 1

haTinf/mc 8.7e–3

Constant

Figure 7.10  Sketch of subsystem.

93568_Book.indb 148 7/22/09 10:30:53 AM

Simulink  ◾  149

Switch point on = 10
Switch point off = 5
Output when on = –1
Output when off = +1

Note: Switch point on has to be greater than switch point off.
The block diagram for this problem is shown in Figure 7.12.
Start by setting the initial condition for y to 0. At this point, y ≤ 5, thus the

relay switch is off and the output of the relay is +1, causing y to increase. The relay
output will remain +1 until y reaches 10, then the relay switch will turn on and the
relay output will be –1, causing y to decrease. The relay output will be –1, until y
reaches 5; then the relay switch is off and the output is +1. The process will continue
until the simulation end time is reached.

7.8 � The Switch Block
Some problems may involve a function that varies in time for 0 <= t <= t1 and the
remains are constant for t1 < t <= t2. This type of function can best be modeled
with the switch.

+1 or –1

Constant

Scope

To workspace

simout

20Relay

Product

dydt

Integrator

1
s y

×

Figure 7.12  Block diagram using the relay block.

93568_Book.indb 149 7/22/09 10:30:53 AM

150  ◾  Numerical and Analytical Methods with MATLAB﻿

Suppose

	
y =

5 0 10

50 10 20

t for t

for t

<= <=

< <=







The Simulink model for this problem is shown in Figure 7.13.
Switch parameters (u1 is the top input, u2 is the middle input, and u3 is the

bottom input). Switch parameters for this example follow.

Criteria for passing first input: u2 > = Threshold
Threshold: 10
Sample time (–1 for inherited): –1

7.9 � Trigonometric Function Blocks
Functions such as sine, cosine, tangent, etc. can be found in math operations under
trigonometric function. The input to the trig function block is the argument to the
trig function. If the argument involves the independent variable, t, the output of
the clock gives t. This is shown in the following example (see Figure 7.14).

Switch Scope

Product

×

50

Constant 1

5

Constant

Clock
t

Figure 7.13  Block diagram using the switch block.

y = cos(2t)

cos

Trigonometric
function

y

To workspace

ScopeProduct

×

2

Constant

Clock

Figure 7.14  Block diagram using the clock, the trig function, and the workspace
blocks.

93568_Book.indb 150 7/22/09 10:30:55 AM

Simulink  ◾  151

Example 7.2 � Governing Equation for a Spring-Dashpot System

Given a simple spring-dashpot system subjected to an oscillatory force. The govern-
ing equation is

	
�� � �x c

m
x k

m
x F

m
t x x+ + = = =sin(), () , ()w 0 5 0 0m m/s 	 (7.3)

The following Simulink program (see Figure 7.15) gives the solution. The values
used are

	 k c F m= = = = =1 0 5 201 1 10N/m kg/s s N, kg, . , / ,w

Trigonometric
function

sin

To workspace 1

t

To Workspace

x2

Scope

Product 1
Product

Integrator 1

1
s

Integrator

1
s

Gain

5

Fcn 1

u(1) / u(2) * u(3)

Fcn

u(1) / u(2) * u(3)

Constant 5

20

Constant 4

0.1

Constant 3

10

Constant 2

0.5

Constant 1

10

Constant

1

Clock

m

c

m

t

w

sin (wt)

alpha

k

alpha*sin (wt)

d2x/dt2
dx/dt

x
+
–

×
×

Figure 7.15  Block diagram for solving Equation (7.3).

93568_Book.indb 151 7/22/09 10:30:56 AM

152  ◾  Numerical and Analytical Methods with MATLAB﻿

To obtain output values in table form, one needs to send the variables to workspace
by the workspace block as shown in Figure 7.15. After the simulation is run, those
variables become available for use in any MATLAB program. Typical simulation
and workspace parameters follow:

Simulation time
Start time: 0.0		 Stop time: 20.0
Solver Options
Type: fixed-step	 Solver: ode4 (Runge-Kutta)
Periodic sample time constraint: unconstrained
Fixed-step size (fundamental sample time): 0.1
Tasking mode for periodic sample time: auto

Workspace Parameters
Variable name: x
Limit data points to last: inf
Decimation: 1
Sample time (–1 for inherited): –1
Save format: array

Projects
Project 7.1
A small rocket with an initial mass of 350 kg, including a mass of 100 kg of fuel,
is fired from a rocket launcher. The rocket leaves the launcher at velocity vo and at
an angle of θo with the horizontal. Neglect the fuel consumed inside the rocket
launcher. The rocket burns fuel at the rate of 10 kg/s, and develops a thrust T =
6000 N. The thrust acts axially along the rocket and lasts for 10 seconds. Assume
that the drag force also acts axially and is proportional to the square of the rocket
velocity. The governing differential equations describing the position and velocity
components of the rocket (see Figure P6.2) are as follows:

	

d x
dt

T
m

K
m

2

2

2

= -cos cosq qv

	

d y
dt

T
m

K
m

g
2

2

2

= - -sin sinq qv

	
dx
dt

= v x

	
dy
dt

= v y

93568_Book.indb 152 7/22/09 10:30:57 AM

Simulink  ◾  153

where

	
v v v2

x
2

y
2= +

	q is the angle the velocity vector makes with the horizontal.
	m is the mass of the rocket (varies with time).
	vx,vy are the x and y components of the rocket’s velocity relative to the ground.
	K is the drag coefficient.
	g is the gravitational constant.
	(x, y) are the position of the rocket relative to the ground.
	t is the time of rocket flight.
	cos θ = vx/v and sin θ = vy/v.

Substituting for cos θ, sin θ, and v in the above set, the equations become

	

d x
dt

T

m

K

m

2

2 =
+

-
+v

v v

v v v
x

x
2

y
2

x x
2

y
2

	 (P7.1a)

	

d y
dt

T

m

K

m
g

2

2 =
+

-
+

-
v

v v

v v vy

x
2

y
2

y x
2

y
2

	 (P7.1b)

	 (a)	 Develop a SIMULINK model that will solve for x, y, vx, vy for 0 ≤ t ≤ 60
seconds. Use a fixed time step of 0.1 second. Run the program for t ≤ 60
seconds.

		  Take x(0) = 0, y(0) = 0, vx(0) = vocos θo, vy(0) = vosin θo, vo = 150 m/s,
θo = 60°, K = 0.045 N –s2/m2, and g = 9.81 m/s2. Send the results to
workspace.

	 (b)	 From the workspace print out a table for t, x, y, vx, vy every 10 seconds and
create plots of (x and y vs. t) and (vx and vy vs. t).

	 (c)	 The target lies on the ground, which has a slope of 5%. The ground elevation,
yg , relative to the origin of the coordinate system of the rocket is given by

	
y xg = + -15 0 05 3000. ()

	 (P7.1c)

In the workspace program determine where the rocket hits the ground. Assume a
linear trajectory between the closest two data points. The intersection of the two
straight lines gives the (x,y) position where the rocket hits the ground. Print out
these (x,y) values.

93568_Book.indb 153 7/22/09 10:30:58 AM

154  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 7.2
Repeat Project 6.4, but this time use Simulink to construct a simulation of this
system. Scope output should be for Tf and Tw vs. t. Set the end time to 1 hour and
print out the block diagram.

Project 7.3
Repeat Project 6.5, but this time use Simulink to construct a simulation of this system.
Scope output should be for z, v, and p vs. t. Send z, v, p, and t to the workspace and
create a table of 50 lines giving z, v, and p vs. t. Also create plots of z vs. t, v vs. t,
and p vs. t.

93568_Book.indb 154 7/22/09 10:30:58 AM

155

8Chapter

Curve Fitting

8.1 � Curve-Fitting Objective
There are many occasions in engineering that require an experiment to determine
the behavior of a particular phenomenon. The experiment may produce a set of data
points that represents a relationship between the variables involved in the phenom-
enon. The engineer may then wish to express this relationship analytically. This
analytical expression is designated as the approximating function to the data. There
are two approaches.

	 1.	The approximating function passes through all data points (see Section 8.5).
If there is some scatter in the data points, the approximating function may
not be satisfactory.

	 2.	The approximating function graphs as a smooth curve. In this case the
approximating curve will not, in general, pass through all the data points. A
plot of the data on regular graph paper, semilog, or log-log paper may suggest
an appropriate form for the approximating function.

8.2 � Method of Least Squares
Best-fit straight line:

Given a set of data points: (x1, y1), (x2, y2),…, (xn, yn)
We wish to represent the approximating curve, yc, as:

	 yc = c1x + c2	 (8.1)

93568_Book.indb 155 7/22/09 10:30:59 AM

156  ◾  Numerical and Analytical Methods with MATLAB﻿

Let

D = - = - +
= =

∑ ∑[()] [()]y y x y c x ci c i
i 1

n

i 1 i 2
i 1

n
2 2

	 = - + + - + + + - +[y (c x c)] [y (c x c)] [y (c x c1 1 1 2
2

2 1 2 2
2

n 1 n 2�))]2

	 (8.2)

To obtain the best-fit straight line approximating function, take  ∂
∂

=D
c1

0 and
∂
∂

=D
c2

0

	
D = - +

=
∑[()]y c x ci 1 i 2

i 1

n
2

	 (8.3)

	

∂
∂

= - + - =
=

∑D
c

y c x c x
i

n

i i i
1 1

1 22 0[()][]

	
0 1

1
1

2

1
2

1

= - -
= = =

∑ ∑ ∑x y c x c xi
i

n

i
i

n

i
i

n

or

	
x c x c x yi

i

n

i
i

n

i i
i

n
2

1
1

1
2

1= = =
∑ ∑ ∑









 +









 = 	 (8.4)

	

∂
∂

= = - + -
=

∑D
c

y c x c
i

n

i i
2 1

1 20 2 1[()][]

	
0

1
1

1
2= - -

= =
∑ ∑y c x nci
i

n

i
i

n

or

	
x c nc yi

i

n

i
i

n

= =
∑ ∑









 + =

1
1 2

1

	 (8.5)

93568_Book.indb 156 7/22/09 10:31:01 AM

Curve Fitting  ◾  157

Solving by method of determinates:

	

c

x y

y

x

n

x

x

x

n

n x y x y
n x

i i

i

i

i

i

i

i i i i
1 2=

∑

∑

∑

∑

∑

∑
=

∑ - ∑() ∑()
∑ ii i ix x2 - ∑() ∑() 	 (8.6)

	
c

x

x

x y

y

n x x x

y x

i

i

x i

i

i i i

i i
2

2

2

2

=

∑

∑

∑

∑
∑ - ∑() ∑() =

∑() ∑() - ∑∑() ∑()
∑ - ∑() ∑()

x x y

n x x x
i i i

i i i
2

	 (8.7)

For an m degree polynomial fit, take the approximating curve, yc, to be

	 y c c x c x c x c xc m
m= + + + + + +1 2 3

2
4

3
1�

where m ≤ n - 1 and n = number of data points.

Measured values are (xi, yi), i = 1, 2,…, n
Let yc,i = yc(xi)
Then

	
D y y y c c x c x c xi c i

i

n

i i i m i
m= - = - + +()

=
+∑[] ...,

2

1
1 2 3

2
1 

=
∑ 2

1i

n

To minimize D, take

	

∂
∂

=D
c1

0,
 

∂
∂

=D
c2

0, etc.

	

∂
∂

= = - + + +()  -

∂
∂

=
+∑D

c
y c c x c x

D

i

n

i i m i
m

1 1
1 2 10 2 1� []

cc
y c c x c x x

D
c

i

n

i i m i
m

i
2 1

1 2 10 2= = - + + +()  -

∂
∂

=
+∑ � []

33 1
1 2 1

20 2= = - + + +()  - 

∂

=
+∑

i

n

i i m i
m

iy c c x c x x�

�

DD
c

y c c x c x x
m i

n

i i m i
m

i
m

∂
= = - + + +()  -

+ =
+∑

1 1
1 2 10 2 �  

93568_Book.indb 157 7/22/09 10:31:03 AM

158  ◾  Numerical and Analytical Methods with MATLAB﻿

The set of equations reduces to

	

nc x c x c x c y

x c x

i i i
m

m i

i i

1 2
2

3 1

1

+ () + () + + () =

() +

∑ ∑ ∑ ∑
∑

+�

22
2

3
3

1
1

1

∑ ∑ ∑ ∑

∑

() + () + + () =

() +

+
+c x c x c x y

x c

i i
m

m i i

i
m

�

�

xx c x c x yi
m

i
m

m i
m

i
+

+∑ ∑ ∑() + + () =1
2

2
1�

	

(8.8)

Solve by Gauss Elimination
The standard error of the fit, syx, is defined by

	
s y yyx i c i

i

n

= -










=
∑1 2

1

1 2

ν
(),

/

where ν = n – (m + 1) = number of degrees of freedom.
Note: MATLAB® uses mean square error (mse), which is defined by

	
(mse) = 1 2

1
n

y yi c i
i

n

(),-
=

∑ 	 (8.9)

syx is a measure of the precision with which the polynomial describes the data.
Run the program for several different m values. Use the one with the lowest syx

value.

8.3 � Curve Fitting with the Exponential Function
A mathematical analysis of physical systems frequently leads to exponential func-
tions. If experimental data appear to fall into this category, one should use

	 yc = α α
1

2e x- 	 (8.10)

as the approximating function, where α1 and α2 are real constants.
For data points (x1, y1), (x2, y2), … (xn, yn), let zi = ln yi and zc = ln yc = ln α α1 2- x .

Letting c1 = - α2 and c2 = ln α1 , the above equation becomes linear in zc; that is,

	 zc = c1x + c2	 (8.11)

93568_Book.indb 158 7/22/09 10:31:06 AM

Curve Fitting  ◾  159

For data points (x1, y1), (x2, y2), … (xn, yn), the new set of data points becomes

	 (x1, z1), (x2 z2), … (xn, zn)

From our previous work, the best-fit approximating straight-line curve by the
method of least squares gives

	

c
n x z x z

n x x
i i i i

i i
1 2 2=

∑ - ∑() ∑()
∑ - ∑() 	

(8.12)

and

	

c
z x x x z

n x x
i i i i i

i i
2

2

2 2=
∑() ∑() - ∑() ∑()

∑ - ∑() 	 (8.13)

Then

	 α α1 2 1
2= = -e cc ,

and

	
mse =

1 2

n
y yi c i(),-∑

	 (8.14)

where yc,i = yc (xi).
The above analysis can be used to determine the damping constant in a mass-

spring-dashpot system. This is accomplished by examining the Oscilloscope
graph of free damped vibration (see Figure 8.1). The governing equation of the
envelope is

	
y y c

m
t= -



0 2

exp 	 (8.15)

where
	 c = damping constant.
	m = the mass.
	 y = the mass displacement from the equilibrium position.

93568_Book.indb 159 7/22/09 10:31:07 AM

160  ◾  Numerical and Analytical Methods with MATLAB﻿

Comparing Equation (8.15) with Equation (8.10) we see that

	
α α1 0 2

= =y c
m

t xand with replacing2

Therefore, c m= 2 2α (see Project 2.10).

8.4 � MATLAB’s Curve-Fitting Function
MATLAB calls curve fitting with a polynomial by the name “Polynomial
Regression.” The function polyfit (x, y, m) returns a vector of (m + 1) coefficients
that represent the best-fit polynomial of degree m for the (xi, yi) set of data points.
The coefficient order corresponds to decreasing powers of x; that is,

	 y a x a x a x a x ac
m m m

m m= + + + +- -
+1 2

1
3

2
1… 	 (8.16)

To obtain y x x xc nat (, , ,)1 2 … use the MATLAB function polyval (a, x). The func-
tion polyval (a,x) returns a vector of length n giving yc, i, where

	
y a x a x a x a x ac i i

m
i
m

i
m

m i m, = + + + +- -
+1 2

1
3

2
1… 	 (8.17)

2

1.5

y and y2 vs. t

(t1, y1)

(t2, y2)
(t3, y3)

1

0.5

0

–0.5

y,
y 2

 (i
n)

–1

–1.5

–2
0 5 10

t (s)
15 20

Figure 8.1  Oscilloscope graph of free damped oscillations.

93568_Book.indb 160 7/22/09 10:31:09 AM

Curve Fitting  ◾  161

The mean square error (mse) is a measure of the precision of the fit. The mse is
defined as follows:

	
mse =

1
1

2

n
y y

i

m

i c i∑ -
=

(), 	 (8.18)

where n is the number of data points.

Example 8.1
% polyfit_text.m
% This program determines the best-fit polynomial curve passing
% through a given set of data points
clear; clc;
x=–10:2:10;
y=[–980 –620 –70 80 100 90 0 –80 –90 10 220];
x2=–10:0.5:10;
mse=zeros(4);
for n=2:5
	 fprintf(‘n= %i \n’,n);
	 coef=zeros(n+1);
	 coef=polyfit(x,y,n);
	 yc2=polyval(coef,x2);
	 yc=polyval(coef,x);
	 mse(n)=sum((y-yc).^2)/11;
	 if n==2
	 fprintf(‘	 x	 y	 yc \n’);
	 fprintf(‘-------------------------------------\n’);
	 for i=1:11
		 fprintf(‘%5.0f %5.0f %8.2f \n’,x(i),y(i),yc(i));
	 end
	 fprintf(‘\n\n’);
end
if n==3
	 fprintf(‘	 x	 y	 yc \n’);
	 fprintf(‘-------------------------------------\n’);
	 for i=1:11
		 fprintf(‘%5.0f %5.0f %8.2f \n’,x(i),y(i),yc(i));
	 end
	 fprintf(‘\n\n’);
end
if n==4
	 fprintf(‘	 x	 y	 yc \n’);
	 fprintf(‘-------------------------------------\n’);
	 for i=1:11
		 fprintf(‘%5.0f %5.0f %8.2f \n’,x(i),y(i),yc(i));
	 end
	 fprintf(‘\n\n’);
end
if n==5
	 fprintf(‘	 x	 y	 yc \n’);
	 fprintf(‘-------------------------------------\n’);
	 for i=1:11

93568_Book.indb 161 7/22/09 10:31:09 AM

162  ◾  Numerical and Analytical Methods with MATLAB﻿

		 fprintf(‘%5.0f	 %5.0f	 %8.2f \n’,x(i),y(i),yc(i));
	 end
	 fprintf(‘\n\n’);
end
subplot(2,2,n-1),plot(x2,yc2,x,y,’o’),
xlabel(‘x’), ylabel(‘y’), grid,
if n==2
	 title(‘Second Degree Polynomial Fit’)
end
if n==3
	 title(‘Third Degree Polynomial Fit’)
end
if n==4
	 title(‘Fourth Degree Polynomial Fit’)
end
if n==5
	 title(‘Fifth Degree Polynomial Fit’)
end
end
fprintf(‘ n mse		 \n’)
fprintf(‘-------------------------\n’);
for n=2:5
	 fprintf(‘ %g	 %6.2f \n’,n,mse(n))
end

8.5 � Cubic Splines
Suppose for a given set of data points, all attempted degree polynomial approxi-
mating curves produced points that were not allowed. For example, suppose it is
known that a particular property represented by the data (such as absolute pres-
sure or absolute temperature) must be positive and all the attempted polynomial
approximating curves produced some negative values. For this case, the polynomial
approximating function would not be satisfactory. The method of cubic splines
eliminates this problem.

Given a set of (n + 1) data points (xi, yi), i = 1, 2,…, (n + 1), the method of cubic
splines develops a set of n cubic functions, such that y(x) is represented by a differ-
ent cubic in each of the n intervals and the set of cubics passes through the (n + 1)
data points.

This is accomplished by forcing the slopes and curvatures to be the same for
each pair of cubics that join at a data point.

	

Note Curvature K

d y
dx
dy
dx

: , /=
±

+ 















2

2

2 3 2

1 	 (8.19)

93568_Book.indb 162 7/22/09 10:31:09 AM

Curve Fitting  ◾  163

This is accomplished by the following equations:

	

[()] [()]

[()] [()

int int

int

y x y x

y x y x

i i i i

i i i

-

-

=

′ = ′

1

1]]

[()] [()]

int

int int

i

i i i iy x y x′′ = ′′-1

	 (8.20)

In interval (i – 1), ()x x xi i- ≤ ≤1 (see Figure 8.2).

	 y x A B x x C x x D x xi i i i i i i() () () (= + - + - + -- - - - - - -1 1 1 1 1
2

1 11
3) 	 (8.21)

In interval i, ()x x xi i≤ ≤ +1

	 y x A B x x C x x D x xi i i i i i i() () () ()= + - + - + -2 3

	 (8.22)

This gives (n – 1) equations in (n + 1) unknowns.

Thus, values for d y
dx

2

2 at x1 and xn+1 must be assumed.

Several alternatives exist:

	 1.	Assume ′′ = ′′ =+y x y xn() ()1 1 0
		  Widely used—forces splines to approach straight lines at end points.

	 2.	Assume ′′ = ′′ ′′ = ′′+y x y x y x y xn n() () () ().1 1 2and This forces the splines to
approach parabolas at the end points.

MATLAB’s built-in function interp1 interpolates between data points by the cubic
spline method.

yi+1

yi–1

xi–1

yi

xi+1xi

int
(i – 1)

int
(i)

y

x

Figure 8.2  Two adjacent arbitrary intervals.

93568_Book.indb 163 7/22/09 10:31:12 AM

164  ◾  Numerical and Analytical Methods with MATLAB﻿

8.6 � The Function Interp1 for Cubic Spline Curve Fitting

	 yi = interp1 (, , ,)x y x splinei ′ ′

where x,y are the set of data points and xi is the set of x values at which the set of
values, yi, is to be returned.

Example 8.2
% cubic_spline
% This program uses interpolation by cubic splines to determine
% overpressure resulting from a blast.
clear;
clc;
dist=0.2:0.2:2.6;
press=[24.0 14.0 10.0 7.6 5.4 4.0 3.1 2.5 2.0 1.7 1.5 1.3 1.1];
d=0.2:0.1:2.6;
p=interp1(dist,press,d,’spline’);
fid=fopen(‘output1.dat’,’w’);
fprintf(fid,’PEAK OVERPRESSURE VS. DISTANCE FROM BLAST \n’);
fprintf(fid,’CUBIC SPLINE FIT \n’);
fprintf(fid,’ dist	 over-press \n’);
fprintf(fid,’ (miles)	 (psi) \n’);
for n=1:25
	 fprintf(fid,’ %5.1f %10.3f \n’,d(n),p(n));
end
plot(d,p,dist,press,’o’),xlabel(‘miles from ground zero’),
	 ylabel(‘overpressure(psi)’),axis([0.0,3.0,0.0,25.0]),
	 grid,title(‘peak overpressure vs. distance from blast’)
fclose(fid);

8.7 � Curve Fitting with Fourier Series
Suppose an experimental data set produced a plot as shown in Figure 8.3 and it was
desired to obtain an analytical expression that comes close to fitting the data. Let
us assume that the –L ≤ x ≤ L. If not, make it so by shifting the origin. Actually the
original abscissa data were for 0 10 5≤ ≤t . .seconds The data were shifted by letting
x t= - 5 25. .

The t domain was subdivided into 70 equal spaces, with Dt = =10 5 70 0 15. / .
second. Thus, xi+1 – xi is uniform over the entire domain. An attempt to fit a poly-
nomial approximating curve to these data would not be successful. However, the
use of a Fourier series could give a reasonable analytical expression approximating
the data. If uc is the approximating curve, then by a Fourier series,

	
uc x a a

m x
L

b
m x

Lm m
m

() cos sin= + 



 + 









0

π π

==

∞

∑
1

	 (8.23)

93568_Book.indb 164 7/22/09 10:31:13 AM

Curve Fitting  ◾  165

where

	
a

L
u x dx

L

L

0
1

2
=

-∫ ()

	
a

L
u x

m x
L

dxm
L

L

= 



-∫

1 ()cos
π

	
b

L
u x

m x
L

dxm
L

L

= 



-∫

1 ()sin
π

Using 30 terms in the series and Simpson’s rule on integration an approximat-
ing curve as shown in Figure 8.4 was obtained.

The a m x
L

b m x
Lm mcos sinπ π



 + 



 terms can be put into the following form by

the trigonomic identity a b ccos sin sin(),b b b φ+ = - where c represents the ampli-
tude. The amplitude, c, is given by

	 c a b= +()2 2

A plot of amplitude vs. m
L
π is shown in Figure 8.5.

4.5
u vs. x×104

4

3.5

3

2.5

u

2

1.5

1

0.5

0
–6 –4 –2 0

x
2 4 6

Figure 8.3  Experimental data of u vs. x.

93568_Book.indb 165 7/22/09 10:31:15 AM

166  ◾  Numerical and Analytical Methods with MATLAB﻿

6
Fourier Series Fit×104

5

4

3

u,
 u

c (
m

/s
)

2

1

0

–1
–6 –4 –2 0

t
2 4 6

Red–uc
Green–u

Figure 8.4  Fourier series fit of the data. (See color insert following page 334.)

Amp. vs. n*pi/L
7000

6000

5000

4000

3000

A
m

p.

2000

1000

0
0 2 4 6 8 10

n*pi/L
12 14 16 18

Figure 8.5  Fourier series coefficient amplitudes vs. n

L

π .

93568_Book.indb 166 7/22/09 10:31:16 AM

Curve Fitting  ◾  167

Projects
Project 8.1
A formula describing the fluid level, heq, in a tank, as a function of time, as the fluid
discharges through a small orifice, is

	
h h

C A
A

g teq eq o
d

T

= -,
0

2
2 	 (P8.1a)

where
	 Cd = the discharge coefficient.
	heq,o = the fluid level in the tank at time, t = 0.
	 A0 = the area of the orifice.
	 AT = the cross-sectional area of the tank.

An experiment consisting of a cylindrical tank with a small orifice was used to
determine Cd for that particular orifice and cylinder. The tank walls were transpar-
ent and a ruler was pasted to the wall allowing for the determination of the fluid
level in the tank. The procedure was to fill the tank with water while the orifice was
plugged. The plug was then removed and the water was allowed to flow through
the orifice. The water level in the tank, hexp in meters, was recorded as a function of
time, t. The experimental data are shown in Table P8.1.

Table P8.1  hexp vs. time

hexp (m) t(s) hexp (m) t(s)

0.288 0 0.080 110

0.258 10 0.065 120

0.234 20 0.053 130

0.215 30 0.041 140

0.196 40 0.031 150

0.178 50 0.022 160

0.160 60 0.013 170

0.142 70 0.006 180

0.125 80 0.002 190

0.110 90 0.000 200

0.095 100

93568_Book.indb 167 7/22/09 10:31:17 AM

168  ◾  Numerical and Analytical Methods with MATLAB﻿

The diameters of the orifice and the tank are Do = 0.0055 m and Dt = 0.146 m,
respectively. The free surface elevation, heq,o, at t = 0 is 0.288 m. The gravitational
constant, g = 9.81 m/s2.

Use the mse as defined by Equation (8.12) to determine the value for Cd that
best fits the data. Vary Cd from 0.3 to 0.9 in steps of 0.01 and evaluate the mse for
each Cd selected, where

	
mse

N
h t h teq i i

i

N

= -
=

∑1

1

2[() ()]exp 	 (P8.1b)

where
 	N	 = the number of data points.

	

h t teq i i() = the water level in the tank at as deteermined by Equation (P8.1a).
the waterh tiexp() = level in the tank at as determined by experti iiment.

For the Cd with the lowest mse, create a plot of heq vs. t (solid line) and superimpose
hexp vs. t as little x’s onto the plot of heq vs. t. Also print out the value of Cd that gives
the lowest mse.

Also create a 30-line table of mse vs. Cd.

Project 8.2
This project involves determining the best fit polynomial approximating curve to
the (H vs. Q) data obtained from a pump manufacturer’s catalog (units changed to
SI units). The data points of the (H vs. Q) curve are shown in Table P8.2.

Table P8.2  H vs. Q Data from the Pump Manufacturer

Q H Q H

(m3/h) (m) (m3/h) (m)

3.3 43.3 61.6 40.8

6.9 43.4 68.5 39.6

13.7 43.6 75.3 38.7

20.5 43.6 82.2 37.2

27.4 43.3 89.0 36.3

34.2 43.0 95.8 34.4

41.1 42.7 102.7 32.6

93568_Book.indb 168 7/22/09 10:31:18 AM

Curve Fitting  ◾  169

Try degree polynomials of 2 through 4 to determine which degree polynomial
will give the smallest mse. Use MATLAB’s function polyfit, which returns the coef-
ficients for each of the three polynomials. Then use MATLAB’s function polyval to
create for each polynomial:

	 (a)	 A table containing Q, Hc, and H, where Hc is the approximating curve for H
vs. Q.

	 (b)	 A plot of Hc vs. Q (solid line) and H vs. Q (small circles), all plots on the same
page.

93568_Book.indb 169 7/22/09 10:31:18 AM

93568_Book.indb 170 7/22/09 10:31:18 AM

171

9Chapter

Optimization

9.1 � Introduction
The objective of optimization is to maximize or minimize some function f. The
function f is called the object function. For example, suppose there is an electronics
company that manufactures several different types of circuit boards. Each circuit
board must pass through several different departments (such as drilling, compo-
nent assembly, testing, etc.) before shipping. The time required for each circuit
board to pass through the various departments is also known. There is a minimum
production quantity per month that the company must produce. However, the
company is capable of producing more than the minimum production require-
ment for each type of circuit board each month. The profit the company will make
on each circuit board it produces is known. The problem is to determine the pro-
duction amount of each type of circuit board per month that will result in the
maximum profit. A similar type of problem may be one in which the object is to
minimize the cost of producing a particular product. These types of optimiza-
tion problems are discussed in greater detail later in this chapter. In most optimi-
zation problems, the object function, f, will depend on several variables—x1, x2,
x3, …, xn. These are called the control variables because their values can be selected.
Optimization theory develops methods for selecting optimal values for the control
variables, x1, x2, x3, …, xn, that either maximizes (or minimizes) the objective func-
tion f. In many cases, the choice of values for x1, x2, x3, …, xn is not entirely free,
but is subject to some constraints.

93568_Book.indb 171 7/22/09 10:31:18 AM

172  ◾  Numerical and Analytical Methods with MATLAB﻿

9.2 � Unconstrained Optimization Problems
In calculus it is shown that a necessary (but not sufficient) condition for f to have a
maximum or minimum at point P, is that at point P, each of the first partial deriva-
tives of  f , be zero; that is,

	

∂
∂

= ∂
∂

= = ∂
∂

=f
x

P
f
x

P
f
x

P
n1 2

() () ()� 0

If n = 1, say, y = f(x), then a necessary condition for an extremum (maximum or
minimum) at x0 is for ′ =y x()0 0.

For y to have a local minimum at x0, ′ =y x()0 0 and ′′ >y x()0 0.
For y to have a local maximum at x0, ′ =y x()0 0 and ′′ <y x()0 0.

For f involving several variables, the condition for f to have a relative minimum is
more complicated. First, Equation (9.1)

	

∂
∂

= ∂
∂

= = ∂
∂

=f
x

P
f
x

P
f
x

P
n1 2

() () ()� 0
	

(9.1)

must be satisfied. Second, the quadratic form (Equation 9.2)

	

Q
f

x x
P x x P x x P

i jj

n

i i
i

n

j j= ∂
∂ ∂

- -
==

∑∑
2

11

()(())(())

	

(9.2)

must be positive for all choices of xi and xj in the vicinity of point P, and Q = 0 only
when xi = xi (P) for i = 1, 2, …, n. This condition comes from a Taylor Series expan-

sion of f(x1, x2, …, xn) about point P using only terms up to ∂
∂ ∂

2 f
x x

P
i j

(). This gives

	

f x x x f P
f
x

P x x P

f

n
ii

n

i i(, ,...,) () ()(())1 2

2

= + ∂
∂

-

+ ∂
∂

∑

xx x
P x x P x x P

i jj

n

i i
i

n

j j∂
- -

==
∑∑

11

()(())(())

If f  (x1, x2,…, n) has a relative minimum at point P, then ∂
∂

=f
x

P
i

() 0 for i = 1,

2,…, n and f (x1, x2,…, xn) – f (P) > 0 for all (x1, x2,…, xn) in the vicinity of point P.
But f (x1, x2,…, xn) – f (P) = Q. Thus, for f (x1, x2, …, xn) to have a relative minimum
at point P, Q must be positive for all choices of xi and xj in the vicinity of point P.

Since the above analysis is quite complicated when f is a function of several
variables, an iterative scheme is frequently used as a method of solution. One such
method is the method of steepest descent. In this method one needs to guess for a

93568_Book.indb 172 7/22/09 10:31:21 AM

Optimization  ◾  173

point where an extremum exists. Using a grid to evaluate the function at different
values of the control variables can be helpful in establishing a good starting point
for the iteration process.

9.3 � Method of Steepest Descent
Consider a function, f, of three variables (x, y, z). From calculus, we know that the
gradient of f, written as ∇f , is given by

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
f

f
x

i
f
y

j
f
z

kˆ ˆ ˆ

where ˆ, ˆ, ˆi j kand are unit vectors in the x, y, and z directions, respectively.
At (, ,)x y z0 0 0 , we also know that ∇f x y z(, ,)0 0 0 points in the direction of the

maximum rate of change of f with respect to distance.
A unit vector, ê g , which points in this direction, is

	
ˆ

| |
e

f
fg = ∇

∇

where

	
| |∇ = ∂

∂




 + ∂

∂






+ ∂
∂





f

f
x

f
y

f
z

2 2 2

To find a relative minimum, the method of steepest descent is frequently used. This
method starts at some initial point and moves in small steps in the direction of
steepest descent, which is (ˆ)-eg . Let (xn+1, yn+1, zn+1) be the new position on the nth
iteration and (xn, yn, zn) the old position; then

	

x x

f
x

x y z

f x y z
s

y y

n n

n n n

n n n

n n

+

+

= -

∂
∂
∇

= -

∂

1

1

(, ,)

| (, ,)|
D

ff
y

x y z

f x y z
s

z z

f
z

x y

n n n

n n n

n n

n

∂
∇

= -

∂
∂

+

(, ,)

| (, ,)|

(,

D

1

nn n

n n n

z

f x y z
s

,)

| (, ,)|∇
D

where ∆ s is some small length.

93568_Book.indb 173 7/22/09 10:31:23 AM

174  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 9.1

Given: f = 4 + 4.5x1 – 4x2 + x1
2 + 2x2

2 – 2x1x2 + x1
4 – 2x1

2x2.

Determine: The minimum of f  by the method of steepest descent starting at point
(x1, x2) = (6, 10). Use a ∆ s = 0.1 and 100 iterations.

Instead of starting at some arbitrary point as specified above, one might wish to
first use a grid program to establish a good starting point. A sample grid program
follows:

% grid2.m
% This program determines the functional values of a specified
% function of 2 variables
% for determining a good starting point for the method of steepest
% decent
clear; clc;
x1min=–10.0; x1max=10.0;
x2min=–10.0; x2max=10.0;
dx1=2.0; dx2=2.0;
for i=1:11
	 x1(i)=x1min+(i-1)*dx1;
	 for j=1:11
		 x2(j)=x2min+(j-1)*dx2;
		 f(i,j)=fxf(x1(i),x2(j));
	 end
end
fprintf(’===\n’);
fprintf(’	 functional values of f(x1,x2) \n’);
fprintf(’==\n’);
fprintf(’ x2 | x1 %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f \n’,...
		 x1(1),x1(2),x1(3),x1(4),x1(5),x1(6));
fprintf(’===\n’);
for j=1:11
	 fprintf(’%6.1f ’,x2(j));
	 for i=1:6
		 fprintf(’%10.1f’,f(i,j));
	 end
	 fprintf(’\n’);
end
fprintf(’\n\n\n’);
fprintf(’===\n’);
fprintf(’	 functional values of f(x1,x2) \n’);
fprintf(’===\n’);
fprintf(’ x2 | x1  %6.1f  %6.1f  %6.1f  %6.1f  %6.1f  \n’,...
		 x1(7),x1(8),x1(9),x1(10),x1(11));
fprintf(’===\n’);
for j=1:11
	 fprintf(’%6.1f  ’,x2(j));
	 for i=7:11
		 fprintf(’%10.1f’,f(i,j));
	 end
	 fprintf(’\n’);
end

93568_Book.indb 174 7/22/09 10:31:23 AM

Optimization  ◾  175

Next use a steepest descent program. A sample program follows:

% steep_descent.m
% This program determines a relative minimum by the
% method of steepest decent.
% The function is:
% f(x1,x2)=4+4.5*x1–4*x2+x1^2+2*x2^2–2*x1*x2+x1^4–2*x1^2*x2
% Relative minimum points are known. They occur at
% (x1,x2)=(1.941,3.854) and (–1.053,1.028). The minimum functional
% values are 0.9855 & –0.5134 respectively
clear; clc;
% First guess
x1=6;
	 x2=10;
	 ds=0.1;
	 fx=fxf(x1,x2);
	 fprintf(’	 x1	 x2	 fx \n’);
		 for n=1:100
		 dfx1=dfx1f(x1,x2);
		 dfx2=dfx2f(x1,x2);
		 gradf_mag=sqrt(dfx1^2+dfx2^2);
		 x1n=x1–dfx1/gradf_mag*ds;
		 x2n=x2-dfx2/gradf_mag*ds;
		 fxn=fxf(x1n,x2n);
		 fprintf(’ %7.4f %7.4f %10.4f \n’,x1n,x2n,fxn);
		 if(fxn > fx)
			 fprintf(’ a minimum has been reached \n\n’);
			 break
		 else
			 x1=x1n;
			 x2=x2n;
			 fx=fxn
		 end
end
	 fmin=fxf(x1,x2);
	 fprintf(’ The relative minimum occurs at x1=%7.4f  x2=%7.4f\n′,x1,x2);
	 fprintf(' The minimum value for f=%10.4f \n',fmin);

% fxf.m
% This function is used in the steep_decent.m program
	 function fx=fxf(x1,x2)
	 fx=4+4.5*x1-4*x2+x1^2+2*x2^2-2*x1*x2+x1^4-2*x1^2*x2;

% dfx1f.m
% This function is used in the steep_descent.m program
	 function dfx1=dfx1f(x1,x2)
	 dfx1=4.5+2*x1–2*x2+4*x1^3–4*x1*x2;

% dfx2f.m
% This function is used in the steep_descent.m program
	 function dfx2=dfx2f(x1,x2)
	 dfx2=-4+4*x2-2*x1-2*x1^2;

93568_Book.indb 175 7/22/09 10:31:24 AM

176  ◾  Numerical and Analytical Methods with MATLAB﻿

9.4 � Optimization with Constraints
In many optimization problems the variables in the function to be maximized or
minimized are not all independent, but are related by one or more conditions or
constraints.

Suppose we are given the object function f (x1, x2, x3,…, xn), in which the vari-
ables x1, x2,…, xn are subject to N constraints, say,

	 Φ1(x1, x2, x3, …, xn) = 0
	 Φ2(x1, x2, x3, …, xn) = 0
	 .
	 .
	 .
	 ΦN(x1, x2, x3, …, xn) = 0

Theoretically, N x’s can be solved in terms of the remaining x’s. Then these N
variables can be eliminated from the objective function f  by substitution and the
extreme problem can be solved as if there were no constraints. This method is
referred to as the implicit method.

Lagrange’s Multipliers◾◾
Suppose f (x1, x2, x3,…, xn) is to be maximized subject to constraints

	 Φ1(x1, x2, x3, …, xn) = 0
	 Φ2(x1, x2, x3, …, xn) = 0
	 .
	 .
	 ΦN(x1, x2, x3, …, xn) = 0

Define the Lagrange function F as

	 F(x1, x2, x3, …, xn) = f (x1, x2, x3, …, xn) + λ1Φ1(x1, x2, x3, …, xn)

	 + λ2Φ2(x1, x2, x3, …, xn) + λNΦN (x1, x2, x3, …, xn)

where λi are unknown multipliers to be determined. Set

	

∂
∂

= ∂
∂

= ∂
∂

=

= = =

F
x

F
x

F
x2 n

N

1

1

0 0 0

0 0 02

, , ,

, , , ,

…

…Φ Φ Φ

	
(Note:

∂
∂

= =F

j
jl

0 0gives Φ)

93568_Book.indb 176 7/22/09 10:31:24 AM

Optimization  ◾  177

This set of (n + N) equations gives all possible extrema of f. Proof is beyond the
scope of this textbook [1].

Example 9.2

A silo is to consist of a right circular cylinder with a hemispherical roof (see Figure 9.1).
If the silo is to have a specified volume V, find the dimensions that make its surface
area a minimum. Assume that the silo has a floor of the same material.

Note:V Rsphere = 4
3

3π , S Rsphere = 4 2π

Take V = 8400 m3

Solution:

	

V R R L

S RL R R RL R

F RL

= +

= + + = +

= +

2
3

2 2 2 3

2 3

3 2

2 2 2

π π

π π π π π

π π

,

RR R R L V2 3 22
3

+ + -



l π π

Variables are R L, , and l.

	
∂
∂

= + + + =F
R

L R R RL2 6 2 2 02π π l π π()

	
∂
∂

= + =F
L

R R2 02π lπ
 

⇒ = - = -l lR
R

2 2or

R

Figure 9.1  Sketch of a silo consisting of a right circular cylinder topped by a
hemisphere.

93568_Book.indb 177 7/22/09 10:31:26 AM

178  ◾  Numerical and Analytical Methods with MATLAB﻿

Substituting the value of l in the above equation gives

	
2 6 2 2 2 02π π π πL R

R
R RL+ - + =()

The above equation reduces to R L- = 0 or R L= . Substituting this result into
the V equation gives

	
V R R R= + =π π π3 3 32

3
5
3

For V = 8400 m3,

	
R = ×



 =8400 3

5
11 7065

1 3

π

/

. m

Substituting the values for R and L into the equation for S gives S = 2152.6 m2.

9.5 � MATLAB’s Optimization Function
MATLAB’s optimization function is fmincon. A description of the function can
be obtained by typing help fmincon in the command window. A description of the
function follows:

X=fmincon(FUN,X0,A,B) starts at X0 and finds a minimum X to the function
FUN, subject to the linear inequalities A*X <= B. FUN accepts input X
and returns a scalar function value F evaluated at X. X0 may be a
scalar, vector, or matrix.

X=fmincon(FUN,X0,A,B,Aeq,Beq) minimizes FUN subject to the linear
equalities Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no
inequalities exist.)

X=fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper
bounds on the design variables, X, so that the solution is in the range
LB <= X <= UB. Use empty matrices for LB and UB if no bounds exist. Set
LB(i)=–Inf if X(i) is unbounded below; set UB(i)=Inf if X(i) is
unbounded above.

X=fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) subjects the minimization to
the constraints defined in NONLCON. The function NONLCON accepts X and
returns the vectors C and Ceq, representing the nonlinear inequalities
and equalities, respectively. Fmincon minimizes FUN such that C(X)< = 0
and Ceq(X) = 0. (Set LB=[] and/or UB=[] if no bounds exist.)

93568_Book.indb 178 7/22/09 10:31:28 AM

Optimization  ◾  179

X=fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) minimizes with the
default optimization parameters replaced by values in the structure
OPTIONS, an argument created with the OPTIMSET function. See OPTIMSET
for details.

X=fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS,P1,P2,…) passes the
problem-dependent parameters P1, P2, … directly to the functions FUN
and NONLCON.

[X,FVAL]=fmincon(FUN,X0,…) returns the value of the objective function FUN
at the solution X.

Example 9.3
% optimsilo.m
% This program minimizes the material surface area of a silo
% The silo consists of a right cylinder topped by a hemisphere.
% The volume is set at 7000 and 8400 m^3
% Variables are length, L = x(2) and radius, R = x(1)
clear; clc;
% Take a guess at the solution
LB = [0,0];
UB = [];
xo = [10.0 20.0];
% Set optimization options:
% Turn off the large-scale algorithms (the default)
options = optimset(‘LargeScale’,’off’);
% We have no inequality constraints, so pass [] for those arguments
VT=[7000 8400];
fo=fopen(‘output.dat’,’w’);
fprintf(fo,’ Optimization Problem \n\n’);
fprintf(fo,’This program minimizes the material surface area of ...
		 a silo \n’);
fprintf(fo,’ The silo consists of a right cylinder topped by ...
		 a hemisphere. \n’);
fprintf(fo,’ The volume is set at 7000 and 8400 ft^3 \n\n’);
for i=1:2
	 V=VT(i);
[x,fval]=fmincon(@objfunsilo,xo,[],[],[],[],LB,UB,@confunsilo, ...
		 options,V);
fprintf(fo,’V=%6.1f R=%7.3f L=%7.3f minimum surf area=%9.3f \n’, ...
		 V,x(1),x(2),fval);
end
fclose(fo);

% objfunsilo.m
function s=objfunsilo(x,V)
s=(2.0*pi*x(1)*x(2)+3.0*pi*x(1)^2);

% confunsilo.m
function [c, ceq] = confunsilo(x,V)
% Nonlinear equality constraints:
ceq = pi*x(1)^2*x(2)+2.0/3.0*pi*x(1)^3-V;
% No nonlinear inequality constraints:
c = [];

93568_Book.indb 179 7/22/09 10:31:28 AM

180  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 9.4
% optim_shafts.m
% Two machine shops, Machine Shop A and Machine Shop B, are to
% manufacture two types of shafts, shaft S1 and shaft S2. Each machine
% shop has two Turning Machines, Turning Machine T1 and Turning Machine
% T2. The following table lists the production time for each shaft type
% on each machine and at each location.
%--|
% 				 TIME IN MINUTES 	 |
%----------|-----------------||----------------|
% 			 | MACHINE SHOP A || MACHINE SHOP B |
% ---------|-----------------||----------------|
% TURNING | 	 SHAFTS ||	 SHAFTS |
% MACHINE | 		 || 	 |
%----------|--------|--------||--------|-------|
% 			 | S1 | S2 || S1 | S2 |
% ---------|--------|--------||--------|-------|
% 	 T1 | 4 | 9 || 5 | 8 |
% ---------|--------|--------||--------|-------|
% 	 T2 | 2 | 6 || 3 | 5 |
% ---------|--------|--------||--------|-------|
%
% Shaft S1 sells for $35 and shaft S2 sells for $85.
% Determine the number of S1 and S2 shafts that should be produced at
% each machine shop and on each machine that will maximize the
% revenue per hour.
% Let:
% x(1)=the number of S1 shafts produced/hr by machine T1 by shop A
% x(2)=the number of S2 shafts produced/hr by machine T1 by shop A
% x(3)=the number of S1 shafts produced/hr by machine T2 by shop A
% x(4)=the number of S2 shafts produced/hr by machine T2 by shop A
% x(5)=the number of S1 shafts produced/hr by machine T1 by shop B
% x(6)=the number of S2 shafts produced/hr by machine T1 by shop B
% x(7)=the number of S1 shafts produced/hr by machine T2 by shop B
% x(8)=the number of S2 shafts produced/hr by machine T2 by shop B
% Z=the total revenue/hr for producing the shafts.
% Z=35*(x(1)+x(3)+x(5)+x(7))+85*(x(2)+x(4)+x(6)+x(8)).
% The problem is to maximize Z subject to the following constraints
% 4*x(1)+9*x(2) <= 60
% 2*x(3)+6*x(4) <= 60
% 5*x(5)+8*x(6) <= 60
% 3*x(7)+5*x(8) <= 60
clear; clc;
fo=fopen(‘shaftoutput.dat’,’w’);
fprintf(fo,’optim_shafts.m \n’);
fprintf(fo,’Shaft Production Problem \n’);
fprintf(fo,’This program maximizes the revenue/hr for the ...
		 production \n’);
fprintf(fo,’of two types of shafts, type S1 and type S2. There ...
		 are two \n’);
fprintf(fo,’machine shops producing these shafts, ...
		 shop A & shop B. \n’);
fprintf(fo,’Each shop has two types of turning machines, ...
		 T1 and T2, \n’);

93568_Book.indb 180 7/22/09 10:31:28 AM

Optimization  ◾  181

fprintf(fo,’capable of producing these shafts. \n’);
fprintf(fo,’Shop A: \n’);
fprintf(fo,’ Machine T1 takes 4 minutes to produce type ...
		 S1 shafts \n’);
fprintf(fo,’ and 9 minutes to produce type S2 shafts. \n’)
fprintf(fo,’ Machine T2 takes 2 minutes to produce type ...
		 S1 shafts \n’);
fprintf(fo,’ and 6 minutes to produce type S2 shafts. \n’);
fprintf(fo,’\n’);
fprintf(fo,’Shop B: \n’);
fprintf(fo,’ Machine T1 takes 5 minutes to produce type ...
		 S1 shafts \n’);
fprintf(fo,’ and 8 minutes to produce type S2 shafts. \n’)
fprintf(fo,’ Machine T2 takes 3 minutes to produce type S1 shaft \n’);
fprintf(fo,’ and 5 minutes to produce type S2 shafts. \n’);
fprintf(fo,’\n’);
fprintf(fo,’Shaft S1 sells for $35 & shaft S2 sells for $85. \n’);
fprintf(fo,’\n’);
fprintf(fo,’We wish to determine the number of S1 & S2 tanks that \n’);
fprintf(fo,’should be produced at each shop and by each machine \n’);
fprintf(fo,’that will maximize the revenue/hr for producing ...
		 the shafts \n’);
fprintf(fo,’ Let: \n’);
fprintf(fo,’x(1)=the number of S1 shafts produced/hr by ...
		 machine T1 at shop A \n’);
fprintf(fo,’x(2)=the number of S2 shafts produced/hr by ...
		 machine T1 at shop A \n’);
fprintf(fo,’x(3)=the number of S1 shafts produced/hr by ...
		 machine T2 at shop A \n’);
fprintf(fo,’x(4)=the number of S2 shafts produced/hr by ...
		 machine T2 at shop A \n’);
fprintf(fo,’x(5)=the number of S1 shafts produced/hr by ...
		 machine T1 at shop B \n’);
fprintf(fo,’x(6)=the number of S2 shafts produced/hr by ...
		 machine T1 at shop B \n’);
fprintf(fo,’x(7)=the number of S1 shafts produced/hr by ...
		 machine T2 at shop B \n’);
fprintf(fo,’x(8)=the number of S2 shafts produced/hr by ...
		 machine T2 at shop B \n’);
fprintf(fo,’\n’);
fprintf(fo,’Let Z=the total revenue/hr for producing these tanks \n’);
fprintf(fo,’ Z=35*(x(1)+x(3)+x(5)+x(7))+75*(x(2)+x(4)+x(6)+x(8)) \n’);
% Take a guess at the solution
xo = [0 0 0 0 0 0 0 0];
LB = [0 0 0 0 0 0 0 0];
UB = [];
% We have linear inequality constraints

A=[4 9 0 0 0 0 0 0;
 0 0 2 6 0 0 0 0;
 0 0 0 0 5 8 0 0
 0 0 0 0 0 0 3 5];
B=[60 60 60 60]’;
% We have no linear equality constraints, so pass [] for those
% arguments. We have no equality or inequality nonlinear constraints.
[x, fval] = fmincon(@objshafts,xo,A,B,[],[],LB,UB);

93568_Book.indb 181 7/22/09 10:31:28 AM

182  ◾  Numerical and Analytical Methods with MATLAB﻿

fprintf(fo,’\n’);
fprintf(fo,’The number of S1 shafts produced at shop A ...
		 on machine T1=%5.0f\n’,x(1));
fprintf(fo,’The number of S2 shafts produced at shop A ...
		 on machine T1=%5.0f\n’,x(2));
fprintf(fo,’The number of S1 shafts produced at shop A ...
		 on machine T2=%5.0f\n’,x(3));
fprintf(fo,’The number of S2 shafts produced at shop A ...
		 on machine T2=%5.0f\n’,x(4));
fprintf(fo,’The number of S1 shafts produced at shop B ...
		 on machine T1=%5.0f\n’,x(5));
fprintf(fo,’The number of S2 shafts produced at shop B ...
		 on machine T1=%5.0f\n’,x(6));
fprintf(fo,’The number of S1 shafts produced at shop B ...
		 on machine T2=%5.0f\n’,x(7));
fprintf(fo,’The number of S2 shafts produced at shop B ...
		 on machine T2=%5.0f\n’,x(8));
fprintf(fo,’\n’);
fprintf(fo,’The revenue for producing these shafts = $%6.0f \n’,-fval);
fclose(fo);

% objshafts.m
% This object function is required for program optimtanks3.m
function Z=objshafts(x)
Z=–(35*(x(1)+x(3)+x(5)+x(7))+85*(x(2)+x(4)+x(6)+x(8)));

Exercises
Exercise 9.1
Use Lagrange Multipliers to find the volume of the largest box that can be placed
inside the ellipsoid

	
x
a

y
b

z
c

2

2

2

2

2

2 1+ + =

so that the edges will be parallel to the coordinate axis.

Projects
Project 9.1
A silo consists of a right circular cylinder topped by a right circular cone as
shown in Figure P9.1. The radius of the cylinder and the base of the cone are R.
The length of the cylinder is L and the height of the cone is H. The cylinder, the
cone, and the silo floor are all made of the same material. Write a program in
MATLAB using MATLAB’s fmincon function to determine the values of R, H,
and L that will result in the minimum surface silo area for an internal silo volume
of 7000 m3.

93568_Book.indb 182 7/22/09 10:31:28 AM

Optimization  ◾  183

For a right circular cone:

	

V R H

S R R H

=

= +

π

π

2

2 2

3

Project 9.2
A retail store sells computers to the public. There are eight different computer types
that the store may carry. Table P9.2 lists the type of computer, the selling price,

L

H

R

Figure P9.1  Sketch of a silo consisting of a right circular cylinder topped by a
right circular cone.

Table P9.2  Selling Price and Store Cost
of Computer Types

Computer Type Selling Price ($) Cost ($)

C1 675 637

C2 805 780

C3 900 874

C4 1025 990

C5 1300 1250

C6 1500 1435

C7 350 340

C8 1000 1030

93568_Book.indb 183 7/22/09 10:31:29 AM

184  ◾  Numerical and Analytical Methods with MATLAB﻿

and the cost to the store. The store plans to spend $20,000 per month purchasing
the computers.

The store plans to spend no more than 30% of its costs on computer types C1
and C2, no more than 30% on computer types C3 and C4, no more than 10% on
computer types C5 and C6, and no more than 30% on computer types C7 and C8.
The store estimates that it can sell 30% more of type C1 than C2, 20% more of
type C3 than C4, 20% more of type C5 than C6, and 60% more of type C7 than
C8. Use the fmincon function in MATLAB to determine the number of each type
of computer that will provide the store with the most profit. Print out the number
of each type of computer the store should purchase per month, the total profit per
month, and the total cost per month to the store.

Project 9.3
The Jones Electronics Corp. has a contract to manufacture four different computer
circuit boards. The manufacturing process requires each of the boards to pass through
the following four departments before shipping: Etching & Lamination (etches cir-
cuits into board), Drilling (drills holes to secure components), Assembly (installs tran-
sistors, micro processes, etc.), and Testing. The time requirement in minutes for each
unit produced and its corresponding profit value are summarized in Table P9.3a.

Each department is limited to 3 days per week to work on this contract. The mini-
mum weekly production requirement to fulfill the contract is shown in Table P9.3b.

Write a MATLAB program that will

	 (a)	 Determine the number of each type of circuit board for the coming week that
will provide the maximum profit. Assume that there are 8 hours per day, 5
days per week available for factory operations.

		 Note: Not all departments work on the same day.
	 (b)	 Determine the total profit for the week.
	 (c)	 Determine the total number of minutes it takes to produce all the boards.
	 (d)	 Determine the total number of minutes spent in each of the four departments.
	 (e)	 Print out to a file the requested information.

Table P9.3a  Manufacturing Time in Minutes in Each Department

Circuit
Board

Etching &
Lamination Drilling Assembly Testing Unit Profit ($)

 Board A 15 10 8 15 12

 Board B 12 8 10 12 10

 Board C 18 12 12 17 15

 Board D 13 9 4 13 10

93568_Book.indb 184 7/22/09 10:31:29 AM

Optimization  ◾  185

Project 9.4
The XYZ oil company operates three oil wells (OW1, OW2, OW3) and supplies
crude oil to four refineries (refinery A, refinery B, refinery C, refinery D). The cost
of shipping the crude oil from each oil well to each of the refineries, the capacity of
each of the three oil wells, and the demand (equality constraint) for gasoline at each
refinery are tabulated in Table P9.4a. The crude oil at each refinery is distilled into
six basic products: gasoline, lubricating oil, kerosine, jet fuel, heating oil, and plas-
tics. The cost of distillation per 100 liters at each refinery from each of the oil wells is
given in Table P9.4b. The percentage of each distilled product per 100 liters is tabu-
lated in Table P9.4c. The revenue from each product is tabulated in Table P9.4d.

Using the fmincon function in MATLAB, determine the liters of oil to be pro-
duced at each oil well and shipped to each of the four refineries that will satisfy the
gasoline demand and that will produce the maximum profit. Print out the follow-
ing items:

	 (a)	 The liters produced at each oil well.
	 (b)	 The liters of gasoline received at each refinery.
	 (c)	 The total cost of shipping and distillation of all products.
	 (d)	 The total revenue from the sale of all of the products.
	 (e)	 The total profit from all of the products.

Table P9.3b 

Circuit Board Minimum Production

Board A 10

Board B 10

Board C 10

Board D 10

Table P9.4a  Cost of Shipping per 100 Liters

Oil Well
Refinery

A
Refinery

B
Refinery

C
Refinery

D
Oil Well
Capacity

OW 1 9 7 10 11 7000 liters

OW 2 7 10 8 10 6100 liters

OW 3 10 11 6 7 6500 liters

Demand (liters of
gasoline)

2,000 1,800 2,100 1,900

93568_Book.indb 185 7/22/09 10:31:30 AM

186  ◾  Numerical and Analytical Methods with MATLAB﻿

Reference
	 1.	 Wylie, C. R., Advanced Engineering Mathematics, 4th Ed., McGraw-Hill, New York,

1975.

Table P9.4d  Product Revenue per Liter ($)

Gasoline
Lubricating

Oil Kerosene Jet Fuel
Heating

Oil Plastics

0.40 0.20 0.20 0.50 0.25 0.15

Table P9.4b  Cost of Distillation per 100 Liters ($)

Oil Well Refinery A Refinery B Refinery C Refinery D

OW 1 15 16 12 14

OW 2 17 12 14 10

OW 3 12 15 16 17

Table P9.4c  Distillation Products per Liter of Crude Oil

Product Percentage per Liter from Distillation (%)

Oil Well Gasoline
Lubricating

Oil Kerosene
Jet

Fuel
Heating

Oil Plastics

OW 1 43 10 9 15 13 10

OW 2 38 12 5 14 16 15

OW 3 46   8 8 12 12 14

93568_Book.indb 186 7/22/09 10:31:30 AM

187

10Chapter

Partial Differential
Equations

10.1 � The Classification of Partial Differential Equations
The mathematical modeling of many types of engineering-type problems involves
partial differential equations (PDEs). PDEs of the general form as given by Equation
(10.1) fall into one of three categories. These categories are listed below:

	
A

u
x

B
u

x y
C

u
y

f x y u
u
x

u
y

∂
∂

+ ∂
∂ ∂

+ ∂
∂

= ∂
∂

∂
∂







2

2

2 2

2 , , , , 	 (10.1)

where A, B, and C are constants.

If B AC2 4 0- < , the equation is said to be elliptic.
If B AC2 4 0- = , the equation is said to be parabolic.
If B AC2 4 0- > , the equation is said to be hyperbolic.

The steady-state heat conduction problem in two dimensions is an example of an
elliptic PDE. Laplace’s PDE falls into this category. The parabolic PDE is also
called the diffusion equation. The unsteady heat conduction problem is an example
of a parabolic PDE. The hyperbolic PDE is also called the wave equation. Sound
waves and vibration problems, such as the vibrating string, fall into this category.
How a PDE is treated numerically depends into which category it falls. However,
there are cases in all three categories where a closed-form solution can be obtained
by a method called separation of variables. This solution method is discussed in the
next section.

93568_Book.indb 187 7/22/09 10:31:31 AM

188  ◾  Numerical and Analytical Methods with MATLAB﻿

10.2 � Solution by Separation of Variables
10.2.1 � The Vibrating String
The first problem to be considered is the vibrating string, such as a violin or a viola
string (see Figure 10.1). We will assume that

	 1.	The string is elastic.
		 The string motion is vertical.
		 The gravitational forces are negligible compared to the tension in the string.
	 2.	The displacement, Y (x, t), from the horizontal is small and the angle that the

string makes with the horizontal is small. Then ∂
∂
Y
t

 is the vertical velocity of
the string and ∂

∂

2

2
Y
t

 is the acceleration of the string at position x.

To obtain the governing equation, select an arbitrary element of the string as
shown in Figure 10.2. Taking the sum of the forces in the y direction and applying
Newton’s second law to this element give

	
M

Y
t

T Tx x x
∂
∂

= -+

2

2 (sin) (sin)ϑ ϑD 	 (10.2)

y

x

String

Figure 10.1  A vibrating string.

y

T(x + ∆x)

T(x)

θ(x)

θ(x + ∆x)

x

Figure 10.2  An arbitrary string section.

93568_Book.indb 188 7/22/09 10:31:33 AM

Partial Differential Equations  ◾  189

Since there is no horizontal movement in the string,

	
(cos) (cos)T T Tx x xϑ ϑ+ = =D 0 	 (10.3)

Dividing both sides of Equation (10.2) by T0 (but using the appropriate expression
from Equation 10.3) gives

	
M
T

Y
t

T
T

T
T

x x0

2

2
∂
∂

=






-




+

sin
cos

sin
cos

ϑ
ϑ

ϑ
ϑ

D xx
x x x= -+(tan) (tan)ϑ ϑD 	 (10.4)

	 M x= rD 	 (10.5)

where r is the mass per unit length. Dividing both sides by Dx and taking the limit
as D x →0 on both sides of Equation (10.4) gives

	

r ϑ
T

Y
t x0

2

2
∂
∂

= ∂
∂

(tan)
	 (10.6)

But tanϑ is the slope of the string, which is ∂
∂
Y
x

. Thus, Equation (10.6) becomes

	

1
2

2

2

2

2c
Y
t

Y
x

∂
∂

= ∂
∂

	 (10.7)

where

	
c

To2 =
r 	

(10.8)

Comparing Equation (10.7) with Equation (10.1), we see that Equation (10.7) is a
wave equation. Since ϑ is very small, cosϑ ≈1 and, thus, T0 is essentially the ten-
sion in the string. To complete the formulation, two initial conditions are needed
(PDE is second order in t) and two boundary conditions (PDE is second order in x).
We will assume that the string is deflected at x0 and then released from rest. Then,
the initial conditions become

	

∂
∂

=Y
t

x(,)0 0 	 (10.9)

	 Y x f x(,) ()0 = 	 (10.10)

93568_Book.indb 189 7/22/09 10:31:36 AM

190  ◾  Numerical and Analytical Methods with MATLAB﻿

The boundary conditions are

	 Y t(,)0 0= 	 (10.11)

	 Y L t(,) = 0 	 (10.12)

We seek a function Y that satisfies the PDE and initial and boundary conditions.
Let us examine the possibility that Y is a product of a pure function of x and a pure
function of t, that is,

	 Y F x G t= () ()

Substituting this expression into the PDE gives

	
F
c

d G
dt

G t d F
dx2

2

2

2

2= ()

Dividing both sides by GF gives

	
1 1
2

2

2

2

2c G
d G
dt F

d F
dx

= 	 (10.13)

The left-hand side is a pure function of t and the right-hand side is a pure function
of x. Since x and t are independent variables, Equation (10.13) can only be true if
both sides equal the same constant, say, (–l2). The minus sign is selected so that Y
does not blow up as t → ∞. Then Equation (10.13) reduces to two ordinary dif-
ferential equations, which are

	
d F
dx

F
2

2
2 0+ =l 	 (10.14)

and

	
d G
dt

c G
2

2
2 2 0+ =l 	 (10.15)

The general solution to Equation (10.14) is

	 F a x a x= +1 2cos sinl l 	 (10.16)

The boundary condition given by Equation (10.11) reduces to

	 F G t F a() () ()0 0 0 0 01= → = → =

93568_Book.indb 190 7/22/09 10:31:38 AM

Partial Differential Equations  ◾  191

or

	 F a x= 2 sinl 	 (10.17)

The boundary condition given by Equation (10.12) is

	 F L G t F L() () ()= → =0 0

or

	 a L2 0sinl = 	 (10.18)

There are an infinite number of solutions to Equation (10.18), that is, l πL n= ,
where n = 0, 1, 2,…, ∞ . Then,

	
l π= n

L
	 (10.19)

The solution to Equation (10.15) is

	 G b c t b c t= +1 2cos() sin()l l 	 (10.20)

and

	
dG
dt

c b c t c b c t= - +l l l l1 2sin() cos() 	 (10.21)

Applying the initial condition given by Equation (10.9) gives

	
F x dG

dt
dG
dt

b() () ()0 0 0 0 02= → = → =

Then,

	 G t b c t() cos()= 1 l

The b’s can be absorbed into the an constants giving

	
Y x t a

n x
L

n c t
Ln

n

(,) sin cos=
=

∞

∑
1

π π
	 (10.22)

93568_Book.indb 191 7/22/09 10:31:41 AM

192  ◾  Numerical and Analytical Methods with MATLAB﻿

Applying the initial condition given by Equation (10.10) gives

	
Y x f x a

n x
Ln

n

(,) () sin0
1

= =
=

∞

∑ π
	 (10.23)

The coefficients an can be determined by knowing that the sin n x
L
π functions are

orthogonal, that is,

	
sin sin ,

n x
L

m x
L

dx m n L m n
L π π

0
0

2∫ = ≠ =if and equals if 	 (10.24)

Multiply Equation (10.23) by sin m x
L

dx
π and integrate from 0 to L, giving

	
f x

m x
L

dx a
n x

L
m x

L
dx a LL

n

L

n
m()sin sin sin

π π π
0 0

0
∫ ∫∑= =

=

∞

22
	 (10.25)

Since m is an index from 1 to ∞, we can replace m with n and write

	
a

L
f x

n x
L

dxn

L

= ∫2
0

()sin
π

	 (10.26)

Having a value for an, Equation (10.22) gives the solution for Y (x, t). See
Project 10.2.

10.2.2 � Unsteady Heat Transfer I (Bar)
Consider a thick bar, as shown in Figure 10.3, that is initially at a uniform tem-
perature, T0, that is suddenly immersed in a large bath at temperature T∞ . We wish
to determine the temperature time history of the bar, T x t(,), and the amount of
heat transferred to the bath (see Appendix B for derivation of the heat conduction
equation). Due to symmetry, one only needs to consider T x t(,) for 0 ≤ x L. The
PDE is

	

1 2

2a
T
t

T
x

∂
∂

= ∂
∂ 	 (10.27)

The initial condition is

	 T x T(,)0 0= 	 (10.28)

93568_Book.indb 192 7/22/09 10:31:44 AM

Partial Differential Equations  ◾  193

The boundary conditions are

	

∂
∂

=T
x

t(,)0 0 	 (10.29)

	

∂
∂

+ - =∞
T
x

L t h
k

T L t T(,) ((,)) 0 	 (10.30)

where�
	 t = time.
	 a = thermal diffusivity of the bar material.
	 h = the convective heat transfer coefficient.
	 k = the thermal conductivity of the bar material.

Equation (10.29) is a statement that there is no heat transfer in any direction
at x = 0 (this is due to problem symmetry). Equation (10.30) is a statement that the
rate that heat leaves the bar at x = L by conduction is equal to the rate that heat is
carried away by convection in the bath. To make the boundary condition at x = L
homogeneous, let

	 ϑ (,) (,)x t T x t T= - ∞

Then the PDE and the initial and boundary conditions become

	

1 2

2a t x
∂
∂

= ∂
∂

ϑ ϑ
	 (10.31)

	 ϑ (,)x T T0 0= - ∞ 	 (10.32)

x

LL

h, T∞h, T∞

Figure 10.3  A thick bar suddenly immersed in a liquid.

93568_Book.indb 193 7/22/09 10:31:45 AM

194  ◾  Numerical and Analytical Methods with MATLAB﻿

	

∂
∂

=ϑ
x

t(,)0 0 	 (10.33)

	

∂
∂

+ =ϑ ϑ
x

L t h
k

L t(,) (,) 0 	 (10.34)

Comparing Equation (10.31) with Equation (10.1), we see that Equation (10.31) is
a diffusion equation. We will assume that

	 ϑ = F x G t() () 	 (10.35)

where F is a pure function of x and G is a pure function of t. Substituting Equation
(10.35) into Equation (10.31) gives

	
1
a

F x G t G t F x() () () ()′ = ′′ 	 (10.36)

where

	
′ = ′′ =G t

d G
d t

F
d F
d x

() and
2

2

Dividing both sides of Equation (10.36) by F G gives

	
1
a

G
G

F
F

′ = ′′ 	 (10.37)

The left-hand side of Equation (10.37) is a pure function of t and the right-hand
side is a pure function of x. The only way a pure function of t can equal a pure
function of x is for both sides to equal the same constant, say, ().-l Then Equation
(10.37) can be expressed as two ordinary differential equations, which are

	 ′ + =G a Gl2 0 	 (10.38)

	 ′′ + =F Fl2 0 	 (10.39)

The boundary conditions become

	 ′ =F G t() ()0 0

93568_Book.indb 194 7/22/09 10:31:48 AM

Partial Differential Equations  ◾  195

or

	 ′ =F ()0 0 	 (10.40)

and

	
′ + =F L G t h

k
F L G t() () () () 0

or

	
′ + =F L h

k
F L() () 0 	 (10.41)

The function that will satisfy Equation (10.39) is of the form

	 F Ae x= b

Substituting this form into Equation (10.41) gives

	 b lb b2 2 0Ae Aex x+ =

Then,

	 b l= ± = -i i, where 1

Knowing that e x i xi x = +cos() sin(), F becomes

	 F x A x B x() cos() sin()= +l l 	 (10.42)

and

	 ′ = - +F x A x B x() sin() cos()l l l l 	 (10.43)

Applying Equation (10.40) to Equation (10.42) gives B = 0. Thus,

	 F x A x() cos()= l 	 (10.44)

and

	 ′ = -F x A x() sin()l l 	 (10.45)

93568_Book.indb 195 7/22/09 10:31:50 AM

196  ◾  Numerical and Analytical Methods with MATLAB﻿

Applying Equations (10.44) and (10.45) to Equation (10.41) gives

	
- + =l l lA L h

k
A Lsin() cos() 0

or

	
tan()

()
l

l
L

h L
k L

- = 0 	 (10.46)

A plot of tan() , ,δ
δ

δ δ land vs. whereh L
k

L= is shown in Figure 10.4.
It can be seen that there is an infinite number of roots that satisfy Equation

(10.46), say, δ δ δ δ1 2 3, , ,..., ,n = l l l l1 2 3L L L Ln, , , ..., , giving an infinite number
of solutions, each satisfying the PDE and the boundary conditions. The solution to
Equation (10.38) can readily be obtained by separating the variables, giving

	
d G
G

a dtn= - l2

Integrating and taking the antilog gives

	
G a tn= -()exp l2 	 (10.47)

tan δ, hL/kδ

δ1 δ2 δ3 δ4
δ

3π2π

3π/2 5π/2π/20

π

tan δ

Figure 10.4  The plot of tan . .δ
δ

δand
hL
k

vs

93568_Book.indb 196 7/22/09 10:31:53 AM

Partial Differential Equations  ◾  197

Thus the general solution is

	
ϑ l l(,) cos()exp()x t A x a tn n n

n

= -
=

∞

∑ 2

1

	 (10.48)

The initial condition now needs to be applied. Applying Equation (10.32) to
Equation (10.48) gives

	
T T A xn n

n
0

1

- =∞
=

∞

∑ cos()l 	 (10.49)

It can be shown that the functions cos()ln x are orthogonal, that is,

	

cos()cos()

,

sin()cos(l l l ln m

L

m m
x x dx

m n

L L L
0

0

2
∫ =

≠

+

if

))
,

2lm

m nif =










This will be demonstrated later. Now multiply both sides of Equation (10.49) by
cos()lm x dx and integrate from 0 to L, giving

	
() cos() cos()cos()T T x dx A x x dxm

L

n n m

L

n
0

0 0
1

- =∞
=

∫ ∫l l l
∞∞

∑ 	 (10.50)

The only term in the summation on the right-hand side of Equation (10.50) that is
not multiplied by zero is the mth term. Thus,

	
() cos()

sin()cos()
T T x dx A L L L

m

L

m
m m

m
0

0 2
- = +∞ ∫ l

l l
l2







	 (10.51)

or

	
A

T T L
L L Lm

m

m m m

=
-

+
∞2 0()sin()

sin()cos()
l

l l l 	 (10.52)

Since m is an index from 0, 1, 2,…, we can replace m with n. Substituting Equation
(10.52) into Equation (10.48) gives

	
ϑ

l l
l l

(,) ()
sin()cos()

sin()cos(
x t T T

L x
L L

n n

n n

= -
+∞2 0 ll

l

n

a t

n
L

e n

)
-

=

∞ 



∑ 2

1
	 (10.53)

93568_Book.indb 197 7/22/09 10:31:56 AM

198  ◾  Numerical and Analytical Methods with MATLAB﻿

Now to demonstrate the orthogonality of the cos()lnx functions. Let f xn n= cos()l
and f xm m= cos().l Each function satisfies the ODE, that is,

	 ′′ + =f fn n nl2 0 	 (10.54)

and

	 ′′ + =f fm m ml2 0 	 (10.55)

Each function satisfies the boundary conditions, that is,

	 ′ =fn ()0 0   and  ′ =fm ()0 0

and

	
′ + =f L h

k
f Ln n() () 0

 
and

 
′ + =f L h

k
f Lm m() () 0

Now multiply Equation (10.54) by fm and Equation (10.55) by fn and subtract the
second equation from the first, giving

	
f f f f f f f fm n n n m n m m n m′′ +() - ′′ +() =l l2 2 0 	 (10.56)

or

	
f f f f f fm n n m m n n m′′- ′′ = -()l l2 2 	 (10.57)

But

	
d
dx

f f f f f fm n m n m n()′ = ′′ + ′ ′ 	 (10.58)

and

	
d
dx

f f f f f fn m n m m n()′ = ′′ + ′ ′ 	 (10.59)

Then

	
d
dx

f f f f f f f fm n n m m n n m()′ - ′ = ′′ - ′′ 	 (10.60)

93568_Book.indb 198 7/22/09 10:31:59 AM

Partial Differential Equations  ◾  199

Substituting Equation (10.60) into Equation (10.57) gives

	
d
dx

f f f f f fm n n m m n n m()′ - ′ = -()l l2 2 	 (10.61)

Multiplying both sides of Equation (10.61) by dx and integrating from 0 to L gives

	

d
dx

f f f f dx f f dx
L

m n n m m n n

L

m
0

2 2

0∫ ∫′ - ′ = -()() l l 	 (10.62)

or

	

l l l lm n

L

n m m n nx x dx f L f L f L2 2

0
-() = ′ -∫ cos()cos() () () ()) ()

() () () ()

′

- ′ + ′

f L

f f f f

m

m n n m0 0 0 0 	 (10.63)

But ′ =fn ()0 0 and ′ =fm ()0 0 and

	
f L f L f L f L f L h

k
f L f L h

k
fm n n m m n n m() () () () () () ()′ - ′ = - + (()L = 0 	 (10.64)

Thus,

	
l l l lm n

L

n mx x dx2 2

0
0-() =∫ cos()cos() 	 (10.65)

	 If m n m n≠ -() ≠, then andl l2 2 0 cos()cos()
0

0
L

n mx x dx∫ =l l 	 (10.66)

If m n m n= - =, ()then andl l2 2 0 cos ()2

0

L

nx dx∫ l needs to be evaluated.

From integral tables, we can determine that

	
cos ()

sin()cos()2

0 2
l

l l
lm

L
m m

m

x dx L L L
= +





∫ 2 	 (10.67)

10.2.3 � Unsteady Heat Transfer II (Cylinder)
A similar problem to the one described in the previous section is one in which a
cylinder, initially at temperature T0, is suddenly immersed in a fluid at temperature

93568_Book.indb 199 7/22/09 10:32:02 AM

200  ◾  Numerical and Analytical Methods with MATLAB﻿

T T∞ ∞>, .with T0 We will assume that end effects are negligible and that h and k
are constant, where h is the convective heat transfer coefficient and k is the thermal
conductivity of the cylinder material. We wish to determine the temperature dis-
tribution and the amount of heat transferred to the bath in time t. The governing
PDE is

	

1 2

a
T
t

T
∂
∂

= ∇ 	 (10.68)

In cylindrical coordinates (see Appendix C, Section C.4) with T = T (r ,t),

	
∇ = ∂

∂
+ ∂

∂
2

2

2
1T T

r r
T
r

	 (10.69)

Thus, Equation (10.69) becomes

	
1 12

2a
T
t

T
r r

T
r

∂
∂

= ∂
∂

+ ∂
∂ 	 (10.70)

The initial and boundary conditions are

	 T r T(,)0 0= 	 (10.71)

	 T t(,)0 is finite	 (10.72)

	
∂
∂

+ - =∞
T
r

R t h
k

T R t T(,) ((,)) 0 	 (10.73)

To obtain a homogeneous boundary condition at r  = R, let ϑ (,) (,) ;r t T r t T= - ∞
then Equations (10.70), (10.71), (10.72), and (10.73) become

	

1 12

2a t
r

r r r
∂
∂

= ∂
∂

+ ∂
∂

ϑ ϑ
	 (10.74)

	 ϑ (,)r T T0 0= - ∞ 	 (10.75)

	 ϑ (,)0 t is finite 	 (10.76)

	

∂
∂

+ =ϑ ϑ
r

R t h
k

R t(,) (,) 0 	 (10.77)

93568_Book.indb 200 7/22/09 10:32:05 AM

Partial Differential Equations  ◾  201

We wish to see if ϑ (,) () ()r t f r g t= can satisfy both the PDE and the initial
and boundary conditions. Substituting this form of ϑ into Equation (10.74), it
becomes

	

1 1
a

f g f
r

f g′ = ′′ + ′



 	 (10.78)

where

	
′ = ′′ = ′ =g

dg
dt

f
d f
dr

f
df
dr

, ,
2

2

Dividing both sides of Equation (10.78) by f g it becomes

	

1 1 1
a

g
g f

f
r

f
′ = ′′ + ′



 	 (10.79)

The left-hand side of Equation (10.79) is a pure function of t and the right-hand
side is a pure function of r, yet r and t are independent variables. The only way that
the left-hand side of Equation (10.79) can equal the right-hand side is for both to
be equal to the same constant, say, ().- l2 Then Equation (10.79) reduces to two
ordinary differential equations, which are

	 ′ + =g a gl2 0 	 (10.80)

	
′′ + ′ + =f

r
f f1 02l 	 (10.81)

Equation (10.80) can be immediately solved giving

	 g B e a t= - l 2

	 (10.82)

Multiplying Equation (10.81) by r2, it becomes

	 r f r f r f2 2 2 0′′ + ′ + =l 	 (10.83)

By letting lr x= , Equation (10.83) can be reduced to the standard form of Bessel’s
equation of order ν, which is

	 x y x y x y2 2 2 0′′ + ′ + - =()ν 	 (10.84)

93568_Book.indb 201 7/22/09 10:32:09 AM

202  ◾  Numerical and Analytical Methods with MATLAB﻿

It is left as a student exercise to show that Equation (10.83) reduces to Equation
(10.84) with f replacing y and v = 0. The Bessel functions J r Y r0 0() ()l land are
two solutions to Equation (10.83). Thus,

	
f r c J r c Y() () ()= +1 0 2 0l l 	 (10.85)

where J0 is a Bessel function of the first kind and Y0 is a Bessel function of the sec-
ond kind. These functions are oscillatory with a variable frequency and amplitude.
They have an infinite number of zeros (see Figure 10.5). However, the Y0 function
is singular at r = 0 (see Figure 10.6).

The boundary condition ϑ (,)0 t = f (0) g (t) is finite implies that f (0) is finite.
Since Y0 is singular at r = 0, thus, c2 = 0 and

	 f r c J r() ()= 1 0 l 	 (10.86)

The boundary condition described by Equation (10.77) reduces to

	
′ + =f R g t h

k
f R g t() () () () 0

or

	
′ + =f R h

k
f R() () 0 	 (10.87)

Substituting Equation (10.86) into Equation (10.87) gives

	

d
dr

c J r h
k

c J r
r R

(()) ()1 0 1 0 0l l+





=
=

	 (10.88)

To utilize the boundary condition expressed by Equation (10.88), we need to turn to
a recursion formula involving the Bessel functions (see Equation C.10 in Appendix
C). The recursion formula is

	
x

d
d x

J x n J x x J xn n n[()] () ()= - +1 	 (10.89)

Letting x r= l and using the chain rule to obtain the derivative with respect to r
and setting n = 0, Equation (10.89) reduces to

	
d
dr

J r J r0 1() ()l l l= - 	 (10.90)

93568_Book.indb 202 7/22/09 10:32:11 AM

Partial Differential Equations  ◾  203

0
–0.5

0

0.5

1

5 10 15 20
λr

J0 vs. λr
J 0

25 30 35 40

Figure 10.5  The plot of J0 vs. l r.

Y0 vs. λr

λr

0 5 10 15 20 25 30 35 40

1

0.5

0

–0.5Y 0

–1

–1.5

–2

Figure 10.6  The plot of Y r0 vs. .l

93568_Book.indb 203 7/22/09 10:32:13 AM

204  ◾  Numerical and Analytical Methods with MATLAB﻿

Substituting Equation (10.90) into Equation (10.88), we obtain

	
- + =l l lJ R h

k
J R1 0 0() ()

or

	

J R
J R

R k
h R

0

1

0
()
()
l
l

l- = 	 (10.91)

The function J1 has an infinite number of zeros as can be seen from Figure 10.7. As
a result there are an infinite number or roots to Equation (10.91) as can be seen in
Figure 10.8.

Although only seven
J
J

0

1
curves were plotted in Figure 10.8, it should be under-

stood that there are an infinite number of
J
J

0

1

 curves. The intersection of curves
J
J

k
hR

0

1

and l give the eigen values of l, say l j . Since each of these functions satisfies

the differential equation, the general solution is

	
ϑ ll(,) ()r t A e J rn

n

a t
n

n=
=

∞
-∑

1
0

2

	 (10.92)

0.6

0.5

0.4

0.3

0.2

0.1J 1

0

–0.1

–0.2

–0.3

–0.4
0 5 10 15 20

λr

J1 vs. λr

25 30 35 40

Figure 10.7  The plot of J1 vs. l r.

93568_Book.indb 204 7/22/09 10:32:15 AM

Partial Differential Equations  ◾  205

The initial condition still needs to be satisfied, that is,

	
ϑ l(,) ()r T T A J rn

n
n0 0

1
0= - =∞

=

∞

∑ 	 (10.93)

The constants An can be determined because the J0 functions are orthogonal, that is,

	
r J r J r dr

R h R
k J

R

m n m n

m

m
0

0

0

2 2
2

2 02∫ =
+









() () [l l δ
l

l
((]lm R 2 	 (10.94)

where

	

δm n

m n

m n

=

=

≠










1

0

,

,

if

if

0 5 10 15 20 25
−2

0

2

4

6

8

10

12

λ R

J 0/J 1 &
 k

*λ
 R

/(h
*R

)
J0/J1 & k*λ R/(h*R) vs. λ R

Figure 10.8  The plot of J J Rk hR R
0 1
/ / . .and vsl l

93568_Book.indb 205 7/22/09 10:32:17 AM

206  ◾  Numerical and Analytical Methods with MATLAB﻿

Also,

	
r J r dr R J Rm

m

R

m0

0

1() ()l
l

l=∫ 	 (10.95)

For proof of Equations (10.94) and (10.95) see Appendices C.2 and C.3.
Multiplying Equation (10.93) by r J r d rm0 ()l and integrating from 0 to R,

gives

	
() () [(T T R J R A

R h R
k J R

m
m m

m

m
m0 1

2 2
2

2 02
- =

+








∞ l
l

l

l
l))] 2 	 (10.96)

Thus,

	

A
T T R

h R
k

J R

Jm
m

m R

m=
-

+






×∞2 0

2
2

1

0

()

()

()
[(

l

l

l
llm R)] 2

	 (10.97)

Finally, the temperature ratio TR(r, t) =
T r t T

T T
r t

T T
(,) (,)-

-
=

-
∞

∞ ∞0 0

ϑ
 is given by

	

TR r t
r t

T T
R

R
h R
k

n

n
n

(,)
(,)=
-

=
() +





×
∞ =

∞

∑ϑ l

l0 2
2

1

2 JJ R J r
J R

en n

n

a tn1 0

0
2

2() ()
()

l l
l

l

 
-

	 (10.98)

10.3 � Unsteady Heat Transfer in 2-D
Consider a bar having a rectangular cross-section, initially at temperature T0, that
is suddenly immersed in a huge bath at a temperatureT∞ (see Figure 10.9). The
governing PDE is

	

1 2

2

2

2α
∂
∂

= ∂
∂

+ ∂
∂

T
t

T
x

T
y

	 (10.99)

To obtain homogeneous boundary conditions let ϑ (, ,) (, ,) ;x y t T x y t T= - ∞ then
the PDE and the initial condition and boundary conditions in variable ϑ are

	

1 2

2

2

2α
ϑ ϑ ϑ∂

∂
= ∂

∂
+ ∂

∂t x y
	 (10.100)

	 ϑ (, ,)x y T T0 0= - ∞ 	 (10.101)

93568_Book.indb 206 7/22/09 10:32:20 AM

Partial Differential Equations  ◾  207

	

∂
∂

=ϑ
x

y t(, ,)0 0 (due to symmetry)	 (10.102)

	

∂
∂

=ϑ
y

x t(, ,)0 0

(due to symmetry)	 (10.103)

	

∂
∂

+ =ϑ ϑ
x

L y t h
k

L y t(, ,) (, ,) 0 	 (10.104)

	

∂
∂

+ =ϑ ϑ
y

x w t h
k

x w t(, ,) (, ,) 0 	 (10.105)

Assume that

	 ϑ (, ,) () () ()x y t F t G x H y= 	 (10.106)

Substituting Equation (10.106) into Equation (10.100) gives

	
1
α

′ = ′′ + ′′F t G x H y F t G x H y F t G x H y() () () () () () () () () 	 (10.107)

Dividing both sides by F G H gives

	

1
α

′ = ′′ + ′′F t
F t

G x
G x

H y
H y

()
()

()
()

()
()

	 (10.108)

y

x

h1T∞

h1T∞

2L

2w

Figure 10.9  An unsteady 2-D heat transfer problem.

93568_Book.indb 207 7/22/09 10:32:23 AM

208  ◾  Numerical and Analytical Methods with MATLAB﻿

The left-hand side is only a function of t and the right-hand side is only a function
of x and y. Since x, y, and t are independent variables, the only way that the left-
hand side can equal the right-hand side is for both to be equal to the same constant,
say, -l 2. That is,

	

1 2

α
l′ = ′′ + ′′ = -F t

F t
G x
G x

H y
H y

()
()

()
()

()
()

This gives the following equation for F (t):

	 ′ + =F Fα l2 0 	 (10.109)

The solution of Equation (10.109) is

	 F C e t= - α l2 	 (10.110)

The right-hand side of Equation (10.108) can be written as

	

′′ + = - ′′G x
G x

H y
H y

()
()

()
()

l2 	 (10.111)

Again, the only way for the left-hand side to equal the right-hand side is for both to
equal the same constant, say, b2 ; then

	

′′ + = - ′′ =G x
G x

H y
H y

()
()

()
()

l b2 2

This gives

	 ′′ + - =G G()l b2 2 0 	 (10.112)

and

	 ′′ + =H Hb2 0 	 (10.113)

The solution for G is

	 G A x A x= - + -1
2 2

2
2 2cos() sin()l b l b 	 (10.114)

and

	
′ = - - - + -{ }G A x A xl b l b l b2 2

1
2 2

2
2 2sin() cos() 	 (10.115)

93568_Book.indb 208 7/22/09 10:32:25 AM

Partial Differential Equations  ◾  209

Applying the boundary condition Equation (10.102), ′ =G () ,0 0 gives A2 0= .

Applying the boundary condition Equation (10.104), (() (())′ + =G L h
k

G L 0 , gives

	
- - - + - =l b l b l b2 2

1
2 2

1
2 2 0A L h

k
A Lsin() cos()

or

	
tan l b

l b
2 2

2 2

1-() = ×
-

L
h L
k L 	 (10.116)

Let g l bL L= -2 2 ; then Equation (10.116) can be written as

	
tan()g

g
L

h L
k L

= × 1 	 (10.117)

As seen in Figure 10.4, there are an infinite number of g ′L s that satisfy Equation

(10.117), say, () , () , () , ,g g gL L L1 2 3 … then g
g

i
iL

L
=

()
 and

	
G x A xi

i
i() cos()=

=

∞

∑
1

g 	 (10.118)

Returning to Equation (10.113), and noting the similarity between the G function
and the H function, we can determine that

	
H y B yj j

j

() cos()=
=

∞

∑ b
1

	 (10.119)

By the definition of g, we see that

	
l g bi j i j

2 2 2= + 	 (10.120)

Combining Equations (10.110), (10.118), and (10.119) and replacing Ai and Bj by a
single coefficient aij, we obtain

	

ϑ α g g b(, ,) exp()cos()cos()x y t a t x yi j i i j

ji

= ∑∑ 2 2
	 (10.121)

The initial condition provides the means for determining the coefficients aij, that is,

	 ϑ (, ,)x y T T0 0= - ∞ 	 (10.122)

93568_Book.indb 209 7/22/09 10:32:29 AM

210  ◾  Numerical and Analytical Methods with MATLAB﻿

or

	
T T a x yi j

ji
i j0 - =∞ ∑∑ cos()cos()g b 	 (10.123)

Now multiply both sides of Equation (10.123) by cos() cos()g bn mx y dx dy and
integrate for from 0 to and from 0 tox L y w.

As was shown by Equations (10.65) through (10.67), the functions
cos())g bi x yand cos(j are orthogonal. Thus,

	

cos()cos()

,

sin()cos(g g g gi n

L

n n
x x dx

i n

L L L
0

0

2
∫ =

≠

+

if

))
,

2 g n

i nif =









	 (10.124)

and

	

cos()cos()

,

sin()cos(b b b bj m

w

m m
y y dx

j m

L w w
0

0

2
∫ =

≠

+

if

))
,

2bm

j mif =










	 (10.125)

Also,

	
() cos()cos()

sin() si
T T x y dx dy

L
n m

n

n

wL

0

00

- = ×∞ ∫∫ g b
g

g
nn()b

b
m

m

w
	 (10.126)

The orthogonality of the cos())g bi x yand cos(j functions eliminates the summa-
tion signs, giving

	

a

T T
L w

Ln m

n

n

m

m=
- ×








+

∞()
sin() sin()

si

0

2

g
g

b
b

nn()cos() sin()cos(g g
g

b bn n

n

m mL L w w w
2 2







× +

))
2bm







	 (10.127)

Finally,

	

ϑ

g
g

b
b

(, ,)
()

sin() sin()
exp(

x y t
T T

L wn

n

m

m=
- ×





∞0 --

+

α l g b

g g
g

n m n m

n n

n

t x y

L L L

2

2 2

)cos()cos()

sin()cos()





× +






=

∞

=

∞

∑∑ w w wm m

m

mn

2 2
11 sin()cos()b b

b

		 (10.128)

93568_Book.indb 210 7/22/09 10:32:32 AM

Partial Differential Equations  ◾  211

10.4 � Perturbation Theory and Sound Waves
When there is a problem involving a small disturbance from some equilibrium con-
dition, perturbation theory may be applied to determine the relevant governing dif-
ferential or partial differential equations. Developing the governing equations that
describe sound wave behavior is such a problem. A sound wave (one that is detect-
able by the human ear) is an oscillatory pressure disturbance of small amplitude. In
air, the disturbance can be considered as taking place in an ideal, isentropic, and
compressible fluid. Although sound waves are not in general one dimensional, they
can be made so by placing a speaker inside a tube. The governing equations describ-
ing this phenomenon are as follows:

	

∂
∂

+ ∂
∂

=r r
t

u
x

()
0 	 (10.129)

	
r ∂

∂
+ ∂

∂






= - ∂
∂

u
t

u
u
x

p
x 	 (10.130)

	 p k= αr 	 (10.131)

where
	 r = fluid density.
	 u = fluid velocity.
	 p = fluid pressure.
	 k = ratio of specific heats.
	a = a constant.

For a small disturbance, we may take

	 r r r= + = + =0 0, ,p p p u u 	 (10.132)

where
	r0 0and p = �the fluid density and pressure, respectively, in the undisturbed

fluid.
	r and p = the disturbed fluid density and pressure, respectively.

	

r
r0 0 0

1 1 1<< << <<, ,p
p

u
c

	c0 = the speed of sound in the undisturbed fluid.
	r0 0 0, ,p cand are considered as constants.

93568_Book.indb 211 7/22/09 10:32:34 AM

212  ◾  Numerical and Analytical Methods with MATLAB﻿

Substituting Equation (10.132) into Equations (10.129) and (10.130) gives

	

∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=r r r r
t

u
x

u
x

u
x0 0 	 (10.133)

	
r r0

∂
∂

+ ∂
∂

+ ∂
∂

= - ∂
∂

u
t

u
t

u
u
x

p
x 	 (10.134)

In perturbation theory, the product of any two perturbed variables is considered
as higher-order terms and neglected. Therefore, Equations (10.133) and (10.134)
reduce to

	

∂
∂

+ ∂
∂

=r r
t

u
x0 0 	 (10.135)

	
r0

∂
∂

= - ∂
∂

u
t

p
x

	 (10.136)

Let u
x

= ∂
∂

φ ; substituting this term into Equation (10.135) and dividing by r0
gives

	

∂
∂

= - ∂
∂

2

2
0

1φ
r

r
x t 	 (10.137)

Similarly, Equation (10.136) becomes

	
r φ r φ

0

2

0
∂

∂ ∂
= ∂

∂
∂
∂

= - ∂
∂t x x t

p
x

	 (10.138)

Equation (10.138) can be written as

	

∂
∂

∂
∂

+






=
x t

pφ
r0

0 	 (10.139)

By Equation (10.139), the term inside the brackets can only be a function of t, that is,

	

∂
∂

+ =φ
rt
p

f t
0

()

93568_Book.indb 212 7/22/09 10:32:37 AM

Partial Differential Equations  ◾  213

or

	

∂
∂

- = -φ
rt

f t p()
0

	 (10.140)

f (t) can be absorbed into φ by letting φ φ= - g t(). Then

	

∂
∂

= ∂
∂

=φ φ
x x

u 	 (10.141)

and

	

∂
∂

= ∂
∂

-φ φ
t t

d g
d t

Let  dg
dt

f t= (), then

	

∂
∂

= ∂
∂

- = -φ φ
rt t

f t
p()
0

	 (10.142)

Now define c
dp
d

2 =
r

. Returning to Equation (10.131)

	 p k= αr 	 (10.131)

Then

	
c

d p
d

k k k
pk k2 1= = = =-

r
αr

r
αr

r 	 (10.143)

Take

	
c k

p
0
2 0

0

=
r 	 (10.144)

Applying perturbation concepts to Equation (10.131) gives

	
() ()p p k k

k

0 0 0
0

1+ = + = +






α r r αr r
r

	 (10.145)

93568_Book.indb 213 7/22/09 10:32:39 AM

214  ◾  Numerical and Analytical Methods with MATLAB﻿

But

	
1 1

1
2

2+() = + + - +x k x
k k

x
k ()

!
�

 
for x2 < 1

Neglecting powers of (/)r r0 of two and higher gives

	
p p kk k

0 0 0
0

+ = +αr αr r
r

or

	
p k p c= =0

0
0
2r

r
r 	 (10.146)

Taking the second derivative with respect to x of both sides of Equation (10.146)
gives

	

∂
∂

= ∂
∂

2

2 0
2

2

2
p

x
c

x
r

	 (10.147)

Returning to Equation (10.141),

	

∂
∂

= -φ
rt
p

0
	 (10.141)

Now take the second derivative with respect to x of both sides of Equation
(10.142) giving

	

∂
∂

∂
∂







= ∂
∂

∂
∂







= - ∂
∂







2

2

2

2
0

2

2
1

x t t x
p

x
φ φ

r  	 (10.148)

By Equations (10.147) and (10.137),

	

∂
∂

∂
∂







= ∂
∂

- ∂
∂







= - ∂
∂


t x t t

c
x

2

2
0

0
2

0

2

2
1φ
r

r
r

r



 	 (10.149)

Thus,

	

1

0
2

2

2

2

2c t x
∂
∂

= ∂
∂

r r
	 (10.150)

93568_Book.indb 214 7/22/09 10:32:42 AM

Partial Differential Equations  ◾  215

and

	

1

0
2

2

2

2

2c
p

t
p

x
∂
∂

= ∂
∂ 	 (10.151)

Equations (10.150) and (10.151) are wave equations.

D’Alembert’s Solution

Let ς η= - = +x c t x c t0 0and . We now wish to consider p p= (,)ς η and trans-
form Equation (10.150) in terms of ς ηand using the chain rule. Then

	

∂
∂

= ∂
∂

= ∂
∂

= - ∂
∂

=ς η ς η
x x t

c
t

c1 1 0 0, , and 	 (10.152)

	

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

+ ∂
∂

p
x

p
x

p
x

p p
ς

ς
η

η
ς η

	

∂
∂

= ∂
∂

∂
∂

+ ∂
∂







= ∂
∂

∂
∂

+ ∂
∂







∂
∂

2

2
p

x x
p p p p
ς η ς ς η

ς
xx

p p
x

+ ∂
∂

∂
∂

+ ∂
∂







∂
∂η ς η

η

or

	

∂
∂

= ∂
∂

+ ∂
∂ ∂

+ ∂
∂

2

2

2

2

2 2

22p
x

p p p
ς ς η η 	 (10.153)

Similarly,

	

∂
∂

= ∂
∂

- ∂
∂ ∂

+ ∂
∂







2

2 0
2

2

2

2 2

22p
t

c
p p p

ς ς η η 	 (10.154)

Substituting Equations (10.153) and (10.154) into Equation (10.151) gives

	

∂
∂

- ∂
∂ ∂

+ ∂
∂







=
2

2

2 2

22p p p
ς ς η η

∂
∂

+ ∂
∂ ∂

+ ∂
∂







2

2

2 2

22p p p
ς ς η η

or

	
4 0

2∂
∂ ∂

=p
ς η

	 (10.155)

93568_Book.indb 215 7/22/09 10:32:45 AM

216  ◾  Numerical and Analytical Methods with MATLAB﻿

Equation (10.154) can be rewritten as

	

∂
∂

∂
∂







=
ς η

p
0

which implies that

	

∂
∂

=p
F

η
η()

and

	
p F d f f f f x c t f x c t= + = + = + + -∫ () () () () () ()η η ς η ς2 1 2 1 0 2 0

If at t = 0, f1 = 0 and f2 is a step as shown in Figure 10.10a. At t > 0, the disturbance
has moved to x c t= 0 (see Figure 10.10b). Therefore, c0 is the speed of sound. The
disturbance, f2, is a forward-moving wave and f1 is a backward-moving wave. From
Equation (10.144) and the ideal gas law the following expression for the speed of
sound can be obtained:

	
c k

p
0
2 0

0

=
r 	 (10.144)

and

	 p RT0 0 0= r

Therefore,

	
c k RT0 0=

	 (10.156)

(a) (b)

p– p–

x, ζ x

x = c0 t

ζ

Figure 10.10  Example of a small step pressure disturbance, (a) t = 0, (b) t > 0.

93568_Book.indb 216 7/22/09 10:32:47 AM

Partial Differential Equations  ◾  217

10.5 � Review of Finite Difference Formulas
Given y = y(x) and for a uniform subdivision on the x axis

	
′ =

-+y
y y

xi
i i1

D 	
forward difference formula for

′y xi()

	
′ =

- -y
y y

xi
i i 1

D 	
backward difference formula for ′y xi()

	
′′ =

+ -+ -y
y y y

xi
i i i1 1

2

2
D 	

central difference formula for ′′y xi()

	
′ =

- +- -y
y y y

xi
i i i3 4

2
1 2

D
	 backward difference formula for ′y xi() of order (∆x2)

	
′ =

- + -+ +y
y y y

xi
i i i2 14 3

2D
	forward difference formula for ′y xi()of order (∆x2)

10.6 � Example of Applying Finite Difference
Methods to Partial Differential Equations

Consider a thin plate at initial temperature, T0, that is suddenly immersed in a huge
bath at temperature T∞ (see Figure 10.4).

The governing PDE for the temperature field, T(x,t), and initial and boundary
conditions are

	

1 2

2α
∂
∂

= ∂
∂

T
t

T
x

	 (10.157)

	 T x T(,)0 0= 	 (10.158)

	

∂
∂

=T
x

t(,)0 0 	 (10.159)

	

∂
∂

+ - =∞
T
x

L t h
k

T L t T(,) [(,)] 0 	 (10.160)

93568_Book.indb 217 7/22/09 10:32:51 AM

218  ◾  Numerical and Analytical Methods with MATLAB﻿

where
	α = thermal diffusivity of the plate and 2L is the plate thickness.
	 h = convective heat transfer coefficient.
	 k = thermal conductivity of the plate material.

To solve this heat transfer problem numerically, subdivide the x and t domains into
I and J subdivisions, respectively, giving

	 x1, x2, x3, …, xI+1 and t1, t2, t3, …, tJ+1

There are two finite difference numerical methods for solving this problem, the
explicit method and the implicit method. The explicit method has a stability prob-
lem if the following condition is not satisfied:

	
b α= <D

D
t

x 2 0 5.

The implicit method does not have a stability problem.

10.6.1 � The Explicit Method

Write the governing partial differential equation at (xi, tj) using the forward finite
difference formula for ∂

∂
T
t

x ti j(,) and the central difference formula for ∂
∂

2

2

T
x

x ti j(,)
giving

	
∂
∂

≈ -+
T
t

x t
t

T x t T x ti j i j i j(,) [(,) (,)]1
1D 	 (10.161)

and

	
∂
∂

= + -+ -

2

2 2 1 1
1 2T

x
x t

x
T x t T x t T xi j i j i j i(,) [(,) (,) (,

D
tt j)] 	 (10.162)

To simplify the notation, use

	
T x t Ti j i

j(,) =

then

	
∂
∂

≈ - 
+T

t
x t

t
T Ti j i

j
i

j(,) 1 1

D 	 (10.163)

	
∂
∂

= + - + -

2

2 2 1 1
1 2T

x
x t

x
T T Ti j i

j
i

j
i

j(,)
D

	 (10.164)

93568_Book.indb 218 7/22/09 10:32:53 AM

Partial Differential Equations  ◾  219

The governing PDE becomes

	
1 1 21

2 1 1αD Dt
T T

x
T T Ti

j
i

j
i

j
i

j
i

j+
+ --  = + -  	 (10.165)

Solving for Ti
j+1 gives

	
T T t

x
T T Ti

j
i

j
i

j
i

j
i

j+
+ -= + + - 

1
2 1 1 2αD

D
	 (10.166)

Equation (10.166) is valid for i = 2, 3, …, I.
Initial condition reduces to

Ti
1 = To for i = 1, 2, 3, … I + 1

Boundary condition ∂
∂

=T
x

t(,)0 0 is also valid at t + ∆t.

Using the forward differences formula of order ∆x2 gives

	

- + -
=

+ + +T T T
x

j j j
3

1
2

1
1

14 3
2

0
D

Solving for T j
1

1+ gives

	
T T Tj j j

1
1

2
1

3
11

3
4+ + += -  	 (10.167)

Boundary condition ∂
∂

+ - =∞
T
x

L t h
k

T L t T(,) [(,)] 0 is also valid at t + ∆t.

Using the backward difference formula for ∂
∂
T
x

L t(,) of order ∆x2 gives

	
3 4

2
01

1 1
1
1

1
1T T T

x
h
k

T TI
j

I
j

I
j

I
j+

+ +
-
+

+
+

∞
- +

+ -  =
D

Solving for TI
j
+
+
1
1 gives

	
T k

k h x
T T h x

k
TI

j
I

j
I

j
+
+ +

-
+

∞=
+

- +



1

1 1
1
1

3 2
4 2

D
D

	 (10.168)

The solution is obtained by marching in time. A sketch of the order of calculations
is shown in Figure 10.11.

Finally, the amount of heat transfer per unit surface area, Q, that occurs in time
tf is given by

	
Q k T

x
L t dt k

x
T t T t T

t

I I

f

= - ∂
∂

= - - +∫ + -2 3 4
0

1 1 1(,) [() () (
D

tt dt

t f

)]
0
∫ 	 (10.169)

93568_Book.indb 219 7/22/09 10:32:56 AM

220  ◾  Numerical and Analytical Methods with MATLAB﻿

10.6.2 � The Implicit Method

Write the governing PDE using the forward finite difference formula for ∂
∂
T
t

 and
the central difference formula for ∂

∂

2

2

T
x

, but take the time position at j + 1 giving

	

1 21
1

1
1

1 1

2α
T T

t
T T T

x
i

j
i

j
i

j
i

j
i

j+
+

+
-

+ +-
=

+ -
D D

Solving for Ti
j+1 gives

	
T T

t
x t

T Ti
j

i
j

i
j

i
j+

+
+

-
+= +

+
+()1

2 1
1

1
1

2
α

α
D

D D 	 (10.170)

Equation (10.170) is valid for i = 2, 3,…, I. There are three unknowns in Equation
(10.170): T T Ti

j
i

j
i

j+
+

+
-

+1
1

1
1

1, , .and The term Ti
j is assumed to be known. So far the set

fits into a tri-diagonal system. The boundary conditions need to be checked to see
if they also fit into a tri-diagonal system. The initial condition is
	 Ti

1 = To, valid for i = 1, 2, 3,…, I + 1	 (10.171)

Boundary condition ∂
∂

=T
x

t(,)0 0 is also valid at t + ∆t.

Using the forward differences formula of order ∆x gives

	

T T
x

j j
2

1
1

1

0
+ +-

=
D

or

	 T Tj j
1

1
2

1+ += 	 (10.172)

The boundary condition ∂
∂

+ - =∞
T
x

L t h
k

T L t T(,) [(,)] 0 is also valid at t + ∆t.

Using the backward difference formula for ∂
∂
T
x

L t(,) of order ∆x gives

	

T T
x

h
k

T TI
j

I
j

I
j+

+ +

+
+

∞
-

+ -() =1
1 1

1
1 0

D

xI–1 xI+1xIx1
t1

t2

x3 x4x2
x

x

x

x

x

x

x

x

x

x

x

x

xxxxx

xxxx x

Figure 10.11  The order of calculations and marching in time.

93568_Book.indb 220 7/22/09 10:33:00 AM

Partial Differential Equations  ◾  221

Solving for TI
j
+
+
1
1 gives

	
T k

k h x
T

h x
k h x

TI
j

I
j

+
+ +

∞=
+

+
+1

1 1

D
D

D 	 (10.173)

Equations (10.170), (10.172), and (10.173) fall into a tri-diagonal system, allowing
for a solution of all temperatures at t j+1 by the method described in Section 6.7.
A complete solution can be obtained by marching in time.

Projects
Project 10.1
Solve the vibrating string problem discussed in Section 10.2 for the initial condi-
tion shown in Figure P10.1a.

Take r = 8240 kg/m3, To = 90 N, d = diameter of string = 0.16 cm, L = 1 m, h =
6 cm. Plot Y  vs. x at the following times: t = 0.0001 s, t = 1.0 s, t  = 10 s, and t  = 100 s.
Note : r(kg/m) = r(kg/m3) A, where A is the cross-sectional area of the string.

Project 10.2
Rearrange Equation (10.53) to read

	
TRATIO

T x
L

t T

T T

x
Ln n

=







-

-
=


∞

∞

, sin()cos

0

2
δ δ





+

-

=

∞

∑
e a t L

n n nn

nδ

δ δ δ

2 2

1

/

cos()sin()
	 (P10.2a)

where δ ln n L= .
Write a computer program using 50 δn values and solve for TRATIO for the

following parameters: h = 890.0 w/m2-°C, k = 386.0 w/m-°C, L = 0.5 m, a = 11.234
e-05 m2/s, T0 = 300°C, T∞ = 30°C, x/L = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and t = 0, 20,
40, …, 400 seconds. Print out results in table form as shown in Table P10.2. Also,
create a plot of TRATIO vs. t for x/L = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0.

¾ L ¼ L

h

x

y

Figure P10.1a  An initial string displacement.

93568_Book.indb 221 7/22/09 10:33:03 AM

222  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 10.3
Consider the circular cylinder problem described in Section 10.4. Write a computer
program that will

	 (a)	 Plot J1 vs. lR for 0 ≤ l R ≤ 1000.
	 (b)	 Determine all the roots of J1 in the lR range from 0 to 1000.
	 (c)	 Determine and print out all the lnR values that satisfy Equation (10.91) in

the lR range from 0 to 1000.
	 (d)	 Create a table of TR  vs. time t  for r/R = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] and t = [0, 20,

40, … , 220, 300] s. The table should be similar to the table shown in P10.2.
	 (e)	 Plot TR  vs. t  for 0 ≤ t ≤ 300 s and r/R = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] all on the

same graph.

Use the following values:

	
h k R a=

-
=

-
= = × -890 0 35 0 0 12 0 872 10 5. , . , . , .w

m C
w

m C
m m

s2

2

Hint: First determine the zeroes of J1 by the fzero function; then knowing that the
roots of Equation (10.91) lie between the zeros of J1, determine lnR  for n = 1-30 by
the fzero function. Having values for lnR you can the determine TR by Equation
(10.98).

Project 10.4
Write a computer program to solve numerically, by the explicit method, the prob-
lem described in Section 10.6. Use the parameters described in Project 10.2, that
is, h = 890.0 w/m2-°C, k = 386.0 w/m-°C, L = 0.5 m, a = 11.234e-05 m2/s,T0 =
300°C, T∞ = 30°C. Take dx = 0.005 m and dt = 0.1 second. Carry the calculations

Table P10.2  Temperature Ratio (TRATIO) vs. Time (t)

Time
(seconds) X/L

0.0 0.2 0.4 0.6 0.8 1.0

0 1.0 1.0 1.0 1.0 1.0 1.0

20 — — — — — —

40 — — — — — —

400 — — — — — —

93568_Book.indb 222 7/22/09 10:33:04 AM

Partial Differential Equations  ◾  223

to 400 seconds. To compare the results obtained by this numerical method with
the results obtained by the closed-form solution (Project 10.2) write your answer
in the form

	
TRATIO

T x
L

t T

T T
=







 -

-

∞

∞

,

0
	 (P10.4a)

for x/L = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, and for t = 0, 20, 40, …, 400 seconds.
Print out a table as shown in Table P10.2. Also create a plot of TRATIO vs. t for
x/L = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0. If you also did Project 10.2, superimpose the solu-
tion obtained in Project 10.2 on the plot created in Project 10.4. The resulting plot
should be similar to the plot shown in Figure P10.4.

Project 10.5
Repeat Project 10.4, but this time use the implicit method. If you also did
Project 10.2, superimpose the solution obtained in Project 10.2 on the plot cre-
ated in Project 10.5. The resulting plot should be similar to the plot shown in
Figure P10.5.

0 50 100 150 200
Time (s)

Solid line-numerical solution
x-closed form solution

250 300 350 400

X/L = 1.0

X/L = 0.8

X/L = 0.6

X/L = 0.4

X/L = 0.2
X/L = 0.0

Tratio vs. Time
1

0.95

0.9

0.85

0.7

0.75

0.8

0.65

Tr
at

io

Figure P10.4  The plot of TRATIO vs. time. Numerical solution is by the explicit
method.

93568_Book.indb 223 7/22/09 10:33:05 AM

224  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 10.6
Using separation of variables, show that the steady-state temperature distribution in
the slab shown in Figure P10.6 is given by

	
T x y T T T

w
L

x
w

n

n

n(,) ()
sin()
sinh()

sinh()co
= + - ×∞ ∞2

l
l

l ss()
sin()cos()

l
l l l

n

n n n

y
w w w+

∞

∑
1 	

(P10.6a)

where ln
 is determined from Equation (P10.6b).

	
tan()l

l
w

h w
k w

- × =1 0 	 (P10.6b)

Note that

	

sinh()
sinh()

exp(())
exp()l

l
l

ln

n
n

nx
L

L x
x

= - - ×
- -
-

1 2
1 eexp()-2ln L 	 (P10.6c)

0 50 100 150 200 250 300 350 400

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time (s)

Tr
at

io
Tratio vs. Time

X/L = 1.0

X/L = 0.8

X/L = 0.6

X/L = 0.4
X/L = 0.2
X/L = 0.0

Solid line-numerical solution
x–closed form solution

Figure P10.5  The plot of TRATIO vs. time. Numerical solution is by the implicit
method.

93568_Book.indb 224 7/22/09 10:33:06 AM

Partial Differential Equations  ◾  225

The use of Equation (P10.6c) will avoid numerical problems for large x and large l.
Print out a table for the first 50 eigenvalues (ln) applicable to this problem.

	 (a)	 Print out a table of T (x, y) at every second x position and every second y
position.

	 (b)	 Create a plot of T (x, 0) and T (x, w) vs. x, both on the same graph. Use the
following values:

L = 2.0 m, w = 0.2 m, Tw = 300°C, T∞ = 50°C, k = 59 W/m-°C, h = 890 W/m2-°C

Project 10.7
A safe, as a result of a fire in a nearby room, is suddenly subjected to surrounding air
temperature of 800°C. The ignition temperature of paper inside the safe is 160°C.
Both the inner and outer shells of the safe are constructed of 1% carbon steel. An
appropriate insulating material is placed between the steel shells. The interior vol-
ume of the safe is 1 m3 (1 m x 1 m x 1 m). The insulating material is nonflammable.
A finite difference numerical analysis may be used to determine the temperature
distribution of the safe material and the interior temperature of the safe. The fol-
lowing assumptions shall be made:

	 1. The air inside the safe is well mixed and uniform.
	 2. The paper temperature is the same as the air temperature inside the safe.
	 3. The interior contents of the safe consist of 30% paper and 70% air by

volume.
	 4. Radiation from the fire and the variation of the thermal properties of all

materials are neglected. A description of the numerical method follows.

h, T∞

T∞ Tw

h, T∞

 w

 w

L

x

y

Figure P10.6  Slab geometry.

93568_Book.indb 225 7/22/09 10:33:07 AM

226  ◾  Numerical and Analytical Methods with MATLAB﻿

Numerical Method

Consider the I-D unsteady heat flow through the wall shown in Figure P10.7a.
Subdivide the x domains as follows: (a) subdivide the steel plate regions into (I1–1)
subdivisions and (b) subdivide the insulation region into (I2–I1) subdivisions.

In each region the governing PDE for the temperature field is

	
1 2

α
T
t

T
x

∂
∂

= ∂
∂ 2

	 (P10.7a)

Since α and Δx differ in the two different material-type regions, the governing
finite difference equation for each region is

	
i
n 1

i
n

i 1
n

i 1
n

i
n2+

+ -= + + -()T T
t

x
T T T

α1

1
2

D
D 	 (P10.7b)

for i = 2, 3, … (I1 - 1) and i = (I2 + 1), (I2 + 2),…, (I3 - 1), whereT x t T(,)i n i
n= and

	
i
n 1

i
n

i 1
n

i-1
n

i
n2+

+= + + -()T T t
x

T T T2

2
2

α D
D

	 (P10.7c)

for i = (I1 + 1), (I1 + 2), …, (I2 – 1).
To complete the problem formulation, one needs to add the initial and bound-

ary conditions:

Initial Condition

	 T(x,0) = To

	 T x ,t T T io() ,i 1 i
1= = =for 1, 2, , I… 3 	 (P10.7d)

Outside

h1

T∞,1

L2
h2
T∞,2

Inside L1L1

k1

1 I1 I2 I3

k2 k1

Node number:

Figure P10.7a  Wall geometry.

93568_Book.indb 226 7/22/09 10:33:09 AM

Partial Differential Equations  ◾  227

Boundary Conditions

(a) At the left steel–insulation interface (see Figure P10.7b)
The rate that heat flows out of the steel plate per unit surface area = the rate that
heat flows into the insulation per unit surface area. Expressed mathematically,

	
� � � �
q t i q t i(,) (,) ()I1 I1- +⋅ = - ⋅ -

or

	
- ∂

∂
= - ∂

∂
- +k

T
x

t k
T
x

t1 2(,) (,)I1 I1

The boundary condition is valid at n n+t tand 1. The simplest finite difference form
of the above equation is

	
- - = - -+

-
+

+
+

k T T
x

k T
1

I1
n 1

I1 1
n 1

2
I1 1
n 1

I
n

D 1

1
++1T

xD 2

Solving for I1
n 1+T gives

	

I1
n 1

1
I1 1
n 1 2

I1 1
n 1

1

+
-
+

+
+

=
+

T

k
x

T k
x

T

k

D D

D

1 2

xx
k
x
2

1 2

+
D 	 (P10.7e)

(b) At the right insulation–steel interface (see Figure P10.7c)

Steel

I1 – 1

Insulation

I1 + 1I1

Figure P10.7b  Left steel–insulation interface.

Insulation

I2 – 1

Steel

I2 + 1I2

Figure P10.7c  Right insulation–steel interface.

93568_Book.indb 227 7/22/09 10:33:12 AM

228  ◾  Numerical and Analytical Methods with MATLAB﻿

The rate that heat flows out of insulation per unit surface area = the rate that heat
flows into the steel plate per unit surface area.

Similarly to the equations developed at node I1, the equation at node I2 is

	
- - = - -+

-
+

+
+ +

k
T T

x
k

T T
x2

I2
n

I2 1
n 1

1
I2 1
n 1

I2
n 11

2 1D D

Solving for I2
n+1T gives

	

I2
n 1

2
I2 1
n 1

I2 1
n 1

2

+
-

+
+

+

 =
+

T

k
x T

k
x T

k
x

D D

D

2

1

1

22

1

1

k
x

+
D

	
(P10.7f)

(c) At the left air–steel interface (see Figure P10.7d)
The rate that heat is carried to the wall by convection per unit surface area = the rate
that heat enters the steel plate by conduction per unit surface area; that is,

	
1 1 11 1h T T x t q x t i k[(,)] (,) (ˆ),∞ - = - ⋅ - = -� ∂∂

∂
T
x

x t(,)
1

The boundary condition is valid at nt and n+1t . The simplest finite difference form
of the above equation is

	
1 ,1 1

n 1
1

2
n 1

1
n 1

[]h T T k T T
x∞

+
+ +

- = - -
D 1

Solving for 1
n 1+T gives

	

1
n 1

1 ,1 2
n 1

1

+
∞

+

 =
+

+
T

h T
k
x T

h
k
x

1

1

1

1

D

D 	
(P10.7g)

Outside

h1

T∞,1

Steel

2

1

Figure P10.7d  Outside air–steel interface.

93568_Book.indb 228 7/22/09 10:33:14 AM

Partial Differential Equations  ◾  229

(d) At the right steel–air interface (see Figure P10.7e)
The rate that heat leaves the steel plate by conduction per unit surface = the rate that
heat enters the safe by convection.

	
�
q x t i k

T
x

x t i i h() ˆ () ˆ ˆ
I3 1 I3 ,, ⋅ = - ∂

∂
⋅ = 22 I3 2,[() ()]T x t T t,- ∞

The boundary condition is valid at tn and tn+1. The simplest difference form of the
above equation is

	
- - = -[]

+
-
+

+
∞

+k
T T

x
h T T1

I3
n 1

I3 1
n 1

3
2 I3

n 1
,2

n 1

D

Solving for I
n+T 3

1 gives

	

I3
n 1

I3 1
n 1

2
n 1

+
-
+

∞
+

=
+

+
T

k
x T h T

h
k
x

,
1

3
2

2
1

3

D

D 	 (P10.7h)

Inside the Safe

Heat transfer into the safe is slow. It has been assumed that all material inside the
safe is at the same uniform temperature. The safe interior consists of paper and air.
The finite difference formula for the temperature inside the safe is

	
T T

A h t T T
V C V Ca a
s a

a a a p p p

n 1 n I3
n n

v, v

+ = +
-()

+
2 D

r r ,
	 (P10.7i)

where
	 ρ = density 	 subscripts
	V = volume 	 a ~ air
	C = specific heat	 p ~ paper

This numerical method has a stability criteria; that is, in each region

	
r

t
x

= <α D
D 2

1
2

Steel

I3–1

I3

Inside

h2
T∞,2

Figure P10.7e  Steel-inside air interface.

93568_Book.indb 229 7/22/09 10:33:16 AM

230  ◾  Numerical and Analytical Methods with MATLAB﻿

Method of Solution

Since Ti
1 , i = 1, 2, …, I3 is known Ti

2 can be obtained for all i by marching as
indicated in the following procedure.

Procedure

	 1.	 Solve for Ti
2 for i = 2,…, (I1 – 1) by Equation (P10.7b); for (I1 + 1), (I1 +

2),…, (I2 – 1) by Equation (P10.7c); and for (I2 + 1), (I2 + 2),…, (I3 – 1)
by Equation (P10.7b).

	 2.	 Solve for TI1
2 by Equation (P10.7e) and for TI2

2 by Equation (P10.7f).
	 3.	 Solve for T1

2 by Equation (P10.7g) (need T2
2 first).

	 4.	 Solve for Ta
2 by Equation (P10.7i).

	 5.	 Solve for TI 3
2 by Equation (P10.7h) (need TI 3 1

2
- and Ta

2 first).
	 6.	 Use a counter and an if statement to determine when to print out tempera-

ture values.
	 7.	 Use a loop to reset Ti

1 = Ti
2 for all i.

	 8.	 Repeat the process until t = the specified time for the study.

Develop a computer program in MATLAB® to solve the wall temperature dis-
tribution and the air/paper temperature inside the safe. Use the following constants
for the problem:

 k k1 2
261 0 0 166 1 665 5= ° = ° = -.), . . /W/(m- C W/(m- C), e m1α ss e, . ,α2 3 5 7= -

	

r ra p aC= = = +0 9980 930 0 0 7223 3. , . , .kg/m kg/m e 3 W/(kgv, -- C

e 3 W/(kg- Cv,

°

= + °

),

.),C p 1 340

	 h h T1
2

2
2200 0 10 0 800 0= ° = ° = °∞. /(), . /(), .W m - C W m - C C1, ,, . ,As = 6 0 2m

	 Ti
1 C for i 1,2, ,I3= ° =25 …

	

L L dx1 20 005 0 02 1 6 2 86 3 91 0 0= = = = = =. , . , , , , .m m I I I 1 001

0 00025 0 0252

m

m seconds

,

. , . ,dx dt= =

	
V Va p= = =0 60 0 4 36003 3. , . , .m m time of study seconds

Print out property values, the problem constants, and a temperature table as shown
in Table P10.7.
Note: Print out temperatures every 100 seconds.

93568_Book.indb 230 7/22/09 10:33:21 AM

Partial Differential Equations  ◾  231

Project 10.8
The temperature ratio, TR (x, y, t), of the 2-D bar described in Section 10.3,
“Unsteady Heat Transfer in 2-D,” is given by

	
TR x y t

x y t
T T

(, ,)
(, ,)=

- ∞

ϑ

0

Then

	

TR x y t

L wn

n

m

m(, ,)

sin() sin()
exp(

=
×







-

g
g

b
b

α ll g b

g g

n m n m

n n

t x y

L L L

2

2 2

)cos()cos()

sin()cos()
+

gg
b b

bn

m m

m

m w w w





× +







=

∞

∑
2 2

1 sin()cos()nn=

∞

∑
1

Develop a computer program in MATLAB to evaluate TR at x
L

= 0 0 0 5 1 0. , . , . and

y
w

= 0 0 0 5 1 0. , . , . for 0 400≤ ≤t seconds. Create the following plots:

Plot on the same graph, TR vs. t for x
L

= 0 0 0 5 1 0. , . , . and y
w

= 0 0. .

Plot on the same graph, TR vs. t for x
L

= 0 0 0 5 1 0. , . , . and y
w

= 0 5. .

Plot on the same graph, TR vs. t for x
L

= 0 0 0 5 1 0. , . , . and y
w

= 1 0. .

Table P10.7  Temperature Distribution Table

Time
(seconds)

Exterior
Surface x-Position (m)

Interior
Surface

Air
Temp
(ºC)x1 xI1

1
2 1 2()x xI I+

xI2 xI3

0.0

100.0

200.0

‌3600.0

25.00

—

—

25.00

—

—

25.00

—

—

25.00

—

—

25.00

—

—

25.00

—

—

—

93568_Book.indb 231 7/22/09 10:33:25 AM

232  ◾  Numerical and Analytical Methods with MATLAB﻿

Plot on the same graph, TR vs. t for y
w

= 0 0 0 5 1 0. , . , . and x
L

= 0 0. .

Plot on the same graph, TR vs. t for y
w

= 0 0 0 5 1 0. , . , . and x
L

= 0 5. .

Plot on the same graph, TR vs. t for y
w

= 0 0 0 5 1 0. , . , . and x
L

= 1 0. .

Use the following parameters:

	 L = w = 0.5 m,  h = 890 W
m -C

W
m-C

m
s2 , , .k e= = -386 11 234 5

2

α

93568_Book.indb 232 7/22/09 10:33:27 AM

233

11Chapter

Iteration Method

11.1 � Iteration in Pipe Flow Analysis
Some engineering problems are best solved by an iteration procedure. For exam-
ple, the determination of the flow rate, Q, and the head loss in a pipe system is
commonly solved by an iteration procedure. Consider the piping system shown in
Figure 11.1. The energy equation for the system is [1]

	

p V
g

z h h
p V

g
zp sys Lg g

+ +






+ - = + +




∑

2

1

2

2
2 2

()
	

(11.1)

where
	 p = pressure.
	 V = average fluid velocity.
	 g = specific weight of the fluid.
	 z = elevation.
	 g = gravitational constant.
	 ∑hL = sum of head losses.
	(hp)sys = head developed by the pump in the system.

For this system

	 p p p V V z zatm1 2 1 2 2 10 0= = ≈ ≈ -, , , () are specified.

93568_Book.indb 233 7/22/09 10:33:29 AM

234  ◾  Numerical and Analytical Methods with MATLAB﻿

The sum of head losses consists of a head loss, hf , in the pipe due to viscous or tur-
bulent effects and minor head losses due to valves, elbows, and pipe entrance and
exit losses. The head loss in the pipe is given by

	
h V

g
L
D

ff =
2

2 	
 (11.2)

where
	 L = pipe length (known).
	D = pipe diameter (known).
	 f  = friction factor.

For a smooth pipe, f  can be determined by the equation [2]

	 f d= - -(. log Re .)1 82 1 6410
2

	 (11.3)

where Red is the Reynolds number, which is given by

	
Re = =VD Q

Du π u
4

	
 (11.4)

and u is the kinematic viscosity. The expression for V that was used in Equation
(11.4) is

	
V Q

D
= 4

2π 	
(11.5)

The minor head losses are expressed by the equation

	
h K V

gL i i, =
2

2 	
(11.6)

The K values for the minor head losses are Kentrance = 0.5, Kexit = 1.0, Kelbow = 1.5.

H

2

D = 10 cm

Water

1
P

Figure 11.1  A piping system.

93568_Book.indb 234 7/22/09 10:33:31 AM

Iteration Method  ◾  235

Substituting these relationships into Equation (11.1) and rearranging gives

	
() .h z z V

g
L
D

fp sys = - + +



2 1

2

2
4 5

	
(11.7)

The pump manufacturer provides a performance curve of (h)pc vs. Q  for the pump.
Suppose the (h)pc vs. Q is approximated by the following quadratic equation:

	
()h Qp pc = -120 500 2

	 (11.8)

But

	 (hp)sys = (hp)pc	 (11.9)

or

	
120 – 500Q2 = z z V

g
L
D

f2 1

2

2
4 5- + +



.

	
(11.10)

To express the above equation in terms of Q, substitute for V = 4
2

Q
Dπ

. Then Equation
(11.10) becomes

	
120 500 8 4 52

2 1

2

2 4- = - + +



Q z z Q

g D
L
D

f
π

.
	

(11.11)

Since f is a function of Re, which is a function of Q, Equation (11.11) is best
solved by iteration. The iterative procedure for determining Q is as follows:

	 1.	Assume a value for f, say, f1 = 0.03.
	 2.	Solve Equation (11.11) for Q.
	 3.	Solve Equation (11.4) for Re.
	 4.	Solve Equation (11.3) for f, say, f2.
	 5.	If | | , . ,f f2 1

51 0 10- < = × -e esay, then Q is the correct value,, otherwise set
f f1 2= and repeat process until condition of item 5 is satiisfied.

11.2 � The Gauss–Seidel Method
The Gauss–Seidel iteration method may be used to solve Laplace’s Equation. Consider
the steady-state heat conduction problem of the slab shown in Figure P10.6. For the
derivation of the heat conduction equation, see B.1 and B.2 in Appendix B.

The governing partial differential equation for the temperature distribution is

	
∂
∂

+ ∂
∂

=
2

2

2

2 0T
x

T
x 	

(11.12)

93568_Book.indb 235 7/22/09 10:33:33 AM

236  ◾  Numerical and Analytical Methods with MATLAB﻿

The boundary conditions are

	 T(0, y) = T∞ 	 (11.13)

	 T L y Tw(,) = 	 (11.14)

	

∂
∂

=T
y

x(,) ()0 0 by symmetry
	

(11.15)

	

∂
∂

+ - =∞
T
y

x w h
k

T x w T(,) ((,)) 0 	 (11.16)

The finite difference form of the partial differential equation is

	

1 2

1

2

2

()
{ (,) (,) (,)}

()
{ (,

D
D D

D

x
T x x y T x y T x x y

y
T x

+ - + -

+ yy y T x y T x y y+ - + - =D D) (,) ((,)}2 0
	

(11.17)

Now subdivide the x domain into N subdivisions and the y domain into M sub-
divisions, giving positions where and(,), , , ,x y n N mn m = + =1 2 1 1… ,, , ,2 1… M +

and andD Dx L
N

y w
M

= = .

LetT x y Tn m n m(,) ,= , then the finite difference form of the partial differential
equation is

	
T T T T Tn m n m n m n m n m, , , , ,()

=
+

+ + +()+ - + -
1

2 1 2 1 1
2

1
2

1b
b b

	
 (11.18)

The above equation is valid at all interior points. Thus, it is valid for n = 2, 3,…, N
and m = 2, 3,…, M. There are (N – 1)(M – 1) such equations.

The finite difference form for the boundary conditions are

	 T Tm1, = ∞ 	 for m = 1, 2, 3,…, M + 1	 (11.19)

	 T TN m w+ =1, 	 for m = 1, 2, 3,…, M + 1	 (11.20)

Using the forward difference formula for ∂
∂
T
y

x(,)0 of order ()Dy 2 , the boundary

condition ∂
∂

=T
y

x(,)0 0 becomes

	
T T Tn n n, , ,()1 2 3

1
3

4= -
	

(11.21)

93568_Book.indb 236 7/22/09 10:33:36 AM

Iteration Method  ◾  237

Using the backward difference formula for ∂
∂
T
y

x w(,) of order ()Dy 2 , the

boundary condition ∂
∂

+ - =∞
T
y

x w h
k

T x w T(,) ((,)) 0 becomes

	

T h y
k

T T
h yT

kn M n M n M, , ,+ -
∞=

+
- +






1 1

1

3
2 4

2
D

D

	
(11.22)

Equations (11.18) through (11.22) represent the finite difference equations describ-
ing the temperature distribution in the slab.

Method of Solution

	 1.	Assume a set of values forTn m, , say,Tn m,
1 for n = 2, 3,…, N and m = 2, 3,…,

M + 1.
	 2.	Successively substitute into Equations (11.18) through (11.22), obtaining a

new set of values for T Tn m n m, ,, ,say, 2 using the updated values in the equations
when available.

	 3.	Repeat this process until | | ,, ,T T n mn m n m
2 1- < e for all .

Faster convergence may be obtained by overrelaxing the set of equations. This is
done by adding and subtractingTn m,

1 from Equation (11.18) and introducing a relax-
ation parameter, w, giving

	
T T T T Tn m n m n m n m n, , , , ,()

2 1
2 1

1
1

2 2
12 1

= +
+

+ ++ - +
w

b
b mm n m n mT T1 2

1
2

2
12 1+ - +



-b b

w, ,
()

		
		 (11.23)

where1 2< <w . A similar procedure is carried out for Equations (11.21) and (11.22),
giving

	
T T T T Tn n n n n, , , , ,1

2
1

1
2

1
3

1
1

1

3
4 3= + - -







w
w 	

(11.24)

and

	
T T

k
k h y

T T
h

n M n M n M n M, , , ,+ + -= +
+

- +1
2

1
1 2

1
2

3 2
4

2w
D

DyyT
k

k h y
k

Tn M
∞

+- +







3 2
1

1D
w ,

		
		 (11.25)

The method of solution described earlier is still valid, except Equations (11.23),
(11.24), and (11.25) are substituted for Equations (11.18), (11.21), and (11.22),
respectively. Sometimes in order to get convergence, one might have to underrelax;
that is, 0 1< <w .

93568_Book.indb 237 7/22/09 10:33:40 AM

238  ◾  Numerical and Analytical Methods with MATLAB﻿

11.3 � The Hardy Cross Method
The Hardy Cross method, which is an iterative method, provides the means for
determining the flow rates and head losses throughout a pipe network, if the pipe
diameters, lengths, and pipe roughnesses are known. The description of the method
is taken from References [1,3].

The following two definitions are used in describing the method:

	 1.	A loop is a series of pipes forming a closed path (see Figure 11.2). A sign con-
vention is used in describing the loop rules. The flow rate, Q, and the head
loss, hf  , are considered positive if the flow is in the counterclockwise direction
around the loop. It should be realized that two loops with a common pipe
may have a positive Q in one loop and a negative Q in the other loop.

	 2.	A node is a point where two or more lines are joined. A sign convention is also
used for node rules (see Figure 11.3). A flow is considered as positive if the
flow direction is toward the node.

It should be realized that Q may be positive when the loop rule is applied and nega-
tive when the node rule is applied.

D

4

1

Loop 1

Loop 2

2 3

F

B
4

2

3

E

Q = 0.3 m3/s A

Q = 0.2 m3/s

C Q = 0.1 m3/s

Q11 > 0

Q24 < 0

Q24 = –Q11

Q22 > 0

Loop rule

1

Figure 11.2  Loop rule for pipe network.

CA
B

D

QBC

QBD

QBA

QBA > 0

QBC < 0

QBD < 0

Node rule

Figure 11.3  Node rule for pipe network.

93568_Book.indb 238 7/22/09 10:33:41 AM

Iteration Method  ◾  239

The Hardy Cross method is based on two concepts:

	 1.	The law of mass conservation
	 2.	The fact that the total head at a node is single valued

Concept (1) leads to the node rule, which is applied at each node in the network.
The node rule is

	

Qα b

b

∑ = 0

	
(11.26)

where a indicates the node under consideration and b indicates the connecting
node. The sign convention gives the direction of flow. Concept (2) leads to the loop
rule, which may be stated as follows: For loop i,

	
hi j∑ = 0

	
(11.27)

where hi  j is the head loss in the jth line in the ith loop. For the loop rule, Qi j is the
flow rate in the jth line in the ith loop. In Equation (11.27) the subscript f, which
is usually written with h to indicate a head loss due to viscous or turbulent effects,
has been omitted to reduce the number of subscripts. Minor head losses are usually
neglected in network analysis. Elevation changes along a loop cancel and therefore
need not be included. Finally, it should be noted that these rules are analogous to
Kirchoff’s rules for electrical circuits involving resistances. In the analogy, Q cor-
responds to electrical current and pressure drop corresponds to voltage drop. A
description of the method follows:

	 1.	Subdivide the network into a number of loops, making sure that all lines are
included in at least one loop.

	 2.	Determine the zeroth estimate for the flow rates,Qα b
()0 , for each line accord-

ing to the following procedure. Let s equal the total number of nodes in the
network and r the total number of lines. Invariably, r will be greater than s.
Writing the law of mass conservation at each node gives s equations in r
unknowns. Therefore one needs to assume (r – s + 1)Qα b

()0 values, which are
consistent with the mass conservation rule. The remainingQα b

()0 are to be deter-
mined by applying the law of mass conservation at each node. This should
give a set of linear equations in s unknowns that can readily be solved for the
remaining Qα b

()0 unknowns.
	 3.	This initial guess will not satisfy Equation (11.27); as a result one needs to

apply a correction to eachQα b
()0 value. This is done by applying a Taylor Series

expansion (using only two terms in the expansion) to the h(Q) equation.

	
h Q Q h Q

d h
d Q

Q
Q

() ()+ = +






D D
	

(11.28)

93568_Book.indb 239 7/22/09 10:33:43 AM

240  ◾  Numerical and Analytical Methods with MATLAB﻿

Taking h Q Q h h Q h() ()() ()+ = =D 1 0and , Equation (11.28) becomes

	
h h dh

dQ
Q

Q

() ()

()

1 0

0

= +






D
	

(11.29)

Applying Equation (11.29) to Equation (11.27) gives

	

h h dh
dQ

Qi j

j

i j
i j

i

j

() ()1 0 0∑ ∑= +






















=D

	
(11.30)

For each loop, the DQ i can be factored out, thus giving a correction factor equation
for each loop; that is,

	

DQ
h

dh
dQ

i
j i j

j
i j

= -
∑

∑






()0

	

(11.31)

where dh
dQ

i j







is evaluated atQ i j
()0 .

The Darcy–Weisbach equation relates h to the friction factor f, which is

	
h V

g
L
D

f
LQ
g D

f K Q f= = =
2 2

2 5
2

2
8

π 	 (11.32)

The Swamee–Jain formula [3] gives an explicit formula for f, which is

	

f
e

D

=

+
















1 325

3 7
5 74

0 9

2

.

ln
.

.
Re .

	

(11.33)

where
Re = =Reynolds number

4Q
Dπ u

	 u = the kinamatic viscosity (m2/s)
	D = the pipe diameter (m)
	 e = pipe roughness

Equation (11.33) is valid for10 10 106 2 8- -≤ ≤ × ≤ ≤e D/ Re .and 5 103

In applying the loop rule, some of the lines will experience a head gain and not
a head loss. This occurs when the flow direction is opposite to the positive loop

93568_Book.indb 240 7/22/09 10:33:46 AM

Iteration Method  ◾  241

direction. To account for this, take

	

h
K Q f if Q

K Q f if Q
=

≥

- <







2

2

0

0 	
(11.34)

and

	

dh
dQ

K f Q K Q
df
dQ

= ± +






2 2

	
(11.35)

where the (+) sign is used if Q > 0 and the (–) sign is used if Q < 0.

The formula for
df
dQ

is

	

df
dQ

e
D

Q

=
+








-

13 69
3 7

5 74
0 9

1

0 9

.
.

.
|Re|

|Re|

.

. lln
.

.
|Re| .

e
D3 7

5 74
0 9

3

+
















 	

 (11.36)

Lines that are in common in two loops need to be treated as follows. If line j in loop
i is in common with line m in loop k, then Q Qk m i j= - and for the first iteration

	
Q Q Q Qi j i j i k

() ()1 0= + -D D

For example, referring to Figure 11.2, for the first iteration,

	
Q Q Q Q11

1
11

0
1 2

() ()= + -D D
	 (11.37)

The formulation for the Hardy Cross method is now complete. Project 11.3 involves the
Hardy Cross method to determine the flow rate distribution in a three-loop network.

Projects
Project 11.1
Determine the flow rate, Q, and the friction factor, f, for the problem
described in Section 11.1 using the following values: L = 3000 m, D = 10 cm,
g u= = × -9790 1 005 103 6N/m m /s2, . , (z2 – z1) = 50 m, g = 9.81 m/s2.

Print out values for Q, f, the sum of the head losses, ∑hL, and the head, (hp)sys,
developed by the pump in the system.

93568_Book.indb 241 7/22/09 10:33:48 AM

242  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 11.2
Determine the temperature distribution in the slab shown in Figure P10.6 by the
Gauss–Seidel method described in Section 11.2. Use the following values: L = 2.0 m,
w = 0.2 m, Tw = 300°C, T∞ = 50.0°C, h = 890 W/m2-C, k = 59.0 W/m-C,
N = 200, M = 50, e = 0.001. As an initial guess take the centerline temperature to
be the solution of heat flow through a wall; that is,

	 T T T T x Ln w n, () /1
1 = + - ×∞ ∞ ,  for n = 2, 3,…, N

and for positions other than the centerline, assume a temperature of a flow through
a wall with a convective boundary condition; that is,

	
T w

k h w
k
w

T hTn M n, ,+ ∞=
-

-



1

1
1

1

and

	
T T T T

y
wn m n n M n

m
, , , ,
1

1
1

1
1

1
1= + -() ×+

for n = 2, 3,…, N, m = 2, 3,…, M.
Once convergence has been achieved, define T T T T Tn n n n n1 2 31

2
26

2= = =, ,, , and
Tn M, +1

2 for n = 1, 2, 3,…, N + 1. Construct a table for temperatures T1, T2, and T3
for n = 1, 6, 11,…, N + 1. Also create plots of T1, T2, and T3 all on the same
page.

Project 11.3
Use the Hardy Cross method to determine the flow rate distribution (Q’s) in the
network shown in Figure P11.3. Print out a table indicating the loop number, the
line number, and the flow rate in that line. The network parameters are described
in Table P11.3. Hint: To apply the DQ corrections to lines that are common in two
loops, use an ID matrix for every line identifying the loop number of the common
line. Set the ID element to zero if the line is not a common line. Example: Suppose
line (1,1) is in common with line (2,4), then ID(1,1) = 2, and suppose line (1,3) is
not a common line, then ID(1,3) = 0.

Take v = 1.308 × -10 6 m2/s, e = 0.026 cm, and g = 9.81 m/s2.

93568_Book.indb 242 7/22/09 10:33:50 AM

Iteration Method  ◾  243

0.04 m3/s

0.07 m3/s

0.
10

 m
3 /s

0.04 m3/s0.028 m3/s

0.04 m3/s

0.03 m3/s0.06 m3/s

0.03 m3/s0.045 m3/s G

FE

H

D

A

B

34

Loop 3Loop 1

Loop 2

2
1

34

2
1

4

3

2

C

1

Figure P11.3  A pipe network.

Table P11.3  Network Parameters

Loop Number Line Number Length (m) Diameter (cm)
Initial Guess

Q (m3/s)

1

1 3220 40

2 4830 30

3 3200 35 –0.45

4 4830 40

2

1 5630 40 0.1 

2 4020 35

3 3200 30

4 3200 40

3

1 4830 30

2 4830 25

3 4830 30 –0.03

4 4830 30

93568_Book.indb 243 7/22/09 10:33:50 AM

244  ◾  Numerical and Analytical Methods with MATLAB﻿

Project 11.4
This project involves determining the volume flow rate a pump will deliver to a
closed tank as a function of time [5]. The pump characteristic curve (H vs. Q)
was taken from a pump manufacturer’s catalog. The configuration for this project
is shown in Figure P11.4. Assume that the tank receiving water is closed. Thus, as
water fills up in the tank, the air in the tank is compressed. Isothermal compression
is to be assumed. The problem is to determine the time it takes to raise the water
level in the tank by a specified amount. Data points of the (H vs. Q) curve provided
by the pump manufacturer (units changed to SI units) is shown in Table P11.4.

Determine the coefficients of the third degree polynomial by the method of
least squares using MATLAB’s polyfit function that represents the approximating
function for the data in Table P11.4. The polyfit function returns the coefficients a1,
a2 ,a3, a4 for the third degree polynomial that best fits the data. The approximating
function as described by Equation (P11.4a) is used in the analysis.

	 H = a1Q3 + a2Q2 + a3Q + a4
	 (P11.4a)

Application of the energy equation [4] to the system shown in Figure P11.4
gives

	 (hp)sys = hf + (z2 – z1 + �) + p pa atm-
g

 + hminor losses	 (P11.4b)

where
	()hp sys = the head the pump delivers to the water flowing through the pipe.
	 hf = viscous head loss in the system.
	 z = elevation.

Water

Pump

ℓ

pa(t)

z1

z2

z3

Tank

Water

Figure P11.4  A sketch of a reservoir, pump, tank system. (From Reference [5].
With permission of Manchester University Press.)

93568_Book.indb 244 7/22/09 10:33:52 AM

Iteration Method  ◾  245

 	pa = absolute air pressure in the tank.
	   γ = specific weight of water.
	patm = surrounding atmospheric pressure.
	    � = water level above the bottom of the tank.

The flow rate developed by the pump must satisfy

	 (hp)sys = H	 (P11.4c)

Viscous head loss, hf , in a pipe is given by [1,4]

	 hf = 8 2

2 5
Q L
g D

f
π

	 (P11.4d)

where
	Q = volume flow rate through pipe.
	 L = pipe length.
	 g = gravitational constant.
	 f  = friction factor.
	D = diameter of pipe.

Minor losses due to elbows, entrance losses, etc. are expressed by [1,4]

	
hminor losses = K

Q
g D

8 2

2 4π 	
(P11.4e)

where K = minor head loss coefficient.

Table P11.4  H vs. Q Data from Pump Manufacturer

Q (m3/h) H (m) Q (m3/h) H (m)

3.3 43.3 61.6 40.8

6.9 43.4 68.5 39.6

13.7 43.6 75.3 38.7

20.5 43.6 82.2 37.2

27.4 43.3 89 36.3

34.2 43 95.8 34.4

41.1 42.7 102.7 32.6

47.9 42.4 109.6 30.5

54.8 41.8

93568_Book.indb 245 7/22/09 10:33:53 AM

246  ◾  Numerical and Analytical Methods with MATLAB﻿

Substituting Equations (P11.4a), (P11.4b), (P11.4d), and (P11.4e) into Equation
(P11.4c) gives

a1Q3 + a2Q2 + a3Q + a4 =
8 2

2 4
Q
g Dπ

L
D

f K
p p

z za atm+



 +

-
+ - +

g
()2 1 �

	
(P11.4f)

Rearranging terms gives the following cubic equation:

	

a Q a Q a Q

a

2
31

3
2 2 4

4

8+ - +













+

+ -
-

π g D
L
D

f K

p pa attm z z
g

- - +








=()2 1 0�
 	

(P11.4g)

For a smooth pipe line, the friction factor, f , can be approximated by [2]

	 f = - -(. log Re .)1 82 1 6410
2

	 (P11.4h)

where

	 Re = Reynolds number =
4Q
Dπ ν 	 (P11.4i)

where
	 n = kinematic viscosity of water.

The air pressure, pa , at time t, is determined from the ideal gas law for an isother-
mal process; that is,

	
p t

p

t
p

A z z

A z z ta
a i i

a i
T i

T

()
()

()
(())

,
,= ∀

∀
=

- -
- -

3 2

3 2

�

�
==

- -
- -

p
z z

z z ta i
i

,

()
(())

3 2

3 2

�

�
	

(P11.4j)

where
	pa i, = initial air pressure.
	 AT = cross-sectional area of tank =

π DT
2

4
.

	 ∀ = air volume in tank.
	 DT = diameter of tank.

An iterative method of solution for determining Q is as follows:

	 1.	Assume a value for f , say, f 1; start with f 1 = 0.03.
	 2.	Solve Equation (P11.4g) for Q by the MATLAB function ROOTS, selecting

the maximum positive root.

93568_Book.indb 246 7/22/09 10:33:56 AM

Iteration Method  ◾  247

	 3.	Solve for Re by Equation (P11.4i).
	 4.	Solve for f , say, f 2, by Equation (P11.4h).
	 5.	If | | .f f2 1

61 0 10- < × - then f  = f 2 and Q = the value obtained in step 2.
	 6.	 If | | .f f2 1

61 0 10- > × - then set f 1 = f 2 and repeat the process (steps 1 through 5).
	 7.	Continue iteration until | | .f f2 1

61 0 10- < × - .

The governing equation for the time it takes to raise the water level in the tank is
as follows:

	

d A
dt

Q p d
dt

Q p
A

T
a

a

T

() (,)
(,)�

� � �= =or
	

(P11.4k)

Separating the variables and integrating from �= �i to � �= f gives

	

t A d
Q p

A F p df T
a

T a

i

f

i

f

= =∫ ∫�
�

� �
�

�

�

�

(,)
(,)

	
(P11.4l)

Use Simpson’s rule to obtain tf . A review of Simpson’s rule follows:

Given:

	

I F x dx
a

b

= ∫ ()

Subdivide the x domain into N even subdivisions giving x x x xN1 2 3 1, , ,… + . Let the
function values at x x x xN1 2 3 1, , ,… + be F F F FN1 2 3 1, , ,… + , then

	
I

x
F F F F F F FN N= + + + + + + + +

D
3

4 2 4 2 21 2 3 4 5 1()�
	

(P11.4m)

Then �~ x
Q

and 1
~ F.

Procedure:

	 1.	At each � j determine pa j , by Equation (P11.4j).
	 2.	For each � j , iterate forQ j by the iteration procedure described above, obtain-

ing all the ′Q j s. Then determine all the Fj ’s.
	 3.	Apply Equation (P11.4m) to obtain the time t f .

93568_Book.indb 247 7/22/09 10:34:01 AM

248  ◾  Numerical and Analytical Methods with MATLAB﻿

Use the following values for the variables:

	
() , . , . ,

. ,

z z

p

i f

atm

2 1

6

30 1 2 4 2

1 0 10

- = = =

= × -

m m m

m /s2

� �

ν == ×

= = = =

1 0132 10

9790 4 5 15 60

5. ,

, . , , ,

N/m

N/m cm m

2

3g K D L pp p N Da atm T() , , .0 100 1 5= = = m

	 1.	Create a plot of the approximating curve of H (m) vs. Q (m /h)3 (solid line)
and on the same plot include the data points as circles. Note: Except for the
plots, Q needs to be in (m /s)3 .

	 2.	Create plots of Q (m /h)3 vs. �()m , t s() vs. �()m , pa (N/m gage)2 vs. �()m , and
f  vs. �()m .

	 3.	Print out the time, t f ()s , it takes to raise the water level in the tank by 3 m.
	 4.	Print out the air pressure (N/m gage)2 in the tank at time t f .
	 5.	Print out the initial flow rate, Q i, and final flow rate, Q f, in (m /h).3

References
	 1.	 Bober, W. and Kenyon, R. A., Fluid Mechanics, John Wiley & Sons, New York, 1980.
	 2.	 Holman, J. P., Heat Transfer, 9th ed., McGraw-Hill, New York, 2002.
	 3.	 Bober, W., The use of the Swamee-Jain formula in pipe network problems, Journal of

Pipelines, 4, 315–317, 1984.
	 4.	 White, F., Fluid Mechanics, 6th ed., McGraw-Hill, New York, 2008.
	 5.	 Bober, W., Fluid mechanics computer project for mechanical engineering students,

IJMEE, 36, 3, July 2008.

93568_Book.indb 248 7/22/09 10:34:05 AM

249

12Chapter

Laplace Transforms

12.1 � Laplace Transform and Inverse Transform
Laplace Transforms [1,2] can be used to solve ordinary and partial differential equa-
tions (PDEs). The method reduces an ordinary differential equation to an algebraic
equation that can be manipulated to a form such that the inverse transform can
be obtained from tables. The inverse transform is the solution to the differential
equation. The inverse transform can also be obtained by residue theory in complex
variables. The method is applicable to problems where the independent variable
domain is from (0 to ∞). The method is particularly useful for linear, nonhomoge-
neous differential equations, such as vibration problems where the forcing function
is piecewise continuous.

Let f (t) be a function defined for all t ≥ 0; then

	

L (f (t)) = = -
∞

∫F s e f t dts t() ()
0 	

(12.1)

F (s) is called the Laplace Transform of f (t).
The inverse transform of F (s) is defined to be the function f (t), that is,

	 L -1 (F(s)) = f (t)	 (12.2)

We can create a table that contains both f (t) and the corresponding F (s).

93568_Book.indb 249 7/22/09 10:34:06 AM

250  ◾  Numerical and Analytical Methods with MATLAB﻿

Example 12.1

Let f (t) = 1; t ≥ 0. Then

	

L (1) = e dts t-
∞

∫
0

 = – e
s s

s t- ∞








 =

0

1
	 (12.3)

Example 12.2

Let f (t) = e a t.

	

L ()
()

()
()

e e e dt e dt e
s a

at at st s a t
s a t

= = = -
-

-

∞
- -

∞ - -

∫ ∫
0 0









 =

-

∞

0

1
s a

	
(12.4)

Linearity of Laplace Transforms:

	 L (a f (t) + b g (t)) = a L (f (t) + b L (g (t))	 (12.5)

Example 12.3

Let f (t) = ei tw

	
L ()e

s i s i
s i
s i

s i
s

i tw

w w
w
w

w
w

=
-

=
-

× +
+

= +
+

1 1
2 2

	
L ()ei tw =

s
s

i
s2 2 2 2+

+
+w
w

w 	
(12.6)

	 L L L() (cos) (sin)e t i ti tw w w= + 	 (12.7)

Equating the real and imaginary components of Equations (12.6) and (12.7) gives

	
L (cos)w t =

s
s 2 2+ w 	

(12.8)

	
L (sin)w t =

w
ws 2 2+ 	

(12.9)

If L (f (t)) = F (s), then

	
F (s – a) = f t e dt f t e e dts a t a t s t() ()()- -

∞ ∞
-∫ ∫=

0 0 	
(12.10)

93568_Book.indb 250 7/22/09 10:34:09 AM

Laplace Transforms  ◾  251

or

	 F (s – a) = L (f (t) e a t)	 (12.11)

Combining Equation (12.8) and Equation (12.11) we obtain

	
L (cos)e ta t w =

s a
s a

-
- +()2 2w

	
(12.12)

Similarly,

	
L (sin)e ta t w =

w
w()s a- +2 2

	
 (12.13)

Example 12.4

	
L (t n+1) = t e dtn s t+

∞
-∫ 1

0

Let dv e dt v e
s

s t
s t

= = --
-

, then and let u t n= +1; then du = (n + 1) tn dt.
But

	

u dv u v v du
0

0

0

∞

∞

∞

∫ ∫= -[]

	
(12.14)

Substituting the above values into Equation (12.14) gives

	

t e dt t e
s

n
s

t e dn s t n
s t

n s t+
∞

- +
- ∞ ∞

-∫ ∫= -








 + +1

0

1

0 0

1 tt

or

	

t e dtn s t+
∞

-∫ =1

0

n
s
+ 1

L (t n)
	

(12.15)

From Equation (12.15), we can see that

	
L (t n) =

n
s

 L (t n-1)

	
L (t n-1) = n

s
 L (t n-2)

	
L (t) = 1 1 1 10

2s
t

s s
L L() ()= =

See Table 12.1, “Table of Laplace Transforms.”

93568_Book.indb 251 7/22/09 10:34:13 AM

252  ◾  Numerical and Analytical Methods with MATLAB﻿

Table 12.1  Table of Laplace Transforms

f (s) F(t)

  1
1
s

1

  2
1
2s

t

  3
1

1 2
s

nn (, ,)= …
t

n

n-

-

1

1()!

  4
1
s

1
πt

  5 s- 3
2 2

t
π

  6 s n
n- +() =

1
2 1 2(, ,)…

2
1 3 5 2 1

1 2n nt
n

-

× × -

/

...() π

  7
1

s a- eat

  8
1

2()s a- teat

  9
1

1 2
()

(, ,)
s a

nn-
= …

1
1

1

()!n
t en at

-
-

10
Γ()

()
()

k
s a

kk-
> 0 t ek at-1

11
1

()()
()

s a s b
a b

- -
≠ 1

()
()

a b
e eat bt

-
-

12
s

s a s b
a b

()()
()

- -
≠ 1

()
()

a b
ae beat bt

-
-

13
1

()()()s a s b s c- - -
- - + - + -

- - -
() () ()

()()()
b a e c a e a b e

a b b c c a

at bt ct

93568_Book.indb 252 7/22/09 10:34:18 AM

Laplace Transforms  ◾  253

Table 12.1  Table of Laplace Transforms (Continued)

f (s) F(t)

14
1

2 2s a+
1
a

atsin

15
s

s a2 2+
cos at

16
1

2 2s a-
1
a

atsinh

17
s

s a2 2-
cosh at

18
1

2 2s s a()+
1

12a
at(cos)-

19
1

2 2 2s s a()+
1
3a

at at(sin)-

20
1

2 2 2()s a+
1

2 3a
at at at(sin cos)-

21
s

s a()2 2 2+
t
a

at
2

sin

22
s

s a

2

2 2 2()+
1

2a
at at at(sin cos)+

23
s a
s a

2 2

2 2 2

-
+()

t atcos

24
s

s a s b
a b

()()
()2 2 2 2

2 2

+ +
≠ cos cosat bt

b a
-
-2 2

25
1
2 2()s a b- +

1
b

e btat sin

26
s a

s a b
-

- +()2 2 e btat cos

(Continued)

93568_Book.indb 253 7/22/09 10:34:23 AM

254  ◾  Numerical and Analytical Methods with MATLAB﻿

Table 12.1  Table of Laplace Transforms (Continued)

f (s) F(t)

27
3 2

3 3

a
s a+

e e
at atat

at
- - -







2 3
2

3
3

2
cos sin

28
4

4

3

4 4

a
s a+

sin cosh cos sinhat at at at-

29
s

s a4 44+
1

2 2a
at atsin sinh

30
1

4 4s a-
1

2 3a
at at(sinh sin)-

31
s

s a4 4-
1

2 2a
at at(cosh cos)-

32
8 3 2

2 2 3

a s
s a()+

()sin cos1 2 2+ -a t at at at

33
1 1
s

s
s

n-



 L t

e
n

d
dt

t en

t n

n
n t()

!
()= -

34
s

s a() /- 3 2

1
1 2

πt
e atat()+

35 s a s b- - -
1

2 3πt
e ebt at()-

36
1

s a+
1 2

πt
ae erfc a ta t- ()

37 s
s a- 2

1 2

πt
ae erfc a ta t+ ()

38
1

2s s a()-
1 2

a
e erf a ta t ()

39
1

s s a()+ e erfc a ta t2
()

93568_Book.indb 254 7/22/09 10:34:29 AM

Laplace Transforms  ◾  255

Table 12.1  Table of Laplace Transforms (Continued)

f (s) F(t)

40
1

()s a s b+ +
1

b a
e erf b a tat

-
-- ()

41
b a

s s a s b

2 2

2

-
- +()()

e
b
a

erf a ta t2
1()-





42
1

2 2s a+
J at0()

43

1
s

e k s- / J kt0 2()

44
1
s

e k s- / 1
2

πt
ktcos

45
1
s

ek s/ 1
2

π t
ktcosh

46
1
3 2s

e k s
/

/- 1
2

πk
ktsin

47
1
3 2s

ek s
/

/ 1
2

πk
ktsinh

48 e kk s- >()0
k

t

k
t2 43

2

π
exp -







49
1

0
s

e kk s- ≥() erfc
k

t2






50
1

0
s

e kk s- ≥() 1
4

2

πt
k

t
exp -







51 s e kk s- - ≥3 2 0/ () 2
4 2

2t k
t

k erfc
k

tπ
exp -







- 





(Continued)

93568_Book.indb 255 7/22/09 10:34:34 AM

256  ◾  Numerical and Analytical Methods with MATLAB﻿

12.2 � Transforms of Derivatives

	

L () ()′ = ′ -
∞

∫f f t e dts t

0

Let dv
d f
dt

dt v f= =, then

Let u = e–st, then du = –s e–s t dt

	

′ = + = - +-
∞

- ∞ -
∞

∫ ∫f t e dt f e s f e dt f s fs t s t s t() [] () (
0

0

0

0 L))

	
(12.16)

	

L () ()′′ = ′′ -
∞

∫f f t e dts t

0

Let dv
d f
dt

dt v f= ′ = ′, then

Table 12.1  Table of Laplace Transforms (Continued)

f (s) F(t)

52
ae

s a s
k

k s-

+
≥

()
()0 - +





+ 





e e erfc a t
k

t
erfc

k
t

ak a t2

2 2

53
e

s a s
k

k s-

+
≥

()
()0 e e erfc a t

k
t

ak a t2

2
+





54 log
s a
s b

-
-

1
t

e ebt at()-

55 log
s a

s

2 2

2

+ 2
1

t
at-()cos

56 log
s a

s

2 2

2

- 2
1

t
at(cosh)-

57 arctan
k
s

1
t

ktsin

93568_Book.indb 256 7/22/09 10:34:38 AM

Laplace Transforms  ◾  257

Let u = e–st, then du = –s e–s t dt

′′ = ′ + ′ = - ′ --
∞

- ∞ -
∞

∫ ∫f t e dt f e s f e dt fs t s t s t() [] ()
0

0

0

0 ss f s f() ()0 2+ L

	
(12.17)

By Equations (12.16) and (12.17) we can see the pattern for the Laplace Transform
of the nth derivative, that is,

	 L (f (n)) = s n L (f) – s n-1 f (0) – s n-2 ′ - - -f f n() . ()()0 01� 	 (12.18)

12.3 � Ordinary Differential Equations,
Initial Value Problem

Consider the differential equation arising from a spring-dashpot-mass system with
a driving force (see Projects P2.10 and P2.11). The governing differential equation
for the motion of the mass, y(t), is

	
′′ + ′ + =y c

m
y k

m
y

F t
m
0 ()

	
(12.19)

where
	m = mass.
	 k = the spring constant.
	 c = the damping coefficient.
	F0 = driving force.

Take the initial conditions to be

	 y y() , ()0 0= ′ =α b

Let p c
m

q k
m

r
F t

m
= = =,

()
and 0 , then Equation (12.19) becomes

	 ′′ + ′ + =y p y q y r t() 	 (12.20)

The Laplace Transform of each of the terms in Equation (12.20) follows:

	 L L() () () ()′′ = - - ′y s y s y y2 0 0

	 L L() () ()′ = -y s y y 0

93568_Book.indb 257 7/22/09 10:34:40 AM

258  ◾  Numerical and Analytical Methods with MATLAB﻿

Let L (y) = Y, and R = L (r); then the Laplace Transform of Equation (12.20)
becomes

	 () ()s Y s p sY qY R2 - - + - + =α b α

or

	 () ()s p s q Y s p R2 + + = + + +α b

Let H s
s p s q

()=
+ +

1
2

Then

	 Y s s p H s R s H s() [()] () () ()= + + +α b 	 (12.21)

By the use of partial fractions and the Laplace Transform tables, we can frequently
obtain the inverse transform, L -1 (Y (s)) = y (t).

Example 12.5

Given the following differential equation (no damping and an exponentially decay-
ing driving force), determine the solution.

	

′′ + =

= ′ =

-y y e

y y

t5

0 2 0 0() , () 	
(12.22)

This problem fits the general form of Equation (12.20), with p q r e t= = = -0, 1, 5 ,
a = 2, and b = 0. Thus,

	 Y s s H s R s H s() [] () () ()= +2

where

	
H s

s
R s() ()=

+
=1

12 and L ()5 5
1

e
s

t- =
+

Then

	
Y s

s
s s s

()
()()

=
+

+
+ +

2
1

5
1 12 2

	
(12.23)

93568_Book.indb 258 7/22/09 10:34:42 AM

Laplace Transforms  ◾  259

From Table 12.1,

	
L-

+






=1

2 1
s

s
tcos

	
L-

+






=1
2
1

1s
tsin

For the second term on the right-hand side of Equation (12.23), we need to decom-
pose the term by the method of partial fractions, that is,

	

5
1 1 1 1

1 1
2 2

2

()()
() ()()

(s s
A

s
B s C
s

A s B s C s
+ +

=
+

+ +
+

= + + + +
ss s+ +1 12)()

Then

	
A + B = 0,  C + B = 0,  A + C = 5 → = = - =A B C5

2
5
2

5
2

, ,

Therefore,

	

5
1 1

5
2 1

5
2

1
12 2()() ()

()
()s s s

s
s+ -

=
+

- -
+ 	

Thus,

	
Y s

s
s s

s
s s

()
() () () ()

=
+

+
+

-
+

+
+

2
1

5
2 1

5
2 1

5
2 12 2 2

From Table 12.1,

	
L- -

+






=1 1
1s

e t

	
L-

+






=1

2 1
s

s
tcos

	
L-

+






=1

2

1
1s

tsin

Therefore, the solution to Equation (12.22) is

	
y t t e t= - + + -1

2
5
2

5
2

cos sin

A plot of y vs. t is shown in Figure 12.1.

93568_Book.indb 259 7/22/09 10:34:45 AM

260  ◾  Numerical and Analytical Methods with MATLAB﻿

12.4 � A Shifting Theorem
If L (f (t)) = F(s)) = ∫∞ -

0 f t e dts t() , then

	

F s a f t e dt f t e e dt f ts a t a t s t() () () ((()- = = =- -
∞

-
∞

∫ ∫
0 0

L))e a t)

	
(12.24)

For damped vibrations,

	
L (cos)

()
e t

s a
s a

a t w
w

= -
- +2 2

	
(12.25)

	
L (sin)

()
e t

s a
a t w w

w
=

- +2 2
	

(12.26)

Example 12.6

Determine the solution of the following differential equation:

	

′′ + ′ + =

= ′ = -

y y y t

y y

3 2 5 2

0 1 0 4

sin

() , () 	
(12.27)

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

t(s)

y(
m

)
y vs. t

Figure 12.1  The plot of y vs. t.

93568_Book.indb 260 7/22/09 10:34:47 AM

Laplace Transforms  ◾  261

p = 3, q = 2, r = 5 sin 2t = 10
sin2

2
t

	
H s

s s s s
()

()()
=

+ +
=

+ +
1
3 2

1
2 12

	 Y s s H s R s H s() [()()] () () ()= + - +3 1 4

	
R s

t
s

()
sin= 



 =

+
L

2
2

1
42

	
Y s

s
s s s s s

()
()() ()()()

= -
+ +

+
+ + +

1
2 1

10
4 2 12

It is left as a student exercise to show that

	

1
2 1

1
2

1
1()() () ()s s s s+ +

= -
+

+
+

	

s
s s s s()() () ()+ +

=
+

-
+2 1

2
2

1
1

	

1
4 2 1 4 2 12 2()()()s s s

A B s
s

C
s

D
s+ + +

= +
+

+
+

+
+

	

1
4 2 1

3 2 4 1
2

2 2

()()()
()() ()()

s s s
A B s s s C s s

+ + +
= + + + + + + + DD s s

s s s
()()

()()()

2

2
4 2

4 2 1
+ +

+ + +

To make the numerator of the above equation equal to 1, we require

B C D A B C D A B C D A C D+ + = + + + = + + + = + + =0 3 2 0 3 2 4 4 0 2 4 8 1, , ,

Letting A x B x C x D x= = = =1 2 3 4, , , ,and we may write the system of equations
as a matrix equation, that is,

	

0 1 1 1
1 3 1 2
3 2 4 4
2 0 4 8

1

2

3

4




































x
x
x
x





=



















0
0
0
1

93568_Book.indb 261 7/22/09 10:34:50 AM

262  ◾  Numerical and Analytical Methods with MATLAB﻿

Using the inv matrix function in MATLAB®, we can readily obtain the solution
for the x values; these are

	 x A x B x C x D1 2 3 40 05 0 075 0 125 0 20= = - = = - = = - = =. , . , . , .

	

L

L

L

- -

- -

-

+






=

+






=

+





1

1

1

1
2

1
1

1
4

2

2

s
e

s
e

s

t

t


=

+






=-

1
2

2

4
22

sin

cos

t

s
s

tL 1

Collecting all the terms in Y (s) and applying the above inverse transforms gives

	 y t Y s e t tt() (()) . . cos . sin= = - --1 -L 1 75 0 75 2 0 25 22

Although we were able to solve this problem by the use of Laplace Transforms, the
solution could be obtained with fewer steps by either MATLAB’s ode45 function or
by the method involving complementary and particular solutions (see Figure 12.2).
The program using the ode45 function in MATLAB follows.

% ODE_laplace.m
% In this example a single second order ordinary differential equation
% is reduced to two first order differential equations. This program
% solves the two equation system using MATLAB’s ode45 function.
% The problem is to determine the y(t) position of the mass in a
% spring-dashpot system.
% Y1=y, Y2=v, Y1’=Y2, Y2’=5*sin 2t-3Y2-2Y1
% y(0)=1.0, y’(0)= –4.0
clear; clc;
initial=[1.0 –4.0];
tspan=0.0:0.1:20;
tol1=1.0e-6;
tol2=[1.0e-6 1.0e-6];
options=odeset(’RelTol’,tol1,’AbsTol’,tol2);
[t,Y]=ode45(’dYdt_laplace’,tspan,initial,options);
P=[t Y];
dt=0.1;
for i=1:201
	 t1=(i-1)*dt;
	 ylp(i)=1.75*exp(–2*t1) –0.75*cos(2*t1) –0.25*sin(2*t1);
end

93568_Book.indb 262 7/22/09 10:34:50 AM

Laplace Transforms  ◾  263

plot(t,Y(:,1),t,ylp,’x’),
xlabel(’t’),ylabel(’y,ylp’),title(’y and ylp vs. t’), grid;
text(1.0,0.92,’x-solution by Laplace transforms’),
text(10.0,0.92,’solid line-solution by ode45’);

% dYdt_laplace
% This function works with ODE_laplace
% Y(1)=y, Y(2)=v
% Y1’=Y(2), Y2’=5*sin 2t-3Y2-2Y1
function Yprime=dYdt_laplace(t,Y)
Yprime=zeros(2,1);
Yprime(1)=Y(2);
Yprime(2)=5*sin(2*t)-3.0*Y(2)-2.0*Y(1);

12.5 � The Unit Step Function
Let (see Figure 12.3)

	

u t a
if t a
if t a

()
,
,

- =
<
≥







0
1 	 (12.28)

The unit step function is useful in analyzing beams and electrical circuits.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y,
yl

p
y and yLp vs. t

x–Solution by Laplace Transforms Solid line−Solution by ode45

Figure 12.2  A comparison between a solution obtained by Laplace Transforms
and ode45.

93568_Book.indb 263 7/22/09 10:34:51 AM

264  ◾  Numerical and Analytical Methods with MATLAB﻿

The function

	

f t a u t a() ()- - =
0, if t a

f t a if t a

<

- >





 (),

has the Laplace Transform e F sa s- (), where L (f (t)) = F(s).

Proof:

	

e F s e f e d f e da s a s s s a- - -

∞

- +

∞

= =∫ ∫() () () ()t t t tt t

0 0

Let t a dt d= + =t t, then . When t t= = = ∞ = ∞0, ,t a tand when . Therefore,

	

e F sa s- =() f t a e dt e dt f t a e dts t

a

s t

a

s t

a

() ()- = + --

∞

- -

∞

∫ ∫ ∫0
0

	

e F s u t a f t a e dta s s t- -
∞

= - -∫() () ()
0

	 e F s u t a f t aa s- = - -() (() ())L 	 (12.29)

12.6 � Laplace Transform of the Unit Step Function

	

L (()) ()u t a u t a e dt e dt e dts t s t s t

a

a

- = - = ⋅ + ⋅- - -

∞

∫∫ 0 1
00

∞∞

∫

	
L (()) [] []u t a

s
e

s
e

s
es t

a
a s a s- = - = - - =- ∞ - -1 1 0 1

	
(12.30)

u(t)

t

1

Figure 12.3  Unit step function.

93568_Book.indb 264 7/22/09 10:34:55 AM

Laplace Transforms  ◾  265

Example 12.7

Determine the solution of the following differential equation:

	

′′ + ′ + =
<

≥







= ′ =

y y y
t t

t

y y

3 2
5 2

0 2

0 1 0 0

,

,

() , ()

for

for

	

(12.31)

	 p = 3, q = 2,

	
r (t) =

5 , for

0, for

t t

t

<

≥







2

2

	 R (s) = L (r (t)) = L { () () () () () ()}5 5 2 5 5 2 2 10 2t t t t t t t t tm m m m m- - = - - - - -

	 () ()s p s q Y s p R2 + + = + + +α b

	 Y s s H s R s H s() [()()] () () ()= + +3 1

	
H s

s s s s
()

()()
=

+ +
=

+ +
1
3 2

1
2 12

	

Y s s
s s s s s s s

e

()
()() ()() ()()

=
+ +

+
+ +

+
+ +

-
-

2 1
3

2 1
5
2 1

5

2

2 ss s

s s s
e

s s s2

2

2 1
10

2 1()() ()()+ +
-

+ +

-

LetY s Y Y Y Y Y() ,= + + + +1 2 3 4 5 where

	
Y1 = s

s s()()+ +2 1

	
Y

s s2
3

2 1
=

+ +()()

	
Y

s s s3 2
5
2 1

=
+ +()()

	
Y

e
s s s

s

4

2

2
5

2 1
= -

+ +

-

()()

	
Y

e
s s s

s

5

210
2 1

= -
+ +

-

()()

93568_Book.indb 265 7/22/09 10:34:58 AM

266  ◾  Numerical and Analytical Methods with MATLAB﻿

By the use of partial fractions, we can determine that

	 L - - -= -1
1

22()Y e et t

	 L- - -= - +1
2

23 3()Y e et t

	
L- - -= - - +1

3
25

2
15
4

5
4

5()Y t e et t

	
L- - -= - - - - +









-1
4

4 2 25
2

5 15
4

5
4

5 2() ()Y t e e e e tt t m

	
L- - -= - + -









-1
5

4 2 210 1
2

1
2

2() ()Y e e e e tt t m

Summing the above five terms gives

	

y t

t e e t

e

t t

()

,

=

- - + <

- +






- -5
2

15
4

9
4

7 2

9
4

15
4

2

4

for

ee e e tt t- -+ + ≥













2 27 5 2() , for

This problem can also be solved numerically by the use of the ode45 function in
MATLAB. The MATLAB program used to solve the above problem follows.

% ODE_laplace2.m
% This program solves a system of 2 ordinary differential equations
% by using ode45 function. The problem is to determine the
% y(t)positions of a mass in a mass-spring-dashpot system
% Y1=y, Y2=v, Y1’=Y2, Y2’=5*t-3Y2-2Y1, for t < 2,
% Y2’=–3Y2-2Y1, for t >= 2,
% y(0)=1.0, y’(0)=0
clear; clc;
initial=[1.0 0.0];
tspan=0.0:0.1:4;
tol1=1.0e-6;
tol2=[1.0e-6 1.0e-6];
options=odeset(‘RelTol’,tol1,’AbsTol’,tol2);
[t,Y]=ode45(‘dYdt_laplace2’,tspan,initial,options);
P=[t Y];
dt=0.1;
for i=1:41
	 t1(i)=(i-1)*dt;
	 t2=(i-1)*dt;
	 if t2 < 2

93568_Book.indb 266 7/22/09 10:35:00 AM

Laplace Transforms  ◾  267

		 ylp(i)=2.5*t2-15/4-9/4*exp(–2*t2)+7*exp(–t2);
	 end
	 if t2 >= 2
	 ylp(i)= – (9/4+15/4*exp(4))*exp(–2*t2)+(7+5*exp(2))*exp(–t2);
	 end
end
plot(t,Y(:,1),t1,ylp,’x’),
xlabel(’t’),ylabel(’y,ylp’),title(’y & ylp vs. t’), grid;

% dYdt_laplace2
% This function works with ODE_laplace
% Y(1)=y, Y(2)=v
% Y1’=Y(2), Y2’=5*t-3Y2-2Y1, if t >2, Y2’=–3Y2-2Y1, if t >= 2
function Yprime=dYdt_laplace(t,Y)
Yprime=zeros(2,1);
Yprime(1)=Y(2);
if t < 2
	 Yprime(2)=5*t-3.0*Y(2) –2.0*Y(1);
else
	 Yprime(2)= –3.0*Y(2) –2.0*Y(1);
end

A comparison of the ode45 and the Laplace Transform solution is shown in
Figure 12.4.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t

y,
yL

p

y & yLp vs. t

Solid line−Solution by ode45 Function
x–Solution by Laplace Transforms

Figure 12.4  A comparison between a solution obtained by Laplace Transforms
and ode45.

93568_Book.indb 267 7/22/09 10:35:01 AM

268  ◾  Numerical and Analytical Methods with MATLAB﻿

12.7 � Convolution
Given two transforms F(s) and G(s) whose transforms are f(t) and g(t) are known, then

	

L- = - = -∫ ∫1

0 0

(() ()) () () () ()F s G s f g t d g f t d
t t

t t t t t t
	

(12.32)

Proof:

	

F s G s f p e dp g e dp s s() () () ()=


















-

∞

-

∞

∫ ∫
0 0

t tt






	
(12.33)

	

F s G s g f p e dp dp s() () () () ()=











- +

∞∞

∫∫ t tt

00 	
(12.34)

Let p t p t p t dp+ = = = = ∞ = ∞ =t t, , , .then when and when Also0 ddt .

F s G s g f t e dt d gt s() () () () (= -











=-

∞∞

∫∫ t t t t
t0

)) ()f t e dt d
R

t s-∫∫ -t t

	
(12.35)

where R is the region below the line t = t as shown in Figure 12.5.
The integration order of the multiple integral in Equation (12.35) is to inte-

grate with respect to t first, then with respect to t second. In this case, the order of
integration does not matter. So we can integrate with respect to t first, then with

t = τ

Region R

t

τ

Figure 12.5  Integration in the (t, t) plane.

93568_Book.indb 268 7/22/09 10:35:03 AM

Laplace Transforms  ◾  269

respect to t second. This gives

	

F s G s g f t e dt d

e g f t d

R

s t

s t

() () () ()

() ()

= -

= -

∫∫ -

-

t t t

t t t
000 0

t t

dt g f t d∫∫ ∫











= -













∞

L () ()t t t

Thus,

	

L- = -∫1 (() ()) () ()F s G s g f t d
t

t t t
0 	

(12.36)

We can reverse the roles of f and g, giving

	

L- = -∫1 (() ()) () ()F s G s g t f d
t

t t t
0

Example 12.8

Let’s apply the convolution formula to the second term in the Y (s) function in
Example 12.6. In that example the second term in the Y (s) function is the Y3 term
in Equation (12.37).

Y s
s

s s s s s s s
()

()() ()() ()()()
=

+ +
-

+ +
+

+ + +2 1
1

2 1
10

4 2 12 == + +Y Y Y1 2 3
	

(12.37)

	
L L L- - -=

+ +






=
+

-
+







1 1 1()
()()

Y
s

s s s s1 2 1
2

2
1

1
== -- -2 2e et t

	
L L- -= -

+ +






= - -
+

+
+







1 1()
()()

Y
s s s s2

1
2 1

1
2

1
1

== -- -e et t2

	 L- - -+ = -1 ()Y Y e et t
1 2

23 2 	 (12.38)

	
L L- -=

+ + +






=1 1()

()()()
(() ()Y

s s s
F s G s3 2

10
4 2 1

10))
	

(12.39)

93568_Book.indb 269 7/22/09 10:35:05 AM

270  ◾  Numerical and Analytical Methods with MATLAB﻿

where

	
F s

s
G s

s s
() ()

()()
=

+
=

+ +
1

4
1

2 12 and

	
L L- - - -= = = - + =1 1and(()) sin () (()) (F s t f t G s e e gt t1

2
2 2 tt)

	

L- - - - -= - = - +∫1 (() ()) () () (() (F s G s g t f d e e
t

t tt t t t t

0

2))) sin
0

1
2

2
t

d∫ t t

	

L- - -= - +∫1 (() ()) sin sinF s G s e e d e et

t

t1
2

2
1
2

22 2

0

t tt t t dd
t

t
0
∫

	
(12.40)

From integral tables

	
e px dx

a p
e a px p pxa x a xsin (sin cos)∫ =

+
-1

2 2

Applying the above equation to Equation (12.40) gives

L- -= - -
+






1 (() ())

(sin cos)
F s G s e

et1
2

2 2 2 2
4 4

2
2t t t 





+ -

+











-

0 0

1
2

2 2 2
1 4

t

t

t

e
e t t t(sin cos

After collecting like terms, the above equation reduces to

	
L- - -= - - - +1 (() ()) sin cosF s G s t t e et4

160
2

12
160

2
1
8

1
5

2 tt

	
(12.41)

Combining Equations (12.38), (12.39), and (12.41), we obtain

	 L- -= - -1 (()) . . sin . cosY s e t tt1 75 0 25 2 0 75 22
	 (12.42)

which is the same as we obtained earlier.

93568_Book.indb 270 7/22/09 10:35:08 AM

Laplace Transforms  ◾  271

12.8 � Laplace Transforms Applied
to Partial Differential Equations

Let us obtain the Laplace Transform of the following PDE:

	
A

x
B

t
C

x
D

t
E F x t

∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ =
2

2

2

2

q q q q q (,)
	

(12.43)

where q q= ≤ ≤ ∞(,)x t and 0 t .
Multiply both sides of the above equation by e s t- ∞and integrate from 0 to .

	

L
t s

s t s tA
x

A
x

e dt A
d
dx

e
→

-

∞

-∂
∂







= ∂

∂
=∫

2

2

2

2
0

2

2
0

q q q
∞∞

∫ =dt A
d
dx

x s
2

2 q(;)

where q q(;) (,)x s x t= the Laplace Transform of .

	

L
t s

s tB
t

B
t

e dt B s s x
→

-

∞
∂
∂







= ∂

∂
= -∫

2

2

2

2
0

2 0
q q q q(,) --







d
dt

x
q

(,)0

	

L
t s

s t s tC
x

C
x

e dt C
d
dx

e dt C
d
d→

-

∞

-∂
∂







= ∂
∂

= =∫ ∫q q q
0

xx
x sq (;)

	

L
t s

s tD
t

D
t

e dt D s x s x
→

∞

-∂
∂







= ∂
∂

= -∫q q q q
0

0((;) (,)))

	

L
t s

s tE E e dt E x s
→

∞

-= =∫() ((;))q q q
0

	

L
t s

s tF F e dt F x s
→

∞

-= =∫() (;)
0

From the above relations, it can be seen that Equation (12.43) becomes an ordinary
differential equation with respect to x. In this equation s is considered a constant.
That is,

A
d
dx

C
d
dx

B s D s E F x s B s D x B
2

2
2 0

q q q q+ + + + = + + +() (;) () (,)
∂∂
∂

q
t

x(,)0
  
(12.44)

93568_Book.indb 271 7/22/09 10:35:12 AM

272  ◾  Numerical and Analytical Methods with MATLAB﻿

One also needs to take the Laplace Transforms of the boundary conditions. Suppose
that

	
q q

(,) () (,) ()0 1 2t g t
x

L t g t= ∂
∂

=and

Then

	 q (;) ()0 1s g= L 	 (12.45)

	

L
∂
∂







= =
→

-

∞

→∫q q
x

L t
d
dx

x t e dt
x L

s t

x
(,) lim (,) lim

0
LL

d
dx

x sq(;)

Thus,

	

d
dx

L s g
q

(;) ()= L 2
	

(12.46)

The initial conditions q q(,) (,)x
t

x0 0and ∂
∂

are directly entered into Equation (12.44).

Example 12.9

Consider a semi-infinite slab, initially at a uniform temperature, Ti   , that is suddenly
subjected to temperature T0 at its free surface (see Figure 12.6). The governing PDE is

	

1 2

2a
T
t

T
x

∂
∂

= ∂
∂

where a is the thermal diffusivity of the slab material.

T0

x

Figure 12.6  Semi-infinite slab.

93568_Book.indb 272 7/22/09 10:35:14 AM

Laplace Transforms  ◾  273

Initial Condition

	
T x Ti(,)0 =

Boundary Conditions

	
T t T(,)0 0=

	
T t Ti(,)∞ =

To simplify the method for obtaining the solution, let q(,) (,) ,x t T x t Ti= - then
the above equations reduce to

	

1 2

2a t x
∂
∂

= ∂
∂

q q

	
(12.47)

	 q(,)x 0 0= 	 (12.48)

	
q(,)0 0t T Ti= -

	 (12.49)

	 q(,)∞ =t 0 	 (12.50)

Taking the Laplace Transform of both sides of Equations (12.47), (12.49), and
(12.50) gives

	

1
0

2

2a
s x

d
d x

((,))q q q- =
	

(12.51)

	 q(;)∞ =s 0 	 (12.52)

	
q (;)0 0s

T T
s

i=
-

	
(12.53)

where q q=
→
L

t s
x t((,)).

Equation (12.51) becomes

	

d
d x

s
a

2

2 0
q q- =

	
(12.54)

The solution is

	 q(;)x s c e c e
s
a

x
s
a

x
= +

-

1 2 	
(12.55)

93568_Book.indb 273 7/22/09 10:35:18 AM

274  ◾  Numerical and Analytical Methods with MATLAB﻿

Applying a boundary condition, Equation (12.52) gives

	 q(;)∞ = → =s c0 01

Then

	 q =
-

c e
s
a

x

2

Applying a boundary condition, Equation (12.53) gives

	
q (;) ()0 10

2s
T T

s
ci=

-
=

Thus,

	
q =

- -T T
s

ei
s
a

x
0

	
(12.56)

From Table 12.1

	
L- -





=










1 1
2s

e erfc
k

t
k s

Therefore,

	

q(,) ()x t T T erfc
x

a ti= -








0 2

or

	

T x t T T T T T erf
x

a ti i i(,) ()- = - - -








0 0 2

	

T x t T
T T

erf
x

a ti

(,) -
-

=








0

0 2
	

(12.57)

Example 12.10

Suppose we consider the same problem as Example 12.9 except we will replace the
boundary condition at x = 0 with the convection boundary condition

	

∂
∂

- - =∞
T
x

t h
k

T t T(,) ((,))0 0 0
	

(12.58)

93568_Book.indb 274 7/22/09 10:35:20 AM

Laplace Transforms  ◾  275

Again, let q(,) (,) ,x t T x t Ti= - then the PDE, the initial condition, and the bound-
ary condition at x = ∞ are the same as in Example 12.9, that is,

	

1 2

2a t x
∂
∂

= ∂
∂

q q

	
(12.59)

	 q(,)x 0 0= 	 (12.60)

	 q(,)∞ =t 0 	 (12.61)

By adding and subtracting Ti to the terms inside the parentheses of the second term
in Equation (12.58), the boundary condition becomes

	

∂
∂

- + - =∞
q q
x

t h
k

t T Ti(,) [(,)]0 0 0
	

 (12.62)

Taking the Laplace Transform of both sides of Equations (12.59) and (12.61) and
applying the Laplace Transform boundary condition to the Laplace Transform of
the PDE, we obtain as in Example 12.9

	 q =
-

c e
s
a

x

2

Then

	

d
d x

c s
a

e
s
a

xq = -
-

2

Applying a boundary condition, Equation (12.62) gives

	
- - +

-





=∞c

s
a

h
k

c
T T

s
i

2 2 0 	 (12.63)

Solving for c2 gives

	

c h
k

T T
s h

k
s
a

i
2

1=
-

×
+

∞

	 (12.64)

Therefore,

	

q =
-

×
+

= - ×∞
-

∞

-

h
k

T T
s h

k
s
a

e T T

h a
k

e

s
h a

k

i
x

s
a

i

x
s
a

1 ()

++








s

	

(12.65)

93568_Book.indb 275 7/22/09 10:35:23 AM

276  ◾  Numerical and Analytical Methods with MATLAB﻿

From Table 12.1

	

L-
-

+

+()











=









 -1 b e

s b s
erfc

t
e

s
b b t

b
bb

2

2()) erfc b t
t

+










b
2

	
(12.66)

Comparing Equation (12.66) to Equation (12.65),

	
b

h a
k

x

a
= =and b

	
(12.67)

Applying Equations (12.66) and (12.67) to Equation (12.65) gives

	

q(,) ()x t T T erfc
x

a t
ei

h x
k

h a

k
t

= -








 -∞

+










2

2

2 
+






















erfc

h a t
k

x

a t2

or

	

T x t T
T T

erfc
x

a t
ei

i

h x
k

h a

k
t(,) -

-
=









 -

∞

+









2

2

2 
+






















erfc

h a t
k

x

a t2
	

(12.68)

12.9 � Laplace Transforms and Complex Variables
Up to now, we only considered s to be a real number. However, one may also con-
sider s to be a complex number; that is, s = x + iy. Then

	

F s f t e dt u x y i v x ys t() () (,) (,)= = +-

∞

∫
0 	

(12.69)

where f (t) is a real-valued function that is piecewise continuous (see Reference [1]
for additional conditions for f (t)) and F (s) is analytic in the half plane. A function
F(s) is said to be analytic in a domain, D, if it is defined and differentiable at all
points of D. It can be shown [1] that

	

f t
i

F s e dss t

i

i

() lim ()=
→ ∞

-

+

∫1
2 π b

g b

g b

	

(12.70)

93568_Book.indb 276 7/22/09 10:35:24 AM

Laplace Transforms  ◾  277

where the line integral (g b g b- → +i i) is the curve C1 in the complex plane shown
in Figure 12.7. It is convenient, for reasons that will become clear later, to combine
curve C1 with curve C2 forming the closed path as shown in Figure 12.8. Residue
theory (discussed in the following section) provides the means for determining the
value of the line integrals around a closed path without actually carrying out the

x

y γ + iβ

γ – iβ

C1

Figure 12.7  Integration of F(S) on line C1 in the complex plane gives f (t).

x

R

C1

y

γ + iβ

γ – iβ

C2

Figure 12.8  Region in the complex plane for determining f (t).

93568_Book.indb 277 7/22/09 10:35:25 AM

278  ◾  Numerical and Analytical Methods with MATLAB﻿

line integrations. Suppose that the value of the line integrals around the closed path
of curves C1 and C2 by residue theory is g(t), then

	

2

2

π
g b

g b

i g t F s e ds F s e dss t

i

i

s t

C

() () ()= +
-

+

∫ ∫
	

(12.71)

It can be shown [1] that lim ()
b→ ∞

∫ →C
s tF s e ds

2
0 . Thus,

	

g t f t
i

F s e dss t

C C

() () lim ()= =
→ ∞

+
∫1

2
1 2

π b �
	

(12.72)

12.9.1 � Residues and Poles [3]
If s0 is an isolated singular point of G (s) it can be expressed as a Laurent series

	
G s a s s

b
s s

b

s s

b

s sn
n m

m
n

() ()
() ()

= - +
-

+
-

+ +
-=

∞

0
1

0

2

0
2

01

�∑∑ +� 	 (12.73)

The term b1 has particular significance, that is,

	

b
i

G s ds
C

1

1
2

= ∫π
()�

	
(12.74)

where C is a closed curve enclosing the singular point.
If in Equation (12.73), b bm m+ +1 2, , … are all zero and bm ≠ 0, then G (s0) has a

pole of order m. If G (s) is singular at s0 and φ () () ()s s s G sm= - 0 removes the sin-
gularity, then

	
b

s
m

m

1

1
0

1
=

-

-φ()()
()! 	

(12.75)

where

	
φ φ()

()() ()m
m

m
s

d
ds

s-
-

-=1
0

1

1 0

If m = 1,

	
b s s s G s

s s1 0 0
0

= = -
→

φ () lim () ()
	

 (12.76)

If

	
G s

p s
q s

()
()
()

=

93568_Book.indb 278 7/22/09 10:35:28 AM

Laplace Transforms  ◾  279

where both p(s) and q(s) are analytic at s0 and p (s0) ≠ 0, then both p and q can be
expanded in a Taylor Series about s0 giving

	

G s
p s p s s s p s s s

q s
()

() ()()
!

()()

(
=

+ ′ - + ′′ - +0 0 0 0 0
2

0

1
2

�

)) ()()
!

()()+ ′ - + ′′ - +q s s s q s s s0 0 0 0
21

2
�

If G (s) has a simple pole at s0, then q0(s0) = 0, ′ ≠q s() ,0 0 and

	

() ()
() ()()

!
()()

s s G s
p s p s s s p s s s

- =
+ ′ - + ′′ -

0

0 0 0 0 0
21

2
++

′ + ′′ - +

�

�q s q s s s()
!

()()0 0 0

1
2

By Equation (12.76)

	
b

p s
q s1

0

0

=
′
()
()

The term b1 is called the residue of G (s) at the isolated singular point s0. If curve C
encloses n isolated singular points (see Figure 12.9) of G (s), then

	

G s ds i K K K
C

n() ()� �∫ = + + +2 1 2π 	 (12.77)

where Kj = the residue at the jth isolated singular point.

y

x

γ + iβ

γ – iβ

S2•

C1

S3
O

S1

C2

SN

γ

• •

•

Figure 12.9  Region enclosing several poles.

93568_Book.indb 279 7/22/09 10:35:30 AM

280  ◾  Numerical and Analytical Methods with MATLAB﻿

DefiningG s F s e s t() ()= and comparing Equation (12.72) with Equation (12.77),
we see that

	
g t f t K K K n() () ()= = + + +1 2 � 	 (12.78)

Example 12.11

Suppose we take theY s() from Example 12.5 and obtain y (t) by residue theory. In
that example

	
Y s

s
s s s

s s
s s

()
()() ()()

=
+

+
+ +

= + +
+ +

2
1

5
1 1

2 2 5
1 12 2

2

2 	 (12.79)

The functions Y (s) corresponds to F (s) and y (t) corresponds to f (t) in Equation
(12.71). Thus,

	
y t K n

n

() = ∑
where Kn is the nth residue ofG s Y s e s t() () ,= which has simple poles at s = -1
and s i= ± .

Pole at s = –1:

	
K s G s e e

s

t t
1 1

1
2 2 5

2
5
2

= + = - + =
→ -

- -lim () () 	 (12.80)

Pole at s = +i:

	
K s i G s

i
i i

e
i

s i

i t
2

2 2 5
1 2

3 2
2 2

= - = - + +
+

= +
- +→

lim() ()
()() ii

t i t(cos sin)+

	
K t t i t i t2

1
8

2 10 10 2= - + - -(cos sin cos sin) 	 (12.81)

Pole at s = –i:

	
K s i G s

i
i i

t i
s i3

2 2 5
1 2

= + = - - +
- -

-
→ -
lim () ()

()()
(cos sin tt)

	
K t t i t i t3

1
8

2 10 10 2= - - - -(cos sin cos sin) 	 (12.82)

93568_Book.indb 280 7/22/09 10:35:33 AM

Laplace Transforms  ◾  281

Adding K1, K2, and K3 gives

	
y t e t tt() cos sin= - +-5

2
1
2

5
2

	 (12.83)

which is the same answer obtained in Example 12.5.

Exercises
Exercise 12.1
Determine L (sin)2 w t .

Exercise 12.2
Determine L (cos)e tt2 .

Exercise 12.3
Determine L (sin)e tt-3 2 .

Exercise 12.4
Determine the Laplace Transform of the function shown graphically in Figure E12.4.

Exercise 12.5

Determine L- +
+ -







1 2 1
9 22

s
s s()()

.

2

1

5
t

y

Figure E12.4  Function y (t).

93568_Book.indb 281 7/22/09 10:35:35 AM

282  ◾  Numerical and Analytical Methods with MATLAB﻿

Exercise 12.6

Determine L-

+ +






1 1
3 22()

.
s s

Exercise 12.7

Determine L-

+ + +






1 by convolution.1
1 3 22()()s s s

Exercise 12.8
Solve the following differential equation by Laplace Transforms:

	 ′′+ ′+ = = ′ =-y y y e y yt3 2 3 0 1 0 2, () , ()

Exercise 12.9
Determine y (t) of Example 12.6 by theory of residues in complex variables.

References
	 1.	 Churchill, R. V., Operational Mathematics, 2nd ed., McGraw-Hill, New York, 1958.
	 2.	Kreyszig, E., Advanced Engineering Mathematics, 8th ed., John Wiley & Sons, New

York, 1999.
	 3.	 Churchill, R. V., Introduction to Complex Variables and Applications, McGraw-Hill,

New York, 1948.

93568_Book.indb 282 7/22/09 10:35:36 AM

283

13Chapter

An Introduction to the
Finite Element Method

C. T. Tsai

13.1 � Finite Element Method for Stress Analysis
The finite element method is a powerful mathematical tool to numerically calculate
the stresses and deformation in structures with complicated geometry, boundary
conditions, and material properties. For a two-dimensional stress analysis prob-
lem, a solution can be obtained by solving a partial differential equation (PDE)
in MATLAB®, where a complicated geometry can be built and meshed. Then the
PDE can be discretized on the mesh and solved, providing an approximate solu-
tion. The pdetool graphical user interface in MATLAB provides easy-to-use graphi-
cal tools to describe complicated domains and to generate triangular meshes. It
also discretizes PDEs, finds discrete solutions, and plots results. To overview the
fundamentals of the finite element method (FEM) and understand how finite ele-
ment formulations are developed for various PDEs, a structural mechanics plane
stress problem is described below.

13.2 � Structural Mechanics Plane Stress Analysis
In structural mechanics, the equations relating stress and strain arise from the
applied forces and constraints in the material medium. Plane stress is a condition that
prevails in a flat plate in the (x, y) plane, loaded only in its own plane and without
z-direction restraints; that is, all the stress components in the z direction vanish.

93568_Book.indb 283 7/22/09 10:35:36 AM

284  ◾  Numerical and Analytical Methods with MATLAB

A general description of plane stress at any point of a solid is shown in Figure 13.1,
where all the stress components in the z direction (σz, τyz, and τxz) are zero.

The three-dimensional generalized Hooke’s law for an isotropic material is [1,2]

	
e σ u σ σx x y zE

= - +1 [()]
	

(13.1)

	
e σ u σ σy y x zE

= - +1 [()] 	 (13.2)

	
e σ u σ σz z x yE

= - +1 [()] 	 (13.3)

	
g

t
g

t
g

t
xy

xy
yz

yz
xz

xz

G G G
= = =, , 	 (13.4)

where E is the elastic modulus or Young’s modulus, u is the Poisson’s ratio, and G is
the shear modulus, which is defined by

	
G E=

+2 1()u

For plane stress, Equations (13.1) through (13.4) become

	
e σ u σx x yE

= -1 [()] 	 (13.5)

	
e σ u σy y xE

= -1 [()]
	

(13.6)

τxy τxy τxy

τxy

τxy

τyz

τxz τyz

τxz

σx
σx

σz σy

σx

σy
σy

(a) General state of stress (b) Plane stress (c) Plane stress
(two-dimensional view)

Figure 13.1  Illustration of stress at a point in a body.

93568_Book.indb 284 7/22/09 10:35:39 AM

An Introduction to the Finite Element Method  ◾  285

	
e u σ σz x yE

= - +1 [()] 	 (13.7)

	
g

t u t
xy

xy xy

G E
= =

+2 1()
	 (13.8)

Equation (13.7) indicates that without z-direction restraints, the strain εz may not
be zero, even though the stress in the z direction, σz, is zero. Equations (13.5)
through (13.8) can be written in matrix form as shown by Equation (13.9).

	

e
e

g

u
u

u

x

y

xy

E



















=
-

-
+
















1
1 0

1 0
0 0 2 1() 



















σ
σ

t

x

y

xy

	 (13.9)

The inverse of Equation (13.9) gives the stress–strain relationship for the plane
stress problem:

	

[]σ

σ
σ

t
u

u
u

u
=



















=
- -










x

y

xy

E
1

1 0
1 0

0 0 1
2

2




























=

e
e

g
e

x

y

xy

D[][] 	 (13.10)

Matrix [D] in Equation (13.10) is denoted as the material matrix for the plane
stress problem.

The strain components of the material are described by the displacement com-
ponents u and v in the x and y directions, respectively, and are defined by

	
e e gx y xyx y y x

= ∂
∂

= ∂
∂

= ∂
∂

+ ∂
∂

u v and u v, , 	 (13.11)

The equilibrium equations are

	

∂
∂

+
∂
∂

+ =
σ t

x xy
xx y

f 0 	 (13.12)

	

∂
∂

+
∂
∂

+ =
t σxy y

yx y
f 0 	 (13.13)

where fx and fy are body forces in x and y directions, respectively. Combining
Equations (13.10) and (13.11), and substituting the combination into Equations

93568_Book.indb 285 7/22/09 10:35:41 AM

286  ◾  Numerical and Analytical Methods with MATLAB

(13.12) and (13.13) gives the PDE in terms of displacement components, u and v, as
shown by Equations (13.14) and (13.15):

	

∂
∂

+ ∂
∂

+ +
-

∂
∂

∂
∂

+ ∂
∂







+
+()2 2u u u v

x y x x y E
f2 2

1
1

2 1u
u

u
xx = 0 	 (13.14)

	

∂
∂

+ ∂
∂

+ +
-

∂
∂

∂
∂

+ ∂
∂







+
+()2 2v v u v

x y y x y E
f2 2

1
1

2 1u
u

u
yy = 0 	 (13.15)

Equations (13.14) and (13.15) can be rearranged into the following:

	
G

x y
G

x x y
f x

∂
∂

+ ∂
∂







+ +() ∂
∂

∂
∂

+ ∂
∂







+
2 2u u u v

2 2 m == 0 	 (13.16)

	
G

x y
G

y x y
f y

∂
∂

+ ∂
∂







+ +() ∂
∂

∂
∂

+ ∂
∂







+
2 2v v u v

2 2 m == 0 	 (13.17)

where µ is defined as

	
m u

u u
=

+() -()
E

1 1 2

Equations (13.16) and (13.17) are elliptic PDEs. In MATLAB [3] u is a vector of

two dimensions, u
v






, and is written in as

	 -∇ ⋅ ∇() =c u f 	 (13.18)

where c is a rank-four tensor, which can be represented by four 2 × 2 matrices, c11,
c12, c21, and c22. For homogeneous isotropic elastic materials, they are defined as

	
c

2
11 =

+











G
G

m 0
0 	 (13.19)

	
c12 =













0
0
m

G 	 (13.20)

	
c21 =













0
0
G

m 	 (13.21)

	
c22 = +













G
G

0
0 2 m 	 (13.22)

93568_Book.indb 286 7/22/09 10:35:44 AM

An Introduction to the Finite Element Method  ◾  287

The body force, f, is defined by

	

f
f

f
=













x

y
	 (13.23)

Substituting Equations (13.19) through (13.23) into Equation (13.18) gives

	

-
∂
∂

∂
∂













∇ + ∇ = -
∂
∂

∂
∂













+

x y
c c

x y

G

()11 12

2

u v

mm m0
0

0
0G

x

y
G













∂
∂
∂
∂





















+











u

u 

∂
∂
∂
∂







































= - +() ∂

v

v

2 u

x

y

G m
2

∂∂
- ∂

∂ ∂
- ∂

∂
- ∂

∂ ∂
=

x x y
G

y
G

x y
f x2

2 2

2

2

m v u v

	 (13.24)

	

-
∂
∂

∂
∂













∇ + ∇() = -
∂
∂

∂
∂











x y

c c
x y

G

21 22

0

u v

m 00
0

0 2












∂
∂
∂
∂





















+ +











u

u
x

y

G
G m 

∂
∂
∂
∂







































= - + ∂

v

v

2 v

x

y

G()m
2

∂∂
- ∂

∂ ∂
- ∂

∂
- ∂

∂ ∂
=

y x y
G

x
G

x y
f y2

2 2

2

2

m u v u

	 (13.25)

Equations (13.24) and (13.25) are identical with Equations (13.16) and (13.17).
Therefore, the same finite element equations can be formulated by using either
Equations (13.12) and (13.13) or Equation (13.18).

In the FEM, the domain Ω is divided into a finite number of simple geometric
objects such as triangles or quadrilaterals. In MATLAB’s pdftool, only 3-node tri-
angles are used to approximate the computational domain Ω. The triangles form
a mesh and each vertex is called a node. Each triangle is counted as one element.
Since each edge of the triangle is a straight line, the curved boundaries of a domain
cannot be modeled accurately using just a few elements. Therefore, in regions near

93568_Book.indb 287 7/22/09 10:35:45 AM

288  ◾  Numerical and Analytical Methods with MATLAB

curved boundaries, more triangular elements are needed to improve the accuracy
of the solution.

In the FEM, a triangular element (see Figure 13.2) is created with known poly-
nomials for the field variables, such as u and v, within the element. The polynomials
interpolate the field variables at each node by the concept of a shape function. This
concept is described in the next section.

13.3 � The Shape Function for a Linear Triangle Element
For a 3-node triangle element with three prescribed values of field variables F1, F2,
and F3 at nodes 1, 2, and 3, as shown in Figure 13.2, one can assume a linear inter-
polation function for the field variable F(x, y) as [4]

	

F x y a bx cy

x y
a
b
c

(,) = + +

=











 1

	 (13.26)

x

y

F1

F3

F2

1(x1, y1)

3(x3, y3)

2(x2, y2)

Figure 13.2  Linear triangular scalar field element.

1

1

3

2

N1

1

1

1

3

2

N2

2

N3

3

1

Figure 13.3  Illustration of three shape functions.

93568_Book.indb 288 7/22/09 10:35:46 AM

An Introduction to the Finite Element Method  ◾  289

The values of F at the nodes shown in Figure 13.2 are given by

	

F

F

F

x y

x y

x y

1

2

3

1 1

2 2

3 3

1
1
1



















=






























=













a
b
c

A
a
b
c

[] 	 (13.27)

The inverse of Equation (13.27) is

	

a
b
c

A

x y x y x y x y x y x y

y











=

- - -
1

2 3 3 2 3 1 1 3 1 2 2 1

2| |
-- - -
- - -



















y y y y y

x x x x x x

F

F

F
3 3 1 1 2

3 2 1 3 2 1

1

2

3



















	 (13.28)

where

	 A x y x y x y x y x y x y= - + - + -2 3 3 2 3 1 1 3 1 2 2 1 	 (13.29)

Substituting Equation (13.28) into Equation (13.26) gives

F x y
x y
A

x y x y x y x y x y x y

y y(,)
| |

=

- - -
- 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 yy y y y

x x x x x x

F

F

F
3 1 1 2

3 2 1 3 2 1

1

2

3

- -
- - -





































=








 N x y N x y N x y

F

F

F
1 2 3

1

2

3

(,) (,) (,)










 		

		

(13.30)

where

	
N x y

x y x y x y y y x x
A1

2 3 3 2 2 3 3 2(,)
() ()

| |
=

- + - + -
	 (13.31)

	
N x y

x y x y x y y y x x
A2

3 1 1 3 3 1 1 3(,)
() ()

| |
=

- + - + -
	 (13.32)

	
N x y

x y x y x y y y x x
A3

1 2 2 1 1 2 2 1(,)
() ()

| |
=

- + - + -
	 (13.33)

93568_Book.indb 289 7/22/09 10:35:48 AM

290  ◾  Numerical and Analytical Methods with MATLAB

The illustration of three shape functions is shown in Figure 13.3. The summation
of three shape functions equals unity.

13.3.1 � 3-Node Triangular Element for 2-D Stress Analysis
For two-dimensional (2-D) stress analysis, there are two displacement components,
u and v, at each node as shown in Figure 13.4. The interpolation function of each
component, u(x, y) and v(x, y), is given as [4–6]

	

u(,)x y x y

a

b

c

=



















 1
1

1

1

v(,)x y x y

a

b

c

=



















 1
2

2

2

	 (13.34)

Since the displacement components within the element are a linear function of x
and y, the strains are constants as given below:

	
ex = ∂

∂
=u

x
b1

  
e y = ∂

∂
=v

y
c2

  
g xy = ∂

∂
+ ∂

∂
= +u v

y x
c b1 2 	 (13.35)

Conclusion

The strains and stresses are constant within the 3-node triangular element.
Therefore, this element is also called constant-strain triangle (CST).

x

1(x1, y1)

3(x3, y3)

2(x2, y2)

y

u2

v2

u3

v3

u1

v1

Figure 13.4  Linear triangular element for 2-D stress analysis.

93568_Book.indb 290 7/22/09 10:35:50 AM

An Introduction to the Finite Element Method  ◾  291

13.3.2 � Shape Function in Area Coordinates
The shape functions shown in Equations (13.31) through (13.33) are not suitable
for finite element formulation. For finite element formulation, it is essential to
map physical elements of various sizes and shapes into the natural or intrinsic
coordinates. For the triangular element, an area coordinate is used as natural or
intrinsic coordinates. Figure 13.5 shows the definition of area coordinates, where
a point (x, y) in the triangle can divide the area A into three areas, A1, A2, and
A3.

From Figure 13.5 it can be seen that

	

A
A

A
A

A
A

1 2 3 1+ + = 	 (13.36)

Define

	
L

A
A1

1=
  

L
A
A2

2=
  

L
A
A3

3= 	 (13.37)

Then every Cartesian coordinate (x, y) can be also represented by area coordinate
(L1, L2, L3). From Equation (13.37), it can be seen that L1 = 1 at node 1 and 0 at
nodes 2 and 3; L2 = 1 at node 2 and 0 at nodes 1 and 3; L3 = 1 at node 3 and 0 at
nodes 1 and 2 as shown in Figure 13.5. Also by Equation (13.36), L1 + L2 + L3 = 1.
Therefore, the shape function N1, N2, and N3 can be defined as

	 N L1 1=    N L2 2=    N L L L3 3 1 21= = - - 	 (13.38)

1

L1 = 1

L3 = 0

L3 = 1

L2 = 0

L2 = 1

L1 = 0

(x, y)

A1

A3

A2

A1 + A2 + A3 = A

2

3

Figure 13.5  Area coordinates in a triangular element.

93568_Book.indb 291 7/22/09 10:35:52 AM

292  ◾  Numerical and Analytical Methods with MATLAB

Now, Equation (13.30) can be also written as an interpolation of displacement
components at the three nodes as given in Equation (13.39):

	

u N N N

u

u

u
=



















 1 2 3

1

2

3

,

v N N N

v

v

v
=



















 1 2 3

1

2

3

	 (13.39)

The illustration of these shape functions is also shown in Figure 13.3.
Now the displacement solution is a simple linear function of x and y coordi-

nates, on each triangle. If the exact displacement solutions in the whole domain
are also linear functions of x and y, one could obtain an exact solution by using the
triangular elements in finite element analysis. If the exact displacement solutions
in the whole domain are not linear functions, one can still obtain an approximate
solution by using more triangular elements in the whole domain.

13.3.3 � Finite Element Formulation Using Triangular Elements
Same finite element equations can be derived by using either Equations (13.12)
and (13.13) or (13.18). Equations (13.12) and (13.13) will be used here to derive
the finite element equation. The same equation can be derived in the MATLAB,
which uses Equation (13.18). Equations (13.12) and (13.13), which are in the form
of stress components, will be converted to displacement components u. What we
are looking for is the best approximation of u in the class of continuous piecewise
polynomials, and we need to test the equation for u against all possible functions v

1 u1
2

3

v1
u2

i Q2i–1
j

k

Q2i

Q2j–1

Q2j

Q2k–1

Q2k

v2

u3

v3

(a) (b)

Figure 13.6  (a) Global displacement components for an element with node num-
bers i, j, and k. (b) Corresponding displacement components in a local element,
where local node numbers 1, 2, and 3 are corresponding to global node numbers
i, j, and k, respectively.

93568_Book.indb 292 7/22/09 10:35:53 AM

An Introduction to the Finite Element Method  ◾  293

of that class. Testing means formally to multiply the residual against any function
and then integrate, that is, determine u such that [4–6]

	

∂
∂

+
∂
∂

+






+
∂
∂

+
∂
∂

+






σ t
δ

t σ
δx xy

x
xy y

yx y
f

x y
fu v













=∫Ω
dA 0 	 (13.40)

for all possible δu and δv in the area domain Ω. The functions δu and δv are usu-
ally called weighting functions or test functions. In stress analysis these functions are
defined as virtual displacements.

Integrating Equation (13.40) by parts (Green’s formula or divergence theo-
rem) gives

	

∂
∂

= - ∂
∂

+∫ ∫ ∫σ
δ σ δ σ δx

x x xxΩ Ω
ud u u

S
A

x
dA n d S 	 (13.41)

	

∂
∂

= - ∂
∂

+∫ ∫ ∫
t

δ t δ t δx
xy y xy

y

Sy
ud u u

Ω Ω
A

y
dA n d S

	
(13.42)

	

∂
∂

= - ∂
∂

+∫ ∫ ∫
t

δ t δ t δx
xy x xy

y

Sx
vd v v

Ω Ω
A

x
dA n d S 	 (13.43)

	

∂
∂

= - ∂
∂

+∫ ∫ ∫
σ

δ σ δ σ δy

Sy
vd v v

Ω Ω
A

y
dA n dy y y S 	 (13.44)

where S is the boundary of the area domain Ω and �
� �

n n i n jx y= + is the unit vec-
tor normal to the boundary S. Substituting Equations (13.41) through (13.44) into
Equation (13.40) gives

	

-

∂
∂
∂
∂

∂
∂

+ ∂
∂



























δ

δ

δ δ

σ
σ

u

v

v u

x

y

x y

T

x

y

tt

δ
δ

xy

T
x

y
dA

f

f
d



















+




















∫ ∫Ω Ω

u
v

AA

n n n n dSx x y xy x xy y y
S

+ + + + =∫ [() ()]σ t δ t σ δu v 0

	 (13.45)

93568_Book.indb 293 7/22/09 10:35:55 AM

294  ◾  Numerical and Analytical Methods with MATLAB

where

	
T n n n

E
n

E
x x x y xy x x y y xy= + =

-
+ +

+
σ t

ν
e ue

u
g

1 2 12 ()
() 	 (13.46)

	
T n n n

E
n

E
y x xy y y x xy y y x= + =

+
+

-
+t σ

u
g

u
e νe

2 1 1 2()
() 	 (13.47)

Substituting Equation (13.11) into Equations (13.46) and (13.47) gives

	
T n

E
x y

n
E

x x y x y
=

-
∂
∂

+ ∂
∂







+
+

∂
∂

+ ∂
∂


1 2 12u

u
u

u v v u
() 




	 (13.48)

	
T n

E
x y

n
E

y x y y x
=

+()
∂
∂

+ ∂
∂







+
-

∂
∂

+ ∂
∂


2 1 1 2u u

uv u v u



 	 (13.49)

Equations (13.48) and (13.49) are called Neumann boundary conditions.
Substituting Equations (13.48) and (13.49) into Equation (13.45) gives

	

-

∂
∂
∂
∂

∂
∂

+ ∂
∂



























δ

δ

δ δ

σ
σ

u

v

v u

x

y

x y

T

x

y

tt

δ
δ

xy

x

y



















+




















∫ ∫Ω Ω

dA
f

f
dAu

v
++























=∫ δ
δ
u
vS

T T

T
dS

x

y
0

		
		 (13.50)

By using Equations (13.10) and (13.11), Equation (13.50) can be expressed in terms
of 2-D displacement field u and v as given by Equation (13.51):

	

-

∂
∂
∂
∂

∂
∂

+ ∂
∂



























∂δ

δ

δ δ

u

v

v u

x

y

x y

D

T

[]

uu

v

v u

u
v

∂
∂
∂

∂
∂

+ ∂
∂



























+


∫
x

y

x y

dA
Ω

δ
δ



















+




















∫

∫

T

S

T

f

f
dA

T

T

x

y

x

y

Ω

δ
δ
u
v




=dS 0

	 (13.51)

93568_Book.indb 294 7/22/09 10:35:57 AM

An Introduction to the Finite Element Method  ◾  295

If the domain is divided into a finite number of triangular elements, Equation
(13.51) becomes

-

∂
∂
∂
∂

∂
∂

+ ∂
∂



























∂δ

δ

δ δ

u

v

v u

x

y

x y

D

T

[]

uu
∂
∂
∂

∂
∂

+ ∂
∂



























∫∑
=

x

y

x y

dA
v

v u
i 1

n

ei

++






















+










∫∑
=

δ
δ

δ
δ

u
v

u
v

T f

f
dA

x

ye
i

n

s

i1

jj

x

yj

m

∫∑












=
=

T T

T
ds

1

0

	 (13.52)

where n is the total number of elements in the domain Ω, and m is the total num-
ber of element edges subjected to Neumann boundary conditions. For a 3-node
triangular element, both displacement fields (u and v) and weighting functions
(δu and δv) have the same interpolation function as shown in Equation (13.39).
Therefore, any triangular element with global node numbers i, j, and k can be
replaced by a triangular element with local node numbers 1, 2, and 3 as shown in
Figure 13.6. In addition, the element stiffness matrix and load vector can also be
expressed in terms of local node number. The strains in an element can now be
expressed as

	

e
e

g

x

y

xy

x

y

x y



















=

∂
∂
∂
∂

∂
∂

+ ∂
∂














u

v

v u














=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂N
x

N
x

N
y

N
y

N
x

N
y

1 2

1

1 1 2

0

0 0

0
NN
x

N
y

N
y

N
x

N
y

N
x

3

2 3

2 3 3

0

0

∂
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

























































=

u
v
u
v
u

v

3

1

1

2

2

3

3

[]B ×× ×6 6 1[]q 		
		 (13.53)

93568_Book.indb 295 7/22/09 10:35:58 AM

296  ◾  Numerical and Analytical Methods with MATLAB

The following term can be defined as virtual strains as

δe
δe

δg

δ

δ

δ δ

x

y

xy



















=

∂
∂
∂
∂

∂
∂

+ ∂
∂






u

v

v u

x

y

x y






















=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

N
x

N
x

N
y

N
y

N
x

1 2

1

1 1

0

0 0

∂∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂










 N

y

N
x

N
y

N
y

N
x

N
y

N
x

2

3

2 3

2 3 3

0 0

0






































δ
δ
δ
δ
δ

δ

u

v

u

v

u

v

1

1

2

2

3

3










= × ×[] []B q3 6 6 1δ
	

		 (13.54)
where [B] relates the displacement with the strain and is defined as the strain-
displacement matrix. Therefore, the first term in Equation (13.52) can be expressed
as follows:

	

∂
∂
∂
∂

∂
∂

+ ∂
∂



























∂δ

δ

δ δ

u
x
v
y

v
x

u
y

D

u
T

[]

∂∂
∂
∂

∂
∂

+ ∂
∂



























=∫
x
v
y

v
x

u
y

dA q
e

T

i

[]δ [[] [][] [] [] []B D B dA q k qT

e

e

i
∫ =

		
		 (13.55)
where [k]e is the stiffness matrix of the triangular element, defined as

	
[] [] [][]k B D B dAe T

ei

= ∫
The second term in Equation (13.52) is related to the body forces, which can be
expressed as

	

δ
δ

δ
δ
δ
δ
δ

δ

u
v

u

v

u

v

u

v























=∫
T f

f
dA

x

yei

1

1

2

2

3

3





































T

N

N

N

N

N

N

1

2

3

1

2

3

0

0

0

0

0

0
































=∫e

x

y

T
b
e

i

f

f
dA q F[] []δ

		
		 (13.56)

93568_Book.indb 296 7/22/09 10:35:59 AM

An Introduction to the Finite Element Method  ◾  297

where []F b
e is the equivalent load vector of body forces in this element, which is

	

[]F

N

N

N

N

N

N

b
e

ei

=



























∫

1

2

3

1

2

3

0

0

0

0

0

0

ff

f
dA

N f

N f

N f

N f

N f

N f

x

y

x

y

x

y

x

y













=











1

1

2

2

3

3




















=



















∫ei

dA

F

F

F

F

F

F

1

2

3

4

5

6











	 (13.57)

The equivalent forces are acting at each node of the triangle as shown in Figure 13.7.
The third term in Equation (13.52) relates the surface traction boundary condi-

tion (that is, the Neumann boundary condition). If the surface traction acts on edge
1–2 of the triangles as shown in Figure 13.8a, this term can be expressed as follows:

	

δ
δ

δ
δ
δ
δ
δ

δ

u
v

u

v

u

v

u

v























=∫s

x

yj

T T

T
ds

1

1

2

2

3

3







































T

N

N

N

N

1

2

1

2

0

0

0

0

0

00
0






























=
-

∫l

x

y

T
T
sdl

1 2

T

T
q F[] []δ

		
		 (13.58)

1 F1
2

3

F2
F3

1
2

3

fy F4

F5

F6

(a) (b)

fx

Figure 13.7  (a) Body forces acting on an element. (b) Equivalent nodal force at
each node due to the body forces.

93568_Book.indb 297 7/22/09 10:36:00 AM

298  ◾  Numerical and Analytical Methods with MATLAB

where[]F T
s is the equivalent load vector due to surface traction acting on the bound-

ary, which is

	

[]F

N

N

N

NT
s

l
=



























-
∫

1

2

1

2

0

0

0

0

0

0
1 2

0
0

TT

T
dl

T

T

T

T

x

y













=



























1

2

3

4

0
0

	 (13.59)

The equivalent loads are only acting at nodes 1 and 2 since the surface traction is
applied on edge 1–2 as shown in Figure 13.8.

Finally, Equation (13.52) can be rewritten as

	

[] [] [] [] [] [] []δ δ δq k q q F q Fi
T

i
e

i i
T

bi
e

i

n
T

i 1

n

= =
∑ ∑= +

1
TTj
s

j

m

=
∑

1 	
(13.60)

Now all the triangle elements, with node number i, j, and k as shown in Figure 13.6,
are assembled together and expressed in terms of the global displacement compo-
nents [Q] as shown in Figure 13.6a; then, Equation (13.60) becomes

	 [] [][] [] ([] [] []) [] []δ δ δQ K Q Q F F P Q FT T
b T

T= + + = 	 (13.61)

where [K] is the global stiffness matrix for the whole domain, [F]b and [F]T are the
global load vector due to body force and surface traction, and [P] is the concentrated
force acting at the nodes. [F] is the assembly of all forces acting on the domain. For
an arbitrary value of the test function [δQ], Equation (13.61) becomes

	 [][] []K Q F= 	 (13.62)

1 T1

3

2

T2

1

3

2 T3

T4

(a) (b)

Tx
Ty

T =

Figure 13.8  (a) Surface tractions T acting on the edge of an element. (b)
Equivalent nodal force at each node due to the surface tractions.

93568_Book.indb 298 7/22/09 10:36:02 AM

An Introduction to the Finite Element Method  ◾  299

Equation (13.62) can be solved by applying the known displacement value at nodes
on the boundary (that is, Dirichlet boundary conditions). Once the unknown
displacements at nodes are obtained, they will be employed in Equation (13.53)
to calculate the strains in each element. Finally, the strains are substituted into
Equation (13.10) to calculate the stress component in each element.

13.4 � Finite Element Analysis Using
MATLAB’s PDE Toolbox

MATLAB’s PDE Toolbox™ software [3] can be used to numerically solve a 2-D PDE
problem by defining the 2-D region, the boundary conditions, the PDE coefficients,
and generating meshes for the region. After the problem is solved, the results can
be visualized. Advanced applications are also possible by downloading the domain
geometry, boundary conditions, and mesh description to the MATLAB workspace.
From the command line (or M-files) you can call functions to do the hard work, for
example, generate meshes, discretize your problem, perform interpolation, plot data
on unstructured grids, etc., while you retain full control over the global numerical
algorithm.

Before you start the PDE toolbox, it is better to formulate a PDE problem on
paper (draw the domain, write the boundary conditions, and the PDE). To start the
PDE toolbox, at the MATLAB command line, type

pdetool

and press the enter button as shown in Figure 13.9. This invokes the graphical user
interface (GUI) as shown in Figure 13.10, which is a self-contained graphical envi-
ronment for PDE solving.

You can click the Option button as shown in Figure 13.11 to create the grids,
define grid spacing, select axes limits, select the type of problem you want to solve,
etc. For example, if you are solving a plane stress problem, from the drop-down
menu select the “Application Option,” then select the “Structural Mechanics, Plane
Stress” option.

To draw the geometry of the model, click the Draw button and start to draw
solid objects (rectangle, circle, ellipse, and polygon) as shown in Figure 13.12.
You can combine these objects by adding or subtracting them to create the
geometry you want. Similarly, to apply the boundary conditions, click the
Boundary button and you can specify different types of boundary conditions
on different edges.

In the PDE mode, you interactively specify the type of PDE and the coefficients
c, a, f, and d. You can specify the coefficients for each subdomain independently.
For structural mechanics, heat transfer, or other specific problems, you just need to
specify the material and the thermal and physical properties in the model.

93568_Book.indb 299 7/22/09 10:36:02 AM

300  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.9  MATLAB command window. (From MATLAB. With permission.)

Figure 13.10  MATLAB graphical user interface (GUI) for PDE toolbox. (From
MATLAB. With permission.)

93568_Book.indb 300 7/22/09 10:36:03 AM

An Introduction to the Finite Element Method  ◾  301

Figure 13.11  Options button. (From MATLAB. With permission.)

Figure 13.12  Draw button. (From MATLAB. With permission.)

93568_Book.indb 301 7/22/09 10:36:04 AM

302  ◾  Numerical and Analytical Methods with MATLAB

To generate the mesh, click the mesh button. You can control the parameters
of the automated mesh generator. After solving a problem, you can return to the
mesh mode to further refine your mesh and then solve again. If solutions from both
meshes are sufficiently close, it indicates that the solution has converged to an accu-
rate solution and further mesh refinement is not needed. Otherwise, keep refining
the mesh until the solutions converge to an accurate solution. You can also employ
the adaptive mesh refiner and solver by clicking on the “Solve” menu and select-
ing the “Parameters” drop-down menu item; a window will pop up as shown in
Figure 13.13. Then you select the adaptive mode item from the menu bar and input
the parameters in the window. In this mode, the mesh is automatically refined until
a solution has converged to accurate solution.

In the solve mode, you can click the “Solve” menu item and select the “Solve
PDE” button to solve the model you created or you can select the “parameters…”
button to control the nonlinear solvers for elliptic problems as shown in Figure 13.13.
For parabolic and hyperbolic problems, you can specify the initial values and the
times for which the output should be generated. For the eigenvalue solver, you can
specify the interval in which to search for eigenvalues.

Figure 13.13  Solve parameters window. (From MATLAB. With permission.)

93568_Book.indb 302 7/22/09 10:36:04 AM

An Introduction to the Finite Element Method  ◾  303

To visualize the results, you can click the “plot” button and select the “Plot
Solution” to plot the results. You can also select the “parameters…”, then a window
will pop up as shown in Figure 13.14 and you can select the options in the win-
dow to control your plots with a wide range of visualization possibilities. You can
visualize both inside the pdetool GUI and in separate figures. You can plot three
different solution properties at the same time, using color, height, and vector field
plots. Surface, mesh, contour, and arrow (quiver) plots are available. For surface
plots, you can choose between interpolated and flat rendering schemes. The mesh
may be hidden or exposed in all plot types. For parabolic and hyperbolic equations,
you can even produce an animated movie of the solution’s time dependence. All
visualization functions are also accessible from the command line.

The PDE Toolbox software is easy to use in the most common areas due to the
application interfaces. Eight application interfaces are available [3], in addition to
the generic scalar and system (vector valued u) cases:

Structural Mechanics—Plane Stress◾◾
Structural Mechanics—Plane Strain◾◾
Electrostatics◾◾
Magnetostatics◾◾
AC Power Electromagnetics◾◾
Conductive Media DC◾◾
Heat Transfer◾◾
Diffusion◾◾

Figure 13.14  Plot solution window. (From MATLAB. With permission.)

93568_Book.indb 303 7/22/09 10:36:05 AM

304  ◾  Numerical and Analytical Methods with MATLAB

These interfaces have dialog boxes where the PDE coefficients, boundary con-
ditions, and solution are explained in terms of physical entities. The application
interfaces enable you to enter specific parameters, such as Young’s modulus in the
structural mechanics problems. In this book, we will use structural mechanics
and heat transfer problems as examples to explain how to use the PDE toolbox.

The typical processes of using the PDE toolbox to create the finite element model,
obtain solutions, and display the results are listed in the following three major steps:

	 1.	Preprocessor: Create a finite element model.
	 (a)	 Specify the appropriate PDE-type problem.
	 (b)	 Set up the drawing area and create a solid model.
	 (c)	 Specify the boundary conditions.
	 (d)	 Input the physical constants.
	 (e)	 Generate the mesh.
	 2.	Solution: Obtain the solution.
	 3.	Postprocessor: Display the results.

Example 13.1 � Plane Stress Analysis of a Plate with a Hole

A plate with a hole at the center is subjected to a uniform load p at its free end, as
shown in Figure 13.15. E = 200 × 109 N/m2, v = 0.3, thickness = 0.01 m, and p =
106 N/m2. If L = 0.20 m, w = 0.04 m, and r = 0.01 m, find the stress concentration
factor (K) from finite element analysis and compare the result with the curve from
strength of materials.

	 1.	Preprocessor
	 (a)	 Specify the appropriate PDE type of problem.
		  Click the Option button as shown in Figure 13.11, select the “Application,”

then select the “Structural Mechanics, Plane Stress” option. Now you are in
plane stress mode.

	 (b)	 Set up the drawing area and create a solid model.
		  To set up the drawing area, you need to know the dimension of the

plate, which is 0.2 × 0.04 m. You can set up a drawing area a little bigger

w

L

p2r

Figure 13.15  Geometry of a plate with a hole at the center. (From MATLAB.
With permission.)

93568_Book.indb 304 7/22/09 10:36:06 AM

An Introduction to the Finite Element Method  ◾  305

than 0.2 × 0.04 m, say, 0.24 × 0.1 m. Click the “Option” button, select “Axes
Limit…,” and an Axes Limits dialog box will pop up as shown in Figure 13.16.
Input the range of the x axis and the y axis. The axis range should be entered as
a 1 × 2 MATLAB vector such as [–0.12 0.12] for x-axis range and [–0.05 0.05]
for y-axis range as shown in Figure 13.16. If you select the Auto check box,
automatic scaling of the axis is used. Clicking the “Apply” button applies the
entered axis ranges and the drawing area is set up as shown in Figure 13.17.
Clicking the “Close” button will end the Axes Limits dialog box.

		  You can also set up grid spacing by clicking on the “Option” button, and
select “Grid Spacing…”; a grid-spacing dialog box will pop up as shown in
Figure 13.18a, where –0.1:0.05:0.1 and –0.05:0.01:0.05 is the default spac-
ing. –0.1:0.05:0.1 means the grid starts at x = –0.1 and ends at x = 0.1 with
an increment of 0.05 grid units each. You can adjust the x-axis and y-axis
grid spacing if you do not like the default spacing. By default, the MATLAB
automatic linear grid spacing is used. If you turn off the Auto check box,
the edit fields for linear spacing and extra ticks are enabled. For example,
unchecking the “Auto” box, the default linear spacing –0.1:0.05:0.1 can be
changed to –0.12:0.02:012, as shown in Figure 13.18b. Clicking the “Apply”
button applies the entered grid spacing. Clicking on the “Done” button closes
the Grid Spacing dialog box. Click the “Option” button and then click the
“Grid” button to turn on or off the grid. A grid is shown in Figure 13.19.

		  Now you can draw the model. To draw a circle from its center, click
the “Option” button, and select the “ellipse/circle (centered)” button, then
click-and-drag from the center [0, 0], using the right mouse button, to drag
a point to the circle’s perimeter (radius = 0.01) to create a circle, but use the
left mouse button to drag an ellipse. If the circle does not look like a circle, it
means your x- and y-axes spacing is not equal; you can click on the “Option”
button and select “Axes Equal”; a circle will be shown as in Figure 13.20 and
a name C1 is assigned to this circle. You can also click the “ellipse with + sign

Figure 13.16  Axes limits window. (From MATLAB. With permission.)

93568_Book.indb 305 7/22/09 10:36:06 AM

306  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.17  Drawing area of [–12 12] for x-axis range and [–8 8] for y-axis range
is created. (From MATLAB. With permission.)

(a) (b)

Figure 13.18  (a) Default (auto) grid spacing. (b) Manual grid spacing. (From
MATLAB. With permission.)

93568_Book.indb 306 7/22/09 10:36:07 AM

An Introduction to the Finite Element Method  ◾  307

Figure 13.19  Drawing area with grids. (From MATLAB. With permission.)

Figure 13.20  Draw a circle. (From MATLAB. With permission.)

93568_Book.indb 307 7/22/09 10:36:08 AM

308  ◾  Numerical and Analytical Methods with MATLAB

in the center” button to draw the ellipses or circles. The button with the +
sign is used when you want to draw starting at the center. If you want to move
or resize the circle, you can easily do so. Click-and-drag an object to move
it, or double-click an object to open a dialog box as shown in Figure 13.21a,
where you can enter the exact center location to (0,0) and radius to 2 as
shown in Figure 13.21b. From the dialog box, you can also alter the name
of the circle. You can also turn on the “snap-to-grid” feature by clicking the
“Option” button and selecting “Snap” to force the circle to line up with the
grid. If you are not satisfied and want to restart, you can delete the rectangle
by clicking the Delete key or by selecting Clear from the Edit menu. You can
also select “ellipse/circle” to draw ellipses and circles in a similar manner.

		  To draw a rectangle or a square starting at a corner, click the “Rectangle/
Square” button. Then put the cursor at the desired corner (here is [–0.1,
0.02]), and click-and-drag using the left mouse button to create a rectangle

(a)

(b)

Figure 13.21  (a) Object dialog box shows the existing center location and radius.
(b) Entering the exact center location and radius if Figure 13.21a is not the exact
number. (From MATLAB. With permission.)

93568_Book.indb 308 7/22/09 10:36:08 AM

An Introduction to the Finite Element Method  ◾  309

with the desired side lengths (here width is 0.2 m, height is 0.04 m). (Use the
right mouse button to create a square.) A rectangle is created and assigned
the name R1. You can move or resize the rectangle by clicking-and-dragging
an object to move it, and double-clicking an object to open a dialog box,
where you can enter exact location coordinates. The resulting model is now
the union of the rectangle R1 and the circle C1 as shown in Figure 13.22,
described as C1 + R1. The area where the two objects overlap is clearly visible,
as the overlap area is drawn with a darker shade of gray than the surrounding
area. The object that you are selecting has a black border. A selected object
can be moved, resized, copied, and deleted. You can select more than one
object by Shift + clicking the objects that you want to select. Also, a Select
All option is available from the Edit menu.

		  The desired model is formed by subtracting the circle C1 from the rect-
angle R1. You do this by editing the set formula that by default is the union
of all objects; that is, R1 + C1. You can type any other valid set formula into
the Set formula edit field. Click in the edit field and use the keyboard to
change the set formula to R1 – C1. If you want, you can save this model as
an M-file. Use the Save As option from the File menu, and enter a file name
of your choice. It is good practice to continue to save your model at regular
intervals using Save. All the additional steps in the process of modeling and
solving your PDE are then saved to the same M-file.

Figure 13.22  Draw a rectangle. (From MATLAB. With permission.)

93568_Book.indb 309 7/22/09 10:36:09 AM

310  ◾  Numerical and Analytical Methods with MATLAB

	 (c)	 Specifying the boundary conditions.
		  Click the “Boundary” button and select the “Boundary Mode” to turn on

the boundary mode. Also click the “Show Edge Labels” to turn on the edge
number and the boundary lines will be displayed as shown in Figure 13.23.
Click on the line whose boundary conditions (edge 3) want to be set, and
then select the “Specify Boundary Conditions” button. Alternatively, you
can double-click the selected edge that brings up the dialog box shown in
Figure 13.24 with the Neumann boundary condition being checked. Since
edge 3 is a Dirichlet boundary condition, check the “Dirichlet” button below
the condition type as shown in Figure 13.25. Since edge 3 is fixed, both u
and v displacement components are zero. From the boundary condition equa-
tions: [3]

	 h h r11 12 1u v+ =    h h r21 22 2u v+ =

		 Enter h11 = 1, h12 = 0, and r1 = 0, which implies that u = 0. Similarly, enter
h21 = 0, h22 = 1, and r2 = 0, which implies that v = 0. After these numbers are
entered into Figure 13.25, click the “OK” button and this boundary condi-
tion is applied to edge 3 (edge 3 color changes to red). Next click on edge
1 and then select the “Specify Boundary Conditions” box again; a dialog

Figure 13.23  Boundaries of the model; there are eight boundary edges in this
model. (From MATLAB. With permission.)

93568_Book.indb 310 7/22/09 10:36:10 AM

An Introduction to the Finite Element Method  ◾  311

box will pop us as shown in Figure 13.24. Since edge 1 is the Neumann
boundary condition (a normal distributed load of 106 N/m2 is applied), select
the Neumann boundary type and input the required values. Since g1 is the
surface traction in the x direction and g2 is the surface traction in the y direc-
tion, input 106 for g1 and 0 for g2 (edge 1 turns to a blue color). Also input
106 *nx for g1 and 106 *ny for g2, where nx and ny are the x and y components
of the unit outward normal vector to this edge. The remaining boundaries
are free (no normal stress), that is, a Neumann condition with q = 0 and
g1 = g2 = 0. Make sure all the edges are in blue, except edge 3 which is red as
shown in Figure 13.23. One can also select mixed boundary conditions, if it
is needed.

Figure 13.24  Boundary condition window for input of the Neumann boundary
condition. (From MATLAB. With permission.)

Figure 13.25  Boundary condition window for input of the Dirichlet boundary
condition. (From MATLAB. With permission.)

93568_Book.indb 311 7/22/09 10:36:11 AM

312  ◾  Numerical and Analytical Methods with MATLAB

	 (d)	 Inputting the physical constants.
		  Click the “PDE” button and select the “PDE Mode” to turn on the PDE

mode, where a solid model (you can turn the grid off now) will be displayed in the
window as shown in Figure 13.26. Select the “PDE Specification…”; a dialog box
will pop up as shown in Figure 13.27. Input the materials constants (200E9 for
E, 0.3 for nu, 0 for kx, 0 for ky, and 1.0 for rho) under the “value heading.” The

Figure 13.26  PDF mode to display the solid model. (From MATLAB. With
permission.)

Figure 13.27  PDF specification for input of the materials constants. (From
MATLAB. With permission.)

93568_Book.indb 312 7/22/09 10:36:12 AM

An Introduction to the Finite Element Method  ◾  313

body forces, kx and ky, are zero in this example. The density, rho, is not needed
in this example. After you input all the data, click the “OK” button.

	 (e)	 Generating the mesh.
		  Click the “Mesh” button in the main menu and select “initialize Mesh”

to generate the first mesh as shown in Figure 13.28, where the node number
can be displayed by selecting the “Show Node Labels.” You can also dis-
play element numbers by selecting the “Show Triangle Labels” as shown in
Figure 13.29. This mesh does not appear sufficiently fine and further mesh
refinement is needed. The mesh can be further refined by selecting “Refine
Mesh” or by clicking the button with the four-triangle icon (the Refine but-
ton). You can also use the “Jiggle Mesh” option and the mesh can be jig-
gled to improve the triangle quality. You can also control the jiggling of the
mesh, the refinement method, and other mesh generation parameters from
the dialog box (see Figure 13.30) that is opened by selecting “Parameters…”
from the Mesh menu. You can undo any change to the mesh by selecting the
“Undo Mesh Change” from the Mesh menu. The procedure used here was
to initialize the mesh, then refine it once, and finally jiggle it once to obtain
the mesh shown in Figure 13.31. One can also select the “Display Triangle
Quality” from the Mesh menu to show the quality of the triangle as shown
in Figure 13.32. A value of 1 indicates the triangle is an equilateral triangle,

Figure 13.28  Initial mesh with node number. (From MATLAB. With permission.)

93568_Book.indb 313 7/22/09 10:36:12 AM

314  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.29  Initial mesh with element number. (From MATLAB. With permission.)

Figure 13.30  Mesh generation parameter to control the jiggling and refinement
of mesh. (From MATLAB. With permission.)

93568_Book.indb 314 7/22/09 10:36:13 AM

An Introduction to the Finite Element Method  ◾  315

Figure 13.31  Refined mesh. (From MATLAB. With permission.)

Figure 13.32  Contour plot to display the quality of the triangular element. (From
MATLAB. With permission.)

93568_Book.indb 315 7/22/09 10:36:14 AM

316  ◾  Numerical and Analytical Methods with MATLAB

which is the best quality. After the solution is obtained with this mesh, the
mesh once again can be refined to obtain a second solution. If the first and
second solutions are close, the solution is considered convergent to accurate
solution and further mesh refinement is not needed. Otherwise, successive
refinement of the mesh is needed until a convergent solution is obtained.

	 2.	Obtaining a solution
		  Click the “Solve” button and select the “Solve PDE” option. The current

model will be solved, and a plot of the solution will automatically be created
and displayed as shown in Figure 13.33. The solution is the displacement
component u in the x direction. One can also select “Parameters…” from the
Solve menu causing a dialog box as shown in Figure 13.13 to pop up for entry
of PDE adaptive and nonlinear solver.

	 3.	Displaying the results
		  To control the plotting and visualization of the solution, click on the “Plot”

item in the menu bar and select “Parameters…”; a dialog box will pop up as
shown in Figure 13.34. The upper part of the dialog box contains four col-
umns: Plot Type, Property, User Entry, and Plot Style, each discussed in the
following section [3].

Figure 13.33  Contour plot for the displacement component u in the x direction.
(From MATLAB. With permission.) (See color insert following page 334.)

93568_Book.indb 316 7/22/09 10:36:15 AM

An Introduction to the Finite Element Method  ◾  317

Plot type−− (far left) contains a row of six different plot types (Color, Contour,
Arrow, Deformed mesh, 3-D plot, and Animation) that can be used for
visualization.
Property −− contains four pop-up menus containing lists of properties that
are available for plotting using the corresponding plot type. From the first
pop-up menu one can control the property of visualization using color
and/or contour lines. The second and third pop-up menus contain vec-
tor valued properties for visualization using arrows and deformed mesh,
respectively. From the fourth pop-up menu, finally, one can control
which scalar property to visualize using z-height in a 3-D plot. The lists
of items are dependent on the current application mode. For the plane
stress mode, one can select an item for visualization from the pop-up
menus (such as the displacements u and v, the normal strains and stresses
in the x and y directions, the shear stress, the von Mises effective stress,
and the principal stresses and strains) as shown in Figure 13.35.
User entry−− contains four edit fields where one can enter their own expres-
sion, if the user entry property is selected from the corresponding pop-up
menu to the left of the edit fields. If the user entry property is not selected,
the corresponding edit field is disabled.
Plot style−− contains three pop-up menus from which one can control
the plot style for the Color, Arrow, and Height plot types, respectively.
The available plot styles for color surface plots are Interpolated Shading
(the default) and Flat Shading. You can use two different arrow plot styles:
Proportional (the default) and Normalized. For Height (3-D plots), the
available plot styles are Continuous (the default) and Discontinuous.

Figure 13.34  Plot selection window to control the plotting and visualization.
(From MATLAB. With permission.)

93568_Book.indb 317 7/22/09 10:36:15 AM

318  ◾  Numerical and Analytical Methods with MATLAB

Now one can select the “Color” from the Plot-type section, “x stress” from the
Property section, and all other sections are left as default, and then click the “Plot”
button; a contour plot for σx will be displayed as shown in Figure 13.36. To find
the actual value of σx at any point in the model, move the cursor to that point and
press the left button on the mouse and the “info” box in the bottom of the window
will show the value of σx and the triangular element number where the point is
located.

Discussion of Results

By moving the cursor to the points on the top and bottom of the hole, it can be
determined that (σx)max is approximately 2.81 × 106 N/m2, as shown in the “info
box” of Figure 13.36 and Figure 13.37a. The average normal stress σavg at the same
point is 2 × 106 N/m2, as shown in Figure 13.37b. Therefore, the stress concentra-
tion factor is σx /σavg = 1.405, which is far away from the stress concentration factor
of about 2.37 obtained from strength of material books. Therefore, further mesh
refinement is needed to obtain a more accurate solution.

One can also use the adaptive mode, where the mesh is automatically refined
until a solution is converged. In areas where the gradient of the solution (the stress)
is large, finer meshes are created to increase the accuracy of the solution. To do this,
select “Parameters” from the “Solve” menu and check the Adaptive mode box as
shown in Figure 13.13. You can use the default options for adaptation, which are
the Worst triangles selection method with the Worst triangle fraction set to 0.5. The

Figure 13.35  Select the display of normal stress component (x) in the x direc-
tion. (From MATLAB. With permission.)

93568_Book.indb 318 7/22/09 10:36:16 AM

An Introduction to the Finite Element Method  ◾  319

maximum number of triangles can be changed from 1,000 (default) to 100,000
and the maximum number of refinement can be changed from 10 (default) to
20. Choose the “longest” refinement method. Now solve the plane stress problem
again. The actual number of triangles in this solution is 125,984 after 20 iterations.
Select the ”Show Mesh” option in the Plot Selection dialog box to see how the mesh
is refined in areas where the stress is large as shown in Figure 13.38. It clearly shows
that finer meshes are created near the circle and corners of the support. The maxi-
mum σx stress is about 4.28 × 106 N/m2 on the top and bottom of the circle and the
stress concentration is about 2.14, which is close to 2.37 from strength of materials.
You can run more iterations to obtain a more accurate solution.

Figure 13.36  Contour plot of normal stress x. (From MATLAB. With permis-
sion.) (See color insert.)

(a)

P P

(b)

σavg

σmax

Figure 13.37  (a) Normal stress distribution from FEA solution. (b) Average normal
stress obtained from strength of materials. (From MATLAB. With permission.)

93568_Book.indb 319 7/22/09 10:36:17 AM

320  ◾  Numerical and Analytical Methods with MATLAB

13.5 � Structural Mechanics Plane Strain Analysis
For plane strain problems, all the strain components (εz, γyz, and γxz) are zero.
Setting ez = 0 in Equation (13.3) gives

	
e σ u σ σ σ u σ σz z x y z x yE

= - + = ⇒⇒ = +1 0[()] () 	 (13.63)

Substituting Equation (13.63) into Equations (13.1) and (13.2), gives

	
e σ u σ uσ uσ u σ u uσx x y x y x yE E

= - + + = + - -1 1 1[()] [()] 	 (13.64)

	
e σ u σ νσ νσ u σ u νσy y x x y y xE E

= - + + = + - -1 1 1[()] [()] 	 (13.65)

From Equation (13.4),

	
g

t
xy

xy

G
= 	 (13.66)

Figure 13.38  Contour plot of σx obtained from adaptive solution mode. (From
MATLAB. With permission.)

93568_Book.indb 320 7/22/09 10:36:19 AM

An Introduction to the Finite Element Method  ◾  321

Equations (13.64) through (13.66) are the stress–strain relations for the plain
strain problem that can be expressed in the matrix form as

	

e
e

g

u u u
u u

x

y

xy

E



















= + - -
- -










1 1 0

1 0
0 0 2 























σ
σ

t

x

y

xy

	 (13.67)

or

	

{ }
()()

σ

σ
σ

t
u u

u u
u u=



















=
+ -

-
-

x

y

xy

E
1 1 2

1 0
1 00

0 0 1 2
2

-





































=
u

e
e

g

x

y

xy

D[]{ee}

		
		 (13.68)

Matrix [D] in Equation (13.68) is the material matrix for the plain strain problem.
The material matrix for plane stress and plane strain is different as shown by Equations
(13.10) and (13.68). To solve the plain strain problem in MATLAB just click on the
“Option” menu and select “Applications/Structural Mechanics, Plane Strain,” then
Equation (13.68) will be used to solve the plane strain problem. All the other proce-
dures are exactly the same as those discussed in the plane stress analysis problem.

13.6 � Model Analysis of 2-D Structures
When a structure is subjected to an impact load, or when loads vary with time, the
response of the structure will also vary with time. If the frequency of the load or
the excitation applied to the structure is less than about one-third of the structure’s
lowest natural frequency, the effects of the inertia can be neglected and the problem
can still be considered as quasistatic. That is, the static analysis, [K]{Q} = {F}, that
was previously discussed is sufficiently accurate since the loads {F} and displace-
ments {Q} vary slowly with time. The general form of the differential equation for
dynamic analysis is

	 [][] [][] [][] [()]M Q C Q K Q F t�� �+ + = 	 (13.69)

where
	 [M] = the mass matrix of the structure.
	 [C] = the damping matrix of the structure.
	 [K] = the stiffness matrix of the structure.
	[F(t)] = the loading which is a function of time.
	 []��Q = the components of acceleration at each node.
	 []�Q = the components of velocity at each node.
	 [Q]= the components of displacement at each node.

93568_Book.indb 321 7/22/09 10:36:20 AM

322  ◾  Numerical and Analytical Methods with MATLAB

If damping and external forces, {F(t)}, are neglected, Equation (13.69) becomes
a free vibration problem, which is

	 [][] [][] []M Q K Q�� + = 0 	 (13.70)

Equation (13.70) can be solved by using eigenvalue analysis to obtain the natu-
ral frequencies and their corresponding vibration mode shapes of the structure. The
number of natural frequencies in Equation (13.70) is the same as the total number
of active degrees of freedom in the finite element model. Each frequency has a
corresponding vibration mode shape. Although there are many frequencies (up to
infinity) that can be calculated, only a few of the lowest frequencies are of interest
for engineering applications.

Example 13.2 � Model Analysis of the Plane Stress Problem

For the planes stress or plane strain problem, the natural frequencies and their cor-
responding vibration mode shapes can be determined. Here the same solid model as
in Example 13.1 is used to calculate the several lowest natural frequencies and their
corresponding mode shapes. The mass density for this problem is 7850 kg/m3.

To solve this problem, the exact same procedure is used as in Example 13.1,
except in this case, select the “Specify Boundary conditions…” from the “Boundary”
menu and change the value in g1 to 0 for edge 1 as shown in Figure 13.24, so that
edge 1 becomes traction free. Now only edge 3 is constrained and all other edges
are free from loading, which is displayed in Figure 13.23. Next select the “PDE
Specification” from the “PDE” menu to open a dialog box. Change the type of
PDE from “Elliptic” to “Eigenmodes” and input the mass density of 7850 into the
density box as shown in Figure 13.39. For this model, a mesh can also be generated
as shown in Figure 13.40.

Now, select the “Solve Parameters…” from the “Solve” menu and a dialog box
will pop up as shown in Figure 13.41. One can then input the eigenvalue range for

Figure 13.39  PDF specification for input of the materials constants and density.
(From MATLAB. With permission.)

93568_Book.indb 322 7/22/09 10:36:21 AM

An Introduction to the Finite Element Method  ◾  323

this problem (default is from 0 to 100). If eigenvalues in the entered range are not
found, keep increasing the range until the eigenvalues are found. When the range
from 0 to 5 × 109 as shown in Figure 13.41 is entered, three eigenvalues in this range
will be found after it is solved. Select the “Parameters…” in the “Plot” menu, and click
the “Deform Mesh” under the plot type, the first vibration mode shape for the lowest
eigenvalue (λ1 = 2.497 × 107) is shown in Figure 13.42. The second (λ2 = 7.741 × 108)
and third (λ3 = 1.413 × 109) vibration modes are also shown in Figure 13.43 and
Figure 13.44, respectively. Since the natural frequency f (Hz) is defined as

	
f = l

π2

Figure 13.41  Dialog box for input of the eigenvalue range. (From MATLAB. With
permission.)

Figure 13.40  Refined mesh. (From MATLAB. With permission.)

93568_Book.indb 323 7/22/09 10:36:22 AM

324  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.42  The first vibration mode for the lowest natural frequency. (From
MATLAB. With permission.) (See color insert.)

Figure 13.43  The second vibration mode for the second lowest natural fre-
quency. (From MATLAB. With permission.) (See color insert.)

93568_Book.indb 324 7/22/09 10:36:23 AM

An Introduction to the Finite Element Method  ◾  325

the lowest natural frequency is 795 Hz, the second lowest natural frequency (λ2) is
4428 Hz, and the third lowest natural frequency (λ3) is 5982 Hz.

13.7 � Finite Element Analysis for Heat Transfer
The governing PDE for heat conduction (for the derivation of Equation 13.71, see
Appendices B.1 and B.2) is

	

∂
∂

= ∇ ⋅ ∇ +()
()

rcT
t

k T g 	 (13.71)

where
	T = the material temperature.
	 r = the mass density of the material.
	 k = the thermal conductivity of the material.
	 c = the specific heat of the material.
	 g = the rate of heat generation within the material.

The variables r, ,c kand are mild functions of temperature and are frequently
taken as constants. This is particularly true if one is interested in obtaining a

Figure 13.44  The third vibration mode for the third lowest natural frequency.
(From MATLAB. With permission.) (See color insert.)

93568_Book.indb 325 7/22/09 10:36:24 AM

326  ◾  Numerical and Analytical Methods with MATLAB

closed-form solution by separation of variables. In that case Equation (13.71)
reduces to

	

1 2

a
T
t

T g
∂
∂

= ∇ + 	 (13.72)

where
	 a = the thermal diffusivity of the material = k

cr
.

Example 13.3 � Temperature Distribution in a Slab with a Hole

In this example, modeling of a 2-D solid subjected to various boundary conditions
is covered. After using any combination of several different boundary conditions,
almost any 2-D heat transfer problem can be modeled in MATLAB.

Problem Description

As shown in Figure 13.45, the top is insulated, the right and left sides have con-
stant temperatures, the bottom side has a constant heat flux, and the inside circle

Convection
h = 55 W/m2 · °C

Tf = 5°C

Constant
Temperature

To = 100°C

Constant
Temperature

To = 100°C

Top Surface Insulated

Constant Heat Flux
qo = 1000 W/m2

10 cm

10 cm

10 cm

10 cm8 cm 8 cm

Figure 13.45  Geometry and boundary condition for Example 13.3. (From
MATLAB. With permission.)

93568_Book.indb 326 7/22/09 10:36:25 AM

An Introduction to the Finite Element Method  ◾  327

is subjected to convection. The solid has a thermal conductivity, k, of 25 W/m-C
and has a uniform heat generation rate, g, of 30 W/m3. Determine the temperature
distribution in the solid.

Solution Procedure

First click the “Option” item on the main menu bar and select “Application.” Then
select the “Heat Transfer” option to get into the heat transfer mode. The procedure
to set up the drawing area and create a solid model is exactly the same as described
in step 1(b) in Example 13.1. To specify the boundary conditions, click on the
“Boundary” option in the main menu bar and select the “Boundary Mode” to dis-
play the boundary edges as shown in Figure 13.46. As is frequently done in solving
a heat transfer problem by separation of variables, MATLAB solves the problem in
terms of T ′ where T ′ = T – Tf. In this equation, T is the actual temperature and Tf
is the ambient temperature. As seen in Figure 13.45, Tf  = 5°C. Once the problem
is solved for T ′, T is obtained by adding 5°C to T ′ to obtain the actual temperature
T. To obtain the solution:

	 1.	Double-click edge 1 causing the dialog box to pop up as shown in Figure 13.47.
Select the Dirichlet boundary condition and input h = 1 and r = 95 (subtract
5 from 100) to specify the temperature, T ′, of 95°C along this edge.

Figure 13.46  Boundaries of the model; there are eight boundary edges in this
model. (From MATLAB. With permission.)

93568_Book.indb 327 7/22/09 10:36:26 AM

328  ◾  Numerical and Analytical Methods with MATLAB

	 2.	Double-click edge 3 and repeat step 1 to specify the temperature, T ′, of 95°C
along edge 3.

	 3.	Double-click edge 2 and select the Neumann boundary condition and input
g = 1000 and q = 0 as shown in Figure 13.48 to specify the heat flux =
1000 W/m2 along this edge.

	 4.	Double-click edge 4 and select the Neumann boundary and input g = 0 and
q = 0 as shown in Figure 13.49 to specify the insulated boundary condition
along this edge.

	 5.	Double-click edge 5 and select the Neumann boundary and input g = 0 and
q = 55 as shown in Figure 13.50 to specify the heat transfer coefficient for the
convection boundary condition along this edge.

	 6.	Double-click edges 6, 7, and 8 and repeat the process described in step 5 to
specify the convection boundary condition along those edges.

Figure 13.47  Boundary condition window for input of the Dirichlet boundary
condition. (From MATLAB. With permission.)

Figure 13.48  Boundary condition window for input of the Neumann bound-
ary condition to specify the heat flux = 1000 W/m2. (From MATLAB. With
permission.)

93568_Book.indb 328 7/22/09 10:36:26 AM

An Introduction to the Finite Element Method  ◾  329

To specify the physical constants, click the “PDE” menu and select the “PDE
Specification…” and input k = 25 for thermal conductivity, Q = 30 for heat source,
h = 55 for convective heat transfer coefficient, and Text = 0 (subtract 5 from Tf) for
ambient temperature as shown in Figure 13.51.

Now click on the “Mesh” option in the main menu and select “Initialize Mesh”
to generate the first mesh. Then click on the “Refine Mesh” to obtain finer mesh
and, finally, click on the “Jiggle Mesh” option to improve the mesh quality produc-
ing the mesh shown in Figure 13.52.

Finally, to solve the model, click on the “Solve” option in the main menu and
select “Solve PDE.” The finite element model is then solved and the results of the
temperature field, T ′, are automatically displayed as shown in Figure 13.53. To
obtain the temperature field, T, 5°C needs to be added to T ′. This is accomplished
by clicking on the “Plot” option in the main menu and selecting “Parameters…”;
a dialog box will pop up. Then select “user entry” in the “Property” column and

Figure 13.50  Boundary condition window for input of the Neumann boundary
condition to specify the heat transfer coefficient for the convection edge. (From
MATLAB. With permission.)

Figure 13.49  Boundary condition window for input of the Neumann boundary
condition to specify the insulated edges. (From MATLAB. With permission.)

93568_Book.indb 329 7/22/09 10:36:27 AM

330  ◾  Numerical and Analytical Methods with MATLAB

input “u + 5” in the “User entry” column as shown in Figure 13.54. The final solu-
tion in terms of T is displayed in Figure 13.55. To display the heat flux flow in
the body select the “Arrow” option in the “Plot type” column and the “Heat flux”
option in the “property” column in the dialog box shown in Figure 13.54, resulting
in the plot shown in Figure 13.56.

Figure 13.51  PDF specification for input of the physical constants. (From
MATLAB. With permission.)

Figure 13.52  Refined mesh. (From MATLAB. With permission.)

93568_Book.indb 330 7/22/09 10:36:28 AM

An Introduction to the Finite Element Method  ◾  331

Figure 13.53  Contour plot of the temperature field. (From MATLAB. With per-
mission.) (See color insert.)

Figure 13.54  Plot selection window to add 5°C to the solutions shown in Figure
13.53. (From MATLAB. With permission.)

93568_Book.indb 331 7/22/09 10:36:29 AM

332  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.55  Contour plot of the temperature field after adding 5°C to the solu-
tions shown in Figure 13.53. (From MATLAB. With permission.)

Figure 13.56  Contour plot of the temperature field with heat flux flow. (From
MATLAB. With permission.) (See color insert.)

93568_Book.indb 332 7/22/09 10:36:30 AM

An Introduction to the Finite Element Method  ◾  333

Example 13.4  Second Example of Temperature Distribution
in a Slab

A slab as shown in Figure 13.57 is subjected to convection on the top and bottom
surfaces, where T∞ = 50°C, TW = 500°C, L = 2 m, w = 0.2 m, k = 59 W/(m·C), and
h = 890 W/(m2·C).

Determine the temperature distribution in the slab and compare the results
with the solutions obtained from the Gauss–Seidel method.

Solution Procedure

Since this problem is symmetric about the x axis, only half of the slab is modeled.
First click the “Option” menu and go to “Application” and select “Heat Transfer.”

Then set up the drawing area and create a solid model by following the procedure
described in step 1(b) in Example 13.1. To specify the boundary conditions, click
on the “Boundary” option in the main menu and select the “Boundary Mode” to
display the boundary edges as shown in Figure 13.58. Since MATLAB solves a
temperature distribution problem in terms of  ′ = - ∞T T T , the boundary conditions
need to be specified in terms of   ′T , thus set ′ = ′ =∞T TW0 450and °C. To obtain a
solution in terms of T, add 50°C to the solution obtained from MATLAB.

	 1.	Double-click edge 1 and a dialog box will pop up as shown in Figure 13.59,
where you can select a Neumann boundary condition and input g = 0 and
q = 890 to specify the heat transfer coefficient for the convection boundary
condition along this edge.

	 2.	Double-click edge 3 to select the Neumann boundary and input g = 0 and
q = 0 as shown in Figure 13.60 to specify the insulated (symmetric) boundary
condition along this edge.

Tw
w

w

x

y

L

h, T∞

T∞

h, T∞

Figure 13.57  Geometry and boundary condition for Example 13.4.

93568_Book.indb 333 7/22/09 10:36:31 AM

334  ◾  Numerical and Analytical Methods with MATLAB

	 3.	Double-click edge 4 and a dialog box will pop up as shown in Figure 13.61,
where you can select the Dirichlet boundary condition and input h = 1 and
r = 0 (subtract 50 from 50) to specify temperature, T ′ = 0°C, along this
edge.

Figure 13.58  Four boundary edges in this model. (From MATLAB. With
permission.)

Figure 13.59  Input the heat transfer coefficient for the convection edge. (From
MATLAB. With permission.)

93568_Book.indb 334 7/22/09 10:36:32 AM

An Introduction to the Finite Element Method  ◾  335

	 4.	Double-click edge 2 and a dialog box will pop up as shown in Figure 13.62,
where you can select the Dirichlet boundary condition and input h = 1 and
r = 450 (subtract 50 from 500) to specify temperature, T ′ = 450°C, along
this edge.

To specify the physical constants, click the “PDE” option in the main menu
and select the “PDE Specification…” and input k = 59 W/m-C for thermal con-
ductivity, Q = 0 (no heat source), h = 890 W/m2-°C for convective heat transfer
coefficient, and Text = 0 (subtract 50 from T∞) for ambient temperature as shown
in Figure 13.63.

Now click on the “Mesh” option in the main menu and select “Initialize Mesh”
to generate the first mesh. Then click the “Refine Mesh” option to obtain a finer

Figure 13.60  Input the insulated (symmetric) boundary condition. (From
MATLAB. With permission.)

Figure 13.61  Input r = 0 to specify the temperature of 50°C along this edge.
(From MATLAB. With permission.)

93568_Book.indb 335 7/22/09 10:36:33 AM

336  ◾  Numerical and Analytical Methods with MATLAB

mesh, and finally click “Jiggle Mesh” to improve the mesh quality, producing the
mesh shown in Figure 13.64.

Finally, click the “Solve” option in the main menu and select “Solve PDE.” The
finite element model is solved and the results of the temperature field are automati-
cally displayed as shown in Figure 13.65. To obtain the final solution in terms of
T, add 50°C to the solution by clicking on the “Plot” option in the main menu
and select “Parameters…”; a dialog box will pop up. Select the “User entry” in the
“Property” column and input “u + 50” in the “User entry” column as shown in
Figure 13.66. The final solution will display as shown in Figure 13.67. The maxi-
mum temperature along edge 2 is about 475°C, which is below the 500°C specified
along edge 2. The solution can be improved by refining the mesh.

Figure 13.63  PDF specification for input of the physical constants. (From
MATLAB. With permission.)

Figure 13.62  Input r = 450 to specify the temperature of 500°C along this edge.
(From MATLAB. With permission.)

93568_Book.indb 336 7/22/09 10:36:34 AM

An Introduction to the Finite Element Method  ◾  337

Figure 13.64  Refined mesh. (From MATLAB. With permission.)

Figure 13.65  Contour plot of the temperature field. (From MATLAB. With per-
mission.) (See color insert.)

93568_Book.indb 337 7/22/09 10:36:35 AM

338  ◾  Numerical and Analytical Methods with MATLAB

Figure 13.66  Plot selection window to add 5°C to the solutions shown in Figure
13.65. (From MATLAB. With permission.)

Figure 13.67  Contour plot of the temperature field after adding 50°C to the solu-
tions shown in Figure 13.65. (From MATLAB. With permission.) (See color insert.)

93568_Book.indb 338 7/22/09 10:36:36 AM

An Introduction to the Finite Element Method  ◾  339

Projects
Project 13.1
A cantilevered beam is subjected to uniform pressure on the top surface as shown in
Figure P13.1. E = 200 GPa, ν = 0.3, thickness = 0.1 m, P = 10,000 N/m2.

	 (a)	 If L = 0.25 m and h = 0.1 m, calculate the maximum normal stress, σx, at the
support and deflection, v, at the center of the free end, and compare the finite
element result with the solution from the strength of materials.

	 (b)	 If L = 1 m and h = 0.1 m, calculate the maximum normal stress, σx, at the sup-
port and the deflection, v, at the center of the free end at point A, and compare
the finite element result with the solution from the strength of materials.

Project 13.2
A cantilevered beam has a semicircle with a radius of 0.01 m on the top and
bottom center as shown in Figure P13.2. There is a stress concentration near
the hole. Determine the maximum normal stress near the hole when it is sub-
jected to 10 kN/m of distributed load as shown in the figure. Compare the
finite element result with the one obtained from strength of materials using the

h

L

P

Figure P13.1  Geometry of a cantilevered beam for Project 13.1.

0.1 m

0.8 m

XZ

Y

10 kN/m

Figure P13.2  Geometry of a cantilevered beam for Project 13.2. (See color
insert.)

93568_Book.indb 339 7/22/09 10:36:37 AM

340  ◾  Numerical and Analytical Methods with MATLAB

stress concentration factor K (stress concentration factor K can be found in any
strength of materials textbook).

Project 13.3
Find the temperature distribution for a plate subject to a temperature of Tw on the
right edge and having convection on all other edges as shown in Figure P13.3,
where ambient temperature T∞ = 20°C, Tw = 200°C, heat transfer coefficient h =
10 W/m2·°C, and thermal conductivity k = 386 W/m·°C.

Project 13.4
Find the temperature distribution for a plate subject to a temperature of Tw on the
right edge and having convection on all other edges as shown in Figure P13.4,

15 cm

7.5 cm

h, T∞

h
T∞

h, T∞

h, T∞h, T∞

h, T∞

Tw = 200°C

R = 1.5 cm

Figure P13.3  Geometry of a cantilevered beam for Project 13.3.

h
T∞ Tw

30 cm 15 cm

50 cm

h, T∞

h, T∞

Figure P13.4  Geometry of a cantilevered beam for Project 13.4.

93568_Book.indb 340 7/22/09 10:36:38 AM

An Introduction to the Finite Element Method  ◾  341

where ambient temperature T∞ = 20°C, Tw = 200°C, heat transfer coefficient
h = 10 W/m2·°C, and thermal conductivity k = 386 W/m·°C.

References
	 1.	 Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New

York, 1970.
	 2.	 Ugural, A. C. and Fenster, S. K., Advanced Strength and Applied Elasticity, 4th ed.,

Prentice Hall, Upper Saddle River, NJ, 2003.
	 3.	 MATLAB Partial Differential Equation Toolbox User’s Guide, The Mathworks, Inc.,

Natick, MA, 2008.
	 4.	 Reddy, J. N., Finite Element Method, 3rd ed., McGraw-Hill, New York, 2006.
	 5.	 Cook, R. D., Malkus, D. S., and Pelsha, M. E., Concepts and Applications of Finite

Element Analysis, 3rd ed., John Wiley & Sons, New York, 1989.
	 6.	 Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Volume 1, Basic

Formulation and Linear Problems, 4th ed., McGraw-Hill International, UK, 1994.

93568_Book.indb 341 7/22/09 10:36:38 AM

93568_Book.indb 342 7/22/09 10:36:38 AM

343

14Chapter

Control Systems

Oren Masory

14.1 � Introduction
A typical block diagram of a control system is shown in Figure 14.1. The plant,
which can be a device such as a motor or a process such as heat treatment, is fed
with an input, u(t), which affects its output, y(t). Concurrently, the plant is exposed
to time-varying unknown loads, d(t), which eventually affect the plant’s output,
y(t). The purpose of the controller is to vary the input to the plant in such a way
that the plant’s output will follow the required reference, r(t), in the presence of
the unknown loads. In a simple single input single output (SISO) system a sensing
device is used to obtain the value of the plant’s output. The controller acts on the
error, e(t), which is the difference between the reference, r(t), and the measured
output by the sensor.

A simple example for such a system is a cruise control system shown in
Figure 14.2. In this case, the required speed, r(t), is set by the user; y(t) is the
actual vehicle’s speed, and in order to determine the error, e(t), the vehicle’s speed is
obtained from a sensor located inside the transmission. The error is being used by
the controller to determine the required amount of fuel, u(t), needed to maintain
the required speed under unexpected loads, d(t), exerted by the varying slope of the
road and the wind, for example.

Generally there are two types of control systems, regulator and servo. In a regu-
lator system, the reference, r(t), is a constant. A good example for such a system is
an air conditioning thermostat that maintains a constant room temperature, in
spite of the varying load caused by a change in the number of people in the room,
varying exposure of windows to the sun, varying outside temperature, and other

93568_Book.indb 343 7/22/09 10:36:38 AM

344  ◾  Numerical and Analytical Methods with MATLAB

changes. In a servo system the reference varies with time; a good example for such
a system is an antiaircraft gun where the controller should continuously modify the
angular position of the gun in order to track the moving target. The design of both
systems is very similar and involves two major steps: (1) development of a plant
model; and (2) design of a controller that will satisfy one or more requirements
related to the dynamic behavior in the plant’s output in the presence of changes in
the reference and in the loads. The dynamic response of a typical system to unit
step input is shown in Figure 14.3. Any or a combination of the parameters, shown
in this figure, such as Rise Time or Maximum Overshoot, can be used as design
criteria for the controller.

Design criteria are not always related to the system’s response in the time domain.
In some cases the system’s response in the frequency domain is more important
because it provides an indication of the capability of the system to track a time-varying
reference. For example, a pen plotter is used to draw a circle of radius R and the pen

Controller

Sensor

Plant

Reference
r(t)

Error
e(t)

Input
u(t)

Load
d(t)

Output
y(t)

Measured
output

–

+
–

+

Figure 14.1  A typical structure of control system.

Cruise
Controller

Speed
Sensor

Engine
Transmission

Reference
velocity

r(t)
Error
e(t)

Fuel
input
u(t)

Load
d(t)

Vehicle’s
speed

y(t)

Measured
speed

–

+
–

+

Figure 14.2  Cruise control block diagram.

93568_Book.indb 344 7/22/09 10:36:40 AM

Control Systems  ◾  345

moves along the circle with a speed V as shown in Figure 14.4. The references to the
X and Y plotter’s axes are given by Vx = –V sin(ωt) and Vy = V cos(ωt), where ω = V/R.
Thus, the controller designer is more interested in the system frequency response
(response to a frequency reference) than its time response.

Settling
time

tmax
t

Rise time

0
0.10

0.50

0.90
0.95
1.00
1.05

Unit step input
Maximum
overshoot

Steady-state
error

(t ∞)

Delay
time

c(t)

Figure 14.3  Typical system’s response to unit step input.

V

R

ωt

Y

X

Vy

Vx

ωt

Figure 14.4  Plotting a circle.

93568_Book.indb 345 7/22/09 10:36:42 AM

346  ◾  Numerical and Analytical Methods with MATLAB

MATLAB® provides functions by which the time and frequency response of
the system can be determined. In addition, graphical tools that assist in the design
of the controller, such as Bode diagrams, Nyquist plots, and root locus plots (see
Sections 14.2 and 14.3 for a description of Bode diagrams, Nyquist plots, and
Root Locus plots), are available. For the design of most SISO systems these tools
are sufficient.

14.2 � Representation of Systems in MATLAB
Ignoring the load disturbance, d(t), the relationship between the plant’s input, u(t),
and its output, y(t), in the case of linear systems can be represented by a linear time-
invariant ordinary differential equation of the form

	
a

d y t
dt

a
d y t

dt
a y t b

d
n

n

n n

n

n m

m() ()
()+ + + =-

-

-1

1

1 0�
uu t

dt
b

d u t
dt

b u t
m m

m

m

() ()
()+ + +-

-

-1

1

1 0�
		

		 (14.1)

where n m≥ and the coefficients aj and bj are constant real numbers.
For a linear controller, the relationship between the controller input, e(t), and its

output, u(t), can be described in the same way.
Using MATLAB, these input–output relationships can be represented in three

different ways:

	 1.	Transfer function representation (tf)
	 2.	Zero-Pole-Gain representation (zpk)
	 3.	State space representation (ss)

To demonstrate the different representation methods, the coupled tanks system
shown in Figure 14.5 will be used as an example.

q0

q1

h1 R1 h2
q2

R2

Pump

Figure 14.5  Coupled tanks.

93568_Book.indb 346 7/22/09 10:36:43 AM

Control Systems  ◾  347

The change in the volume of fluid in each tank, v1 and v2, is given by

	

dv
dt

q q

dv
dt

q q

1
0 1

2
1 2

= -

= -
	 (14.2)

If the cross-section areas of the tanks are A1 and A2, respectively, then

	

A
dh
dt

q q

A
dh
dt

q q

1
1

0 1

2
2

1 2

= -

= -
	 (14.3)

To simplify the process, we will assume that the flow through the valve is pro-
portional to the pressure drop across the valve (see Figure 14.6). Furthermore, for a
slow flow, we can neglect the kinetic energy of the fluid and take the pressure at the
entrance and exit of the valve to be what would exist in a static fluid (p = γh) (where
γ is the specific weight of the fluid and h is the depth below the fluid-free surface).
Thus, flow through the valve is given by

	 q p p h h∝ - ≈ -1 2 1 2g() 	 (14.4)

or

	
q

R
h h= -1

1 2() 	 (14.5)

where γ has been absorbed in the proportionality constant 1/R. Thus, the flows
through the valves are given by

	

q
h h

R

q
h
R

1
1 2

1

2
2

2

=
-

=
	 (14.6)

Substituting Equation (14.6) into Equation (14.3) will produce the dynamic equa-
tions for the system:

	

dh
dt A

q
h h

R

dh
dt A

h h
R

h
R

1

1
0

1 2

1

2

2

1 2

1

2

2

1

1

= -
-





=
-

-





	 (14.7)

93568_Book.indb 347 7/22/09 10:36:45 AM

348  ◾  Numerical and Analytical Methods with MATLAB

14.2.1 � Transfer Function Representation
Transfer function is the Laplace Transforms of the output divided by the Laplace
Transforms of the input, assuming zero initial conditions. This presentation is very
simple and intuitive. Referring to Equation (14.1), the transfer function of this
equation is given by

	
H s

Y s
U s

b s b s b

a s a s
m

m
m

m

n
n

n
n

()
()
()

= =
+ + +

+
-

-

-

1
1

0

1

�
-- + + +1

1 0� a s a 	 (14.8)

where n m≥ and a0 0≠ .
Applying Laplace Transform to Equation (14.7) yields

	

H s s h
A

Q s
H s H s

R

H s

1 1
1

0
1 2

1

2

0 1()[()] ()
() ()

(

- = -
-








))[()]
() () ()

s h
A

H s H s
R

H s
R

- =
-

-





2

2

1 2

1

2

2

0 1
	 (14.9)

where H1(s) = Lµ(h1(t)), H2(s) = L(h2(t)), and Q0(s) = L(q0(t)). With zero initial con-
ditions, h h1 20 0 0() ()= = , and some algebraic manipulation of Equation (14.9) can
be reduced to

	

H s s
A R

Q s
A

H s
A R

H s s
R R

1
1 1

0

1

2

1 1

2
1

1()
() ()

()

+





= +

+
+ 22

2 1 2

1

2 1A R R
H s
A R







 =

()
	 (14.10)

It is clear that the input to the system is q0. However, from looking at
Figure 14.5 it is not so clear what the output is. Realizing that h2 < h1 and that
overflow has to be avoided, it becomes clear that the output of the system is
h1. Solving Equation (14.10) the transfer function of the system, H1(s)/Q0(s), is
obtained and is given by

	

H s
Q s

A R R s R R
A A R R s A R A R

1

0

2 1 2 1 2

1 2 1 2
2

1 1 2 2

()
()

()
(

=
+ +

+ + ++ +A R s1 2 1) 	 (14.11)

In MATLAB, the transfer function is represented by two vectors that contain
the coefficients of the numerator and the denominator polynomials of the transfer
function. The number of coefficients indicates the degree of the polynomial. The

93568_Book.indb 348 7/22/09 10:36:46 AM

Control Systems  ◾  349

following function generates the above transfer function using the following values:
A1 = 5 m2, A2 = 3 m2, R1 = 0.8 s/m2, and R2 = 0.5 s/m2 [1].

function PlantTF=CoupledTanksTF
% Define constants
A1=5;
A2=3;
R1=0.8;
R2=0.5;
% Define the numerator of the transfer function
Num=[A2*R1*R2 (R1+R2)];
% Define the denominator of the transfer function
Den=[A1*A2*R1*R2 (A1*R1+A2*R2+A1*R2) 1];
% Call the tf function
PlantTF=tf(Num,Den);

The function was saved under the name CoupledTanksTF. Typing the command
CoupledTanksTF in the command window (make sure that the current directory is
the one where this file resides) the following will be displayed:

Transfer function:
 1.2 s + 1.3

6 s^2 + 8 s + 1

As an SISO system, MATLAB provides the facility to determine the response of
the system for a unit step input. In the command window type step(CoupledTanksTF)
[2]. The graph shown in Figure 14.7 will be displayed.

Have in mind that even though this response seems logical and acceptable, it is your
responsibility to check it out. In this case the explicit transfer function is given by

	

H s
Q s

s
s s

1

0
2

1 2 1 3
6 8 1

()
()

. .= +
+ + 	 (14.12)

Because at steady state all derivatives are zero, the steady state can be determined by
substituting s = 0 into the transfer function. Thus for a unit step input (Q(s) = 1/s
m3/s) the steady-state value of h2 can be determined:

	
h2

1 3
1

1 1 3() . .∞ = × = m 	 (14.13)

This result is the same as the one obtained by the simulation (see Figure 14.7).

p1 p2

q

Figure 14.6  Flow through a valve.

93568_Book.indb 349 7/22/09 10:36:48 AM

350  ◾  Numerical and Analytical Methods with MATLAB

When a linear SISO system (refer to Figure 14.1) is excited by an input of the
form u(t) = Acos(wt), the output of the system is given by y(t) = Bcos(wt+φ), where
A and B are the amplitudes of the input and output, respectively, and φ is a phase
angle. A Bode plot provides the ratio B/A, usually in decibels [3], as a function of
the frequency w.

The frequency response of the system, which describes the way h2(t) responds to
an input given by q0 = sin(wt), can be obtained by typing in the command window
bode(CoupledTanksTF). The graph shown in Figure 14.8 will display a Bode plot [4].

14.2.2 � Zero-Pole-Gain Format of Transfer Function
Representation

Another representation of a transfer function is the Zero-Pole-Gain format. Because
the transfer function, as the one shown in Equation (14.8), is a rational polynomial
function, its numerator and denominator can be factored; that is,

	
H s K

s z s z s z
s p s p s p

m

n

()
()() ()
()() ()

= - - -
- - -

1 2

1 2

…
… 	 (14.14)

The poles, pj, and the zeros, zj, can be real, imaginary, or complex numbers and the
gain, K, is a real positive number. The zeros, the poles, and the gain of the transfer

Figure 14.7  System response to a step input. (From MATLAB. With permission.)

93568_Book.indb 350 7/22/09 10:36:48 AM

Control Systems  ◾  351

function can be obtained by the pole, zero, and dcgain commands. In the command
window type [5–7]:

>> pole(CoupledTanksTF)

The following will be displayed in the command window:

Num =
 1.2000 1.3000
Den =
  6 8 1
ans =
 –1.1937
 –0.1396

>> zero(CoupledTanksTF)
Num =
 1.2000		 1.3000
Den =
  6 8 1
ans =
 –1.0833

Figure 14.8  Bode plots for the Coupled Tanks system. (From MATLAB. With
permission.)

93568_Book.indb 351 7/22/09 10:36:49 AM

352  ◾  Numerical and Analytical Methods with MATLAB

>> dcgain(CoupledTanksTF)
Num =
 1.2000 1.3000
Den =
  6 8 1
ans =
  1.3000

The results show that there are two poles, one at –1.1937 and the other at
–0.1396, a zero at –1.0833, and the gain of the system is 1.3 (which is confirmed by
the steady-state value of h2 found by Equation 14.13).

The conversion between transfer function to Zero-Pole-Gain representation is
supported by the command zpk [8]. The following function performs the conver-
sion and draws the response for a unit step input:

function PlantZPK=CoupledTanksZPK
% Running the transfer function object
CoupledTanksTF;
% Finding the poles
PlantPoles=pole(CoupledTanksTF);
% Finding the zeros
PlantZeros=zero(CoupledTanksTF);
% Finding the DC gain
PlantGain=dcgain(CoupledTanksTF);
% Finding the zero-pole-gain presentation
PlantZPK=zpk(PlantZeros,PlantPoles,PlantGain);
% Plotting the step response
step(PlantZPK);

Running the program yields the following results and the graph shown in Figure 14.7.
Typing in the command window CoupledTanksZPK displays the following:

Zero/pole/gain:

1.3 (s+1.083)

(s+1.194) (s+0.1396)

14.2.3 � State Space Representation
State space models are first-order coupled differential equations that describe the
system in the following general form:

	

�x t Ax t Bu t

y t Cx t Du t

() () ()

() () ()

= +

= +
	

(14.15)

where x is the system state, u is the input to the system, and y is the system’s out-
put. For linear invariant systems the matrices A, B, C, and D are constants. This

93568_Book.indb 352 7/22/09 10:36:49 AM

Control Systems  ◾  353

State Space presentation will be demonstrated using the Coupled Tanks example.
Rewriting the dynamic equation of the tanks (Equation 14.7),

	

dh
dt A

q
h h

R

dh
dt A

h h
R

h
R

1

1
0

1 2

1

2

2

1 2

1

2

2

1

1

= -
-





=
-

-





	 (14.7)

Define the states, the input, and the output of the system by

	

x h

x h

u q

y h

y h

1 1

2 2

1 1

2 2

=

=

=

=

=

	 (14.16)

The state space representation is directly derived from Equation (14.7):

	

�

�

x

x

A R A R

A R A R A R

1

2

1 1 1 1

2 1 2 1 2 2

1 1

1 1 1













=
-

- -

































+

























x

x
A u1

2
1

1 0

0 0
0 













=






















+









y

y

x

x
1

2

1

2

1 0
0 1

0 0
0 0 











u
0

	

(14.17)

The following program will define the state space model in MATLAB [9]:

function PlantSS=CoupledTanksSS
% Define the constants
A1=5;
A2=3;
R1=0.8;
R2=0.5;
% Define the matrices A, B, C and D
A=[-1/(A1*R1) 1/(A1*R1);1/(A2*R1) -1/(A2*R1)-1/(A2*R2)];
B=[1/A1 0;0 0];
C=[1 0; 0 1];
D=[0 0; 0 0];
% Finding the state space representation
PlantSS=ss(A,B,C,D);

93568_Book.indb 353 7/22/09 10:36:50 AM

354  ◾  Numerical and Analytical Methods with MATLAB

Executing the program yields

>> CoupledTanksSS
a =
	 	 x1	 x2
	 x1 -0.25 0.25
	 x2 0.4167 -1.083
b =
		 u1	 u2
	 x1 0.2 0
	 x2 0 0
c =
	 	 x1 x2
	 y1 1 0
	 y2 0 1
d =
		 u1 u2
	 y1 0 0
	 y2 0 0
Continuous-time model.

In the command window type step(CoupledTanksSS). The time response of h1
and h2 will be drawn as shown in Figure 14.9. Note that since the input u2 = 0, the
corresponding outputs are zero.

Figure 14.9  System’s response to unit step input. (From MATLAB. With permission.)

93568_Book.indb 354 7/22/09 10:36:51 AM

Control Systems  ◾  355

14.3 � Closed-Loop Systems
Up to this point different representations of the plant (see Figure 14.1) were dis-
cussed. By nature, the plant itself is an open-loop system that responds to the inputs
without any internal corrections or compensations. In a closed-loop control system,
the plant’s output is measured by a sensor and its signal is fed back and com-
pared with the desired plant’s output (reference). The difference between the two,
the error, is fed into a controller which in turn produces the input to the plant.
Obviously, at this point the closed-loop response of the system is of interest and the
problem is how to design a controller that will satisfy a set of requirements related
to the dynamic behavior of the plant’s output.

In this section several commonly used design tools that are available in MATLAB
will be discussed and demonstrated. The design of a simple controller, which regu-
lates the speed of a DC motor, will be used to demonstrate these tools.

14.3.1 � DC Motor Modeling
Two equations dominate the dynamic response of a DC motor: the voltage equa-
tion, which describes the electromagnetic behavior of the motor, and the torque
equation, which describes the electromechanical behavior of the motor. The voltage
equation is given by

	
L

dI
dt

R I E Um
m

m m m+ + = 	 (14.18)

where
	Lm = rotor inductance (Henry).
	Rm = rotor resistance (+brushes) (ohm).
	Em = induced voltage (volt).
	Im = current (ampere).
	U = control Voltage (volt).

The induced voltage is proportional to the angular velocity of the motor.

	 Em = Kb ωm	 (14.19)

where ωm is the rotor angular velocity [rad/second] and Kb is the motor constant
(Volt/[rad/second]). Thus, the voltage equation is reduced to

	
L

dI
dt

R I K Um
m

m m b m+ + =w 	 (14.20)

The torque equation is given by

	
J

d
dt

B T K Im
m e i m

w
w φ+ + = 	 (14.21)

93568_Book.indb 355 7/22/09 10:36:51 AM

356  ◾  Numerical and Analytical Methods with MATLAB

where
	 J = total inertia reflected to the motor shaft (including the rotor inertia)(kg m2).
	 B = total damping torque reflected to the motor shaft (N m/s).
	Te = total mechanical torque acting on the motor shaft (N m).
	 f = magnetic flux generated by the stator.

For a permanent magnet (or constant excitation field) DC motor, f is a con-
stant. Defining the motor constant K Kt i= φ, the torque, Tm, produced by the
motor is given by

	 T K Im t m= 	 (14.22)

and therefore Equation (14.21) becomes

	
J

d
dt

B T K Im
m e t m

w
w+ + = 	 (14.23)

In most cases Lm << 1 and B << 1 and thus the associated term in Equations (14.20)
and (14.23) can be neglected. The reduced model becomes

	 R I K Um m b m+ =w 	 (14.24)

	
J

d
dt

T K Im
e t m

w
+ = 	 (14.25)

Combining Equations (14.24) and (14.25) gives

	
J d

dt
T K

U K
Re t

b

m

w w
+ =

-
	 (14.26)

In the Laplace domain

	
Ω() () ()s K U s W s

s
= -

+t 1 	 (14.27)

where

	   t =
JR

K K
m

t b

motor time constant (second)

	W T
R
Ke

m

t

= load disturbance (volt)

	 K
K b

= 1 motor gain ([rad/second]/volt)

93568_Book.indb 356 7/22/09 10:36:54 AM

Control Systems  ◾  357

14.3.2 � Block Diagrams
Up to now our block diagrams were used to describe the connectivity between the
different elements of the control system. However, block diagrams can also be used
to describe the dynamic behavior of each element by including its transfer function.
The block diagram may be used to determine the closed-loop transfer function of
the system, which in turn can be used to determine the stability and the time and
frequency response of the system.

The diagram shown in Figure 14.10 will be used to demonstrate some of the
basic operations and to determine the closed-loop transfer function Y(s)/R(s). To
simplify, the solution follows these steps:

	 1.	The parallel connected blocks, G1(s) and G2(s), are reduced to G1(s) + G2(s).
	 2.	The serially connected blocks, G3(s) and G4(s), are reduced to G3(s)*G4(s).
	 3.	The two new blocks are connected in serial and can be reduced to [G1(s) +

G2(s)]*G3(s)*G4(s).

These three steps will reduce the block diagram to the one shown in Figure 14.11.
The procedure by which the system’s transfer function is determined follows.

The error, E(s), using the feedback path of the diagram, is given by

	 E s R s H s Y s() () () ()= - 1 	 (14.28)

G4(s)G3(s)

G2(s)

R(s)
G1(s)

H1(s)

Y(s)+
+

+–

Figure 14.10  A sample block diagram.

[G1(s) + G2(s)]* G3(s)* G4(s)

H1(s)

+

–

R(s) Y(s)E(s)

Figure 14.11  Simplified block diagram of the system shown in Figure 14.8.

93568_Book.indb 357 7/22/09 10:36:55 AM

358  ◾  Numerical and Analytical Methods with MATLAB

The output, Y(s), using the forward path of the diagram, is given by

	 Y s G s G s G s G s E s() {[() ()]* () * ()} ()= +1 2 3 4 	 (14.29)

Substituting Equation (14.28) into Equation (14.29) yields the closed-loop transfer
function

	

Y s
R s

G s G s G s G s
G s G s

()
()

[() ()]* () * ()
[() (

=
+

+ +
1 2 3 4

1 21))]* () * () ()G s G s H s3 4 1
	 (14.30)

The block diagram that describes the DC model given by Equations (14.20) and
(14.23) is shown in Figure 14.12.

14.3.3 � MATLAB Tools for Defining the Closed-Loop System
As we have seen in many cases, systems (in particular SISO systems) are described
by block diagrams. MATLAB provides tools by which a closed-loop transfer func-
tion can easily be determined. As an example, the system shown in Figure 14.10
will be used to demonstrate some of MATLAB’s functions. The following transfer
functions will be used:

	

G s
s

G s
s

G s s
s s

G s
s

H

1

2

3 2

4

1
1

1
2

1
7 1

1
5

()

()

()

()

=
+

=
+

= +
+ +

=
+

11 1
()s s

s
=

+

	 (14.31)

Lms + Rm

1
Js + B

1 ωmKt

Kb

Te

Kt

Rm

Um
+ +

−

−

Figure 14.12  Block diagram of a DC motor.

93568_Book.indb 358 7/22/09 10:36:56 AM

Control Systems  ◾  359

The following program simplifies the block diagram shown in Figure 14.10 and
determines the closed-loop transfer function following the steps in Section 14.3
[10–12].

function PlantTF=Close_loopTF
% Definitions of the blocks of the transfer functions
NumG1=[1]; DenG1=[1 1];
G1TF=tf(NumG1,DenG1);
NumG2=[1]; DenG2=[1 2];
G2TF=tf(NumG2,DenG2);
NumG3=[1 1]; DenG3=[1 7 1];
G3TF=tf(NumG3,DenG3);
NumG4=[1]; DenG4=[1 5];
G4TF=tf(NumG4,DenG4);
NumH1=[1 0]; DenH1=[1 1];
H1TF=tf(NumH1,DenH1);
% Connecting G1 and G2 in parallel
G1G2TF=parallel(G1TF,G2TF);
% Connecting G3 and G4 in serial
G3G4TF=series(G3TF,G4TF);
% Connecting G1G2 and G3G4 in serial
G1G2G3G4TF=series(G1G2TF,G3G4TF);
% Closing the loop with H1;
PlantTF=feedback(G1G2G3G4TF,H1TF);

Typing Close_loopTF in the command window yields the closed-loop transfer
function of the system:

Transfer function:
	 2 s^3 + 7 s^2 + 8 s + 3
--
s^6 + 16 s^5 + 89 s^4 + 213 s^3 + 229 s^2 + 100 s + 10

The block diagram of the DC motor shown in Figure 14.12 will be used as a
second example. Neglecting the load, Te, and using the following constants, the
response of the motor to a unit step input, Um = 1, will be determined.

	 Kb = 0.824 (volt/[rad/second])	 Kt = 7.29 (lb in./A)
	 Rm = 0.41 (Ω)	 J = 0.19 (lb in. s2)
	 Lm = 0.005 (H)	 B = 0.002 (lb in. second)

function PlantTF=DC_Close_LoopTF
Rm=0.41;
Lm=0.005;
Kb=0.824;
Kt=7.29;
B=0.002;
J=0.19;
%Define the electrical block
NumE=[Kt];
DenE=[Lm Rm];

93568_Book.indb 359 7/22/09 10:36:57 AM

360  ◾  Numerical and Analytical Methods with MATLAB

ElectricalTF=tf(NumE,DenE);
%Define the mechanical block
NumM=[1];
DenM=[J B];
MechanicalTF=tf(NumM,DenM);
%Define the feedback block
NumFB=[Kb];
DenFB=[1];
FeedbackTF=tf(NumFB,DenFB);
%Connect the electrical and mechanical blocks in series
Elec_MechTF=series(MechanicalTF,ElectricalTF);
%Closing the loop
DC_Close_LoopTF=feedback(Elec_MechTF,FeedbackTF)
%Plot the time response to a unit step
step(DC_Close_LoopTF)

Executing the program yields the following transfer function, and the time
response plot is shown in Figure 14.13.

Transfer function:
	 7.29

0.00095 s^2 + 0.07791 s + 6.008

Figure 14.13  Step response for the model shown in Figure 14.10. (From MATLAB.
With permission.)

93568_Book.indb 360 7/22/09 10:36:57 AM

Control Systems  ◾  361

14.4 � MATLAB Tools for the Performance
Analysis of Closed-Loop Systems

Up to this point two MATLAB functions were used to determine the sys-
tem behavior in time and frequency domains, that is, the step and bode func-
tions. Two other functions, rlocus and nyquist, are discussed in the following
sections.

14.4.1 � Root Locus Plots
A simple SISO closed-loop system is shown in Figure 14.14. Notice that the
gain of the forward path, K, was separated from the forward transfer function,
G(s).

The closed-loop transfer function is given by

	

Y s
R s

KG s
KG s H s

()
()

()
() ()

=
+1

	 (14.32)

The system characteristic equation, which is the denominator of the closed-loop
transfer function, is given by

	 1 0+ =KG s H s() () 	 (14.33)

This simple SISO system will be stable as long as the roots of the characteristic
equation reside on the left-hand side of the complex plane. The root locus is a graph
showing the location of the roots of the characteristic equation as a function of the
gain, K. Thus, using the locus, the designer can determine the range of the gain,
K, that will ensure the stability of the system. The function rlocus uses a slightly
different block diagram structure, shown in Figure 14.15, that produces the same
characteristic equation.

The following program defines a closed-loop transfer function and calls the
rlocus function. The root locus plot is shown in Figure 14.16. From the plot it is
clear that for a range of gain values some roots are located on the right-hand side of
the complex plane. The designer should avoid this range in order to maintain the
stability of the system.

% Define the Closed-Loop transfer function
N=[1 2 4];
D=[1 7 6 5 3];
Closed_LoopTF=tf(N,D);
% Call the rlocus function
rlocus(Closed_LoopTF);

93568_Book.indb 361 7/22/09 10:36:58 AM

362  ◾  Numerical and Analytical Methods with MATLAB

Closed-Loop
Transfer Function

K

+

–

R(s) Y(s)

Figure 14.15  System block diagram definition for rlocus function.

Figure 14.16  Root locus plot of the above closed-loop transfer function. (From
MATLAB. With permission.) (See color insert following page 334.)

G(s)

H(s)

+

–

R(s) Y(s)
E(s)

K

Figure 14.14  A simple closed-loop system.

93568_Book.indb 362 7/22/09 10:36:59 AM

Control Systems  ◾  363

14.4.2 � Nyquist Plots
Because the Laplace variable, s, is a complex variable that can be expressed by s =
jw, the term L(s) of a closed-loop system with a characteristic equation given by
1 0+ =L s() can be expressed by its magnitude, M, and its angle φ:

	

M L j

L j

=

=

| ()|

(

w

ϕ w/
	 (14.34)

The Nyquist plot is a M-φ plot as ω changes from zero to infinity. The plot is
fundamentally used to determine the stability of a system. The Nyquist’s stability
criteria state that the system is stable if and only if the Nyquist plot of L(s)

	 1.	Does not encircle the point (–1,0) when the number of poles of L(s) on the
right-hand side of the s plane is zero.

	 2.	Encircles the point (–1,0) counterclockwise n times, where n is the number of
poles of L(s) with positive real parts.

As an example, consider the closed-loop system shown in Figure 14.17. The
transfer function of the closed-loop system shown in Figure 14.17 is given by

	

Y s
R s

s s

s s s

()
()

()

() ()
=

+
+

+ +

5
1

5
1

1
21 	 (14.35)

and thus,

	
L s

s s s
()

()()
=

+ +
5

1 2
	 (14.36)

The following program will produce the Nyquist plot, shown in Figure 14.18,
and the closed-loop system response to a unit step, shown in Figure 14.19.

% Define the transfer function L
N_L=[5];
D_L=[1 3 2 0];
L_TF=tf(N_L,D_L);

+

–

R(s) Y(s)
5 1

s(s + 1)

(s + 2)
1

Figure 14.17  Closed-loop system.

93568_Book.indb 363 7/22/09 10:37:01 AM

364  ◾  Numerical and Analytical Methods with MATLAB

% Call the rlocus function
nyquist(L_TF);
pause;
% Define the closed-loop transfer function L
N_CL=[1 2];
D_CL=[1 3 2 5];
CL_TF=tf(N_CL,D_CL);
step(CL_TF);

Note that the plot is symmetrical about the real axis due to the conjugate solu-
tion of the roots. Only one of the graphs is needed for the evaluation of the above
criteria.

The scales in this plot were selected automatically by MATLAB. The graph
that was produced did not provide a good view near the (–1,0) point. To visualize
the geometry of the plot in the nationhood of (–1,0), left click on the X scale and
change the X limits to –2 and 0.5 and the Y limits to –0.5 and 0.5. As a result, the
plot shown in Figure 14.19 was produced. From this graph it is clear that the system
is stable because the point (–1,0) is not encircled.

The response to the unit step is shown in Figure 14.20. As shown, the response
is very oscillatory, indicating that the system is close to instability. Increasing the
gain from 5 to 10 will cause the system to become unstable. The corresponding

Figure 14.18  Nyquist plot of L(s) defined by Equation (14.36). (From MATLAB.
With permission.)

93568_Book.indb 364 7/22/09 10:37:02 AM

Control Systems  ◾  365

Figure 14.19  Modified Nyquist plot of L(s). (From MATLAB. With permission.)

Figure 14.20  Unit step response of the system given in Equation (14.35). (From
MATLAB. With permission.)

93568_Book.indb 365 7/22/09 10:37:03 AM

366  ◾  Numerical and Analytical Methods with MATLAB

(a)

(b)

Figure 14.21  (a) Nyquist plot of L(s) defined by Equation (14.35) with gain = 10.
(b) Unit step response of the system given in Equation (14.35) with gain = 10.
(From MATLAB. With permission.)

93568_Book.indb 366 7/22/09 10:37:04 AM

Control Systems  ◾  367

Nyquist plot is shown in Figure 14.21a. This figure shows that the plot encircles
the point (–1,0) and therefore the system is not stable. Figure 14.21b shows the
response of the closed-loop system to a unit step input and it is clear that the system
is not stable.

14.5 � MATLAB’s SISOtool
MATLAB provides a graphical user interface (GUI) that allows the user to design
an SISO system. The GUI provides a few selectable control schemes given by their
block diagrams. The controller is programmable within the GUI and its gain can
be adjusted “on the fly” using the design tools mentioned above.

14.5.1 � Example to Be Used with SISOtool
To demonstrate the capabilities of SISOtool the system shown in Figure 14.22 will
be used. In this system a ferromagnetic mass, m, is suspended on a spring, k, and a
damper, c. An electromagnetic force, f, is applied to the mass, which is proportional
to the current, i, flowing through the R-L circuit. The circuit is excited by the volt-
age, vout, which is proportional to the control signal, vin. The position of the mass is
measured by a linear potentiometer of length d and is excited by bipolar reference
voltage ±v. The controller is fed with the error, e, and accordingly produces the
control signal, vin.

As a first step the system has to be decomposed to subsystem where the input
and output of each subsystem are clearly established, as shown in Figure 14.23.
Note that the diagram does not include the explicit model of each subsystem.

m

k c

R

Amp. Controller L
+V

–V

+
–

X
Y e

Vout
vin

Figure 14.22  Example for SISOtool.

93568_Book.indb 367 7/22/09 10:37:04 AM

368  ◾  Numerical and Analytical Methods with MATLAB

At this point the transfer function of each block has to be determined:

Controller

An I (integrator) controller will be used:

	

V s
E s

K
s

in I()
()

= 	 (14.37)

where KI is the controller gain.

Amplifier

The amplifier is a pure gain, KA:

	

V s
V s

Kout

in
A

()
()

= 	 (14.38)

R-L Circuit

The current equation for the R-L circuit is given by

	
v iR L di

dtout = + 	 (14.39)

where R is the resistance and L is the inductance of the coil. The transfer function
I(s)/Vout(s) is given by

	

I s
V s R Lsout

()
()

=
+
1

	 (14.40)

Electromagnetic Force

The electromagnetic force, F, is proportional to the current i:

	

F s
I s

K F
()
()

= 	 (14.41)

where KF is proportionality constant.

Mass-Spring
Damper

X
Y Fi

R-L
Circuit

Current-Force
ConversionAmp.

vin vout

Controller

Potentiometer

+

–

e

vp

Figure 14.23  Schematic block diagram of the system shown in Figure 14.22.

93568_Book.indb 368 7/22/09 10:37:06 AM

Control Systems  ◾  369

Mass-Spring-Damper

The transfer function X(s)/F(s) is given by

	

X s
F s ms cs k

()
()

=
+ +
1

2 	 (14.42)

Linear Potentiometer

The potentiometer provides a feedback signal that is proportional to the displace-
ment, X, and it depends on its stroke and excitation. It has a gain given by

	

V s

X s
V
d

p ()
()

= 2
	 (14.43)

Input Filter

Notice that the reference input, Y, has to be modified in order to match the units at
the summation junction by multiplying Y  by the feedback device gain.

 The complete block diagram of the system is shown in Figure 14.24 and can be
simplified to the form shown in Figure 14.25.

ms2+ cs + k
1 XY Fi

R + Ls
1 KFKA

vin vout

s
KI

d
2V

+

–

e

vp

d
2V

Figure 14.24  Block diagram of the system shown in Figure 14.22.

(R + Ls)(ms2 + cs + k)
KAKF

XY
vin

s
KI

d
2V

+

–

e

vp

d
2V

Figure 14.25  Modified block diagram of the system shown in Figure 14.22.

93568_Book.indb 369 7/22/09 10:37:08 AM

370  ◾  Numerical and Analytical Methods with MATLAB

14.5.2 � SISOtool Main Features
To start the SISOtool type in the command window sisotool. The following win-
dow shown in Figure 14.26 will be displayed. There are many options available in
this tool and in the following the most important one will be discussed (the reader
should open the tool in order to follow these short descriptions):

Control Architecture:◾◾ Allows the user to select one of the architectures pro-
vided, such as change signs at the summation junction, and change name of
block and signals.
System Data:◾◾ Allows the user to specify the transfer function, written ahead
of time, for each block.
Compensator Editor:◾◾ A tool by which the transfer functions of the controller
and the input filter can be specified.
Graphics Tuning:◾◾ Allows the user to select the different plots to be displayed.
Initially the Root Locus, and open and closed system Bode diagrams are
displayed as shown in Figure 14.27. Using these plots the user can modify the
controller interactively.
Analysis Plots:◾◾ Allow the user to plot the time response to a step input, an
impulse input, and other plots needed for analysis.

Figure 14.26  The SISOtool window. (From MATLAB. With permission.)

93568_Book.indb 370 7/22/09 10:37:08 AM

Control Systems  ◾  371

14.5.3 � Using SISOtool to Design the Controller
for Example at Beginning of This Section

The design of the controller for the above example will be explained step by step:

	 1.	The common call for SISOtool is sisotool(G,C,H,F), where G, C, H, and F
are transfer functions describing the Plant, Controller, Feedback device, and
Input Filter, respectively. These transfer functions are established using the tf,
zpk, or ss functions that were explained in Section 14.2.

	 2.	The following values will be used:

	 m = 0.1 kg 	 k = 500 N/m 	 c = 100 N/(m/s)
	 R = 5 ohm 	 L = 0.01 H
	 V = 5 V 	 d = 0.1 m
	 KA = 5 	 KF = 10 N/A 	 KI = 1 V/s

Figure 14.27  Plots initially displayed by SISOtool. (From MATLAB. With
permission.)

93568_Book.indb 371 7/22/09 10:37:09 AM

372  ◾  Numerical and Analytical Methods with MATLAB

		  The transfer functions are given by

	
G s

s s s
()

. .
=

+ + +
50

0 001 1 5 505 25003 2 	 (14.44)

	
C s

s
() = 1

	 (14.45)

	 H s() = 50 	 (14.46)

	 F s() = 50 	 (14.47)

	 3.	The following MATLAB function defines these transfer functions:

 % The function is in the file GTF.m
 function PlantTF=GTF
 % Definitions of the Plant’s transfer functions
 NumG=[50]; DenG=[0.001 1.5 505 2500];
 PlantTF=tf(NumG,DenG);

 % The function is in the file CTF.m
 function ControllerTF=CTF
 % Definitions of the Controller’s transfer functions
 NumC=[1]; DenC=[1 0];
 ControllerTF=tf(NumC,DenC);

 % The function is in the file HTF.m
 function FeedbackTF=HTF
 % Definitions of the Controller’s transfer functions
 NumH=[50]; DenH=[1];
 FeedbackTF=tf(NumH,DenH);

 % The function is in the file FTF.m
 function InputFilterTF=FTF
 % Definitions of the Controller’s transfer functions
 NumF=[50]; DenF=[1];
 InputFilterTF=tf(NumF,DenF);

	 4.	In the command window type sisotool(GTF,CTG,HTF,FTF), where GTF,
CTG,HTF,FTF are the transfer function objects established in the program
above. Two windows are displayed: The first is the same as in Figure 14.26
and the second, shown in Figure 14.28, is the same as in Figure 14.27 but
the plots correspond to the system in this example. Note that the Gain
Margin (GM = 50.5 db) and the Phase Margin (PM = 78.8 degrees) are dis-
played on the Bode graph and the zeros and poles are displayed on the Root
locus plot. The values for the PM and GM indicate that the system is stable.
However, they do not provide any indication regarding the time response of
the system.

		  To see the response of the closed-loop system to a unit step input click on
Analysis Plots and fill the form as shown in Figure 14.29. The step response

93568_Book.indb 372 7/22/09 10:37:10 AM

Control Systems  ◾  373

plot, shown in Figure 14.30, will be displayed. As shown, the response is
stable. Steady state is reached after approximately 4.5 seconds with a zero
steady-state error.

	 5.	The graph shown in Figure 14.28 is a design tool by which the GM and PM
or the open-loop system’s gain can be modified.

Using the Bode Graph Tool

To modify GM and PM put the cursor to the yellow dot on the Bode amplitude
diagram (the cursor will change to a hand), right click and drag the point up or
down, decreasing and increasing the GM, respectively. Simultaneously, the plot of
time response to a unit step will change. As the GM increases the response becomes

Figure 14.28  Plots initially displayed by SISOtool for the example. (From
MATLAB. With permission.)

93568_Book.indb 373 7/22/09 10:37:11 AM

374  ◾  Numerical and Analytical Methods with MATLAB

Figure 14.29  Analysis Plots selection. (From MATLAB. With permission.)

Figure 14.30  Time response to a unit step. (From MATLAB. With permission.)

93568_Book.indb 374 7/22/09 10:37:12 AM

Control Systems  ◾  375

faster but oscillatory. Once the GM is positive, the system becomes unstable.
Figure 14.31 shows the Bode diagram at GM = 30.5 db and PM = 37.7 degrees and
Figure 14.32 shows the corresponding unit step time response of the closed-loop
system. The forced change in GM corresponds to a change in the open-loop gain
of the system. Because only the controller’s gain, KI, can be adjusted in this system,
the design tool indicates (at the bottom left of the Bode plot window) the controller
gain for these values of GM and PM—“C gain changes to 9.99.”

Using the Root Locus Graph Tool

The default scales of the Root locus plot have to be changed in order to observe the
location of the roots close to (0,0). Right double-click on one of the axes to open

Figure 14.31  Bode diagram of the system after modification of the GM. (From
MATLAB. With permission.)

93568_Book.indb 375 7/22/09 10:37:13 AM

376  ◾  Numerical and Analytical Methods with MATLAB

a new window in which the scales can be changed. Change the scales to 10 and
–10 on the imaginary axis and to –100 and 100 on the real axis (see Figure 14.33).
It is clear that the system is stable because the roots are on the left-hand side of
the complex plane. Note that there are two additional zeros that are not shown in
Figure 14.33 that are not shown in Figure 14.31. The location of the roots of the
characteristic equation can be manipulated by dragging one root along the curve,
the same way that the GM was manipulated. Notice that

	 (a)	 As long as the roots lie on the left-hand side of the complex plane, the system is
stable.

	 (b)	 If the roots are located on the real axis, the response of the system to a unit
step input has no overshoot.

	 (c)	 If the roots are complex conjugate the response of the system to a unit step
input is oscillatory.

For demonstration, the roots of the characteristic equation were relocated as
shown in Figure 14.33. As expected, the system is stable and its response to a unit
step is oscillatory, as shown in Figure 14.34.

Figure 14.32  Time response to a unit step of the closed-loop system after modi-
fication of the GM. (From MATLAB. With permission.)

93568_Book.indb 376 7/22/09 10:37:13 AM

Control Systems  ◾  377

14.6 � Application of Simulink in Controls
and Dynamic Systems

Simulink® is a friendly, graphical interface by which a control system, or any other
dynamic system, is described by a block diagram much the same as was described in
Section 14.3.2. As such, the programming is intuitive and easy. Moreover, Simulink
supports programming elements, such as saturation, that are very difficult to imple-
ment in MATLAB. Some of the main features of Simulink will be demonstrated in
the following with several examples. Also see Chapter 7.

14.6.1 � Example of Control of the Fluid Level in Coupled Tanks
The goal in this example is to design a controller that will regulate the level of the
fluid, h1, in the coupled tanks system shown in Figure 14.5. To make this example

Figure 14.33  Root locus of the system. (From MATLAB. With permission.)

93568_Book.indb 377 7/22/09 10:37:14 AM

378  ◾  Numerical and Analytical Methods with MATLAB

more realistic, an additional unknown flow, qd, will be added as disturbance to the
first tank. To this end, the control scheme block, shown as the block diagram in
Figure 14.35, is proposed.

The modeling of the whole system will be done block by block, which will make
it easier for the implementation in Simulink.

Figure 14.34  Response of the system in Figure 14.33 to a unit step. (From
MATLAB. With permission.)

Plant Pump Controller

Sensor

h2
hr e u q

+
–

qd+

+

Figure 14.35  Proposed block diagram for the fluid level control system.

93568_Book.indb 378 7/22/09 10:37:15 AM

Control Systems  ◾  379

Modeling the Plant

Recalling Equations (14.19) through (14.22) and adding the additional flow, qd,
yields

	

H s s
A R

Q s
A

Q s
A

H s
A R

H

d
1

1 1

0

1 1

2

1 1

2

1()
() () ()

(

+





= + +

ss s
R R
A R R

H s
A R

)
()

+
+






 =1 2

2 1 2

1

2 1

	 (14.48)

Using the same constants—A1 = 5 m2, A2 = 3 m2, R1 = 0.8 s/m2, and R2 = 0.5 s/ m2—the
above transfer functions reduce to

	

H s
s

Q s
s

Q s
s

H s

H s

d1 0 2

2

0 8
4 1

0 8
4 1

1
4 1

() . () . () ()

()

=
+ +

+
+

= 00 384
0 923 1 1

.
.

()
s

H s
+

	 (14.49)

The block diagram of the plant, given by Equation (14.49), is shown in Figure 14.36
and its Simulink equivalent is shown in Figure 14.37.

Using the subsystem option the block diagram of the plant is reduced to one
block with two inputs, q0 and qd, and one output, h2. The names of the input and
output ports, IN1 IN2 and OUT1, should be changed so they will appear in the
subsystem block (see top right corner in Figure 14.39).

4s + 1
0.8

4s + 1
1

0.923s + 1
0.384

Q0

H2

H2

H1
+

+

4s + 1
0.8Qd

+

+

Figure 14.36  Plant’s block diagram.

93568_Book.indb 379 7/22/09 10:37:16 AM

380  ◾  Numerical and Analytical Methods with MATLAB

Modeling the Pump

A constant displacement pump driven by a DC motor is assumed. The pump has
a displacement of Kd = 0.003 m3/rev. The reduced model of a DC motor, given by
Equation (14.35), will be used and its constants are Km = 20 rpm/V and t  = 0.1
second. The motor is driven by an amplifier with a gain of Ka = 15. The block
diagram of the Amplifier-Motor-Pump combination is shown in Figure 14.38.
Intentionally, the units of the variables were added in order to emphasize that the
units at the output of the block should correspond to the units of the input and the
units of the gain. The corresponding Simulink diagram is shown in Figure 14.39.
The Simulink model for the pump is also reduced to one block.

Figure 14.37  Simulink description of the plant. (From MATLAB. With permission.)

15 0.003

q0 [m3] V [Volt]

0.1s + 1
20

ω [rpm]u [Volt]

Figure 14.38  The pump unit block diagram.

93568_Book.indb 380 7/22/09 10:37:18 AM

Control Systems  ◾  381

Modeling the Sensor

The sensor is a device that measures the level of the fluid, h2, and provides a signal
proportional to the measured height. A suitable sensor has an order-of-magnitude
faster response than the process variable it is intended to measure. Therefore, its
dynamic behavior is usually neglected and it is considered as a pure gain. In this
example a sensor with a gain of Ks = 0.5 V/m will be used. Note that the same gain
is used to filter the input reference, Hr, as explained in Section 14.3.

Modeling the Controller

An integral controller will be added with the transfer function:

	

U s
E s

K
s

I()
()

= 	 (14.50)

where KI is a tunable gain.

Reference and Disturbance

Since the controller is a regulator, designed to maintain the fluid level constant
in the presence of disturbances, the reference to the system is the required height,
Hr. Assuming that the required height is 5 m, the reference is represented as a step
function of a value 5.

For a start it is assumed that there is no disturbance and therefore Qd = 0.

Figure 14.39  Simulink description of the pump unit. (From MATLAB. With
permission.)

93568_Book.indb 381 7/22/09 10:37:19 AM

382  ◾  Numerical and Analytical Methods with MATLAB

Executing the Simulation

The complete Simulink block diagram is shown in Figure 14.40, with KI = 0.5. The
simulation was executed for the duration of 100 seconds and the results are shown
in Figure 14.41.

Controller Gain Tuning

The controller gain, KI, is the only adjustable variable in this system. Thus, the
designer has to select its value according to certain criteria and to the physical con-
straints of the system, such as the maximum fluid level allowed before overflow and
maximum anticipated disturbance flow.

Figure 14.40  Complete Simulink block diagram. (From MATLAB. With permission.)

(KI = 0.1) (KI = 0.5) (KI = 1)

Figure 14.41  Simulation results—fluid level as function of time. (From MATLAB.
With permission.)

93568_Book.indb 382 7/22/09 10:37:20 AM

Control Systems  ◾  383

Intuitively, it should be clear that as the gain, KI, is increased, the faster the
response will be with the “penalty” of increased overshoot. Figure 14.41 demon-
strates this statement by showing the response for KI = 0.1, 0.5, 1.0. Obviously an
overshoot of over 40% (for KI = 1) is not acceptable because it means that a large
portion of the tank capacity cannot be used.

Physical Constraints

Up to this point it was assumed that the system is linear, which is correct for a
certain range of operation, for example, when the demand from the pump unit is
within its capability. In reality, there are physical constraints that have to be embed-
ded in the simulation:

	 1.	The amplifier output cannot exceed a maximum output voltage of |Vmax|.
Therefore a saturation element with the limits of ±Vmax has to be added to the
output of the amplifier.

	 2.	The pump is unidirectional, which means it can pump water only into the
tank but not from the tank. This means that an additional saturation element
has to be used at the pump’s output, which will limit the output only to a
positive value with a maximum value of

	 q u K K Ka m dmax max=

		 If the controller output signal, u, is limited to ±5V, the maximum flow rate
of the pump is given by

	
qmax . .= × × × =5 15 20 0 003 4 5 m /s3

	 3.	With current technology the controller is implemented by a microcontroller
where the control signal, u, is produced by a digital-to-analog converter
(DAC). A typical DAC’s output varies in the range of ±5V. Thus, another
saturation element has to be added to the controller output in order to limit
the signal u to that range.

The changes to the pump unit block diagram are shown in Figure 14.42.
The modified simulation was executed for the same controller’s gains. Since the

pump’s flow rate is the major physical constraint, its trace was added to the scope
using a multiplexer. This way, both the fluid level, h2, as well as the flow rate, q0,
can be observed on the same time scale. The results of the simulations are shown in
Figure 14.43, where the yellow line corresponds to the fluid level and the red line
to the flow rate, q0.

93568_Book.indb 383 7/22/09 10:37:21 AM

384  ◾  Numerical and Analytical Methods with MATLAB

As shown, for a low controller gain, KI = 0.1, the flow rate q0 < qmax, and there-
fore saturation does not occur and the system is linear. As the controller’s gain
increases saturation occurs and the system becomes nonlinear but still stable.

Up to this point in the discussion, no disturbance was introduced (qd = 0).
Because the disturbance is not known, but bounded by a known value, a uniform
random number bounded by [0,1] is assumed. The constant block that produces
qd (see Figure 14.40) will be replaced by a uniform random number as shown in
Figure 14.44. The disturbance, qd, is recorded as well. The simulation results are
shown in Figure 14.45 and Figure 14.46. As shown, in spite of the fluctuations in
the disturbance, the controller maintains the required fluid level for both the linear
and nonlinear cases discussed above.

Figure 14.42  Changes in the pump unit block diagram. (From MATLAB. With
permission.)

(KI = 0.1) (KI = 0.5) (KI = 1)

Figure 14.43  Simulation results of the modified model. (From MATLAB. With
permission.) (See color insert.)

93568_Book.indb 384 7/22/09 10:37:22 AM

Control Systems  ◾  385

14.6.2 � Design of a Feed-Forward Loop
Using Optimality Criteria

Figure 14.47 illustrates a control scheme that employs a feed-forward loop with a
gain Kf in addition to an integral controller.

The system transfer function is given by

	

X s
Y s

K s K

s s K
f I

I

()
()

=
+

+ +t 2 	 (14.51)

Figure 14.44  Simulation block diagram of the modified model with disturbance.
(From MATLAB. With permission.)

Figure 14.45  Simulation results of the modified model with disturbance (KI =
0.1). (From MATLAB. With permission.) (See color insert.)

93568_Book.indb 385 7/22/09 10:37:23 AM

386  ◾  Numerical and Analytical Methods with MATLAB

It should be emphasized that the additional feed-forward loop does not change
the characteristic equation of the system and therefore its stability (without the
feed-forward loop the transfer function is the same where Kf = 0). For this linear
system the gains KI and Kf can be selected by different design tools such as root
locus and Bode graphs.

However, one has to realize that in a physical system the control signal, u, is
bounded and a limiter has to be used. As a result, the system is not linear anymore
and the above-mentioned tools cannot be used.

Figure 14.46  Simulation results of the modified model with disturbance (KI =
1.0). (From MATLAB. With permission.) (See color insert.)

1
τs + 1s

KI xy e

+
–

+

+

Kf

u

Figure 14.47  A control system with a feed-forward loop.

93568_Book.indb 386 7/22/09 10:37:24 AM

Control Systems  ◾  387

Performance Indices

Performance index is a measure indicating how well the controller performs. In
most cases these indices are applied to regulators (constant reference) where the
system reaches a steady state with zero or constant error. These indices can be deter-
mined analytically, numerically, or experimentally. Four commonly used indices
are given in the following:

	 1.	Integral absolute error (IAE):

	
J e t dt=

∞

∫ | ()|
0

	 (14.52)

	 2.	Integral of time multiplied by absolute error (ITAE):

	
J t e t dt=

∞

∫ | ()|
0

	 (14.53)

	 3.	Integral of squared error (ISE):

	
J e t dt=

∞

∫ 2

0
() 	 (14.54)

	 4.	Integral of time multiplied by squared error (ITSE):

	
J te t dt=

∞

∫ 2

0
() 	 (14.55)

The indices that involve time (ITAE and ITSE) put emphasis on the error occur-
ring late in the response because t is small in the early stages of the response. Both
indices, IAE and ISE, intend to reduce the errors at the early stages of the response
(during the transient) regardless of the error sign, and the ISE index puts higher
emphasis on large errors.

Selection of the Gains KI and Kf

The values of the gains, KI and Kf, will be determined by minimizing the ITSE
performance index numerically. The simulation program, shown in Figure 14.48,
will be called by MATLAB using two nested loops where the gains will be varied
in a certain range. The gain combination that minimizes the ITSE index is the
optimum solution.

93568_Book.indb 387 7/22/09 10:37:25 AM

388  ◾  Numerical and Analytical Methods with MATLAB

Note the following changes in the simulation program:

	 1.	No numerical values were assigned to the feed-forward and the controller
gains. Instead, the names KI and KF were inserted. These names will be used
by MATLAB when the simulation is being called.

	 2.	A saturation block was added to limit the maximum/minimum value of the
control signal.

	 3.	The value of the performance index will be available to MATLAB using the out
block.

To test the simulation, the gains were manually set to KI = 0.5 and Kf = 0.5 and
the input reference was set to a unit step starting at t = 1 second. The results of this
run are shown in Figure 14.49. The following observations can be made:

	 1.	The control signal, u, is saturated at the early stages of the response because
the error, e, is large.

	 2.	While the control signal is saturated, the output, x, remains constant and thus
the error is constant and therefore the value of the performance index increases
parabolically.

	 3.	As the response reaches steady state with no error the value of the perfor-
mance index remains constant. This is the value that will be used for deter-
mination of optimality.

Figure 14.48  Simulink program for the system in Figure 14.47 with ITSE. (From
MATLAB. With permission.)

93568_Book.indb 388 7/22/09 10:37:25 AM

Control Systems  ◾  389

Multiple Runs of Simulink Model via MATLAB

To call a Simulink program from MATLAB the sim function is used [13]. Since
the constants in the Simulink model are global variable, they can be changed by
MATLAB. The following program changes the values of KI and KF using double-
nested loops, calls the Simulink model, and prints out the values of KI and KF and
the corresponding value of the performance index.

% File name: feed_forward.m
% Calls simulink model feed_forward_test
% retrieve the vector y which is the outport 1 containing the value of
% the performance index
for KI=0.1:0.1:0.3;
	 for KF=0.0:0.1:0.5;
		 [t,x,y]=sim(‘feed_forward_test’);
% Extracting the maximum value of the performance index
		 ITSE_max=max(y);
		 fprintf(‘KF=%10.2f KI=%10.2f ITSE=%10.3f
	 \n’,KF,KI,ITSE_max);
	 end
end

The results of the program are shown below:

KF=   0.10   KI=   0.10   ITSE=   1.237
KF=   0.15   KI=   0.10   ITSE=   0.675
KF=   0.20   KI=   0.10   ITSE=   0.387
.
.
.
KF=   0.40   KI=   0.30   ITSE=   0.875
KF   0.50   KI=   0.30   ITSE=   1.353

The results were rearranged in Table 14.1. As shown, the minimum value of the
performance index occurs when KI = 0.2 and KF = 0.2. These values can be adopted
as the optimal solution or the same process can be used to refine these values.

(a) (b) (c)

Figure 14.49  Simulation results: (a) X; (b) u; (c) ITSE. (From MATLAB. With
permission.)

93568_Book.indb 389 7/22/09 10:37:26 AM

390  ◾  Numerical and Analytical Methods with MATLAB

In this case, KI will be changed from 0.1 to 0.3 in increments of 0.05 and KF will
be changed from 0.1 to 0.3 with the same increments. The results of this run are
shown in Table 14.2.

The optimal value of the ITSE index, as shown in Table 14.2, is 0.365 and
the corresponding optimal values of the gains are KI = 0.25 and KF = 0.2. Setting
these values in the Simulink model and executing the program will yield the results
shown in Figure 14.50.

A comparison of the simulation’s results shown in Figures 14.49 and 14.50
yields the following:

	 1.	The value of the performance index dropped from 0.9 to 0.36.
	 2.	The maximum overshoot of the output, X, dropped from 20% to 15%.
	 3.	The time during which the controller is in saturation dropped from 5 seconds

to about 0.5 seconds, which means that the actuation element of the system
is not stressed to perform at its limit, thereby extending its useful life.

Table 14.1  ITSE Values for Different Combinations of KI and KF

KI

KF

0.1 0.2 0.3

0.0 3.186 1.391 0.965

0.1 1.237 0.666 0.537

0.2 0.387 0.366 0.369

0.3 0.696 0.551 0.509

0.4 2.009 1.163 0.875

0.5 2.070 1.961 1.352

Table 14.2  ITSE Values for Refined Values of KI and KF

KI

KF

0.1 0.15 0.2 0.25 0.3

0.1 1.237 0.825 0.666 0.585 0.537

0.15 0.675 0.519 0.462 0.435 0.419

0.2 0.387 0.369 0.366 0.365 0.369

0.25 0.375 0.376 0.384 0.391 0.397

0.3 0.696 0.596 0.551 0.525 0.509

93568_Book.indb 390 7/22/09 10:37:27 AM

Control Systems  ◾  391

14.6.3 � Active Suspension
Figure 14.51 illustrates a simple model of suspension of one wheel of a vehicle. The
mass, m, represents one quarter of the vehicle mass and k and c are the damper and
the spring constants. The variable xv represents the displacement of the vehicle rela-
tive to the road and the variable xr represents the displacement of the axial relative
to the road. The vehicle is traveling at the speed V over a bump, which is input to
the suspension, with a given geometry.

The governing equation of the above model is given by

	 mx c x x k x xv v r v r�� � �+ - + - =() () 0 	 (14.56)

The input bump, xr, and its derivative, �xr , depend on the vehicle’s speed and the
geometry of the bump. In this case this input can be generated as the summation of
four ramp inputs whose slopes and starting times are detailed in Table 14.3.

(a) (b) (c)

Figure 14.50  Optimum response: (a) X; (b) u; (c) ITSE. (From MATLAB. With
permission.)

m

k c xv

xr

V

h

d
l

Figure 14.51  A model of the suspension of a single wheel.

93568_Book.indb 391 7/22/09 10:37:28 AM

392  ◾  Numerical and Analytical Methods with MATLAB

The Simulink implementation bump is shown in Figure 14.52 for V = 45 kmh,
h = 0.1 m, d = 0.25 m, and l = 1.5 m. The Simulink implementation of the model is
shown in Figure 14.53. The results for the vehicle displacement and vertical acceler-
ation are shown in Figure 14.54. These results were obtained for a fixed suspension
with the following parameters: m = 225 kg, c = 250 N/m/s, and k = 5000 N/m.

The results shown in Figure 14.54 indicate

	 1.	The vehicle response is very oscillatory, which means that the vehicle bounces
many times after passing the bump with maximum amplitude of 0.055 m.

	 2.	The occupants of the vehicle experience peak acceleration of 8 m/s2, which
in not comfortable.

To improve the performance of the suspension, a controller, which will modify
the damping coefficient by changing the size of the orifice in the damper, is added
to the system. The controller is a proportional derivative (PD) controller with a
transfer function given by

	

U s
E s

K K sp d
()
()

= + 	 (14.57)

Table 14.3  Generation of xr

Start Time Slope

Ramp 1 1 h/(d/V)

Ramp 2 1 + d/V –h/(d/V)

Ramp 3 1 + d/V + l/V –h/(d/V)

Ramp 4 1 + 2d/V + l/V h/(d/V)

(a) (b) (c)

Figure 14.52  Bump simulation: (a) Simulink model; (b) xr; (c) �xr . (From MATLAB.
With permission.)

93568_Book.indb 392 7/22/09 10:37:30 AM

Control Systems  ◾  393

Figure 14.53  Simulink implementation of the suspension model. (From MATLAB.
With permission.)

(a) (b)

Figure 14.54  Simulation results: (a) displacement; (b) acceleration. (From
MATLAB. With permission.)

93568_Book.indb 393 7/22/09 10:37:31 AM

394  ◾  Numerical and Analytical Methods with MATLAB

The controller drives a small actuator with a time constant τ = 0.01 seconds and
gain of one. The initial value of the damper’s coefficient is 250 N/m/s.

Figure 14.55 illustrates the implementation of the control scheme in Simulink
and Figure 14.56 shows the displacement of the car where the controller’s gains
were Kp = 10 and Kp = 75. As seen, the maximum magnitude of the displace-
ment was reduced to 0.03 m compared with 0.055 m for the fixed suspension case.
However, the comfort of the occupants is compromised as shown in Figure 14.57;
the maximum value of the vehicle’s acceleration reaches 3 g.

The reader should realize that an actual active suspension system is by far more
complicated and outside the context of this book. The above discussion is just an
example to demonstrate that parameters of a system can be controlled as well.

14.6.4 � Sampled Data Control System
Most controllers today are implemented by software using microprocessors or
microcontrollers. A typical block diagram of a sampled data control system is
shown in Figure 14.58. This system functions as follows:

Figure 14.55  Controller implementation. (From MATLAB. With permission.)

93568_Book.indb 394 7/22/09 10:37:31 AM

Control Systems  ◾  395

	 1.	The reference r(nT) is generated by a program where T is the sampling time
and n is an index starting at zero (when t = 0) and increments every T sec-
onds. Thus, nT represents time and as T → 0, nT → t.

	 2.	The feedback signal from the sensor is sampled every T seconds (symbol-
ized by the switch that closes at the frequency 1/T). If the feedback signal
is analog, an analog-to-digital converter (ADC) is being used to obtain the
numerical value of the signal.

	 3.	Once the reference, r(nT), and the the numerical value of the feedback signal
are known, the error, e(nT), can be calculated.

Figure 14.56  Vehicle’s displacement. (From MATLAB. With permission.) (See
color insert.)

Figure 14.57  Vehicle’s acceleration. (From MATLAB. With permission.)

93568_Book.indb 395 7/22/09 10:37:32 AM

396  ◾  Numerical and Analytical Methods with MATLAB

	 4.	Using the error signal, a control algorithm is used in order to determine the
control signal u(nT).

	 5.	If the control signal needs to be an analog one, the computed value of the
control signal is converted to an analog signal using a DAC.

	 6.	The signal produced by the DAC, u(t), is kept constant during the period T
and will change in the next iteration.

The design of a sampled data control system requires additional considerations:

	 1.	“Conversion” of a continuous controller to an algorithm. In this case the con-
troller is designed as a continuous one using a variety of available tested tools,
then it is converted to an algorithm by different numerical methods for inte-
gration and differentiation (replacing 1/s and s in the Laplace Transform).

	 2.	Selecting appropriate sampling time T. A simple “rule of thumb” is to select
a sampling frequency, 1/T, three to five times higher than the highest fre-
quency of interest.

	 3.	Selecting appropriate ADC and DAC. Both converters come in different volt-
age ranges of operation: –5V to +5V, 0V to +5V, and others. In case of ADC
the analog signal is converted to a binary number proportional to the input
voltage. On the other hand, a DAC is fed with a binary number and it pro-
duces a voltage proportional to the value of that number. Both converters are
available in different lengths of the binary number (number of bits), which
determines the resolution of the converter. For example, a 12-bit DAC with the
range of 5V to +5V has a resolution of 0.00244V. This means that an increase
in its input number by 1 will increase the output voltage by 0.00244V.

	 4.	Selecting a suitable processor. The processor should be able to calculate the
reference and the control algorithm and to acquire the feedback signal (and
other tasks) within one sampling period T. Thus, a processor with appropriate
computational capabilities has to be chosen.

Control
Algorithm

Sensor

Plant

Reference
r(nT)

Error
e(nT)

Input
u(t)

Load
d(t)

Output
y(t)

Measured
output

–
+

–
+

T

DAC

ADC

T

Computer Implementation

Input
u(nT)

Figure 14.58  Block diagram of a sampled data control system.

93568_Book.indb 396 7/22/09 10:37:33 AM

Control Systems  ◾  397

14.6.5 � Implementation of ADC and DAC in Simulink

Implementation of ADC

Figure 14.59 demonstrates the implementation of ADC in Simulink. The imple-
mentation consists of three elements:

	 1.	A saturation element that binds the input analog signal to the operating range
of the converter (e.g., –5V to +5V).

	 2.	A zero-order hold (ZOH) that samples the signal at the required frequency,
1/T, and keeps it constant during the duration of the sampling time T.

	 3.	An ADC that converts the analog signal to the corresponding binary number.

The model shown in Figure 14.59 was executed where the input analog signal is
V = 12sin(2πt). The results where T = 0.1 second and a –10V to +10V 8-bit converter
was used are shown in Figure 14.60. The following comments should be made:

	 1.	As can be seen in Figure 14.60, part of the information contained in the sig-
nal was lost (10V < V < 12V and –12V < V < –10V) due to the fact that the
operating range of the converter (–10V to +10V) did not cover the full range
of the signal. Another converter has to be used, or the signal has to be attenu-
ated to the converter operating range.

	 2.	As can be seen in Figure 14.60, the selected sampling frequency is too low
because the sampled signal did not resemble the original analog one and a lot
of information was lost. A higher sampling rate is needed.

Figure 14.59  Analog-to-digital converter implementation. (From MATLAB.
With permission.)

93568_Book.indb 397 7/22/09 10:37:33 AM

398  ◾  Numerical and Analytical Methods with MATLAB

(a)

(b)

(c)

(d)

Figure 14.60  (a) The original analog signal; (b) the clipped analog signal; (c) the sam-
pled and held signal; (d) the conversion results. (From MATLAB. With permission.)

93568_Book.indb 398 7/22/09 10:37:35 AM

Control Systems  ◾  399

	 3.	With an 8-bit binary number, numbers can present in the range 0 to 255. In
this case a bipolar converter was selected; the range 0 to 255 was split such
that the number 127 represents 10V and –127 represents –10V. This is shown
in Figure 14.60d, which illustrates the final results of the conversion.

Implementation of DAC

Figure 14.61 demonstrates the implementation of DAC in Simulink. The imple-
mentation consists of five elements:

	 1.	A saturation element that binds the input analog signal to the operating range
of the converter (e.g., –5V to +5V).

	 2.	A gain that converts the value of the signal to a real number representing the
corresponding input number to be converted.

	 3.	A rounding function that rounds the real number to the closest integer, which
is the actual input to the converter.

	 4.	A ZOH that samples the signal at the required frequency, 1/T, and keeps it
constant during the duration of the sampling time T.

	 5.	A gain that converts the integer number to voltage. This gain is determined
by the operating range of the ADC and the number of bits of the integer
number input.

The model shown in Figure 14.61 was executed where the input analog signal
was V = 6sin(2pt). The results were T = 0.05 second and a –5V to +5V 12-bit con-
verter was used. The results are shown in Figure 14.62. The following comments
should be made:

Figure 14.61  Digital-to-analog converter implementation. (From MATLAB. With
permission.)

93568_Book.indb 399 7/22/09 10:37:35 AM

400  ◾  Numerical and Analytical Methods with MATLAB

	 1.	Part of the information contained in the signal was lost (5V < V < 6V and
–6V < V < –5V) due to the fact that the operating range of the converter (–5V
to +5V) does not cover the full range of the signal. Another converter has to
be used, or the signal has to be attenuated to the converter operating range.

	 2.	The selected sampling frequency seems to be sufficient. However, for a real
application it should be determined by the dynamics of the application (see
Figure 14.62b).

	 3.	A 12-bit binary number with the range of 0 to 4095 provides a resolution of
0.00244V for this operating range.

Position Control of a Hydraulic Piston

To demonstrate the capabilities of Simulink in the design of sampled data control
systems the example shown in Figure 14.63 will be used.

The model of each physical component has to be determined before the imple-
mentation of the controller:

Servo valve: The servo valve provides a flow rate proportional to its voltage, V,
excitation, and its time response, which can be described by a first-order lag
with a time constant τ:

(a) (b)

Figure 14.62  (a) The original analog signal; (b) the conversion results. (From
MATLAB. With permission.)

93568_Book.indb 400 7/22/09 10:37:36 AM

Control Systems  ◾  401

	

Q s
V s

K
s

v()
()

=
+t 1 	 (14.58)

where Kv is the gain given in cubic meters per second per volt.
Piston: The piston speed is given by q/A, where A is the cross-section of the

piston. In this example a double-acting double-rod piston is assumed and
therefore the piston cross-area is the same in forward or backward motion.
Since the hydraulic liquid is incompressible, the displacement of the piston,
pp, is given by

	

P s

Q s As
p ()
()

= 1 	 (14.59)

Position sensor: The position sensor is a linear device with a voltage output, vp,
proportional to the displacement (e.g., linear potentiometer). Thus, its gain
is defined by

	

V s
P s

Ks

p
s

()
()

= 	 (14.60)

To proceed with this example the following values will be used:
	 1.	 Valve gain:	  K v

m
s volt= ×0 00001 3.

	 2.	 Input voltage to the valve:	 V = –10V to +10V
	 3.	 Valve time constant:	 t = 0 02. s
	 4.	 Piston’s cross-section area:	 A m= 0 0005 2.
	 5.	 Piston’s maximum stroke:	   L m= 0 5.
	 6.	 Sensor gain:	  K s

V
m= 20

	 7.	 Sensor’s output:	   Vs = 0 to10V

Servo
Valve

Pump

Hydraulic
Piston

Position
Sensor

Control
Algorithm

Required
Position

Actual
Position

Microcontroller

Figure 14.63  Block diagram of a position sampled data control system.

93568_Book.indb 401 7/22/09 10:37:38 AM

402  ◾  Numerical and Analytical Methods with MATLAB

Selection of Converters

ADC Converter: An ADC with a range of 0 to 10 volts will be sufficient since the
maximum stroke of the piston is 0.5 m and with a sensor gain of 20V/m the
maximum output will be 10V. The required resolution on the ADC depends
on the needed position accuracy. If an 8-bit ADC is to be used, every incre-
ment in the ADC output (binary number) represents a change in position
of 0.002 m (0.5/255). If a 12-bit ADC is used, this position increment is
0.00012 m. In this case the latter is selected.

DAC Converter: A DAC with a range of –10 to 10 volts will match the input
range of the valve. However, one has to realize that the signal produced by the
DAC cannot supply the power needed to drive the valve. A power amplifier,
in this case with a gain of one, is needed. The resolution of the DAC should
match the resolution of the ADC, otherwise the full capability of the ADC is
not used. Thus, a 12-bit DAC is selected.

The block diagram shown in Figure 14.64 summarizes the discussion up to this
point.

Simulink Implementation

The implementation, in Simulink, of the system shown in Figure 14.64, where the
controller is just a proportional controller, is shown in Figure 14.65. Executing the
program with a controller gain of 0.005 yields the results shown in Figure 14.66. As
shown, the piston reaches the required position after 7 seconds, during which the
position error drops to zero. Also, it should be noticed that the valve is in saturation
for a short time.

Increasing the controller’s gain to 0.05 yields the results shown in Figure 14.67.
In this case the response is faster, but with a small overshoot, and the valve is satu-
rated for a longer time.

0.02s + 1
0.00001

Q
Control

Algorithm

Microcontroller

0.0005s
1 Pp

20

V

Vs T

–10V – 10V
12-bit
DAC

0V – +10V
12-bit
ADC

Pr T

Figure 14.64  Block diagram of a position sampled data control system.

93568_Book.indb 402 7/22/09 10:37:39 AM

Control Systems  ◾  403

In this example, the speed of the piston is not controlled and therefore the error
is very large for a long time causing the saturation of the valve even for a small
controller gain. A careful examination of the response reveals that the piston’s posi-
tion increases linearly because the valve is saturated and the flow to the piston is
constant, equal to the maximum flow rate.

In the case where the velocity of the piston has to be controlled, the reference
has to be changed to a ramp where the slope corresponds to the required speed. In
the following example the required velocity was set to 0.1 m/s, resulting in the final
position of 0.4 m. To generate the desired position ramp (Figure 14.68c) two ramp
inputs (shown in Figure 14.68a,b) were added together to produce the position
ramp shown in Figure 14.68c.

Figure 14.65  Simulink implementation of the position control system that is
shown in Figure 14.63. (From MATLAB. With permission.)

(a) (b) (c)

Figure 14.66  Simulation results (for a controller gain of 0.005 and T = 0.01 sec-
ond): (a) piston position; (b) flow rate through the valve; (c) position error. (From
MATLAB. With permission.)

93568_Book.indb 403 7/22/09 10:37:40 AM

404  ◾  Numerical and Analytical Methods with MATLAB

(a) (b) (c)

Figure 14.67  Simulation results (for a controller gain of 0.01 and T = 0.01 sec-
ond): (a) piston position; (b) flow rate through the valve; (c) position error. (From
MATLAB. With permission.)

Time [second]

Position [m]

Time [second]

Position [m]

Time [second]

Position [m]

1

4

0.4

0.1

–0.1

1

0.4

4

A

B

C

Figure 14.68  Reference generation for speed of 0.1 m/s and final position of 0.4 m.

93568_Book.indb 404 7/22/09 10:37:42 AM

Control Systems  ◾  405

The simulation results for different gains are shown in Figure 14.69. As shown,
the response is very sluggish for a small gain because the valve’s response is slow.
It takes about 3 seconds to reach the required steady-state flow for the given veloc-
ity. As a result, the actual position of the piston lags the reference by a large dis-
tance. For applications where only a single piston is used, the mentioned lag is not
important. However, in a multipiston system where their motions are coordinated
in order to follow a prescribed trajectory, these lags might cause deviations from
the trajectory.

14.7 � Simulink’s Data Acquisition Toolbox
Simulink provides a Data Acquisition Toolbox that makes it possible to program a data
acquisition system installed on your computer. If the hardware and the supporting
software are installed correctly, Simulink will identify your system automatically.

Selecting the Data Acquisition Toolbox from the Simulink main menu (see
Figure 14.70) will show the six supported functions that will be explained in the
following sections.

(a) (b) (c)

Figure 14.69  Simulation results for different controller gains (T = 0.01 second):
(a) gain = 0.01; (b) gain = 0.05; (c) gain = 0.1. (From MATLAB. With permission.)
(See color insert.)

93568_Book.indb 405 7/22/09 10:37:43 AM

406  ◾  Numerical and Analytical Methods with MATLAB

14.7.1 � Analog Input
Double-clicking on the analog input block will open the window shown in
Figure 14.71. As shown, the data acquisition (DAQ) device and the PMD-1208FS
board were recognized by Simulink and automatically set up the available channels,
the mode of operation (single ended or differential), and range of operation (–20V
to +20V), and allowed the user to input the sampling rate. This block is usually
used to sample a continuous signal at a certain rate. The acquired data can be pro-
cessed in real time or stored for off-line processing.

Analog Input (Single)

The difference between this block (see Figure 14.72) and the previous one is that in
this case a single sample is being acquired. Thus, this block is usually used as part

Figure 14.70  Data Acquisition functions. (From MATLAB. With permission.)

93568_Book.indb 406 7/22/09 10:37:44 AM

Control Systems  ◾  407

of a sampled data control system or a monitoring system where a sensor (or muliple
sensors) is being sampled at a relatively low rate.

14.7.2 � Analog Output

Analog Output (Single)

The difference between this block (see Figure 14.72) and the previous one is that in
this case a single analog output will be genertated for each iteration of the program.

Figure 14.71  Analog Input block parameters. (From MATLAB. With permission.)

93568_Book.indb 407 7/22/09 10:37:44 AM

408  ◾  Numerical and Analytical Methods with MATLAB

Thus, this block is usually used as part of a sampled data control system where the
control signal is generated once for each iteration of the controller.

14.7.3 � Digital Input
The PMD-1208FS board has eight discrete Input/Output lines that can be con-
figured as input or output lines. When lines are configured as input, the user can
detect the state of on/off sensors such as limit switches or proximity switches. Note
that an interface might be needed between the sensor and the input line in order to
make sure that the signal is at Transistor-Transistor Logic (TTL) level. The param-
eters on the Digital Input block are shown in Figure 14.75.

14.7.4 � Digital Output
Similarly, the PMD-1208FS discrete lines can be configured as output lines.
In this case, the user can use each line to turn on or turn off a discrete device

Figure 14.72  Analog Input—Single Sample block’s parameters. (From MATLAB.
With permission.)

93568_Book.indb 408 7/22/09 10:37:45 AM

Control Systems  ◾  409

such as a solenoid or an electric motor. Note that an electronic interface should
be used between the board output and the control device in order to provide
the required power needed to drive the device (the board provides a control
signal with no power). The parameters on the Digital Output block are shown
in Figure 14.76.

Example—Sampling an Analog Signal from an Accelerometer

In this example the signal from an accelerometer, CroosBow CXL02LF3, will be
sampled at the rate of 1000 Hz. As shown in Figure 14.77, a simple Simulink
program, in which the sampled signal is fed to a scope, was written. Executing the
program yields the signal trace shown in Figure 14.78.

Figure 14.73  Analog Output block. (From MATLAB. With permission.)

93568_Book.indb 409 7/22/09 10:37:46 AM

410  ◾  Numerical and Analytical Methods with MATLAB

Figure 14.74  Analog Output—Single Output block’s parameter. (From MATLAB.
With permission.)

Figure 14.75  Digital Output block’s parameter. (From MATLAB. With permission.)

93568_Book.indb 410 7/22/09 10:37:47 AM

Control Systems  ◾  411

Figure 14.76  Digital Output block’s parameter. (From MATLAB. With permission.)

Figure 14.77  Simulink program to acquire data from a sensor. (From MATLAB.
With permission.)

93568_Book.indb 411 7/22/09 10:37:48 AM

412  ◾  Numerical and Analytical Methods with MATLAB

Projects
Project 14.1
For the system shown in Figure P14.1,

	 a.	Find the closed-loop transfer function.
	 b.	For K = 2 draw the Bode plots and determine the output of the system for an

input given by x t t t() sin() sin()= +2 3 3 15 .
	 c.	Draw the Nyquist plot and determine the range of K for which the system is

stable.
	 d.	For K = 4 simulate the response of the system to a unit step input.
	 e.	Determine the maximum value of K so that the overshoot of the output for a

unit step input will not exceed 15%.

Figure 14.78  Results of the program shown in Figure 14.77. (From MATLAB.
With permission.) (See color insert.)

93568_Book.indb 412 7/22/09 10:37:49 AM

Control Systems  ◾  413

Project 14.2
The open-loop transfer function of a mechanism that rotates an antenna, used to
track a satellite, is given by

	

Θ()
() ()
s

U s s s
=

+
500

20

A phase-lag controller with the following transfer function is used to control
the system:

	

U s
E s

as
bs

a b()
()

= +
+

<1
1

Determine the values of the controller constants, a and b, so that:

	 a.	The maximum overshoot for unit step will be less than 5%.
	 b.	The maximum rise time will be less than 0.2 second.

Project 14.3
The transfer functions of the system shown in Figure P14.3 are

	

G s s
s s

G s
s

G s K
s

G s
s

G

1 2

2

3

4

1
2

1
5

1

1
25

()

()

()

()

= +
+ +

=
+

=
+

=
+

55

1

1
10

3

()

()

s s
s

H s

= +
+

=

1+

–

R(s) Y(s)E(s)
K

1
(0.2s + 1)s(0.1s + 1)

Figure P14.1  Block diagram for Project 14.1.

93568_Book.indb 413 7/22/09 10:37:51 AM

414  ◾  Numerical and Analytical Methods with MATLAB

	 a.	Determine the transfer function Y(s)/R(s) for K = 1.
	 b.	Simulate the system and find its response to a unit step for K = 1.
	 c.	Draw the Bode plot for the system (for K = 1).
	 d.	Draw the Root Locus of the system and determine the values of K for which

the system is stable.

Project 14.4
For the system shown in Figure P14.4 assume that the steady-state level of h1 is greater
than H. Use Simulink to model the system using the following parameters:

	A1 = 5 m2,  A2 = 3 m2,  R1 = 0.8 s/m2,  R2 = 0.5 s/m2,  R3 = 0.25 s/m2,   H = 5 m

	 a.	Determine, by simulation, what is the steady-state value of h1 if q0 is a step
function of 4 m3/s.

G1(s)

G2(s)

G3(s) G4(s)

H1(s)

+

+

+

–

R(s) Y(s)

G5(s)
–

+

Figure P14.3  Block diagram for Project 14.3.

q0

q1

h1

R1 h2
q2

R2

Pump

q3

R3

H

Figure P14.4  Schematic of the tanks for Project 14.4.

93568_Book.indb 414 7/22/09 10:37:52 AM

Control Systems  ◾  415

	 b.	The loop is closed with a level sensor with a gain of 1 V/m. The pump with its
drive mechanism has the following transfer function:

	

Q s
U s s

m
V

()
() .

=
+







20
0 25 1

3

		 where umax < 5V.

Design a PI controller that will minimize the ITSE criteria.

Project 14.5
Axes of an XY plotter are driven by two small DC motors that are controlled
separately. The block diagram of one axis is shown in Figure P14.5a, where r is the
velocity reference and c is the actual velocity. The nominal values of the system’s
parameters are K = 25, ζ = 0.7, and ωn = 25 rads/second. As part of a drawing,
it was needed to draw a 125-mm-long straight line at 30° as shown in Figure
P14.5b. The speed along the trajectory has to be 100 mm/s for proper dispensing
of ink.

s2 + 2ζωns + ωn
2

Kωn
2

–

R(s) C(s) E(s)

Figure P14.5a  Block diagram of the closed-loop DC drive.

30°

Required
trajectory

Produced
trajectory

Trajectory
error

X

Y

Figure P14.5b  Plotter trajectory.

93568_Book.indb 415 7/22/09 10:37:54 AM

416  ◾  Numerical and Analytical Methods with MATLAB

	 (a)	 Simulate the system and draw the produced trajectory (in XY plane) and
trajectory error as function of time.

	 (b)	 In the physical implementation of the system, the X and Y controllers are not
identical. If there is a 5% difference between the gains of the X-axis and Y-axis
controllers (i.e., Kx = 1.05 Ky), how will the trajectory error be affected?

	 (c)	 Determine how a 10% difference in ωn (i.e., ωnx = 0.90 ωny) will affect the
trajectory error.

Project 14.6
A 250-mm-long arm is attached to the shaft of a DC motor as shown in Figure
P14.6. A 1-kg mass is attached to the end of the arm.

The motor constants are

Motor inductance — L = 0.002 [H]
Motor resistance — R = 4 [Ω]
Motor damping — B = 0.002 [Nm/rps]
Motor constant — Kb = 0.66 [V/rps] = 0.105 [V/(rad/s)]
Motor torque constant — Kt = 0.5 [Nm /A]
Motor + arm inertia — JR = 0.015 [kg m2]

	 (a)	 Simulate the response of the motor (velocity) for a step input of 1V for the
following cases:

	 1.	 The arm rotates in the vertical plane.
	 2.	 The arm rotates in the horizontal plane.

	 (b)	 Design an analog P controller to regulate the speed of the motor. An ampli-
fier with a gain of 15 is used to drive the motor and an angular velocity sen-
sor with a gain of 10 [volt/krpm] is used as a feedback device. Evaluate the
response of the motor for the above two cases where the required angular
velocity is 240 [rpm].

DC Motor

x
1kg

mass

Figure P14.6  Schematic of the motor with the arm.

93568_Book.indb 416 7/22/09 10:37:54 AM

Control Systems  ◾  417

	 (c)	 Design an I controller to regulate the speed of the motor and evaluate the
response of the motor for loaded and unloaded conditions where the required
angular velocity is 240 [rpm].

	 (d)	 Compare the results of items (b) and (c).

Endnotes
	 1.	 The tf function call format is TF_object= tf(Num,Den), where Num and Den are vec-

tors containing the coefficients of the numerator and the denominator of the transfer
function in descending order of s. The result, TF_object, is a transfer function object.

	 2.	 The step function call format is step(TF_object), where TF_object is a transfer function
object. The function draws the response to unit step applied at t = 0.

	 3.	 The value of a scalar A in decibel is given by 20log(A).
	 4.	 The bode function call format is bodef(TF_object), where TF_object is a transfer func-

tion object. The result is a Bode plot.
	 5.	 The pole function call format is P=pole(TF_object), where TF_object is a transfer func-

tion object. The result, P, is a column vector containing the values of the poles.
	 6.	 The zero function call format is Z=zero(TF_object), where TF_object is a transfer func-

tion object. The result, Z, is a column vector containing the values of the zeros.
	 7.	 The dcgain function call format is K=dcgain(TransferFunction), where TF_object is a

transfer function object. The result, K, is the DC gain of the transfer function.
	 8.	 The zpk function call format is TF_object=zpk(Zeros,Poles,Gain), where Zeros and Poles

are vectors containing the zeros and poles of the transfer function, respectively, and
Gain is a real number corresponding to the transfer function gain.

	 9.	 The ss function call format is TF_object=ss(A,B,C,D), where A, B, C, and D are matrices
defining the control system and the output, TF_Object, is a transfer function object.

	 10.	 The parallel function call format is TF_Object=parallel(TF_object1,TF_Object2), where
TF_object1 and TF_Object2 are transfer function objects. TF_Object is a transfer func-
tion object generated by parallel connection of TF_object1 and TF_Object2.

	 11.	 The series function call format is TF_Object=seriesl(TF_object1,TF_Object2), where
TF_object1 and TF_Object2 are transfer function objects. TF_Object is a transfer func-
tion object generated by serial connection of TF_object1 and TF_Object2.

	 12.	 The feedback function call format is Close_LoopTF_Object=feedbackl(Forward,
Feedback), where Forward is a transfer function object of the forward path and Feedback
is a transfer function object describing the feedback path. Close_LoopTF_Object is a
transfer function object of the closed loop.

	 13.	 The sim function call format is [t,x,y]=sil(‘Simulink file name’,time,OPTIONS), where t
is the time vector of the simulation, x is the state vector (or array) containing the out-
put of all integrators, and y is a vector (or array) containing the output of all outports.
The variable time can specify final time of the simulation or both start and final time of
the simulation; OPTIONS is a vector of options defined by the command Simset.

93568_Book.indb 417 7/22/09 10:37:55 AM

93568_Book.indb 418 7/22/09 10:37:55 AM

419

Appendix A

A.1 � Derivation of Beam Deflection Equation
A horizontal beam subjected to a load will deflect, as shown in Figure A.1a(1) and
A.1a(2). The internal moment, M, about the z axis at any section is determined by

	

M y y dAx

A

= ∫∫ σ ()

	
(A.1)

where σ x y() = the normal stress at position y at the cut section and y is measured
from the neutral axis of the section. The neutral axis is a section on the beam that
does not elongate or shorten during the bending process.

Assuming that σ x y y() and are positive, M would be in the clockwise direction
(see Figure A.1b). For deflection analysis, the moment, Md, about the z axis is con-
sidered positive if the moment at a section is counterclockwise. Therefore,

	

M y y dAd x

A

= -∫∫ σ ()

	
(A.2)

The beam deflection with a positive Md will cause an element with a negative
y to elongate and an element with a positive y to shorten. Consider the section
between x and x + dx before bending. Element GH and element NS, where NS lies
on the neutral axis [see Figure A.1c(1)], are the same length, dx. After bending the
element GH becomes G′H′ and element NS becomes N′S′ [see Figure A.1c(2)]. But
length N′S′ = length NS = length GH. The section will be curved with a radius of
curvature r, which varies with position x [see Figure A.1c(2)]. Elongation of element

	 GH  = ′ ′ - = - - = - -G H GH y NS y() ()r q r q r qD D D

93568_Book.indb 419 7/22/09 10:37:57 AM

420  ◾  Appendix A

Then the strain, ex y(), is given by

	
e r q r q

r q rx y
y y()

()= - - = -D D
D 	

(A.3)

Hooke’s law relates strain to stress as follows:

	
e σ σ σx x y zE

v= - +1 [()]
	

(A.4)

(a)

(b)

After Load

Before Load

∆x
P2P1

Figure A.1a  (a) Beam before being loaded; (b) beam after being loaded.

y´

x´

σxdA

y–

z´
M

Figure A.1b  Stress at beam section.

93568_Book.indb 420 7/22/09 10:37:59 AM

Appendix A  ◾  421

where E is Young’s Modulus. For the beam problem σ σy zand are negligible, if not
zero. Thus,

	
σ

rx y E
y() = -

	
(A.5)

(see Figure A.1d). Substituting Equation (A.5) into Equation (A.2) gives

	

M E y dA
E I

d

A

= =∫∫r r
2

	

(A.6)

where I is the moment of inertia of cross-sectional area, A.

∆x

∆θ

G´
N´

H´
S´

ρ

(1)

(2) Neutral axis

After bending, N´S´ = NS
(Neutral surface does not elongate)

N´S´ = ρ∆θ

Before bending
(GH = NS)

G
N

H
S

Figure A.1c  Normal stress causing a section bending moment. (1) Beam element
GH before beam bending; (2) beam element GH after beam bending.

93568_Book.indb 421 7/22/09 10:38:01 AM

422  ◾  Appendix A

The curvature, K, of the deflection curve is given by

	

K

d y
dx

dy
dx

= =

+


















1

1

2

2

2 3 2r /

	

(A.7)

The slope of the deflection curve dy
dx

<< 1 and therefore

	

1 2

2r
≈ d y

dx 	
(A.8)

Substituting Equation (A.8) into Equation (A.6) gives

	

d y
dx

M
E I

d
2

2 =
	

(A.9)

a

a

Neutral axis

σx(y)

Md

x

–

y–

Figure A.1d  Section stress distribution.

93568_Book.indb 422 7/22/09 10:38:03 AM

423

Appendix B

B.1 � Derivation of the Heat Transfer Equation in a Solid
Heat transfer is thermal energy in transit.◾◾
The heat conduction equation provides the means for determining:◾◾

	 1.	 The temperature distribution in a solid
	 2.	 The time it takes to transfer a specified amount of heat
	 3.	 The amount of heat transferred in a specified period of time

Heat flow can be represented by the heat flux vector,
�
q , which is defined as

follows:

Select D s⊥ to be perpendicular to the heat flow direction, then| |
�
q = the rate that

heat flows through D s⊥ per unit surface area and
�
q points in the direction of

heat flow (see Figure B.1a).

If DQ is the rate that heat passes through D s⊥ , then

	
| |
�
q Q

ss
=

⊥→
⊥

Lim
D

D
D0

If the surface area, Ds , is not perpendicular to the direction of heat flow, then the
rate that heat flows through Ds, say, DQ , is given by

	 D D DQ q n s q s= ⋅ = ⋅� � �ˆ

where n̂ = a unit vector perpendicular to surface Ds (see Figure B.1b).

From Figure B.1a, it can be seen that

	
D D D Ds s s n e s eq q⊥ = = ⋅ = ⋅cos ˆ ˆ ˆα �

where êq is a unit vector pointing in the direction of heat flow.

93568_Book.indb 423 7/22/09 10:38:07 AM

424  ◾  Appendix B

The heat flow, DQ , through Ds is the same as the heat flow through Ds⊥ (see Figure
B.1c). Thus,

	
D D D DQ q s q e s q sq≈ = ⋅ = ⋅⊥| | | | ˆ� � � � �

For a finite surface area,

	

Q q d s
s

= ⋅∫∫ � �

There is a large class of materials that obey Fourier’s heat conduction law, which is

	
�
q k T= - ∇

where k is the thermal conductivity of the material and ∇T is the gradient of the
temperature. In Cartesian coordinates

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
T

T
x

i
T
y

j
T
z

kˆ ˆ ˆ

∆S

∆S

Heat flow direction

eq

n
γ


Figure B.1b  Heat flow through an arbitrary oriented surface.

∆S

q
Heat flow line

Figure B.1a  Heat flux vector,
�
q.

93568_Book.indb 424 7/22/09 10:38:11 AM

Appendix B  ◾  425

where ˆ, ˆ, ˆi j k are unit vectors in the x, y, z directions, respectively. The significance of the
gradient is that its magnitude is the maximum rate of change of the variable with respect
to distance and it points in that direction. So Fourier’s heat conduction law states that
heat will flow down the steepest temperature hill available at a particular point.

B.2 � The Heat Conduction Equation
for Stationary Solids

The heat conduction equation is based on the First Law of Thermodynamics and Fourier’s
Heat Conduction Law. First the First Law of Thermodynamics will be discussed.

B.2.1 � The First Law of Thermodynamics
For an arbitrary system (region) within the continuum,

The rate of increase in the total energy in the system = the rate that heat
is added to the system plus the rate that heat is generated within the
system plus the rate of work done on the system.

We only need to consider energy forms within the system that change during the
process. If any of the following phenomena occur within the material—

Electric current
Chemical reactions
Nuclear reactions

then changes in these energy forms need to be accounted for. When this occurs,
the work term related to these energy forms are not zero and additional constitu-
tive laws are needed. Since all these processes result in a conversion of some energy
form to internal (thermal) energy, the process is accounted for by including a heat
generation term in the First Law of Thermodynamics. Under these conditions, the
work term for stationary solids in the First Law of Thermodynamics is zero.

We now apply our statement of the First Law to the infinitesimal volume shown
in Figure B.2a. Note: Evaluate Surface terms at the centroid of the surface and
evaluate volume terms at the centroid of the volume. The heat flux vector,

�
q , can be

decomposed into its components; i.e.,
�
q q i q j q k= + +1 2 3

ˆ ˆ ˆ.

γ

n̂γ

∆S ∆S

Figure B.1c  Relation between D DS and S⊥ .

93568_Book.indb 425 7/22/09 10:38:12 AM

426  ◾  Appendix B

The areas, unit normal vectors, and coordinates of the area centroids of the
infinitesimal volume shown in Figure B.2a are given in Table B.2a.

Applying the First Law to the infinitesimal system shown gives

(, , ,)

() (,
x y z t m

mt
u x y z q S

∂
∂







= -
=

∑r D D D
1

6
�

tt n S S g x y z t x y zm m) () (, , ,)⋅ +� D D D D
	

(B.1)

Table B.2A  Centroid Coordinates and Normal Unit
Vectors of Surfaces S1 through S6

Surface Area
�
n

Coord. of
Centroid

S1 DyDz î x
x

y z+





D
2

, ,

S2 DyDz -î x
x

y z-





D
2

, ,

S3 DxDz ĵ x y
y

z, ,+





D
2

S4 DxDz - ĵ x y
y

z, ,-





D
2

S5 DxDy k̂ x y z
z

, , +





D
2

S6 DxDy -k̂ x y z
z

, , -





D
2

y

x

z

P(x,y,z)
∆y

∆x
∆z

n(s3)

n(s4)

n(s5)

n(s2)

q(s1)
n(s6)

n(s1)

–

Figure B.2a  Infinitesimal volume in Cartesian coordinates.

93568_Book.indb 426 7/22/09 10:38:16 AM

Appendix B  ◾  427

where
	 u = internal energy per unit mass.
	 g = rate of heat generation per unit volume by internal heat sources.

The minus sign in front of the summation sign in Equation (B.1) results from the
fact that

� �q n⋅ is positive if heat is flowing out of the control volume.
The summation term is evaluated as follows:

� � �
q S t n S S q x x y z t(,) () , , ,1 1 1 2

⋅ = +



 ⋅D D i y z q x x y z t y zˆ , , ,D D D D D= +



1 2 	 (B.2)

	

� � �
q S t n S S q x x y z t(,) () , , , (2 2 2 2

⋅ = -



 ⋅D D -- = - -





ˆ) , , ,i y z q x x y z t y zD D D D D1 2 		
		 (B.3)

Similarly,

	

� �q S t n S S q x y
y

z t x(,) () , , ,3 3 3 2 2
⋅ = +



D D D DDz 	 (B.4)

	

� �q S t n S S q x y
y

z t x(,) () , , ,4 4 4 2 2
⋅ = - -



D D D DDz 	 (B.5)

	

� �q S t n S S q x y z z t x(,) () , , ,5 5 5 3 2
⋅ = +



D D D Dyy 	 (B.6)

	

� �q S t n S S q x y z
z

t(,) () , , ,6 6 6 3 2
⋅ = - -





D D

 D Dx y 	 (B.7)

Applying Equations (B.2) through (B.7) to Equation (B.1) and dividing by Δx Δy
Δz gives

(, , ,)

()
, , ,

x y z tt
u

q x x y z t∂
∂







= -
+





r
1 2

D
 - -














+
+

q x x y z t

x

q x y
y

1

2

2

2

D

D

D

, , ,

, ,, , , , ,

, ,

z t q x y
y

z t

y

q x y z





 - -





+

2

3

2
D

D

++



 - -












z t q x y z z t

z

D D

D
2 23, , , ,




+ g x y z t(, , ,)
	(B.8)

93568_Book.indb 427 7/22/09 10:38:18 AM

428  ◾  Appendix B

Taking limits as Δx → 0, Δy → 0, and Δz → 0 of both sides of Equation (B.8)
gives

	

∂
∂

= -
∂
∂

+
∂
∂

+
∂
∂













+ = - ∇ ⋅
t

u
q
x

q
y

q
z

g()r 1 2 3 q g
�

+ 	 (B.9)

B.2.2 � Some Vector Calculus

	

�

�

A A i A j A k

A A
x

A
y

A
z

= + +

∇ ⋅ = ∂
∂

+
∂
∂

+
∂
∂

1 2 3

1 2 3

ˆ ˆ ˆ

∇∇ = ∂
∂

+ ∂
∂

+ ∂
∂

T
T
x

i
T
y

j
T
z

kˆ ˆ ˆ

Applying Fourier’s heat conduction law:

	
�
q k T= - ∇ 	 (B.10)

	 ∇ ⋅ = - ∇ ⋅ ∇
�
q k T() 	 (B.11)

	
∇ ⋅ = - ∂

∂
∂
∂







+ ∂
∂

∂
∂







+ ∂
∂

q
x

k
T
x y

k
T
y

�
zz

k
T
z

∂
∂


















	 (B.12)

Also, u = cv T,  where cv is the specific heat at constant volume. For solids and liq-
uids, cv = cp = c.

Because k, ρ, and c are mild functions of temperature, they frequently are taken
as constants (especially if analytical techniques are used to solve the problem). The
above equation becomes

	

1 2

2

2

2

2

2a
T
t

T
x

T
y

T
z

∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂












+ g 	 (B.13)

where

	 a = the thermal diffusivity of the material = k
cr

93568_Book.indb 428 7/22/09 10:38:20 AM

429

Appendix C

C.1  Bessel’s Equation
The solution to Bessel’s equation is obtained by applying the power series method.
Bessel’s equation is

	
x

d y
dx

x
dy
dx

x n y2
2

2
2 2 0+ + - =() 	 (C.1)

Equation (C.1) is the same as Equation (10.84), with n replacing v. Assume that

	
y a xi

i k

i

= +

=

∞

∑
0

	 (C.2)

	
′ = +

=

∞
+ -∑y i k a xi

i

i k()
0

1

	
′′ = + - + + -

=

∞

∑y i k i k a xi
i k

i

()()1 2

0

Substituting these expressions into Equation (C.1) gives

	
()() ()i k i k a x i k a x a x ni

i

i k
i

i k
i

i k+ - + + + + -
=

∞
+ + + +∑ ∑1

0

2 22

0

0a xi
i k

i

+

=

∞

∑∑ =

The coefficients of like powers of x must be zero. When i = 0,

	 [()]k k k n a a- + - + =-1 02
0 2

93568_Book.indb 429 7/22/09 10:38:23 AM

430  ◾  Appendix C

But a k n- - =2
2 2 0does n t exist, so Therefore, oneo . ssolution is for k n= .

When i = 1,

	 [()] []k k k n a a n n a a+ + + - + = + + + =- -1 1 2 1 02
1 1

2
1 1

Since a-1 does not exist and n n2 2 1 0+ + ≠ , therefore a1 = 0. This results in a3 = 0,
a5 = 0, a7 = 0, and so on.

When i = 2,

	 [()() ()]n n n n a a+ + + + - + =1 2 2 02
2 0

or

	
a

a
n n

a
n2

0
2 2

0

2 2 2 2
= -

+ -
= -

+() ()

When i = 4,

	 [()()]n n n n a a+ + + + - + =3 4 4 02
4 2

or

	
a

a
n n

a
n

a
n n4

2
2 2

2 0

4 4 2 4 4 2 2 4 2 2
= -

+ -
= -

+
=

⋅ + +() () ()()

When i = 6,

	
a

a
n n n6

0

6 4 2 2 6 2 4 2 2
= -

⋅ ⋅ + + +()()()

etc. Substituting these coefficients into Equation (C.1) gives

y x a

x
n

x
n n

x
n

n=

× -
+

+
⋅ + +

-
⋅ ⋅

0

2 4 6

1
2 2 2 4 2 2 4 2 2 6 4 2 2() ()() (++ + +

+ -




6 2 4 2 2)()()n n

�

or

	
y x a

x
n

x
n n

xn= -
+

+
⋅ + +

-0

2 4 6

1
2

1 1
2

2 1 2 1
2(/)

()
(/)

()()
(/)

33 2 1 3 2 1⋅ ⋅ + + +
+ -





()()()n n n

�

93568_Book.indb 430 7/22/09 10:38:26 AM

Appendix C  ◾  431

To obtain the Jn expression given by Equation (C.4), set

	
a

nn0
1

2
=

!

then

	
y

x
n

x
n

x
n

xn n n

= -
+

+
+

-
+ +(/)

!
(/)
!()!

(/)
!()!

(2 2
1 1

2
2 2

2 4 //)
!()!

2
3 3

6n

n

+

+
+ -







� 	 (C.3)

It is left for an exercise to show that y as expressed by Equation (C.3) = Jn as
given by Equation (C.4) in the next section.

C.2  Recussion Formulas for Jn(x)
The conventional expression for Jn (x) is

	
J x

i i n
x

n

i

i

n i

() ()
!()!

= -
+







=

∞ +

∑ 1
2

0

2

	 (C.4)

	
J x

i i n
x

n

i

i

n i

+
=

∞ + +

= -
+ +





∑1

0

1 21
1 2

() ()
!()!

	 (C.5)

	

′ = - +
+













=

∞

∑J x n i
i i n

x
n

i

i

() () ()
!()!
1 2 1

2 2
0

nn i+ -2 1

	 (C.6)

Now

	

x J x
n

i i n
x x

n

i

i

n i

′ = -
+













=

∞ +

∑()
()
!()!

1
2 2

0

2 --1

	

+ -
+













=

∞ + -

∑ () ()
!()!
1 2

2 2
0

2 1i

i

n ii
i i n

x x
	 (C.7)

The first term on the right-hand side is just n Jn(x) and in the second term on the
right-hand side the twos in the 2i and in the x/2 cancel. Also, the first term in that
summation is zero. For the second term on the right side, let k = i – 1, then

	

x J x n J x x
k

k k nn n

k

k

′ = + - +
+ + +

+

=

∞

∑() ()
() ()

()!()!
1 1
1 1

1

0

xx n k

2

2 1 1






+ + -()

	 (C.8)

93568_Book.indb 431 7/22/09 10:38:28 AM

432  ◾  Appendix C

or

	

x J x n J x x
k k n

x
n n

k

k

n

′ = - -
+ +







=

∞

∑() () ()
()!()!

1
1 2

0

++ +1 2k

	 (C.9)

Comparing the second term on the right-hand side of Equation (C.9) with Equation
(C.5), it can be seen that

	 x J x n J x x J xn n n′ = - +() () ()1 	 (C.10)

This is the first of two recursion relations involving the Bessel functions of interest
in this Appendix. Returning to Equation (C.6), write n + 2i = 2 (n + i) – n, then
Equation (C.6) can be written as

	

′ = - +
+













=

∞

∑J x
n i

i i n
x

n

i

i

()
() ()

!()!
1 2 1

2 2
0

nn i- +1 2

	

+ - -
+













=

∞ - +

∑ () ()
!()!
1 1

2 2
0

1 2i

i

n in
i i n

x

	

x J x x
i i n

x
n

i

i

n i

′ = -
+ -







=

∞ - +

∑() ()
!()!

1
1 2

0

1 2

	

- -
+













=

∞ + -

∑n
i i n

x xi

i

n i()
!()!

1
2 2

0

2 1

	 (C.11)

noting that

	

x x xn i n i

2 2 2

2 1 2










 = 





+ - +

Comparing the first term on the right-hand side of Equation (C.11) with Equation
(C.4) and the second term on the right-hand side of Equation (C.11) with Equation
(C.4), it can be seen that

	 x J x x J x n J xn n n′ = --() () ()1 	 (C.12)

93568_Book.indb 432 7/22/09 10:38:31 AM

Appendix C  ◾  433

Equation (C.12) is a second recursion relation of interest. Another relation of
interest in this section is

	
d
dx

x J x x J xn
n

n
n[()] ()= -1 	 (C.13)

Proof:

	
d
dx

x J x x J x n x J x x x J x nn
n

n
n

n
n

n
n[()] () () [()= ′ + = ′ +- -1 1 JJ xn()] 	 (C.14)

Substituting Equation (C.12) into Equation (C.14) gives

	
d
dx

x J x x J xn
n

n
n[()] ()= -1

C.3  Orthogonality of the J0 Functions
The proof of the orthogonality of the J0 functions for the problem described in
Section 10.2 follows. We wish to show that

	

r J r J r dr
R h R

k J

R

m n m n

m

m
0

0

0

2 2
2

2 02∫ =
+









() () [l l δ
l

l
(()]lm R 2

Let φ l φ ln n m mJ r J r= =0 0() ()and . Both φ φn mand satisfy the Bessel’s differen-
tial equation; that is,

	
r

d
d r

r
d
d r

rn n
n n

2
2

2
2 2 0

φ φ
l φ+ + = 	 (C.15)

and

	
r

d
d r

r
d
d r

rm m
m m

2
2

2
2 2 0

φ φ
l φ+ + = 	 (C.16)

Noting that

	
r d

d r
r

d
d r

r
d
d r

r
d
d r

φ φ φ





= +2
2

2 	 (C.17)

93568_Book.indb 433 7/22/09 10:38:33 AM

434  ◾  Appendix C

Multiply Equation (C.15) by φm and Equation (C.16) by φn , giving

	
φ

φ
l φ φm

n
n m nr d

d r
r

d
d r

r






+ =2 2 0 	 (C.18)

	
φ

φ
l φ φn

m
m m nr d

d r
r

d
d r

r






+ =2 2 0 	 (C.19)

Subtract Equation (C.19) from Equation (C.18), giving

	
l l φ φ φ

φ
φm n m n m

n
nr r

d
d r

r
d
d r

r
d

d r
r

d2 2 2-() =






-

φφm

d r






 	 (C.20)

Divide Equation (C.20) by r, multiply by dr, and integrate from zero to R, giving

	

l l φ φ φ
φ

φm n m

R

n m
n

nr d r
d
dr

r
d
d r

d
dr

2 2

0

-() =






-∫ rr

d
dr

drm

R
φ















∫

0

	 (C.21)

The integral on the right-hand side of Equation (C.21) can be made into an exact
differential by bringing the f terms inside the derivative expressions. Note that

	

d
dr

r
d
dr

r
d
dr

d
dr

r
d
drm

n
n

m
m

nφ
φ

φ
φ

φ
φ

-






=







+

-






-

r
d
dr

d
dr

d
dr

r
d
dr

r
d
dr

d

n m

n
m n

φ φ

φ
φ φ φmm

m
n

n
m

dr

d
dr

r
d
dr

d
dr

r
d
dr

=






-







φ

φ
φ

φ

As a result Equation (C.21) becomes

	

l l φ φ φ
φ

φ
φ

m n m n

R R

m
n

n
mr dr

d
dr

r
d
dr

r
d
dr

2 2

0 0

-() = -∫ ∫







= -












=

dr

r
d
dr

r
d
dr

R R

m
n

n
m

R

m

φ
φ

φ
φ

φ

0

()) () () ()
d
dr

R R R
d
dr

Rn
n

mφ
φ

φ
-

93568_Book.indb 434 7/22/09 10:38:35 AM

Appendix C  ◾  435

or

	

l l l l l lm n m n

R

m nr J r J r dr R J R J R2 2
0 0

0

0 0-() = ′∫ () () [() () -- ′J R J Rn m0 0() ()]l l (C.22)

But the boundary condition (as shown in Equation 10.88 in Chapter 10),

	

d
dr

J r h
k

J r
r R

(()) ()0 0 0l l+





=
=

	

is valid for each J rn0()l . Therefore,

	
′ = -J R h

k
J Rn n0 0() ()l l 	 (C.23)

and

	
′ = -J R h

k
J Rm m0 0() ()l l 	 (C.24)

Substituting Equations (C.23) and (C.24) into Equation (C.22) gives

l l l l l lm n m n

R

m nr J r J r dr R J R h
k

J R2 2
0 0

0

0 0-() = -∫ () () () ()) () ()+





=

J R h
k

J Rn m0 0

0

l l

If m n≠ , then

	

r J r J r drm n

R

0 0

0

0() ()l l∫ = 	 (C.25)

If m = n, then ()l lm n
2 2 0- = and the integral ∫0 0

2R
nr J r dr[()]l needs to be evalu-

ated. From Equations (C.15) and (C.17)

	
r d

dr
r d

dr
J r r J rn n n0

2 2
0 0() ()l l l



 + = 	 (C.26)

Multiply Equation (C.26) by 2 0

d
dr

J rn()l , giving

	
2 20 0

2 2
0r d

dr
J r d

dr
r d

dr
J r r J rn n n n() () ()l l l l







 = - dd

dr
J rn0 ()l 	 (C.27)

93568_Book.indb 435 7/22/09 10:38:39 AM

436  ◾  Appendix C

Let u r d
dr

J r J rn= =0 0 0() ()l land v

Substituting these values into Equation (C.27) gives

	
2 22 2u

d u
d r

r
d
d rn= -l v

v
	 (C.28)

Equation (C.28) can be rewritten as

	

d u
d r

r
d
drn

2
2 2= -l v2

or

	

d
dr

r d
dr

J r r d
d r

J rn n n0

2
2 2

0
2() [()]l l l





= - 	 (C.29)

Multiply both sides of Equation (C.29) by dr and integrate from zero to R, giving

	

d
dr

r d
dr

J r dr r d
d r

J rn

R

n n0

2

0

2 2
0() ()l l l





= -  ∫ 22

0







∫

R

dr

or

	

l l ln n

R

nr d
d r

J r dr R J R2 2
0

2

0

0
2[()] [()]









= ′∫ 	 (C.30)

By Equation (10.88)

	
′ = -J R h

k
J Rn n0 0() ()l l

Therefore,

	

l l ln n

R

nr d
d r

J r dr h
k

R J R2 2
0

2

0

0

2

[()] ()








= 



∫ 	 (C.31)

Now integrate by parts.

	
u dv uv v du∫ ∫= -

93568_Book.indb 436 7/22/09 10:38:41 AM

Appendix C  ◾  437

Let

	
u r dv d J rn n= =l l2 2

0
2and [()]

Then

	
du r dr v J rn n= =2 2

0
2l land [()]

Using these relationships, the integral in Equation (C.30) becomes

l l l ln n

R

n nr d
d r

J r dr r J r2 2
0

2

0

2 2
0

2[()] (()








=  ∫  - ∫0
2

0

0
22

R

n

R

nr J r drl l[()] 	 (C.32)

Combining Equations (C.31) and (C.32) gives

	

r J r dr R J R h
k

R J R
R

n
n

n n n

0

0
2

2
2 2

0
2

0
1

2∫ = +[()] [()] (l
l

l l l))

















2

	 (C.33)

Therefore,

	

r J r dr
R

h R
k

J
R

n

n

n
n

0

0
2

2 2
2

2 02∫ =
+







[()] [(l
l

l
l RR]2 	 (C.34)

and

	

r J r J r dr
R

h R
k

R

m n m n

m

m
0

0

0

2 2
2

2∫ =
+







() ()l l δ
l

l22 0
2[(]J Rml 	 (C.35)

Finally, we need to show that

	

r J r dr R J Rm
m

R

m0

0

1() ()l
l

l=∫ 	 (C.36)

Let x rm= l , then dx drm= l . When r = 0, x = 0, and when r = R, x = lm R.

	

r J r dr x J x dx x J xm
m

RR

m m

Rm m

0

00

0 2 0

0

1() () ()l
l l l

l l

= =∫∫ ∫ ddx 	 (C.37)

93568_Book.indb 437 7/22/09 10:38:44 AM

438  ◾  Appendix C

By Equation (C.10), with n = 1,

	
x J x d

dx
x J x0 1() [()]= 	 (C.38)

Substituting Equation (C.38) into Equation (C.37) gives

	

r J r dr
d
dx

x J x dx xm

R

m

R

m

m

0

0
2 1

0
2

1 1
() [()] [l

l l

l

= =∫ ∫ JJ x mR
1 0()]l

	 (C.39)

Thus,

	

r J r dr R J R R J Rm

R

m
m m

m
m0

0

2 1 1
1() [()] ()l

l
l l

l
l= =∫

C.4 � Vector Calculus in Cylindrical Coordinates
Scalar Φ(, ,)r zϑ

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
Φ Φ Φ Φ

r
e

r r
e

z
er zˆ ˆ ˆ1

ϑ 	 (C.40)

	
∇ = ∂

∂
∂
∂







+ ∂
∂

+ ∂
∂

2
2

2

2

2

2
1 1Φ Φ Φ
r r

r
r r

z
zϑ

	 (C.41)

	 Vector
�
A r z A e A e A er r z z(, ,) ˆ ˆ ˆϑ ϑ ϑ= + + 	 (C.42)

	
∇ ⋅ = ∂

∂
+

∂
∂

+ ∂
∂











�
A

r r
r A

A
z

r Ar z
1 () ()ϑ

ϑ 	 (C.43)

References
	 1.	Kreyszig, E., Advanced Engineering Mathematics, 8th ed., John Wiley & Sons, New

York, 1999.
	 2.	 http://planetmath.org/encyclopedia/BesselsEquation.html.

93568_Book.indb 438 7/22/09 10:38:46 AM

439

Index

A

Absolute value, 11
Acceleration components, model analysis of

two-dimensional structures, 321
Accessing files, 13
AC Power Electromagnetics, PDE toolbox,

303
Active suspension modeling, Simulink,

391–394, 395
Adaptive mode, PDE toolbox, 318
Adaptive mode item, 302
Air pressurized tank project, 129–133, 154
Airplane package drop project, 121–123
Algebraic equations; See Laplace Transforms;

Roots of algebraic and
transcendental equations

Altitude
atmospheric properties as function of,

31–34
helium balloon project, 126–128, 154

Amplifier, SISOtool application example, 368
Analog input, Simulink Data Acquisition

Toolbox, 406–407
Analog output, Simulink Data Acquisition

Toolbox, 407–408, 410
Analog signal sampling from accelerometer,

409, 411, 412
Analog-to-digital converter (ADC)

hydraulic piston position control, 402
sampled data control system, 395, 396
Simulink, control systems, 397–405

Analysis Plots, SISOtool features, 370,
372–373, 374

Ans (value), 11
Approximating function, curve fitting,

155–158

Arithmetic operations
matrices, 45–46
Simulink, 143–144

Arithmetic operators, 13
Atmospheric properties

as function of altitude, 31–35
helium balloon project, 126–128, 154

Automobile collision project, 133–136
Automobile suspension system project, 73–75

B

Backward finite difference formula, 220–221
Balloon, 126–128, 154
Beam analysis, Laplace Transforms, 263
Beam deflection

method of superposition, 137–139
ordinary differential equations, numerical

integration, 118–121
Beam deflection equation, derivation of,

419–422
Bending moments, beam deflection, 119–121,

139, 421
Bessel function, 202

numerical integration, 103–104
orthogonality of, 433–438
project, 91–93
recursion formulas, 431–433

Bessel’s equation, 201, 429–431
Best-fit polynomial approximating curve,

169
Best-fit straight line approximation, 155–157,

159
Binomial expansion, 31
Bisection method, 77–79
Block diagrams; See Control systems; Simulink

93568_Book.indb 439 7/22/09 10:38:47 AM

440  ◾  Index

Bode diagrams, control systems, 346, 350, 351
closed-loop system performance analysis,

361
projects, 412, 414, 417
SISOtool features, 370, 372, 373, 375

Body forces, finite element method, 297
Boundary conditions

Dirichlet, 299, 310, 311, 328
insulated, 334
mixed, 311
model analysis of two-dimensional

structures, 322
Neumann, 294, 297, 311, 328, 329, 333
PDE toolbox, 299, 310–311
temperature distribution in slab with hole,

329
Boundary mode, PDE toolbox, 310
Break command, 15
Break points, 26
Buoyancy force, helium balloon project, 127

C

Calculus, vector, 428, 438
Call formats, 417
Cantilevered beam stress, finite element

method, 321–325, 339–340
Case sensitivity of commands, 8
Central difference formula, 218
Chain rule, 202, 215
Characteristic equation, root locus plots, 376,

378
Characters, MATLAB fundamentals, 13
Circuit board manufacturing, optimization

project, 184, 185
Clearing window commands, 8
Closed-loop systems, controls, 355–360

block diagrams, 357–358
DC motor modeling, 355–357
MATLAB tools, 358–360
MATLAB tools for performance analysis,

361–367
Nyquist plots, 363–367
root locus plots, 361–362

projects, 412, 413
SISOtool features, 372–373

Closed-loop transfer function, 357–360
Collision modeling project, 133–136
Colon (:) operator, MATLAB fundamentals,

9–10
Command history window, 5, 6
Command window, 5, 6, 300

Commands, MATLAB fundamentals, 8
Comment lines, 8
Commerce, optimization project, 183–184
Compensator Editor, SISOtool features, 370
Complex conjugate, 11
Complex functions, 11
Complex imaginary part, 11
Complex real part, 11
Complex variables

Laplace Transforms, 249, 276–281
residue theory in, 98

Compound logical expressions, 14
Computer use in engineering, 1–3
Conduction, heat; See Heat transfer
Conductive media, PDE toolbox, 303
Conductivity, thermal; See Heat transfer
Constant block, 384
Constant displacement pump, Simulink

modeling, 380, 381
Constant-strain triangle (CST), 290
Constraints, 176–178
Constraints, optimization with, 171
Continuous plots, PDE toolbox, 317
Contour plots, 28–29, 319

PDE toolbox, 320
temperature distribution in slab with hole,

331, 332, 337, 338
Control architecture, SISOtool features, 370
Controller gain tuning, 382–383
Control systems, 343–417

closed-loop systems, 355–360
block diagrams, 357–358
DC motor modeling, 355–357
MATLAB tools, 358–360

MATLAB representation of, 346–354
state space, 352–354
transfer function, 348–352
zero-pole gain format of transfer

function, 350–352
MATLAB SISOtool, 367–377, 378

design of controller with, 371–377, 378
example, 367–370
features of, 370–371

MATLAB tools for performance analysis,
361–367

Nyquist plots, 363–367
root locus plots, 361–363

projects, 412–417
Simulink application, 377–405

active suspension, 391–394, 395
ADC and DAC implementation in,

397–405

93568_Book.indb 440 7/22/09 10:38:48 AM

Index  ◾  441

coupled tank fluid level control,
377–385, 386

feed-forward loop design using
optimality criteria, 385–391

sampled data control system, 394–397
Simulink Data Acquisition Toolbox,

405–412
analog input, 406–407
analog output, 407–408
digital input, 408
digital output, 408–412

Control variables, optimization, 171
Convection, heat; See Heat transfer
Convolution, Laplace Transforms, 268–270
Coupled differential equations, state space

models, 352–354
Coupled tank fluid level control

bode plots, 351
control systems

MATLAB representation methods,
346–347

Simulink, 377–385, 386
Cramer’s rule, 55
Critically damped system, mass-spring-

dashpot, 38
CrossBow CXL02LF3, 409
Cruise control system, 343, 344
Cubic equation, 246
Cubic splines, curve fitting, 162–163, 164
Current directory window, 6, 7
Curve fitting, 155–169

cubic splines, 162–163, 164
with exponential function, 158–160
with Fourier series, 164–167
least-squares method, 155–158
MATLAB features, 160–162
objective, 155
projects, 167–169

Cylinder
unsteady heat transfer in, 199–206
vector calculus in cylindrical coordinates,

438

D

D’Alembert’s solution, partial differential
equations, 215

Damped systems
curve fitting with exponential function,

159–160
Laplace Transforms, 257–260

shifting theorem, 260–263

mass-spring-dashpot system, 36–41
model analysis of two-dimensional

structures, 322
Damping matrix, 321
Darcy–Weisbach equation, 240
Data Acquisition Toolbox, Simulink, 405–412
Data files, loading, 13
DBLQUAD function, numerical integration,

101–102
DC motor modeling; See Electric motor

modeling, control systems
Debug feature, 26, 27
Debugging programs, 26–27
Decimal spaces, MATLAB fundamentals, 12
Deflection analysis, beam deflection equation,

419–422
Density

heat transfer equations, 325
model analysis of two-dimensional

structures, 322
Derivatives, Laplace Transforms of, 256–257
Design criteria, control systems, 344
Determinant, matrix, 47
Determinates, method of, 157
Difference formulas, ordinary differential

equations, 115–118
Differential equations; See also Ordinary

differential equations; Partial
differential equations

Laplace Transforms; See Laplace Transforms
mass-spring-dashpot system, 37–41
model analysis of two-dimensional

structures, 321
state space models, 352–354

Diffusion, PDE toolbox, 303
Diffusion equation (parabolic PDE), 187, 194
Digital input, control systems, 408
Digital output, control systems, 408–412
Digital-to-analog converter

hydraulic piston position control, 402
sampled data control system, 396
Simulink implementation, 402–405
Simulink modeling, 383

Digital-to-analog converter implementation,
397–405

Dirichlet boundary conditions, 299, 310, 311,
328

Discontinuous plots, PDE toolbox, 317
Displacement components

finite-element method, 298, 299
model analysis of two-dimensional

structures, 321

93568_Book.indb 441 7/22/09 10:38:48 AM

442  ◾  Index

Display command, 12
Divergence theorem, 293
Drag force, helium balloon project, 128
Draw button, 299, 301
Driving force, mass-spring-dashpot system,

39–41
Drop-down menu

current directory window, 7
debug, 26, 27

Dynamic analysis, model analysis of
two-dimensional structures, 321

Dynamic behavior, block diagrams, 357

E

Economic problems, matrix methods, 75–76
Editor window, 6
Effective stress, von Mises, 317, 318
Eigenmodes, model analysis of

two-dimensional structures, 322
Eigenvalues

matrix operations, 68–71
model analysis of two-dimensional

structures, 323
PDE toolbox, 302

Eigenvector, 69–70
Eig function, MATLAB, 70–71
Elastic modulus, 284
Electric (DC) motor modeling, control

systems, 355–357
block diagram, 358, 359–360
projects, 415–417

Electrical circuits, Laplace Transforms, 263
Electromagnetic force, 368
Electromagnetics

PDE toolbox, 303
SISOtool application example, 367–369

Electromechanical behavior, DC motor
modeling, 355–356, 358,
359–360

Electronic device cooling, 135–137
Electrostatics, PDE toolbox, 303
Element-by-element operations, matrices,

47–48
Ellipsoid function, 29
Elliptic partial differential equations, 187
Else statements, 15
Energy equation

pipe flow analysis, 233
pump delivery volume flow rate to closed

tank as function of time, 244
Energy forms, first law of thermodynamics, 425

Engines, piston motion in internal combustion
engines, 41–44

Equations of motion, mass-spring-dashpot
system, 36

Equations of order, Bessel’s, 201
Equations of state, Redlich–Kwong, 34–35,

88–89
Equilibrium equations, plane stress analysis,

285
Equivalent load vector, finite element method,

297
Equivalent nodal force, 297, 298
Error functions, 11
Error messages, debugging MATLAB

programs, 26
Error signal, sampled data control system,

396
Euler method, modified, 105
Excel files, 21
Exit command, 8
Explicit method, 222–223

finite difference method, 218–220
partial differential equations, 218–221

Exponentials
curve fitting with, 158–160
MATLAB fundamentals, 11, 12

F

Factorials, 11, 18
fcn block use, 146–148
Feedback signal, sampled data control system,

395
Feed-forward loop design using optimality

criteria, 385–391
File formats, 6, 9, 17
Files, workspace window contents, 6
Filter, input, 369
Finance problems, matrix methods, 75–76
Finite difference formula, 218

beam deflection, 118, 137–138
implicit method, 220–221

Finite difference method applications, partial
differential equations, 217–221

explicit method, 218–220
formula review, 217
implicit method, 220–221
unsteady heat flow, 227, 228

Finite element method, 283–341
heat transfer, 325–338, 340–341
MATLAB PDE toolbox, 299–320
projects, 339–341

93568_Book.indb 442 7/22/09 10:38:48 AM

Index  ◾  443

cantilevered beam, 339–340
temperature distribution on plate,

340–341
shape function for linear triangle element,

288–299
shape function in area coordinates,

291–292
three-node triangular element for

two-dimensional stress analysis, 290
triangular elements, 292–299

stress analysis, 283
structural mechanics

plane strain analysis, 320–321,
339–340

plane stress analysis, 283–288
two-dimensional structure model analysis,

321–325
First law of thermodynamics, 126, 425
First-order equations, 108

Simulink, 143–144
state space models, 352–354

Flow rate
control systems, MATLAB representation

methods, 347
Hardy-Cross method, 238–241, 242, 243
pipe flow analysis, 233–235
pump characteristic curve, 244–248

Fluid level
coupled tank, 377–385, 386
curve fitting projects, 167–168

Fluid mechanics
control systems

MATLAB representation methods,
346–347

projects, 414–415
Simulink application, 377–385, 386

iteration method
Hardy-Cross method, 238–241
pump volume flow rate to closed tank as

function of time, 244–248
pipe flow analysis, 233–235, 241
sound waves, 211–216

Fluid temperature variation project, 125–126
Fluids, floating body project, 90–91
fmincon function, 178–179, 182–183, 185
Folder menu, 7
for loops, 13–14
Forcing function, Laplace Transforms, 249
Formats, files, 6, 17
Formats, notation, 12
Forward finite difference method, 220, 221
Fourier series, curve fitting with, 164–167

Fourier’s heat conduction law, 424, 425–428
Fourth-order Runge-Kutta method, 107
Free vibration problem, model analysis of

two-dimensional structures, 322
Frequency, model analysis of two-dimensional

structures, 322
Frequency domain responses, control system

design, 344–345, 346
Friction factor, 241, 246
Function files, 17–18
Functions

file formats, 9
MATLAB fundamentals, 8

fzero function, 80–83, 91

G

Gain, control systems
DAC implementation, 399
feed-forward loop design, 386
hydraulic piston position control, 401, 402,

403, 404
modeling, 382–383
root locus plots, 362
Simulink program, 386, 387–388, 389,

390
Gain Margin, 372, 373, 375, 376
Gases

air pressurized tank project, 129–133
atmospheric properties as function of

altitude model, 31–34
equations of state, 88–89
helium balloon project, 126–128, 154
sound waves, partial differential equations,

211–216
specific volume and pressure as function of

temperature, 34–35
Gauss Elimination, least squares method, 158
Gauss Elimination function, 49
Gauss Elimination method, 55–61, 63, 72,

112
Gauss–Jordan method, 55–56, 61–63
Gauss–Seidel method, 235–237, 242
Global displacement components, finite

element method, 298
Global stiffness matrix, 298
Graphical tools, control system design, 346
Graphical user interface (GUI)

PDE toolbox, 299, 300, 303
Simulink, 141
SISOtool; See SISOtool

Graphics window, 8

93568_Book.indb 443 7/22/09 10:38:49 AM

444  ◾  Index

Graphs
graphics windows, 8
plotting, 15–17

Greek letters, 16
Green’s formula, 293
Grid command, 16
Grid program, steepest descent method, 174
Grid spacing, 305, 306
Grids, snap to, 308

H

Hardy-Cross method, 238–241, 242, 243
Head gain, 240–241
Head loss

pipe flow analysis, 233, 234, 240, 241
pump delivery volume flow rate to closed

tank as function of time, 244, 245
pump volume flow rate to closed tank as

function of time, 244
Heat conduction equation, 192

derivation of, 423–425
in stationary solid, 425–428

Heat flux option, 329
Heat transfer

air pressurized tank project, 129–133, 154
derivation of heat transfer equation in solid,

423–425
fin attached to electronic device, 135–137
finite element method, 325–338, 340–341

temperature distribution in slab with
hole, 326–332

temperature distribution in slab with
surface convection, 333–338

temperature distribution on plate,
340–341

fluid temperature variation project,
125–126

iteration method
Gauss–Seidel method, 235–237
temperature distribution in slab by

Gauss-Seidel method, 242
Laplace Transforms, 272–276
numerical integration, 103–104
partial differential equations, 187

in bar, 192–199
in cylinder, 199–206
finite difference method applications,

217–221
projects, 224–232
in two dimensions, 206–210

PDE toolbox, 303

roots of algebraic and transcendental
equations

projects, 91–93
slab immersion in bath, 84–86
slab subjected to air temperature

change, 86–87
Simulink modeling, 143, 145
vector calculus, 428

Heat transfer coefficient, 334, 340, 341
Helium balloon project, 126–128, 154
Help function, optimization function

(fmincon), 178, 179
Hooke’s law, 284, 420
Hydraulic piston position control, 400–401,

403, 404, 405
Hyperbolic partial differential equations, 187

I

IAE, 387
Ideal gas equation of state, 88–89
Ideal gas law, 216
Identity matrix, 47
Identity matrix symbol, 12
If-elseif ladder, 14–15
If statements, 14, 15
Impact loads, model analysis of

two-dimensional structures, 321
Implicit method, finite difference method,

220–221, 223, 224
Improper integrals, numerical integration,

98–99, 102
Impulse input, SISOtool features, 370
Inductance, RL circuit, 368
Inertia, moment of, 421
Infinitesimal system, first law of

thermodynamics, 425–426
Infinity, 11
Initial value problem, 105–107
Input filter, 369
Input function, 12
Integers, MATLAB fundamentals, 12
Integral absolute error (IAE), 387
Integral controller, coupled tank system, 381
Integral of squared error (ISE), 387
Integral of time multiplied by absolute error

(ITAE), 387
Integral of time multiplied by squared error

(ITSE), 387, 389
Integration

numerical, 95–104
Simpson’s rule, 165

93568_Book.indb 444 7/22/09 10:38:49 AM

Index  ◾  445

Integration order, Laplace Transforms,
268–269

Interest problems, matrix methods, 75–76
Internal combustion engines

fzero function, 91
piston motion, 41–44

interp1 function, 34–35
atmospheric properties as function of

altitude model, 34
curve fitting, 163, 164

Interpolation, atmospheric properties as
function of altitude model, 33–34

Inverse matrix, 47, 64–67
Inverse transforms, 249–256, 258
inv function, 49, 262
Irrational numbers, 11
ISE, 387
Isotropic materials, plane stress analysis, 284,

286–287
ITAE, 387
Iteration method, 233–248

Gauss–Seidel method, 235–237, 242
Hardy-Cross method, 238–241, 242,

243
pipe flow analysis, 233–235, 241
projects, 241–248
pump delivery volume flow rate to

closed tank as function of time,
244–248

ITSE, 387, 389

L

Labeling axes on graphs, 16
Lagrange multipliers, optimization with

constraints, 176–177
Laplace partial differential equations, 187
Laplace’s equation, 235
Laplace Transforms, 249–282

and complex variables, 276–281
control systems, transfer function

representation, 348–352
convolution, 268–270
of derivatives, 256–257
and inverse transforms, 249–256
ordinary differential equations, initial

value problem, 257–260
partial differential equations, 271–276
residues and poles, 278–281
shifting theorem, 260–263
unit step function, 263–267

Laurent series, 278

Least squares method
curve fitting, 155–158, 159
pump volume flow rate to closed tank as

function of time, 244
Linear algebra, eigenvalue problem, 68–69
Linear equations

matrix operations, 48–55
examples, 50–55
Gauss elimination function, 49
inv function, 49

ordinary differential equations
numerical integration, tri-diagonal

systems, 112–115
time invariant, 346

pipe flow, 239
Linear interpolation, atmospheric properties as

function of altitude model, 33–34
Linear plots, 16
Linear potentiometer, 369
Linear triangle element shape function, finite

element method, 288–299
Linearity, Laplace Transforms, 250
Load command, 13
Load vector, finite element method, 295
Loading

beam deflection, 118, 138–139
beam deflection equation, derivation of,

419–422
model analysis of two-dimensional

structures, 321
Local node number, finite element method,

292, 295
Log plots, 16
Logarithms, 11
Logical expressions, 14, 15
Loop rule, pipe flow analysis, 240–241

M

Magnetostatics, PDE toolbox, 303
Manufacturing systems, optimization,

180–182, 184, 185
Mass conservation law, pipe flow, 239
Mass density, heat transfer equations, 325
Mass matrix, model analysis of

two-dimensional structures, 321
Mass-spring-damper, SISOtool application

example, 369
Mass-spring-dashpot system

curve fitting with exponential function,
159–160

Laplace Transforms, 257–260

93568_Book.indb 445 7/22/09 10:38:49 AM

446  ◾  Index

motion plotting, 36–41
vehicle collision modeling, 133–136

Materials constants, model analysis of
two-dimensional structures, 322

Math functions, MATLAB fundamentals,
10–11

Mathematical models, 2
Mathematical symbols, 16
MATLAB, control systems

closed-loop, 358–360
design with SISOtool, 367–377, 378

design of controller with, 371–377,
378

example, 367–370
features of, 370–371

performance analysis, 361–367
Nyquist plots, 363–367
root locus plots, 361–363

system representation, 346–354
state space, 352–354
transfer function, 348–350
zero-pole gain format of transfer

function, 350–352
MATLAB functions

curve fitting, 160–162
finite element method, PDE toolbox,

299–320
numerical integration

DBLQUAD, 101–102
ODE/ode45 function, 110–112
quad function, 100–101

optimization, 178–182
MATLAB fundamentals, 5–44

plots, 3D and contour, 28–29
program, 8–28

construction of, 8
debugging, 26–27
examples, 18–25

projects, 29–44
gas pressures, 31–35
mass-spring-dashpot system, 36–41
piston motion in internal combustion

engines, 41–44
Taylor series expansions, 29–31

window functions, 5–7
Matrices, 45–76

eigenvalue problem, 68–71
exercises, 72
finite element method, 298
Gauss elimination, 55–61
Gauss–Jordan method, 61–63
inverse matrix, 64–67

Laplace Transforms, shifting theorem,
261–262

linear equations, 48–55
examples, 50–55
Gauss elimination function, 49
inv function, 49

MATLAB fundamentals, 9–10, 11–12
matrix operations, 45–48
number of solutions, 63
plane strain analysis, 321
projects, 72–76
strain-displacement, 296
three-dimensional and contour plots,

28–29
Maximum elements, MATLAB fundamentals,

11
Mean square error, curve fitting, 158, 161
Mechanical loads; See Loading
Mesh generation, PDE toolbox, 313, 314, 315
Meshgrid statement, 28
Mesh refinement

MATLAB operations, 316, 318, 319, 323
temperature distribution in slab with hole,

329, 330, 334–335, 337
m files, 6, 17
Microcontrollers, 394, 396, 402
Microprocessors, 394, 396
Minimum elements, MATLAB fundamentals,

11
Mixed boundary conditions, 311
Mode shapes, model analysis of two-

dimensional structures, 322
Models; See Simulink
Modified Euler method, 105
Motors; See Electric motor modeling, control

systems
Multiplexer, scope, 383
mux block use, Simulink, 146–148

N

Naming variables in MATLAB, 8
Natural frequencies, model analysis of

two-dimensional structures, 322,
323, 324, 325

Network parameters, pipe flow, 243
Neumann boundary conditions

MATLAB features, 310, 311
temperature distribution in slab with hole,

328, 329, 333
triangular elements, 294, 295, 297

Newton-Raphson method, 79–80

93568_Book.indb 446 7/22/09 10:38:49 AM

Index  ◾  447

Newton’s second law, 188
Node rule, pipe network, 238, 239
Normalized plots, PDE toolbox, 317
Numerical integration, 95–104

exercises, 102–103
improper integrals, 98–99
MATLAB DBLQUAD function, 101–102
MATLAB quad function, 100–101
ordinary differential equations, 105–139

beam deflection, 118–121
difference formulas, 115–118
fourth-order Runge-Kutta method, 107
initial value problem, 105–107
MATLAB ODE function, 110–112
not-initial value problems, 112
projects, 121–139
single second-order equation, 108–110
system of two first-order equations, 108
tri-diagonal systems of linear equations,

112–115
projects, 103–104
and Simpson’s rule, 95–98

Numerical method, unsteady heat flow, 226
Numerical modeling, 1–3
Nyquist plots, control system

design, 346
performance analysis, 363–367
projects, 412

O

Object function, 171, 176
ODE/ode45 function, 110–112, 125–126

helium balloon project, 127
Laplace transforms versus, 262–263
unit step function, 266–267

Oil refinery optimization project, 185–186
Omega domain, finite element method, 287,

293
Open-loop systems, SISOtool features, 373
Open-loop transfer functions, control systems,

413
Optimality criteria, feed-forward loop design

with Simulink, 385–391
Optimization, 171–186

with constraints, 176–178
exercises, 182
MATLAB function, 178–182
method of steepest descent, 172, 173–176
projects, 182–186
Simulink modeling, 388, 391
unconstrained problems, 172–173

Options button, 301
Ordinary differential equations

heat transfer, unsteady, 201
Laplace Transforms; See Laplace Transforms
linear systems, 346
numerical integration, 105–139

beam deflection, 118–121
difference formulas, 115–118
fourth-order Runge-Kutta method,

107
initial value problem, 105–107
MATLAB ODE function, 110–112
not-initial value problems, 112
projects, 121–139
single second-order equation,

108–110
system of two first-order equations,

108
tri-diagonal systems of linear equations,

112–115
Orthogonality conditions

Bessel functions, 433–438
partial differential equations, 198, 205,

210
Oscillating systems

automobile suspension system, 73–75
mass-spring-dashpot, 41
sound wave partial differential equations,

211–216
unit step response, 375, 376, 378

Oscilloscope graph, spring-dashpot free
damped oscillation, 159–160

P

Parabolic partial differential equations, 187,
194

Partial differential equations, 187–232
classification, 187–188
finite difference method applications,

217–221
explicit method, 218–220
finite difference formula review, 217
implicit method, 220–221

Gauss–Seidel method, 235–236
Laplace Transforms, 271–276; See also

Laplace Transforms
PDE toolbox, finite element method,

299–320
perturbation theory and sound waves,

211–216
projects, 221–232

93568_Book.indb 447 7/22/09 10:38:49 AM

448  ◾  Index

separation of variables, 188–206
unsteady heat transfer in bar, 192–199
unsteady heat transfer in cylinder,

199–206
vibrating string, 188–192

unsteady heat transfer in two dimensions,
206–210

Partial fractions method, 259
Laplace Transforms versus, 266, 267

pdetool, 299, 303
PDE Toolbox, finite element method,

299–320
Performance analysis, control systems,

361–367
Nyquist plots, 363–367
root locus plots, 361–363

Performance curve, pump, 235
Performance indices, controller, 387
Permanent magnet DC motor, 356
Perturbation theory and sound waves,

partial differential equations,
211–216

Phase-lag controller, 413
Phase Margin, 372, 373, 375
Physical constant input, temperature

distribution in slab with hole,
330, 336

Pi, 11
Pipe conveyor, 234
Pipe flow analysis

Hardy-Cross method, 238–241
iteration method, 233–235, 238–241

Piston motion
fzero function, 91
hydraulic piston position control,

400–401, 402, 403, 404, 405
internal combustion engine, 41–44

Pivot row, matrix, 58, 60, 61, 62
Plane strain analysis

finite element method, 320–325
PDE toolbox, 303

Plane stress analysis
finite element method, 283–288
PDE toolbox, 303

Plant modeling, Simulink, 379, 380
Plate

plane stress analysis, 304–318
temperature distribution on, finite element

method, 340–341
Plot commands, 16
Plot selection window, 338
Plot solution window, 303

Plots
graphics windows, 8
MATLAB fundamentals, 15–17
MATLAB tools for performance analysis

Nyquist, 363–367
root locus, 361–362

PDE toolbox, 303, 316–318
SISOtool features, 370, 371, 372–373,

374, 376
temperature distribution in slab with hole,

331, 332, 336, 337, 338
three-dimensional and contour, 28–29

Poles, Laplace Transforms, 278–281
Polynomial approximating curve, best fit, 169
Polynomial curve fitting, 157–158, 160–162
Polynomial regression, 160
Pop-up menus, PDE toolbox, 317
Position control of hydraulic piston, 400–401,

403
Potentiometer, linear, 369
Power series method, Bessel equation solution,

429–431
Precision, least squares method, 158
Pressure

air pressurized tank project, 129–133, 154
atmospheric properties as function of

altitude model, 31–34
equations of state, 88–89
sound waves, 211–216
specific volume and pressure of gas as

function of temperature, 34–35
Print commands, 12, 13
Processor, sampled data control system, 394, 396
Profitability optimization

circuit board manufacturing, 184, 185
computer sales, 183–184
oil refining project, 185–186

Programming, 2–3; See also MATLAB
fundamentals

Proportional controller, 402
Proportional derivative (PD) controller, 392
Proportionality constant, 368
Proportional plots, PDE toolbox, 317
Pump, Simulink modeling, 380, 381, 383, 384
Pump characteristic curve, 244
Pump delivery volume flow rate to closed tank

as function of time, 244–248

Q

quad function, 100–101, 104
Quadratic equation, pump flow, 235

93568_Book.indb 448 7/22/09 10:38:49 AM

Index  ◾  449

Quadrilateral objects, finite element method,
287

quit command, 8

R

Reading from files, 13
Recursion formulas, 202, 431–433
Redlich-Kwong equation of state, 34–35,

88–89
Reference, coupled tank system, 381
Refinery production optimization project,

185–186
Regulator control systems, 343–344
Regulators, performance indices, 387
Relay block, Simulink, 148–149
Residues, Laplace Transforms, 278–281
Residue theory, 249

in complex variables, 98
Laplace Transforms, 279, 280

Resistance, RL circuit, 368
Retailing, optimization project, 183–184
R-L circuit, transfer function, 368
Rocket trajectory project, 123–125, 152–153
Root locus plots, control systems

design, 346
performance analysis, 361–363
SISOtool features, 370, 373

Roots of algebraic and transcendental
equations, 77–93

bisection method, 77–79
example programs, 81–83
fzero function, 80–83
Newton-Raphson method, 79–80
search method, 77

Runge-Kutta method, 107, 109–110

S

Sales, optimization project, 183–184
Sampled data control system, 394–397,

402–405
Sampling frequency, DAC implementation,

400
Sampling time, sampled data control system,

396
Saturation element, control systems

ADC implementation, 397
DAC implementation, 399
Simulink modeling, 383, 388

Save command, 8
Scalars, MATLAB fundamentals, 9

Scope multiplexer, 383
Scripts, MATLAB fundamentals, 9
Search method, roots of algebraic and

transcendental equations, 77
Second-order equation, numerical integration,

108–110
Self-starting (modified Euler) method, 105
Semi-log plots, 16
Semicolon use in MATLAB, 8
Sensors

analog signal sampling, 409, 411, 412
coupled tank system, 381

Separation of variables, partial differential
equations, 187, 188–206

projects, 224–232
unsteady heat transfer in bar, 192–199
unsteady heat transfer in cylinder, 199–206
vibrating string, 188–192

Series, 29
Servo control systems, 343, 344, 400
Shaft manufacturing example, optimization,

180–182
Shape functions, finite element method,

288–299
Shear stress, PDE toolbox, 317, 318
Shifting theorem, Laplace Transforms,

260–263
Silo surface area problem, 177–179, 182–183
Simple input single output systems; See SISO

systems; SISOtool, control system
design

Simpson’s rule, 165
numerical integration, 95–98, 99
pump delivery volume flow rate to closed

tank as function of time, 246
Simulink, 141–154

constructing and running model, 146
control systems, 377–405

active suspension, 391–394, 395
ADC and DAC implementation in,

397–405
coupled tank fluid level control,

377–385, 386
Data Acquisition Toolbox, 405–412
feed-forward loop design using

optimality criteria, 385–391
projects, 414
sampled data control system, 394–397

model building blocks, 143–145
model creation in, 141–142
mux and fcn block use, 146–148
projects, 152–154

93568_Book.indb 449 7/22/09 10:38:50 AM

450  ◾  Index

relay block, 148–149
subsystem construction, 146, 147
switch block, 149–150
trigonometric function blocks, 150–152

Single second-order equation, numerical
integration, 108–110

Singularity, Laplace transforms, 278, 279
SISO (simple input single output) systems,

343, 346
root locus plots, 361
unit step input, 349–350

SISOtool, control system design, 367–377
design of controller with, 371–377, 378
example, 367–370
features of, 370–371

Snap-to-grid feature, 308
Software programming, 2–3
Solve parameters window, PDE toolbox, 302
Sorting of elements, MATLAB fundamentals,

11
Sound waves, partial differential equations,

187, 211–216, 222–224
Specific heat, heat transfer equations, 325
Specific volume of gas, as function of

temperature, 34–35
Sphere function, 29
Splines, cubic, 162–164
Spring-dashpot system

curve fitting with exponential function,
159–160

Laplace Transforms, 257–260
motion plotting, 36–41
Simulink, 151–152
vehicle collision modeling, 133–136

Springs, suspension system matrix methods,
73–75

Square roots, 11
Standard error, least squares method, 158
State space representation, 346
Statics

beam deflection, 118–121, 137–138
beam deflection equation, derivation of,

419–422
matrix methods, 50–55, 72, 73
model analysis of two-dimensional

structures, 321
truss structure internal forces, 72, 73

Steady state, step response plot, 372–373
Steady-state heat conduction, partial

differential equations, 187
Steepest descent method, optimization, 172,

173–176

Step input/response
DC motor modeling, 360
SISOtool features, 370, 372–373

Step options, 26, 27
Step pressure disturbance, 216
Step response; See also Unit step input/

response, control systems
Stiffness matrix

finite element method, 295, 296
model analysis of two-dimensional

structures, 321
Strain analysis

beam deflection equation, derivation of,
419–422

PDE toolbox, 303, 317, 318
Strain-displacement matrix, 296
Stress analysis

beam deflection equation, derivation of,
419–422

finite element method, 283–288
cantilevered beam, 321–325
plane stress analysis, 283–288
three-node triangular element for

two-dimensional stress analysis, 290
PDE toolbox, 303, 317, 318, 319

String vibration, partial differential equations,
221

Strings, 13
Structural mechanics

finite element method
model analysis of two-dimensional

structures, 321–325
plane strain analysis, 320–321
plane stress analysis, 283–288

matrix methods
internal forces on truss, 50–55
truss structure internal forces, 73

Subplot command, 17
Subsystem construction, Simulink, 146, 147
Superposition method, 137–138
Surface area problem, silo, 177–179, 182–183
Surface traction boundary condition, 297,

298
Suspension systems

matrix methods, 73–75
Simulink modeling, 391–394, 395

Swamee-Jain formula, 240
Switch block, Simulink, 149–150
Switch group, 15–16
Switch statement, 34
Symbols, 16
System data, SISOtool features, 370

93568_Book.indb 450 7/22/09 10:38:50 AM

Index  ◾  451

T

Tables
creation of, 21
Laplace Transforms; See Laplace

Transforms
Taylor series expansions, 29, 30

Tank fluid level
control system project, 414–415
curve fitting projects, 167–168
Simulink, coupled tank, 377–385, 386

Taylor Series expansion
difference formulas, 115–118
improper integrals, 98–99
initial value problem, 105–106
Laplace Transforms, 279
pipe flow, 239
projects, 29, 30
Simpson’s rule, 95–96

Temperature
derivation of heat transfer equation in solid,

423–425
finite element analysis of heat transfer,

325–338
project, 340–341
temperature distribution on plate,

340–341
temperature distribution in slab,

333–338
temperature distribution in slab with

hole, 326–332
fluid temperature variation project,

125–126
gas behavior

air pressurized tank project, 129–133,
154

atmospheric properties as function of
altitude model, 31–34

equations of state, 88–89
specific volume and pressure of gas as

function of temperature, 34–35
heat conduction equations

derivation of, 423–425
in stationary solid, 425–428
vector calculus, 428

heat transfer via fin from electronic device,
135–137

numerical integration, 103–104
partial differential equations

finite difference method applications,
217–221

heat-transfer projects, 224–232

roots of algebraic and transcendental
equations

heat transfer to air, 86–87
heat transfer to bath, 84–86
projects, 91–93

Temperature field
contour plot, 332
finite element method, 336

Terminating MATLAB programs, 8
Test functions, finite element method, 293,

298
Thermal conductivity; See Heat transfer
Thermal properties; See Heat transfer
Thermodynamics, first law, 126, 425–428
Thermostat behavior, Simulink modeling,

148–149
Three-degree-of-freedom model, vehicle

collision, 133–136
Three-dimensional generalized Hooke’s law for

isotropic material, 284
Three-dimensional plots, 28–29, 317
Time domain responses, control system design,

344, 345, 346
Time response plot

DC motor modeling, 360
SISOtool features, 370, 374, 376

Torque equation, 355
Traction, surface, 297, 298
Trajectory, rocket, 123–125, 152–153
Transcendental equation roots; See Roots

of algebraic and transcendental
equations

Transfer functions, control systems, 348–352
closed-loop system, 357–360
MATLAB features, 346
projects, 412, 413–414
Simulink modeling

active suspension, 392
feed-forward loop design, 385–386

SISOtool application example, 368
SISOtool features, 370, 371–372

Transposition, matrix, 46
TRATIO (temperature ratio), 84–86, 221,

222, 223, 224
Tri-diagonal systems of linear equations,

112–115, 138
Triangle elements

finite element method, 287, 288–299
PDE toolbox, 315
stiffness matrix, 296

Triangle element shape function, 288–299
Trigonometric functions, 10, 150–152

93568_Book.indb 451 7/22/09 10:38:50 AM

452  ◾  Index

Truss statics, matrix methods, 50–55, 72–73
Turbulent effects, pipe flow analysis, 234, 239
Two-degrees of freedom systems, 68, 73–75
Two-dimensional structures

finite element method
model analysis, 321–325
plane strain analysis, 320–321
plane stress analysis, 283–288
three-node triangular element for, 290

partial differential equations, 187
Two dimensions, heat transfer in

finite element method, 325–338
temperature distribution in slab with

hole, 326–332
temperature distribution in slab with

surface convection, 333–338
temperature distribution on plate,

340–341
unsteady, 206–210

U

Unconstrained problems, optimization, 172–173
Unit block diagram, Simulink modeling, 383,

384
Unit step function, Laplace Transforms, 263–267
Unit step input/response, control systems; See

also Step response
design, 344, 345, 349–350
Nyquist plots, 364, 365, 366
SISOtool features, 372–373, 374, 376, 378
state space models, 354
zpk command, 352

Unsteady heat transfer partial differential
equations

in bar, 192–199
in cylinder, 199–206
projects, 231–232
in two dimensions, 206–210

V

Valves
piping system

flow through, 347, 349
head loss, 234

piston servo, 400, 401
pressurized air system, 129
sampled data control system, 402, 403,

404, 405
Van der Waals equation, 89
Variable names, 8

var values, 15–16
Vector calculus, 428, 438
Vectors

MATLAB fundamentals, 11
matrices, 45, 47

Vehicle collision project, 133–136
Vibration

automobile suspension system, 73–75
eigenvalue problem, 68–71
Laplace Transforms, 249, 260–263
model analysis of two-dimensional

structures, 322, 323, 324, 325
numerical integration, 103
partial differential equations, 187,

188–192, 221
shifting theorem, 260–263

Viscosity
Hardy-Cross method, 240
helium balloon project, 128
pipe flow analysis, 234, 240
pump delivery volume flow rate to closed

tank as function of time, 244, 245,
246

Voltage equation, 355
Volume problems

equations of state, 88–89
optimization

Lagrange multipliers, 182
silo, 177–179, 182–183

specific volume and pressure of gas as
function of temperature, 34–35

Von Mises effective stress, 317, 318

W

Wave equation (hyperbolic PDE), 187
Weighting functions, finite element method, 293
While loops, 14
Windows, MATLAB, 5–8

PDE toolbox, 299–304
SISOtool features, 370, 371

Workspace windows, 6
Worst triangles, 318

Y

Young’s modulus, 284, 304, 421

Z

Zero-order hold (ZOH), 397, 399
Zero-Pole-Gain representation, 346, 350–352

93568_Book.indb 452 7/22/09 10:38:50 AM

Figure 13.33  Contour plot for the displacement component u in the x direction.
(From MATLAB. With permission.)

6
Fourier Series Fit×104

5

4

3

u,
 u

c (
ft/

s)

2

1

0

–1
–6 –4 –2 0

x
2 4 6

uc is Red
u is Green

Figure 8.4  Fourier series fit of the data.

93568_CI.indd 1 7/2/09 5:45:11 PM

Figure 13.36  Contour plot of normal stress σx. (From MATLAB. With permission.)

93568_CI.indd 2 7/2/09 5:45:14 PM

Figure 13.42  The first vibration mode for the lowest natural frequency. (From
MATLAB. With permission.)

93568_CI.indd 3 7/2/09 5:45:15 PM

Figure 13.43  The second vibration mode for the second lowest natural frequency.
(From MATLAB. With permission.)

93568_CI.indd 4 7/2/09 5:45:16 PM

Figure 13.44  The third vibration mode for the third lowest natural frequency.
(From MATLAB. With permission.)

93568_CI.indd 5 7/2/09 5:45:17 PM

Figure 13.53  Contour plot of the temperature field. (From MATLAB. With
permission.)

93568_CI.indd 6 7/2/09 5:45:18 PM

Figure 13.56  Contour plot of the temperature field with heat flux flow. (From
MATLAB. With permission.)

93568_CI.indd 7 7/2/09 5:45:20 PM

Figure 13.65  Contour plot of the temperature field. (From MATLAB. With
permission.)

93568_CI.indd 8 7/2/09 5:45:21 PM

Figure 13.67  Contour plot of the temperature field after adding 50°C to the
solutions shown in Figure 13.65. (From MATLAB. With permission.)

0.1 m

0.8 m

10 kN/m

Figure P13.2  Geometry of a cantilevered beam for Project 13.2.

93568_CI.indd 9 7/2/09 5:45:23 PM

Figure 14.16  Root locus plot of the above closed-loop transfer function. (From
MATLAB. With permission.)

93568_CI.indd 10 7/2/09 5:45:25 PM

(KI = 0.1) (KI = 0.5) (KI = 1)

Figure 14.43  Simulation results of the modified model. (From MATLAB. With
permission.)

93568_CI.indd 11 7/2/09 5:45:27 PM

Figure 14.45  Simulation results of the modified model with disturbance (KI  = 0.1).
(From MATLAB. With permission.)

93568_CI.indd 12 7/2/09 5:45:28 PM

Figure 14.46  Simulation results of the modified model with disturbance (KI  = 1.0).
(From MATLAB. With permission.)

93568_CI.indd 13 7/2/09 5:45:30 PM

Figure 14.56  Vehicle’s displacement. (From MATLAB. With permission.)

93568_CI.indd 14 7/2/09 5:45:31 PM

(a) (b) (c)

Figure 14.69  Simulation results for different controller gains (T = 0.01 second):
(a) gain = 0.01; (b) gain = 0.05; (c) gain = 0.1. (From MATLAB. With permission.)

93568_CI.indd 15 7/2/09 5:45:32 PM

Figure 14.78  Results of the program shown in Figure 14.77. (From MATLAB.
With permission.)

93568_CI.indd 16 7/2/09 5:45:34 PM

	Front cover
	Contents
	Preface
	Acknowledgments
	Authors
	Chapter 1. Numerical Modeling for Engineering
	Chapter 2. MATLAB Fundamentals
	Chapter 3. Matrices
	Chapter 4. Roots of Algebraic and Transcendental Equations
	Chapter 5. Numerical Integration
	Chapter 6. Numerical Integration of Ordinary Differential Equations
	Chapter 7. Simulink
	Chapter 8. Curve Fitting
	Chapter 9. Optimization
	Chapter 10. Partial Differential Equations
	Chapter 11. Iteration Method
	Chapter 12. Laplace Transforms
	Chapter 13. An Introduction to the Finite Element Method
	Chapter 14. Control Systems
	Appendix A
	Appendix B
	Appendix C
	Index
	Back cover

