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The trouble with people is not that they don’t
know but that they know so much that ain’t so.

(Josh Billings 1874)

| would have understood many things
if no-one had explained them to me.

(Stanistaw Jerzy Lec 1957)

An expert is someone who has made all the
mistakes which can be made in a narrow field.

(Niels Bohr 1954)
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lower and adjoint upper triangular system from the manuscript’ of A.-L. Cholesky (1910), cf. §8.3

*« Sur la résolution numérique des systéemes d’équations linéaires », Fonds André-Louis Cholesky (1875-1918),

courtesy of the Archives de 1'Ecole Polytechnique, Palaiseau, France.


https://en.wikipedia.org/wiki/Josh_Billings
https://en.wikipedia.org/wiki/Stanislaw_Jerzy_Lec
https://en.wikipedia.org/wiki/Niels_Bohr
http://sabix.revues.org/pdf/529D

Preface

This book was developed from the lecture notes of an undergraduate level course
for students of mathematics at the Technical University of Munich, consisting of
two lectures per week. Its goal is to present and pass on a skill set of algorithmic
and numerical thinking based on the fundamental problem set of numerical linear
algebra. Limiting the scope to linear algebra creates a stronger thematic coherency
in the course material than would be found in other introductory courses on
numerical analysis. Beyond the didactic advantages, numerical linear algebra
represents the basis for the field of numerical analysis, and should therefore be
learned and mastered as early as possible.

This exposition will emphasize the viability of partitioning vectors and matrices
block-wise as compared to a more classic, component-by-component approach. In
this way, we achieve not only a more lucid notation and shorter algorithms, but
also a significant improvement in the execution time of calculations thanks to the
ubiquity of modern vector processors and hierarchical memory architectures.

The motto for this book will therefore be:

A higher level of abstraction is actually an asset.

During our discussion of error analysis we will be diving uncompromisingly deep
into the relevant concepts in order to gain the greatest possible understanding
of assessing numerical processes. More shallow approaches (e.g., the infamous
“rules of thumb”) only result in unreliable, expensive and sometimes downright
dangerous outcomes.

The algorithms and accompanying numerical examples will be provided in the
programming environment MATLAB, which is near to ubiquitous at universities
around the world. Additionally, one can find the same examples programmed in
the trailblazing numerical language Julia from MIT in Appendix B. My hope is
that the following passages will not only pass on the intended knowledge, but
also inspire further computer experiments.

The accompanying e-book offers the ability to click through links in the passages.
Links to references elsewhere in the book will appear blue, while external links
will appear red. The latter will lead to explanations of terms and nomenclature
which are assumed to be previous knowledge, or to supplementary material such
as web-based computations, historical information and sources of the references.

Munich, October 2017 Folkmar Bornemann
bornemann@tum.de
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viii Preface

Student’s Laboratory

In order to enhance the learning experience when reading this book, I recommend creating
one’s own laboratory, and outfitting it with the following “tools”.

Tool I: Programming Environment Due to the current prevalence of the numerical
development environment MATLAB by MathWorks in both academic and industrial fields,
we will be using it as our “go-to” scripting language in this book. Nevertheless, I would
advise every reader to look into the programming language Julia from MIT. This inge-
nious, forward-looking language is growing popularity, making it a language to learn. All
programming examples in this book have been rewritten in Julia in Appendix B.

Tool 2: Calculation Work Horse I will be devoting most of the pages of this book to
the ideas and concepts of numerical linear algebra, and will avoid getting caught up with
tedious calculations. Since many of these calculations are mechanical in nature, I encourage
every reader to find a suitable “calculation work horse” to accomplish these tasks for them.
Some convenient options include computer algebra systems such as Maple or Mathematica;
the latter offers a free “one-liner” version online in the form of WolframAlpha. Several
examples can be found as external links in §14.

Tool 3: Textbook X In order to gain further perspective on the subject matter at hand,
I recommend always having a second opinion, or “Textbook X”, within reach. Below I have
listed a few excellent options:
o Peter Deuflhard, Andreas Hohmann: Numerical Analysis in Modern Scientific Computing, 2nd ed.,
Springer-Verlag, New York, 2003.
A refreshing book; according to the preface, my youthful enthusiasm helped form the presentation of error
analysis.
e Lloyd N. Trefethen, David Bau: Numerical Linear Algebra, Society of Industrial and Applied
Mathematics, Philadelphia, 1997.
A classic and an all time bestseller of the publisher, written in a lively voice.
o James W. Demmel: Applied Numerical Linear Algebra, Society of Industrial and Applied Mathe-
matics, Philadelphia, 1997.
Deeper and more detailed than Trefethen—Bau, a classic as well.

Tool 4: Reference Material For even greater immersion and as a starting point for
further research, I strongly recommend the following works:
o Gene H. Golub, Charles F. Van Loan: Matrix Computations, 4th ed., The Johns Hopkins University
Press, Baltimore, 2013.
The “Bible” on the topic.
o Nicholas J. Higham: Accuracy and Stability of Numerical Algorithms, 2nd ed., Society of Industrial
and Applied Mathematics, Philadelphia, 2002.
The thorough modern standard reference for error analysis (without eigenvalue problems, though).
e Roger A. Horn, Charles R. Johnson: Matrix Analysis, 2nd ed., Cambridge University Press,
Cambridge, 2012.
A classic on the topic of matrix theory; very thorough and detailed, a must-have reference.
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I Computing with Matrices

The purpose of computing is insight, not
numbers.

(Richard Hamming 1962)

Applied mathematics is not engineering.

(Paul Halmos 1981)

I What is Numerical Analysis?

I.1 Numerical analysis describes the construction and analysis of efficient discrete
algorithms to solve continuous problems using large amounts of data. Here, these
terms are meant as follows:

o cfficient: the austere use of “resources” such as computation time and com-
puter memory;

o continuous: the scalar field is, as in mathematical analysis, R or C.

1.2 There is, however, a fundamental discrepancy between the worlds of continu-
ous and discrete mathematics: ultimately, the results of analytical limits require
infinitely long computation time as well as infinite amounts of memory resources.
In order to calculate the continuous problems efficiently, we have to suitably dis-
cretize continuous quantities, therefore making them finite. Our tools for this task
are machine numbers, iteration and approximation. This means that we purposefully
allow the numerical results to differ from the “exact” solutions of our imagination,
while controlling their accuracy. The trick is to find skillful ways to work with a
balanced and predictable set of imprecisions in order to achieve greater efficiency.

1.3 Numerical linear algebra is a fundamental discipline. The study of numerical
linear algebra not only teaches the thought process required for numerical analysis,
but also introduces the student to problems that are omnipresent in modern
scientific computing. Were one unable to efficiently solve these fundamental
problems, the quest for solving higher-ranking ones would be futile.

© Springer International Publishing AG 2018 1
F. Bornemann, Numerical Linear Algebra, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-3-319-74222-9 1
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2 Matrix Calculus

2.1 The language of numerical linear algebra is matrix calculus in R and C. We
will see that this is not merely a conceptional notation, but also a great help when
striving to find efficient algorithms. By thinking in vectors and matrices instead
of arrays of numbers, we greatly improve the usability of the subject matter. To
this end, we will review a few topics from linear algebra, and adapt perspective
as well as notation to our purposes.

2.2 For ease of notation, we denote by K the field of either real numbers R or
complex numbers C. In both cases,

K"™*" = the vector space of m X n matrices.

Furthermore, we identify K" = K™*1 ag column vectors, and K = K1*! as scalars,
thereby including both in our matrix definition. We will refer to matrices in K<™
as co-vectors or row vectors.

2.3 In order to ease the reading of matrix calculus expressions, we will agree
upon the following concise notation convention for this book:

e o, pB,7,...,w: scalars
e a,b,c,...,z2 vectors (= column vectors)
e a,b,c,...,7Z1 co-vectors (= row vectors)
e A,B,C,...,Z: matrices.
Special cases include:
e k,j,I,m,n,p: indices and dimensions with values in INy.

Remark. The notation for row vectors is compatible with the notation from §2.5 for the
adjunction of matrices and vectors. This will prove itself useful in the course of this book.

2.4 We can write a vector x € K or a matrix A € K"™*" using their components
in the following form:

&1 Qg1 e Ay
X = = (Cj)j:l:mr A= = (“jk)j:l:m,k:l:n-
Cm Km1 - Kmn
In this case, j = 1 : m is the short form of j = 1,2,...,m. This colon notation is

widely used in numerical linear algebra and is supported by numerical program-
ming languages such as Fortran 90/95, MATLAB and Julia.
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Sec. 2] Matrix Calculus 3

2.5 The adjoint matrix A" € K"*™ of the matrix A € K™*" is defined as

/

!
o R

! !
A= = (“jk)kzl:n,j:l:m
! !/
aln P amn
with &/ =  for real scalars and &’ = @ for complex scalars.! In the real case, one
refers to a transposed matrix, while in the complex case we use the term Hermitian
transposed Matrix. This way, the row vector

X = (81 )

is the adjoint co-vector of the vector x = (&;)j=1.m-

2.6 Instead of diassembling a matrix into its components, we will often partition
matrices A € K"*" into their column vectors ak € K" (k =1 : n)

A= al‘..a”

or row vectors a} e K" (j=1:m)
A= :

The process of adjunction swaps rows and columns: the columns of A’ are there-
fore the vectors a; (j = 1: m), and the rows are the co-vectors (@) (k=1:n).

Remark. Memory aid: the superscript indexes correspond to the “standing” vectors (column
vectors), while the subscript indexes correspond to “lying” vectors (row vectors).

2.7 The standard basis of IK" consists of the canonical unit vectors
F=(i=k)jztm (k=1:m),
where we employ the practical syntax of the Iverson bracket:?

A] = 1 if the Statement A is correct,

0 otherwise.

1The '-notation for adjunction has been adopted from programming languages such as MATLAB
and Julia, but can nevertheless also be found in the German functional analysis literature.

2The Iverson-bracket is much more versatile than the Kronecker delta and deserves much wider
recognition. A multi-faceted and virtuous exposure can be found in the classic textbook R. Graham,
D. Knuth, O. Patashnik, Concrete Mathematics, 2nd ed., Addison Wesley, Reading, 1994.
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The column vectors a¥ of a matrix A are defined as the image of the canonical unit
vector ¢f under the linear map induced by A:

' =Aak  (k=1:n). 2.1)

2.8 Linearity therefore ensures that the image of the vector x = (i )k=1.y =
i &k e KM is
n
K" 3 Ax = Z &k
k=1
instead of using the term image, we will mostly refer to the matrix-vector product.
In the special case of a co-vector y' = (11, ...,1;,), we obtain

n
K>y'x=) 1w (2.2)
k=1

this expression is called the inner product of the vectors y and x.3 If we then
continue to read the matrix vector product row-wise, we attain

/
ay x
Ax =

an, x

2.9 The inner product of a vector x € K" with itself, in accordance with (2.2),
fulfills

n n
Mx=Y g& =Y &P =o.
k=1 k=1

We can directly see that x'x = 0 < x = 0. The Euclidean norm we are familiar with
from calculus is defined as || x|, = v x'x.

2.10 The product C = AB € K"*? of two matrices A € K"*" and B € K"*? is
defined as the composition of the corresponding linear maps. It therefore follows
k= Cek = (AB)eF = A(BeF) = AVF (k=1:p),

thus with the results on the matrix-vector product

aivt . alvr —a B—
| | 1 1 1
(a) 1 (b) . . °) .
ABE [Apt - oAb | 2| | © : . (23)

| | al, bt - a,br —al, B—

—

The last equality arises from the fact that we read the result row-wise. In particular,
we see that the product Ax provides the same result, independent of whether
we view x as a vector or an n X 1-matrix (therefore being consistent with the
identification agreed upon in §2.2).

30ne often writes y'x = y - x; therefore the secondary name dot product.
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2.11 Since adjunction is a linear involution* on K, the inner product (2.2) satisfies
the relationship

(y'x)" = x'y.

The second formula in (2.3) leads directly to the adjunction rule

(AB) = B'A’.
2.12 The case of xy’ € K"™*" is called outer product of the vectors x € K", y € K",

/

Gimp o Gy
xy = N :

‘:m% o Cmly

The outer product of x,y # 0 is a rank-1 matrix, whose image is actually spanned
by the vector x:
(x)z=('2)x  (z€K"),
€K

2.13 For x € K™ we will define the associated diagonal matrix by>

&1
diag(x) = &
Cm
Notice that diag : K™ — K™*™ is a linear map. With diag(ef) = e - e, (where we
set e, = ek) we therefore obtain the basis representation

diag(x) = ) & (eF-ef).
k=1

2.14 The unit matrix (identity) I € K™*™ is given by
1

m
1= , =Y e (2.4)
i k=1

4Involution on K: & = & for all ¢ € K.
5For such a componentwise matrix notation, we will agree that, for the sake of clarity, zero entries of
a matrix may simply be omitted from printing.
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It fulfills Iey = ex (k =1 : m) and therefore (linearity) Ix = x for all x € K"; thus
x=Y (e x)- e (2.5)

This means § = ¢; x (k = 1: m). After adjusting the dimensions, it notably holds
Al = A and IA = A. Since the row vectors of I are the e,’{, the third formula
in (2.3) provides a formula dual to (2.1)

o =gA (k=1:m).
2.15 Due to AB = AIB for A € K"*" and B € K"*?, it follows from (2.4)

n n
k k
AB=) Acf-eB=1Y a" b, (2.6)
k=1 k=1
that is, a matrix product can be represented as sum of rank-1 matrices.

2.16 There are a total of four formulas in (2.3.a-c) and (2.6) for the product of
two matrices. One should realize that every one of these formulas, when written
out componentwise, delivers the same formula as one is familiar with from
introductory linear algebra courses (the components of A, B and C = AB thereby
defined as ajk, Br, 7j1):

n
Y=Y apPa (G=1:ml=1:p). 27)
k=1

This componentwise formula is by far not as important as the others. Notice that
we have, without much calculation and independent of this equation, conceptually
derived the other formulas.

2.17 All of the expressions for C = AB until now are actually special cases of a
very general formula for the product of two block matrices:

Lemma. If we partition A € K"™*" and B € IK"*? as block matrices

Ay - Ay Bin -+ Bis
A= Sl B=1| : :
Aql T Aqr Byy - B

with the submatrices Ay € K™™", By € IK"*P! where

q r s
m=3y m, n=3Y m, p=Y.p,
i=1 k=1 =1


http://en.wikipedia.org/wiki/Block_matrix
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then the product C = AB € K™*? is partitioned into blocks as follows:

Cu - G .
cC=|: : with Cjj =) AjBy (j=1:q1=1:5). (2.8)
k=1
Ca -+ Cys
Remark. A comparison of the product formulas (2.7) and (2.8) shows that with such block
partitioning, one can formally perform calculations “as if” the blocks were scalars. In the
case of block matrices, one must pay careful attention to the correct order of the factors: in

contrast to the componentwise Sy, the blockwise expression By Aj is actually almost
always false and often meaningless since the dimensions do not necessarily match.

Proof. In order to prove (2.8) we will partition the vectors x € K" according to
X1
x= |11, €K% (k=1:7r),
Xy
and we consider the linear map Nj € K"*" defined by
Nix = xp.

Left multiplication with Ny therefore achieves the selection of the block rows
that belong to 7;; adjunction shows that right multiplication with N; delivers the
corresponding block columns. Similarly, we define M; € K"/*™ and P; € KPI*?.
It therefore holds that

le = M]'CPI/, Ajk = M]ANIQ, By = NkBPI/-

The asserted formula (2.8) for block multiplication is therefore equivalent to

r
M;CP = M;A (Z N,;Nk> BP,  (j=1:ql=1:s)
k=1
and it thus follows from C = AB if only
T
Y NiNg =T e K™, )
k=1

For x,y € K" with block parts x; = Nix, v, = Niy this equality is successfully
“tested” by executing the sum for the inner product blockwise,

r r
y=xy=Y xy=xo (Z N,ﬁNk) y.
k=1 k=1

If we now let x and y traverse the standard basis of K", we finally obtain (*). O

Exercise. Show that the five formulas in (2.3), (2.6), (2.7) as well as C = AB itself are special
cases of the block product (2.8). Visualize the corresponding block partitioning.
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3 MATLAB

3.1 MATLAB (MATrix LABoratory) is the brand name of a commercial software
that is prominent in both in academic and industrial settings and widely used
for numerical simulations, data acquisition, and data analysis.6 By means of a
simple scripting language, MATLAB offers an elegant interface to matrix-based
numerical analysis, as well as state of the art performance by levering the BLAS
Library (Basic Linear Algebra Subprograms) from the processor manufacturer
along with the high-performance Fortran library LAPACK for linear systems of
equations, normal forms and eigenvalue problems.

MATLAB has become a standard skill that is currently required of every math-
ematician and engineer. Learning this skill though concrete practical problems
is strongly recommended, which is why we will be programming all of the algo-
rithms in the book in MATLAB. A very short introduction (for readers with a little
previous programming experience) can be found in Appendix A.

3.2 In MATLAB scalars and vectors are both matrices; the identifications
]Km :]Kmxl ]I<:]I<1X1

are therefore design principles of the language. The fundamental operations of
matrix calculus are:

meaning formula MATLAB
component of x Ck x (k)
component of A Xk AGG,k)
column vector of A 4k AC: k)

row vector of A a} AGi, )
submatrix of A (k) j=m:pk=n:1 A(m:p,n:1)
adjoint matrix of A A’ A’

matrix product AB AxB
identity matrix I e Kmxm eye(m)

null matrix 0 € Kmxn zeros(m,n)

6Current open-source-alternatives include Julia, which is extensively discussed in Appendix B, and
the Python libraries NumPy and SciPy, see H. P. Langtangen: A Primer on Scientific Programming with
Python, 5th ed., Springer-Verlag, Berlin, 2016.
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3.3 In order to practice, let us write all five formulas (2.3.a-c), (2.6) and (2.7) for
the product C = AB of the matrices A € K"™*", B € K"*? as a MATLAB program:

Program | (Matrix Product: column-wise).

C = zeros(m,p); | |
£

1

> for 1=1:p o 1 ... P
5 C(:,1) = A*B(:,1); C=|A4b 4b
4 end | ‘

Program 2 (Matrix Product: row-wise).
1 C = zeros(m,p); —LlllB—
> for j=1:m

C(j,:) = A(j,:)*B;
1 end — ay, B —

Program 3 (Matrix Product: inner product).

1 C = zeros(m,p);

2> for j=1:m a’lbl ﬂ/lbp
for 1=1:p

4 C(j,1) = A(j,:)*B(:,1);

Program 4 (Matrix Product: outer product).

1 C = zeros(m,p); n
2 for k=1:mn _ k.
C=C+ AC:,k)*B(k,:); C=) a" b

4 end

Program 5 (Matrix Product: componentwise).

1 C = zeros(m,p);
2 for j=1:m

3 for 1=1:p

n
4 for k=1:n
5 C(j,1) = C(j,1) + A(j,k)*B(k,1); ¢ (Zaikﬁk’>
k=1 j=Llm,I=1:p

6 end

7 end
s end
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3.4 When we apply these programs to two random matrices A, B € JR1000x1000
we measure the following execution times (in seconds):”

program #for-loops MATLAB [s] C & BLAS [s]

AxB 0 0.031 0.029

column-wise 1 047 0.45

row-wise 1 0.52 0.49

outer product 1 3.5 0.75

inner product 2 1.7 1.5

componentwise 3 20 1.6

To compare with a compiled language (i.e., translated into machine code), we
have also executed the same programs implemented in C while still using the
same optimized Fortran BLAS routines used by MATLAB.

We can observe discrepancies in execution times of a factor of up to 600 in
MATLAB code and up to 60 in C & BLAS, which we will try to explain in §4
in order to better understand where they come from before moving on to other
numerical problems.

Remark. Check for yourself that all six programs really execute the exact same additions
and multiplications, only in a different order.

3.5 We can already observe one design pattern in use: the fewer for-loops,
the faster the program. If it is possible to express an algorithm with matrix-
matrix operations, it is faster than just working with matrix-vector operations;
matrix-vector operations on the other hand are advantageous when compared to
componentwise operations: a higher level of abstraction is actually an asset.

4 Execution Times

4.1 Cost factors for the execution time of a program in numerical analysis include:
e floating point operations (i.e., the real arithmetic operations: +, —, -, /, /)
® memory access
e overhead (unaccounted operations and memory access)

4.2 In an ideal world, the floating point operations (flop) would be the only cost
factor of the execution time of a program and it would suffice to count them.8

"The execution times were measured on a MacBook Pro 13” with 3.0 GHz Intel Core i7 processor.
8For K = C we must multiply the flop count of K = R with an average factor of four: complex
multiplication costs actually six real flop and complex addition two real flop.
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problem dimension #flop #flop (m =n=yp)
x'y x,y € R™ 2m 2m
xy x € R",yeR" mn m?
Ax A € R™" x ¢ R" 2mn 2m?
AB A €R™" BeR™ 2mnp 2m3

As in this table, we will only consider the leading order for growing dimensions:

Example. As displayed in (2.2), the inner product in R™ requires m multiplications
and m — 1 additions, that is 2m — 1 operations in total; the leading order is 2m.

4.3 If a single floating point operation costs us one unit of time fg,,, the peak
execution time (peak performance) is

Tpeak = #ﬂop ’ tﬂop

which defines an upper limit of algorithmic performance. The ambition of nu-
merical mathematicians, computer scientists and computer manufacturers alike,
at least for high-dimensional problems, is to come as close as possible to peak
performance by minimizing the time needed for memory access and overhead.

Example. The CPU used in §3.4 has a peak performance of approximately 72 Gflop
per second. This means, Tpeax = 0.028s for 2 - 10° flop of the matrix multiplication
where m = 1000; the actual execution time for program A*B was merely 4% slower.

4.4 Modern computer architectures use pipelining in vector processors. Let us ex-
amine the concepts with the help of the basic example of addition.

Example. In order to add two floating point numbers, we must sequentially execute
the steps in the following scheme (cf. §11.6):

¢ — adjust — add normalize
NI s —i=0+y
1 — | exponents | — | mantissas exponent

In this case, the processor needs 3 clock cycles for the addition. If we now add two
m-dimensional floating-point vectors componentwise in this same way, we will
need 3m clock cycles. Instead, let us now carry out the same operations using a
kind of assembly line (pipeline). In this way, operations are executed simultaneously,
and every work station completes its operation on the next component:

adjust add normalize
10 — 9 — 8
610 & & —| & — e
o — UE — 18

Thus, vectors of length m can be added in m + 2 clock cycles and pipelining
therefore accelerates the addition for large m by almost a factor of three.


https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Vector_processor
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4.5 In principle, memory access costs time. There are very fast memory chips, that
are very costly, and slow memory chips that are more affordable. For this reason,
modern computers work with a hierarchy of memories of different speeds that
consist of a lot of inexpensive slow memory and a lesser amount of fast memory.
Ordered from fast to slow, typical sizes for modern devices with a 3GHz CPU are:

memory type typical size
CPU register 128 B

L1 cache 32 KiB

L2 cache 256 KiB
L3 cache 8 MiB
RAM 8 GiB

SSD 512 GiB
HD 3 TiB

The access speeds range from 20 GB/s to 100 MB/s, which correspond a difference
of 2-3 in order of magnitude.

4.6 By cleverly coordinating the memory access pattern, one can ensure that a
vector processor always has its next operand in the pipeline and only has to input
and output that operand once. We will label the number of memory accesses to
main memory (RAM) for input and output as #iop and the time needed for the
access as tiop. We can therefore write our optimized execution time

. T
T = #flop - top + #10ps - tiop = Tpeak (1 + a) ,
where the machine dependent measure T = tiop/tgop is T ~ 30 for modern
computer architectures, and the algorithm dependent efficiency ratio

__ #flop
1= #iop

= flop per input-output operation.

We therefore obtain in leading order (all dimensions = m):

operation #flop #iop q
x'y inner product 2m 2m 1
xy' outer product m? m? 1
Ax  matrix-vector product  2m? m? 2
AB  matrix-matrix product  2m®  3m?> 2m/3



https://en.wikipedia.org/wiki/CPU_cache
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Example. Now, we can quantitatively explain a number of differences from our table
in §3.4: with g = 2000/3 and T ~ 30, the problem A * B should only be 4% slower
than peak performance, which, according to §4.3, is sure enough the case. The
row-wise and column-wise versions should be a factor of 15 slower, which has
also been shown to be true. Furthermore, outer product calculations are slower
by a factor of approximately 30 (which is the case for C & BLAS). MATLAB
already experiences significant overhead for the outer product, and in general for
calculations that only use vectors or components.

4.7 The BLAS Library was developed to encapsulate all hardware specific opti-
mizations, and create a standard interface with which they could be accessed:’

e Level-1 BLAS (1973): vector operations, replacing one for-loop.
o Level-2 BLAS (1988): matrix-vector operations, replacing two for-loops.
o Level-3 BLAS (1990): matrix-matrix operations, replacing three for-loops.

Example. A selection of important BLAS routines (g = #flop/# iop):'

BLAS level name operation q
1 xAXPY y<ax—+y scaled addition 2/3
1 xDOT &+ x'y inner product 1
2 xGER A<+ axy’'+ A  outer product 3/2
2 xGEMV vy < aAx + By  matrix-vector product 2
3 xGEMM C + aAB+ BC matrix-matrix product m/2

The notable efficiency gains of Level-3 BLAS are thanks to an efficiency ratio g
that, as a matter of principle, scales linearly with the dimension m.

MATLAB includes optimized BLAS for all popular platforms and encapsulates it
in a scripting language that is very close to mathematical syntax. When we look
at code variations we should always formulate our algorithms using the highest
BLAS level: a higher level of abstraction is actually an asset.

4.8 It is not coincidence that the row-wise multiplication from §3.4 is approxi-
mately 10% slower than the column-wise variant. The programming language

9Optimized implementations are delivered either by the CPU manufacturer or the ATLAS Project.
10The letter x in the names stands for either S, D, C or Z, meaning either single or double precision for
both real and complex machine numbers (we will be discussing this topic in more detail in §12.4).
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Fortran (and therefore BLAS, LAPACK and MATLAB) stores a matrix

11 X1n
A= :
Xm1 - Qmn
column-wise (column-major order):
‘0611"'0%1‘0412'“0%2‘ X1p " Bmn

Therefore, unlike row-wise operations, operations on columns require no index
calculations which would amount for further overhead; column-wise operations
are therefore preferable. In contrast, C and Python store matrices row-wise (row-
major order):

‘all...aln [X21...a2n e aml...amn

In this case, row-wise algorithms should be used.

4.9 The execution time of an algorithm is also influenced by the type of program-
ming language used; the following factors play a role in slowing it down:!!

e Assembler = Machine code (hardware dependent): 1x

Compiler .
e Fortran, C, C++ —OMPTEL, machine code: 1x — 2

e MATLAB, Python, Julia T, Bytecode for virtual machine: 1x — 10x

Compiler

Optimizing compilers replace vector operations with Level-1 BLAS routines.

5 Triangular Matrices

5.1 Triangular matrices are important building blocks of numerical linear algebra.
We define lower and upper triangular matrices by the occupancy structure

* k :
L=|. . , U= ~
. *

* * *

Components omitted from printing—as agreed upon in §2.13—represent zeros, "+’
represent arbitrary elements in K.

HIT = just in time
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http://en.wikipedia.org/wiki/Row-major_order
http://en.wikipedia.org/wiki/Row-major_order
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Python_(programming_language)
http://julialang.org
https://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/virtual_machine
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5.2 With V; = span{ey,...,ex} C K™, one can characterize such matrices more
abstractly: U € K™*™ is an upper triangular matrix if and only if12

Uvi = span{u?,...,uk} c v (k=1:m),
and L € K"*™ is a lower triangular matrix if and only if
VIL =span{l},....l} Cc V| (k=1:m).

Remark. Lower triangular matrices are the adjoints of upper triangular matrices.

5.3 Invertible lower (upper) triangular matrices are closed under multiplication
and inversion. This means it holds:

Lemma. Invertible lower (upper) triangular matrices in K"*™ form a subgroup in
GL(m; K) relative to matrix multiplication.'3

Proof. For an invertible upper triangular matrix, it holds that UVy C Vj and due to
dimensional reasons even that UV} = V. Therefore, UV, = Vj, (k = 1: m) and
u-lis upper triangular as well. Accordingly, if Uy, U; are upper triangular,

UV c Ve C Vi (k =1: m)

This means that U; U, is also upper triangular. Through adjunction, we arrive at
the assertion for lower triangular matrices. O

5.4 Building on Laplace’s expansion it follows that

M
* /\2 /\2

det| . | =Apdet| - == A A
* * )Lm * /\m

that is, the determinant of a triangular matrix is the product of its diagonal entries:
A triangular matrix is invertible iff all its diagonal entries are non-zero.

Triangular matrices whose diagonals only exhibit the value 1 are called unipotent.

Exercise. Show that the unipotent lower (upper) triangular matrices form a subgroup
of GL(m;K). Hint: Make use of the fact that unipotent upper triangular matrices U are
characterized by

U:I+N, NVkCVk71 (kzlm)
Due to N = 0, such a matrix N is nilpotent. (Or, alternatively, prove the assertion through
induction over the dimension by partitioning as in §5.5.)

2Here ul,...,u™ are the columns of U, I,...,1}, are the rows of L and V| = span{e], ..., e }.
13The general linear group GL(m;K) consist of the invertible matrices in K"*" under matrix
multiplication.
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5.5 We now solve linear systems of equations with triangular matrices, such as
Lx=b

with a given vector b and an invertible lower triangular matrix L. We therefore set
Ly =L, by, = b and x;; = x and partition step by step according to

Ly ok Xk-1 L br—1
Ly = G]KX, X = e K", b=

/ c K-,
L | M Ck Br

The two block-rows of the equation Lixy = by can by expanded to

Ly—1xp—1 = br_1, le_1%k—1 + Mk = Pr

The first equality means only that we are consistent in our labeling; the second can
be solved for ¢ via the previous quantity x;_; and thus provides the transition

Xjg—1 > Xk

The process begins with an empty'# vector xq (i.e., it does not actually appear in
the partitioning of x1) and leads to the solution of x = x;, after m steps (dividing
by Ay is allowed since L is invertible):

&k = (B —lhaxi—1) /A (k=1:m).

This remarkably simple algorithm is called forward substitution.

Exercise. Formulate the back substitution algorithm to find the solution of Ux = b with an
invertible upper triangular matrix U.

5.6 The corresponding MATLAB program is:
Program 6 (Forward Substitution to Solve Lx = D).

x = zeros(m,1);

> for k=1:m

x(k) = (b(k) - L(k,1:k-1)*x(1:k-1))/L(k,k);
end

The algorithm is realized with one for-loop over inner products; in practice one
should employ an optimized Level-2 BLAS routine.

4 Empty parts in a partitioning lead to convenient base clauses for induction proofs and initializations
for algorithms; inner products of empty parts (i.e., zero-dimensional vectors) equal zero.
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5.7 The inner products require 2k flop in leading order. The computational cost
of the entire loop is therefore!®

m
#ﬂop:22kim2.
k=1
The associated memory accesses for input and output are dominated by accessing
the triangular matrix (in leading order m?/2 elements) such that
q = #flop/#iop = 2.

Remark. This means the computing time and the efficiency ratio q are equal (in leading
order) to those of a matrix-vector multiplication with a triangular matrix.

Forward and back substitution are standardized as Level-2 BLAS routines:

BLAS level name operation #flop g
x < Lx . e >
2 xTRMV matrix-vector multiplication m 2
x <+ Rx
x + L 1x forward substitution 2
2 xTRSV m 2
x — R 1x back substitution

The MATLAB commands to solve Lx = b and Ux = b are (MATLAB analyzes the
matrix and calls xTRSV for triangular matrices):

x = L\b, x = U\b

5.8 As soon as j is calculated, the components By are no longer needed for
forward and back substitution; the memory from B can therefore be used for ¢:

[BilBeBo |- [Bu]=[E]B2lbs| - [Pu]=[&r B [Bu]

— ‘9[ 1 ‘ G2 ‘ 3 ‘ s ‘ gnt‘
One refers to an algorithm that overwrites part of the input data with the output
data as in situ (in place) execution.
Like every other routine in the BLAS Library, xTRSV works in situ; the in situ
version of the MATLAB program from §5.6 can be seen in the following code
snippet:

Program 7 (Forward Substitution for x < L™ 1x).

for k=1:m
x(k) = (x(k) - L(k,1:k-1)*x(1:k-1))/L(k,k);

3 end

1572/ represents equality in leading order.
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6 Unitary Matrices

6.1 Along with triangular matrices, there is another important group of matrices
that belongs to the building blocks of numerical linear algebra. We call Q € K™*™
unitary (for K = R sometimes also orthogonal) if

Q=@
or, equivalently,
QQ=QQ =1
The solution of a linear system Qx = b is then simply x = Q'b; the computational
cost of 2m? flop is two times larger than that of a triangular system.
6.2 As with triangular matrices, unitary matrices form a group:

Lemma. The unitary matrices in K™*™ form a subgroup of GL(m;K) under matrix
multiplication; this subgroup is denoted by U (m) for K = C and by O(m) for K = R.

Proof. Due to Q" = Q, if Q is unitary, the inverse Q! = Q' is also unitary. For
unitary matrices Q, Q> it follows from

(Q1Q2)'Q1Q2 = Q5Q101Q2 = QI = Q0 =1

that the product Q; Q> is also unitary. O

6.3 The adjoints of the column vectors of Q are the row vectors of Q':

| | — g —
Q=1|q - gm ], Q= :
| | —qy—
Therefore, the matrix product Q'Q = I as defined by (2.3.b) provides
Ga=0=1 (=1:ml=1:m);

Vector systems with this property form an orthonormal basis of K.

Remark. A rectangular matrix Q € K"™*" with Q'Q = I € K"*" is called column-orthonormal
since its columns form an orthonormal system. It this case we have n < m (why?).

16Yet, the efficiency ratio remains g = 2.
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6.4 If we write QQ’ = I using outer products as in (2.6), we obtain the following
generalization of (2.4) for an orthonormal basis:

n !
I=Y" gy
k=1

When applied to the vector x € K", this equation provides its expansion into the
orthonormal basis as given by (2.5):

m

x =) (a4x) -

k=1

The components of x with respect to g are thus g, x, they form the vector Q'x.

Permutation Matrices

6.5 The operation of swapping the columns ak of a matrix A € K"*™ according
to a permutation17 T € Sy corresponds to a linear column operation, that is, a
multiplication with some matrix P from the right (such column operations affect
every row in the same manner and are therefore structured like (2.3.c)):

APp = |a™V ... "M | ie, Pr=1IPx=|ezq) - €nim)
\ | | |

Since the columns of P;; form an orthonormal basis, P, is unitary.

Exercise. Show that 7r — Py provides a group monomorphism Sy, — U(m) (S — O(m)); the
permutation matrices thus form a subgroup of GL(m; K) that is isomorphic to Sy,.

6.6 Accordingly, the adjoint P, = P;! = P__1 swaps the rows a;, of the matrix
A € K™*" by means of multiplication from the left:

— “%(1) — — ‘3;1(1) -
PLA = : ,ie, PL=PLI=
— alr[(m) - — e;r(m) -

1

A transposition T satisfies 7' = T and therefore P, = P.

6.7 A permutation 7t € S, is encoded as p = [7t(1),...,7w(m)] in MATLAB. In
this way, the row and column permutations P, A and AP, can be expressed as:

ACp,:), AC:,p)
One therefore obtains the permutation matrix P, as follows:

I = eye(m); P = I(C:,p);

7 The group of all permutations of the set of indexes {1,2,...,m} is the symmetric group Sy,.
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Il Matrix Factorization

Although matrix factorization is not a new
subject, | have found no evidence that is has
been utilized so directly in the problem of
solving matrix equations.

(Paul Dwyer 1944)

We may therefore interpret the elimination
method as the combination of two tricks: First,
it decomposes A into a product of two
triangular matrices. Second, it forms the
solution by a simple, explicit, inductive process.

(John von Neumann, Herman Goldstine 1947)

7 Triangular Decomposition

7.1 The two “tricks” of the above 1947 von Neumann and Goldstine quote for
solving a linear system of equations Ax = b can more formally be written as:

(1) Factorize A into invertible lower and upper triangular matrices if possible,
A=LU.
We refer to this process as the triangular decomposition of A.
(2) Calculate x by means of one forward and one back substitution
Lz =0, Ux = z.
It follows that b = L(Ux) = Ax.

We normalize such a triangular decomposition by specifying L as unipotent.

Remark. The elimination method one might be familiar with can be expressed as a combi-
nation of both of the “tricks” listed above. More often than not, this method is attributed to
Carl Friedrich Gauss, who spoke of eliminatio vulgaris (lat.: common elimination) in 1809,
but did not himself invent the method.!® We will use the term (Gaussian) elimination as a
synonym of triangular decomposition.

181, F. Grear: Mathematicians of Gaussian Elimination, Notices Amer. Math. Soc. 58, 782-792, 2011.

© Springer International Publishing AG 2018 21
F. Bornemann, Numerical Linear Algebra, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-3-319-74222-9 2
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7.2 As it were, not every invertible matrix has a normalized triangular decompo-
sition (we will be addressing this issue in §7.9), but nevertheless, if one exists, it is
uniquely defined.

Lemma. If for a given A € GL(m;K) there exists a normalized triangular decomposi-
tion A = LU (where L is unipotent lower triangular and U invertible upper triangular),
then both factors are uniquely defined.

Proof. Given two such factorizations A = LiU; = LyUy, then due to the group
properties of (unipotent) triangular matrices, the matrix

Ly'Ly = WU

is simultaneously unipotent lower triangular as well as upper triangular, and must
therefore be the identity matrix. Thus L; = Ly and U; = Uy. O

7.3 To calculate the normalized triangular decomposition A = LU of A € GL(m; K)
welet Ay = A, Ly =L, U; = U and partition recursively according to

w | U 1 ap | ulf
Ak = , Lk = , Uk = , (7.1a)
by | Bk Ik | Lk U1

whereby always
Ay = LUy

In the kth step, the row (Dck,ufc) of U and the column [ of L are calculated; in
doing so, the dimension is reduced by one:

partition , calculate
Ay —— g, u by, B — I}, A k=1:m).
ko) ko Ber o Tk Tk 71b) & (7.10) K kAL ( )

auxiliary quantities

The resulting Ay 1 provides the input for the following step.
When we perform the multiplication for the second block row of Ay = LUy
(the first row is identical by design), we obtain

be = ke, Be =l + Ly Ugsn -
—_———

=Api1
For a; # 0, we can simply solve for Iy and A, and are already done:"”

Iy = b/ o, (7.1b)

Ay = By — L. (7.1c)

Only in (7.1b) and (7.1c) we do actual calculations; (7.1a) is merely “book keeping”.
Since ay, . .., &, make up the diagonal of U, we have additionally proven:

19The matrix Ay1 is called the Schur complement of ay in Ay.
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Lemma. A matrix A € GL(m;K) has a normalized triangular decomposition if and
only if all so-called pivot elements ay, ..., a, are non-zero.

7.4 The normalized triangular decomposition can be executed in situ by overwrit-
ing by with [ and By with Ag, 1. In the end, the location in memory that initially
contained A has been overwritten by

[15} uy

\%) u’z

co ’ In—1 &m

From this compact memory scheme we subsequently obtain both factors in the form

1 ’ a uj

I - R

L1 1 X

7.5 In MATLAB, this kind of in situ execution of (7.1a)—(7.1c) can be completed
with the help of the following commands:

Program 8 (Trianglular Decomposition).

object  access in MATLAB

ag A(k,k)
uj, A(k,k+1:m)
bk/ lk A(k+1:m,k)

By, Axy1 A(k+1:m,k+1:m)

1 for k=1:m
> A(k+1l:m,k) = A(k+1l:m,k)/A(k,k); h (7.1b)
A(k+1:m,k+1:m) = A(k+1:m,k+1:m) - A(k+1:m,k)*A(k,k+1:m); % (7.1c)
4 end
Since the last loop iteration (k = m) only finds empty (zero dimensional) objects, we can
just as well end the loop at k = m — 1.
The reconstruction of L and U is achieved with the help of the following commands:

5 L = tril(A,-1) + eye(m);
6 U = triu(A);

Due to the -1 in tril(A,-1), only elements below the diagonal are read.
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7.6 The number?® of floating point operations needed for triangular decomposi-
tion is dictated in leading order by the rank 1 operation in (7.1c):

# flop for the calculation of Ay, q = 2(m — k).

Therefore the total cost is

m m—1
2
#flop for LU-Factorization =2 Y (m — k)? =2 Y K= §m3.
k=1 k=1
This cost of triangular decomposition is furthermore the dominating factor in
solving a linear system of equations (the subsequent substitutions for the second
“trick” from §7.1 only require 2m? flop).

Since A is only read once, and subsequently overwritten once by the compact
memory access scheme for L and U, only 2m? memory accesses have to be carried
out for input and output, leading to an efficiency ratio of

m
q = #flop/#iop = 3
Due to this linear dimensional growth, a memory access optimized Level-3 BLAS
implementation can achieve near peak performance for large m.
Exercise. Show that the cost for LU factorization is the same as for the associated multipli-
cation: even the product LU of a given lower triangular matrix L with an upper triangular
matrix U requires a leading order of 2m3/3 flop with an efficiency ratio of g = m/3.

7.7 The approach to solving linear systems of equations Ax = b with the help
of triangular decomposition as described in §7.1 offers many advantages; here are
two examples:

Example. Given n and the right-hand-sides by, ..., b, € K™, we want to calculate
the solutions x3, ..., x,; € K™, From these vectors we form the matrices

B= (b by | €K™, X=[xg o x| €K
| | | |

and calculate
(1) the triangular decomposition A = LU (cost = 2m?/3 flop);
(2) with the matrix version (Level-3-BLAS: xTRSM) of the forward and back sub-

stitution solutions Z and X of (cost = 21 - m? flop)

LZ =B, Uux =27

20WWe assume K = R by default; for K = C we have to multiply, on average, with a factor of four.
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For n < m the cost of the triangular decomposition outweighs the others. An
example application will be discussed in §20.6.

Example. For the simultaneous solution of Ax = b and A’y = ¢ we calculate
(1) triangular decomposition A = LU (and thereby, automatically, A’ = U'L");
(2) by forward and back substitution the solutions z, x, w and y of
Lz =0, Ux =z, Uw=c, L'y =w.

7.8 As stated in §7.3, as soon as ay = 0 for just one pivot element, a (normalized)
triangular decomposition of A does no longer exist. For example, the invertible

matrix
01
=1 1)

already exhibits ay = 0. This theoretical limitation is accompanied by a practical
problem. For example, by replacing the zero in A with a small number, we get

1072 1 1 0 102 1
A‘( 1 1>_LU' L‘(lozo 1)' u_< 0 171020)‘

On a computer only capable of calculations with 16 significant digits, rounding
leads to the actual numbers (symbol for such a representation by rounding: ‘=’)

1 —10%° = —0.99999 99999 99999 99999 .10
= —1.00000 00000 00000 1020 = —10%;

The subtraction of 1 from 10% is therefore under the resolution threshold. Conse-
quently, instead of U, the computer returns the rounded triangular matrix U,

~ 10720 1
u_( 0 —1020)’

which corresponds to the triangular decomposition of

~ ~ 10720 1
A_Lu_<1 o>

and not that of A. If we were to solve the system of equations defined by Ax = eq,
instead of the computer correctly returning the rounded value

= (1) (1)

it would return the solution
. (0
=)

of A% = e1, with an unacceptable error of 100% in the first component.
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Conclusion. In general, take the “Zeroth Law of Numerical Analysis” to heart:

If theoretical analysis struggles for « = 0, numerical analysis does so for & ~ 0.

Triangular Decomposition with Partial Pivoting

7.9 Once one realizes that the row numbering of a matrix is completely arbitrary,
both problems mentioned in §7.8 can be solved with the following strategy:

Partial Pivoting: In the first column of Ay, the first element with the
largest absolute value in that column is selected as the pivot element ay;
the associated row is then swapped with the first row of Ay.

Thus, by calling T the transposition of the selected row numbers, we replace (7.1a)
by the block partitioning (given A; = A, L1 =L, U; = U)

w | Uy 1 ap | u

k
P Ay = , L= , U= (7.2a)
K by | Bk le | Ly Uyt
where?!
|br| < [ag]-

We however cannot simply set Pék Ay = LUy, since we must accumulate the row
swaps of the subsequent steps in order to multiply consistently. To this end, we
inductively introduce the permutation matrices

1
P P! (7.2b)

/ Tk
P k-+1

and complete the triangular decomposition of the resulting matrix Ay that is
created after the successive row swaps have been completed:

PliAk = Lkuk. (7.2C)
By multiplying for the second row of blocks in this equation, we attain

P12+1bk = wly, Pli+1Bk = lku,/( + Lir1Ug41,

=P Ak
which (after left multiplication with P, 1) can be simplified to

by = aivy, By = vku,’c + Ak (where vy = Pryqly).

21Such inequalities (and the absolute values) have to be read componentwise.
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We have thus performed exactly the same computational steps as described in §7.3,
namely

O = bk/ﬂék, (7.2d)
Ak+1 = Bk — ‘Ukl/l]/(. (728)

The only difference between this approach and that of (7.1b) and (7.1c), is that we
attain /; only after performing all remaining row-swaps on v:

lk = P}2+10k. (72f)
Remark. The in situ variant of the algorithm is realized by executing the row swaps of all

columns of the matrix in memory (i.e., for Ay as well as vy,...,v).

7.10 The in situ execution of (7.2a)—(7.2e) can be written in MATLAB as:

Program 9 (Triangular Decomposition with Partial Pivoting).
We calculate P’A = LU for a given A. As in §6.7, we can realize the row permutation P’ A
as A(p, :) with the vector representation p of the corresponding permutation.

p = 1:m; % initialization of the permutation

3 for k=1:m

[~,j] = max(abs(A(k:m,k))); j = k-1+j; % pivot search

p(lk j1) = p([j k1); ACL[k jl,:) = AC[j k1,:); % row swap

A(k+1:m,k) = A(k+1:m,k)/A(k,k); % (7.24)

A(k+1:m,k+1:m) = A(k+1l:m,k+1:m) - A(k+1l:m,k)*A(k,k+1:m); % (7.2e)
end

Here too, the reconstruction of L and U can be completed with the following commands

9 L = tril(A,-1) + eye(m);

U = triu(A);

In order to reach peak performance, one should replace this program with the
MATLARB interface to the xGETRF routine from LAPACK:

[L,U,p] = 1u(A,’vector’);

Without rounding errors, A(p, :) =L * U would be valid.

7.11 As it turns out, the algorithm in §7.9 works actually for all invertible matrices:

Theorem. Given A € GL(m;K), the triangular decomposition with partial pivoting
results in a permutation matrix P, a unipotent lower triangular matrix L and an invert-
ible upper triangular matrix U where

PA=LU, |LI<L

Notably, all pivot elements are non-zero.


http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational.html#ga0019443faea08275ca60a734d0593e60
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Proof. Through induction we can show that all Ay are invertible and wy # 0. By
assumption A; = A is invertible (base case). As our induction hypothesis, we then
stipulate Ay is also invertible. If the first column of Aj were to be the null vector,
Ay could not be invertible. Therefore, the first element with the largest absolute
value is some &y # 0 and the division for the calculation vy in (7.2d) is valid. From
(7.2a)—(7.2e) it directly follows

I
1 1‘ ak‘uk ak‘uk

P A =
0 ‘Akﬂ

/

— Uk I K — Ok ‘ I bk ‘ Bk

Since the left most entry, being the product of invertible matrices, is itself an

invertible matrix, the triangular block matrix on the right must also be invertible.
Thus, Ay, is invertible and the induction step is complete.

If we set k = 1in (7.2c) and P = P;, we can see that P’A = LU. From |by| < |ay|

and (7.2d) follows |v| < 1 and with it |[| < 1, such that above all |L| < 1.2 O

7.12 The methods to find a solution of the linear system of equations discussed
in §§7.1 and 7.7 do not change at all structurally when we transition from A = LU
to P’A = LU. In this way, Ax = b becomes P’ Ax = P'b. We must only replace b
with P'b in the resulting formula (i.e., permute the rows of b).

In MATLAB, the solution X € K"*" of AX = B € K"*" is therefore given by:

[L, U, p] = 1u(A,’vector’);

> Z = L\B(p,:);
3 X = U\Z;

or equivalently, if we do not require the decomposition P'A = LU for re-use:

X = A\B;

8 Cholesky Decomposition

8.1 For many important applications, from geodesy to quantum mechanics to
statistics, the following matrices are of utmost importance:

Definition. A matrix A € K"™*" with A’ = A is called self-adjoint (for K = R
often also symmetric and for IK = C hermitian). The matrix A is furthermore called
positive definite, when

YAx>0  (0#xeK™).
We will refer to self-adjoint positive definite matrices by the acronym s.p.d..

Remark. For self-adjoint A, the term x’ Ax = x’ A’x = (x’ Ax)’ is always real, even for K = C.
Positive definite matrices have a trivial kernel and are therefore invertible.

22Recall that inequalities and absolute values have to be read componentwise.
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8.2 If we partition a matrix A € K™*"™ in the form

Ac | B
A= , A e Kk
C|D

then Ay is called a principal submatrix of A. Generally, at least in theory, there is no
need to pivot in getting the triangular decomposition of A when all the principal
submatrices Ay inherit some structure of the matrix A implying invertibility.
Exercise. Show that A € GL(m; K) has a triangular decomposition if and only if all principal
submatrices satisfy Ay € GL(k;KK) (k =1 : m). Hint: Partition similarly to §8.3.

For example, along with A, the Ay are s.p.d., too. The self-adjointness of the Ay
is clear and for 0 # x € KX it follows from the positive definiteness of A that

/

X A | B x

YArx=[— — ] >0.
0 C|D 0

8.3 For s.p.d. matrices there exists a special form of triangular decomposition
which generalizes the notion of the positive square root of positive numbers:

Theorem (Cholesky Decomposition). Every s.p.d. matrix A can be uniquely represented
in the form

A=LL,
whereby L is a lower triangular matrix with a positive diagonal. The factor L can be
constructed row-wise by means of the algorithm (8.1a)—(8.1c).

Proof. We construct the Cholesky decomposition Ay = LiL; of the principal
submatrices Ay of A = A, step by step by partitioning
s Ax-1 | ag . Ly " Ly | k& 61
= i = , = . (81a
k ay 193 k l;( )\k k )\k )

In the kth step, the row (I}, Ay) of L is calculated. In doing this, we prove by
induction that Lj is uniquely defined as a lower triangular matrix with a positive
diagonal. When multiplied out, Ay = LiL; shows initially

Ak71 = kalLl/c—l’ kallk = Ay, ZI/CLI/C—l = Ll;(, l]/clk + A% = K.

The first equation is nothing more than the factorization from step k — 1; the third
equation is the adjoint of the second; the second and fourth one can easily be
solved as follows:

I, = Lkilluk (forward substitution), (8.1b)

M= \J o — I, (8.1¢)
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Here, in accordance with our induction hypothesis L;_; is uniquely defined as a
lower triangular matrix with positive diagonal, and therefore notably invertible so
that [} in (8.1b) is also uniquely given (there is nothing to be done for k = 1). We
must still show that

ap — Il >0,

so that the (unique) positive square root for Ay can be extracted from (8.1c). For
this, we use the positive definiteness of the principal submatrix Ay from §8.2.

Given the solution xj from Lj_;x; = —Ij it actually holds that
! /
Xx Xk Ly 1L ‘ Lyl Xk
o< |—) Al —]=(x|1) |,
1 1 Ly | o 1

/ ! / I/ /
= X3 Ly Ly _qxp + 3 L q L + G Ly x Foge = o — L.
—_—

=l ==l ==Ll

Due to Ay > 0, Ly can now be formed as uniquely given lower triangular matrix
with positive diagonal; the induction step is complete. O

Remark. The algorithm (8.1a)—(8.1c) was developed by André-Louis Cholesky from 1905
to 1910 for the Service géographique de I'armée and in 1924 was posthumously published
by Major Ernest Benoit; Cholesky’s hand-written manuscript from Dec. 2, 1910 was first
discovered in his estate in 2004. For a long time, only a small number of french geodesists
had knowledge of this method. This changed when John Todd held a lecture on numerical
mathematics in 1946 at the King’s College of London, thereby introducing the world to the
Cholesky decomposition.3

8.4 We code the Cholesky decomposition (8.1a)—(8.1c) in MATLAB as follows:

Program 10 (Cholesky Decomposition of A).

L = zeros(m);

for k=1:m
1k = L(1:k-1,1:k-1)\A(1:k-1,k); % (8.1b)
L(k,1:k-1) = 1lk’; % (8.1a)
L(k,k) = sqrt(A(k,k) - 1lk’*1k); % (8.1c)

end

Notice that the elements of A above the diagonal are not read by the computer
(the algorithm “knows” the symmetry). In principle, this memory could be used
for other purposes.

Exercise. Modify the program so that it returns an error and a vector x € K™ with x’Ax <0
if the (self-adjoint) matrix A is not positive definite.

2More on this in C. Brezinski, D. Tournes: André-Louis Cholesky, Birkhauser, Basel, 2014.


http://www-history.mcs.st-and.ac.uk/Biographies/Cholesky.html
https://goo.gl/ADGYvz
http://sabix.revues.org/pdf/529D
https://en.wikipedia.org/wiki/Geodesy
http://en.wikipedia.org/wiki/John_Todd_(computer_scientist)
http://goo.gl/cRHQ0e
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In order to reach the peak performance, one should call the MATLAB interface
to the xPOTRF routine from LAPACK:

L = chol(A,’lower’);

When U = L/, then A = U’'U is an alternative form of the Cholesky decomposition.
Since the factor U can be constructed column-wise in accordance with (8.1a), its
calculation is slightly faster in LAPACK and MATLAB than that of L (cf. §4.8):

U = chol(A);

8.5 The number of floating point operations needed for a Cholesky decomposi-
tion is dominated by the operation count of the forward substitutions in (8.1b).
Therefore, the total computational cost is

m
#flop for Cholesky decomposition = ) | K> = %m3,
k=1
and is thereby (asymptotically) only half as large as the cost of a normalized
triangular decomposition, without exploiting symmetry, as found in §7.6.

Since only the lower half of A must be read and only the triangular factor L
must be stored, only m? memory accesses are necessary for input and output (in
leading order). Hence, as with triangular decomposition the efficiency ratio is

q = #flop/#iop = %,

so that with the help of Level-3 BLAS, an memory-access-optimized implementa-
tion can reach near peak performance for large m.

9 QR Decomposition
9.1 We will refer to A € K"*" as a matrix with full column rank when its columns
are linearly independent. Such matrices can be characterized in a number of ways:

Lemma. A full column rank of A € K™*" is equivalent to each of the following prop-
erties:

(1) rank A =dimim A =n < m, (2) ker A = {0}, (3) A’Ais s.p.d.
The matrix A’ A is called the Gramian matrix of the columns of A.

Proof. The equivalence to (1) and (2) follows directly from §2.8 and should in fact
be well known from past introductions to linear algebra. According to §2.11, A’A
is self-adjoint and it holds according to §2.9 that

x'(A'A)x = (Ax)'(Ax) >0  (x € K").
Due to (Ax)' (Ax) = 0 & Ax = 0, both (2) and (3) are equivalent. O


http://www.netlib.org/lapack/explore-html/d3/d8d/group__complex16_p_ocomputational.html#ga93e22b682170873efb50df5a79c5e4eb
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9.2 Our goal is to factorize a matrix A € K"*" with full column rank as
A=QR
with Q € K"*" being column orthonormal?* and R € GL(n;K) upper triangular.

Such a QR decomposition is said to be normalized, if the diagonal of R is positive.

Remark. Since the columns of Q span the image of A = QR, they form, by definition, an
orthonormal basis of the image.

9.3 The QR decomposition of A is closely related to the Cholesky decomposition
of the Gramian matrix A’ A:

Theorem. Every matrix A € K™*" with full column rank has a unique normalized
QR decomposition. The factors can be determined as follows:

A’A = R'R (Cholesky decomposition of A’A),

R'Q' = A" (forward substitution for Q’).
Proof. We assume that A has a normalized QR decomposition. Then,

A'/A=R' QQR=RR
—~
=1

is according to Theorem 8.3 a unique Cholesky decomposition of the Gramian

matrix A’A, which according to Theorem 9.1 is s.p.d.. Given the upper triangular
factor R with positive diagonal, the expression

Q= AR"!

is therefore also uniquely defined. By showing the column orthonormality of the
thus defined factor Q, we can conversely ensure the existence of the QR decompo-
sition itself:

QQ=(L'A)AR ) =L 'LRR ' =1
with L = R’ from the Cholesky decomposition A’A = R'R. O

9.4 The construction of the QR decomposition via the Cholesky decomposition
of the Gramian A’A is only seldom used in practical numerical work for the
following two reasons (see also §16.5):

o It is more expensive for n ~ m than algorithms which work directly on A.

e The orthonormality of the factor Q is not explicitly built into the process, but
is rather only the implicit result of the theory. Such an indirect approach is
extremely susceptible to the influence of rounding errors.

Exercise. Show that the number of floating point operations in the algorithm from Theo-
rem 9.3 is (in leading order) 2mn? + n3 /3. Discuss the cases of n < m and n ~ m.

24Recall from §6.3 that such matrices are defined by Q'Q =1 € K"
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Modified Gram-Schmidt

9.5 For the direct calculation of the normalized QR decomposition of A from §9.3,
we set A] = A, Q1 = Q, Ry = R and partition stepwise according to?®
Pe | Ty
Ap = | by ‘ Br) = QxRy, Qi = | gk ‘ Qk+1), Re= . (91a)
( ) ( ) Rit1

In the kth step, the column g of Q and the row (py, ) of Ry are calculated:

partition calculate /
A —— by, B Lk, 1, A k=1:n).
ko) Nl (9.1b)~(9.1¢) Pke Qe Tier ki1 ( )

auxiliary quantities

The output Ay1 thus provides the input for the next step. If we expand the single
block row of Ay = QyRy, we obtain

b = qrpr, B = qi7y, + Qk+1Ryv1,
———

=Akt1
which we solve for py, gk, r}, Axr1- From ||qell2 = (q;.q¢)'/? = 1 we get with p; > 0
ok = |1bell2, (9.1b)
9k = b/, (9.1¢)

and from q;,Qy41 = 0 it follows that
9kBr = 4k 11+ 7kQuc1 Resa =1
\7,1./ \—:,O—/

so that finally
"t = By (9.1d)
A1 = By — qi7} (9.1e)
The algorithm (9.1a)—(9.1e) is called modified Gram—-Schmidt (MGS).

Remark. In 1907, Erhard Schmidt described a process for orthonormalization which he
attributed, in a footnote, to the 1879 dissertation of the insurance mathematician Jorgen
Pedersen Gram (who had however used determinants); the process was first referred to as
Gram—Schmidt by the statistician Y. K. Wong in 1935. The slightly modified Gram-Schmidt
process is absolutely preferable for practical numerical work and can essentially be found
in the famous fundamental work of Pierre-Simon Laplace on probability theory (1816).2°

We will thereby employ Qy and Ry as submatrices of the factors Q and R, whose unique existence we
have already ensured in Theorem 9.3. In particular, Qi is column orthogonal and Ry is an upper
triangular matrix with positive diagonal so that g.qx = 1, 7;,Qx+1 = 0 and p; > 0.

263,71, Leon, A. Bjorck, W. Gander: Gram—Schmidt orthogonalization: 100 years and more, Numer. Linear
Algebra Appl. 20, 492-532, 2013.


https://en.wikipedia.org/wiki/Erhard_Schmidt
https://goo.gl/mprJM7
https://goo.gl/mprJM7
https://goo.gl/OmEsz
http://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://onlinelibrary.wiley.com/doi/10.1002/nla.1839/abstract
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Exercise. Observe Ag;q = (I — q;qx)By and show: (1) if a is the kth column of A then

ok = (I = qk—1dk_1) - (I —qqp)ax  (k=1:n).
(2) The orthogonal projection P = I — qq’ with q'q = 1 satisfies Pqg = 0 and Pu = u if ¢'u = 0.

9.6 The MGS-Algorithm (9.1a)—(9.1e) can be executed in situ by overwriting by,
with g and By with Ay so that finally the matrix Q is found in memory where
the input A was previously stored. In MATLAB, the process can be coded as:

Program || (QR Decomposition with the MGS Algorithm).

object  access in MATLAB

Ok R(k,k)
i R(k,k+1:n)
by, gk AC:,k)
By, Axi1 A(:,k+1:n)
R = zeros(n);
> for k=1:n
R(k,k) = norm(A(:,k),2); % (9.1b)
AC:,k) = A(C:,k)/R(k,k); % (9.1c)
R(k,k+1:n) = A(C:,k)’*A(:,k+1:n); % (9.1d)
AC: ,k+1:n) = A(C:,k+1:n) - A(C:,k)*R(k,k+1:n); % (9.1e)
end

After execution of the program, the MATLAB variable A contains the factor Q.

9.7 The computational cost for QR decomposition is dictated in leading order by
the Level-2 BLAS operations in (9.1d) and (9.1e):

#flop for the computation of r;, = 2m(n — k),
#flop for the computation of Ay 1 =2m(n —k).
The total computational cost is therefore

n
#flop for QR decomposition with MGS = 4m Y _ (n — k) = 2mn”.
k=1

Since A is read and subsequently overwritten with Q and also R has to be stored,
input-output requires 2mn + n?/2 memory accesses. Hence, the efficiency ratio is

2mn? n n<<m,
= #flop/#iop = ————— ~
1 P P 2mn + n?/2 %m ——

Thanks to Level-3 BLAS, peak performance can be approximately reached for
large n; a large m alone, however, would not be enough.
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9.8 For the calculation of an (often not normalized) QR decomposition, MATLAB
offers the interface

[Q,R] = qr(A,0);
to the LAPACK routines xGEQRF, xORGQR und xUNGQR. These do not use the MGS al-
gorithms but rather the Householder method; details can be found in Appendix D.

The factor Q can thus be much more accurate (more on this later) and the factor R
is of similar quality. Nevertheless, this gained accuracy does come with a cost of

#flop for QR decomposition with Householder = 4mn? — %n3,

which is a factor of 4/3 to 2 higher than the MGS algorithm. These costs can
however be reduced by a factor of 2 when Q is not explicitly computed and instead
an implicit representation is used to calculate matrix-vector products such as Qx
or Q'y. The computational cost of the latter operations is then proportional to mn.
Unfortunately, MATLAB does not provide an interface to these representations.
Still, the factor Q is not needed for many applications, and the factor R can be
directly calculated with the commands

R = triu(qr(A)); R = R(1:n,1:n);
for half the cost, i.e., 2mn? —2n3/3 flop.

Givens Rotations

9.9 The normalized QR decomposition of a vector 0 # x € K? is given by

¢1 ¢1/p Iz
= , = X .
) G2/p P P ?
h\,—/ N —
=X =0

By extending gq; to a suitable orthonormal basis g1, 42, we directly obtain the
unitary matrix (check it!)

0 ( ) a8 detQ =1
= ‘h‘ﬂlz =p , et} =1,
Lo &
for which it then holds
[[x[]2 ) [[x[]2
x=0Q , O'x = . 9.2)
0 0

By multiplying with Q' we thereby “eliminate” the second component of x; such
an () is called Givens rotation induced by the vector x. Using () = I, we see that
x = 0 is actually no exception and the elimination relationship (9.2) can be made
to hold for all x € K2.


http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational.html#ga3766ea903391b5cf9008132f7440ec7b
http://www.netlib.org/lapack/explore-html/d9/d1d/dorgqr_8f.html#a14b45f7374dc8654073aa06879c1c459
http://www.netlib.org/lapack/explore-html/df/d10/zungqr_8f.html#a61aedc9e715163bda8e58f73fad0030f
http://en.wikipedia.org/wiki/Alston_Scott_Householder
http://en.wikipedia.org/wiki/Wallace_Givens
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9.10 Using Givens rotations, a QR decomposition of a general matrix A € K"™*"
can be calculated without any condition on the column rank by column-wise “elimi-
nating”, entry by entry, every component below the diagonal from the bottom up.
Schematically this process takes on the following form:

* ok % * k% x k% * k% gt f
***,_***,.***,.ﬁﬁﬁ,loﬁﬁ
T 0t ¢ 0 x 0«
" 0t 0 * * 0 * x* 0 *
* % % * % % * % % * % % * % %
{0 o [ O x x [0 f g o, [0 x x| , [0 x x
QL>O**QL>OjﬁQL>OOﬁQL>OO*QL>OOﬁ
0 f 1 0 0 ¢ 0 0 = 0 0 ¢ 0 0 O
0 0 ¢ 0 0 = 0 0 = 0O 0 0 0o 0 0

Here, the “+” represent arbitrary elements. In every step, the two elements that
make up a Givens rotation (); are colored blue. This way, assuming a suitable
dimension for I, we have

Q)

Il

=2

2
/N
* %
~

I
-~
O
~—___~

as constructed in (9.2). In order to make it clear that Q; only has an affect on the two
related rows, we label the elements that undergo a change during multiplication
with a ‘4”. Finally, after s such steps, the product”’ Q' = Q.- - - Q] lets us arrive at:

Theorem. For A € K"™*" with m > n, there exists a unitary matrix Q € K"™*™ and
an upper triangular matrix R € K", such that*

R
a=(@|@) (-] 4=ax 93)
N’
=Q
The first relationship in (9.3) is called the full QR decomposition of A, while the second
is called the reduced QR decomposition of A.

Exercise. State a corresponding theorem for m < n.

?In practical numerical work, one only stores the Givens rotations Q) ; and does not explicitly calculate
the matrix Q. The matrix vector products Qx and Q'y can then be evaluated in 6s flop by applying
Q; and Q; to the appropriate components of x and y.

28Tn MATLAB (though it is based on the Householder method): [Q,R] = qr(A);
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9.11 The Givens process from §9.10 is especially effective when only a few elements
need to be eliminated in order to reach a triangular form.

Example. Only s = 4 Givens rotations are required for the calculation of the QR
decomposition

Xk ok k% o. 0 ¢ ¢ 8 ¢
H=|0 %« x x x| =— |0 0 # # #|=R
0 0 % =x = 0 0 0 ¢ ¢
0 0 0 x = 000 0 ¢

In general, matrices H € IK"™*™ with such an occupancy structure are called upper
Hessenberg matrices. As in §5.2 we characterize these matrices by

HVi C Vi (k=1:m—1).

Their QR decomposition can be calculated with only s = m — 1 Givens rotations.
(This will play a large role late during our discussion of eigenvalue problems).

Exercise. How many floating point operations are needed for a QR decomposition of an
upper Hessenberg matrix provided Q is not expanded but rather only the individual Givens
rotations )y, ..., () are stored? Answer: #flop = 3m? for K = R.

Exercise. We have introduced three standard form matrix factorizations: (a) triangular decom-
position with pivoting: A = PLU; (b) Cholesky: A = LL; (c) orthogonalization: A = QR.

o Do there exist factorizations of the following form (pay attention to the underlying
assumptions and dimensions)?
(@ PUL  (b)UU () QL, RQ, LQ
e Which of the variants can be reduced to its respective standard form? If applicable,
write a short MATLAB program using the basic commands 1u, chol or qr.

Hint: A diagonal splits a flat square into two congruent triangles. Which geometric transformations map
one triangle onto the other? What does that mean for a matrix if considered a flat array of numbers?


http://en.wikipedia.org/wiki/Karl_Hessenberg

1l Error Analysis

Most often, instability is caused not by the
accumulation of millions of rounding errors,
but by the insidious growth of just a few.

(Nick Higham 1996)

Competent error-analysts are extremely rare.

(Velvel Kahan 1998)

Contrary to a futile ideal of absolute, uncompromisingly precise calculation,
the real world knows an abundance of unavoidable inaccuracies or perturbations,
in short errors, which are generated, e.g., from the following sources:

o modeling errors in expressing a scientific problem as a mathematical one;
o measurement errors in input data or parameters;

o rounding errors in the calculation process on a computer;

o approximation errors in resolving limits by iteration and approximation.

Despite the negative connotation of their names, such errors, inaccuracies and
perturbations represent something fundamentally valuable:

Errors are what make efficient numerical computing possible in the first place.

There is a trade off between computational cost and accuracy: accuracy comes
at a cost and we should therefore not require more accuracy than is needed or
even technically possible. On the other hand, we have to learn to avoid unnecessary
errors, and learn to classify and select algorithms. For this reason, it is important
to become familiar with systematic error analysis early on.

© Springer International Publishing AG 2018 39
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10 Error Measures

10.1 For a tuple of matrices (vectors, scalars), we can measure the perturbation

perturbation -~

T = (Al,...,At) — > T=T+E= (A1+E1,...,At+Et)
with the help of a basic set of norms?’ by defining an error measure [E] as follows:
e absolute error [Elabs = maxj—1. || Ej|
e relative error® [Elrel = maxj—1 || Ej| /]| Ajl
How we split a data set into such a tuple is of course not uniquely defined, but
rather depends on the identification of independently perturbed components. If a

tuple consists of scalars (e.g., the components of a matrix or a vector), we refer to it
as a componentwise error measure.

10.2 For fixed A the error measure E — [E] is subject to the exact same rules as a
norm; the only difference being that a relative error can also assume the value cc.
A relative error can also be characterized as follows:

[Elra<e < |Ell<e-[[4] (G=1:1t).
It notably must follow from A; = 0 that E; = 0, that is unless [E];e; = c0. Hence,

Componentwise relative error is for example taken into account when the occupancy
structure (or sparsity structure) of a matrix is itself not subject to perturbations.

10.3 The choice of a relative or absolute error measure can be made on a problem
to problem basis, e.g.:

e quantities with physical dimensions (time, distance, etc.): relative error;
e rounding error in floating point arithmetic (cf. §12): relative error;
e numbers with a fixed scale (probabilities, counts, etc.): absolute error.

Yet sometimes, this decision is just pragmatically based on which of the concepts
allows for a simpler mathematical result such as an estimate.

2For a review of norms see Appendix C. We will limit ourselves to the norms from §C.9.
30In this context we agree upon 0/0 = 0 and €/0 = oo for € > 0.


https://en.wikipedia.org/wiki/Sparse_matrix
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Il Conditioning of a Problem

1.1 We will formalize a computational problem

’data ‘ — ’math. model f ‘ — ’result ‘

as the evaluation of a mapping®! f : x — y = f(x). Here, there are no “actual”,
precise values of the data that could claim any mathematical truth to themselves,
but data (unlike, if any, parameters) are inherently subject to perturbations:

’perturbation of data ‘ — ’ math. model f ‘ — ’ pertubation of result

If such a perturbation of x on the input yields some %, by mathematical necessity,
rather than y = f(x) we “only” obtain the result §j = f(%).

1.2 The condition number describes the ratio of the perturbation of the result to
the perturbation of the input. For a given problem f, at a data point x, using the
measure [-], the worst case of this ratio is—in the limit of very small perturbations—

defined as (#) — F]
k(f;x) = lirrfnguP %
At a data point x, a problem f is called
o well-conditioned if x(f;x) % 1;
o ill-conditioned if x(f;x) > 1;
o ill-posed, if x(f;x) = oo.

Where exactly do we draw the line for “x > 1” (read: condition number far
greater than 1)? The phenomenon of ill-conditioning quantitatively depends on
the requirements and the accuracy structure of the application at hand. For the
sake of definiteness, take a value of say x > 10° for the following passages.

Remark. To put it as lucent as possible: whether a problem is ill-conditioned (ill-posed) or
not depends only on the underlying mathematical model. The question does not, never
ever, depend on the prospect that the problem might be, at some point, be tried to be solved
using algorithms on a computer. The question of ill-conditioning (ill-posedness) is therefore
completely independent of the realm of algorithms and computers. In the case of a highly sensitive
problem, one has to carefully consider why a result should be calculated in the first place
and to which perturbations it is actually subjected.

311n this very general description, x represents a tuple of matrices as in §10.1.
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1.3 To exemplify this concept, we use a “classic” of geometric linear algebra.

Example. The conditioning of a problem can be nicely visualized when we attempt
to find the intersection of two lines (that is, hereby, the data):

7.—4

The lines shown are only accurate within their width. The intersection on the left
is essentially as accurate as the data; on the right, for two lines close to each other,
the accuracy of the intersection is drastically reduced. This is called a glancing
intersection. The problem on the left is therefore well-conditioned and the one on
the right is ill-conditioned if put to the extreme.

I 1.4 The definition of the condition number of a problem f at a data point x can
alternatively be put as follows: take the smallest number «(f; x) > 0 such that

[f(x+w) = f(x)] <x(f;x) - [w] +o([w])  ([w] —0).
Here, the Landau-Symbol o(€) represents a term which converge superlinearly to-
wards zero as € — 0: o(€)/e — 0. When we omit such additive, superlinearly
decaying terms and only list the term of leading order relative to the perturbation,
we can denote this briefly using the symbol < (and accordingly >’ and '=):

[f(x +w) = f(0)] < x(f;x) - [w]-

1.5 For perturbations w — 0, a differentiable map f : D C R™ — R has, by
definition, the linearization
flx+w) = f(x) + f(x) - w.

Here, the derivative is the row vector composed of the partial derivatives

(%) = (01f(x), ..., 9mf(x)) € K™,
Through linearization, closed formulas for the condition number can be attained.
The case of componentwise relative error can be completed as follows:
[f(x +w) — f(x)] |f(x+w) — f(x)]

x(f;x) =limsu = lim su
(fix) = limsup ] e @ ]

f'(x) - w| @ 1) -wl @ [f()]- ]

= lim sup ——~——

o e @ [0~ o @ Tl — [F()]
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Here, (a) holds, because numerator and denominator are absolutely homogeneous
in w. By also proving (b) below, we obtain the following condition number formula:

Theorem. For a differentiable f : D C R™ — R and f(x) # 0 it holds
/()] - [x]
k(f;x) = L 11.1)
Vi) = s

with respect to componentwise relative error in x and relative error in f(x). This formula
provides the smallest number «(f;x) > 0 such that

[f(x+w) — f()|
f(2)l

We call the value «(f; x) the componentwise relative condition number of f at x.

<x(f;x)e where |w| <e€lx|ase— 0.

Proof. Sety’ = f'(x). The perturbation w of x satisfies, with respect to componen-
twise relative error, [w] = ||wy|/e, where w, € R™ represents the componentwise
division of w by x; the componentwise product of y and x will be denoted by
*y € R™. Hence, in accordance with (C.3),

ly' - w| "y - wyl Y -0 /
su = su =su = "y'lleo = Pyl = [y'] - |x].
ore [ oy Twsllee i Tolle 'Y =
whereby (b) is proven.3? O

1.6 With formula (11.1) at hand, we can directly ascertain the componentwise
relative condition number x of the elementary arithmetic operations f:

fla+e a-o ae o ' Va

|&11+1|
- R V.

for ¢&1,8 > 0.
K

We will walk through the calculations for addition and subtraction, the remaining
values are left as an exercise. When x = ({;)j=12 and f(x) = {1 & ¢ it holds

(&l (¢l
) D (&) ov-(&) @]+ el

L A A AN e A

In the case of addition, this can be reduced for ¢1,&, > 0 to x = 1. With the notable
exception of genuine subtraction, all elementary operations are well conditioned
with respect to componentwise relative error. Genuine subtraction, however, is
ill-conditioned in the case of cancellation, that is, in the case

61 £ 82| < [G1] +182], (11.2)
and it is even ill-posed for ¢; == = 0.

32Notice that the zero components of x in this example are not a problem (why?)
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Example. Let us subtract the numbers

& =1.23456897 - 10°
& =1.23456787-10°,

where the "2 represents uncertainty in the 9th decimal place. This yields the result
& — & =0.00000112-10° =1.12-107°,

in which the uncertainty has been moved to the 3rd decimal place of the normalized
representation (where the leading position is nonzero): We therefore have lost the
significance of 6 decimal places. In this case, the condition number of subtraction is

K~ 2.2-10°
Quite generally it can be stated that:

Compared to the data, a result loses about log,, x significant digits in accu-
racy (with x the componentwise relative condition number of the problem).

Exercise. Show the componentwise relative condition number of the inner product x'y to be

|x,‘ ) ‘y| m
K=2 x,y € R™). (11.3)
‘xl-y| ( y )

Characterize the ill-conditioned/ill-posed case and compare with §11.7.

Conditioning of Matrix Products and of Linear Systems of Equations

1.7 Let us examine the matrix product AB for A € K"*", B € IK"*? subjected
to perturbations with a small relative error in the form of

A=A+E, |E|<ellAl, B=B+F, |F|<elB|.
It then holds, given the triangular inequality and submultiplicativity, that
IAB — AB| < |[E]| - IBI| + [|All - I|F]| + IE]l - |[F]| < 2e[[All - [IBII,
—_— Y Y
<ellAllIB]  <ellAll-IBIl  <eZ[|A]-]B]

so that the relative error of the perturbed result satisfies the following estimate:

|AB—ABJ . ,lIA|- B
14B] 14~ 5]

Here, if only one of the two factors A, B, is perturbed, we can omit the factor 2.

Remark. The relative condition number x of the matrix product AB therefore fulfills the
estimate 14| 1B
k< 202
ST A
In specific cases, such upper bounds provide either proof of a good condition number or

otherwise hint towards a poor condition number.
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Exercise. For componentwise perturbations of the form

A=A+E, |E| <€A,

B=B+F, |F|<elB|,

show the following estimates (the factor 2 is omitted when only one factor is perturbed)

|AB — AB| < 2¢|A| - |B|,

AB — ABl|eo - Al- oo
|AB = ABlle ., II1A]|Blllo_

(11.4)

[ABlle =7 J]A-Bllw

11.8 For a linear system of equations Ax = b we distinguish two cases:

Perturbation of b € K™ with a relative
error of the form

b=b+r, |l <ellol,
leads to AX¥ = b+ r, so that
f—x=A"lr
With the induced matrix norm it holds
12— < A7 - 7l
<ATY] LA - llx] e.

The relative error of the result there-
fore fulfills the estimate

Perturbation of A € GL(m;K) with a
relative error of the form

A=A+E  |E[<elA],
leads to (A + E)¥ = b, so that
x—%=A'Ex.
With an inducing vector norm it holds
lx ==l < [IA7H] - E] - 1]
<Al Al 2l e.

The relative error of the result (here
in reference to %) therefore fulfills

lx — %]

<x(A)e.
1]

(11.5)

Here, we have defined
K(A) = [[A7]|-[1A]

as the condition number of A; for a non-invertible A € K"*™ we set x(A) = oo.

Remark. In both cases, we see in the limit € — 0 of small perturbations that the relative
condition number « of the linear system of equations is bounded by x < x(A). Actually,
equality holds true if just the matrix A is perturbed (cf. §11.9 as well as (16.4)).

Exercise. Show that given a componentwise perturbation of Ax = b where

b=b+r, |r|<elb|, or A=A+E, |E|<el4]
the relative error of the perturbed result ¥ is bounded by
¥ xlleo . A7 A] |x] [|eo
% < cond(A, x) e, cond(A,x) = %
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This Skeel-Bauer condition number cond (A, x) of a linear system of equations further satisfies
cond (4, x) < cond(4) = || AT [A] [|eo < oo (A) = A7 [eo]| Alleo-

Construct a matrix A where ko (A) > 1 that nevertheless satisfies cond(A) ~ 1.

11.9 Geometrically speaking, the condition number of a matrix A describes the
distance to the nearest non-invertible (short: singular) matrix:

Theorem (Kahan 1966). For the condition number x(A) belonging to an induced matrix
norm it holds that

K(A)t = n{ ||||A|||| A+ E is singular }

This is consistent with the extension of the definition to x(A) = oo for a singular A.
Proof. If A + E is singular, there is an x # 0 where (A + E)x = 0, which implies

|||

0 < [lx|l = A7 Ex[| < A [E[ [Ix] = x(A) 11

and therefore via division x(A)~" < ||E||/||A]|.

In a second step, we must construct an E such that equality holds (for the sake
of simplicity, we will restrict ourselves to the || - |;-norm). To this end, we choose
a vector y normalized to ||y||2 = 1, for which the maximum is taking in

1A 2 = max) 1A ull2 = A7 yl2.

We set x = A~'y # 0 and select the perturbation of A as the outer product

yx'
x'x’

The spectral norm can be calculated as (we will leave step (a) as an exercise)

@ llylallxfla _ 1 1 [[Ell2 -1
IIEl2 = =nr2(A)
=3 lxl2 A7 1A]l2
But now A + E is singular, because (A+ E)x =y —y =0and x # 0. O
Exercise. Carry out the second half of the proof for the matrix norms || - ||; and || - ||eo

I1.10 If a matrix A is subjected to an uncertainty of relative error € while having
a large condition number x;(A) > €71, it then could actually “represent” some
singular matrix A as provided by Kahan’s theorem (think of an uncertainty as a
kind of blur that makes things indistinguishable). Hence, we define:

Matrices A with x(A) > e~ are called e-singular.33

33 Anticipating the discussion in §12.6 we put on record that e-singular matrices are called numerically
singular if € < €mach, Where €y, is the machine precision to be defined in Lemma 12.2.
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http://en.wikipedia.org/wiki/Friedrich_Ludwig_Bauer
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12 Machine Numbers

12.1 A t-digit floating point number ¢ # 0 of base p € IN>, is written as

=4di.dy---di x B° ith digits dy € {0,1,...,8—1};
¢ 1.dy---dy B° with digi k€9 B—1}

Mantissa

where the exponent e € Z is normalized such that the leading digit satisfies d; # 0.3
Alternatively, we can also represent such ¢ uniquely in the form

E=4+m- -, me{pLp 41, -1} CN, ecZ

We will call the set of all such floating point numbers, together with zero, machine
numbers F = Fg ;.
12.2 The operation of rounding fl : R — IF maps ¢ € R to the nearest machine
number (&) = ¢ € F.% Rounding is obviously

o monotone ¢ < n = f1(¢) < fl(x);

o idempotent f1(¢) = ¢ for & € F.
Lemma. The relative error of rounding fl(¢) = & is bounded by the so-called machine
precision®® eymach = 3B,

2~

16 —¢l

< €mach-

¢
Equivalently, & = &(1 + €) where |e| <

€mach-

Proof. Without loss of generality let ¢ > 0 which implies that 0 < {y < ¢ < ¢ for
two consecutive machine numbers ¢y, &1 € F. Then

Ee{d,&} with [§—¢| < (& —2)/2

and from the representation & = (m + k)1~ with g!~1 < m < B it follows

6-¢ 16 -G _ 1 _ 1,4,
<= = — < =B = emach
‘ C| 2 & 2 2 ,B mach
The second statement is only a rewording of the first with € = (& — ¢)/¢. O

3When B = 2, the leading digit is always d; = 1. As hidden bit it does not need to be stored.

3f there is a tie between two possibilities, we choose the one with an even d;. Being statistically
unbiased, this rounding mode is generally preferred and is called round-to-even.

%1In the literature this quantity is also called machine epsilon or unit roundoff, often denoted by u.


https://en.wikipedia.org/wiki/Floating-point_arithmetic
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12.3 On a computer, the exponent e is restricted to a finite set
{emin/ emin+1,...,max — 1, emax} Cc Z.

Numbers ¢ € F with an absolute value that is too large or small can therefore no
longer be represented and can lead to exponent overflow or underflow respectively.
As a default, computers “catch” these limiting cases with assigning the values 3-co
and zero without any notice. By applying some care, over- and underflow do not
pose all too great a threat in numerical linear algebra (except for determinants).

12.4 Essentially every computer since 1985 implements the IEEE 754 standard,
which offers two binary formats of hardware arithmetic:>

single precision double precision
32 bits = 4 bytes with the storage scheme | 64 bits = 8 bytes with the storage scheme
[s:1] e8 | fi23 | [s:1] el | fi52 |

(=1)°2¢77 x 1.f e=1:254

)2e71028 5 1f e=1:2046
(127120 x0.f e=0

1
1)5271022 5 0.f  e=0
1

(
(
(
N,

¢ (—1)% oo e=255f=0 6= ) oo e=2047,f =0

NaN e =255f#0 an e =2047,f £0
base B: 2 base B: 2
mantissa length t: 24 mantissa length t: 53
overflow threshold: 21%7(2 —2-23) overflow threshold: 21023(2 — 2-52)

~ 3.4 x 1038 ~ 1.8 x 10308

underflow threshold: 27126 ~ 1.2 x 10738 underflow threshold: 271022 ~ 2.2 x 107308
precision €paen: 272 ~ 596 x 1078 precision €pach: 2798 ~1.11 x 10716

corresponds to approximately 8 decimal places | corresponds to approximately 16 decimal places

IEEE 754 also recognizes the symbols
e +o0, e.g., as the value of +1/0;
e NaN not a number, e.g., as the result of 0/0 or co — cc.

Both alleviate and standardize handling of arithmetic exceptions.

12.5 IEEE 754 furthermore defines that arithmetic operations and the square root
are computed for machine numbers by correctly rounding the exact result: if we
denote the realization of an operation * by * we get for ¢,y € F that

Chn=1M(Gxy)  (xel{+, =/}

Hence, Lemma 12.2 implies the following standard model for machine numbers:

37By default, MATLAB uses double precision, but also allows the use of single precision.
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https://en.wikipedia.org/wiki/Byte
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Sec. 12] Machine Numbers 49

For &, € Fand x € {+,—,-,/,,/} there is an |€| < €mach, such that

iy = (Exm)1+e) (121)

for the machine-realization % of the operation *.

Remark. Both the associative law and the distributive law loose there validity in machine
arithmetic: parentheses should therefore be placed very deliberately (since otherwise
“dramatic” consequences could follow as we will see in §14.4).

Exercise. In order to realize complex arithmetic with real operations, how must €p,,c, be
adjusted for the standard model to remain valid in K = C?

12.6 The first rounding errors can occur as early as during the input of data into
the computer. This is, for example, because the simplest decimal fractions are
already be represented by non-terminating binary fractions, such as

0.119 = 0.0001100,,

which therefore must be rounded to a machine number. In the case of data x (this
can be a tuple of matrices) and a problem x — f(x) as in §11.1, this causes an
input of machine numbers £ = fl(x) with a componentwise relative error

|£ - x| < emach|x|'

If we first apply a monotone norm and then the equivalences from §C.9, this means
that with respect to every relative error measure there is an input perturbation of
the form38

[£ — x]re1 = O(€mach)-
This kind of input perturbation leads to unavoidable perturbations of the result;
even when the computer calculations after data input were exact. With an appro-
priate condition number, §11.4 provides the estimate

[f(£) = f(x)] = O(x(f; x) €macn)-

3The Landau symbol O(€mach) stands for a bound of the form

‘O(emach)l < C€mach (emach <€)

with some constant ¢ > 0. Here, for statements concerning problem classes and algorithms, let us
agree that ¢ does not depend on any specific data or the machine precision €p,ch, but may well
polynomially depend on the dimensions of the problem at hand.

When assessing concrete instances (of the problem and €p,,q, at hand), we will accept such
constants ¢ (as well as ratios ¢ = a/b for comparisons of the form a % b) which, for example, allow
for a maximum loss of accuracy of one third of the mantissa length:

-1/3

€S €mach*

When working with such assessments, always remember: “your mileage may vary”—the principle,
however, should have become clear.
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I3 Stability of an Algorithm

13.1 An algorithm for the evaluation of f is ultimately a decomposition
f=fso--0fq
—_
algorithm

into sequentially executed computational steps such as elementary arithmetic op-
erations, Level-n BLAS or other standardized operations. However, when compared
with the map f, on the computer the use of machine numbers leads to a perturbed

map® PO A
f=Forofy,
whereby f] represents the execution of the standardized operations f; under

consideration of all rounding errors involved.

13.2 An algorithm f for the evaluation of the problem f is called stable, if

[[f(x) —f()?)]] = O(emach)

for suitably perturbed inputs ¥ (depending on the actual input x) within the scope
of machine precision

[% — x] = O(émach);

otherwise it is unstable. According to Trefethen and Bau, we can formulate this as:

A stable algorithm gives nearly the right answer to nearly the right question.

Remark. A stable algorithm for the problem f therefore behaves completely comparably to
the sequence flof o fl, which corresponds to the minimum amount of rounding needed.

13.3 Many algorithms in numerical linear algebra fulfill a concept, that is both
stronger and simpler than stability. An algorithm f for the evaluation of the
problem f is called backward stable if actually

f(x) = f(%) for a perturbed input # with [ — x] = O(€mach)-

We call such ¥ — x the backward error of the algorithm £ comparing the backward
error with the machine precision is called backward analysis. According to Trefethen
and Bau we can formulate this all as:

A backward stable algorithm gives exactly the right answer to nearly the
right question.

3Due to the dependence on the considered algorithm, there is no “absolute”, unique f. We therefore
always identify f as the realization of a concrete algorithm using a given machine arithmetic.
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Example. The standard model (12.1) of machine arithmetic implies that the arith-
metic operations are realized as backward stable. For ¢, € [ it holds actually

CEn=C+47
ITn=2¢y
g/n=2E&n

where & = &(1 +¢), and 77 = 7(1 + ¢), for suitably chosen |e| < €mach-
Remark. When correctly rounded, F is actually exact in the case of cancellation (11.2).

Exercise. Show that the square root is realized as backward stable in the standard model.

13.4 Now we ask, how accurate is the result of a stable algorithm? Since we can
estimate the accuracy of f(%) according to §11.4, backward stability yields directly
the error estimate*”

[f (x) = f()] = O((f3 %) €mach);

we call f(x) — f(x) the forward error of the algorithm f.

It would be futile to require a greater accuracy from an algorithm since, according
to §12.6 the input into the computer of x alone creates a perturbed £ whose exact
result were subject to the same error estimate:

[f(2) = f(x)] = O(x(f; x) €macn)-

Comparing the forward error of an algorithm with the unavoidable error deter-
mined by the conditioning of the problem is called forward analysis.

Stability Analysis of Matrix Products*'

13.5 The inner product 71,; = y'x of two machine vectors x,yy € F™ can be realized
recursively with the following simple algorithm:

=0, =1+ m- G (k=1:m).
According to the standard model, we write this in the form

A= (Ra+ne-g)(1+e))(1+5)  (k=1:m)

with the relative errors |k, |6k| < €mach (Where 6; = 0). If we collect all of these
errors as an backward error of the components of y, the expanded result is

ﬁm:y”’-x, |1‘7_y|<m€mach|y|/

40The same result holds for stable algorithms, if x(f;x)~! = O(1) (which is usually the case).
4INotation as in §§2.8 and 2.10
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where 7y = n;(1+ €¢) (1 +6) - - - (1 + 6m) = (1 + 6;), so that || < m emaen-*?
Since this all is valid independent of the order of the terms, we keep for the record:

Conclusion. Level-1-BLAS computes backward stable inner products.

13.6 The matrix vector product y = Ax can be realized row-wise as the inner
product of x € [F" with the row vectors of the matrix A € F"*". If we collect
the errors as the backward error of the row vectors, the following backward error
estimate holds for the machine result i € F"

]7:(A+E)x, ‘El <n€mach‘A"

Conclusion. Level-2-BLAS computes backward stable matrix vector products.

13.7 For C = AB with A € F"™*", B € [F"*? we obtain column-wise

o= (A+E]')bj, |E]| <n€mach|A| (j=1:p).

The column vectors ¢/ are therefore computed backward stably. In general, this
does not apply to the computed product matrix C itself.

Example. For an outer product C = xy’, the value Cis generally no longer a rank 1 matrix.

Fortunately enough, we obtain this way an estimate of the forward error that
lies within the order of the unavoidable error, cf. (11.4):

|C\7 C| < nemach|A| : |B‘

If A >0, B > 0 componentwise, it holds |A| - |B| = |C| and the result C behaves
as the input of C subject to a machine precision of nepyach-

Simple Criteria for the Analysis of Numerical Stability

13.8 Comprehensive error analysis as presented in the prior pages can quickly
become tedious. In order to spot the weak points of an algorithm that would
seriously endanger stability, we consider the error transport within an algorithm
sectionwise by writing

f=fso---ofgp10fyo---ofy=hog;
=h =g

we call 1 an end section and g a start section of the algorithm. The total error of f
is—either considered as a forward or as a backward error—in leading order the
superposition of the contributions created by just rounding between such sections:

fe =hoflog.

“Due to §; = 0 there is a maximum of m factors of the form (1 4 &) with |a| < €pach to be found in
the expression 7y .



Sec. 13] Stability of an Algorithm 53

If these contributions do not “miraculously” cancel each other out (which one
should not count on), any large individual contribution will already be responsibly
for instability. In this sectionwise analysis, the intermediate rounding 2 = fl(g(x))
in f; contributes

e to the forward error by
[fe(x) = f(x)] = O(x(h; §(x)) €macn ),
o to the backward error (for invertible g) by

[[x* - x]] = O(K(g_l;g(x)) emach)
where the data x, = g7 (2) is reconstructed from the intermediate result 2.
Forward analysis (F) and backward analysis (B) directly provide the following:

Instability Criteria. Important indicators for the instability of an algorithm with a
section decomposition f = h o g are*

F: an ill-conditioned end section h with x(h; g(x)) > x(f; x);

B: an inversely ill-conditioned start section g with x(g™1; g(x)) > 1.

Remark. Actual evidence of instability must always be based on a concrete numerical example.

Exercise. Show that for scalar start and end sections g and & Criteria F and B are equivalent
with respect to componentwise relative errors; it then actually holds

(o1 _ k(i g(x))
(8 8(x) (i) (13.1)

13.9 By definition of the condition number, an algorithm f given by the decom-
position

f=froofrofi

leads directly to a multiplicative upper bound of the condition number of f, i.e.,

K(fix) <x(fsi fsa (- 0)) - w(fos (%) - k(15 %),

which is generally a severe over-estimation: it represents the worst case error ampli-
fication of every single step but these critical cases do not necessarily match one
another. The estimate is therefore neither suitable for estimating the condition of
the problem f, nor for judging the stability of the algorithm f. One exception is
notably where effectively everything is benign:

“SWhen a,b > 0, a >> b is equivalent to a/b > 1. By doing so, we consistently choose one and the
same “pain threshold” as our interpretation of “very large”.
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Stability Criterion for “Short” Algorithms. If it simultaneously holds that
(1) all f] are stable,
(2) all f; are well-conditioned,
(3) the number of steps s is small,

then f = fso---o fy is a stable algorithm and f a well-conditioned problem.

Example. Conditions (1) and (2) are satisfied with respect to componentwise relative
errors if the f; consist exclusively of the benign operations of the standard model,
that is, if they do not contain a genuine subtraction.** If

§ = Sadd Tt Ssub + Smult + Sdiv + Squad

represents the decomposition into the number of genuine additions, genuine sub-
tractions, multiplications, divisions and square roots, then, according to §11.6, the
following condition number estimate for the problem f is valid:*®

Ssub =0 = K(f;x) < 2omultFSdiv, (13.2)

Genuine subtractions could be problematic in the case of cancellation; one should
either avoid them altogether or carefully justify them with an expert analysis.

Exercise. Compare (13.2) with (11.3) for x'y if x, y € R™ have positive components.

14 Three Exemplary Error Analyses

In this section we will restrict ourselves to componentwise relative errors.

Error Analysis |: Quadratic Equation

14.1 In junior high school, one learns the quadratic equation x> — 2px — g = 0
and its textbook solution formula (which is an algorithm if taken literally)

Xo=p—\pP+q x=p+\p+a

In order to avoid a tedious case-by-case study, we will limit ourselves to p,q > 0.
The error analysis can be done by a mere “clever inspection”, i.e., basically without
any calculations that would go beyond simple counting:

o According to the stability criterion for short algorithms, the formula for x;
is stable; additionally, (13.2) proves well-conditioning: «(x1; p,q) < 2.

“We identify & + 7 for |€ £ 7| = |¢] + || as genuine addition, otherwise as genuine subtraction.
45For square roots we have to set x = 1 instead of k = 1/2, since generally data and intermediate
results remain stored during execution and their perturbations remain untouched.
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e The formula for xy exhibits the section decomposition
8 h
fi(pq) — (P, P2+q>:(p,r) s p—7 = xq.

For g < p?, the subtraction in the end section / is afflicted with cancellation
and thus ill-conditioned (cf. §11.6): therefore, by Criterion F, the formula is
presumably at risk of being unstable (more precise information can only be
acquired via conditioning analysis of f : (p,q) — xo).

Example. A numerical example in MATLAB (using double precision) is illustrating
this very clearly:

1 >> p = 400000; 9=1.234567890123456;
2 >> r = sqrt(p”2+q); x0 = p - r
» X0 =

! -1.543201506137848e-06

Here, actually 11 = 6 + 5 decimal places are lost by cancellation, so that the computed
solution x0 only contains at most approximately 5 = 16 — 11 correct decimals places.*®
We still however have to clarify whether to blame the algorithm for this loss of
accuracy or, after all, the ill-conditioning of f : (p,q) — xo.

e The inverse start section ¢! : (p,7) — (p,q) is also subject to cancellation
for ¢ < p?, in particular the reconstruction of the coefficient

Here, accurate information about g is lost through g.47 By Criterion B, the
formula for x is therefore at risk of being unstable.

Example. In the numerical example, we expect the reconstruction of g to exhibit a
loss (that is, a backward error) of 11 = 2 - 6 — 1 decimal places, i.e., once again we
get only approximately 5 = 16 — 11 correct decimal places (which upon comparison
with g can instantly be observed):

5 >> r°2-p”2

6 ans =

7 1.234558105468750e+00

Since the backward and forward errors are both of the same magnitude (a loss of 11
decimal places), the map f : (p,q) — x¢ should be well-conditioned.

4The further 11 decimal places of “numerical garbage” arise through the conversion of x0 from a
binary number in where zeros have been appended to the end of the mantissa (here: concretely 38
bits): the MATLAB command num2hex (x0) reveals beb9e40000000000.

47Since this loss of information in q does not affect the stability of the formula for x;, it must be the case
that for g < p?, the value of x; is quite immune to a perturbation of g: in fact, one calculates that

k(x1;9) =1 —p//p*+9)/2< 1.


http://goo.gl/rMVoP
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14.2 A stable algorithm for xp must therefore (a) eventually get along without
subtraction, and (b) use the information in the coefficients g in a much more direct
fashion. The factorization x? — 2px — g = (x — xp)(x — x1) ultimately provides us
with a further formula for xo, which can do both (called Vieta’s formula):

Xo=-—q/x1, 1 =p+\/p*+q

As with the formula for x;, it is stable according to the stability criterion for short
algorithms; (13.2) now proves (p,q) — xp to be well-conditioned: x(xo; p,q) < 4.

Example. In the numerical example, this looks as follows:

>> x1 = p + r;
9 >> x0 = -q/x1
x0 =

-1.543209862651343e-06

At this point all 16 shown decimal places should be (and are) correct (due to the stability
of the formula and the well-conditioning of the problem); a comparison with the results
of the “textbook formula” for x( in §14.1 now verifies that, as predicted, only 5 decimal
places of the latter were correct:

In the case of cancellation, g < p?, the “textbook formula” for xq is unstable.
Remark. A detailed conditioning analysis of both solution maps (p,q) — xp and (p,q) — x1

is actually no longer necessary. The condition formula (11.1) yields

1 3p 1 p
K(xp;p.9) = 5 + —F——= <2, K(x;p.9) =5+ —F——<1,
(x0;p.q) = 5 e (1;p.9) = 5 e
our expert analysis “by inspection” overestimated the upper bounds by just a factor of 2.

Exercise. When g < 0 and p € R, discuss the cancellation case 0 < p? + g < p? + |g|.

Error Analysis 2: Evaluation of log(1 + x)

14.3 In a safe distance to the singularity at x = —1, the function f(x) = log(1 + x)
is well-conditioned:
_ O _ x

D= T Gttty <2 B2 07

Let us take the expression log(1 + x) literally as an algorithm by decomposing it to
8 h
fix—=—14+x=wr— logw.

This exposes the risk of instability for x ~ 0 in accordance with both instability
criteria, Criterion F and B:%8

48Recall that they are equivalent for scalar functions, cf. (13.1).
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F: In the vicinity of its root w = 1, h(w) = log(w) is ill-conditioned.*’

B: When w ~ 1, the expression ¢! (w) = w — 1 experiences cancellation, and
is therefore ill-conditioned (information about x ~ 0 gets lost in w = 1+ x.)

Example. A numerical example exhibits the instability:

>> x = 1.234567890123456e-10;

2 >> w = 1+x; £ = log(w)
3 £ =

1.23456800330697e-10

5 >> w-1

ans =
1.23456800338317e-10

For w — 1, a total of 10 = 1 + 9 digits are canceled out, leaving only 6 = 16 — 10 decimals
places correct (backward error). Due to x(f; x) ~ 1, only approximately 6 decimals places
in f are expected to be correct (forward error).

14.4 A stable algorithm for f must therefore (a) process the intermediate result w
in a much better conditioned fashion and (b) use the information in x in a more
direct way. To this end, Velvel Kahan came up with the following “twisted” idea:

logw_x w£1,
w=ltx,  flx)=dw-1
X w=1.

The trick is that the section ¢ : w — log(w)/(w — 1) is actually consistently
well-conditioned (and the 1 is not subject to rounding errors on the computer):

oy @) |wl _1-w+wlogw

The cancellation in the denominator w — 1 of ¢ is therefore canceled away by the

perfectly correlated imprecision of log w in the numerator:

In a given algorithm, imprecise intermediate results are allowed every time
their errors are subsequently compensated for.
According to the stability criterion for short algorithms, Kahan'’s idea is stable.0
Example. Using the numerical values from above, Kahan's idea yields:

>> f = log(w)/(w-1)*x

g f =

1.23456789004725e-10

49 As is the case with functions in the vicinity of their roots in general if we use relative errors.
50 As long as the library routine for logw is stable.
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In this case, (due to the stability of Kahan’s algorithm and the well-conditioning of the
problem) almost all 16 shown decimal places should be correct (they all are). A comparison
with the result of the “naive” expression in §14.3 verifies that, as predicted, only 6 decimal
places of the latter were correct.>!

Remark. Kahan'’s algorithm serves as a “dramatic” example of the invalidity of the asso-
ciative law in machine arithmetic: (1  x) = 1 # x for 0 =~ x € FF. It would therefore be a
profound blunder to “simplify” a program such as

log(1+x)*x/ ((1+x)-1)

to log(1+x). Unfortunately, there are programming languages (e.g., Java) that offer such
bizarre “performance features”; Kahan fought for years against this very thing.>

Error Analysis 3: Sample Variance

14.5 Descriptive statistics offer two rival formulas (that is, algorithms if taken
literally) for the sample variance S? of a real data set x = (x1,...,Xx;)" € R™:

@ 1 & ob 1 moo1 i 1
e (L al(Re)) mak
Formula (a) requires two passes over the data: one to initially calculate the sample
mean ¥, and then a further pass to accumulate the sum Z]»(x]- — 32)2. If the sample
variance is to be calculated while new data are being generated, many statistics
textbooks will recommend to alternatively use formula (b): in this case, just a
single pass is necessary, whereby both sums }; x; and } ; x]2 are accumulated.

Unfortunately, formula (b) is numerically unstable, while formula (a) is stable:>®

e The end section of formula (b) is executing (aside from the well-conditioned
and stable, and thus harmless division by m — 1) a subtraction. In the case
of cancellation, i.e., the case of a relatively small variance

§? < 72,
this subtraction is actually ill-conditioned. Hence, according to Criterion F,
formula (b) is presumably at risk of being unstable.
Example. For an actual demonstration of instability, numerical examples can easily be
found in which formula (b) returns a ridiculous negative result in machine arithmetic:

1 >> x = [10000000.0; 10000000.1; 10000000.2]; m = length(x);
2 >> 82 = (sum(x."2)-sum(x)~2/m)/(m-1)

3 82 =

4 -3.125000000000000e-02

SIMATLAB offers Kahan's algorithm for log(1 + x) using the command logip(x).

52W. Kahan, J. D. Darcy: How Java’s Floating-Point Hurts Everyone Everywhere, UC Berkeley, 1998-2004.

53For a stable single-pass algorithm see T.F. Chan, G. H. Golub, R.J. LeVeque: Algorithms for computing
the sample-variance: analysis and recommendations. Amer. Statist. 37, 242-247, 1983.
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The cancellation of 17 = 2 -8 4-1 > 16 decimal places explains how the result could
become such a “total loss”.

o In contrast, formula (a) contains the (genuine) subtractions in its start section,
g, xm) = (X1 =%, X — %) = (01,...,0m).
Here, the reconstruction of data by
g (0, 0m) = (B1+%,...,0m+ %)

is the decisive factor for Criterion B. Since it is well-conditioned for small
fluctuations |6;| = |x; — %| < [%|, the start section does not pose a threat to
the stability. As a sum over m non-negative terms, the end section

m

h:(él,...,(sm)ﬁg(s]?
1=

is well-conditioned and is easily coded on the computer in a backward stable
fashion. Formula (a) is numerically stable, indeed.

Example. In the numerical example, we get the following:

5 >> xbar = mean(x);
6 > 82 = sum((x-xbar)."2)/(m-1)

7 82 =
3 9.999999925494194e-03

A quick mental calculation provides 5% = 0.01 so long as we regard the data set x as
exact decimal fractions. The loss of 8 decimal places in our stably calculated solution
must therefore be due to an ill-conditioning of about x(S%; x) ~ 108.

Without knowledge of the “exact” result (which, of course, we would never know
when doing serious computations), an evaluation of the accuracy of a stably calculated
result requires at least a rough estimate of the conditioning of the problem.

14.6 The componentwise relative condition number « of the sample variance S?
relative to the data set x € R™ can be directly calculated with (11.1) as>
2 v 2|x[|2
K(8%x) = |xj — %[ |xj] < :
e 4Pkl < g

Example. Hence, the numerical example confirms finally that x ~ 2 - 10%:

9 >> kappa = 2*abs ((x-xbar)) ’*abs(x)/S2/(m-1)
10 kappa =
1 2.0000e+08

In this case, the loss of approximately 8 decimal places was therefore unavoidable.

Remark. Notice that only the order of magnitude of a condition number is relevant information.

54The upper bound is found with the help of Cauchy-Schwarz inequality (T. F. Chan, J. G. Lewis 1978).
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I5 Error Analysis of Linear Systems of Equations

In this section, A € GL(m; K) and b € K™ and error measures are generally normuwise relative.

A posteriori Assessment of Approximate Solutions

I15.1 We would like to asses the error of a given approximate solution ¥ € K™ of
a linear system of equations Ax = b. There are two options to look at, forward
and backward error, which differ significantly in their accessibility:

o Without knowledge of an exact solution x, the forward error || % — x|| /|| x|| can
only be estimated and an assessment must be made in comparison with the
unavoidable error in terms of the condition number x(A).

o The backward error is defined as the smallest perturbation of the matrix A
which makes % exact:

w(X) = min H = ;
) {IIAII'(A+E) ”}'

as seen next, it can be computed without resorting to an exact solution and
can be assessed by direct comparison with the accuracy of the data.
15.2 There is actually an explicit formula for the backward error.

Theorem (Rigal-Gaches 1967). The backward error w(%) of & # 0 is

N ]
w(%) = — =, r=>b— AX. (15.1)
&)= 1amE

Here, r is called the residual of the approximate solution % of Ax = b.
Proof. %® From (A + E)% = b, hence EX = r, it follows that

. 7] I[E]|
Il <TENIZN vz S Tar
[AIEl = Al

We must now construct E such that equality holds in this estimate. For the sake of

simplicity, we limit ourselves to the || - ||-norm:
y )
E="2 it ||, = I2lZl2
* 1112
satisfies E¥ = r and |rlz = [|Ell2l} £l 0

Remark. A numerical example for (15.1) and (15.3) can be found in §§15.10 and 15.13.

%5 Notice the similarity to the proof of Theorem 11.9.


http://en.wikipedia.org/wiki/A_posteriori
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Exercise. For componentwise analysis, the backward error is similarly defined as
we (%) =min{e: (A+E)X =10, |E| <e€|Al}.
Prove the Oettli-Prager Theorem (1964) (recall the convention in Footnote 30):

|7l

we (%) = max AT D

r=b— A% (15.2)

ax
j=lm

Compare w, (%) with the normwise backward error w(%) (with respect to the co-norm).

15.3 From x — ¥ = A~!r and the expression (15.1) of the backward error w(%) it
directly follows a simple forward error estimate, cf. (11.5):

lx ==l _ AN el
~ ~ ~ -
Bdl [Bdl

k(A) - w(X). (15.3)

Remark. Since the calculation of x(A) = ||A™Y|| - | A|| would often be much too costly and
the only thing that matters in an estimate like (15.3) is actually the order of magnitude of the
given bound, in practice, one often uses much more “low-cost” estimates of x(A); e.g.,56

condest (A) % estimate of x1(A)

> condest(A’) % estimate of Keo(A), cf. (C.3)

Exercise. Show the alternative forward error estimate

l[x — %[leo

- < cond(A, %) - we(%).
(1%l

using the Oettli-Prager Theorem and the Skeel-Bauer condition number. Given reasons
why this estimate is sharper than (15.3) if ¥ has been computed in a componentwise
backward stable fashion.

A priori Stability Analysis of a Solution by Matrix Factorization

15.4 In Chapter II we solved the linear system of equations Ax = b with a suitable
factorization A = MN (where the right hand side b is supposed to be fixed):

AV (M,N) -5 x.

In doing so, the start section g is exactly the factorization step; specifically, one of
e triangular decomposition P'A = LU with pivoting: M = PL, N = U;
e Cholesky decomposition A = LL’ (Asp.d.): M=L, N=1L/;
e QR decomposition A = QR: M =Q,N=R.

56N.]. Higham: Algorithm 674: FORTRAN codes for estimating the L1-norm of a real or complex matrix, with
applications to condition number estimation, ACM Trans. Math. Software 14, 381-396, 1988.
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The end section h contains the computation of x from the factorization, a process
which can be realized algorithmically in a backward stable fashion by either forward
substitution, back substitution or by multiplication with Q’: in the end, such
triangular or unitary factors F € F"*™ yield computed solutions #1 € F™ of the
system Fu = v € [F" which satisfy

(F+AF)a =0,  [[AF| = O(emacn) [ Fll-

The proof can be carried out similarly to §§13.5 and 13.6.

I15.5 It remains to better understand the start section g. Because of
g :(M,N)— M-N

its contribution to the backward error in A is of order (see §§13.8 and 11.7)

1M - [IN]]
o (Fa )
In fact, all three factorizations (with A s.p.d. if Cholesky decomposition is em-
ployed) yield a solution £ € F" of Ax = b that satisfies®’

(A+E)2=0b,  [[E[ = O([M||[N] €mach) (15.4)

for machine data A and b. The factorization based algorithm for the solution of a
linear system of equations Ax = b is therefore

o vulnerable to instability in the malignant case |[M|| - | N|| > || Al|;

o provably backward stable in the benign case |[M|| - | N|| = || A]|.

Exercise. State similar criteria for componentwise backward stability.

15.6 By unitary invariance (C.2), a QR decomposition A = Q - R satisfies

1QI2[Rll2 = [IR[l2 = [QR]l2 = [|All2,

so that the benign case is at hand. With the modified Gram—-Schmidt, Givens or
Householder methods, the linear system of equations Ax = b is therefore provably
solved in a normwise backward stable fashion.

Exercise. Construct a 2 x 2 matrix A and a right-hand-side b, such that the numerical
solution ¥ of the linear system of equations Ax = b by QR decomposition is not backward
stable with respect to componentwise relative errors. How about the stability of xo = A\b?

Hint: Calculate the componentwise backward error we () with the help of (15.2).

57Cf. §§9-10 and 18 in N. J. Higham: Accuracy and Stability of Numerical Algorithms, 2nd ed., Society of
Industrial and Applied Mathematics, Philadelphia, 2002.
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15.7 If Aiss.p.d, thereis A" = A and A;(A) > 0. Hence, its spectral norm satisfies
. 2
A3 55 max Ai(AA") = max A;(A?) = max A;(A)? = ( max /\j(A)>
j=1m j=1m j=1m j=1m

and that of the factors of the Cholesky decomposition A = LL' satisfies

IL]3 = ||IL"]13 = max A;(LL') = max A;(A).
j=lim j=lm

Thereby, we have shown that the benign case is at hand,
ILI201Z ]2 = | All2,

and the linear system is thus provably solved in a backward stable fashion, too.

15.8 It is more challenging to handle the topic of triangular decomposition. With-
out loss of generality we assume that the matrix A € GL(m; K) has the normalized
triangular decomposition A = LU (in general, of course, we have to use partial
pivoting: simply replace A with P’A in the following analysis).

The most useful estimates can be obtained by studying the condition number
of ¢~ : (L,U) — L-U for componentwise relative perturbations of L and U.
The corresponding condition number estimate (11.4) suggests immediately the
following tightening of (15.4):

Theorem (Wilkinson 1961). The triangular decomposition A = LU of an invertible
matrix A yields a numerical solution % of Ax = b with the backward error

(A+E)x=0b,  |[[Ellc=O([L]-|Ulllcc) €mach-

In the benign case |||L| - |U|||e = ||A]|co, triangular decomposition is provably
a backward stable solver, whereas in the malignant case |||L| - |U|||c > || Allco
stability is at risk.

Example. With this criterion, we can develop a deeper understanding for the necessity of
pivoting by going back to the example of §7.8, which illustrated numerical instability:

e 1 1 0 € 1
A_(l 1>_LU, L_(e_l 1), U-(O 176_1>, 0<exl.

This is a malignant case of triangular decomposition since
-1
[[Alleo =2 < I[L] - [U[[|ec = 267"

However, swapping both of the rows by partial pivoting,

L1 1 /10 11
PA_(el_LU’ L=1e 1) U=o 1-¢)’

maneuvers the system into a benign case: due to L, U > 0, there is ||P'Allec = [||L] - |U]|||co-
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15.9 Backward stability of using the triangular decomposition P'A = LR with
partial pivo’cing58 therefore depends on the growth factor59

L] - IR|[leo _ L]l lIR]]eo
Y(A) = <
| Alle0 Al

Lol L™ loo = Koo (L) (15.5)

This factor can be bounded independently of A (for fixed dimension m):

Lemma. For a unipotent lower triangular matrix L € K"™*™ with |L| < 1 it holds
Lo <m, L7 oo <277,

and therefore y(A) < m - 2"~ for triangular decomposition with partial pivoting.

Proof. Recall from §5.4 that a unipotent triangular L = (A ) is invertible. By
partitioning L1 into its rows z;- and by using that L is unipotent, expansion of
the relation I = LL™! yields

] j-1 j-1
= $zp =72, Zh is, 2l =e — - 1.
ej = kzl)x]kzk =zj+ kzl/\]kzk, thatis, z; =¢; kzl)\]kzk (Gj=1:m).

With [A] < 1and ||e;-||1 = 1, the triangle inequality implies

j—1
Izjllh <1+ ) llzl G=1:m).
k=1

Majorizing by 2/~ = 1 + Zf{;ll 2k=1 inductively yields ||z;||1 < 21, Consequently,
in accordance with the definition of the max-row-sum norm (§C.8), we get

1L oo = max 27y <277,
j=1lm

It directly follows from [Aj| < 1 that ||L||e < m; thus the proof is complete. [

Triangular decomposition with partial pivoting is therefore provably backward
stable in the following cases:

e the dimension is small (let us say 1 < m < 10); or

o the growth factor (15.5) fulfills y(A) % 1.

58See Theorem 7.11.
%The max-row-sum norm is invariant under column permutations: ||P’'Al|c = || Al|co-
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15.10 In “the wild”, very large growth factors y(A) have only extremely seldom
been documented so far;?° but they can nevertheless be “artificially” constructed.
All inequalities in the proof of Lemma 15.9 become equalities for the particular
triangular matrix

1
—1 1

L=1|-1 -1 . c Kmxm,
-1 -1 - =11

so that the upper bounds are taken:
ILlleo = m, L7 floo =271,

This is the L factor of the Wilkinson matrix (due to |L| < 1 there is no pivoting)

1 1 1 1

1 1 1 1 2
A=1|_-1 -1 1| =LUu, u= : ,

: 1 2m2

1 -1 1 1 2m-1

with a growth factor that grows exponentially in the dimension m:

[L]- U]l m+42"—=2
Y(A) = = ~ 2" /m.
[ Alleo m

It is, however, ke (A) = m. Already for moderate dimensions m, there should be
signs of severe numerical instability.
Example. A numerical example for m = 25 exhibits such an instability:

1 >> m = 25;

2 > A = 2%xeye(m)-tril(ones(m)); A(:,m)=1; 7 Wilkinson-Matrix
3 >> rng(847); b = randn(m,1); 7% reproducible random right-hand-side

4+ >> [L,U,p] = 1lu(A,’vector’); % triangular decomposition with partial pivoting
5 >> x = U\N(L\b(p)); % substitutions
6 >> r = b - A*x; % residual
7 >> omega = norm(r,inf)/(norm(A,inf)*norm(x,inf)) 7 backward error (15.1)
s omega =

7.7456e-11

The backward error w(#) is therefore by a factor of about y(A)/2 larger than €y, As a
comparison we add a backward stable solution with QR decomposition:

60Please inform me if a relevant practical example has been “brought down”.
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>> [Q,R_qr] = qr(A); % QR decomposition
>> x_qr = R_qr\(Q’*b); % substitutions
> >> r_qr = b - A*x_qr; % residual
3 >> omega_qr = norm(r_qr,inf)/(norm(A,inf)*norm(x_qr,inf)) % back. error

omega_qr =
4.9507e-17

Since A with ke (A) = 25 is well-conditioned, the discrepancy between both results also
very clearly substantiates the instability of using triangular decomposition in this case:

6 >> norm(x-x_qr,inf)/norm(x,inf) Y% relative discrepancy to QR result
7 ans =

1.0972e-09

This limited accuracy fits well with the forward error estimate (15.3): koo (A)w (%) ~2-107°.
Here, the theoretical predictions only overestimate both, forward and backward error, by a
factor of 2.

Iterative Refinement

I15.11 Arguing strictly formally, we could try to correct a numerical solution £ of
Ax = b by applying the following linear system of equations for the error w:

Since machine arithmetic itself only provides a somewhat perturbed result @, one
is invited to iterate over this correction step: with xg = £, fork =0,1,2,...

re=b—Axy, Awy=ry, Xpyp1 = Xp+ Wy

In this process, the matrix factorization of A only needs to be calculated once.
Instead of asking about the convergence of this iterative refinement, one should ask
whether the stopping criterion of backward stability will have been reached within
a number of, say, 1 steps: w(£,) = O(€mach)-

15.12 This stopping criterion should be matched for a well-conditioned matrix A
(for which forward and backward errors of the numerical solution are of the same
magnitude), if the leading n-th part of the solution mantissa is always computed
correctly using a fixed matrix factorization of A. Since the significant digits of
wy start where the significant digits of x; end, a correct n-th part of the solution
mantissa is added in every step of the iterative refinement: the first correction
corrects the second n-th part of the mantissa, the second one corrects the third
n-th part, etc.. This way, after n — 1 correction steps, approximately all the digits
of the solution x have been computed correctly.
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15.13 Assuming that ke (A) = O(1) and y(A) = O(er;;c/ﬁ), these preliminary
considerations suggest that triangular decomposition is good for at least half of
the mantissa and therefore just a single step of iterative refinement should be
adequate for computing an accurate result.?! As a matter of fact, one can prove
the following remarkable theorem:®2

Theorem (Skeel 1980). For ¢(A)*keo(A)€mach = O(1), triangular de-
composition with partial pivoting yields a backward stable solution after one
single step of iterative refinement.

Example. We will illustrate this theorem with the numerical example from §15.10: here, the
prerequisite is fulfilled by means of y(A)%ke(A)€emach ~ 1 for m = 25.

>> w = U\N(L\r(p)); % correction from the stored triangular decomposition
>> x = x + w; r =Db - Axx; 7 first step of it. refinement and new residual
>> omega = norm(r,inf)/(norm(A,inf)*norm(x,inf)) % backward stability!
omega =
6.1883e-18
>> norm(x-x_qr,inf)/norm(x,inf) J relative deviation to QR result
5 ans =
9.2825e-16

As a comparison: the unavoidable error in this case is about xeo(A) - €mach ~ 2 - 10715,

Exercise. Test the limitations of iterative refinement for larger dimensions of m.

61This way, one still saves a factor of 2 in computational cost when compared to QR decomposition,
cf. §§7.7 and 9.8.

62Cf. §E.1; for a proof with componentwise relative errors see R. D. Skeel: Iterative refinement implies
numerical stability for Gaussian elimination, Math. Comp. 35, 817-832, 1980.
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IV Least Squares

The choice of the square was purely arbitrary.

(Carl Friedrich Gauss 1839)

The method of least squares is the automobile of
modern statistical analysis: despite its limitations,
occasional accidents, and incidental pollution, it is
known and valued by nearly all.

(Stephen Stigler 1981)

16 Normal Equation
16.1 In experimental and observational sciences, one is often confronted with the
task of estimating parameters p = (64, ...,6,) of a mathematical model from a
set of noisy measurements.®® If the parameters enter the model linearly, such a
set-up can be written in the form
b=Ap+e

where

e b € R™ is the measured observation vector;

o A € R™*" is the design matrix;

e p € R" is the parameter vector or feature vector to be estimated;

o ¢ = (€1,...,€m) is the vector of inaccessible, random perturbations (noise).

The number of measurements m is often larger than the number of parameters 7.

63This is referred to as data fitting or regression analysis in parametric statistics.
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16.2 An estimator x of the parameter vector p replaces the actual perturbation e
with the residual r where

b=Ax+r, r=(01,---,0m)-

The least squares estimator then solves the minimization problem

m
2 2 il
lIrll5 = Z%Pj = min};
]:

the Gauss—Markov theorem asserts its optimality®* if the noise obeys certain statisti-
cal properties: centered, uncorrelated, equal variance. For unequal variances or
correlated noise one uses the weighted or generalized least squares method.

Remark. The least squares method was first published in 1805 by Adrien-Marie Legendre in his
work on trajectories of comets; it had however already been used in 1801 by Carl Friedrich
Gauss for calculating the trajectory of the minor planet Ceres. Both mathematicians, having
previously got in each other’s way while studying number theory and elliptic functions,
bitterly fought for decades over their priority in this discovery.®®

Exercise. Show that the least squares estimator of the parameter 6 from the measurements

1

is equal to the sample mean 3; Y31 | B;. Solve for it in two ways: directly and with (16.1).

16.3 We therefore consider the least squares problem

x = argmin||b — Ayl|2, AeR™", beR"
yeR"

Equivalently, we have to minimize the function
F(y) = 5llb — Ay|3 = 3(v'b — 2y’ A'b + ' A Ay)

whose gradient is VF(y) = —A’b + A’ Ay. The necessary optimality condition
VF(x) = 0 is therefore equivalent to the normal equation (as introduced by Gauss)

A'Ax = A'b. (16.1)

For A with full column rank (which we want to assume from now on), and thus for
A’A s.p.d. (Lemma 9.1), the normal equation possesses a unique solution x € R".
This actually yields the unique minimum of F:

F(y) = 3(b'b—2y' A'Ax +y A'Ay) = F(x) + 3 (y — x) A’A(y — x) > F(x)

with equality for precisely y = x (A’ A is s.p.d.). Hence, we have proven for K = R:

4That is to say that the it is the best linear unbiased estimator (BLUE).
5R. L. Plackett: Studies in the History of Probability and Statistics. XXIX: The discovery of the method of least
squares, Biometrika 59, 239-251, 1972.
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Theorem. For A € K"™*" with full column rank, the least squares problem

x =argmin||b — Ay, A e K™" peK"
yeK”

is equivalent to the uniquely solvable normal equation A’ Ax = A’b, where A’ Ais s.p.d..

Exercise. Show the theorem to hold for K = C, too. Hint: Separate real and imaginary parts.

Remark. The solution map A" : b+ x = (A’A) "1 A’b is linear in b; the induced matrix is
called the pseudoinverse of A and coincides with the inverse for m = n.
16.4 The normal equation leads to the solution algorithm

A assembly of the AA solution of the

(16.2)

normal equation normal equation

of the least squares problem (the vector b being fixed); the normal equation
itself is of course solved with the Cholesky decomposition from §8.3.% Using the
symmetry of A’A, the computational cost is therefore (in leading order)

#flop(matrix product A’A) + #flop(Cholesky decomposition of A’A)

1
- 2, 2.3
= mn +3n.

16.5 To evaluate the stability of (16.2) using Criterion F from §13.8,%” we compare
the condition number x,(A’A) of the normal equation with that of the least
squares problem. Since it can be shown for m = n, as was the case in §15.7, that

Kz(A) = 1/K2(A/A), (163)

we define xp(A) as (16.3) for the case of m > n. The relative condition number x| g
of the least squares problem with respect to perturbations in A is bounded as®

max (KQ(A),OJ . Kz(A)z) <xps < K2(A) 4+ w -1 (A)? (16.4)

with the relative measure of the residual (cf. (15.1))

LIP3
W= r=>b— Ax.
[ All2 [|x[l2*

%Cholesky had originally developed his method for the system of normal equations in the field of
mathematical geodesy.

67The start section is in this case ot invertible, so Criterion B is not applicable.

%8Tn contrast, it holds for perturbations in b

wia(A) < xs = x2(A)[[bll2/ ([ All2]lx]|2) < (1 + w)xa(A).

See P-A. Wedin: Perturbation theory for pseudo-inverses, BIT 13, 217-232, 1973; A. van der Sluis:
Stability of the solutions of linear least squares problems, Numer. Math. 23, 241-254, 1975.
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Therefore, (16.2) is likely unstable if the residual 7 is relatively small (w < 1) and
the matrix A is ill-conditioned (x3(A) > 1): it then holds

s < (k2 (A) 7+ w)ia(A)? < ko (A)? = Ko (A'A).

In contrast, for all other cases, i.e., for relatively large residuals or well-conditioned
matrices, the use of the normal equation is stable.

Example. The numerical instability of the algorithm (16.2) can famously be illustrated with
the following vanishing-residual example (P. Lauchli 1961):

1 1 2
1 1+€2 1 2
A= = = . AA = A'A) == +1.
(g 0>,b (e),x (1> (1 1+62>’K2( J=a+

€

Here, A’A is actually exactly numerically singular for €2 < 2€p,h since then 1 F €2 = 1
(the information about € is completely lost while assembling A’ A; after the start section,
the parameter € can no longer be reconstructed, cf. Criterion B from §13.8). For a slightly
larger € we obtain the following numerical example:

>> e = 1le-7; % e=10"7

2>> A = [1 1;e 0;0 el; b = [2;e;el; % Liauchli example

3 >> x = (A’*xA)\(A’xDb) % solution of the normal equation

x =
1.011235955056180e+00
9.887640449438204e-01

The loss of 14 decimal places is consistent with x5 (A’A) = 2 - 10'4; however, due to the
condition number x5 = K»(A) = 107, at most a loss of approximately 7 decimal places
would be acceptable.

17 Orthogonalization

For the following, we will assume that A € K"™*" has full column rank and, therefore, m > n.

17.1 A stable algorithm for the least squares problem should access A directly®
and not via the detour of A’A. With the help of a (normalized) QR decomposition
A = QR, we can simplify the normal equations according to Theorem 9.3 to

AAx= A b
~~ ~~
—=R'R =R'Q'

and therefore equivalently reduce via multiplication with (R')~! to

Rx = Q'b. 17.1)

1n 1961, Eduard Stiefel spoke of the “principle of direct attack” in the field of numerical analysis.
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The backward stability of this algorithm—with the modified Gram-Schmidt, Givens
or Householder method for the calculation of the reduced QR decomposition—can
be understood as in §15.6 by the section decomposition

reduced ) _multiplication with Q'

QR factorization backward substitution

Here, due to the column orthonormality of Q, the inverse start section, that is
(Q,R) — Q- R = A, is actually well-conditioned: ||Q|2[|R|l2 = || A2

Exercise. Show for the full QR decomposition (9.3): r = b — Ax = (I — Q1Q))b = Q,Q}b.
Explain why only the third formula is stable and should therefore be used for the residual.

17.2 By means of a simple trick, we can actually by and large forgo explicit knowl-
edge of the factor Q. To do so, we calculate the normalized QR decomposition of
the matrix A augmented by the column b, i.e.,

(4]#)=(e]0)

By expanding we obtain not only the QR decomposition A = QR, but also

R |z

P

b=Qz+pq.
Due to Q'Q = I and Q'g = 0, multiplication with Q' provides the relationship
Qb =z
Thus, the constitutive equation (17.1) can be simplified to
Rx =z
Further, q'q = ||]|3 = 1 implies that the positive p is the norm of the residual:
o= lpgll2 = Ilb— Qzl2 = b — QRx[l2 = [}b — Axz.
To summarize, this algorithm can be written in MATLAB as follows:

Program 12 (Q-Free Solution of the Least Squares Problem).
Notice: in MATLAB the QR decomposition is not normalized to a positive diagonal of R.

R = triu(qr ([A bl)); % R-factor of the matrix A extended by b
= R(1:n,1:n)\R(1:n,n+1); 7% solution of Rx =12z
5 tho = abs(R(n+1,n+1)); % norm of the residual

As for linear systems of equations, the least squares problem is briefly solved by the line

x = A\b;
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Example. Let us re-examine the numerical example from §16.5:
7 >> x = A\b

9.999999999999996e-01
1.000000000000000e+00

Despite the relatively large condition number x;s = x(A) = 107, almost all digits are
correct; this time the machine arithmetic does not “trigger” the worst case scenario.

Exercise. Let the columns of a matrix B € R™*" constitute a basis of the n-dimensional
subspace U C R™. For x € R", denote by d(x, U) the distance from x to U.

e Render the calculation of d(x, U) as a least squares problem.
e Write a two line MATLAB code that calculates d(x, U) given the input (B, x).

17.3 The computational cost of such a Q-free solution of a least squares problem
using the Householder method is, according to §§9.8 and D.5,

2mn? —2n%/3 flop.

For m > n, the computational cost is thus two times larger than the cost to
calculate the solution via the normal equation with Cholesky decomposition,
which in accordance with §16.4 is

mn? +n3/3 flop.

For m = n, both are approximately 4m> /3 flop and therefore of comparable size.
Therefore, both algorithms have their merit: the normal equation with Cholesky
should be used for m >> n with a relatively large residual (in the sense of w &« 1)
or a comparatively well-conditioned matrix A; orthogonalization should be used
in all other cases (cf. §16.5).

Exercise. Let a matrix A € R™*" be given with full row rank m < n. Examine the under-
determined linear system of equations Ax = b.

e Show that there exists a unigue minimal solution x, for which it holds
¥y = argmin{||x||2 : Ax = b}.
This solution is given by x, = A'w, where w solves AA'w = b.
e Explain why this two-step algorithm is potentially unstable.
Hint: Use, without proof, the fact that’? x(x.; A) < 2k (A) with x2(A) = \/x2(AA7).
e Develop an efficient and stable algorithm to calculate x,.

e Supplement this algorithm with the calculation of ker(A).

70See Theorem 5.6.1 in G. H. Golub, C. E Van Loan: Matrix Computations, 4th ed., The Johns Hopkins
University Press, Baltimore, 2013.
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V Eigenvalue Problems

When | was a graduate student working at Oak Ridge, my office
was dubbed the Eigencave.

(Pete Stewart 1998)

While in theoretical mathematics a problem can often be
simplified by means of transformations, the indiscriminate
application of such methods in numerical mathematics often leads
to failure. This is due to the fact that the transformed problem
contains less numerical information than the original problem.

(Eduard Stiefel 1961)

18 Basic Concepts

18.1 An eigenpair (A, x) € C x C™ of a matrix A € C"*™, composed of an eigen-
value A and an eigenvector x, is defined by

Ax = Ax, x#0; (18.1)

the set of eigenvalues is the spectrum o(A) of A. Since the eigenvalue equation is
homogeneous in x, we often consider eigenvectors normalized by ||x|| = 1.

18.2 Obviously, A is an eigenvalue, if and only if AI — A is singular and therefore
A is a root of the characteristic polynomial

x(Z) = det(Z1 - A);
the multiplicity of this root is the (algebraic) multiplicity of the eigenvalue.

Remark. The fundamental theorem of algebra ensures the existence of eigenvalues A,
corresponding eigenvectors are obtained, at least theoretically, as a kernel vector of AI — A.

18.3 The connection to the characteristic polynomial x suggests an algorithm for
calculating the eigenvalues by first finding the coefficients and then the roots of x:

A xS (A A).

Unfortunately, this is numerically unstable due to the ill-conditioned end section h.
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Example. The application to a diagonal matrix with the eigenvalues 1,...,22 yields:

>> A = diag(1:22); % diagonal matrix with eigenvalues 1:22
>> chi = charpoly(A); % coefficents of the charachteristic polynomial
5 >> lambda = roots(chi); % roots

%

11

>> lambda (7:8)

ans =
15.4373281959839 + 1.073636082412331
15.4373281959839 - 1.073636082412331

A comparison with the nearest eigenvalue A = 15 yields an absolute error of ~ 1. We will
see in §19.4 that only an absolute error of O(€epacn) Would be acceptable because of the
well-conditioned nature of the eigenvalue problem itself.

Exercise. Find the condition number of a simple root of the polynomial ) as a function of
its coefficients; use componentwise relative error for the coefficients and absolute error for
the roots. What is the condition number for A = 15 in the example above?

Answer: k(1) = x!(JA])/|x' ()|, where the polynomial x? is obtained from x by applying
absolute values to the coefficients. In the example, x(15) ~ 6 - 10'°, so that x(15) - €ach = 6:

>> lambda = 15;

» >> kappa = polyval(abs(chi),lambda)/abs(polyval (polyder (chi),lambda))

kappa =
5.7345e+16

Remark. In numerical analysis, one goes the other way round: the roots of a polynomial
" eyl

are namely the eigenvalues of the corresponding companion matrix

0 —p

1 . —&1
0 —apy2
1 —ay

18.4 If the eigenpair (A, x) is already known, it can be “split off” from A. To do
so, we extend the normalized eigenvector x to an orthonormal basis, that is, let

2= (x|u)
be unitary.”! It then actually holds

x/ Al X AU
! — _ o
QaQ=|— (/\x ‘ AU) - A ] m=uau

71Such a Q can be constructed by a complete QR decomposition as in Theorem 9.10: [Q,~] = gqr(x).
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so that because of (an implicit polynomial division)
det({I—A) = (¢ —A)det(CI — Ay)
the eigenvalues of the deflated matrix A, supply the remaining eigenvalues of A.

This reduction of dimension is called deflation of A.

Exercise. Given an eigenpair (y,y) of A), construct a corresponding eigenpair (i, z) of A.

18.5 By applying the deflation technique once more to the deflated matrix A,
itself and by repeating this process recursively, we obtain, row-wise from top to bot-
tom, a Schur decomposition or unitary triangulation (for a column-wise construction
see §21.8)

/\1 * *

QAQ=T-= ST , c(A)={A1,..., A}, (18.2)
. .
Am
with a unitary matrix Q and an upper triangular matrix T, where the eigenvalues
of A appear on the diagonal of T according to their multiplicity.

Remark. Numerically, a Schur decomposition is always, without exception, to be preferred to
the Jordan normal form (why?). For most applications, all of the information of interest in
the Jordan normal form can essentially already be found in a Schur decomposition.

18.6 If Aisnormal,ie., A’A = AA’, it follows from QQ’ = I that also T is normal:
T'T=QAQQAQ=QAAQ=QAAQ=QAQQAQ=TT.
Normal triangular matrices are diagonal: the proof goes inductively, by writing

Tt

T:
*

and expanding T'T = TT’, one gets as the upper left entry
T2 = 7| + ||t]|5, thus t=0.
Thus, a normal (and hence, a fortiori, self-adjoint) matrix A can be unitarily diago-
nalized: there is a unitary matrix Q, such that
Q'AQ = D = diag(A1,..., Am), o(A)={A, ..., A} (18.3)

Inversely, unitary diagonalizable matrices are, of course, always normal.

Remark. Since AQ = QD, every column vector of Q is an eigenvector of A; hence, every
normal matrix possesses an orthonormal basis of eigenvectors.

Exercise. Show that for a self adjoint matrix A, the eigenvalues are real. For a real self-adjoint
matrix A, the matrix Q can also be constructed as real.
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19 Perturbation Theory

Backward Error

19.1 Let the matrix A be given along with a perturbed eigenpair (A, x), x # 0.
As with linear systems of equations, we define backward stability as the smallest
perturbation of A for which this pair becomes an exact eigenpair:

[IEl|2
[All2

This quantity can be directly calculated with the help of Theorem 15.2 of Rigal
and Gaches by setting b = Ax:

w:min{ :(A+E)x:)\x}.

7]l
W= e r = Ax — Ax.
| Al2]lx[l2*

Thus, a calculation of a numerical eigenpair with w = O(€pacn) is backward stable.

19.2 Let an approximate eigenvector x # 0 be given. Which A € C is the best
approximate eigenvalue fitting to it in terms of the backward error w? Since the
denominator of the expression w does not depend on the approximate eigenvalue,
it suffices to minimize the residual itself:
A = argmin ||Ax — x - pt|2.
pneC

The normal equation (cf. Theorem 16.3) of this least squares problem provides (no-
tice here that x plays the role of the design matrix and Ax that of the observation)
x' Ax

7

x’'x-A=x"Ax, suchthat A=

x'x
this expression of the optimal A is called the Rayleigh quotient of A in x.
19.3 Now, let an approximate eigenvalue A be given. Its absolute backward error
#=min{||E|z: A € c(A+E)} =min{||E|]z : AI — (A+ E) is singular}
is exactly # = ||Al — A||2/x2(AI — A) by Kahan’s Theorem 11.9, that is, we have
IAT=A) 3% A ga(a),
7 =sep(A, A) = (19.1)
0, otherwise;
where sep(A, A) is called the separation between A and A. According to §11.2, the

absolute condition number k(1) of an eigenvalue is therefore given by

. A=A
A) =1 A2 A eo(A).
Kabs () im sup sep(R, A) a(A)

Exercise. Show that sep(A, A) < dist(A,0(A)) and therefore invariably s (A) > 1.
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Conditioning of the Eigenvalue Problem with Normal Matrices
19.4 In the case of normal matrices, the separation is the distance to the spectrum:
Theorem. If the matrix A is normal, then it holds sep(A, A) = dist(A, o(A)).
Proof. Unitary diagonalization (18.3) implies that
(AI— 4)"1 = QI - D) 1Q

with a diagonal matrix D composed of the eigenvalues of A and therefore

1 1
AM=—A)"Yo=|| AI=D)71 |, = = )
II( ) 2= ( ) k2 A =]~ dist(h, o (4))

diagonal matrix
Here, we have used the unitary invariance of the spectral norm and (C.4). O

Exercise. Construct an A with 0 € ¢(A) such that dist(A,0(A))/ sep(A, A) — oo for A — 0.

Together with (19.1) this theorem directly shows that the eigenvalues of normal
matrices are always well-conditioned in the sense of absolute error:

Corollary (Bauer—Fike 1960). Let A be normal. It then holds that for A € 0(A + E)
dist(A, 0 (A)) < ||E]|2-

The absolute condition number of an eigenvalue A € o(A) satisfies ks (A) = 1.

Exercise. Show for diagonalizable A = XDX ™! that dist(A,0(A)) < x2(X)||E||2.

19.5 For simple eigenvalues, the condition number of the corresponding eigenvec-

tor can be estimated at least. Since only the direction of eigenvectors matters, we
measure their perturbation in terms of angles:

Theorem (Davis—Kahan 1970). Let (A, x) be an eigenpair of a normal matrix A, where
the eigenvalue A is simple; furthermore let (A, %) be an eigenpair of A + E. It then holds

B
dist(X, o(A) \ {A})

|sin £(x, %)| <
For this error measure, the condition number is bounded by x < dist(A,o(A) \ {A})~L.
This distance is called the spectral gap of A in A.

Proof. Without loss of generality x and % are normalized. The construction from
§18.4 leads to

1=|zl3= Q3= [¥'5? +|U'z]} ie, [sind(x,7)]=U'%|. (192)
—

=cos? £(x,%)


http://link.springer.com/article/10.1007/BF01386217
http://epubs.siam.org/doi/abs/10.1137/0707001
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From U’'A = A U’ (why?) and EX = A% — A% follows
UEZ = AU'% — U'A% = (Al — A))U'%, thus U’z = (Al - Ay) 'U'Eg,
so that by ||U’||2 = 1 and ||%||2 = 1 we obtain the bound (for general A up to here)
sin £ (x, %) < [[(AI = A) 72l Ell2 = [|Ell2/ sep(A, A,) -

Along with A, the matrix A, is also normal (cf. §18.6) and since A is simple it
holds 0(A)) = c(A) \ {A}, so that Theorem 19.4 finally yields the assertion. [

Remark. Determining eigenvectors belonging to degenerate eigenvalues is generally an ill-
posed problem. For instance, every direction in the plane constitutes an eigenvector of the
identity matrix I € C2*2 with double eigenvalue 1, but only the directions of the coordinate
axes correspond to the eigenvectors of the perturbed matrix I 4+ E = diag(1 + ¢,1) for an
arbitrarily small € # 0.

Exercise. For x # 0 let P = xx’/(x’x) be the orthogonal projection onto span{x}. Show:

|sin £(x, 2)| = ||P(x) = P(%)]|2:

19.6 For non-normal matrices A, the study of e-pseudospectra (with small € > 0)

0e(A) = {1 € C:sep(A, A) <e} 2 {A e C:A € o(A+E)fora ||E|l> < e}

is often much more meaningful than just the examination of ¢(A). This is a very
attractive area of research with many applications from random matrices to card
shuffling to the control of flutter instability for commercial airplanes.”?

20 Power lteration

20.1 Since according to §§18.2-18.3 the eigenvalue problem is formally equivalent
to calculating the roots of polynomials, the Abel-Ruffini theorem tells us that
for dimensions m > 5 there exists no “solution formula” that would just use the
operations +, —, %, /, e Instead, one constructs iterative sequences

(Ho,v0), (11, 01), (H2,02), - - -

of approximate eigenpairs and studies their convergence.

72See the monograph by L. N. Trefethen, M. Embree: Spectra and Pseudospectra. The Behavior of Nonnormal
Matrices and Operators, Princeton University Press, Princeton and Oxford, 2005.


https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
http://books.google.de/books?id=7gIbT-Y7-AIC&printsec=frontcover
http://books.google.de/books?id=7gIbT-Y7-AIC&printsec=frontcover
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20.2 In practice, such iterations are stopped, at the latest, when backward stability
is reached at the nth iterate (cf. §19.1):"3

_ Al
- 4
[All2[[ox 2

Since the spectral norm of a matrix would have to be approximated as an eigen-
value problem itself (§C.8), which is costly and would be a circular reasoning here,
we replace it with the Frobenius norm and use the following bound instead (§C.9)

Wn = O(emach)/ Wn Tn = Avy — UnOp.

lInll2
Al llonll2”
Concretely, the approximation is stopped at a user defined @, < tol or one iterates
until @, saturates at the level O(ep,cn) of numerical noise (cf. Fig. 1).

Oy = @y < wy < /M- @y (20.1)

10°

10721,

—
9
=

o =092
« 0=026 |7

H
2
IS
T
.
;
‘

1078} ]

Backward error estimate @y

200 300 400

iteration index k

Figure 1: Convergence of the power iteration for two different normal 1000 x 1000 matrices.

20.3 By considering (18.1) a fixed point equation for the direction of the eigenvec-
tor x, the fixed point iteration k = 1,2,... starting at a vector vy is:

we = Avp_ application of the matrix
k k-1 (app

v = wi/ ||will2 (normalization)
=7, Av Rayleigh quotient as in §19.2
i = v Avg (Rayleigh q §19.2)
=Wk+1
In the literature, this is called power iteration, because vy is the vector obtained
from normalizing Akpg (R. von Mises 1929).

73This non-asymptotic use of the O-notation is “par abus de langage” (N. Bourbaki); in this case it
means wy < CEmach With a suitably chosen constant ¢, which we allow to be polynomially dependent
on the dimension m (say, to be concrete, c = 10m).


http://en.wikipedia.org/wiki/Richard_von_Mises
https://www.collinsdictionary.com/dictionary/french-english/abus-de-langage
https://en.wikipedia.org/wiki/Nicolas_Bourbaki
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Program |3 (Power Iteration). The program is organized in such a way that interme-
diate results are never re-calculated but stored instead.

normA = norm(A,’fro’); % store ||Alr
omega = inf; % initialize the backward error
s w o= Axv; % initialize w = Av

while omega > tol % is the backward error still too large?
v = w/norm(w); % new v
w = A*xv; % new w
mu = v’*w; % Rayleigh quotient
r = W - mu*v; % residual
omega = norm(r)/normA; % backward error estimate @

end

20.4 Power iteration generally converges to an eigenvector corresponding to the
eigenvalue of largest size as long as it is unique, then called the dominant eigenvalue.
For the sake of simplicity, we limit ourselves to normal matrices:

Theorem. Let it be possible to order the eigenvalues of a normal matrix A as

A
[A1] > |A2] = -+ = |Am]|, so that especially 6 = )Tz <1
1

Let xq be a normalized eigenvector corresponding to the dominant eigenvalue Aq. If the
starting vector vy satisfies the condition’* xjvy # 0, power iteration calculates approxi-
mate eigenpairs (yy, vy) converging as’”

sin£ (v, x1) = 0(6), | — M| =006%) (k- o).
Proof. We will use the unitary diagonalization of A from §18.6 in the form
M

Q'AQ = = Q:<x1‘u), D = U'AU = diag(As, ..., An).

Using the transformed vector y = U'vy it follows from the diagonal structure that
v = 1x1 + Uy, m = xjvg #0, Akvy = i Akx, + UDFy.

The diagonal matrix D satisfies ||[D¥|s = |A2|F = |A;]%6 (cf. §C.11). Therefore,
from 14 )\’1‘ # 0 we obtain

Afvg = mAf(x1 +0(05) ~ mAkxy  (k— o).

Thus AFvy becomes asymptotically parallel to the eigenvector x at a rate of O(6*).

74This condition is best realized with a random choice of vj.
75We do not claim that the vy converge itself: in general, v, = oyx; + O(6%) with phases (phase =
“complex sign”) |ox| = 1 which do not necessarily converge—"the signs may jump.”
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The precise convergence estimates can be accounted for as follows: since vy and A¥vg
only differ by a normalization, (19.2) provides

1 Ak k
[sin £ (o, 1) = [U'nylp = LA ®l2 Dyl
[4Full, ~ JipAtxr + UDRy],
k k
< H[}z yl2 < 4 ||ky||2/|’71| —0(6Y),
Tl D%l S 1= 8yl I

where we have used ;11§ # 0 and, eventually, 6%||y|»/[71| < 1. Also due to (19.2), the
approximate eigenvalue yy satisfies

Hp = VAo = Ay oy [* + ofUDU v = Ay — Aq||U'vg |3 + 0, UDU' vy,
——
=1—|[U've3
so that finally from ||D||, = |A;| the estimate
= M| < (1M] + A2 U013 = (|A] + [A2]) sin® £ (vg, 1) = O(6%)
appears and everything is proven. O

Exercise. Show that the convergence rate of the backward error of (i, v) is wy = O(6%).
Explain the convergence plot in Fig. 1 both qualitatively and quantitatively.

Hint: Backward stability is reached at about 15/|log;, 6| ~ 50/|log, 0| iteration steps.

Remark. According to Theorem 19.5, an ill-conditioned eigenvector x; implies A1 = Ay, so
that then, due to § ~ 1, power iteration converges only very slowly.
Inverse Iteration
20.5 We notice the basic, but extremely useful equivalence
(A, x) eigenpairof A < ((A—u)"Lx) eigenpair of (A —ul)~L.

With the help of a shift y, that is closer to a simple eigenvalue A than to the rest of
the spectrum of A, the transformed eigenvalue (A — ) ! can be made dominant
for the transformed matrix S = (A — uI)~!. By Theorem 20.4, power iteration
applied to the matrix S now converges towards the eigenvector x. In this way,
simple eigenpairs can be selectively computed.

20.6 This yields the inverse iteration with shift y (H. Wielandt 1944), fork = 1,2,...:

(A —ul)wy = v (linear system of equations)
v = wi/ || will2 (normalization)
Hr = v, Avg (Rayleigh quotient from §19.2)

Since the matrix of this linear system of equations is not changed during the
iteration, just a single matrix factorization needs to be calculated (which is an
enormous advantage for large dimensions, even for a limited number of iterations).


https://en.wikipedia.org/wiki/Helmut_Wielandt
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20.7 To avoid the explicit matrix multiplication Av;, during the evaluation of
the Rayleigh quotients i = v} Avy and residuals rp = Avy — pivy, the following
auxiliary quantities are introduced:

Ok—1

:W:Avkﬂwk:rk+(#k*mvkr Pk = Vizk = VLAV — = g — .

Zk

This way we obtain py = p + py and 1y = z; — pvy, thereby cutting the cost of
each iteration step in half (2m? instead of 4m? flop).

Program [4 (Inverse Iteration with Shift).

normA = norm(A,’fro’); % store ||Alr
omega = inf; % initialize the backward error
s [L,R,p] = lu(A - muShift*eye(m),’vector’); % store the triangular decomp.
while omega > tol % is the backward error still too large?
w = R\(L\v(p)); % solve system of linear equations
normW = norm(w); % ||wl2
z = v/normW; % auxiliary quantity z
v = w/normW; % new v
rho = v’*z; % auxiliary quantity p
mu = muShift + rho; % Rayleigh quotient
r = z - rho*v; % residual
omega = norm(r)/normA; 7 backward error estimate @
3 end

20.8 Theorem 20.4 now readily implies a convergence result for inverse iteration:

Theorem. Let it be possible to order the eigenvalues of a normal matrix A with respect
to a given shift y € C as

/\1*?4‘
<1
/\2—]1

M —u| <|A2—pu| < <|Awm—p|, sothat especially 0 =

Let the vector xq be a normalized eigenvector corresponding to the eigenvalue Aq. If
the starting vector vy satisfies the condition x{jvy # 0, inverse iteration with shift
calculates approximate eigenpairs (g, vy) converging as

sin £ (vg, x1) = O(6Y), e — M| = 0(6%)  (k — o).

A Misguided Objection: lll-Conditioning of the Linear System to be Solved

We assume that A € C™*™ is normal.

20.9 If the shift y is very close to the spectrum of A, then the linear system of
equations for the inverse iteration, that is,

(A-phw=0v,  of2=1,
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is ill-conditioned: indeed in keeping with §§19.3-19.4 we get

o A=y maXieg(a) (A — #
<A~ 1D = Fictl o(A)) ~ mineon) Al > -

On the computer, we compute a @ that only approximates w very inaccurately.
Does this point towards a possible numerical instability of the inverse iteration?

20.10 The answer is a resounding “no!”, because we are not at all interested in
the vector w itself, but rather only in its direction (i.e., in the normalized vector
w/||w||2).”® A backward stable solution @ of the linear system actually satisfies

(A+E)—phov =0,  [[E[l2 = O([|All2 - €mach)- (20.2)

Were the perturbation E to the be same for all iteration steps (cf. the model for
iterative refinement in §E.1), we would directly get convergence to an eigenvector
of A+ E and thus achieve backward stability. With just a little more work, this
analysis can be carried over to the case where E depends on the iteration index.

20.11 At the extreme, inverse iteration can be used to compute an eigenvector
corresponding to a backward stable eigenvalue y taken as shift. Then §19.4 implies

dist(p, o(A)) = O([|All2 - €macn),

so that the iteration matrix A — uI is even numerically singular. Combined with y,
an approximate eigenvector @ calculated in course of inverse iteration forms an
approximate eigenpair (y, @). Using §19.1, its backward error can be bounded by
[AD —pdlly _ [lo—Edls _ 1+ |[Ell2][@ll2 1

= = — - = —— + O(€mach)-
Al [lAlll@ll2 =~ [Al2l®@]2 | All2]|]|2 mac

w =

If1/([|All2]]®]]2) = O(€macn), the eigenpair is thus already backward stable without
the exact length of ||w||, having played any particular role. In principle, if ||v]|2 = 1,
this magnitude is within reach as suggested by the following lower bound:

1 1 dist(p, 0(A))
= = =0(e .
All2[[wll2 = [|Al2][(A = pI)=Y2[[0]]2 |All2 (€émach)

Actually, for a randomly chosen normalized vector v, there is a high probability of
equal order of magnitude for both sides of this bound.”” We are thus led to claim:

76“The failure to grasp this fact has resulted in a lot of misguided papers.” (Pete Stewart 1998)

77More specifically, random vectors v generated by “v = randn(m,1); v = v/norm(v);” satisfy (for
a proof see §E.15), with probability > 1 — 4, the bound

1
<O emacn 0<6<1).
TAT Tl SO eman)


http://goo.gl/Qdd2V
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Using a backward stable approximate eigenvalue as shift, just a single step
of inverse iteration applied to a random starting vector computes, with high
probability, a backward stable approximate eigenpair.

Exercise. How can one avoid arithmetic exceptions entering during inverse iteration if the
iteration matrix A — ul is exactly singular in machine arithmetic?

Example. Here, despite the warning

issued by MATLARB at line 6 of the following code, a backward stable eigenvector to a given
eigenvalue has been found after just one single step of inverse iteration:

>> m = 1000; rng(847); % initialization

>> lambda = (1:m) + (-5:m-6)x*i; % given eigenvalues
3 >> [Q,~] = gr(randn(m)); A = Qxdiag(lambda)*Q’; 7% suitable normal matrix

>> mu = 1 - 5ij % shift = known eigenvalue
5 > v = randn(m,1); v = v/norm(v); % random start vector

>> w = (A - muxeye(m))\v; % 1 step inverse iteration
7 >> omega = sqrt(m)*norm(A*w-mu*w)/norm(A,’fro’)/norm(w) 7% Eq. (20.1)

omega =

1.3136e-15

21 OR Algorithm

21.1 For select eigenvalues A of a matrix A corresponding Schur decompositions
can be obtained in the form

X | %

QAQ=T= -

The last row of this decomposition states ¢}, Q' AQ = Ae),, so that for x = Qey, # 0
XA =Ax, x # 0. (21.1)

Such an x is called a left eigenvector of A corresponding to the eigenvalue A; (A, x)
is called a left eigenpair.

Remark. Adjunction takes (21.1) to the equivalent form A’x = Ax. It therefore holds that

o(A’) = 0(A) and the left eigenvectors of A correspond with the eigenvectors of A’. Hence,
all of the concepts from this chapter carry over from eigenpairs to left eigenpairs.

21.2 Starting with Ay = A, we now aim at iteratively computing just the last line
of a Schur decomposition by constructing a sequence

* | %

A1 = QRAKQ — Y

(k — o0) (21.2)
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where all the base changes Qj are meant to be unitary. Notably then, both Ay and
A are unitarily similar which implies that spectrum and norm remain invariant:

o(Ap) = o(A), (Al = | All2.

The last line of (21.2) amounts to saying that the last unit basis vector e, asymp-
totically becomes a left eigenvector of A corresponding to the eigenvalue A:

e Ax — Ael, (kK — ).

21.3 The partitioning
* | x

AL =
k 7‘2 )\k

shows the Rayleigh quotient for the approximate left eigenvector e,, of Ay to be
given by
Ak = e:n Akem

and the corresponding residual to be of the form
e Ax — Axey = (17, ‘ 0).

The backward error of the perturbed left eigenpair (Mg, ey ) is thus wy = ||r¢l2/ | All2
and it vanishes in the limit if and only if ||rx|l» — 0 as required in (21.2).

21.4 Let us construct Ax;q from Ay by improving e, as an approximate left
eigenvector with one step of inverse iteration (with a yet unspecified shift p):

(1) solve wy (Ax — piI) = ey,;
(2) normalize vy = wy/ ||wy||2;

(3) extend to an orthonormal basis, i.e., construct a unitary Qx = ( *

o)

(4) change basis according to Ay = Q; AxQx, such that v; becomes e, = Qv

21.5 The crucial point is now that we attain steps (1)-(3) in one fell swoop by using
a normalized QR decomposition for the solution of (1):8

* | %
A — il = QkRy, Ry = ,
Pk

78We follow G. W. Stewart: Afternotes goes to Graduate School, SIAM, Philadelphia, 1997, pp. 137-139.


http://goo.gl/v0zzP
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where Qy is unitary and Ry is upper triangular with a positive diagonal. From the
last row of Ry, namely e, Ry = pge;,, we obtain the last row of Qj in the form

APN/ / -1 / -1
Q= enBRi(Ae— )™ = pr e (A — ud)
~ N ——
normalized vector >0 =w;

that is,

e:anc = U;«
which means that the last column of Qy is already the vector vy. In addition,
step (4) can be briefly written as:

Apr = QuArQr = Qu(Ax — D) Qi + el = QuQiRkQx + pi = RiQx + el

21.6 We have thus reached one of the most remarkable, important and elegant
algorithms of the 20th century, namely the QR algorithm, independent1y79 de-
veloped from John Francis (1959) and Vera Kublanovskaya (1960): for Ay = A, a
sequence of suitable shifts p; and k = 0,1,2, ... the algorithm proceeds by

A — el = QrRy (OR factorization),

A1 = ReQp + il (matrix product RQ).

For constant shift yj = p this iteration is, by construction, nothing else than inverse
iteration with continued unitary basis changes that are keeping the left eigenvector
approximation fixed at the last unit vector e;,. In this case, the convergence theory
from Theorem 20.8 is directly applicable.

21.7 Although the sequence of the Ay is already converging itself, at least under
proper assumptions, towards a Schur decomposition (in fact even without shifts,
see §E.2), it is nevertheless more efficient—and conceptually also clearer for the
selection of suitable shifts jx—to split off sufficiently accurate eigenvalues row-wise
from bottom to top. The QR algorithm is therefore stopped when, partitioning

By | wn
An = | An
as in §21.3, there is backward stability of the left eigenpair (A, ey,):
[rnll2 = OClAll2 - €mach)-
At this point, we perform a numerical deflation in such a way that
By | wy

Ay A, = T En=en(r,]0),
n

7G. Golub, F. Uhlig: The QR algorithm: 50 years later, IMA J. Numer. Anal. 29, 467-485, 2009.


https://en.wikipedia.org/wiki/QR_algorithm
http://en.wikipedia.org/wiki/John_G._F._Francis
http://en.wikipedia.org/wiki/Vera_Kublanovskaya
http://imajna.oxfordjournals.org/content/29/3/467.full.pdf
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i.e., we simply make e;; an exact left eigenvector of a slightly perturbed matrix A
By construction, this perturbation fulfills

1Enll2 = llemll2 - [[nll2 = O([All2 - émacn)-

From
Ay = Q;—l to QE)A QO to anl = uizAunr
———
:un

the unitarity of Uy, and the unitary invariance®” of the spectral norm it follows that

Ay =W, AU, A=A+ E_,  [El2=0(Al2"€mach)-
u, E, Uy,

In this way, (A, Usen) is an exact left eigenpair of the perturbed matrix A and
therefore a backward stable left eigenpair of A.

Program 15 (QR Algorithm).

function [lambda,U,B,w] = QR_algorithm(A)

; [m,~] = size(A); I = eye(m); U = I; % initialization

normA = norm(A,’fro’); % store HAH;

5 while norm(A(m,1:m-1)) > eps*norml % backward error still too large?
mu = ... ; % select shift py (§821.10/21.12)
[Q,R] = gqr(A-mux*I); % QR decomposition
A = R*Q+muxI; % RQ multiplication
U = UxQ; % transformation matrix Uy = Q- -- QO

end
lambda = A(m,m); % eigenvalue
> B = A(1l:m-1,1:m-1); % deflated matrix
3w = A(1:m-1,m); % last column in Schur decomposition

21.8 Similarly, we notice that every backward stable left eigenpair of the deflated
matrix B, belongs to a backward stable left eigenpair of A. If we now apply
the QR algorithm to the matrix B, which is one dimension smaller, followed
by numerical deflation, and repeat this process over and over again, we obtain,
column by column, a backward stable Schur decomposition of A (cf. §18.5). By
suppressing indices and skipping backward stable perturbations for simplicity,
the structure of one step of this process can be written as follows: if

B|W

QAQ= T

800nce more we see the fundamental importance of unitary transformations in numerical analysis:
perturbations do not get amplified.
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is already calculated with Q unitary and T upper triangular, the application of
the QR algorithm on B with subsequent deflation provides

B | w
A

U'BU =

Combined, these two sub-steps result in the same structure as we started with,

u’ u ‘ u’'BU ‘ uw
. Q'AQ ‘ =
Blw )
1 uw B | %
f— f— = T ’
T

but with the dimension of the new triangular matrix T in the lower right block
being increased by one and the eigenvalue A being added to its diagonal.

21.9 In MATLAB, this process of computing a Schur decomposition Q’AQ =T
can be executed in situ as follows:

Program 16 (Schur Decomposition).

object MATLAB for column k

w T(1:k,k+1:m)
w T(1:k-1,k)
A T(k,k)
T = zeros(m); Q = eye(m); % initialization
> for k=m:-1:1 % column-wise from back to front
[lambda ,U,A,w] = QR_algorithm(A); % deflation with the QR algorithm
QC:,1:k) = Q(C:,1:k)*U; % transform first k columns of Q
T(1:k,k+1:m) = U’*T(1:k,k+1:m); % transform first k remaining rows of T
T(1:k,k) = [w;lambdal; % new kth column of T
7 end

Here, QR_algorithm(4A) is the function from Program 15.
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Shift Strategies and Convergence Results

21.10 A look at §21.3 suggests a candidate of the shift yy in step Ay — Agiq of
the QR algorithm: the Rayleigh quotient

Hik = e;nAkem = )\k'

We refer to this as Rayleigh shift. It specifies line 6 in Program 15 to complete as:

c mu = A(m,m);

Using the notation from §21.3, the following convergence of the residual can be
shown (for a proof see §E.7-E.13): if the initial residual ||ro||» is sufficiently small,
it holds

O(||r¢|I3) in general,
sl =
O(||r¢lI3) for normal matrices.
Such a convergence is called locally quadratic and locally cubic respectively.5!

Exercise. Consider an iteration with quadratic (cubic) convergence of the backward error
being applied to a well-conditioned problem. Show that the number of correct digits will,
eventually, at least double (triple) in every step.

21.11 Since for real matrices A the QR algorithm with Rayleigh shift generates a
sequence Ay of real matrices, complex eigenvalues cannot be directly approximated.
Other than in (21.2), the sequence Ay would then converge to a limit of the form

* *

v B
v A

According to Theorem 20.8, such a convergence does not only occur when the
lower right 2 x 2-matrix has conjugate-complex eigenvalues but also when both
of its eigenvalues are symmetrical to the Rayleigh shift u = A.

Example. Because of RQ = A, the permutation matrix

A*Olf R
7107&\/

=A =I

with the eigenvalues A = %1 is a fixed point of the QR algorithm with shift u = 0.

814]ocal”: for starting values in the vicinity of a limit; “global”: for all admissible starting values
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21.12 In 1968, J. Wilkinson proposed the following shift strategy to address this
problem: given

Ay = o B |- 21.3)
T Ak

one selects as shift i the eigenvalue of the 2 x 2 matrix®?

( ax Pk )
Tk Mk

that is closest to the Rayleigh shift A; we refer to this as the Wilkinson shift. In
Program 15 line 6 is therefore completed as:

mu = eig(A(m-1:m,m-1:m)); [~,ind] = min(abs(mu-A(m,m))); mu = mu(ind);

As with the Rayleigh shift, the convergence is locally quadratic in general or,
for normal matrices, locally cubic (for a proof see §E.14). In practice, one needs
approximately 2—4 iterations per eigenvalue on average.®>

Exercise. (a) Find how many iterative steps of the QR algorithm Program 16 needs on
average per eigenvalue for a random 100 x 100 matrix. (b) Show that for a real self-adjoint
matrix A, the Wilkinson shift is always real.

Remark. Unfortunately, even the Wilkinson shift is not completely foolproof—except for the
extremely important case of real symmetric fridiagonal matrices (cf. Phase 2 in §21.14),
where global convergence can actually be proven.? For instance, the permutation matrix

0 0 1
A=(1 0 0
0 1 0

is a fixed point of the QR algorithm with Wilkinson shift (which is u = 0). Therefore, several
more fine-tuned shift strategies have been developed such as multi-shifts, exception-shifts,
etc.. The search for a shift strategy that can be proven to converge for every matrix is still
an open mathematical problem.

Cost Reduction

21.13 Even though only a limited number O(1) of iterations per eigenvalue is
needed, the QR algorithm would still be too costly for the calculation of a Schur

82Eigenvalues of 2 x 2 matrices are computed as the solution of a quadratic equation; we refer to
§§14.1-14.2 on a discussion of the numerical stability thereof.

83As a bonus, eigenvalues calculated later in the process benefit from the steps of the QR algorithm
that have addressed preceding ones.

847, Wilkinson: Global convergence of tridiagonal QR algorithm with origin shifts, Linear Algebra and
Appl. 1, 409-420, 1968; a more structural proof can be found in W. Hoffmann, B. N. Parlett: A new
proof of global convergence for the tridiagonal QL algorithm, SIAM J. Numer. Anal. 15, 929-937, 1978.


http://www.sciencedirect.com/science/article/pii/0024379568900177
http://epubs.siam.org/doi/abs/10.1137/0715060
http://epubs.siam.org/doi/abs/10.1137/0715060
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decomposition if one applied it to A without any preprocessing;:

. — . . . R — 3
#flop for deflation = # iterations - # flop for one QR step = O(m”)

Program 15 =0(1) =0(m?)

total cost = O(m+ (m—1)>+---4+1) = O(m*).
—_——
# flop Program 16

The goal of the rest of this section is to reduce the cost from O(m*) to just O(m?)
(which is then comparable to the cost of a QR decomposition).

21.14 To achieve this goal, the calculation of a Schur decomposition is broken
down into two phases:

(1) unitary reduction of A with a direct O(m3) algorithm to some “simple” form
H=QAQ€c%H;
(2) use of the QR algorithm on H € H.

To this end, the space H of “simple” matrices should be invariant under a QR
step, that is

H>H-ul=QR = H.=RQ+ulecH.
Here, computing the QR decomposition and the product RQ should both only
require O(m?) flop. Recalling §9.11, the upper Hessenberg matrices invite themselves
to form such a space H: for them the computational cost of a QR step is = 6m?.

21.15 The invariance of H under a QR step of phase (2) follows directly from:

Lemma. Let H and R denote the matrix spaces of upper Hessenberg and upper trian-
gular matrices respectively. It then holds

H-RCH, R-HCH.
If H= QR is the QR decomposition of H € H as in §9.11, then it holds Q € H.
Proof. According to §§5.2 and 9.11, the matrix spaces R and H can be characterized
with the help of the canonical subspaces Vi = span{ey, ..., ¢} C K" by
ReR & RV, CV, (k=1:m), HeH & HVyCViy (k=1:m—1).
Step 1. For R € R and H € ‘H we have HR, RH € H, since
HR(V,) C HV, C Vi, RH(V,) C RViy1 C Vg (k=1:m-1).

Step 2. If H = QR is the QR decomposition of an invertible H € H, it follows from
the group structure of R with respect to multiplication (Lemma 5.3) that R~! € R
and therefore Q = HR™! € H. Since, as shown in §9.11, QR decomposition can
be made continuous in H, it follows that Q € H also for a general H € H by
approximating H, — H with a sequence of invertible H, € H. O
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21.16 As for phase (1), the column-wise unitary reduction of A to an upper
Hessenberg matrix H is best described by looking at the first column: from

aly
A=
x| B
using a full QR decomposition x = &lUe; of x € C"~D*1 we get

y'u

u’'BU

If we execute the same action on U’BU and repeat the process, we thus finally
obtain the desired Hessenberg matrix H, column-wise from left to right.

Exercise. Show that the computational cost of this algorithm is O(m?) if one uses an implicit
representation of Q (by just storing all factors, e.g., Givens rotations, and not expanding
their product).

Exercise. Show that if A is self-adjoint, the preprocessed matrix H is also self-adjoint and
therefore tridiagonal. What is the cost of the two phases in this case?

Answer: Phase (1) costs O(m3), whereas Phase (2) costs only O(m?) flop.

21.17 MATLAB offers access to LAPACK programs of the algorithms from this
section (for LAPACK ’GE’ stands for a general Hermitian matrix, ‘SY’ for a real
symmetrical matrix and ‘HE’ for a complex hermitian matrix; cf. §8.1):

Problem MATLAB LAPACK
Hessenberg H = Q"AQ [Q,T] = hess(4) *GEHR/xSYTRD/xHETRD
Schur T = Q"AQ [Q,T] = schur(A,’complex’) xGEES/xSYEV/xHEEV
all eigenvalues A;(A) (j=1:m) lambda = eig(A) xGEEV/xSYEV/xHEEV

The calculation of just the complete set of eigenvalues is computationally much
less expensive than a fully fledged Schur decomposition since then there is no
need to deal with the unitary transformations.


http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational.html#ga2611cc9dfdc84e2a08ec57a5dd6cdd2e
http://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational.html#gaefcd0b153f8e0c36b510af4364a12cd2
http://www.netlib.org/lapack/explore-html/df/d7d/zhetrd_8f.html#a65f7a5eadb6a10738216bd47aafb49ad
http://www.netlib.org/lapack/explore-html/db/d55/group__complex16_g_eeigen.html#ga255e11cea9a4fdadaffd2506c86ce53b
http://www.netlib.org/lapack/explore-html/d2/d8a/group__double_s_yeigen.html#ga442c43fca5493590f8f26cf42fed4044
http://www.netlib.org/lapack/explore-html/d6/dee/zheev_8f.html#af23fb5b3ae38072ef4890ba43d5cfea2
http://www.netlib.org/lapack/explore-html/db/d55/group__complex16_g_eeigen.html#ga0eb4e3d75621a1ce1685064db1ac58f0
http://www.netlib.org/lapack/explore-html/d2/d8a/group__double_s_yeigen.html#ga442c43fca5493590f8f26cf42fed4044
http://www.netlib.org/lapack/explore-html/d6/dee/zheev_8f.html#af23fb5b3ae38072ef4890ba43d5cfea2
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Example. Here are a few execution times for random real 2000 x 2000 matrices:

Command General matrix [s] Symmetric matrix [s]
[L,R,p] = lu(A,’vector’); 0.11 0.11
R = triu(qr(A)); 0.23 0.23
[Q,R] = qr(A); 0.44 0.44
H = hess(A); 2.0 0.83
[Q,H] = hess(A); 2.2 1.0
lambda = eig(A); 3.8 0.89
[Q,T] = schur(A,’complex’); 13 14

21.18 In the case of normal matrices, the columns of the unitary factor Q of a
Schur decomposition Q’AQ = T form an orthonormal basis of eigenvectors (see
§18.6). For general matrices, the MATLAB command [V,D] = eig(A) aims at
calculating a numerical solution V' € C"*™ of

AV =VD, D =diag(\,..., An).

The columns of V would therefore have to be eigenvectors of A; if A does not,
however, have a basis of eigenvalues, V must be singular—such a matrix A is
then called non-diagonalizable. On the computer this manifests itself by returning
a numerically singular matrix V (cf. §11.10) with

K (V) > et

~ “mach"’

Remark. Individual select eigenvalues can be best calculated as described in §20.11.
Exercise. Discuss the result of [V,D] = eig([1 1; 0 11).

Exercise. Let T € R™*™ be a symmetric tridiagonal matrix of the form

ap b

(bj #0).
b1
b1 Am
This exercise develops an efficient algorithm for the calculation of the eigenvalues of T that
are within a given half open interval [, B).

e Show that triangular decomposition without pivoting leads (when feasible) to a
decomposition of the form T — uI = LDL/, where D = diag(dy, ..., dy) is given by
the recursion

dy=a1—p, di=aj—p——— (j=2:m). (21.4)
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The indices of inertia of T — uI are then given by

ve(p)=#{Areo(T): A2 u} = #{dj 1dj 2 0},

vo(u) =#{A € o(T) : A = p} =#{d; : d; = 0}
with vp(p) € {0,1}. Characterize the feasibility of the decomposition in exact arith-
metic.

e Show that the calculation of the indices of inertia based on (21.4) is backward stable.
Using the standard model (12.1), prove that the actually calculated quantities d ; have
the same signs as the d~] obtained from a perturbed recursion of the form

3 3 -1 .
dliﬂl—y, dj:ﬂ]‘—]/l— ] (]:2:m).

Find a suitable estimate for the relative error of l;j.

e Show that in machine arithmetic (21.4) makes sense even when dj* =0foraj, < m.
Furthermore, the calculated index v_(u) would remain invariant (but not v4 (p)) if
one prevented d;, = 0 with a sufficiently small perturbation of the form a;, - e.

e Show that the count v(a, ) = #(c(T) N [&, B)) is given by v(a, B) = v_(B) — v ().

e Implement the following bisection algorithm: by means of continued bisection of
intervals, the starting interval [, B) is broken down into sub-intervals [a, B+) which
are only however further considered in this process if

ve = #(0(T) N [ax, Bx)) > 0.
Bisection of a sub-interval is stopped if it is sufficiently accurate: + — &, < tol. The
output of the algorithm is a list of intervals [, B«) with their count of eigenvalues.
e Estimate the computational cost of the algorithm as a function of m, v(a, ) und tol.

o Generalize the algorithm to arbitrary real symmetric matrices A by adding a Phase (1)
similar to §21.14. Why does the assumption b; # 0 on T not pose a restriction then?

Exercise. Let the matrices A,B € R™*™ be symmetric, and B be additionally positive
definite. Consider the generalized eigenvalue problem of the form

Ax = ABx, x #0. (21.5)
The set of all generalized eigenvalues A is labeled o (A, B).

o Give a formula for the (normwise relative) backward error w of a perturbed eigenpair
(A, %), % # 0. Here only the matrix A should get perturbed.

o With respect to perturbations of A measured with the 2-norm, the absolute condition
number of a simple generalized eigenvalue A (let x be a corresponding eigenvector)
is given by®

x'x
x'Bx’

Kabs(/\; A) =

85V. Frayssé, V. Toumazou: A note on the normuwise perturbation theory for the regular generalized eigenprob-
lem, Numer. Linear Algebra Appl. 5, 1-10, 1998.


https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
https://goo.gl/AveeJL
https://goo.gl/AveeJL
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From this, deduce the bounds |A| || Al|;! < #aps(A; A) < ||[B~1[|2 (the lower one only
in the case of A # 0) and make the following statement more precise:

A generalized eigenvalue A is ill-conditioned if B is ill-conditioned and |A| is
relatively large.

Hint: Without loss of generality we can assume that ||B||; = 1. Why?

Use w and xaps(A; A) for an algorithmically simple bound of the absolute forward
error of A.

Show that a decomposition of the form B = GG’ transforms the generalized eigen-
value problem (21.5) to the following equivalent symmetric eigenvalue problem:

Agz=Mz, Ag=G'A(GY, z=Gx#0. (21.6)

Get formulas for such G from both the Cholesky and a Schur decomposition of B.

Apply the inverse iteration with a shift y from §§20.6-20.7 to Ag and transform it
back so that only the matrices A and B appear, but not the factor G. State a suitable
convergence result.

Implement the thus generalized inverse iteration efficiently by modifying Program 14.
Along with the generalized eigenpair (A, x) the output should include the calculated
absolute condition number x,,s(A; A) as well as a bound of the absolute forward error
of the generalized eigenvalue A.

With the help of the transformation (21.6), write a function eigChol (A,B) and a func-
tion eigSchur (A,B), which both calculate 0 (A, B) based on the MATLAB command
eig(Ag). How many flop are needed for each of the two variants?

With the three programs developed in this problem as well as the MATLAB command
eig(4,B), calculate all the eigenvalues for the following example:

A =1[1.0 2.0 3.0; 2.0 4.0 5.0; 3.0 5.0 6.01;
2 B = [1.0e-6 0.001 0.002; 0.001 1.000001 2.001;
0.002 2.001 5.0000017;

Assess the accuracy of the resulting eigenvalues (stability, number of correct digits)
and rate the methods. Take the condition number of the problem into account.



Appendix

A MATLAB: A Very Short Introduction

MATLAB (MATrix LABoratory) is proprietary commercial software that is used
in both industry and academia for numerical simulations, data acquisition and
data analysis. It offers an elegant interface to matrix based numerical calculations,
as well as state of the art optimized BLAS libraries (Basic Linear Algebra Sub-
programs) from processor manufacturers and the high-performance Fortran library
LAPACK for systems of linear equations, matrix decompositions and eigenvalue
problems. This all is accessible by means of a simple scripting language.

General Commands
A.l Help:
help command, doc command

shows the help text of a command in the console or browser.
A.2 ’,” and ’;’ separate commands, whereby ’;” suppresses displaying the output.

A.3 Information:

whos

provides information about the variables in memory.

A.4 Measuring execution time:

tic, statements, toc

executes the statements and measures the computation time required.

A.5 Comments:

% comments can be written behind a percent sign
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Matrices

A.6 MATLAB identifies scalars with 1 x 1 matrices, and column vectors (row
vectors) of dimension m with m x 1- (1 X m-) matrices.

A.7 Assignment:
A = expression;

assigns the variable A the value of ezpression.

A.8 +,-,* are matrix addition, subtraction, multiplication. A/B computes the
solution X to the linear system A = XB and A\B the solution X to AX = B.

A.9 .xis the componentwise multiplication of two matrices.
A.10 A’ is the adjoint matrix of A.

A.ll Matrix input:

A =1[0.32975 -0.77335 0.12728;
-0.17728 -0.73666 0.45504];

or
A =1[0.32975 -0.77335 0.12728; -0.17728 -0.73666 0.45504];

assigns the following matrix to the variable A:

0.32975 —0.77335 0.12728
—0.17728 —0.73666 0.45504 /)

A.12 Identity matrix:
eye(m)

generates the identity matrix of dimension m.

A.13 Zero matrix:
zeros(m,n), zeros(m)

generates a matrix of zeros with the dimension m x n and m X m respectively.

A.14 Ones matrix:
ones(m,n), ones(m)

generates a matrix of ones with the dimension m X n and m X m respectively.



Sec. A] MATLAB: A Very Short Introduction 101

A.15 Random matrix with with uniformly distributed entries:
rand(m,n), rand(m)

generates a matrix of i.i.d. random entries, uniformly distributed on [0, 1], with
the dimension m X n and m X m respectively.

A.16 Random matrices with normally distributed entries:
randn(m,n), randn(m)

generates a matrix of i.i.d. random entries, having standard normal distribution,
with the dimension m x n and m X m respectively.

A.17 Index vectors:
Jj:k, j:s:k
are the row vectors [j,j+1,...,k-1,k] and [j, j+s,...,j+tm*s] with

m = [(k=7j)/s].

A.18 Components:
ALK

is the element of the matrix A in the jth row and kth column.

A.19 Submatrices:
A(j1:32,k1:k2)

is the submatrix of the matrix A, in which the row indices are j1 to j2 and the
column indices are k1 to k2.

A(j1:j2,:), AC:,k1:k2)

are the submatrices built from rows j1 to j2 and from the columns k1 to k2.

A.20 Matrix as vector:
v = AC:)

stacks the columns of A € K"*" consecutively on top of one another to make a
column vector v € K",

A.21 Closing index:

x(end)

is the last component of the vector x and
A(end,:), A(:,end)

is the last row and column respectively of the matrix A.


https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
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A.22 Triangular matrices:
tril(A), triu(d)

extracts the lower and upper triangular part of the matrix A and fills up with zeros.

A.23 Dimension of a matrix:

size(A,1) bzw. size(4A,2)

outputs the number of rows and columns of the matrix A respectively;
size(A)

returns the row vector [number of rows,number of columns].

A.24 Dimension of a vector:
length(x)

returns the dimension of the column or row vector x.

Functions

A.25 The definition of a MATLAB function myfunc begins with the line
function [o_1,0_2,...,0_n] = myfunc(i_1,i_2,...,i_m)

wherei_1,i_2,...,i_mrepresent the input variables and o_1,0_2,...,0_n rep-
resent the output variables. The function has to be saved as the file myfunc.m in
the project directory. The function is called in the command line (or in further
function definitions) by:

[o_.1,0.2,...,0.n] = myfunc(i_1,i_2,...,i_m)

Output variables can be ignored by omitting the last variables or by replacing
them with the place holder "~":

[~,0_2] = myfunc(i_1,i_2,...,i_m)
If there is only one output variable, one can omit the square brackets:

o_1 = myfunc(i_1,i_2,...,i_m)

A.26 Function handle:

f = @Gmyfunc;
[o.1,0.2,...,0n] = f(i_1,i_2,...,i_m)

A function handle can be created with the ‘@ symbol and assigned to a variable
that then acts like the function itself.
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A.27 Anonymous function:
f=0(i_1,i_2,...,i_m) expression;

generates a handle for a function that assigns the value of the expression to
i_1,i_2,...,i_m The call is executed by

o1=+f@G_1,i 2,...,i_m)

Control Flow

A.28 Conditional branches:

if expression
instructions
elseif expression
instructions
else
instructions
end

The instructions are executed if the real part of all entries of the (matrix valued)
expression is non-zero; ‘elseif’” and else’ are optional and multiple ‘elseif’
can be used.

A.29 for loops:

for Variable = wvector
instructions
end

executes instructions multiple times where the variable is successively as-
signed the values of the components of vector.

A.30 while loops:

while expression
instructions
end

executes instructions repeatedly as long as the real part of all entries of the
(matrix valued) expressions is non-zero.

A.31 ’break’ stops the execution of a for or a while loop.

A.32 ’continue’ jumps to the next instance of a for or a while loop.
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A.33 'return’ leaves the current function by returning control to the invoking
function.

Logic Functions
A.34 Comparisons:
A==B, A-=B, A<=B, A>>B, A<B, A>B

componentwise comparisons of matrices; 1 stands for ‘true’ and 0 for "false’.

A.35 Test for “all” or “at least one” true element:
all(A < B), any(A < B)

tests whether all comparisons, or at least one, is true; equivalently valid for the
other operators ==, ~=, <=, >=, >,

A.36 Logic Boolean operations:
a& b, allb

are the logical and” and “or” for scalar values a and b. Every non-zero value is
understood as true, and the value zero as ’false’; the result is 0 or 1.

A.37 Negation:
~ezpression, not(ezpression)

both return the logical negation of expression.

A.38 Test for an empty matrix:
isempty (4)

is 1 if the matrix A is empty, otherwise 0.

Componentwise Operations

A.39 Componentwise (“point-wise”) multiplication, division and power:

A.xB, A./B, A.72, A.”B

A.40 Componentwise functions:

abs(A), sqrt(A), sin(A), cos(A)
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B Julia: A Modern Alternative to MATLAB

B.l Since 2012, the highly performant, expressive and dynamical programming
language Julia (open source with the MIT/GPL license) has been developed by
a group lead by the mathematician Alan Edelman at MIT. Julia, by means of its
modern design, is well suited for both the requirements of scientific computing,
as well as more generalized programming tasks and includes elements such as

e JIT-compilation using LLVM,8¢

e parametric polymorphism and type inference at compile-time,
e object oriented programming based on multiple dispatch,

e homoiconicity and ,hygienic” macro programming,

o the ability to directly call C- and Fortran libraries.

This way Julia combines the expressiveness of programming languages like MAT-
LAB and Python with the performance of programming languages like C, C++
and Fortran. For a more complete account and introduction, I strongly recommend
reading the following paper:

J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah: Julia: A Fresh Ap-
proach to Numerical Computing, SIAM Review 59, 65-98, 2017.

An international and extremely active developer community has augmented
the functionality of Julia by more than 1500 packages, pushing Julia into the
ranks of one of the fastest growing programming languages ever. By means of
its modern concept, high performance, and free accessibility, Julia has already
become a highly attractive alternative to MATLAB and may very well overtake in
the university setting in the near future.

In order to aid the commendable transition, I have listed all MATLAB programs
of this book below in Julia 0.6 and will go into the differences and advantages for
each of these examples.®”

B.2 Julia’s language elements for numerical linear algebra are basically very
closely related to MATLAB. I refer you to the 650-pages reference manual and the
help function for details:

? command

861 ow Level Virtual Machine”, a modular compiler infrastructure architecture that is also the basis
of the highly optimized C compiler Clang.

87In order to easily test Julia, the Julia environment juliabox.com allows one to use Julia directly in a
browser without local installation.


http://www.julialang.org
https://en.wikipedia.org/wiki/Alan_Edelman
http://www.mit.edu
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Parametric_polymorphism
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/Hygienic_macro
https://julialang.org/publications/julia-fresh-approach-BEKS.pdf
https://julialang.org/publications/julia-fresh-approach-BEKS.pdf
http://pkg.julialang.org
http://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/
http://julialang.org/downloads/
https://docs.julialang.org/en/latest/
https://en.wikipedia.org/wiki/Clang
https://juliabox.com
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One small syntactical difference is the use of square brackets instead of round
brackets for matrix indices:

Alj,k], A[j1:j2,k1:k2], A[j1:j2,:1, A[:,k1:k2], A[:]

B.3 In contrast to MATLAB, vectors and column vectors (as well as 1 x 1 matri-
ces and scalars) are not identified in Julia, but rather treated as fundamentally
different types (type differences lead to distinctively compiled programs and a
great increase in Julia’s execution speed, since types no longer must be identified
at run-time). When working with column vectors, this phenomenon is barely no-
ticeable, since matrix-vector products are compatible with matrix-column-vector
products. When working with row vectors however, one must take care, since both
of the expressions

AL:,x1, Alj,:]
create a vector from the corresponding components of the columns and rows of

the matrix A. Explicit generation of a column or row vector requires the following
(MATLAB compatible) syntax:

Al:,k:k], A[j:j,:]

Hence, the table from §3.2 changes in Julia as follows:

meaning formula Julia

components of x Cx x [k]

components of A Xk Alj,k]

column vectors of A aF Al:,k] and A[: ,k:k]

row vectors of A a; Alj:j,:]

submatrix of A (k) j=m:pk=n:1 Alm:p,n:1]

adjunct matrix of A A’ A’

matrix product AB AxB

identity matrix I e Rmxm Cmxm eye(m), complex(eye(m))
zero matrix 0 € RM*n, Cmxn zeros (m,n), complex(...)

B.4 One significant semantic difference between MATLAB and Julia is the passing
of matrices for assignments or function calls. Julia actually passes references to an
object (“call by reference”) so that in the following example, the variables A and B
both refer to the same matrix in memory:

>> A = [1 2; 3 4];

2 >> B = A;

5 >> B[1,1] = -1;
>> A[1,1]
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In comparison, MATLAB passes copies of the values (“call by value”) and, for this
example, would return the original value of 1 for A(1,1). In Julia, this behavior
can be achieved by creating an explicit copy:

B = copy(A)

B.5 As with MATLAB, Julia also creates a copy for “slices” such as A[: ,k:k] (so
here a copy of a m x 1 submatrix), but also offers direct views of A in memory with
the commands view(4, : ,k:k) for a m x 1 dimensional matrix and view(4, : ,k)
for an m dimensional vector. Alternately, one can use the @view macro:

x = A[:,k] # the vector x is a copy of the kth colunn of A

2>y = @view A[:,k] # the vector y is identical with the kth column of A in memory

These views do not only save space in memory, but often also execution time by
avoiding unnecessary copy operations.

B.6 Matrix multiplication
Remark. For K = C, the first line of code must be C = complex(zeros(m,p)).
Program | (Matrix Product: column-wise).

C = zeros(m,p)

2> for 1=1:p

)

C[:,1] = AxB[:,1]
end

Program 2 (Matrix Product: row-wise).

C = zeros(m,p)
for j=1:m

CLj:j,:1 = A[j:j,:1*B
end

Since Julia calls the BLAS routine xGEMM for matrix-matrix multiplication to
execute the matrix-column-vector product in line 3, this program be accelerated
through the explicit use of the xGEMV BLAS routine (notice that the order of factors
requires the transposition flag ’T’ to be set):3

Program 2 (Matrix Product: row-wise, accelerated version).

C = zeros(m,p)
for j=1:m

C[j,:]1 = BLAS.gemv(’T’,B,A[j,:])
end

88Julia offers a very user friendly interface to BLAS and LAPACK where a routine named "xyz’ can be
called by BLAS.xyz and LAPACK.xyz.
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Program 3 (Matrix Product: inner products).
C = zeros(m,p)
for j=1:m
for 1=1:p
Clj:j,1]1 = A[j:j,:1*B[:,1]
end
end

This version can be considerably accelerated when Julia explicitly uses a BLAS-1
routine and does not create a copy of the row and column vectors:

Program 3 (Matrix Product: inner product, accelerated version).

C = zeros(m,p)
for j=1:m
for 1=1:p
C[j,1] = dot(conj(view(A,j,:)),view(B,:,1))
end
end

Remark. Notice that the dot command takes complex conjugates of the first factor.
Program 4 (Matrix Product: outer product).

C = zeros(m,p)
for k=1:n

C += A[:,k]1*B[k:k,:]
end

Since Julia calls a matrix-matrix multiplication for computing the outer product,
the program can be accelerated with the suitable Level-2 BLAS routine xGER:

Program 4 (Matrix Product: outer products, accelerated version for real matrices).

C = zeros(m,p)
for k=1:n

BLAS.ger!(1.0,A[:,k],B[k,:],C) # in situ call to xGER
end

Remark. Julia uses an !’ at the end of a function name when the routine runs in situ and
thereby at least one argument is overwritten. In this way, BLAS . ger ! (alpha,x,y,A) executes
the rank-1 update A + axy’ — A right in place where A is stored in memory.

Exercise. Modify this program so that it works correctly for complex matrices, too.
Program 5 (Matrix Product: componentwise).

C = zeros(m,p)
for j=1:m
for 1=1:p
for k=1:n
Clj,1] += A[j,kI*B[k,1]
end
end
end


http://www.netlib.org/lapack/explore-html/d7/d15/group__double__blas__level2.html#ga458222e01b4d348e9b52b9343d52f828
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Thanks to the extremely effective JIT-compiler (that creates native machine code
directly before the first execution of the program), componentwise multiplication
is much faster in Julia than in MATLAB, and is almost as fast as in C. The full
performance of C can be achieved by using the compiler directive @inbounds,
which tells Julia that the indices will stay in bounds so that it can safely pass on
admissibility checks:

Program 5 (Matrix product: componentwise, accelerated version).

C = zeros(m,p)
for j=1:m
for 1=1:p
for k=1:n
@inbounds C[j,1] += A[j,kI*B[k,1]
end
end
end

The execution times show that Julia is especially faster than MATLAB when
loops are involved, in which case the full performance of a compiled language
can be exploited. Below, Table 3.4 has been amended:

program BLAS level MATLAB [s] C & BLAS[s] Julia[s]
A*B 3 0.031 0.029 0.030
column-wise 2 047 0.45 0.48
row-wise 2 0.52 0.49 1.2 } 0.52
outer product 2 3.5 0.75 6.53 ! 0.75
inner product 1 1.7 15 85|18
componentwise 0 20 1.6 31|16

The minimal discrepancy between C and Julia can be accounted for by the use
of different BLAS libraries: MKL from Intel is used in the C implementation (as
well as by MATLAB) and OpenBLAS by Julia.

B.7 Execution times can either be measured with the @time macro,

Q@time <nstructions

or similar to MATLAB with
tic(); dnstructions; toc ()
More accurate measurements can be taken with the package BenchmarkTools,
which automatically calculates an average of multiple runs if the execution is fast.

The number of local processor threads used for a possibly parallel execution of
BLAS routines can be easily controlled with the following command:

BLAS.set_num_threads (number of coras)


https://en.wikipedia.org/wiki/Math_Kernel_Library
https://en.wikipedia.org/wiki/Intel
http://www.openblas.net
https://github.com/JuliaCI/BenchmarkTools.jl/blob/master/doc/manual.md
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B.8 Forward substitution to solve Lx = b:

Program 6.
x = zeros(b) # zero vector of the same size and type (real/complex) as b
for k=1:m
x[k:k] = (b[k:k] - L[k:k,1:k-1]1*x[1:k-1])/L[k,k]
end

Remark. Notice the consistent “double” use of the index k in the form k:k. This is because
in Julia the product of row and column vectors

Llk:k,1:k-1]*x[1:k-1]

returns a result of the type vector (in K!), whereas the components b[k], x [k] are scalars.
Julia does not provide a “type promotion” functionality that would allow the assignment
of vectors in K! or matrices in IK!*! to scalars K. We must therefore write b[k:k] and
x[k:k] in order to ensure the correct type is matched. Alternatively, the dot command can
be used, but for K = C the complex conjugate in the first factor must be taken into account:

x = zeros(b)

> for k=1:m

x[k] = (b[k] - dot(conj(L[k,1:k-1]),x[1:k-1]))/L[k,k]
end

For in situ execution, the first variant can be written as:

Program 7 (Forward Substitution for x < L™ 1x).

for k=1:m
x[k:k] -= L[k:k,1:k-1]1*x[1:k-1]
x[k] /= LI[k,k]

end

In Julia, the command to solve a triangular system of equations such as Lx = b
or Ux = b can also be written succinctly (and exactly as in MATLAB, Julia thereby
analyzes the structure of the matrix):

x = L\b, x = U\b

B.9 If we encode a permutation 7t € S, in Julia by p = [7(1),...,(m)], row and
column permutations P;;A and AP, can be expressed as:

Alp,:1, AL[:,p]

The permutation matrix Py itself can be obtained as follows:

E = eye(m), P = E[:,p]

In Julia, the symbol I is reserved for a universal identity matrix (see the reconstruc-

tion of the L-factor in §B.10 and the program §B.23) and should therefore never
be overwritten.
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B.10 In situ triangular decomposition without pivoting can be written as:

Program 8 (Triangular Decomposition).

for k=1:m
Alk+1:m,k] /= Alk, k] # (7.1b)
Alk+1:m,k+1:m] -= A[k+1:m,k]*A[k:k,k+1:m] # (7.1c)
end

The factors L and U are then reconstructed with the commands:

5 L = tril(A,-1) + I

5 L

U = triu(A)

Here, copies of the data from matrix A are created and stored as full matrices (with
the other triangle full of zeros). It is more effective to use the direct view of the
memory of A in the form of a data structure for (unipotent) triangular matrices
that can then nevertheless be used like standard matrices for further calculations:

LinAlg.UnitLowerTriangular (A)

6 U = LinAlg.UpperTriangular (A)

When pivoting is added, the code can be written as follows:

Program 9 (Triangular Decomposition with Partial Pivoting).

p = collect (1:m) # initialization of the permutation vector
2 for k=1:m
j = indmax (abs(Alk:m,k])); j = k-1+j # pivot search
pllk,j1] = pl[j,k1]; A[[k,jl,:1 = A[[j,k],:] # row swap
Alk+1:m,k] /= Al[k,k] # (7.2d)
Alk+1:m,k+1:m] -= A[k+1:m,k]*A[k:k,k+1:m] # (7.2e)
7 end

The triangular factors of the matrix A[p, :] are exactly reconstructed as above.
Peak performance can be reached by means of the Julia interface to xGETRF:

L, U, p = 1lu(h)

B.Il In Julia, the solution X € IK"™*" of the system AX = B € K"*" is therefore:

L, U, p = 1u(hd)
Z L\B[p,:]

s X = U\Z

or completely equivalently, if the decomposition P’A = LU is no longer needed:
X = A\B

Alternatively, Julia offers the compact data structure Base.LinAlg.LU to store the
factorization:

F = lufact(A) # lufact(A,Val{falsel}) prevents pivoting
L = F[:L]; U = F[:U]; p = Fl:pl]


http://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational.html#ga0019443faea08275ca60a734d0593e60
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This way a system of the form AX = B can be solved without re-factoring of the
matrix A brief and succinctly as follows:

X = F\B

B.12 In Julia, the program for the Cholesky decomposition can be written as:
Program 10 (Cholesky Decomposition of A).

L = zeros(A)

> for k=1:m
1k = L[1:k-1,1:k-1]\A[1:k-1,k] # (8.1b)
L[k,1:k-1] = 1k’ # (8.1a)
L[k:k,k] = sqrt(A[k:k,k] - 1k’x1k) # (8.1c)
end

I}

Exercise. Write an in situ version that converts the lower triangular matrix of A into the
lower triangular matrix of L. Hint: Use LinAlg.LowerTriangular, cf. §B.10.

Peak performance can be reached with the interface to xPOTREF:
L = chol(A,Val{:L})
The factor U = L’ is calculated slightly faster if a column-wise storage scheme is
used for matrices on the machine at hand:
U = chol(A)
If a linear system of the form AX = B is to be solved, the following approach
should be taken (this way the factorization can also be easily re-used):’

F = cholfact (A)
X = F\B # solution of the system of equations
L, U = F[:L], F[:U] # L factor and, alternatively, U = L' factor

B.13 The MGS algorithm of QR decomposition can be written in situ as follows:
Program |1 (QR Decomposition with MGS Algorithm).

R = zeros(n,n) # for K=C: R = complex(zeros(n,n))
for k=1:n

R[k,k] = norm(A[:,k])

A[:,x] /= R[k,k]

Rlk:k,k+1:n] = A[:,k]’>*A[:,k+1:n]

A[:,k+1:n] -= A[:,k]*R[k:k,k+1:n]

7 end

The calculation of an (often not normalized) QR decomposition with the House-
holder method can be compactly completed with the following LAPACK interface:

Q, R = qr(A, thin=true)

89X = A\B actually does not use the Cholesky decomposition of A, see the remark in §B.19.


http://www.netlib.org/lapack/explore-html/d3/d8d/group__complex16_p_ocomputational.html#ga93e22b682170873efb50df5a79c5e4eb
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Unlike MATLAB, Julia allows access to (and convenient use of) the implicit
representation”” of the matrix Q as mentioned in §9.8:

F = qrfact(A) # faster by a factor of 2
Q= F[:Q] # of the type Base.LinAlg.QRCompactWYQ
R = F[:R] # read the factor R

The object oriented nature of Julia allows for matrix-vector multiplication Q*x etc.
even when Q is of the type Base.LinAlg.QRCompactWYQ, the details are completely
hidden from the user. The unitary factor Q can be retroactively represented as an
ordinary matrix if needed:

5 Q = full(F[:Q], thin=true) # needs more cpu time than qrfact(A) itself

o

%

The sum of the execution times from lines 2 and 5 is exactly equal to that of the
command from line 1.

B.14 Error Analysis 1 from §§14.1-14.2: quadratic equation

>> p = 400000.; q = 1.234567890123456;
>> r = sqrt(p”2+q); x0 = p - r
-1.543201506137848e-6

>> r°2 - pT2

1.23455810546875

v >> x1 = p + r;

>> x0 = -q/x1
-1.5432098626513432e-6

B.15 Error Analysis 2 from §§14.3-14.4: evaluation of log(1 + x)

>> x = 1.234567890123456e-10;
>> w = 1+x; £ = log(w)

5 1.2345680033069662e-10

>> w-1

5 1.234568003383174e-10

N

>> f = log(w)/(w-1)*x
1.234567890047248e-10
>> loglp(x)

) 1.234567890047248e-10

B.16 Error Analysis 3 from §§14.5-14.6: sample variance

>> x = [10000000.0; 10000000.1; 10000000.2]; m = length(x);
>> 82 = (sum(x.”2) - sum(x)~2/m)/(m-1)

3 -0.03125

>> xbar = mean(x);

5 > 82 = sum((x-xbar)."2)/(m-1)

9More specifically, both Julia and LAPACK use the compact WY representation of Q, see R. Schreiber,
C. E. Van Loan: A storage-efficient WY representation for products of Householder transformations. SIAM
J. Sci. Stat. Comput. 10, 53-57, 1989.


http://epubs.siam.org/doi/abs/10.1137/0910005
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0.009999999925494194

7 >> var (x)

© o

N}

0.009999999925494194
>> kappa = 2*dot (abs(x-xbar),abs(x))/82/(m-1)
2.000000027450581e8

B.17 Julia offers an interface to LAPACK’s condition number estimate xGECON:

cond (A,1) # estimate of x1(A)
cond (A,Inf) # estimate of Kwo(A)

Here, a previous triangular decomposition of the matrix A can be elegantly and
profitably re-used:
F = lufact(A) # triangular decomposition of A

cond (F,1) # estimate of xy(A)
cond (F, Inf) # estimate of Km(A)

B.18 The Wilkinson example of an instability of triangular decomposition with
partial pivoting as discussed in §15.10 can be written in Julia as:

>> m = 25;
>> A = 2I-tril(ones(m,m)); A[:,m] = 1; # Wilkinson matrix
5 >> b = randn(MersenneTwister (123) ,m); # reproducible right hand side
>> F = lufact(4); # triangular decomposition with partial pivoting
>> x = F\b; # substitutions
>> r = b - Axx; # residual
>> omega = norm(r,Inf)/(norm(A,Inf)*norm(x,Inf)) # backward error (15.1)

2.6960071380884023e-11

Let us compare once more with the result using the QR decomposition:

>> F_qr = qgrfact(A); # QR decomposition

>> x_qr = F_qr\b; # substitutions

>> r_qr = b - A*x_qr; # residual

>> omega_qr = norm(r_qr,Inf)/(norm(A,Inf)*norm(x_qr,Inf)) # back. error
3 7.7342267691589el1e-17

>> cond (F, Inf) # estimate of the condition number Xo(A)
5 25.0

>> norm(x-x_qr,Inf)/norm(x, Inf)
4.848325731432268e-10

This accuracy, however, is consistent with the forward error estimate (15.3):
Keo(A)w (%) ~ 25 x27-107 1 ~ 6.8-1071.

As described in §15.13, just one step of iterative refinement repairs the instability
of the triangular decomposition with partial pivoting. Notice that the previously
calculated triangular decomposition F can elegantly be re-used:
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) >> w = F\r;

>> X = x + w; r = b - A*x;
>> omega = norm(r,Inf)/(norm(A,Inf)*norm(x,Inf))

> 7.031115244689928e-18
3 >> norm(x-x_qr,Inf)/norm(x,Inf)

1.582000930055234e-15

As a comparison: the unavoidable error of the solution is Keo(A) - €mach = 2 - 10715

B.19 The Lauchli example from §16.5 can be written in Julia as:

= 1e-7; # e=10"7

>> e
> A =[1 1; e 0; 0 el; b = [2; e; e]; # Liuchli example

3 >> F = cholfact(A’A); # Cholesky decomposition of the Gram matrix
>> x = F\(A’b); # solution of normal equation

5 >> print.(" ",x);

%

1.01123595505618 0.9887640449438204

Remark. In contrast, the direct solution of the normal equation using the \ command, without
explicitly using Cholesky decomposition, acciden’cally91 yields the “correct” solution:

>> x = (A’A)\(A’b); # solution of the normal equation
>> print.(" ",x);
1.0000000000000002 1.0

Hence, a comparison with §16.5 shows that the \ command for self-adjoint matrices behaves
differently in Julia than in MATLAB:

¢ In the case of self-adjoint matrices, Julia always calls the LAPACK routine xSYTRF,
which uses a symmetrical variant of triangular decomposition with pivoting, namely
in the form of the Bunch—Kaufman—Parlett decomposition

P'AP = LDL'.

Here, the permutation matrix P represents diagonal pivoting, L is lower triangular,
and D is a block-diagonal matrix comprised of 1 x 1 or 2 x 2 blocks. As it were, this
method has the same complexity of m3/3 flop as the Cholesky decomposition, but
for s.p.d. matrices it is less amenable to optimized BLAS and therefore slower due to
the overhead of pivoting.

e In contrast, in the case of self-adjoint matrices with positive diagonals, MATLAB
attempts to see whether a Cholesky decomposition can be successfully calculated
(thereby checking whether the matrix is s.p.d.); otherwise, as in Julia, xSYTRF is used.

Since the positive definiteness of a given self-adjoint matrix is most often known based on
the structure of the underlying problem, and Cholesky decompositions are only used in a
targeted manner, the approach taken by Julia is more efficient for the rest of the cases (this
way avoiding wasted trial Cholesky decompositions).

9Notice that the information loss in A ++ A’A is irreparably unstable. Nevertheless, we cannot exclude
that a particular decomposition method accidentally gives a correct solution in a specific example
where one would reliably rather require a different, stable algorithmic approach. In the Lauchli
example, the choice of the smaller value e = 1e-8 would yield a numerically singular matrix A’ A
which causes problems no matter what decomposition of A’A is used.


https://link.springer.com/article/10.1007/BF01399088
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B.20 The solution of least squares problems discussed in §17.2 reads in Julia as:

Program 12 (Q-Free Solution of the Least Squares Problem).

R qrfact ([A bl) [:R] # R factor of the matrix A augmented by b
x = R[1:n,1:n]J\R[1:n,n+1] # solution of Rx =2z

s tho = abs(R[n+1,n+1]) # norm of the residual

N}

w N e

or simply x = A\b. The numerical example from §16.5 is then written as follows:

>> x = A\b;
>> print.(" ",x);
0.9999999999999996 1.0000000000000004

B.21 The example from §18.3 cannot be directly copied into Julia, since the
developers of Julia rightly do not see the point in providing unstable and inefficient
routines to calculate eigenvalues as roots of the characteristic polynomial. We can,
however, convey the essence of this example with the help of the Polynomials
package:

>> using Polynomials

>> chi = poly(1.0:22.0) # polynomial with the roots 1,2,...,22

>> lambda = roots(chi) # roots of the monomial representation of X

>> lambda [7:8]

2-element Array{Complex{Float64},1}:

15.5374+1.153861im
15.5374-1.15386im

The condition number (absolute with respect to the result and relative with respect
to the data) can be computed as:

>> lambda = 15.0

>> chi_abs = Poly(abs.(coeffs(chi)))

>> kappa = polyval(chi_abs,lambda)/abs.(polyval(polyder(chi),lambda))
5.711809187852336¢e16

As in §18.3, we get k(15) - €mach ~ 6.

B.22 The power iteration from §20.3 is in Julia:

Program |3 (Power Iteration).

normA = vecnorm(A) # store HAHF
omega = Inf # initialize the backward error
s W= A*v # initialize w = Av

while omega > tol # backward error still too large?
v = w/norm(w) # new v
w = Axv # new w
mu = dot(v,w) # Rayleigh quotient
r = W - mu*xv # residual
omega = norm(r)/normA # backward error estimate @

end
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B.23 In Julia, the inverse iteration with shift from §20.7 can elegantly be written
as follows (notice the clever re-use of the triangular decomposition F in line 5):

Program |4 (Inverse Iteration).

normA = vecnorm(A) # store ||Alr
omega = Inf # initialize the backward error
F = lufact(A - muShift*I) # store the triangular decomposition of A — pl
while omega > tol # backward error still too large?
w = F\v # solve the linear system of equations
normW = norm(w) # ||wl2
z = v/normW # auxiliary quantity z
v = w/normW # new v
rho = dot(v,z) # auxiliary quantity p
mu = muShift + rho # Rayleigh quotient
r = z - rhoxv # residual
omega = norm(r)/normA # backward error estimate @
end

B.24 In §20.11 we explained that usually just one step of inverse iteration suffices
to compute an eigenvector corresponding to a given backward stable eigenvalue.

In Julia, the illustrative example can be written as follows:

>> m = 1000; rng = MersenneTwister (123) # initializaton

>> lambda = collect(l:m) + collect(-5:m-6)*1.0im # given eigenvalues

>> Q,= qr(randn(rng,m,m)); A = Q*diagm(lambda)*Q’ # suitable normal matrix
#
#

>> mu = 1.0 - 5.0im shift=known eigenval.

>> v = randn(rng,m); v = v/norm(v) random start vector
>> w = (A - muxI)\v # 1 step inv. iteration
>> omega = sqrt(m)*norm(A*xw-mu*w)/vecnorm(A)/norm(w) # Eq. (20.1)

1.6091332673393636e-15

B.25 The program from §21.7 for a QR-algorithm based deflation is in Julia:
Program |5 (QR Algorithm).

function QR_algorithm(A)

m, = size(A); U = I # initialize

normA = vecnorm(A) # store ||Alr

while norm(A[m,1:m-1])>eps () *normA # backward error still too large?
mu = ... # shift pp (see §§21.10/21.12)
Q, R = gqr(A - mux*I) # QR decomposition
A = R*¥Q + muxI # RQ multiplication
U = UxQ # transformation Uy = Qp--- Qk
end

lambda = A[m,m] # eigenvalue

B = A[1:m-1,1:m-1] # deflated matrix

w = A[1:m-1,m] # last column in Schur decomposition

return lambda, U, B, w
end
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In program line 5 the Rayleigh shift from §21.10 is simply mu = A[m,m]; whereas
the Wilkinson shift from §21.12 is coded as:

5 mu,

A

= eig(A[m-1:m,m-1:m]); ind = indmin(abs(mu-A[m,m])); mu = mul[ind]

Schur decomposition is finally calculated as in §21.9, though in Julia the

variables T and Q should be initialized as complex matrices:

Program 16 (Schur Decomposition).

T
Q

3 for

4

la
Ql
t[
T
end

complex (zeros (m,m)) # initializations ...

complex (eye (m)) # . as complez matrices
k=m:-1:1 # column-wise from back to front
mbda, U, A, w = QR_algorithm(A) # QR-algorithm based deflation
:,1:k] = Q[:,1:k]*U #
1:k,k+1:m] = u’*t[1:k,k+1:m] #
1:k,k] = [w; lambdal #

transform first k columns of g
transform first k remaining rows of T
new kth column in T

B.26 We summarize the Julia commands for the algorithms from Chapter V.

Hessenberg decomposition H = Q" AQ:

F = hessfact (A)
Q = F[:Q]
s H = F[L:H]

Here, Q has an implicit representation of type Base.LinAlg.HessenbergQ (cf. the first
exercise in §21.16), the fully fledged explicit matrix can be obtained with

Q = full(Q)

Schur decomposition T = Q'AQ:

T, Q, lambda = schur (complex(A)) # 1st version
F = schurfact (complex(A)) # 2nd version

5 T = F[:T]; Q = F[:Z]; lambda = F[:values] # extraction of factors

The diagonal of T, i.e., the eigenvalues of A, can be found in the vector lambda.

If one is only interested in calculating the eigenvalues of A, which is less
costly than a Schur decomposition since then there is no need to deal with
the unitary transformations, one simply calls the following command:

lambda = eigvals (A)
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C Norms: Recap and Supplement

C.l |||l : V — [0,00) is a norm on the vector space V, if forv,w € V, A € K:
(1) ||v] =0< v=0 (definiteness )
(2) ||Av]| = |A| - ||v]] (absolute homogeneity)
B) [lv+wl| < o]l + |lw|| (subadditivity or triangle inequality)

We call norms on K™ vector norms and those on IK™*" matrix norms.

C.2 Numerical analysis uses the following vector norms for x = ((;‘]-) j=1m € K™

m
o “taxicab” norm ||x|y = )_ |&;l;
=1

o Euclidean norm (cf. §2.9) ||x|j» = (

m 1/2
|€j|2) = Va'x;
j=1

o maximum norm ||x|e = maxj_1.y |&jl.

Exercise. Draw the “unit sphere” {x : ||x|| < 1} for these three norms in R?.

C.3 Holder’s inequality and the Cauchy—Schwarz inequality are valid, i.e.,
Kyl < lxla-llyle, Iyl <llxllz2-llyllz - (xy € K™).
Besides, the || - ||2-norm is invariant under a column orthonormal Q € K™*":

Q]2 = (Qx)'(Qx) =x' Q'Qx=x"x = |lx|}  (xeK").

Q
<~

!
=I

C.4 Given a matrix A € K"*" written in components, columns and rows as
a1y e g | \ —ay —
A= : : =g ... gn| = : , (C1)
Am1 - Qmn ‘ ‘ - ‘Z;n -
we define the Frobenius norm (also known as the Schur of Hilbert—Schmidt norm)
mo N2 N2 AN
[AlE={ 32 ) loi] = Xlalz)] =X lalz) -
j=1k=1 j=1 k=1

Thanks to ||4(| = a}a]- and ||a¥[|3 = (a¥)'aF, the last two expressions can also be
written in terms of the trace of the Gramian matrices AA’ and A’ A:

|A||2 = tr(AA") = tr(A’A).


https://en.wikipedia.org/wiki/norm_(mathematics)
https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
https://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
https://en.wikipedia.org/wiki/Issai_Schur
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Schmidt_operator
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
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Since the trace of a matrix is defined as both the sum of the diagonal elements as
well as the sum of the eigenvalues, it holds??

i Al = i/\k(A’A).

k=1

| A%

C.5 The Frobenius norm has the following properties:
o ||I||p = /tr(I) = /m for the identity matrix I € K"*";
o submultiplicativity (follows from (2.3b) and the Cauchy-Schwarz inequality)

|A-Bllr < |Allr- Bl (A € K™, B e K"™F);
o invariance under column orthonormal Q as well as adjunction

1/2
IQalr = (x(A'QQA)) " = lAlr,  Ar = Al
=I

C.6 A vector norm induces a matrix norm for A € K™*" in accordance with

(®) | Ax|
JA]| = max [|Ax] £ ax [ Ax|| = max :
xl<a H =1 x#0 | x|

Remark. Here, (a) and (b) follow from the homogeneity of the vector norm; the maximum
is attained since {x € K" : ||x|| < 1} is compact and x — ||Ax|| is continuous.

For the identity matrix I € K"™*™ ||I|| = 1 is always valid; therefore, the
Frobenius norm is not an induced matrix norm for m,n > 1.

C.7 From the definition, it directly follows for induced matrix norms that
[Ax| < Al [l (x € K")
and therefore the submultiplicativity
IAB|| < [lA[l-[IBl (A € K", B € K"™F).
Remark. A vector norm on K" always matches its induced matrix norm on K" we can

therefore continue to identify vectors as single column matrices and vice versa. The first
inequality is then just the case p = 1 of general submultiplicativity.

ZA\1(M), ..., Ap(M) denote the eigenvalues of the matrix M € KP*? in order of algebraic multiplicity.


https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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C.8 Numerical analysis uses the following induced matrix norms for A € K™*":
o max-column-sum norm

(a) k
Allf = max ||Ax||; = max ||a"||{;
Il = max Al & max o]
o MAX-TOW-SUn norm
(4
Ao = max_[|Axlleo 2 max [l
[[x]|0<1 j=1m

o spectral norm

© Y2 @) 12
|All2 = max ||Ax|] = <max Aj(AA’)> = <max )\k(A/A)) .
[[x]l2<1 j=l:m k=1:n
The invariance of the Euclidean norm under column orthonormal Q directly
induces™ the invariance
[QAll2 = [[All2, therefore notably [|Q|2 = [|QI[l2 = [[I]>=1; (C2)
both render column orthonormal matrices so important numerically.

Concerning adjunction, it directly follows from (a)-(d) that

1A = [ Alle, N4 leo = [lAll, A2 = [|All2- (C3)
Remark. The calculation of the matrix norms || - ||1, || - [ and || - || is fairly simple, but
that of the spectral norm || - ||z is computationally far more costly by comparison: an

eigenvalue problem would have to be solved. Since the same set of invariances is satisfied,

1o

the Frobenius norm often serves as a “poor man’s” replacement for the spectral norm.
Exercise. Show that ||xy’|2 = ||x]]2]ly||2 (as used in §§11.9, 15.2 and 21.7.)

C.9 Real analysis has taught us that all norms are equivalent for a finite dimensional
vector space V: for || - ||, and | - ||4, there exists a constant ¢, 4 > 0 such that

vllq (veV).

||7)Hp < Cpyg

Such a cp,; does however depend on V; therefore on the dimensions for vector
and matrix norms. For the matrix norms from §§C.4 and C.8 (and accordingly
with n = 1 for the vector norms from §C.2) we display the best possible values of
the constant c 4 in the following table, where r = min(m,n):

N1o2 o« F
1 1 Vm m  m
2 | vn o1 m 1
o | n n 1 n
F|Vn r ym 1

% Alternatively, one once again uses (QA)'(QA) = A’Q'QA = A’A.


http://mathworld.wolfram.com/MaximumAbsoluteColumnSumNorm.html
http://mathworld.wolfram.com/MaximumAbsoluteRowSumNorm.html
http://mathworld.wolfram.com/SpectralNorm.html
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Exercise. Show that the table is valid. Hint: Consider n = 1 first and make use of A’.

C.10 The matrix |A| € K"™*" represents the componentwise application of the
absolute value function on A € K"*"; we read inequalities written as

A< [Bl (A BeK™")
componentwise (as introduced in §§7.9/7.11). Matrix norms that satisfy
AT = llAll - and  |A[<[B] = [[A] <|B]

are called absolute and monotone respectively.

Example. The norms || - ||1, || - ||, || - || are both absolute and monotone. The same
can be said of the spectral norm || - ||2 in the case of vectors only (m =1 or n = 1).

Remark. For finite dimensional norms, it generally holds: absolute <> monotone.
C.11 It holds for diagonal matrices that

| diag(x)ly L ¥l (p € {1L2,00}), | diag(x)l|r = ] (C4)

Remark. For induced matrix norms, (a) is equivalent to the monotonicity (absoluteness) of
the inducing vector norm.

Exercise. Prove the equivalences stated in the remarks in §§C.10 and C.11.

Exercise. Show that for normal matrices A (cf. 18.6) there holds ||A||, = p(A). Here,
p(A) = max|e(A)]

denotes the spectral radius of A.

Exercise. Let P € IK"*" be a projection® of rank r. Show that
o [Pl2=1;
e ||P|» =1 if and only if P is an orthogonal projection;
e if 0 <r < m,itholds |P|] = |[I — P|.

Hint: Construct a unitary U, such that

I S

DI —
UPU—(O 0

and deduce that ||P||, = /1 + [|S]3.

A general projection P is defined by P2 =P, and is additionally orthogonal when P’ =P.

> Se K> (m=r)



http://link.springer.com/article/10.1007/BF01386026
http://link.springer.com/article/10.1007/BF01386026
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D The Householder Method for QR Decomposition

D.l We want to calculate the full QR decomposition of a matrix A € R"*" with
full column rank in a column-wise manner. With a unitary Qj, the first step is

| | o1 ] *
y
| | !

and, thereafter, the matrix A; is used for the subsequent calculations.

Exercise. Thoroughly describe the algorithmic procedure used this way for the calculation
of Q'A = R. Show how Q can be obtained as the product of the unitary matrices from the
individual steps.

D.2 We are thus left with the problem of how to directly calculate a full QR
decomposition of a column vector 0 # a € R™:

Qa= <%> = pey.

D.3 To this end, we construct Q' as a reflection at a hyperplane, which we describe
by a vector v # 0 perpendicular to the hyperplane. Such a reflection is then applied
to the vector x € R™ by flipping the sign of its components in the direction v:

v'x v'x
v'v o’
Hence, it is nothing more than that the vector 2%2} being subtracted from x,

/

Qr=x-22%

2

/ /

v =1—-—vov.
v’ Q v'v

Reflections of this form are called Householder reflections in numerical analysis.
Exercise. Show: Q%> = I, Q' = Q, detQ = —1, Q is unitary.

D.4 We must now find a vector v such that Q'a = pey, i.e.,

zv’a
a—2—uv = pey.
v'v P

Since a reflection (as with every unitary matrix) is isometric, we get in particular

lol = llalla, v € span{a — per }.
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Since the length of v cancels itself out in Q’, we can finally set
p==Elall,  v=a—pe.

We then choose the sign such that v is calculated, in any case, in a cancellation free
manner (writing a = (})j=1., and v = (wj) j=1.m):

o= —sign(a)llallz, @i =&y —p = sign(ar) (la| + o), @) =e; (j > 1.
Hence, it holds
v'o = (a—per)'(a— pey) = [|al|5 — 2paq + p* = 20> — 2p1 = 2|p|(|p| + |a1])

and therefore in short (we know that Q' = Q)

Q=1I-ww', w=0v/\/|pl(lo|+|ml]),  [wl2=v2

Exercise. Generalize this construction to the complex case a € C™.

D.5 The calculation of the decomposition Q'a = pe; therefore has computational
cost #flop = 3m, as long as only w and p are calculated and Q is not explicitly
stored as a matrix. The application of Q to a vector x, i.e.,

Qx = x — (w'x)w,

accordingly has computational cost #flop = 4m.

Exercise. Show that the calculation of a full QR decomposition of a matrix A € R"™*"
(m > n) using Householder reflections has computational cost (again as long as Q is not
explicitly constructed, but rather only the vectors w of the Householder factors are stored)

n—1
#flop = 4 2 (m—k)(n—k) = 2mn? — 2% /3.
k=0

n—1
The evaluation of Qx or Q'y each have cost #flop = 4 Z (m — k) = 4mn — 2n>.
k=0
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E For the Curious, the Connoisseur, and the Capable
Model Backwards Analysis of Iterative Refinement
E.l Skeel’s Theorem 15.13 can be nicely explained using a simplified model:*
Only the factorization step P' A = LU is calculated with error, so that%
P(A+E)=L-U,  |E| = O(y(A)emacn)lIAll
Hence, subsequent numerical solutions il of Au = v fulfill (A+ E)il = v.

In this model, one step of iterative refinement applied to Ax = b yields a numerical
solution x; satisfying

xg=2% r9o=Db— Axy = Exy, (A+E)d =y, X1 = x9 + O;
the residual thereof is r1 = b — Ax; = rg — AW = E®. We calculate
AW = E(xg — ®) = E(x; —2®),  E® = EA"'Ex; —2EA " Ew;
using norms results in the residual bound
Irsll = IE@| < [IENPN AT lxell + 2] E[ | A7 IE@]
= 0(7(A)*xk(A)|All |x1]l€qacn) + O(Y(A)x(A)emacn) 71 -

Now, if 7(A)?k(A)emach = O(1) with v(A) > 1, we get ¥(A)k(A)emach < 1.
Thus, x1 has an error in the model that already ensures backward stability:

_ Al _ 2 (A)e? — Ole
(U(.Xl) - HA” ||x1|| O(’)/(A) (A) mach) O( mach)‘

Remark. For well conditioned matrices with k(A) = O(1), a single step of iterative refinement
can thus compensate a growth factor of as large as

7(A) = Ole )2,

mach

which corresponds to an initial loss of accuracy of up to half the mantissa length (cf. the
discussion in §15.12 and the numerical example in §§15.10/15.13).

Exercise. Construct an example to show that for y(A) > e;;ch even multiple steps of
iterative refinement do not necessarily lead to an improvement in backward error.

%For a componentwise study of this model, see F. Bornemann: A model for understanding numerical
stability, IMA J. Numer. Anal. 27, 219-231, 2007.
%Cf. §§15.8 and 15.9.


http://imajna.oxfordjournals.org/content/27/2/219
http://imajna.oxfordjournals.org/content/27/2/219
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Global Convergence of the QR Algorithm without Shifts

E.2 Even though the convergence of the QR algorithm without shifts and deflation
is much too slow to be of any practical importance, J. Wilkinson'’s classic and
elegant convergence proof9 7 is still very interesting for mathematical theory:

1. It explains how eigenvalues arrange themselves on the diagonal of the
triangular factor of the Schur decomposition obtained in the limit.

2. It relates the QR algorithm to the power iteration: the unitary factor Uy of
the QR decomposition of A¥ becomes asymptotically the similarity transfor-
mation of A to triangular form.

3. It shows that in course of the QR algorithm with (convergent) shift, not only
does the last row of Aj converge but the others are already “prepared”.

E.3 The proof is based on a triangular decomposition of largely theoretical interest,
which goes by applying a particular column pivoting strategy98 to A € GL(m; K):
we will use the first zero element as pivot and will not merely transpose it into
position, but rather cyclically permute all intermediate rows down one row. In the
notation® from §7.9 it can easily be shown by induction (left as an exercise) that
along with Ly its transformation

DLy P}

is also a unipotent lower triangular. We therefore obtain a decomposition of the
form P, A = LR, where L = P;LP is also a unipotent lower triangular; it holds

A = LPzR.

Such a decomposition is called a (modified) Bruhat decomposition.

Exercise. Show that the permutation 7t of a Bruhat decomposition A = LP;R is uniquely
determined by the matrix A € GL(m;K), but not the triangular factors L and R. These
become unique by requiring that L = P4 LPy is also lower triangular.

E.4 We assume that the eigenvalues of A € GL(m;C) differ in absolute value
(and are thus real if A is real), so that they can be ordered as follows:

[A1] > Az > -+ > [Aw| > 0. (E.1a)

97]. Wilkinson: The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, pp. 516-520; the
presentation here follows roughly the argument from E. Tyrtyshnikov: Matrix Bruhat decompositions
with a remark on the QR (GR) algorithm, Linear Algebra Appl. 250, 61-68, 1997.

%Wilkinson loc. cit. p- 519.

%In which here, of course, T; represents the cycle (123 --- r;) instead of the transposition (17),
when the pivot «; is found at row number 7, of the matrix Ay.


http://www.amazon.com/Algebraic-Eigenvalue-Monographs-Numerical-Analysis/dp/0198534183
http://goo.gl/CLqQz1
http://goo.gl/CLqQz1
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In particular, there exists a corresponding basis of eigenvectors (which are real for
real A); if we use this basis as columns of the matrix X € C"*™ it holds

X 1AX =D, D = diag(A1, ..., Am). (E.1b)

Wilkinson’s elegant idea consists of applying the Bruhat decomposition'® to X1,

X1 = LP;R, (E.1c)

where L is unipotent lower triangular and R upper triangular. With triangular

factors at hand, the specific order of the eigenvalues can be conveniently exploited
in the following form: we generally have, for any lower triangular L,, that

DFL.D7F — diag(L.)  (k — c0). *)

This is because with § = max;. [4;/A¢| < 1 the elements I, of L, satisfy

oF)y -0 ifp>q,
Ap\F
<)\q) bpg = 4 Lop ifp=q,

0 otherwise.

E.5 Starting with Ay = A, the QR algorithm constructs the sequence
Ak = QkRk/ Ak+1 = Rka (k =0,12,.. )
It holds Ay = U, AU and A¥has a QR decomposition of the form
AF =S, U=Qo - Qk—1,  Sk=Ri_1---Ro.
For k = 0, both of the claims are clear, and the induction steps from k to k + 1 are
A1 = QuAQk = QUAUQ, = Up 1 Al

as well as

AL = AAY = AULS; = Ui (U AUR) Sk = UArSk = U(QeRe) Sk = Ugs1Sk+1-

190n the “generic” case, there are no zero divisions to be avoided, which means that generally the
eigenvalues will get sorted: 77 = id. In the exceptional cases, however, the realm of rounding errors
will lead in course of the iteration, by backward analysis, to increasingly perturbed A and, a fortiori,
to increasingly perturbed X. The corresponding 7 therefore deviates less and less (in discrete
jumps, now and then) from id and a numerical “self sorting” takes place in the end.
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E.6 Using P = P for short, we obtain from A = XDX ! and X~1 = LPR that
Uy = Ak = XD¥(LPR)S!
and therefore from Ay = U AU (notice that Uy = U, 1

Ay = S R'P'L' D™H(X"'AX)DF LPRS; ' = §yR~'P'(L"'DL)PRS; .
N———
=D

In this way, we get Ay = W,;lBka with By = P'D¥(L~'DL)D~*P and the upper
triangular matrices

Wi = (P'D*P)RS; ! = P'(D'L'D%)D*x 15,1 = P/(DFL~ 1D F)x 1.

The last equality shows that the sequences Wy and W~ ! are bounded: by (*), there
holds D*L~1D~* — diag(L~') = I, the Uj are unitary. Besides, it follows from (*)

By — P'diag(L"'DL)P = P'DP = Dy, Dr = diag(Ag(1y, -+ A(m))-
In summary, we obtain the asymptotic result

A= W 'D:W, + W, (By— Dn)Wy

upper triangular —0
and therefore Wilkinson’s convergence theorem: the assumptions (E.1) imply

diag(Ax) — Dn, strict lower triangle of Ay — 0.

Remark. By compactness, a selection of subsequences yields Uy — Q within the space of
unitary matrices and Wy, — W within the space of non-singular upper triangular matrices.
The limit of Ay, = LI,’(UAUkV =W 1D7Tka + 0(1) then gives the Schur decomposition

/\T[(l) * e *

QAQ=T, T=WT1DW=

7(m)
Exercise.
e By means of an example, show that the sequence Ay itself does generally not converge.

e Show that a selection of subsequences can be avoided if the sequence Ay is replaced
by a sequence of the form X} A, with suitable unitary diagonal matrices .

e By constructing specific matrices A, show that every 7 € S;; can be attained (in theory
only; see Footnote 100 for what to expect in actual numerical experiments).
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Local Convergence of the QR Algorithm with Shifts

E.7 Our goal here is to understand, and to partly prove (under somewhat stronger
conditions), the claims about convergence from §§21.10-21.12. To this end, we
partition the matrices of the QR algorithm with shift as follows:

gyl = Bk_.ukl‘ wy _ Pk‘uk Sk‘sk
T ‘Ak—ﬂk Ufc‘ﬁk O‘Pk
=Q =Ry
At — il = Bk+1/*ﬂk1 ‘ Wit1 _ Sk ‘ Sk Dy ‘ U ;
Tkt ‘ Mey1 — Mk 0 ‘ Pk g | Mk
=Ry =Q

where, without loss of generality, the QR decomposition is chosen such that p; > 0.

E.8 We aim at estimating ||7¢,1||2 in terms of ||r||2. Via multiplication, we obtain
=Sk The1 = PkVk
and thus, with writing oy = [|S;” 1|, for short, the initial estimate

lloxll2 < oxllrill2, [7xs1ll2 < pxol7ell2-

We must therefore estimate oy and py.

E.9 Since Qy is unitary, it holds by the normalization of the last column and row
2 2 2 2
1= [lullz + [7xl™ = lloellz + il
therefore in particular
luellz = llokllz, el < 1.
It furthermore also follows from the unitarity that

PI: ‘ Uk Bk—}lkl ‘ Wi Sk ‘ Sk

!
Uy

i " ‘ Ak — Mk 0 ‘ Pk

and therefore
ok = wwe + Ak — i), e < llullzllwgll2 + 1Ak — pel.
For the Rayleigh shift yy = Ay, the estimates obtained so far imply

pe < oxllwillzllrellz, Nrerallz < o lwillz|lrel3.
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E.10 As a sub-column of Ay the vector w) remains bounded by
[will2 < [[Akllz = [|A]2.

If A and therefore also Ay are normal, it follows via the expansion of AxA; = A} Ax
that the (2,2) element of the partitioning satisfies

Irell3 + [Ak? = lleoil3 + Akl thus [l = 7l
To summarize, we arrive at the following statement about the Rayleigh shift:

U;?H”k”% if A is normal,
Iresallz < ) , . (E.2)
atlAll2l7ell3 otherwise.

We are thus finished when we give reasons that ¢y actually remains bounded.

E.l1l Due to By — prl = BSy and || P2 < ||Qkllz = 1 there is
or = 1S Hl2 < 1Bk — pd) |2 = sep(ux, By) "

If the shift yy converges as ||7¢||2 — 0 towards a simple eigenvalue A of A, it must
be the case that By converges towards a deflated matrix A, where A is no longer
contained in the spectrum, so that

0y < sep(jug, Br) ™! — sep(A, Ay) 7! < oo

Hence, if we assumed convergence as such, we would obtain from (E.2) the
asserted quadratic or cubic speed of convergence.!?!

E.12 Without already assuming convergence, the boundedness of o, can be shown
through perturbation theory. For the sake of simplicity, we will restrict ourselves
to the case of a self-adjoint matrix A with pairwise different eigenvalues. Let the
minimum mutual distance of two eigenvalues be 36 > 0. Notice that along with A
also the matrices Ay and By, are self-adjoint and that furthermore 0(A) = o(Ay).
Hence, upon writing

By ‘ Tk By ‘ T

Ay =

e | Ak ‘ Hi T | Ak — i

=F =E;
with the perturbation bound (using the Rayleigh-Shift)

IEIZ < IEClE = 2lrll3 + [Ak — el = 22,

191Up to here our argument has essentially followed the discussion in G. W. Stewart: Afternotes goes to
Graduate School, SIAM, Philadelphia, 1997, pp. 139-141.


http://goo.gl/kMqUp
http://goo.gl/kMqUp
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Corollary 19.3 implies under the assumption ||r¢||2» < 8/+/2 that for every A € o(A)
there is exactly one yu € o(F;) with |A — p| < 6. Therefore, the eigenvalues of F
are pairwise different, too, and the distance between any two of them is at least §
(why?), so that in particular

dist(pr, o (Fe) \ {px}) = 6.
(B) ]
=0 (By

By Theorem 19.3, we finally obtain the bound

ok < sep(py, Be) ! = dist(py, o(By)) ' < oL

E.I13 We can therefore state the local convergence result as follows:

Theorem. Let A be self-adjoint with pairwise different eigenvalues that have a mini-
mum mutual distance of 36 > 0. If ||roll2 < 6/V/2, then as k — oo the QR algorithm
with Rayleigh shift yields cubic convergence of the form

Irsallz < 072 [rll3 — 0.

Proof. Tt remains to be shown by induction that ||7¢||2 < §/+/2. For k = 0, this is
exactly the assumption on ry; the induction step from k to k + 1 is

Iresallz < o lrill3 < 072 (1rell3 < gllrll2 < llrllz < 6/v2.
Furthermore, the intermediate bound ||7x.1]l2 < ||7k||2/2 inductively proves
Irella <27¥lIrollz = 0 (k = ),

which finally ensures convergence itself. O

E.14 The Wilkinson shift yy satisfies by §21.12 (with the notation used there)

(A — i) (e — ) = Brver 1Ak — ol < o — -
Here, the last inequality holds since the solutions of the quadratic equation are
also symmetric relative to the midpoint (Ax + ax)/2 of a; and Ag. Hence, we get
Ak = el® < 1Bkl < llwill2 el

and, therefore, the bound

et ll2 < o iz rell3 + ollwlly 2 17372

Now, in the self-adjoint case, there holds ||Ex|[2 < v/3||7¢|l2 and thus o < 671 if
7l < 6/+/3. Altogether, completely similar to the proof for the Rayleigh shift,
we obtain the following theorem:
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Theorem. Let A be self-adjoint with pairwise different eigenvalues that have a mini-
mum mutual distance of 36 > 0. If ||ro|l2 < 6/ /3, then as k — oo the QR algorithm
with Wilkinson shift yields quadratic convergence of the form

7r1ll2 < 267l — 0.

Remark. In the realm of the Wilkinson shift, the speed of convergence can be improved to
that of the Rayleigh shift if there is!%?

T =Ar—ap = T#0.
Actually, from
(= A + (e = M) = Bivee 1Bevel < llwillzlrll2,
one then gets the substantially improved bound
[k — Al = O(T ™ Jwgl2 I ll2),
so that given a bounded oy there holds, just as in §E.9 for the Rayleigh-Shift, that

ok = O(llwgllzllrill2), sl = OCllwkll2llrell3)-

A Stochastic Upper Bound of the Spectral Norm

Disclaimer: this section is only suitable for more advanced readers.

E.I5 Given A € C"*™ and 0 # x € C™ it holds by definition that

JAx],
Tt < Al

In §20.11 we used the fact that for random vectors x a converse bound holds with
high probability, too:

Theorem. Let A € C"™*™ be fixed and x € R™ be a random vector with independent
standard normal distributed components. It then holds with probability > 1 — 6 that

A2 <67 'vm

IAx]2 5 < 5 <),
2

]
Proof. From the singular value decomposition of A (with U, V unitary), that is,

A = Udiag(oy,...,0m)V/, |Alz =01 > >0 >0,

102This holds, e.g., in the case that Ay — A € 0(A) while the eigenvalues of A — AI differ in absolute
value; cf. Theorem E.2.


https://en.wikipedia.org/wiki/Singular_value_decomposition
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as well as the unitary invariance of the spectral norm and of the multivariate
normal distribution it follows with independent standard normal distributed
random variables 1, ..., Cm

A 2 x2 2 =2
”xHZ 61+"’+‘:m

2
Y B
Gt +a

Now, for m > 2, the random variable R? = (;"2/ (z_f2 + 52 -+ ¢2)) is of the form

X/(X+Y)

with independent chi-squared distributed random variables X ~ X% and Y ~ an_l ;
it is therefore beta distributed with parameters (1/2, (m —1)/2) and, hence, has
the distribution function F(t) = IP(R? < t) with density'®

1
B(1/2,(m—1)/2)

t71/2(1 _ t)(m73)/2 (0 <t < 1)_

F(t) =
Thus, the probability distribution
G(8) =P(R<8/vm) =F(?/m)  (0<6</m)
has, for m > 2, the density

25 2m

-1/2 52 (m=3)/2
1—— .
B(1/2,(m —1)/2) < m>

From Stirling’s formula follows the monotone limit

2m—1/2 o n T(m/2) \[
B(i/2,m—1)/2) " TA/2N(m-1)/2)

F'(6%/m) =

G'(6) =

and hence, for m > 3, the upper bounds!®
) 2 2
G'() < ~ G(6) < ;(5@5 (0< 6 < Vm).

103 All of this can be found in §9.2 of H.-O. Georgii: Stochastics: Introduction to Probability and Statistics,
3rd ed., Walter de Gruyter, Berlin, 2008.
1%4The first two bounds are asymptotically sharp for 6 > 0 small, since as m — co

2 (m=3)/2
(1 - ‘%) e 2 G0) = ,/%3*52/2 (0< 6 < o).


https://en.wikipedia.org/wiki/chi-squared_distribution
http://goo.gl/QVCMf
https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://books.google.de/books?id=KiOtgQizqcUC&printsec=frontcover
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For m = 2 it holds after integration

G(s) = %arcsin(a/ﬁ) <5 (0<5<VP)

and for m = 1 the trivial approximation G(§) = 0 < J, where 0 < § < 1. Therefore,

JAx]ls 5||A||2> < 5 )
P < <P|IRLE — | =G(0) <d 0<d<),
< R Vi) =0 ( )

which finally proves the assertion. O

Remark. As the proof shows, for m > 3 the bound of the theorem can be improved by yet a

factor of
E =~ (0.79788,
Vo

but this is then asymptotically sharp in the case 0y = --- =0, =0asm — coand 6 — 0.
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F More Exercises

The student is advised to do practical exercises.
Nothing but the repeated application of the
methods will give him the whole grasp of the
subject. For it is not sufficient to understand the
underlying ideas, it is also necessary to acquire a
certain facility in applying them. You might as well
try to learn piano playing only by attending
concerts as to learn the [numerical] methods only
through lectures.

(Carl Runge 1909)

There are 62 exercises already scattered throughout the book; here, 36 more will be added. Better yet,
there are numerous other ones to be found in the “classics” listed on page viii which I would highly
recommend to all the readers for supplementary training.

Computer Matrices

Exercise. Alternatively to §5.5, forward substitution can also be achieved with the following
recursive partitioning of the lower triangular matrix L1 = L:

Ak
Ly =
Ik | Lesa

Based on this, write a MATLAB program for the in situ execution of forward substitution.

Exercise. Let A € K"*™ be given with coefficients aj;. The goal is to calculate

j
=Y w (j=1:m).
=1

e Program the componentwise calculation using two for-loops.

e Program the calculation without for-loops but rather with matrix-vector operations.
o Compare the execution time for a real random matrix with m = 10000.

e What is the name of the corresponding custom-made BLAS routine?

Hint. Read help tril; help triu; help ones; and www.netlib.org/lapack/explore-html/.

Exercise. Let u,v € K™ and A = I + uv’ € K"*™,
e Under which condition (on u and v) is A invertible?
e Find a short formula for A~1 and det A.

Hint. First, consider the specific case v = e; using a clever partitioning. Transform the general case to
this specific case.


http://en.wikipedia.org/wiki/Carl_Runge
http://www.netlib.org/lapack/explore-html/
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Matrix Factorization
Exercise. Given A € GL(m;K) and D € K"*", consider the block-partitioned matrix
A B
m=(2 7).

o Find the block-LU decomposition of the form (I is the identity)

u=(é ) () ()

o Give a simple factorization of M~ and characterize its existence.
e Write M1 in the same way as M in form of a 2 x 2-block matrix.

o Compare the results with the textbook case m =n = 1.

Exercise. Consider the linear system of equations Ax = b for the matrix

e Permute the rows and columns of A in such a way that the storage cost for the factors
of an LU decomposition grows just linearly in m. Give an explicit form of L and U.

e Solve the system of equations with the help of the thus obtained LU decomposition.
What is the condition for solvability?

o Write a MATLAB program without for-loops which finds the solution x given u, v
and b. How many flop are required (in leading order)?

Exercise. Identify what the program
[m,n] = size(B);
> for i=n:-1:1
for j=m:-1:1

s B(j,i) = B(j,i)/A(j,]);

5 for k=1:j-1

6 B(k,i) = B(k,i) - B(j,i)*A(k,j);

7 end

8 end

9 end
does given the input A € K"*™, B € K"*". Replace it with a short command without the
use of for-loops.
Hint. First, replace two of the for-loops with matrix-vector operations and then study the inverse
operation that reconstructs the input matrix (stored in B) given the output matrix B.

Exercise. Let A € K"*™ be invertible, b € K™ and n € IN. Describe an efficient algorithm
for the solution of the linear system of equations

A'x =b.

How many flop are required (in leading order) for n < m?
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Exercise. Let a tridiagonal matrix

5 p2
A G p3
Om
)‘mfl 5m
be given, which is column-wise strictly diagonally dominant:
[o1] > Al 151> Al + il GG=2:m=1),  [om| > [om].

e Show that A has an LU decomposition with a unipotent lower bidiagonal factor L
and a upper bidiagonal triangular factor U, such that U agrees with A above the
diagonal. Why is there no need for pivoting?

e Formulate this decomposition as a MATLAB program, which receives the vectors
d=(6))j—1m €K", 1= ()11 €K™, r=(p)jmpem € K"

as input. Pay attention to an efficient use of memory. How many flop are required
(in leading order) by your program?

The method developed in this exercise is referred to in the literature as Thomas algorithm.

Exercise. The sweep operator 7y acts on a matrix A € IK"*"™ as follows:

Ax=y = TAX=7]

where x = (81,81, 8k Ckits - Cm)s Y= (10 et o Metts -0 i)'
X = (glr LR rgkflf Mkr §k+1r sy gm),/ ﬂ = (771r cee o Mk—1s 75/{/ Mk+17- -+ /Um)/-

Find a clever formula for 7, A. Under which condition on A is 7; well-defined? Show (while
explicitly stating a simple condition that guarantees the operations to be well-defined):

. 7; and T, commutate for 1 < j, k < m.

e Sweep operators are of order 4, so that in particular 7! = 7;3.

e For a self-adjoint A, the matrix T;A is also self-adjoint.

o If we partition A such that A1 is the k x k principal submatrix, it holds

- An ‘ A —Ay ‘ Ajj A
1°° Tk = _ _

An ‘ Ax An Ay ‘ Ay — Ay Al Ap
The block Ay — Ay A1_11A12 is called the Schur complement of Aqp in A.

e Itholds 77 -+ TnA=—A"1.

Though sweep operators are a popular “workhorse” in computational statistics,'%° they are
potentially numerically unstable when used without pivoting (example?).

195See K. Lange: Numerical Analysis for Statisticians, 2nd ed., Springer-Verlag, New York, 2010.


https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Order_(group_theory)
https://en.wikipedia.org/wiki/Schur_complement
https://books.google.de/books?id=AtiDhx2bsiMC&printsec=frontcover

138 Appendix [ App.

Exercise. Let xq,...,x; € R™ be a basis of the space U. Write a MATLAB two-liner that
calculates an orthonormal basis of the orthogonal complement of U.

Exercise. Given A € IK™*" where n < m, let a compactly stored full QR decomposition
with F = qrfact (A) be pre-calculated in Julia. Only afterwards let a vector a € K™ be given.

o Write, as a Julia function QRUpdateR (F,a), an efficient algorithm to calculate only the
R-factor of a reduced QR decomposition of the matrix

A = (Ala) e K1),
Give reasons why the function performs as desired.

Hint. The scaling or the addition/subtraction of vectors should both be categorically avoided.

e Estimate how many flop QRUpdateR (F,a) saves when compared to a re-calculation
from scratch. Perform some benchmarking measurements.

Hint. Recall that the matrix-vector products F[:Q] *x and F[:Q]’*y only require O(mn) flop.

Error Analysis

Exercise. Consider for 0 < € < 1 the linear system of equations Ax = b where

1 1 0
0 )
e Show that ke (A) =24 2¢~1 >> 1. Find a perturbation A + E with || E||« < €, such
that the relative error in x with respect to the || - ||o-norm exceeds 100%.

e Show that the linear system of equations is well conditioned for relative error mea-
sures when only the input € is perturbed.

Exercise. Calculate (with respect to componentwise relative errors) the condition number
x(det, A) of the map A € R?*2 — det A. Characterize the ill-conditioned case.

Exercise. Let (&) be the relative distance from 0 < § € Fg; to the next nearest machine
number. Plot €(&) in double logarithmic scale. Locate the machine precision €p,ch-

Exercise. MATLAB calculates:

1 >> format long e

2 >> exp(pixsqrt (67)/6) - sqrt(5280)
3 ans =

4 6.121204876308184e-08

How many decimal places are correct in this results (by “clever inspection” only, i.e., by
mere counting and without the use of a computer or calculator)? What would one have to
do in order to calculate all 16 decimal places correctly?
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Exercise. Here we will practice to turn simple expressions into numerically stable ones:

e For which values of ¢ are the following expressions unstable:
VE+T1-VE cel0of;  (1—cosd)/&, e(-mm)?
o Find stable expressions. Compare for § = 2, j=48:53,and ¢ = 107/, j=4:09.

Exercise. Here we will further practice to turn simple expressions numerically stable:

e Calculate the expression (1+1/n)" for n = 10¥, k = 7 : 17. What had you expected
(from calculus)? Explain the observed ,numerical limit “.

e Find a stable expression for (1+1/n)".

Exercise. For x > 0, the expression log (m - l) defines a function f(x).
o For which values of x is f ill-conditioned with respect to the relative error?
o For which values of x is the given expression a numerically unstable algorithm?
o Find a stable expression.

Hint. You may use the fact that 1 < xf’(x) < 2 for x > 0.

Exercise. Let one be interested to calculate a root of the cubic polynomial
B 43qgx—2r=0  (q,r>0).

According to Cardano (1545) a real root is given by

xp = §/7+,/q3+r27§/7r+\/q3+r2.

This formula is numerically unstable and, based on two cubic roots, also quite expensive.

e Explain why Cardano’s formula is, for r < g and for r >> g, potentially unstable.

e Find a numerically stable formula for xq that allows the calculation with just one
cubic and one square root.

e Show that the root xg is well-conditioned; it actually holds that x(xg;g,7) < 2.

e For the cases of r < g and r >> ¢, give numerical examples in which Cardano’s
formula looses at least half of the mantissa length in accuracy.

Exercise. MATLAB calculates:

1 >> rng(333); % for reproducibility
> >> A = randn (4000) ;
3 >> det (A)
4+ ans =
-Inf

Compute the determinant of the matrix A without under- or overflow. How many decimal
places of the solution are then correct?


https://en.wikipedia.org/wiki/Gerolamo_Cardano
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Exercise. Consider the complex square root v/z for z = x + iy (x,y € R, y # 0).

o Write an efficient, numerically stable program that only uses arithmetic operations
and real square roots. Be sure to avoid over- and underflow; the program should
work, e.g., for the following input:

x =1.23456789-10°%°,  y =9.87654321 - 1020,

o Give simple estimates of the condition numbers of the following maps:

(x,y) = Re(Vz),  (x,y) —Im(Vz).

Exercise. Let the system of linear equations
Hx=b, b=(1,...,1) €RY,

be given with the Hilbert matrix H = (hj) € R10x10, hjx =1/(j+k—1) for jk =1:10.
Hint. H can be generated with the MATLAB command hilb.

e Calculate a numerical solution £ using LU decomposition with partial pivoting.
e Calculate the normalized relative backward error w. Is £ backward stable?

e Estimate the condition number ke (H) with the help of the MATLAB command
condest and compare the bound ke (H) - w of the relative forward error of £ with

its actual value .
Ix 2l

[1£]leo

The exact solution x € Z19 can be determined with the MATLAB command invhilb.

Exercise. The LAPACK manual warns of the following “professional blunder”:

Do not attempt to solve a system of equations Ax = b by first computing A~ and
then forming the matrix-vector product x = A~1b.

This exercise develops an explanation.

e Search online to find how many flop this “blunder” would require, when A~!
is computed with the LAPACK program xGETRI (which is behind the MATLAB
command inv)? Compare the result with the standard method x=A\b.

o With the help of Criterion B from §13.8, characterize for which A the backward stability
of the “blunder” is at risk.

o Construct a reproducible example (in MATLAB) where the “blunder” produces a very
large backward error but the standard method results in one within the magnitude
of machine precision. Estimate and assess the forward error, too.

Hint. Use normwise relative errors with respect to the || - [|c norm. An “exact” x would be taboo.


https://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers
https://software.intel.com/node/520945
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Exercise. A matrix A € K"*" is called row-wise diagonally dominant, if

m
lajj| = Y lagl  (j=1:m).
k=1
k#j
It is called column-wise diagonally dominant, if A’ is row-wise diagonally dominant.

e Show that if A € GL(m;K) is column-wise diagonally dominant, triangular decom-
position with partial pivoting does not actually perform any row swaps.

o Assess the suggestion to turn off partial pivoting for row-wise diagonally dominant
matrices A € GL(m; K).

Hint. Compare the growth factors of A and A’.

Least Squares

Exercise. Consider the following three models (with random noise €; and parameters )
for measurements b = (By,...,Bm) ER" and t = (1y,...,Tw) € R™:

(1) ﬁj=91Tj+92+€]‘,
(ii) ﬁ] = 91’1’]~z+92’fj+93+6,
(iii) /3] =0 Sin(’l’]‘) + 6, COS(T]‘) + €j.
Find a least squares estimator x of p = (61,6,)" and p = (01,62, 03)’ respectively.

e Write the estimator in terms of a least squares problem ||Ax — b||, = min! .

o Write a MATLAB program which calculates, in a numerically stable fashion, the
estimator x for each of the three models when passed the inputs b and ¢.

Exercise. The coefficients (&, 8)’ € R? of a regression line y = ax + B fitting the measure-
ments (x1,y1),..., (Xm, ym) are often given by the textbook formula

Xy — Xy o
a = , =17 —ax,
XX — XX 'B y
where ¥ = % Z]'"Zl xj, Xy = % Z}”: 1%yj, etc, denote the respective mean values.

e Show that the formula can be directly obtained when the normal equation of the
least squares problem
ly — ax — |2 = min!

is solved with Cramer’s rule.
o Give reasons why the numerical stability of this formula is at risk.
e Construct a numerical example for which the formula is actually unstable.

e How are the coefficients « and § computed in a numerically stable manner instead?


https://en.wikipedia.org/wiki/Cramer%27s_rule
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Exercise. Let A € R™*" with m > n have full column rank.

e Show that ||b — Ax||; = min! is equivalent to

L_) (4= )

e Come up with a way to calculate the solution of this linear system (the sparsity of I
and 0 can be ignored for the sake of simplicity). What is the computational cost?

e For a o-dependent least squares problem, let k3(A) = 107 and x5 = 1010 be indepen-
dent of o, but let the condition number «;(B) exhibit the following dependence:

16 4!52(3)

RLS T

108 1
r2(A) 4

»
>
o

10-% 1072 10° 102 10* 10% 10%

For which values of ¢ would it make sense, for reasons of stability, to solve the least
squares problem ||b — Ax|, = min! via the system of equations with the matrix B?

Eigenvalue Problems

Exercise. The following figure shows the contour lines of the functions F: A — sep(A, Ag)
for the values 0.1 (blue) 1.0 (red) and 2.0 (green); stars mark eigenvalues:

Im A

A Ay AT

Ay

= N W ke OO 0O
= N W ke OO 0O

1 2 3 45 6 7 89 1 2 3 45 6 7 8 9

e Based on the images, specify which of the matrices cannot be normal.

o Estimate the absolute condition number of the eigenvalue A, = 4 4 5i for A; and A,.
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Exercise. Given A € C"*™, show the Gershgorin circle theorem:
o(A)c |J K, where K= {z €C: |z —ayl < Y lal }
j=1,..n k#j
Hint. Examine the row of Ax = Ax, for which the absolute value of the corresponding component of x
is largest.
Exercise. Let A € C"™*™ and (A, x) be an eigenpair of A. The Rayleigh quotient

x'Ax
p(x, A) =

x'x
shows the following perturbation behavior (¥ = x +h, h — 0):

o(%, A) = p(x, A) + O(||h]]) and, for normal matrices, p(%, A) = p(x, A) +O(||h|?).

Exercise. Let the normal matrices A, B and C have the following spectra:

A ) O'(A) A O’(B) 6.0 “Imxb O’(C)
910 o 910 ; 910 o
8 810 810 [chN
7 : 7 7 0
6 OO 6 6
5 o] 5 © 00 510 o
4 4 4
3 ] © 3 3
2 [eRle} 2 o 2 ©
e ReX 1 9 ORe)_L 1o : ReX
» » »
123456789 123456789 123456789

For each matrix, inverse iteration with shift = 5 + 5i has been executed. The following
figure shows the error €, = |y — A| between the eigenvalue approximation i in the jth
step and the eigenvalue A, towards which the iteration converges:

‘kek

0 4,

1072 o leg ey

—4 - . e,

10 Sty ol

10-6 e ey Ceg

10-8 * Sl '....
10-10 *e Loy S
10-12 % - “teey
10-14 = R e

LA PPUSS L ISP - k=
10 20 30 40 50

o Towards which eigenvalue A does the iteration converge for A, B, and C?
e Match the convergence plots (green, red, blue) with the underlying matrix.

e Based on the spectra, calculate the convergence rates in the form e; = O(p*).


https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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Exercise. Given the eigenvalues of a normal matrix A and a shift y, let there be
=Ml <lp=2o| < - <|p=Aul,  |p=Mal/|p— 22| =0.125.

Estimate how many iteration steps k the inverse iteration will need to calculate an approxi-
mate eigenpair (g, vx) with a backward error of O(€yaen) in IEEE single precision. Which
eigenpair is approximated?

Exercise. If one were to use the current eigenvalue approximation p_1 as a dynamic shift
instead of a fixed shift pg = y in course of the inverse iteration, extremely fast convergence
would result for real symmetric matrices: in every step, the number of correct digits in the
eigenvalue is tripled so that machine precision is already achieved after only 3—4 steps
(cubic convergence, cf. §21.10). This method is called the Rayleigh iteration.

e Record the progress of i in course of this iteration for the matrix
2 11
A=1[1 3 1
1 1 4

when the initial shift value is given by po = 5.

¢ How many steps would inverse iteration need for an example of dimension m >> 1,
in order to be actually more expensive than just 4 steps of the Rayleigh iteration?

Exercise. Let u € C. Write a MATLAB function that when passed a previously calculated
Schur decomposition Q' AQ = T subsequently calculates the following data:

e an eigenvalue A € ¢(A) closest to j;
e a corresponding normalized eigenvector x of A;

e the backward error of the approximate eigenpair (A, x).

Exercise. Let A, B,C € C™*™ be given. The Sylvester equation for X € C"*™, that is,
AX—-XB=C )

can be rendered by means of Schur decompositions U'AU = R and V'BV = S as
RY-YS=E **)

where E = U'CV and Y = U'XV.
e Find an algorithm that computes the solution Y of (**).

Hint. Write (**) as m equations for the columns of Y.
e Show that (*) has a unique solution if and only if 0(A) No(B) = @.

e Implement an algorithm in MATLAB that solves (*). How many flop are needed?
Hint. Use the MATLAB command schur. It consumes O(m?) flop.
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Exercise. Given the real matrix Ayg € R™*™, let the lower right 2 x 2 block in (21.3) have
the complex conjugate eigenvalues A, A’ ¢ 7(Ay).

e Show that after two steps of the QR iteration with the Francis double shift, that is,
Ag—AI=QoRo, A1 =RoQo+Al, A —ANI=Q1R;, Ay =RiQ1+A],

the matrix A; is also real if normalized QR decompositions were used: A, € R™*™.

e How can the passage Ap — A; be realized with real operations only?



Notation

K field R or C

&, B, ..., w scalars

ab,c,...,z vectors (column vectors)
a',b',c,...,77  co-vectors (row vectors)

A,B,C,...,Z matrices

i,j,l,mmn,p indices/dimensions
1:m colon notation for 1,...,m
[A] Iverson bracket: 1, if expression A is true, else 0
Al adjoint of the matrix A
ak, u;- kth column, jth row of the matrix A
e, ey kth identity vector
diag(x) the diagonal matrix made from the vector x
GL(m; KK) general linear group of dimension m
Pr permutation matrix
IlEIl, TET norm and error measure of a matrix E
x(f;x) condition number of f in x
x(A) condition number of the matrix A
cond(A, x) Skeel-Bauer condition number of the system of equations Ax = b
IF the set of floating point numbers
f1(&) representation of ¢ as a floating point number
€mach machine precision
= equality after rounding
=, < equality and bound in leading order
Y(A) growth factor of the matrix A
w(%) backward error of an approximate solution %
sep(A, A) separation between A and A
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back substitution, 16
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cancellation, 43
cancellation free, 124
Cardano, Gerolamo (1501-1576), 139
Cauchy-Schwarz inequality, 119
characteristic polynomial, 75
chi-squared distribution, 133
Cholesky decomposition, 29
backward stability, 63
Cholesky, André-Louis (1875-1918),
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colon notation, 2
column rank, 31
compiler, 14
condition number, 41
linear system of equations, 46
formula, 43
linear regression problem, 71
matrix, 45
matrix product, 44
root of a polynomial, 76
sample variance, 59
Skeel-Bauer, 46
convergence
locally cubic, 91
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convergence theorem
inverse iteration, 84
power iteration, 82
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Cramer, Gabriel (1704-1752), 141

data fitting, 69

deflation, 77

Demmel, James (1955-), viii
determinant, 15, 139
Deuflhard, Peter (1944-), viii
diagonalizability, unitary, 77
dot product, see inner product
Dwyer, Paul (1901-1982), 21

efficiency ratio, 12
eigenpair, 75

left, 86
eigenvalue, 75

degenerate, 80

dominant, 82
eigenvalue problem, 75

generalized, 96

perturbation theory, 78
eigenvector, 75

left, 86

normalized, 75
eliminatio vulgaris, 21
end section, see algorithm
error

absolute, 40

approximation, 39

backward, 50, 60, 78

forward, 51

measurement, 39

model, 39

relative, 40

rounding, 39

unavoidable, 49
error measure, 40

choice of, 40

componentwise, 40
error transport, 52
experiment, 69

floating point numbers, 47
floating point operation, 10

flop, see floating point operation
forward analysis, 51

forward substitution, 16
Francis, John (1934-), 88

Gauss, Carl Friedrich (1777-1855), 21
Gaussian elimination, see triangular
decomposition
Gershgorin, Semyon (1901-1933), 143
Givens rotation, 35
Givens, Wallace (1910-1993), 35
glancing intersection, 42
Goldstine, Herman (1913-2004), 21
Golub, Gene (1932-2007), viii
Gram, Jorgen Pedersen (1850-1916),
33
Gram-Schmidt
classic (CGS), 33
modified (MGS), 33
group properties
permutation matrices, 19
triangular matrices, 15
unipotent triangular matrices, 15
unitary matrices, 18
growth factor of a matrix, 64

Halmos, Paul (1916-2006), 1
Hamming, Richard (1915-1998), 1
hardware arithmetic, 48
Hessenberg reduction, 93
Hessenberg, Karl (1904-1959), 37
Higham, Nick (1961-), 39
Holder’s inequality, 119
Horn, Roger (1942-), viii
Householder

method, 35, 123

reflection, 123
Householder, Alston (1904-1993), 35

identity, see unit matrix
IEEE 754, 48

in situ, 17

inaccuracy, see error
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index of inertia, 95
inner product, 4
input-output operation, 12
instability criterion, 53
inverse iteration, 83
involution, 5
iop, see input-output operation
iterative refinement, 66
model, 125
one single step, 67
Iverson bracket, 3

JIT compiler, 14, 105
Johnson, Charles (1948-), viii
Jordan normal form, 77

Julia, viii, 8

Kahan's algorithm, 57

Kahan, William ,,Velvel” (1933-), 39
Kronecker delta, 3

Kublanovskaya, Vera (1920-2012), 88

LAPACK, 8
Laplace, Pierre-Simon (1749-1827), 33
Lauchli, Peter (1928-), 72
least squares estimator, 70
least squares problem, 70
orthogonalization, 72
Q-free solution, 73
Legendre, Adrien-Marie (1752-1833),
70
LLVM (low level virtual machine),
105
LU factorization, see triangular de-
composition

machine arithmetic, 48
machine code, 14
machine epsilon, 47
machine numbers, 47
double precision, 48
single precision, 48
machine precision, 47

Maple, viii

Mathematica, viii

MATLAB, viii, 8, 99

matrix
adjoint, 3
bidiagonal, 137
block, 6
companion, 76
deflated, 77
design, 69
diagonal, 5
diagonally dominant, 137, 141
e-singular, 46
Gramian, 31
hermitian, see self-adjoint
memory scheme, 14
nilpotent, 15
non-diagonalizable, 95
non-normal, 80
normal, 77
numerically singular, 46
orthogonal, see unitary
orthonormal columns, 18
partitioning, 7
permutation, 19
positive definite, 28
principal sub-, 29
rank-1, 5
s.p.d., 28
self-adjoint, 28
symmetric, see self-adjoint
transpose, see adjoint
triangular, 14

unipotent, 15

tridiagonal, 94, 137
unit, 5
unitarily similar, 87
unitary, 18
unitary diagonalizable, 77
upper Hessenberg, 37
Wilkinson, 65
with full column rank, 31
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memory access, 10
multiple dispatch, 105
multiplicity, 75

NaN, 48
norm, 119
absolute, 122
equivalence, 121
Euclidean, 4, 119
Frobenius, 119
Hilbert-Schmidt, 119
max-column-sum, 121
max-row-sum, 121
maximum, 119
monotone, 122
Schur, 119
spectral, 121
taxi cab, 119
normal equation, 71
notation convention, 2
numerical analysis, 1
NumPy, 8

object orientation, 105
occupancy structure, 40
order

column-major, 14

row-major, 14
orthogonal basis, 18
orthonormal system, 18
outer product, 5
overflow, 48

partial pivoting, 26
peak execution time, 11
peak performance, 11
permutation, 19
perturbation, see error
pipelining, 11

pivot, 23

power iteration, 81

principle of direct attack, 72

problem

ill conditioned, 41

ill posed, 41

well conditioned, 41
product

matrix, 7

matrix-vector, 4
projection, 122

orthogonal, 80, 122
pseudoinverse, 71
pseudospectra, 80
Python, 8

QR algorithm, 88

QR decomposition, 32
backward stability, 62
full, 36
normalized, 32
reduced, 36

Rayleigh

iteration, 144

quotient, 78

shift, 129
regression analysis, 69
regression line, 141

regression problem, linear, 70

residual, 60

rounding, 47
relative error, 47

Runge, Carl (1856-1927), 135

Schmidt, Erhard (1876-1959), 33

Schur complement, 22, 137
Schur decomposition, 77
Schur, Issai (1875-1941), 77
SciPy, 8
separation, 78
shift, 83
Rayleigh, 91
Wilkinson, 92
shift strategy, 91

singular value decomposition, 132

Skeel, Robert (194?-), 67
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sparsity structure, 40
spectral radius, 122
spectrum, 75
stability
backward, 50
numerical, 50
of an algorithm, 50
stability analysis
eigenvalue as root of the charac-
teristic polynomial, 75
evaluation of log(1 + x), 56
linear systems of equations, 61
matrix product, 51
orthogonalization method to solve
least squares problem, 73
quadratic equation, 54
sample variance, 58
stability criterion, 54
standard model of machine numbers,
48
start section, see algorithm
statistics, parametric, 69
Stewart, Gilbert ,Pete” (1940-), 75
Stiefel, Eduard (1909-1978), 72
Stigler, Stephen (1941-), 69
Stirling’s formula, 133
submultiplicativity, 120
sweep operator, 137
Sylvester equation, 144
Sylvester, James (1814-1897), 144
symmetric group, 19

theorem
Abel-Rufini, 80
Bauer-Fike, 79
Cholesky decomposition, 29
Davis—-Kahan, 79
Gauss—-Markov, 70
Gershgorin, 143
Kahan, 46
normal equation, 71
Oettli-Prager, 61

QR decomposition, 32, 36
Rigal-Gaches, 60
separation, 79
Skeel, 67
spectral norm estimate, 132
triangular decomposition, 27
Wilkinson, 63
Thomas algorithm, 137
Thomas, Llewellyn (1903-1992), 137
Todd, John (1911-2007), 30
transposition, see adjunction
Trefethen, Lloyd Nick (1955-), 50
triangular decomposition, 21
backward stable, 63
normalized, 21
triangulation, unitary, 77
type inference, 105

under-determined system of equations,
74

underflow, 48

unit roundoff, 47

unit vector, 3

Van Loan, Charles (1946-), viii
vector

co-, 2

column, 2

observation , 69

parameter, 69

row, 2
vector processor, 11
Viete, Francois (1540-1603), 56
Vieta’s formula, 56
Von Mises, Richard (1883-1953), 81
Von Neumann, John (1903-1957), 21

Wielandt, Helmut (1910-2001), 83
Wilkinson, James (1919-1986), 63
WolframAlpha, viii
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