

Table	of	Contents
Cover

Title	Page

Introduction

Who	This	Book	Is	For

What	This	Book	Covers

What	You	Need	to	Use	This	Book

Conventions

Sample	Reports	and	Projects

Errata

P2P.WROX.COM

Part	I:	Getting	Started

Chapter	1:	Introducing	Reporting	Services

Who	Uses	Reporting	Services?

Dashboards,	Reports,	and	Applications

Report	Tool	Choices

Optimizing	Performance

Summary

Chapter	2:	What's	New	in	SQL	Server	2016	Reporting	Services?

Report	Builder	and	Designer	Enhancements

Modern	Browser	Rendering

Parameter	Layout	Control

Updated	RDL	Specification

Mobile	Reports

KPIs

Native	Printing	Control

PowerPoint	Rendering

Integrated	and	Improved	Web	Portal

New	Charts	and	Visual	Enhancements

Standardized,	Modern	Browser	Rendering

Power	BI	Dashboard	Pinning

Summary

Chapter	3:	Reporting	Services	Installation	and	Architecture

kindle:embed:0001?mime=image/jpg

What's	Changed	in	SQL	Server	2016?

The	Basic	Installation

The	Enterprise	Deployment

The	Reporting	Life	Cycle

Reporting	Services	Tools

Reporting	Services	Windows	Service

Reporting	Services	Processors	and	Extensions

Reporting	Services	Application	Databases

Summary

Part	II:	Basic	Report	Design

Chapter	4:	Report	Layout	and	Formatting

Using	Report	Design	Tools

Understanding	Report	Data	Building	Blocks

Samples	and	Exercises

Summary

Chapter	5:	Data	Access	and	Query	Basics

Database	Essentials

Data	Source	Management

Datasets	and	Fields

Summary

Chapter	6:	Grouping	and	Totals

SQL	Server	Data	Tools

Report	Groups

Exercise

Summary

Part	III:	Advanced	and	Analytic	Reporting

Chapter	7:	Advanced	Report	Design

Pagination	and	Flow	Control

Headers	and	Footers

Composite	Reports	and	Embedded	Content

Unlocking	the	Textbox

Designing	Master/Detail	Reports

Designing	Subreports

Navigating	Reports

Exercises

Summary

Chapter	8:	Graphical	Report	Design

Visual	Design	Principles

Chart	Types

Exercises

Summary

Chapter	9:	Advanced	Queries	and	Parameters

T-SQL	Queries	and	Parameters

MDX	Queries	and	Parameters

Summary

Chapter	10:	Reporting	With	Analysis	Services

Analysis	Services	for	Reporting

Using	Reporting	Services	with	Analysis	Services	Data

Working	with	Multidimensional	Expression	Language

Adding	Nonadditive	Measures

Mdx	Properties	and	Cube	Formatting

Drill-Through	Reports

Best	Practices	and	Provisions

Summary

Chapter	11:	SSAS	Reporting	Advanced	Techniques

Building	A	Dynamic	Cube	Browser	with	SSRS

Cube	Dynamic	Rows

Cube	Dynamic	Rows	Expanded

Cube	Restricting	Rows

Cube	Metadata

Cube	Browser

Summary

Chapter	12:	Expressions	and	Actions

Basic	Expressions	Recap

Using	the	Expression	Builder

Calculated	Fields

Conditional	Expressions

The	IIF()	Function

Using	Custom	Code

Reporting	on	Recursive	Relationships

Actions	and	Report	Navigation

Summary

Part	IV:	Solution	Patterns

Chapter	13:	Report	Projects	and	Consolidation

SSDT	Solutions	and	Projects

Version	Control

Synchronizing	Content

Managing	Server	Content

Report	Builder	and	Self-Service	Reporting	Strategies

Report	Builder	and	Semantic	Model	History

Planning	A	Self-Service	Reporting	Environment

User	Report	Migration	Strategies

Summary

Chapter	14:	Report	Solutions,	Patterns,	and	Recipes

Super	Reports

Report	Recipes:	Building	on	Basic	Skills

Summary

Part	V:	Reporting	Services	Custom	Programming

Chapter	15:	Integrating	Reports	into	Custom	Applications

URL	Access

Programmatic	Rendering

Using	the	Reportviewer	Control

Summary

Chapter	16:	Extending	Reporting	Services

Extension	Through	Interfaces

Creating	a	Custom	Data	Processing	Extension

Summary

Part	VI:	Mobile	Report	Solutions

Chapter	17:	Introducing	Reporting	Services	Mobile	Reports

The	Mobile	Report	Experience	and	Business	Case

Connection	and	Dataset	Design	Basics

Introducing	Mobile	Report	Publisher

Visual	Control	Categories

Summary

Chapter	18:	Implementing	a	Mobile	Report	with	Design-First	Development

Design-First	Mobile	Report	Development	Exercise

Summary

Chapter	19:	Mobile	Report	Design	Patterns

Key	Performance	Indicators

The	Thing	About	KPIs

Creating	a	Time-Series	Mobile	Report

Summary

Chapter	20:	Advanced	Mobile	Report	Solutions

Designing	a	Chart	Data	Grid	Mobile	Report

Exercise:	Adding	a	Drill-Through	Mobile	Report

Exercise:	Adding	a	Drill-Through	Paginated	Report

Summary

Part	VII:	Administering	Reporting	Services

Chapter	21:	Content	Management

Using	Web	Portal

Content	Management	Activities

Site	and	Content	Security

Site	Branding

Content	Management	Automation

Summary

Chapter	22:	Server	Administration

Security

Backup	and	Recovery

Monitoring

Configuration

Summary

End	User	License	Agreement

List	of	Illustrations
Chapter	1:	Introducing	Reporting	Services

Figure	1.1	Using	navigation	links.

Figure	1.2	Web	portal.

Figure	1.3	Web	portal	on	iPhone.

Figure	1.4	Mobile	report	on	iPad.

Chapter	2:	What's	New	in	SQL	Server	2016	Reporting	Services?

Figure	2.1	Evolution	of	Reporting	Services.

Figure	2.2	Report	Builder's	new	look.

Figure	2.3	Report	Designer	grid.

Figure	2.4	RDL	file	snippet

Figure	2.5	Mobile	report	on	tablet.

Figure	2.6	Mobile	report	on	phone.

Figure	2.7	KPI	from	SSDT	Report	Designer	dataset.

Figure	2.8	Content	menu	in	the	web	portal.

Figure	2.9	Two	new	chart	types.

Figure	2.10	Reporting	Services	Configuration	Manager.

Figure	2.11	Power	BI	pinning	added	to	report	toolbar.

Figure	2.12	“Pinnable”	items	highlighted	in	web	portal.

Figure	2.13	Power	BI	dashboard	and	update	frequency.

Figure	2.14	Pinned	report	visuals	appearing	on	the	dashboard	alongside	the
Power	BI	visuals.

Chapter	3:	Reporting	Services	Installation	and	Architecture

Figure	3.1	SQL	Server	setup	DVD	image	mounted	as	a	logical	drive.

Figure	3.2	SQL	Server	Installation	Center.

Figure	3.3	Installation	page	of	the	SQL	Server	Installation	Center.

Figure	3.4	Setup	Support	Rules	page.

Figure	3.5	System	Configuration	Check	Report.

Figure	3.6	Product	Key	page.

Figure	3.7	License	Terms	page.

Figure	3.8	Install	Setup	Files	page.

Figure	3.9	Selecting	a	SQL	Server	Feature	Installation.

Figure	3.10	Selecting	products	and	features	to	install.

Figure	3.11	Instance	Configuration	page.

Figure	3.12	Server	Configuration	page.

Figure	3.13	Server	Configuration	tab	of	the	Database	Engine	Configuration
page.

Figure	3.14	Reporting	Services	Configuration	page.

Figure	3.15	Ready	to	Install	page.

Figure	3.16	Installation	Progress	page.

Figure	3.17	Web	portal.

Figure	3.18	Navigating	directly	to	the	report	server.

Figure	3.19	The	two	Reporting	Services	instances.

Figure	3.20	A	named	instance	and	a	default	instance	open	in	browser	windows.

Figure	3.21	SSRS	services	and	dependencies.

Figure	3.22	SSRS	core	processing.

Chapter	4:	Report	Layout	and	Formatting

Figure	4.1	Report	Builder	with	different	areas	of	the	designer.

Figure	4.2	Basic	components	of	reports.

Figure	4.3	Report	Builder	Insert	ribbon.

Figure	4.4	Simple	multi-level	table	report.

Figure	4.5	Matrix	report.

Figure	4.6	List	in	design	view.

Figure	4.7	List	report	preview.

Figure	4.8	Creating	a	new	folder.

Figure	4.9	A	new	empty	folder.

Figure	4.10	Getting	Started	page.

Figure	4.11	Selecting	Add	Data	Source	in	the	Report	Data	pane.

Figure	4.12	Data	Source	Properties	dialog.

Figure	4.13	Connection	Properties	dialog.

Figure	4.14	Selecting	Add	Dataset.

Figure	4.15	Query	Designer	dialog.

Figure	4.16	List	of	fields	added	to	Report	Data	pane.

Figure	4.17	Selecting	the	Insert	Table	option.

Figure	4.18	Placing	the	table.

Figure	4.19	Selecting	the	ProductCategory	field.

Figure	4.20	Inserting	columns.

Figure	4.21	Previewing	the	report	using	the	Run	icon.

Figure	4.22	Selecting	the	background	color.

Figure	4.23	Formatting	the	column	for	currency.

Figure	4.24	Previewing	the	report.

Figure	4.25	Revealing	the	total	number	of	pages.

Figure	4.26	Selecting	Group	Properties.

Figure	4.27	Selecting	the	[ProductName]	field.

Figure	4.28	Selecting	the	[OrderQuantity]	field.

Figure	4.29	Jumping	to	the	last	page	of	the	report.

Chapter	5:	Data	Access	and	Query	Basics

Figure	5.1	Selecting	columns	in	Query	Designer.

Figure	5.2	Using	the	Auto	Detect	feature.

Figure	5.3	Adding	a	report	parameter.

Figure	5.4	Generating	a	T-SQL	query.

Figure	5.5	“Connect	to	Server”	dialog.

Figure	5.6	Right-clicking	the	WroxSSRS2016	database.

Figure	5.7	Selecting	the	SalesSummaryCountry	dataset.

Figure	5.8	Pasting	the	query	copied	from	SSMS.

Figure	5.9	Entering	the	year	for	the	Parameter	Value.

Figure	5.10	Dataset	Properties	with	query.

Figure	5.11	“Parameter	value”	referring	to	a	report	parameter.

Figure	5.12	Four	fields	belonging	to	the	dataset.

Figure	5.13	Selecting	the	Insert	Matrix	option.

Figure	5.14	Dropping	the	matrix	into	the	report	body.

Figure	5.15	Selecting	the	[SUM(SalesAmountSum)]	data	cell.

Figure	5.16	Entering	2013	for	the	Year	parameter.

Figure	5.17	Country	field	values	repeated	across	columns.

Figure	5.18	Report	Parameter	Properties	dialog.

Figure	5.19	Entering	report	parameters.

Figure	5.20	Providing	a	default	value	for	the	parameter.

Figure	5.21	Report	with	the	new	parameter	value.

Figure	5.22	Report	Parameter	Properties	dialog.

Figure	5.23	Changing	the	WHERE	clause	of	the	query.

Figure	5.24	Checking	the	values	2012	and	2013.

Chapter	6:	Grouping	and	Totals

Figure	6.1	Choosing	Reporting	Services	from	the	New	Project	dialog.

Figure	6.2	Window	panes	in	Report	Designer.

Figure	6.3	A	report	in	the	Design	window.

Figure	6.4	Tables	added	to	Query	Designer.

Figure	6.5	Column	names	modified.

Figure	6.6	Using	Report	Designer	properties	and	features.

Figure	6.7	the	Group	Properties	dialog.

Figure	6.8	ProductCategory	field	as	a	group	expression.

Figure	6.9	Managing	page	breaks.

Figure	6.10	Grouped	table	data	region	with	totals.

Figure	6.11	Design	of	sample	report.

Figure	6.12	Previewing	the	report.

Figure	6.13	Sorting	page	of	the	Group	Properties	dialog.

Figure	6.14	Displaying	by	one	field	and	sorting	by	another.

Figure	6.15	Selecting	the	vSalesSummaryYearProduct	view.

Figure	6.16	Selecting	the	vSalesSummaryYearProduct	view.

Figure	6.17	Filter	text	added	to	Query	Designer.

Figure	6.18	Report	preview	showing	one	row	per	product.

Figure	6.19	Selecting	the	Order	Quantity	column.

Figure	6.20	Selecting	the	background	color	icon.

Figure	6.21	Previewing	the	report.

Figure	6.22	Clicking	the	down-arrow	icon.

Figure	6.23	Previewing	the	report.

Figure	6.24	Totals	for	the	last	category	and	the	overall	total.

Figure	6.25	Expression	editor	window.

Figure	6.26	Changing	text	to	Grand	Total.

Figure	6.27	Category	name	and	category	total.

Figure	6.28	Selecting	ProductSubcategory.

Figure	6.29	Revealing	three	products	in	the	Helmets	subcategory.

Figure	6.30	Adding	a	query	script	to	return	a	distinct	list.

Figure	6.31	Choosing	“Available	Values”	and	query	options.

Figure	6.32	Modifying	the	expression.

Figure	6.33	Entire	report	in	default	view.

Chapter	7:	Advanced	Report	Design

Figure	7.1	Report	properties	in	the	designer.

Figure	7.2	Report	Properties,	Page	Setup	page.

Figure	7.3	Properties	window,	Size	properties	group.

Figure	7.4	Headers	and	footers	in	the	designer	for	a	typical	table	report.

Figure	7.5	Rendered	table	report	with	headers	and	footers.

Figure	7.6	Page	header	shown	on	the	second	page.

Figure	7.7	Page	Header	Properties	dialog.

Figure	7.8	Row	group	header	boundary.

Figure	7.9	Assembling	the	page	footer.

Figure	7.10	Assembling	the	page	header.

Figure	7.11	Assembling	the	report	header.

Figure	7.12	Tablix	Properties	dialog.

Figure	7.13	Setting	up	repeating	page	header	in	Advanced	Mode.

Figure	7.14	Textbox	Padding	properties.

Figure	7.15	Text	with	embedded	formatting.

Figure	7.16	Placeholder	Properties	dialog.

Figure	7.17	Previewed	report	with	data-bound	embedded	formatting.

Figure	7.18	Report	header	content	contained	in	a	rectangle.

Figure	7.19	Page	header	content	contained	in	a	rectangle.

Figure	7.20	Setting	a	page	break	in	the	rectangle	properties.

Figure	7.21	Long	parameter	text	in	page	header.

Figure	7.22	Setting	the	PageBreak	Disabled	property	with	an	expression.

Figure	7.23	Report	rendered	to	Excel.

Figure	7.24	Multi-level	table	report	with	drill-down	and	repeating	chart.

Figure	7.25	Matrix	report	with	repeating	chart.

Figure	7.26	List	report	with	free-form	layout	and	embedded	chart.

Figure	7.27	Combination	report	with	list,	embedded	table,	and	chart.

Figure	7.28	Different	aggregate	functions	used	in	totals.

Figure	7.29	Using	a	scoped	aggregation.

Figure	7.30	Putting	the	calculations	together	in	a	meaningful	solution.

Figure	7.31	Adding	a	subreport	to	the	main	report.

Figure	7.32	Modify	the	dataset	parameter	using	an	expression.

Figure	7.33	Product	Details	report	with	subreport	in	designer.

Figure	7.34	Product	Details	report	in	preview.

Figure	7.35	Multi-group	table	report	with	document	map.

Figure	7.36	Report	Properties	dialog.

Figure	7.37	Page	Header	Properties	dialog.

Figure	7.38	Adding	an	embedded	image.

Figure	7.39	Completed	template	report.

Figure	7.40	Select	an	item	from	the	Add	New	Item	dialog.

Figure	7.41	The	Query	Designer.

Figure	7.42	Report	Parameter	Properties.

Figure	7.43	Add	a	Figure	caption	here.

Figure	7.44	Matrix	Design	view	and	BackgroundColor	property	expresssion.

Figure	7.45	Preview	of	finished	report.

Chapter	8:	Graphical	Report	Design

Figure	8.1	Two	renditions	of	the	same	chart.

Figure	8.2	Stacked	column	chart.

Figure	8.3	Area	chart.

Figure	8.4	Pie	chart	for	Bike	product	categories.

Figure	8.5	Doughnut	chart	versus	bar	chart.

Figure	8.6	Top	200	Product	Sales	report.

Figure	8.7	Bubble	chart.

Figure	8.8	Series	Properties	page	for	bubble	chart.

Figure	8.9	Tree	Map	chart.

Figure	8.10	Sunburst	chart.

Figure	8.11	Chart	properties	and	settings.

Figure	8.12	Hierarchy	of	chart	objects.

Figure	8.13	Adding	a	new	chart	area.

Figure	8.14	Series	Properties	option.

Figure	8.15	Selecting	a	chart	area.

Figure	8.16	Finished	report	with	line	chart	and	axis	moved.

Figure	8.17	Chart	Area	Properties	dialog.

Figure	8.18	Changing	the	Category	to	Currency.

Figure	8.19	Changing	the	Interval	to	1.

Figure	8.20	Viewing	the	tooltip.

Figure	8.21	Previewing	the	report.

Figure	8.22	Changing	the	“Vertical	axis”	to	Secondary.

Figure	8.23	Previewing	the	revised	report.

Chapter	9:	Advanced	Queries	and	Parameters

Figure	9.1	Parameters	page	of	Dataset	Properties	dialog.

Figure	9.2	Report	Parameter	Properties	page	of	the	Report	Data	window.

Figure	9.3	Specifying	the	“Value	field”	and	“Label	field”	properties.

Figure	9.4	Clarifying	the	context	in	the	printed	report.

Figure	9.5	Finished	report	with	the	parameter	list	in	the	heading.

Figure	9.6	Filtering	product	subcategories.

Figure	9.7	Available	Values	settings.

Figure	9.8	Using	the	right-click	menu	to	add	and	remove	columns	and	rows.

Figure	9.9	Products	in	parameter	list.

Figure	9.10	Using	“(All	Countries)”	to	provide	users	with	an	option.

Figure	9.11	Using	a	numeric	key	rather	than	text.

Figure	9.12	Designer	parameter	bar	grid	arrangement.

Figure	9.13	Preview	with	month	of	July	displayed.

Figure	9.14	Matrix	report	showing	results	of	MDX	query.

Figure	9.15	Mapping	to	the	“Value	field”	and	“Label	field”.

Figure	9.16	Using	a	full-qualified	unique	name	reference	for	each	key	value.

Figure	9.17	Copying	values.

Figure	9.18	Naming	two	query	parameters.

Figure	9.19	Dataset	Properties	page.

Chapter	10:	Reporting	with	Analysis	Services

Figure	10.1	Adding	a	new	data	source.

Figure	10.2	Shared	Data	Source	Properties	dialog.

Figure	10.3	Connection	Properties	dialog.

Figure	10.4	Changing	the	name	of	the	data	source.

Figure	10.5	MDX	Query	Designer.

Figure	10.6	Analysis	Services	metadata	objects.

Figure	10.7	Query	Designer	filled	in.

Figure	10.8	Defining	the	Filter	Expression.

Figure	10.9	Default	slicer.

Figure	10.10	Table	report.

Figure	10.11	Indicator	Properties	dialog.

Figure	10.12	Switching	to	the	text	query	view.

Figure	10.13	Query	as	it	appears	in	Query	window.

Figure	10.14	Testing	the	query.

Figure	10.15	Three	new	calculated	members	in	the	dataset	fields	collection.

Figure	10.16	Completed	report.

Figure	10.17	Basic	matrix	report.

Figure	10.18	Report	in	preview.

Figure	10.19	Report	with	changes.

Figure	10.20	Miscalculated	report	and	fixed	report.

Figure	10.21	Modifying	field	properties.

Figure	10.22	Action	expression	settings.

Chapter	11:	SSAS	Reporting	Advanced	Techniques

Figure	11.1	Behavior	of	final	report.

Figure	11.2	Cube	Dynamic	Rows	Report	Data.

Figure	11.3	DataSet1	in	Query	Designer.

Figure	11.4	Query	Parameters	dialog.

Figure	11.5	Results	of	query.

Figure	11.6	Expression	group	on	[Row	Key].

Figure	11.7	Seeing	how	rows	are	sorted.

Figure	11.8	Changing	the	text	alignment	and	padding	properties.

Figure	11.9	Setting	the	BackgroundColor	property.

Figure	11.10	Current	cell	properties.

Figure	11.11	Testing	the	changing	of	the	report.

Figure	11.12	Changing	action.

Figure	11.13	Viewing	the	changed	report.

Figure	11.14	Viewing	each	hierarchy	level	in	a	new	column.

Figure	11.15	Creating	a	new	table/tablix.

Figure	11.16	Completed	report.

Figure	11.17	Creating	a	new	dataset.

Figure	11.18	Setting	the	“Value	field”	and	“Label	field”	values.

Figure	11.19	Default	value	of	pRowCount	parameter.

Figure	11.20	Results	of	execution.

Figure	11.21	Previewing	the	report.

Figure	11.22	Adding	pRowCount.

Figure	11.23	Interacting	with	a	report	parameter.

Figure	11.24	Finished	report.

Figure	11.25	Dataset	properties.

Figure	11.26	Cube	metadata.

Figure	11.27	Dataset	Properties	dialog	showing	filter	condition.

Figure	11.28	Text	Box	Properties	dialog.

Figure	11.29	Clicking	a	cube	to	display	an	associated	MeasureGroup.

Figure	11.30	Complete	report	data.

Figure	11.31	Design	surface.

Figure	11.32	Preview.

Figure	11.33	Design	surface.

Figure	11.34	Preview.

Figure	11.35	Sales	report.

Figure	11.36	Profit	and	loss	report.

Figure	11.37	Key	navigation	paths.

Figure	11.38	List	of	parameters	and	default	values.

Figure	11.39	Metadata	and	measure	value.

Figure	11.40	Main	tablix.

Figure	11.41	Adding	an	ascending	or	descending	control.

Figure	11.42	Parameter	values.

Figure	11.43	Swapping	of	row	and	column	parameters.

Figure	11.44	Action.

Figure	11.45	Selecting	a	measure.

Figure	11.46	Design	surface	and	Action	tab.

Figure	11.47	Preview	of	result.

Figure	11.48	Action	parameters.

Figure	11.49	Selecting	the	Date	parameter.

Figure	11.50	Formatted	footer.

Figure	11.51	Angry	Koala	Cube	Surfer	report.

Figure	11.52	Report	with	a	lag	of	12.

Chapter	12:	Expressions	and	Actions

Figure	12.1	Expression	window.

Figure	12.2	Textbox	used	to	calculate	profit	margin.

Figure	12.3	Selecting	the	dataset	you	want	to	use.

Figure	12.4	Dataset	properties	dialog.

Figure	12.5	Field	reference	in	a	textbox.

Figure	12.6	Report	results.

Figure	12.7	Finished	report.

Figure	12.8	Product	Details	report.

Figure	12.9	Action	page	in	the	Text	Box	Properties	dialog.

Figure	12.10	Row	Groups	pane.

Figure	12.11	Group	Properties	dialog.

Figure	12.12	Setting	the	“Recursive	parent”	property.

Figure	12.13	Correct	design	environment.

Figure	12.14	Finished	report.

Figure	12.15	Two	example	reports.

Figure	12.16	Table	with	a	drill-through	action	on	the	first	column.

Figure	12.17	Report	Data	window.

Figure	12.18	Text	Box	Properties	dialog.

Figure	12.19	Clicking	a	column	of	interest	on	the	column	chart.

Figure	12.20	Report	action	properties.

Figure	12.21	Report	in	Design	view.

Figure	12.22	Parameter	reset	back	to	the	default	state.

Chapter	13:	Report	Projects	and	Consolidation

Figure	13.1	New	Project	dialog.

Figure	13.2	Shared	datasets	in	SSDT.

Figure	13.3	Requirements	document	template.

Figure	13.4	Sketch	of	a	dashboard	report	solution.

Figure	13.5	Property	Pages	for	sample	server.

Figure	13.6	Feature	differences	and	similarities	between	the	Report	Builder	and
SSDT	design	tools.

Figure	13.7	Tasks	and	roles	that	are	best	suited	for	each	design	tool.

Figure	13.8	Report	part	folder.

Figure	13.9	Options	dialog.

Figure	13.10	The	Publish	Report	Parts	option.

Chapter	14:	Report	Solutions,	Patterns,	and	Recipes

Figure	14.1	Interdependencies	between	basic	report	design	elements.

Figure	14.2	Final	dashboard.

Figure	14.3	Final	scorecard	report.

Figure	14.4	MDX	Query	Designer.

Figure	14.5	Completed	scorecard	table	in	report	designer.

Figure	14.6	Score	table	with	AVG	expressions.

Figure	14.7	Add	indicator	to	table.

Figure	14.8	Select	Indicator	Type	dialog.

Figure	14.9	Select	Gauge	Type	dialog.

Figure	14.10	Sparkline	table	and	chart	in	the	report	designer.

Figure	14.11	MDX	query	designer.

Figure	14.12	Parameter	properties.

Figure	14.13	Select	Sparkline	Type	dialog.

Figure	14.14	Chart	Data	window.

Figure	14.15	Category	group	expression.

Figure	14.16	Chart	Properties	filter	expressions.

Figure	14.17	Text	Box	Properties	Action	page.

Figure	14.18	Sparkline	table	and	chart	in	preview.

Figure	14.19	Choosing	a	map	from	the	Map	Gallery.

Figure	14.20	Map	Layers	window.

Figure	14.21	MapBindingFieldPair	Editor	dialog.

Chapter	15:	Integrating	Reports	into	Custom	Applications

Figure	15.1	Web	Portal	Favorites	page.

Figure	15.2	Report	server	page.

Figure	15.3	Data	Sources	folder.

Figure	15.4	Data	source	contents.

Figure	15.5	Sales	Dashboard	report.

Figure	15.6	Internet	Sales	KPI	Dashboard.

Figure	15.7	Dashboard	report	with	parameters.

Figure	15.8	Custom	rendering	application	interface.

Figure	15.9	Add	Service	Reference	dialog.

Figure	15.10	Service	Reference	Settings	dialog.

Figure	15.11	Add	Web	Reference	dialog	containing	WSDL.

Figure	15.12	Reporting	Service	Rendering	application	report	list.

Figure	15.13	Reporting	Service	Rendering	application.

Figure	15.14	Confirmation	message	box.

Figure	15.15	New	Project	dialog.

Figure	15.16	Data	Source	Configuration	Wizard.

Figure	15.17	ReportViewer	control	properties.

Figure	15.18	ReportViewerTasks	smart	tag	panel.

Figure	15.19	Sample	report	with	map	and	table.

Figure	15.20	WroxReportViewer	form	running.

Figure	15.21	Report	in	viewer	application.

Chapter	16:	Extending	Reporting	Services

Figure	16.1	Reporting	Services	interfaces	in	Visual	Studio.

Figure	16.2	ADO.NET	object	model.

Figure	16.3	Reference	added	to	ReportingServices.Interfaces.

Figure	16.4	Application	page	and	assembly	information.

Figure	16.5	Interfaces	in	Visual	Studio	Class	Designer.

Figure	16.6	Data	Source	Properties	with	DATASET	type	selected.

Figure	16.9	Dataset	results.

Figure	16.7	Credentials	page.

Figure	16.8	Query	command	in	Dataset	Properties.

Chapter	17:	Introducing	Reporting	Services	Mobile	Reports

Figure	17.1	A	running	mobile	report	in	full-screen	mode	on	an	iPad.

Figure	17.2	A	simple	mobile	report	displayed	in	a	web	browser.

Figure	17.3	Report	viewed	in	the	phone	app.

Figure	17.4	Pages	on	Mobile	Report	Publisher.

Figure	17.5	Mobile	Report	Publisher	Layout	page.

Figure	17.6	Navigator	controls.

Figure	17.7	The	dataset	shown	in	the	Data	page.

Figure	17.8	Grid	and	Selection	list	controls.

Figure	17.9	Gauge	type	controls.

Figure	17.10	Chart	controls.

Figure	17.11	Same	data	using	different	chart	types.

Figure	17.12	Report	with	Tree	map.

Figure	17.13	Map	controls.

Figure	17.14	Map	selection	list.

Chapter	18:	Implementing	a	Mobile	Report	with	Design-First	Development

Figure	18.1	Web	Portal	with	compact	menu	items.

Figure	18.2	Web	Portal	after	selecting	“Mobile	Report.”

Figure	18.3	Mobile	Report	Publisher—Settings	page.

Figure	18.4	“Save	mobile	report	as”	destination	options.

Figure	18.5	Report	server	and	location	properties.

Figure	18.6	Report	Mobile	Publisher—Layout	page.

Figure	18.7	Time	navigator	Time	level	presets.

Figure	18.8	Setting	properties	for	the	Time	navigator.

Figure	18.9	Category	Sales	chart	added.

Figure	18.10	Sales	Summary	by	Country	and	Category	report	with	selected
Country.

Figure	18.11	Data	page	with	simulated	datasets.

Figure	18.12	Visual	controls	on	the	report.

Figure	18.13	Datasets	added	in	the	Data	page.

Figure	18.14	Selecting	a	shared	data	source.

Figure	18.15	Creating	a	shared	dataset.

Figure	18.16	Shared	datasets	viewed	in	Web	Portal.

Figure	18.17	Add	data	options.

Figure	18.18	Select	the	report	server.

Figure	18.19	New	tables	added	to	report	datasets.

Figure	18.20	Time	navigator	background	chart	properties.

Figure	18.21	Filter	options	in	the	properties	for	the	Select	Country	control.

Figure	18.22	Number	gauge	data	filter	properties	and	aggregating	function
selection.

Figure	18.23	Category	Sales	chart	Data	properties.

Figure	18.24	Color	palette	selection.

Figure	18.25	Choosing	a	report	layout.

Figure	18.26	Report	shown	in	phone	layout.

Figure	18.27	Report	optimized	for	the	phone	layout.

Figure	18.28	Phone	layout	preview.

Figure	18.29	Sales	Summary	by	Country	and	Category	report	in	Web	Portal.

Figure	18.30	Power	BI	Mobile	app	on	tablet.

Figure	18.31	Connecting	to	server.

Figure	18.32	Report	viewed	in	the	mobile	app.

Chapter	19:	Mobile	Report	Design	Patterns

Figure	19.1	Elements	of	a	KPI.

Figure	19.2	Completed	design	page	for	the	US	Bike	Sales	-	2013	KPI.

Figure	19.3	Parameters	for	Actual	and	Target	Sales	dataset.

Figure	19.4	Field	selection	for	Actual	and	Target	Sales	dataset.

Figure	19.5	Parameter	values	for	Sales	By	Month	for	Year	and	Country	dataset.

Figure	19.6	Field	selection	for	Sales	By	Month	for	Year	and	Country	dataset.

Figure	19.7	KPIs	in	the	Web	Portal.

Figure	19.8	New	Mobile	Report	from	Web	Portal.

Figure	19.9	Mobile	Report	Publisher	message.

Figure	19.10	Report	layout	example	for	control	positioning.

Figure	19.11	Time	navigator	Visual	properties	in	the	Layout	page.

Figure	19.12	Add	data	page.

Figure	19.13	Add	data	from	server	page.

Figure	19.14	Report	settings	page.

Figure	19.15	Save	mobile	report	as	page.

Figure	19.16	Time	navigator	Data	properties	panel.

Figure	19.17	Select	Country	Selection	list	Data	properties.

Figure	19.18	Bike	Sales	Number	gauge	Data	properties.

Figure	19.19	Bike	Daily	Sales	chart	Data	properties.

Figure	19.20	Bike	Daily	Sales	chart	Visual	properties.

Figure	19.21	Map	Selection	list.

Figure	19.22	Selecting	shape	and	data	files	for	custom	maps.

Figure	19.23	Sales	by	Country	map	Data	properties.

Figure	19.24	Functionally	complete	mobile	report.

Figure	19.25	Report	after	color	palette	selection.

Figure	19.26	Using	the	Select	Country	Selection	list.

Figure	19.27	Completed	main	desktop	layout	of	the	mobile	report,	testing	map
interactions.

Figure	19.28	Testing	chart	interactions.

Figure	19.29	Empty	phone	layout.

Figure	19.30	Completed	phone	layout.

Figure	19.31	Testing	the	phone	layout	in	preview.

Figure	19.32	Command	prompt	with	IPCONFigure	results.

Figure	19.33	Power	BI	mobile	app	on	an	iPhone.

Figure	19.34	Steps	to	navigate	to	report	server	content	on	phone	app.

Figure	19.35	Steps	to	navigate	mobile	report	in	phone	app.

Chapter	20:	Advanced	Mobile	Report	Solutions

Figure	20.1	Report	shell	showing	control	placement.

Figure	20.2	Report	datasets.

Figure	20.3	Selection	list	“Years”	Data	properties.

Figure	20.4	Selection	list	“Categories”	Data	properties.

Figure	20.5	Data	grid	columns	and	Chart	properties.

Figure	20.6	Completed	Data	properties	for	“Subcategory	Sales	Monthly	Trend”
Chart	data	grid	control.

Figure	20.7	Chart	data	grid	control	Layout	properties.

Figure	20.8	Report	preview.

Figure	20.9	Data	properties	for	“Subcategory	Sales	Monthly	trend”	Chart	data
grid.

Figure	20.10	Phone	preview.

Figure	20.11	Shared	dataset	parameter	properties.

Figure	20.12	Completed	report	ready	for	deployment.

Figure	20.13	Chart	data	grid	Visual	properties.

Figure	20.14	Report	parameters	page.

Figure	20.15	Drillthrough	reports.

Figure	20.16	Simple	Order	Details	report.

Figure	20.17	Chart	data	grid	drillthrough	property.

Figure	20.18	Drillthrough	URL	options.

Figure	20.19	Mobile	and	paginated	report	drillthrough.

Figure	20.20	Example	reports	with	all	available	maps.

Figure	20.21	Example	world	countries	map

Chapter	21:	Content	Management

Figure	21.1	Web	portal	Favorites	view.

Figure	21.2	Web	portal	Browse	view.

Figure	21.3	View	and	Visibility	menu.

Figure	21.4	Data	source	properties	page.

Figure	21.5	Report	properties	pages	in	web	portal.

Figure	21.6	New	Linked	Report	page.

Figure	21.7	Schedules	page	in	Site	Settings.

Figure	21.8	Schedule	Properties	in	SSMS.

Figure	21.9	Security	page	in	Site	Settings.

Figure	21.10	Assigning	roles	to	a	user	or	group.

Figure	21.11	Role	permission	mapping	in	SSMS.

Figure	21.12	Confirm	breaking	security	inheritance.

Figure	21.13	Edit	Security	page.

Figure	21.14	Branding	package	file	contents.

Figure	21.15	Branding	page.

Figure	21.16	Brand	package	color	example	report.

Figure	21.17	Some	example	brand	elements.

Chapter	22:	Server	Administration

Figure	22.1	Configuration	Manager	Service	Account	page.

Figure	22.2	Report	Server	Database	Configuration	Wizard.

Figure	22.3	Configuration	Execution	Account	page.

Figure	22.4	SSMS	Report	Server	Roles.

Figure	22.5	Configuration	Manager	Database	page.

Figure	22.6	Configuration	Manager	Encryption	Keys	page.

Figure	22.7	Server	Properties	Logging	page.

Figure	22.8	Web	Service	URL	and	the	ReportServer	web	page.

Figure	22.9	Web	Portal	URL	page	and	the	web	portal

Figure	22.10	Server	Properties	dialog.

List	of	Tables
Chapter	1:	Introducing	Reporting	Services

Table	1.1	Report	Designer	and	Visualization	Options

Chapter	3:	Reporting	Services	Installation	and	Architecture

Table	3.1	Command-Line	Utilities

Table	3.2	Web	Service	Endpoints

Table	3.4	SSRS	configuration	files

Table	3.5	Included	SSRS	rendering	extensions

Table	3.6	ReportServer	database	tables

Table	3.7	ReportServerTempDB	database	tables

Chapter	6:	Grouping	and	Totals

Table	6.1	Expression	Placeholders

Chapter	7:	Advanced	Report	Design

Table	7.1	HTML	tags	supported	with	embedded	formatting

Table	7.2	Aggregate	functions	supported	in	report	expressions

Table	7.3	Special-use	dataset	row	functions

Table	7.4	Matrix	cell	field	mapping

Chapter	8:	Graphical	Report	Design

Table	8.1	Chart	Type	Categories

Chapter	12:	Expressions	and	Actions

Table	12.1	Visual	Basic	Functions	for	Report	Expressions

Chapter	14:	Report	Solutions,	Patterns,	and	Recipes

Table	14.1	Common	limitations	and	design	alternatives

Chapter	15:	Integrating	Reports	into	Custom	Applications

Table	15.1	SharePoint	“rv”	URL	Parameters

Table	15.2	Web	service	“rs”	URL	Parameters

Table	15.3	Command	Parameter	Values

Table	15.4	Rendering	Format	Parameters

Table	15.5	Report	Execution	Web	Service	Parameters

Chapter	16:	Extending	Reporting	Services

Table	16.1	Data	Processing	Extension	Objects

Table	16.2	Data	Processing	Extensions	Required	Interfaces

Table	16.3	Data	Processing	Extensions	Optional	Interfaces

Chapter	20:	Advanced	Mobile	Report	Solutions

Table	20.1	Data	Grid	Chart	Properties

Table	20.2	MapShapes	Table	Summary

Chapter	21:	Content	Management

Table	21.1	Home	Folder	Setting	Options

Table	21.2	Application	Downloads

Table	21.3	Email	Subscription	Delivery	Options

Table	21.4	Fixed	Role	Permissions

Table	21.5	Task-Level	Permissions

Table	21.6	User	Item-Level	Roles

Table	21.7	RS	Utility	Parameter	Switches

Chapter	22:	Server	Administration

Table	22.1	Service	and	Account	Types

Table	22.2	Databases	and	Roles

Table	22.3	System	Roles	and	Task	Permissions

Table	22.4	Configuration	Files

Table	22.5	Log	Configuration	Settings

Table	22.6	Trace	Log	Fields

Table	22.7	Reporting	Services	Performance	Counters

Table	22.8	Reporting	Services	Windows	Service	Counters

Table	22.9	Recommended	Windows	System	Counters

PROFESSIONAL
Microsoft®	SQL	Server®	2016
Reporting	Services	and
Mobile	Reports
	

Paul	Turley

	

	

	

	

	

INTRODUCTION
FOURTEEN	YEARS!	I	had	to	say	that	out	loud	just	to	make	sure	it	was	right…	yes;
fourteen	years.	That	is	how	long	it	has	been	since	I	began	using	Reporting	Services	to
create	reports	and	reporting	solutions.

Consulting	clients,	conference	attendees,	and	students	often	ask	which	of	all	the	BI	or
reporting	tools	they	should	use	for	their	business	reporting	needs.	I	have	used	several
other	Microsoft	products	including	SQL	Server,	Analysis	Services,	Integration
Services,	SharePoint,	Access,	Excel,	and	Power	BI,	but	Reporting	Services	is	the	tool	I
keep	coming	back	to	because	it	does	so	much.

My	peers	and	I	have	been	tracking	this	product	through	every	version	since	it	was
released	in	2003;	since	that	time,	we	have	produced	six	Wrox	Press	books	on
Reporting	Services.	I	have	worked	closely	with	the	Microsoft	product	team	leadership,
and	the	product	developers	who	continue	to	innovate	and	move	it	forward.	I	have
learned	to	use	SSRS	correctly,	and,	on	occasion,	incorrectly;	benefiting	from	some
tough	lessons	about	what	it	can	and	can't	do	along	the	way.	My	goal	is	to	share	this
experience	with	you,	in	addition	to	the	best	practices	we	have	developed	over	the
years.

WHO	THIS	BOOK	IS	FOR
This	book	is	written	to	meet	the	needs	of	a	broad	audience,	and	includes	specific
solutions	for	report	designers,	developers,	administrators,	and	business	professionals.
My	goal	for	this	book	is	to	be	a	comprehensive	guide	and	valuable	reference.	It	is
written	for	the	novice	report	designer	as	well	as	the	expert	interested	in	learning	to
use	advanced	functionality.

WHAT	THIS	BOOK	COVERS
This	book	is	divided	into	seven	parts.

Part	I:	Getting	Started
This	part	covers	what	Reporting	Services	is	and	how	it	is	used.	The	three	chapters	in
this	part	of	the	book	will	help	you	understand	the	capabilities	of	Reporting	Services
and	the	reporting	platform.	You	will	get	to	know	the	server	platform	and	the	report
design	tools	used	to	create	KPIs,	paginated	reports,	and	mobile	reports.	You	will	learn
what's	new	in	SQL	Server	2016	Reporting	Services.

Chapter	1	covers	Reporting	Services	use	cases,	using	and	creating	dashboards,
creating	reports,	and	building	integrated	applications.	We	discuss	how	to	choose	the
right	reporting	tool	based	on	the	business	need,	as	well	as	optimizing	report
performance.

Chapter	2	is	all	about	what	is	new	in	SSRS	2016.	You	learn	about	report	designer
enhancements,	modern	browser	rendering,	and	parameter	layout	management.	We
introduce	mobile	reports	and	KPIs,	new	printing	and	rendering	options,	the	new
report	web	portal,	and	Power	BI	dashboard	pinning	and	integration.

In	Chapter	3	you	learn	about	how	to	install	Reporting	Services	and	understand	the
server	architecture.	We	discuss	what	has	changed	in	the	SQL	Server	2016	architecture,
and	how	to	install	and	set	up	a	report	server.	You	will	understand	how	to	build	an
enterprise	report	server	deployment,	and	how	to	use	tools	to	manage	the	reporting
lifecycle	and	leverage	Reporting	Services	extensions.

Part	II:	Basic	Report	Design
These	chapters	include	hands-on	exercises	that	step	through	the	process	of	building
reports,	queries,	and	the	solutions	that	are	discussed	in	each	chapter.	Finished	copies
of	all	the	reports	and	exercises	are	provided	for	your	reference.	These	chapters	lead
you	through	the	building	blocks	that	are	fundamental	to	all	report	designs.	You	learn
the	mechanics	behind	data	regions,	groups,	report	items,	page	breaks,	tables,	matrices,
and	charts.

Chapter	4	covers	report	layout	and	formatting.	You	learn	to	use	datasets,	data
regions,	and	other	report	data	building	blocks.	You'll	design	report	layouts	using	tables
and	matrices,	and	set	grouping	and	formatting	properties	using	expressions.

Chapter	5	teaches	database	query	essentials.	You	learn	to	understand	relational
database	principles	and	concepts	and	data	source	management,	and	you	build	simple
and	complex	datasets	using	the	query	design	tools.	We	will	perform	query	authoring
using	the	Report	Builder	query	designer,	SSDT	report	designer,	and	SQL	Server
Management	Studio.	You	will	become	proficient	using	single-	and	multi-select
parameters	in	queries.

Chapter	6	introduces	SQL	Server	Data	Tools	for	Visual	Studio.	You	build	more
advanced	reports	in	your	chapter	exercises	using	the	graphical	query	designer	and
hand-written	queries	with	parameters	and	complex	query	logic.	You	will	understand
query	groups	in	table	joins	and	the	report	dataflow,	and	understand	report	groups	and
expressions	used	for	complex	grouping,	sorting,	and	visibility.

Part	III:	Advanced	and	Analytic	Reporting
These	chapters	deal	with	advanced	and	more	complex	reporting	scenarios.	You	build
on	your	grouping	and	expression	skills,	incorporating	more	advanced	queries	with
parameters,	expressions,	and	programming	logic.

Chapter	7	is	about	advanced	report	design.	You	will	manage	pagination	and	report
page	headers	and	footers.	You	will	use	conditional	logic	for	text	formatting	and	layout
properties,	embedded	HTML	text	and	styling,	master/detail	reports,	subreports,	and
document	maps.

In	Chapter	8,	you	learn	about	graphical	report	design	principles	and	standards.	We
review	both	standard	and	advanced	chart	types	and	design	approaches,	and	we	dive
deep	into	more	complex	charting	features,	creating	multi-series	and	multiple	area
charts.	Also,	you	learn	to	use	KPI	indicators,	sparklines,	and	data	bars.

Chapter	9	is	all	about	advanced	queries	and	parameters.	You	learn	more	about	T-SQL
queries	and	parameters,	and	MDX	queries	and	parameters.

In	Chapter	10	you	use	SQL	Server	Analysis	Services	as	a	data	source	for	reports
working	with	Multidimensional	Expressions	(MDX).	You	learn	to	build	queries	with
the	MDX	query	designer	and	learn	to	handwrite	MDX	with	parameters.

Chapter	11	is	a	complex	example	of	a	reporting	solution	that	leverages	the	power	of
the	MDX	language	and	Analysis	Services.	In	this	cube	browser	solution,	we	use
reports	to	enumerate	and	prompt	the	user	for	parameter	selections	and	then
dynamically	navigate	an	entire	cube	structure.	This	example	showcases	some	very
useful,	complex	report	navigation	and	design	techniques.

In	Chapter	12	you	learn	about	interactions	and	report	navigation.	We	revisit	the
expressions	used	to	implement	conditional	logic.	You	learn	to	use	common	functions
such	as	IIF	and	SWITCH	in	decision-based	expressions	and	custom	code,	and	you	learn
reporting	techniques	using	recursive	relationships	and	actions	to	navigate	between
reports.

Part	IV:	Solution	Patterns
If	you	use	Visual	Studio	with	integrated	version	control	and	work	with	teams	to	build
solutions,	this	part	of	the	book	is	for	you.	You	learn	to	manage	report	projects
alongside	other	report	and	solution	developers	using	formal	project	methodologies.

Chapter	13	is	about	report	projects	and	report	consolidation.	You	learn	to	apply	SSDT
solution	patterns,	understand	how	to	work	with	report	specifications	and

requirements,	and	work	within	project	development	phases.	You	will	create	report
templates	and	manage	reports	within	projects	and	solutions.	You	will	also	learn	to
plan	self-service	reporting	solutions	and	how	to	support	nontechnical	report	designers
who	use	Report	Builder	to	create	their	own	reports	within	a	managed	environment.

In	Chapter	14	you	learn	about	report	solutions,	patterns,	and	recipes.	You	will
combine	multiple	report	components	into	super	reports	and	business	dashboards.	You
will	design	a	KPI	scorecard,	an	interactive	sparkline	report	with	a	drill-through	chart,
and	a	map	report	with	drill-through	navigation.

Part	V:	Reporting	Services	Custom	Programming
In	this	part,	you	learn	how	to	integrate	Reporting	Services	into	custom	applications
and	to	use	reports	outside	of	the	web	portal	environment	using	URL	access	and	web
service	calls.

Chapter	15	is	about	integrating	reports	into	custom	applications.	You'll	use	URL
access	and	web	services	to	render	reports,	build	a	custom	Windows	form	or	web	form
application	to	enter	parameters,	and	render	reports	in	your	own	custom	interface.	You
will	see	how	to	create	a	custom-made	input	interface	for	Reporting	Services	reports.

In	Chapter	16	you	learn	to	extend	Reporting	Services	and	leverage	extensibility
options.	We	begin	by	discussing	the	reasons	for	extending	SQL	Server	Reporting
Services	and	creating	custom	extensions.	Often,	these	options	are	complex	and
specific	to	the	business	needs	outside	of	standard	reporting	scenarios.	You	will	learn
how	each	type	of	Reporting	Services	extension	can	be	used	to	provide	custom
rendering,	security,	data	access,	and	delivery	of	reports.

Part	VI:	Mobile	Report	Solutions
This	section	of	the	book	introduces	new	mobile	reporting	capabilities	introduced	in
SQL	Server	2016.	You	learn	to	use	Mobile	Report	Publisher	and	the	new	mobile
reporting	platform	to	deliver	reports	specifically	designed	for	tablets,	smart	phones,
and	other	mobile	devices.	We	start	with	basic	mobile	report	design	approaches	and
techniques.	You	will	learn	to	use	each	of	the	visual	controls,	navigators	and	selectors,
report	navigation,	and	styling	options.

Chapter	17	introduces	Reporting	Services	Mobile	Reports.	You'll	learn	to	use	the
Mobile	Report	Publisher	to	consume	shared	datasets	and	deliver	interactive
information	for	a	mobile	device.	You'll	also	learn	the	basic	building	blocks	and	how
the	components	within	each	of	the	visual	control	categories	are	used	for	navigation
and	visualization.

In	Chapter	18	you	implement	a	mobile	report	using	design-first	development.	Using
the	designer	to	add	visual	controls	to	your	mobile	report,	simulated	data	is
automatically	generated	to	demonstrate	visual	control	interactivity	and	report
navigation.	You	will	learn	techniques	for	fast	prototyping	and	effective	user
requirement	gathering	sessions.	You	will	learn	to	use	Time	navigators,	selectors,

number	gauges,	and	charts.	You	will	apply	layouts	for	different	device	types	and	color
styling,	and	then	deploy	and	test	a	complete	mobile	report.

Chapter	19	introduces	mobile	report	design	patterns	for	advanced	reporting
scenarios.	You	will	use	controls	to	create	mobile	reports	for	time-series,	segmentation,
performance,	and	geographic	visualization	and	interaction.	You	will	configure	server
access	and	publish	reports	that	may	be	used	from	the	web	and	on	different	mobile
devices.

Chapter	20	covers	Advanced	Mobile	Report	solutions.	We	introduce	the	chart	data
grid	visual	control,	and	learn	to	correlate	multiple	datasets	in	the	control.	You	learn	to
use	dataset	and	query	parameters	in	mobile	reports,	drill-through	to	a	mobile	report
with	dataset	parameters,	and	drill-through	to	a	paginated	report	with	dataset
parameters.	Additionally,	you	learn	to	use	map	visuals,	add	custom	maps,	and	manage
map	shapes	for	geographic	reporting.

Part	VII:	Administering	Reporting	Services
These	chapters	will	help	you	manage	content	and	perform	server	administration,
configuration,	troubleshooting,	and	maintenance.

Chapter	21	is	all	about	report	server	content	management.	You	learn	to	use	the	web
portal	as	an	administration	tool	where	you	will	perform	content	management
activities,	which	include	 security	administration,	as	well	as	data	source,	shared
dataset,	and	report	optimization.	You	learn	to	manage	and	enforce	security	access	to
folders	and	reports	for	groups	and	individual	users.

In	Chapter	22	you	learn	about	account	management	and	system-level	rules,
implement	surface	area	management,	plan	for	backup	in	disaster	recovery,	manage
application	databases,	manage	encryption	keys,	and	learn	to	use	configuration	files.
You	learn	to	perform	auditing	and	logging	of	the	report	server;	and	use	performance
counters	and	server	management	reports.	You	also	learn	proper	memory	and	resource
management	for	your	report	servers,	and	configure	URL	reservations,	administer	e-
mail	delivery,	and	manage	custom	extensions	on	servers.

WHAT	YOU	NEED	TO	USE	THIS	BOOK
The	hardware	and	software	requirements	for	designing	and	running	SQL	Server	2016
and	Reporting	Services	are	such	that	they	will	run	on	newest	business	grade
computers.	Custom	programming	examples	require	that	you	install	any	edition	of
Visual	Studio	2015	or	newer.	The	requirements	for	SQL	Server	2016	specified	by
Microsoft	may	be	found	online	in	the	MSDN	library	located	at:
http://msdn.microsoft.com/en-us/library/ms143506.aspx.

The	Developer	Edition	of	SQL	Server	2016	is	available	for	free	with	a	Visual	Studio
Dev	Essentials	account,	available	at:	www.visualstudio.com/dev-essentials.	You
can	also	download	SQL	Server	2016	Developer	or	Enterprise	Edition,	and	Visual
Studio	if	you	have	an	MSDN	subscription.

Report	design	examples	that	use	paginated	Reporting	Services	reports	will	work
with	any	edition	of	SQL	Server	2016	and	will	run	on	a	computer	meeting	the
minimum	computer	requirements.	Mobile	Reports	and	KPIs	require	SQL	Server
2016	Developer	or	Enterprise	Edition.

Chapters	9,	10,	and	11	require	an	installation	of	SQL	Server	Analysis	Services	in
multidimensional	storage	mode.	This	is	an	optional	part	of	the	SQL	Server	setup.

Examples	of	custom	programming	performed	outside	of	the	report	designer	will
require	a	separate	installation	of	Visual	Studio	2015	or	later.	This	includes	the
material	in	Chapters	15	and	16.

The	sample	databases	used	in	the	examples	and	exercises	are	available	to
download	from	www.wrox.com	along	with	the	sample	projects	for	this	book.
Additional	resources	may	be	available.

The	complete	source	code	for	the	samples	is	available	for	download	from	this
book's	web	site	at	www.wrox.com.	For	programming	examples,	versions	are	available
in	both	Visual	Basic	.NET	and	C#.

http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://www.visualstudio.com/dev-essentials
http://www.wrox.com
http://www.wrox.com

CONVENTIONS
To	help	you	get	the	most	from	the	text	and	keep	track	of	what's	happening,	we've	used
a	number	of	conventions	throughout	the	book.

WARNING

Boxes	like	this	one	hold	important,	not-to-be-forgotten	information	that	is
directly	relevant	to	the	surrounding	text.

NOTE

Notes,	tips,	hints,	tricks,	and	asides	to	the	current	discussion	are	offset	and
placed	in	italics	like	this.

As	for	styles	in	the	text:

We	italicize	new	terms	and	important	words	when	we	introduce	them.

We	show	keyboard	strokes	like	this:	Ctrl+A.

We	show	file	names,	URLs,	and	code	within	the	text	like	so:
persistence.properties.

For	code:

We	use	a	monofont	type	for	code	examples.

We	use	bold	to	emphasize	code	that	is	of	particular	importance	in

the	current	context.

SAMPLE	REPORTS	AND	PROJECTS
Sample	reports,	Visual	Studio	projects,	and	completed	copies	of	all	the	report	files
produced	by	following	the	chapter	exercises	are	provided	in	the	files	that	accompany
the	book.	All	of	the	samples	and	completed	exercise	files	are	available	for	download	at
www.wrox.com.	Once	at	the	site,	search	for	this	book's	ISBN	(978-1-119-25835-3),	then
simply	click	the	Download	Code	link	on	the	book's	detail	page	to	obtain	all	the	sample
files	for	the	book.

Once	you	download	the	file	archive,	just	extract	it	with	Windows	File	Manager	or	your
favorite	compression	tool.

http://www.wrox.com

NOTE

You	can	go	to	the	main	Wrox	code	download	page	at
http://www.wrox.com/dynamic/books/download.aspx	to	see	the	code	available	for
all	Wrox	books.

http://www.wrox.com/dynamic/books/download.aspx

ERRATA
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.
However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of	our
books,	such	as	a	spelling	mistake	or	a	faulty	piece	of	code,	we	would	be	very	grateful
for	your	feedback.	By	sending	in	errata,	you	may	save	another	reader	hours	of
frustration	and	at	the	same	time	you	will	be	helping	us	provide	even	higher	quality
information.

To	find	the	errata	page	for	this	book,	go	to	http://www.wrox.com	and	locate	the	title
using	the	Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click	the
Book	Errata	link.	On	this	page	you	can	view	all	errata	that	have	been	submitted	for
this	book	and	posted	by	Wrox	editors.	A	complete	book	list	including	links	to	each
book's	errata	is	also	available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don't	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us	the
error	you	have	found.	We'll	check	the	information	and,	if	appropriate,	post	a	message
to	the	book's	errata	page	and	fix	the	problem	in	subsequent	editions	of	the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

P2P.WROX.COM
For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums	are
a	web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and	related
technologies	and	interact	with	other	readers	and	technology	users.	The	forums	offer	a
subscription	feature	to	e-mail	you	topics	of	interest	of	your	choosing	when	new	posts
are	made	to	the	forums.	Wrox	authors,	editors,	other	industry	experts,	and	your	fellow
readers	are	present	on	these	forums.

At	http://p2p.wrox.com	you	will	find	a	number	of	different	forums	that	will	help	you
not	only	as	you	read	this	book,	but	also	as	you	develop	your	own	applications.	To	join
the	forums,	just	follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join	as	well	as	any	optional	information	you
wish	to	provide	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your	account
and	complete	the	joining	process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

NOTE

You	can	read	messages	in	the	forums	without	joining	P2P	but	in	order	to	post
your	own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users	post.
You	can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new
messages	from	a	particular	forum	e-mailed	to	you,	click	the	Subscribe	to	This	Forum
icon	by	the	forum	name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs
for	answers	to	questions	about	how	the	forum	software	works	as	well	as	many
common	questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	the	FAQ
link	on	any	P2P	page.

PART	I
Getting	Started
What	exactly	is	SQL	Server	Reporting	Services?	How	is	it	used	and	what	are	its
capabilities	and	boundaries?	Is	it	a	product,	a	part	of	SQL	Server,	or	a	development
platform?	The	three	chapters	in	Part	1	will	get	you	started	with	understanding	the
capabilities	of	Reporting	Services	at	a	high	level.	You	will	become	acquainted	with	the
entire	SSRS	platform,	the	 components	it	encompasses,	and	their	capabilities.

You'll	learn	about	the	new	features	introduced	in	SQL	Server	2016:	the	new	web
portal,	key	performance	indicators,	and	mobile	reports.	Chapter	2	introduces	several
key	integrations	with	the	Microsoft	business	analytics	platform	and	advanced
visualizations.	You'll	also	see	how	to	install	and	configure	Reporting	Services	tools
and	the	server	so	you	can	get	up	and	running.

CHAPTER	1:	Introducing	Reporting	Services

CHAPTER	2:	What's	New	in	SQL	Server	2016	Reporting	Services

CHAPTER	3:	Reporting	Services	Installation	and	Architecture

Chapter	1
Introducing	Reporting	Services

WHAT'S	IN	THIS	CHAPTER?

Identifying	who	uses	Reporting	Services

Using	dashboards,	reports,	and	applications

Understanding	application	integration

Using	Business	Intelligence	(BI)	reporting

Using	mobile	reports	and	KPIs

Choosing	a	report	tool

Optimizing	report	performance

Welcome	to	SQL	Server	2016	Reporting	Services.	This	chapter	provides	an	overview
that	includes	a	high-level	introduction	featuring	not	only	concepts	and	capabilities	of
this	powerful	reporting	tool,	but	also	of	the	Microsoft	data	analysis	platform.
Reporting	Services	embodies	a	rich	history	as	a	rock-solid	reporting	tool.	Although
many	features	have	been	part	of	the	product	for	more	than	12	years,	some	features	are
new,	have	changed,	or	were	introduced	in	later	versions.

This	is	the	fifth	edition	of	this	book.	Reporting	Services	was	officially	released	in	early
2004.	Since	that	time,	I	gained	assistance	from	trusted	and	experienced	colleagues
who	contributed	to	previous	book	editions,	and	this	edition	draws	upon	that
foundation	of	expertise.	In	areas	where	the	product	has	matured	and	evolved	forward,
I	share	advanced	capabilities	and	patterns	for	solving	new	business	problems.	The
book	includes	material	and	techniques	using	the	new	or	existing	features	more
effectively.

As	a	Microsoft	Data	Platform	MVP,	a	specialist,	and	a	respected	contractor	for
Microsoft,	I	spend	considerable	time	working	with	different	organizations	to	design
reporting	solutions.	For	many	years,	I	frequently	have	had	the	opportunity	to	work
alongside	the	Reporting	Services	product	team.	Through	leadership	changes,	product
development	cycles,	and	industry	trends,	the	development	team	has	maintained	a
relevant	and	durable	reporting	product	that	focuses	on	the	needs	of	the	modern
business.	As	you	continue	to	read,	you	will	learn	to	appreciate	the	depth	of	this
product.

In	2003,	a	few	months	before	the	product	was	released,	I	started	using	pre-release
versions	of	Reporting	Services.	At	the	time,	I	was	doing	web	development	and
database	work,	and	found	Reporting	Services	to	be	a	perfect	fit	for	the	reports	I
needed	to	add	to	a	web	application.	Since	then,	SQL	Server	Reporting	Services	(SSRS)
has	grown	to	become	the	de	facto	industry	standard	reporting	tool.	SSRS	provides	a
foundation	upon	which	you	can	construct	complete	report,	scorecard,	dashboard,	and

mobile	solutions	for	business	users.	Today,	it	does	everything	from	simple	ad	hoc	data
reporting	to	delivering	enterprise-ready,	integrated	reporting	into	business	portals	and
custom	applications.	In	2016,	the	product	expanded	beyond	classic	“paginated	reports”
to	add	mobile	reporting,	key	performance	indicators	(KPIs),	and	integration	with
cloud-based	and	on-premises	dashboard	and	self-service	analytic	tools.

The	information	technology	(IT)	group	for	a	large	financial	services	company	wanted
to	make	sure	that	they	were	using	the	best	reporting	tool	on	the	market.	My	team	was
assigned	to	evaluate	every	major	reporting	product	and	give	them	an	unbiased
analysis.	We	worked	with	the	client	to	identify	about	50	points	of	evaluation	criteria.
Then	I	contacted	the	major	vendors,	installed	evaluation	copies,	explored	features,
and	spoke	with	other	customers	and	with	those	who	specialized	in	using	these	various
products.	It	really	helped	the	team	see	the	industry	from	a	broad	perspective,	and
resulted	in	a	valuable	learning	experience.	There	are	some	respectable	products	on	the
market,	and	all	have	their	strengths,	but	I	can	honestly	say	that	Microsoft	has	a
unique	and	special	platform.

WHO	USES	REPORTING	SERVICES?
The	various	titles	given	to	someone	who	creates	reports	in	different	organizations	is
an	interesting	topic.	An	observation	I	have	made	over	the	years	and	in	different	work
environments	is	the	perception	of	this	role.	In	some	places,	people	who	write	reports
are	called	report	developers.	In	some	environments,	application	developers	assign	the
name	report	users	to	people	creating	reports.

Business	users	fit	into	a	few	categories	when	you	consider	how	they	use	reports.	Some
are	report	consumers	only.	They're	content	to	use	reports	that	have	been	written	and
published	for	them.	Others	prefer	to	create	their	own	reports	without	becoming	mired
in	the	intricacies	of	programming	code	and	complex	database	queries.	Maybe	they	just
want	to	browse	information	to	look	for	trends	and	to	understand	how	the	business	is
measuring	up	against	their	goals.	In	recent	years,	a	new	generation	of	data	consumers
has	changed	the	landscape	of	self-service	reporting	and	business	data	analytics.	These
are	the	data	scientists	and	the	data	analysts	who	collect,	wrangle,	sculpt,	model,	and
explore	data	using	analytic	reporting	tools	like	Power	BI	and	advanced	add-ins	for
Excel.

Traditional	roles	have	changed.	New	reporting	and	analytic	tools	have	matured	to
accommodate	the	business	climate.	Not	long	ago,	a	typical	IT	group	at	most	large
organizations	had	three	common	roles:	system	administrators,	application	developers,
and	project	managers.	Where	does	the	report	designer	fit	in	the	organization?	People
who	design	business	reports	often	don't	come	from	a	common	pool	of	IT
professionals.	In	fact,	many	people	who	spend	the	majority	of	their	time	creating
reports	are	part	of	the	business	community	and	are	not	hard-core	computer	geeks.

If	you're	a	business-type	person,	you	probably	don't	care	about	integrating	your
reports	into	custom	applications	and	websites,	or	about	writing	complex	programming
logic.	Some	of	us	live	for	that.	What	you	may	care	about	is	giving	your	savvy	business
users	the	capability	to	easily	visualize	important	key	metrics	to	see	what	products	are
performing	well	in	their	sales	territories.	Maybe	you	want	to	enable	business	leaders
to	access	important	metrics	and	performance	indicators	on	mobile	devices.

Over	the	years,	I've	taken	inventory	of	the	people	who	consider	themselves	report
designers.	They	generally	fall	into	one	of	two	camps:	business-focused	or	technology-
focused.	There	has	been	a	significant	shift	toward	more	accessible	reporting	tools	for
those	who	have	less	technical	roles	in	their	organization.	The	following	roles
represent	the	majority	and	describe	some	of	the	trends	noted	as	the	industry
continues	to	change.

Information	Workers	and	Data	Analysts
People	in	this	role	have	strong	computer	skills,	but	do	not	spend	their	time	writing
code	and	using	programming	tools.	Their	primary	interest	is	exploring	information
and	finding	answers,	rather	than	designing	complex	reports.	If	you're	an	information

worker	(IW),	you	need	easy-to-use	tools	to	browse	data	and	create	simple	reports
quickly,	and	with	less	technical	expertise.	IWs	typically	create	a	report	to	answer	a
specific	question	or	address	a	particular	need,	and	then	they	may	discard	the	report	or
save	it	to	a	personal	area	for	reuse.	They	tend	to	create	a	separate	report	for	each	task,
and	may	or	may	not	share	these	reports	with	others	who	have	similar	needs.	This	is	by
far	the	fastest-growing	group	of	report	tool	users	in	the	industry.

A	rapidly	growing	subset	of	the	IW	community	is	the	self-service	analyst.	This
persona	not	only	has	an	aptitude	for	working	with	data	and	analytic	tools,	but	also
understands	a	particular	field	of	business	and	what	the	data	means	in	business	terms.
This	subset	may	have	specialized	skills	in	a	discipline	of	science	or	statistics.	Data
analysts	usually	have	a	mind	for	numbers	and	perhaps	an	artistic	propensity	for
graphical	presentation	and	storytelling	with	data.

An	interesting	transition	has	occurred	in	more	progressive	business	environments,
but	has	not	yet	happened	in	more	traditional	places.	Whereas	Excel	has	long	been	the
primary	data	analysis	tool,	forward-thinking	business	data	analysts	are	adopting	tools
like	Power	Pivot,	Power	BI,	and	Tableau	Desktop	to	curate,	deeply	analyze,	and
visualize	data	to	dredge	out	insights	and	valuable	opportunities	in	order	to	take	action.
The	only	thing	they	need	from	IT	is	to	give	them	access	to	reliable	data	so	they	can
analyze	it	themselves.	This	new	generation	of	analysts	insists	that	they	have	access	to
data	and	permission	to	use	their	own	tools	to	manage	their	areas	of	the	business.	The
former	generation	of	leadership	insists	that	the	IT	and	report	“developers”	export	their
spreadsheet-like	reports	into	Excel	so	that	the	data	can	be	manipulated	and
spreadsheet	functions	(full	of	calculation	formulas	that	reference	worksheets,	and
that	do	more	calculations)	can	be	performed	to	make	it	all	line	up	and	balance.

Spreadsheets	and	spreadsheet-style	reports	are	the	heart	and	soul	of	many	financial
organizations	for	good	reason.	However,	some	people	experience	a	world	outside	the
traditional,	two-dimensional	view,	and	break	the	routine	to	see	things	a	different	way.

Report	Builder	was	designed	for	advanced	report	users	and	business-centric	report
designers.	The	capabilities	are	nearly	identical	to	SQL	Server	Data	Tools	(SSDT)	for
Visual	Studio,	but	it	is	simple	and	streamlined	for	the	advanced	user,	rather	than	the
developer.

Information	Consumers
In	the	traditional	user	role	of	a	user	who	runs	or	receives	reports	(perhaps	through	a
portal	or	by	e-mail),	information	consumers	simply	view	information.	Individuals
within	this	group	may	be	occasional	report	users	and	business	workers,	or	consumers
who	use	reports	to	perform	a	specific	task,	rather	than	interacting	with	data.

This	role	will	always	exist.	But	just	as	people	are	becoming	more	experienced	and
proficient	with	analytic	tools,	many	consumers	are	also	becoming	occasional	IWs	and
business	data	analysts.

TIP

A	common	temptation	for	the	experienced	report	developer	(present	company
included)	is	to	try	to	convince	users	that	they	need	advanced	report	features.	Be
cautious	about	selling	users	on	“cool”	tricks	and	capabilities	they	may	not	need
in	their	reports.

In	light	of	many	different	reporting	scenarios,	it	is	important	to	acknowledge	and
serve	the	needs	of	users	who	simply	need	to	run	or	print	reports.	Making	that
experience	as	convenient	and	trouble-free	as	possible	can	make	a	huge	impact	on
streamlining	a	business.

Business	Managers	and	Leaders
If	you	are	a	business	manager,	you	are	interested	primarily	in	your	own	domain	of	the
business.	Managers	need	reports	to	support	specific	processes,	to	address	their
analytical	needs,	and	to	help	them	make	informed	decisions.	Like	IWs,	they	have	little
interest	in	the	implementation	details	or	technology	used	to	make	it	work.	As	IWs,
managers	may	create	their	own	reports	to	analyze	the	productivity	of	their	team	or
area	of	responsibility.

Managers	tend	to	view	reporting	from	one	of	two	different	perspectives:

They	may	need	(or	prefer	to	use)	operational	reports	prepared	for	them	that	they
can	simply	run	and	view	results	in	a	static,	predictable	format.

They	may	extract	data	to	a	format	suitable	for	analysis	and	manipulation	(such	as
into	an	Excel	workbook,	or	a	tool	they	can	use	to	further	analyze	and	visualize
results).

Mobile	reporting	solutions	enable	line	managers,	traveling	business	leaders,	and	IWs
to	access	information	on	touch-optimized	mobile	devices.	These	reports	are	best
suited	for	scenarios	with	key	metrics	and	aggregated	results,	rather	than	multi-page,
detail	reports.

Software	Developers
To	achieve	advanced	reporting	features,	software	developers	write	queries	and	custom
programming	code	to	process	business	rules	and	give	reports	conditional	formatting
and	behavior.	Developers	typically	feel	right	at	home	with	the	report	design
environment	because	it	is	similar	to	familiar	programming	tools.	However,	report
design	is	not	the	same	as	application	development.	Designing	a	report	can	be	faster
and	easier	in	some	ways	than	developing	software.	Advanced	report	design	can	involve
writing	code	and	even	developing	custom	components.	Reporting	Services	offers
several	opportunities	to	integrate	reports	into	custom-developed	software	solutions.

Developers	and	serious	report	designers	will	typically	prefer	to	use	developer-centric
tools	for	report	design	such	as	SSDT	for	Visual	Studio.

System	Administrators
If	you	are	a	system	administrator,	you	are	typically	concerned	with	the	setup	and
ongoing	maintenance	of	servers	and	the	infrastructure	to	keep	reporting	solutions
available	and	working.	Administrators	typically	spend	their	time	and	energy	managing
security	and	optimizing	the	system	for	efficiency.	Reporting	Services	has	an
administrative	component	that	is	especially	important	in	large-scale	implementations.

In	smaller	organizations,	the	same	person	may	play	the	role	of	system	administrator,
developer,	and	report	designer.	Reports	can	be	created	to	help	monitor	system	usage
and	maintenance	statistics	to	make	a	system	administrator's	job	easier.

DASHBOARDS,	REPORTS,	AND	APPLICATIONS
What	exactly	is	the	difference	between	a	report,	a	dashboard,	and	a	scorecard?	It
depends	on	a	few	factors,	but	there	is	some	overlap	between	these	concepts.

Quite	a	few	years	ago,	a	shift	developed	from	client-based	processing	toward
applications	that	ran	on	servers.	Web	technologies	have	proven	to	be	an	effective	way
to	make	systems	available	to	a	large	number	of	people.	Like	a	web	application,
browser-based	reports	do	not	always	offer	the	same	tactile	and	responsive	user
experience	as	a	client	application.	Now,	with	the	advent	of	smart	mobile	devices	and
applications,	the	climate	has	shifted	once	again	from	client,	to	server,	and	then	to	a
balance	of	client/server	technologies	that	support	both	connected	and	disconnected
user	experiences.

When	Reporting	Services	was	first	released,	it	was	available	only	as	a	server-based
solution,	with	reports	delivered	almost	exclusively	through	the	web	browser—and	this
is	primarily	how	SSRS	reports	are	used	today.	However,	the	capabilities	do	not	stop
there.	Reporting	Services	lets	you	run	reports	in	a	variety	of	modes	and	applications.	If
we	have	learned	anything	from	decades	of	computer	system	evolution,	it	is	that
centralized	server-based	solutions	and	client-side	applications	each	offer	unique
advantages	and	trade-offs	in	terms	of	features,	capabilities,	interactive	user
experience,	and	scalability.	Having	the	capability	to	operate	in	a	disconnected	mode
offers	tremendous	advantages	over	purely	server-side,	connected	systems.

Application	Integration
You	can	integrate	reports	into	applications	in	such	a	way	that	users	may	not	be	able	to
tell	the	difference	between	the	report	content	and	the	application	interface.	With	a
little	bit	of	programming	code,	reporting	features	can	be	extended	to	look	and	act
much	like	applications.	Many	intranet	sites	run	on	web	portals,	rather	than	custom-
programmed	websites,	and	Reporting	Services	naturally	plays	well	in	practically	any
web	portal	environment.

If	you	are	a	report	designer	with	simple	needs,	the	good	news	is	that	using	Reporting
Services	to	design	simple	reports	is,	well,	simple.	If	you	are	a	software	developer	and
you	intend	to	use	this	powerful	framework	to	explore	the	vast	reaches	of	this
impressive	technology,	welcome	to	the	wonderful	world	of	creative	custom	reporting.

After	years	of	experience	with	this	product,	I	have	learned	an	important	lesson	on	this
topic.	They	say	that	to	a	hammer,	everything	looks	like	a	nail.	Likewise,	to	a
programmer,	a	lot	of	challenges	may	look	like	an	opportunity	to	write	program	code.
That	may	be	the	right	solution	under	certain	conditions.	But	often,	the	most	effective
solution	is	to	simply	use	a	feature	already	baked	into	the	product—and	implement
that	feature	as	it	was	designed	to	work.	I	often	have	this	conversation	with
programmers	after	they	have	spent	hours	writing	a	complicated	solution	to	a	simple
problem.

Not	to	single	out	the	programmers	(who	are	generally	a	pretty	smart	bunch),	the	same
concept	applies	to	practitioners	of	any	single	discipline.	The	point	is	that	different
tools	and	technologies	solve	different	problems,	and	sometimes	it's	important	to	look
outside	of	one's	discipline	to	gain	a	fresh	perspective	and	ensure	that	you're	using	the
right	tool	for	the	job.

User	Interaction
Hyperlinks	and	application	shortcuts	can	easily	be	added	to	documents	and	custom
applications.	Much	of	the	standard	report-viewing	environment	may	be	controlled
using	parameters	passed	to	the	report	in	the	URL.	Reports	may	be	designed	to	prompt
users	for	parameter	values	used	to	filter	data	and	to	modify	the	report	format	and
output.	Report	elements	such	as	text	labels,	column	headers,	and	chart	data	points	can
be	used	to	navigate	to	different	report	sections	and	new	reports.	Because	navigation
links	may	be	data-driven	and	dynamically	created	based	on	program	logic,	report	links
may	also	be	used	to	navigate	into	business	applications.

Rather	than	cramming	all	the	details	into	one	report,	a	summary	report	or	dashboard
presents	high-level	information	and	key	metrics.	As	shown	in	Figure	1.1,	users	can
click	a	chart	or	summary	value	to	navigate	to	a	detail	report	in	the	context	of	the
selected	item,	revealing	more	details	and	relevant	facts.	Using	report	navigation
actions,	drill-down,	and	other	interactive	features,	reports	may	be	orchestrated	into
complete	solutions	that	enable	a	data	exploration	experience.

Figure	1.1	Using	navigation	links.

Techniques	can	be	used	to	incorporate	reports	into	a	web	application	in	a	variety	of
ways:

Hyperlinking	to	navigate	the	web	browser	window	to	a	report

Hyperlinking	to	open	reports	in	a	separate	web	browser	window,	with	control	over
report	display	and	browser	features

Embedding	reports	into	a	page	using	a	frame,	inline	frame	(<iframe>	tag),	or
ReportViewer	web	control

Programmatically	writing	reports	to	files	available	for	download	from	a	website

Using	a	web	part	to	embed	reports	into	a	SharePoint	Web	portal

Fully	integrating	the	report	server	in	SharePoint	Integration	mode

NOTE

When	compared	with	custom-developed	solutions,	Reporting	Services	provides
useful	functionality	and	business	value	for	relatively	little	investment.	Be
mindful	that	Reporting	Services	provides	the	means	to	extend	its	capabilities
through	custom	programming,	but	the	cost	(in	terms	of	time	and	effort)	may	be
considerably	higher,	and,	in	some	cases,	may	be	more	restrictive	than	using
custom	programming	components.

Numerous	creative	ways	exist	to	integrate	reports	into	a	web	or	desktop	application.
These	techniques	range	from	simple	(for	example,	requiring	a	little	HTML	script)	to
complex,	custom	methods.	And,	if	it	is	not	enough	to	be	able	to	embed	reports	into
custom	web	pages,	it	is	possible	to	use	custom	program	code	to	embed	additional
content	into	reports.

The	Reporting	Services	ReportViewer	control	can	be	used	to	view	server-based	reports
in	a	form.	These	reports	are	managed	on	the	report	server	and	maintain	all	the
security	settings	and	 configuration	options	defined	by	an	administrator.	Queries	and
data	access	are	still	performed	on	the	server.	The	other	option	is	to	embed	these
reports	directly	into	the	client-side	application.	The	Windows	Forms	ReportViewer
controls	can	act	as	a	lightweight	report-rendering	engine,	meaning	that	reports	built
into	a	custom	application	can	run	independently	from	the	report	server.

SharePoint	Integration
Reporting	Services	has	native	integration	with	Microsoft	SharePoint	Server	and	it
works	quite	well.	SharePoint	is	an	abundant	platform	for	document	collaboration,	as
well	as	for	managing	document	workflows	and	approval	processes.	At	the	same	time,
it	is	complex	to	administer	and	manage.

I	have	learned	some	valuable	lessons	about	using	Reporting	Services	with	SharePoint.
If	you	had	asked	me	eight	years	ago	about	whether	to	include	SharePoint	in	your
reporting	and	business	intelligence	(BI)	platform,	I	would	have	likely	echoed
Microsoft's	recommendation	to	use	SharePoint	as	the	backbone	for	most	solutions.
Today,	I	am	more	cautious	with	my	recommendations	and	ask	more	questions.
SharePoint	can	be	expensive,	as	well	as	complicated	to	set	up	and	support.	It	adds
processing	overhead,	which	can	affect	performance	and	hardware	requirements.

If	your	organization	has	invested	in	SharePoint	on-premises	and	you	are	enjoying
business	value	from	the	many	services	and	capabilities	that	the	platform	offers,
adding	Reporting	Services	may	be	a	natural	fit	for	you.	I	have	worked	with	several
large	organizations	to	fold	SSRS,	along	with	SQL	Server	Analysis	Services	(SSAS),
Power	Pivot,	and	Office	into	their	SharePoint	platform	to	build	integrated	business
reporting	and	analytic	solutions	with	great	benefit.

Business	Intelligence	and	Analytics	Solutions
Once	upon	a	time,	reports	were	little	more	than	transaction	records	printed	on	paper,
also	called	ledgers,	journals,	and	lists.	As	the	need	for	more	useful	information	arose,
so	did	the	sophistication	of	reporting.	Today,	reports	serve	as	more	than	a	method	to
dump	data	records	to	the	printed	page.	Users	need	to	gain	insight	and	knowledge
about	their	business.	Dynamic	reports	allow	users	to	interact	and	investigate	trends	in
their	business	environments,	rather	than	just	view	static	transaction	lists.	It	is
important	to	realize	that,	as	the	sophistication	of	the	business	user	grows,	the
complexity	of	the	data	and	the	reporting	medium	also	increases.	Sophisticated
analytics	uses	a	historical	perspective	to	look	into	the	future.	Using	accurate	and
reliable	data	from	the	past	and	present,	as	well	as	appropriate	reporting	models,
allows	analysts	to	forecast	and	predict	trends	and	future	activities.

A	BI	solution	is	the	foundation	upon	which	a	capable	business	reporting	platform	can
be	constructed.	Depending	on	your	needs	and	business	environment,	this	may	simply
entail	designing	a	new	database.	Just	because	you	need	to	analyze	business	data
doesn't	necessarily	mean	that	you	need	to	build	a	full-scale	BI	solution.	However,	if
you	need	to	aggregate	large	volumes	of	data	to	analyze	business	performance	with	key
metrics	and	trends,	relational	databases	designed	for	transaction	processing	may	not
effectively	serve	this	purpose.	Understanding	these	core	concepts	and	investing	in	BI
before	report	design	will	often	reduce	costs	and	enable	you	to	create	an	enduring
reporting	platform	for	your	business	users	and	leaders.	Most	BI	solutions	integrate
data	from	multiple	sources	to	measure	business	success	and	trends.	Consequently,
this	often	requires	a	data	warehouse,	data	mart,	and/or	semantic	data	model,	as	well
as	data	extract,	transform,	and	load	(ETL)	processes.	Recent	enhancements	to	the	SQL
Server	database	engine	(such	as	in-memory	column	store	indexes)	may	improve
performance	without	radical	database	redesign.

Using	modern	analytic	modeling	tools,	smaller-scale	BI	solutions	can	be	created	with
a	comparatively	moderate	investment.	Complex	analysis	solutions	often	require
tabular	or	multidimensional	data	structures	created	with	SSAS.	Microsoft	developed
the	SSAS	multidimensional	database	technology,	often	called	online	analytical
processing	(OLAP).	This	uses	cubes	and	dimensions	storing	data	in	a	pre-grouped	and
pre-aggregated	format	on	disk.	The	data	is	quickly	available	for	reporting	and
browsing.

In	SQL	Server	2012,	Microsoft	released	a	“tabular,”	in-memory	implementation	of
Analysis	Services	that	has	matured	significantly	in	2016.	Tabular	and
multidimensional	semantic	models	each	offer	unique	strengths	for	efficient	analytic
reporting.	In	many	cases,	tabular	models	are	easier	to	design,	more	efficient,	and
faster	for	reporting	and	analysis.	But	multidimensional	SSAS	includes	complex	and
mature	features.	Both	flavors	of	Analysis	Services	can	be	queried	from	SSRS	reports
using	the	MDX	query	language.

Past	editions	of	Microsoft	platform	tools	required	an	investment	in	SharePoint	Server
to	fully	implement	BI	solutions.	SharePoint	(either	online	or	on-premises)	still	serves

an	important	purpose	today,	but	it	is	not	a	requirement	to	do	BI	right.

To	say	that	the	scope	of	a	reporting	or	BI	solution	is	relative	to	the	size	of	a	business
would	be	a	gross	generalization.	In	some	cases,	small	businesses	manage	large	data
volumes,	and	sometimes	big	organizations	have	simple	needs.	The	point	is	that	as
your	data	grows,	so	does	the	need	to	store,	manage,	and	analyze	it	in	the	best	way.

A	BI	solution	enables	business	leaders	to	use	the	right	tools	to	proactively	make
informed	decisions	about	their	business.	Sophisticated	reporting	and	analytics	allow
IWs	and	leaders	to	look	beyond	the	history	of	their	business	data.	By	examining	the
past	and	present,	you	can	spot	trends	and	patterns.	You	can	use	reliable	business
analytics	to	forecast	future	trends,	to	plan	for	improved	business	processes,	and	make
informed	decisions.

Yesterday's	static	reporting	applications	have	given	way	to	BI	solutions.	BI	is	more
than	the	capability	to	“go	get”	data.	It	involves	mechanisms	that	put	high-level
intelligence	in	front	of	leaders	in	the	form	of	self-service	report	tools,	dashboards,	and
business	scorecards.	It	proactively	alerts	users	when	important	events	occur	and	when
thresholds	are	exceeded.

At	first,	a	simple	reporting	application	may	use	data	from	a	data	source	or	two,	but
eventually	reports	may	be	based	on	multiple	data	sources.	Sustainable	BI	solutions
are	designed	around	consistent	and	reliable	data	sources	engineered	specifically	for
reporting.	Data	is	transformed	from	multiple	sources	into	a	central	repository	using
data	transformation	packages.	Data	may	then	be	processed	into	a	semantic	model
(multidimensional	cube,	or	tabular	model).	Reports	may	use	a	relational	data
warehouse,	data	mart,	or	semantic	model.	A	variety	of	reports	can	be	created	to
support	business	leaders	and	the	important	decisions	and	processes.	These	decision-
support	reports	may	take	on	many	different	forms,	such	as	charts,	detail	summaries,
dynamic	drill-down	and	drill-through	reports,	dashboards,	and	business	scorecards.

Mobile	Reports	and	KPIs
Mobile	device	reporting	is	a	completely	different	paradigm	from	traditional	desktop
reporting,	with	the	goal	being	to	present	important	information	in	a	simple	and	touch-
friendly	medium.

All	report	types,	paginated	reports,	and	KPIs	are	managed	and	accessed	through	a	new
web	portal.	The	web	portal	(shown	in	Figure	1.2)	can	be	accessed	in	a	web	browser	and
on	mobile	devices	using	the	Power	BI	mobile	app.

Figure	1.2	Web	portal.

Figure	1.3	shows	the	Web	portal	in	the	Power	BI	app	for	the	iPhone.

Figure	1.3	Web	portal	on	iPhone.

The	mobile	reporting	addition	to	SQL	Server	2016	Reporting	Services	is	a	new	and
unique	capability.	It	is	different	for	a	couple	of	reasons.	Using	a	fresh	perspective,	the
feature	was	developed	by	another	organization	and	was	designed	to	provide	a	different
user	experience	than	conventional	SSRS	reports.	Mobile	reports	are	simple	with	focus
on	the	user	experience.	They	can	be	easy	to	design,	but	require	some	data	and	query
preparation.

Mobile	reports	are	designed	using	the	Mobile	Report	Publisher,	a	standalone	tool
connecting	results	from	predefined	datasets.	Reports	are	styled	using	a	color	palette
theme,	and	individual	layouts	are	applied	to	a	report	for	desktop,	tablet,	and	phone
devices.	After	a	report	is	published	to	the	report	server,	alongside	other	Reporting
Services	content,	users	can	connect	with	their	mobile	devices.	Using	a	freely	available

app	installed	from	the	device	provider's	application	store,	users	interact	with	offline
data.	The	offline	report	cache	is	synchronized	on-demand,	or	at	scheduled	intervals
using	shared	datasets.	These	are	part	of	the	standard	Reporting	Services	server
architecture.

Mobile	reports	are	optimized	for	use	on	mobile	devices	using	the	Power	BI	mobile	app
for	each	mobile	device	platform	and	form	factor.	The	appropriate	app	for	a	user's
device	is	downloaded	and	installed	from	the	Windows,	Android,	or	Apple	App	Store.
Figure	1.4	shows	a	mobile	report	optimized	for	Portrait	layout	in	the	iPad	app.

Figure	1.4	Mobile	report	on	iPad.

KPIs	are	a	standard	feature	of	the	new	web	portal.	They	also	get	data	through	SSRS
shared	datasets.	After	datasets	are	prepared,	KPI	design	is	very	simple	and	performed
through	a	web	interface.	Key	metrics	are	visualized	using	color,	text,	and	bold	graphics

to	indicate	metric	status	comparing	it	to	a	target	or	goal,	as	well	as	trends	using	simple
sparklines	and	chart	visuals.

REPORT	TOOL	CHOICES
The	universe	expands.	Software	vendors	add	more	applications	to	their	collections
much	faster	than	they	sunset	the	old	ones.	Likewise,	Microsoft	continues	to	add
applications	and	features	without	distinct	use	case	boundaries	between	them.	As	a
result,	if	there	were	two	different	options	before,	now	there	are	three	or	four—and	it	is
up	to	us	to	decide	which	choice	is	best	for	our	needs.	Like	it	or	not,	this	is	the	nature
of	the	technology-saturated	world	in	which	we	live	and	work.	I	spend	much	of	my
time	giving	advice	about	the	pros	and	cons—advantages	and	feature	gaps—between
different	reporting	tools.	Throughout	this	book,	this	topic	is	addressed,	best	practices
are	called	out,	and	proven	design	patterns	are	described	as	learned	from	various
projects	and	field	experience.

The	majority	of	new	Reporting	Services	implementations	for	most	organizations	use
the	de	facto	web-based	web	portal	interface,	or	are	integrated	into	a	company
SharePoint	site.	Other	options	to	integrate	reports	into	custom	applications	or	web
pages	may	be	used	to	meet	specific	business	needs,	but	are	less	common.	In	reality,
reports	can	be	integrated	into	a	variety	of	custom	solutions	with	relative	ease.	Here
are	some	software	solutions	that	might	incorporate	reports:

Out-of-the-box,	server-based	reporting	features,	using	reports	created	by	report
designers	and	deployed	to	a	central	web	server.

Reports	integrated	into	web	applications	using	URL	links	to	open	in	a	web	browser
window.

Reports	integrated	into	SharePoint	Services	applications	using	SharePoint	web
parts.

Custom-built	application	features	that	render	reports	using	programming	code.
Reports	can	be	displayed	within	a	desktop	or	web	application,	or	may	be	saved	to	a
file	for	later	viewing.

Interactive	data	visualizations	using	the	Power	View	visualization	tool	for	data
exposed	through	a	tabular	semantic	model.

Simple	Report	Design
If	you	need	to	create	common	report	types	to	summarize	or	output	information
contained	in	a	database,	Reporting	Services	offers	some	great	tools	that	make	this
easy	to	do.	For	example,	suppose	you	have	a	record	of	customers	and	the	products
they	have	purchased.	You	want	to	produce	a	list	of	customers	that	contains	the
number	of	transactions	and	the	total	amount	the	customers	have	spent.	You	can	use
Report	Builder	to	produce	a	simple	table	report	that	includes	this	information.	If	you
want	to	compare	the	sales	for	each	customer,	day-to-day,	over	a	period	of	time,	you
can	generate	a	line	chart	report	to	view	the	sales	trend.	The	point	is	that	common
report	types	can	be	easy	to	create	with	tools	and	features	that	do	not	require	users	to

know	a	lot	about	complicated	things	like	programming,	writing	queries,	and	building
expressions.

Managing	a	fully	scaled	corporate	BI	solution	can	be	complex	and	expensive.
Fortunately,	all	the	components	of	a	working	solution	can	be	scaled	down	to	a	single
server	if	necessary.	Small	and	midscale	reporting	solutions	may	use	a	single,
multipurpose	database	serving	as	an	operational	data	store	and	a	reporting	data
structure.	As	the	solution	matures,	the	eventual	separation	of	these	databases	is
almost	inevitable.	A	small-scale	data	mart,	populated	from	operational	databases	at
regular	intervals,	will	provide	a	simpler	data	source	for	reporting	that	doesn't	compete
with	users	and	applications	for	system	resources.

Simple	reports	are	easy	to	design	and	deploy	for	short-term	use.	With	a	little	planning
and	 discipline,	you	can	design	reports	to	meet	future	requirements.	Properly	designed,
your	reports	can	include	advanced	features	that	meet	simple	needs	now,	and	more
sophisticated	needs	in	the	future.

IT-Designed	Reports
Reporting	Services	was	first	designed	and	optimized	for	programmers	and	application
developers	who	were	accustomed	to	using	Visual	Studio.	The	report	project	design
add-in	for	Visual	Studio,	originally	called	Business	Intelligence	Development	Studio
(BIDS),	is	now	called	SQL	Server	Data	Tools	(SSDT).	Advanced	capabilities	are
accessible	using	a	variety	of	tools	familiar	to	application	developers.	Like	other	Visual
Studio	solutions,	report	definition	files	can	be	managed	as	a	single	deployment	unit	to
publish	reports	and	related	objects	to	the	appropriate	folders	on	a	report	server.

Likewise,	in	application	development	projects,	reports,	data	sources,	shared	datasets,
and	all	other	design	elements	can	be	managed	with	integrated	version	control	in	the
SSDT	environment.	Developers	can	use	Microsoft	Team	Foundation	Server,	GitHub,
or	other	source	code	management	systems	to	collaborate	as	a	team	and	recover	from
file	loss.

User-Designed	Reports
The	industry's	quest	to	create	the	perfect	easy-to-use	BI	tool	has	produced	many
different	products,	each	with	its	own	unique	capabilities.	Under	the	Reporting
Services	umbrella,	two	self-service	reporting	tools	serve	different	needs.	The	current
incarnation	of	Report	Builder	is	based	on	the	mature	report	definition	architecture.
Report	Builder	reports	can	span	the	spectrum	from	simple	to	complex,	with	many
design	options.

Report	Builder	creates	reports	that	are	entirely	cross-compatible	with	SSDT,	and	that
can	be	enhanced	with	advanced	features.	Incremental	product	improvements	over	the
past	few	versions	have	made	out-of-the-box	report	design	even	easier.	Users	can
design	their	own	queries,	or	simply	use	data	source	and	dataset	objects	that	have	been
prepared	for	them	by	corporate	IT	so	that	they	can	drag	and	drop	items	or	use	simple

design	wizards	to	produce	reports.	In	Report	Builder,	each	report	is	managed	as	a
single	document	that	can	be	deployed	directly	to	a	folder	on	the	report	server	or	in	the
SharePoint	document	library.	The	version	number	has	been	dropped	from	the	Report
Builder	name;	now	it	is	simply	differentiated	from	previous	versions	by	the	version	of
SQL	Server	that	installs	it.

Table	1.1	summarizes	the	report	design	tools	available	in	the	current	product.

Table	1.1	Report	Designer	and	Visualization	Options

REPORT
DESIGNER

BACKGROUND

SQL	Server
Data	Tools
(SSDT)

This	implementation	of	the	Visual	Studio	shell	is	typically	used	by	IT
professionals	to	design	reports	with	a	project	and	team	focus.	It
currently	uses	the	Visual	Studio	2010	shell.

Report
Builder

Successor	to	previous	tools	introduced	in	2005	and	2008,	Report
Builder	has	had	incremental	improvements	in	2012,	2014,	and	2016.

Mobile
Report
Publisher

This	is	a	new	addition	to	the	2016	product.	Mobile	reports	are	designed
separately	from	paginated	reports	and	deployed	to	the	common	report
server.	Reports	may	be	viewed	on	most	any	mobile	device	(phone	or
tablet)	using	the	Power	BI	mobile	app	or	Datazen	mobile	app.	These
reports	can	also	be	viewed	in	the	web	browser	through	the	web	portal.

Web	portal
KPI
Designer

KPI	tiles	(with	sparkline	trend	and	thumbnail	comparison	charts)	are
designed	in	a	web	interface	using	the	web	portal.	Data	for	each	KPI
element	uses	dataset	queries	stored	in	report	server	folders.

Server-Based	Reports
Reports	can	run	on	either	a	report	server,	or	in	a	standalone	application	on	the	client
computer.	It	is	important	to	note	that	Reporting	Services	is	designed	and	optimized
for	server-based	reporting	first.	The	client-side	option	(called	Local	Mode)	is	possible
with	some	custom	programming,	and	takes	a	little	more	effort	and	expertise	to
implement.	For	the	remainder	of	this	chapter,	the	discussion	is	limited	to	server-
based	reporting.

NOTE

Local	Mode	reports	use	a	special	report	definition	file	with	an	RDLC	extension.
These	reports	run	within	a	Windows	or	Web	form	control	that	is	deployed	with
the	hosting	application.	Some	programming	code	is	necessary	and	they	are
typically	best	used	for	low	data	volume	applications.

It	is	important	to	understand	the	difference	between	SQL	Server	Reporting	Services
and	a	desktop	reporting	tool	such	as	Microsoft	Access.	Reporting	Services	is	not	an
application	you	would	typically	install	on	any	desktop	computer;	rather,	it	is	designed
for	business	use.	It	requires	Microsoft	SQL	Server,	a	serious	business-class	relational
database	management	tool	and	typically	runs	on	a	dedicated	server.	Likewise,	reports
may	be	integrated	into	SharePoint	Services	to	be	managed,	secured,	and	administered
alongside	other	shared	corporate	documents	and	assets.	At	the	same	time,	Reporting
Services	can	be	used	in	a	simple	standalone	deployment	with	relatively	little
administrative	overhead.

Reporting	Services	is	scalable	and	adaptable	for	use	by	a	handful,	as	well	as
thousands,	of	users,	for	reporting	on	large	sets	of	data	stored	in	a	variety	of	database
platforms.	Just	because	Reporting	Services	is	a	business-sized	product	does	not	mean
that	reports	need	to	be	complicated	or	difficult	to	design.

Report	users	need	to	be	connected	to	a	network,	or	perhaps	to	the	Internet,	with
connectivity	to	the	report	server.	When	a	report	is	selected	for	viewing	from	a	folder
on	the	report	server	or	the	SharePoint	library,	it	is	displayed	as	a	web	page	in	the
user's	web	browser.	Optionally,	the	same	report	can	be	displayed	in	a	number	of
different	formats,	including	Word,	Excel,	PowerPoint,	and	Adobe	PDF,	or	as	a	PNG,
JPEG,	GIF,	or	TIFF	image.	Reports	can	be	saved	to	files	in	these	and	other	formats	for
offline	viewing.	Reports	can	also	be	scheduled	for	automatic	delivery	by	the	report
server	by	e-mail,	or	can	be	saved	to	files.	These	features	are	standard	and	require	only
simple	 configuration	settings	and	minor	user	interaction.

Report	Data	Sources
Every	report	has	at	least	one	data	source	and	query	or	reference	to	the	entities	that
return	data	values,	called	a	dataset.	Operational	data	stores	are	often	the	most
complex	databases.	Some	packaged	systems	have	databases	with	thousands	of	tables.
As	the	dependence	on	databases	and	data-driven	computer	systems	increases,	most
organizations	cross	a	threshold	in	three	areas:

The	complexity	of	each	database	grows	to	accommodate	more	complex	processes.

The	volume	of	the	data	increases.

The	number	of	different	databases	increases	to	handle	different	business	data	that

management	needs.

NOTE

I	have	used	Reporting	Services	to	connect	to	many	different	data	sources,
including	products	outside	the	Microsoft	product	portfolio.	Although	SSRS	can
connect	effectively	to	sources	like	Oracle,	Teradata,	IBM	DB2,	SyBase,	MySQL,
PostgreSQL,	XML	files,	and	SharePoint	lists,	sometimes	it	is	easier	to	transform
data	into	SQL	Server	so	that	you	can	connect	trouble-free.	The	optimal	choice
will	depend	primarily	on	the	complexity	of	the	data.

Aside	from	sheer	complexity,	it	is	not	uncommon	for	midsized	companies	to	store
terabytes	of	data.	Storage	space	is	fairly	inexpensive	when	compared	with	equally
capable	systems	a	few	years	ago.	There	may	be	great	value	in	tracking	orders,
shipments,	calls,	cases,	and	customers,	but	all	this	data	adds	up	over	time.	Recording
all	this	activity	means	you	have	a	lot	of	data	on	hand	for	reporting.	Putting	data	into	a
database	is	the	easy	part.	Getting	intelligent,	useful	information	back	out—now	there
is	the	challenge!

Finally,	different	systems	are	used	to	manage	the	same	types	of	data	in	different	ways.
For	example,	a	customer	relationship	management	system	tracks	sales	leads	and
potential	customers	for	a	marketing	organization	differently	than	an	order
management	system	does	to	support	the	sales	team.	In	each	of	these	two	systems,	you
may	track	something	called	a	“customer,”	but	in	these	systems,	the	definition	may
vary.	Perhaps	a	“customer”	may	represent	a	consumer,	contact,	or	company	in	one
system,	and	a	lead,	vendor,	or	reseller	in	another	system.	Larger	companies	may	have
similar	records	duplicated	across	other	systems	such	as	enterprise	resource	planning,
human	resources	management,	benefits,	vendor	management,	accounting,	and
payables	and	receivables	systems.

At	some	point,	most	solution	designers	conclude	that	to	obtain	valuable	reporting
metrics	from	all	these	operational	data	sources,	they	will	have	to	be	consolidated	into
a	central,	simplified	data	store	specifically	designed	to	support	business	reporting
requirements.	A	data	warehouse	system	is	a	central	data	store	used	to	standardize	the
data	extracted	from	these	complex	and	specialized	data	sources.	It	typically	makes	use
of	the	same	relational	database	technologies	used	to	house	the	operational	data
stores,	but	it	does	so	in	a	protected,	read-only	environment	to	keep	reporting	simple
and	straightforward.

Modest	data	aggregation	can	be	performed	on	large	sets	of	data	from	a	data
warehouse.	In	contrast,	deep	analysis	requires	special	data	storage	technology,	as	well
as	a	more	capable	mathematical	and	statistical	reporting	engine.

Enterprise	Scale
Delivering	reports	to	many	users	requires	a	scalable	reporting	environment.	Reporting

Services	processes	queries	and	then	renders	reports	on	the	report	server.	Because	it
uses	industry-standard	Windows	services,	shared	server-based	components,	and
HTTP	web	services,	all	the	processing	occurs	in	an	efficient	and	secure	environment.
Standard	data-source	connection	providers	for	SQL	Server	and	other	enterprise-class
databases	promote	efficient	use	of	server	resources.	In	simple	terms,	many	users	can
run	reports	at	the	same	time	while	consuming	minimal	server	resources.	To	serve
more	users,	report	servers	may	be	scaled	out	using	load	balancing	and	distributed
server	farms.

The	Reporting	Services	report	server	exposes	its	functionality	in	the	same	way	that	a
standard	ASP.NET	website	is	hosted	for	users.	Reports	can	be	accessed	from	anywhere
within	or	outside	of	the	corporate	firewall,	and	are	still	available	only	to	selected
users.	In	SharePoint	integrated	mode,	reports	are	available	to	users	through	document
libraries	and	are	secured	and	managed	within	the	SharePoint	server	environment.	In
Native	or	nonintegrated	server	mode,	reports	are	managed	and	accessed	through	the
web	portal	web	interface	installed	with	Reporting	Services.	Reports	can	also	be
exposed	in	custom-developed	web	applications	using	practically	any	set	of	web
technologies	or	development	tools.

OPTIMIZING	PERFORMANCE
Often,	system	performance	is	one	of	the	most	significant	drivers	of	an	effective	BI
solution.	As	an	organization's	reporting	needs	become	more	sophisticated	and	the
data's	complexity	and	volume	increase,	the	cost	is	usually	measured	first	in
performance.	Queries	take	longer	to	run	and	compete	for	resources	on	the	report	and
database	servers.	In	this	case,	IT	professionals	typically	react	by	recognizing	the	value
of	and	need	for	a	simplified	database.	Whether	this	is	to	be	a	truly	enterprise-ready
data	warehouse,	a	departmental	data	mart,	or	a	simple	“reporting	structure,”	the	basic
concept	is	usually	the	same—simplify	the	database	design	to	focus	on	reporting
requirements.

As	mentioned,	some	performance	and	advanced	analytical	requirements	may	drive	the
solution's	maturity	to	include	OLAP	cubes.	This	does	not	necessarily	mean	all	the
reports	designed	against	other	data	sources	must	be	updated.	A	variety	of	reports	may
work	just	fine	with	an	operational	data	source	or	relational	data	warehouse.	But	other,
more	sophisticated	reports	require	specialized	data	sources	(such	as	OLAP	cubes)	to
perform	well.

Reports	may	be	delivered	in	a	variety	of	ways	(not	just	when	a	user	navigates	to	a
report	in	real	time).	Reports	may	be	automatically	rendered	to	the	server	cache	so	that
they	open	quickly	and	don't	burden	data	sources.	They	may	be	delivered	via	e-mail	and
to	file	shares	on	a	regular	schedule.	Using	data-driven	subscriptions,	reports	may	be
“broadcast”	to	a	large	audience	during	off-hours.	Each	user	may	receive	a	copy	of	the
report	rendered	in	a	different	format	or	with	data	filtered	differently.	Throughout	this
book,	you	learn	to	plan	for,	manage,	and	configure	these	features.

You	also	learn	how	to	optimize,	back	up,	and	recover	the	Report	Server	database,	web
service,	and	Windows	service.	You	learn	how	to	use	the	management	utilities,
configuration	files,	and	logs	to	customize	the	server	environment	and	prevent	and
diagnose	problems.

Performance
While	on	a	consulting	assignment,	I	developed	complex	financial	formula	reports
using	the	original	database	structure	as	the	report	data	source.	The	T-SQL	queries
were	complex	and	difficult	to	debug.	The	client	was	thrilled	when	one	of	the	more
complicated	reports	took	45	minutes	to	run	instead	of	the	90	minutes	it	took	before
we	“optimized”	the	query.	After	transforming	the	same	data	into	a	simplified	data
mart	structure,	it	took	less	than	3	minutes	to	run	the	same	report.	With	an	OLAP	cube
in	Analysis	Services,	the	same	report	ran	in	just	a	few	seconds.	Needless	to	say,	the
“acceptable”	45-minute	report	rendering	time	was	no	longer	acceptable	after	the	users
found	out	that	they	could	run	the	same	report	in	a	few	seconds!	Although	this	makes
for	a	good	story,	the	fact	is	that	today	people	expect	results	quickly.

Users	typically	have	little	concern	for	the	complexity	of	a	database	solution	or	the

technology	used	to	deliver	data.	They	simply	need	results	fast,	and	that's	usually	what
they	expect.	The	task	is	left	for	us	to	architect	solutions	to	deliver	results	and	perform
calculations	and	metrics	from	large	volumes	of	business	data.	Optimal	performance	is
achievable	using	several	innovative	features	of	the	SQL	Server	reporting	architecture.
Examples	include	in-memory	storage	and	column	store	indexing,	in-memory	tabular
and	multidimensional	semantic	modeling,	report	instance	caching,	and	report	page-
level	rendering.	Mobile	reports	can	also	use	client-side	data	cache	to	optimize	report
performance	and	provide	off-line	viewing.

SUMMARY
Your	role	as	a	report	designer	or	solution	developer	will	determine	how	deep	you	need
to	immerse	yourself	into	the	complexities	of	Reporting	Services.	The	needs	of	report
users	vary	from	simple	to	complex,	and	the	time	and	energy	you	invest	could	vary
from	hours	to	months,	depending	on	the	solution	scope.

Some	users	need	to	simply	run	or	print	reports.	Others	need	or	want	to	be	more	self-
sufficient—either	designing	reports	by	themselves,	or	using	self-service	tools	to
perform	design	and	data	exploration.

Business	Intelligence	(BI)	reporting	solutions	include	dashboards,	scorecards,	KPIs,
and	interactive	mobile	reports	that	enable	business	information	workers	and	business
leaders	to	get	insights	from	data.	These	solutions	often	use	data	modeling
technologies	like	SSAS	with	visual	reports	and	BI	tools.	Mobile	reports	allow	users	to
interact	with	business	data	on	their	mobile	devices,	tablets,	and	smartphones	on	every
device	platform.	Comparatively,	mobile	reports	allow	users	to	operate	with
disconnected	data	on	touch-enabled	devices.

Reports	are	integrated	into	applications	and	custom	solutions	using	web	service
components,	page	frames,	and	form	controls.	Reporting	Services	integrates	with
applications	and	enterprise	solutions	using	a	variety	of	options.	The	spectrum	of
integration	options	is	vast.	Your	solutions	may	be	very	simple	using	“out	of	the	box”
features	or	tightly	integrated	with	SharePoint,	custom	applications,	Power	BI,	and	the
entire	Microsoft	reporting	ecosystem.

If	you	are	new	to	SSRS,	start	small	and	learn	the	platform.	With	a	little	experience,
you	will	figure	out	which	features	to	use	to	meet	your	business	and	user	needs.	If	you
have	been	using	earlier	versions	SSRS	for	a	while,	I	will	show	you	how	the	product	has
grown	and	demonstrate	new	patterns	in	a	best	practice.

Chapter	2	introduces	you	to	the	new	web	portal	for	report	navigation	and
management.	You'll	learn	about	several	significant	report	rendering	enhancements
and	modernized	features.

Chapter	2
What's	New	in	SQL	Server	2016	Reporting	Services?

WHAT'S	IN	THIS	CHAPTER?

Report	designer	enhancements

Modern	browser	rendering

Parameter	layout	management

Introducing	Mobile	Reports	and	KPIs

New	printing	and	rendering	options

The	new	web	portal

Power	BI	dashboard	pinning	and	integration

The	enhancements	to	Reporting	Services	in	SQL	Server	2016	range	from	subtle	to
significant.	Several	notable	enhancements	expand	the	reporting	platform	and	help
round	out	the	Microsoft	Business	Intelligence	(BI)	product	tool	belt.	Chapter	2
contains	no	hands-on	exercises	so	there	is	nothing	to	download	and	no	exercises	for
this	chapter.	We	will	introduce	the	hands-on	exercises	and	samples	in	the	Chapter	3.
Just	sit	back	and	learn	about	how	Reporting	Services	is	improved	and	enhanced;	in
some	ways,	it	is	the	same	or	similar	to	the	past	few	versions.

Before	you	learn	about	several	new	features	introduced	in	Reporting	Services	for	SQL
Server	2016,	take	a	look	at	the	quick	history	lesson	shown	in	Figure	2.1	that	highlights
the	origins	of	the	product.

Figure	2.1	Evolution	of	Reporting	Services.

Reporting	Services	was	released	as	an	add-in	tool	for	SQL	Server	2000	in	early	2004.
At	the	time,	the	feature	set	was	light	when	compared	to	the	product	today,	but	the
foundational	architecture	hasn't	changed	significantly.	Essential	features	included
basic	charts,	sub-report	data	regions,	and	single-value	textboxes.

The	second	release	in	2005	added	a	self-service	report	authoring	tool	called	Report
Builder	(later	named	Report	Builder	1.0)	that	was	paired	with	a	semantic	modeling
tool	in	the	designer.	The	original	modeling	and	ad	hoc	report	tool	has	since	been
deprecated,	but	it	inspired	more	capable	replacement	technologies	like	Power	Pivot
and	the	later	generations	of	Report	Builder.	Not	to	be	confused	with	the	original
Report	Builder	tool,	Report	Builder	2.0	and	3.0	produce	report	definition	files
compatible	with	the	report	project	tools	that	are	integrated	with	Visual	Studio,
originally	called	Business	Intelligence	Development	Studio	(BIDS).

Several	improved	and	progressively	more	powerful	features	appeared	in	later	product
versions.	SQL	Server	2008	R2	introduced	many	advanced	visual	elements	such	as
gauges,	sparklines,	data	bars,	key	performance	indicators	(KPI),	and	maps.	After	the
introduction	of	so	many	new	features,	the	only	minor	improvements	in	SQL	Server
2012	and	2014	were	a	noticeable	change	to	the	feature	cadence	as	product
development	resources	were	redirected	to	emerging	products	like	Power	Pivot,	Power
View,	and	then	Power	BI.

In	2015,	under	new	leadership	and	restructured	product	teams,	Microsoft	reaffirmed
its	commitment	to	Reporting	Services	as	a	core	feature	of	the	Microsoft	reporting	and
BI	platform.	The	product	now	emerges	from	a	period	at	rest	to	another	wave	of
aggressive	development	and	improvements.	Many	of	the	core	features	remain	the
same,	and	the	design	experience	is	relatively	unchanged.	But	as	discussed	in	this
chapter,	several	new	improvements	are	driving	new	momentum.

REPORT	BUILDER	AND	DESIGNER	ENHANCEMENTS
The	report	design	experience	for	standard	“paginated”	reports	hasn't	really	changed
much	over	the	past	few	product	versions,	but	there	have	been	incremental
improvements.	Report	Builder	is	restyled	to	conform	to	Microsoft	Office	2016
standards.	The	installation	process	for	Report	Builder	changes	to	an	“evergreen”
application.	This	means	that	Microsoft	maintains	updates	for	frequent	download,
rather	than	the	old	“ClickOnce”	installation	from	your	on-premises	server.	Similar	to
prior	versions,	users	can	elect	to	install	Report	Builder	from	the	web	portal	menu.

Report	Builder	has	been	updated	with	a	modern	look-and-feel,	simple	and	sleek,	as
shown	in	Figure	2.2.	Changes	are	mostly	cosmetic,	while	the	fundamental	features	are
the	same.

Figure	2.2	Report	Builder's	new	look.

The	Visual	Studio–integrated	Report	Designer	is	now	part	of	SQL	Server	Data	Tools
(SSDT),	a	downloadable	add-in	for	Visual	Studio.	Although	the	tool	set	hasn't	changed
significantly,	there	are	some	subtle	changes	to	the	way	SSDT	is	installed	and	the	way
updates	are	delivered.	First	of	all,	confusion	about	the	name	“SSDT”	is	dispelled

because	the	former	“SSDT”	(the	previous-version	add-in	for	database	projects)	and
“SSDT	for	BI”	(the	previous-version	add-in	for	SQL	Server	Integration	Services,	SQL
Server	Analysis	Services,	and	SQL	Server	Reporting	Services	projects)	are	now	a
combined	package,	simply	called	SSDT	(which	also	includes	a	project	template	for
SQL	Server	database	projects).	Secondly,	you	can	simply	download	and	install	a
version	of	SSDT	that	will	work	with	the	current	version	of	Visual	Studio	or	a	few
versions	back.	If	Visual	Studio	is	not	installed	on	the	computer,	the	SSDT	setup
package	installs	the	Visual	Studio	shell.	The	SSDT	add-in	will	be	updated	frequently,
and	you	will	have	the	option	to	install	updates	on-demand	from	within	Visual	Studio.

MODERN	BROWSER	RENDERING
One	of	the	most	significant	product	improvements	in	2016	may	be	one	of	the	least
apparent	under	casual	observation.	The	entire	HTML	rendering	engine	has	been
completely	overhauled	across	the	platform.	The	web	portal,	used	to	navigate	and
manage	report	content,	and	the	actual	report	content	are	rendered	to	modern	HTML5
standards,	which	are	supported	by	all	modern	web	browsers.	The	shift	to	modern
HTML	output	means	that	web	content	produced	by	Reporting	Services	is	consistently
consumable	on	any	device,	regardless	of	the	operating	system	or	web	browser,	so	long
as	it	supports	modern	standards.	The	benefits	are	readily	apparent	when	reports
simply	work	on	smartphones	of	any	type,	on	tablets,	as	well	as	laptop	and	desktop
machines,	regardless	of	the	brand	or	operating	system.

In	earlier	versions	of	Reporting	Services,	report	output	consistency	was	attempted
with	multiple	version	and	browser	logic	in	the	rendering	code	to	emit	different
content	HTML	for	different	browsers	and	versions,	which	quickly	resulted	in	a
patchwork	of	branched	code	and	logic.	By	contrast,	the	modern	rendering	code
outputs	one	lightweight	stream	of	HTML5	that	works	across	all	modern	devices.

The	trade-off	is	that	some	backward	compatibility	is	sacrificed,	particularly	with	older
versions	of	Internet	Explorer	(IE).	Potentially,	the	most	adverse	effect	of	this	shift	to
modern	web	standards	is	that	users	on	older	computers	with	an	outdated	operating
system	will	need	to	upgrade	to	the	latest	available	version	of	IE	or	their	preferred	web
browser.

PARAMETER	LAYOUT	CONTROL
Have	you	ever	had	to	explain	to	a	user	or	project	stakeholder	that	the	parameter
prompts	are	inflexible	and	that	you	have	little	control	over	how	and	where	they	are
placed?

You	will	have	improved	control	over	parameter	formatting	and	placement.	Since	the
inception	of	Reporting	Services	about	12	years	ago,	parameters	have	always	been
arbitrarily	arranged	in	a	narrow	bar	at	the	top	of	the	browser	window,	from	left-to-
right,	and	then	top-down.	Figure	2.3	shows	that	the	Report	Designer	has	a	grid	to
manage	the	placement	of	parameters,	in	the	parameter	bar,	in	any	configuration,
within	definable	rows	and	columns.

Figure	2.3	Report	Designer	grid.

The	new	parameter	bar	applies	SSRS	deployments	in	Native	mode,	but	does	not
change	the	way	parameters	are	rendered	in	SharePoint	integrated	mode.

UPDATED	RDL	SPECIFICATION
As	with	previous	Reporting	Services	upgrades,	the	RDL	has	been	revised	in	2016.
Figure	2.4	shows	two	code	snippets	from	the	Visual	Studio	XML	viewer	with	the	RDL
namespace	header	and	the	ReportParametersLayout	element	near	the	end	of	the	RDL
file.	Note	that	the	xmns	attribute	version	for	the	reportdefinition	namespace	is
2016/01.

Figure	2.4	RDL	file	snippet

When	SSDT	for	SQL	Server	2016	is	used	to	deploy	reports	to	an	earlier	version	report
server,	the	Report	Designer	provides	backward	version	compatibility	by	removing	this
metadata	from	the	report	definition	file	when	the	project	is	built.	The	versioned	RDL
file	is	written	to	the	configuration	output	subfolder	under	the	project	bin	folder	(the
bin\debug	folder	by	default),	and	then	this	file	is	deployed	to	the	report	server.

MOBILE	REPORTS
The	addition	of	mobile	dashboards	to	the	SSRS	platform	is	based	on	Microsoft's
Datazen	product	acquisition	from	ComponentArt	in	2015.	Mobile	reports	are	primarily
designed	to	enable	data	interactivity	in	dashboard-style	reports	created	by	a	mobile
report	developer.	Managing	this	expectation	is	important	because	this	tool	is
significantly	different	than	conventional	Reporting	Services.

Mobile	reports	can	be	viewed	in	the	browser,	but	are	optimized	for	phone	and	tablet
devices	through	native,	installed	applications	running	on	all	the	major	mobile
operating	system	platforms.	Figures	2.5	and	2.6	demonstrate	the	same	mobile	report
on	two	different	mobile	devices.	They	are	not	a	replacement	for	high-fidelity	paginated
reports	created	with	Reporting	Services,	or	self-service	analytics	in	Power	BI.	They
serve	an	entirely	different	purpose.

Figure	2.5	Mobile	report	on	tablet.

Figure	2.6	Mobile	report	on	phone.

At	first,	the	mobile	dashboard	experience	may	seem	to	be	a	simple	drop-in	of	the
Datazen	product.	But,	it	is	apparent	that	some	integration	with	the	SSRS	architecture
has	already	taken	place,	and	more	adaptations	are	likely	on	the	horizon.	The	first
notable	difference	is	the	Datazen	server	is	entirely	replaced	by	the	SQL	Server	report
server,	and	queries	are	now	managed	as	SSRS	shared	datasets.

The	SQL	Server	Mobile	Report	Publisher	is	a	separate	download	that	can	be	obtained
by	simply	choosing	the	Mobile	Report	option	from	the	web	portal	menu.	In	2015,	I
wrote	a	series	of	articles	for	SQL	Server	Pro	Magazine	about	how	to	create	a	mobile
dashboard	solution	with	Datazen.	Datazen	is	still	available	as	a	standalone	product—
free	to	SQL	Server	Enterprise	customers—but	any	future	enhancements	are	likely	to
only	take	place	in	the	new	integrated	platform.	The	article	series	is	available	here:
http://sqlmag.com/business-intelligence/getting-started-datazen-microsoft-s-

new-mobile-dashboard-platform.	The	essential	design	experience	for	mobile	reports	is

http://sqlmag.com/business-intelligence/getting-started-datazen-microsoft-s-new-mobile-dashboard-platform

nearly	the	same	as	I	described	in	that	series,	but	a	few	details	change	with	the	new
integration.	Microsoft	Senior	Program	Manager	Chris	Finlan	provides	a	complete
step-by-step	tutorial	in	his	post	titled	“How	to	create	Mobile	Reports	and	KPI's	in	SQL
Server	Reporting	Services	2016	–	An	end-to-end	walkthrough.”

KPIs
New	KPIs	integrated	with	the	web	portal	are	also	based	on	the	Datazen	product
acquisition.	These	KPI	visuals	are	created	and	managed	entirely	within	the	portal.	In
addition	to	the	standard	traffic-light	style	comparison	of	actual	versus	target	values,
KPIs	can	include	a	trend	line	or	segment	chart.

The	KPI	shown	in	Figure	2.7	is	driven	by	data	from	one	or	more	shared	datasets	that
were	created	in	the	SSDT	Report	Designer.	For	ease	and	simplicity,	any	value	of	the
KPI	can	be	entered	manually	through	the	design	page.

Figure	2.7	KPI	from	SSDT	Report	Designer	dataset.

Although	they	are	visualized	in	the	web	portal,	KPIs	are	delivered	to	mobile	devices
through	the	Power	BI	mobile	applications	currently	on	every	popular	device	platform.

NATIVE	PRINTING	CONTROL
The	previous	printing	capability	in	SSRS	relied	on	an	ActiveX	control	that	was	only
supported	on	Windows	desktops	and	in	certain	web	browsers.	Even	in	tightly
controlled	Windows	server	environments,	system	administrators	would	rescind
ActiveX	support	and	disallow	report	printing	from	the	server.	The	modern	printing
solution	uses	the	PDF	renderer	to	produce	printable	output,	and	then	the	Adobe
document	viewer	to	perform	the	actual	printing.

POWERPOINT	RENDERING
Users	have	had	the	option	to	export	and	render	report	content	to	Excel	for	several
versions	of	SSRS.	Output	to	Word	was	added	in	SQL	Server	2008,	and	then	both	of
these	rendering	options	were	improved	and	updated	in	the	2008	R2	version.	Now,	a
third	Office	application	format	will	be	supported	with	the	introduction	of	PowerPoint
document	rendering.

Most	report	items	and	data	regions	are	converted	to	individual	image	objects	in	the
resulting	PowerPoint	sides	with	one	side	generated	per	report	page.	Additional	slides
are	created	based	on	the	report	content	size	and	layout.	Textboxes	are	created	for	titles
and	report	text,	which	support	some	report	actions	and	textbox	properties.

INTEGRATED	AND	IMPROVED	WEB	PORTAL
A	new	web	portal	web	interface	is	introduced	to	replace	the	Report	Manager.	Like
Report	Manager,	the	portal	is	an	ASP.NET	web	application	used	to	access,	run	and
manage	reports	in	the	web	browser.	The	new	portal	has	a	look-and-feel	we	are
accustomed	to	seeing	in	other	modern	apps	from	Microsoft	these	days;	with
responsive	design	for	constancy	on	different	device	form	factors.	Web	portal	will	be
the	home	for	mobile	reports,	KPIs,	and	paginated	reports—the	new	name	for	RDL
reports	authored	with	Reporting	Services.	In	the	future,	we	may	see	support	for
additional	content	types.	Figure	2.8	shows	the	Content	menu	in	the	web	portal	with
options	to	selectively	show	different	types	of	reports	and	folders.

Figure	2.8	Content	menu	in	the	web	portal.

Web	portal	supports	in	all	modern	web	browsers	by	emitting	responsive	HTML5	with
adaptations	for	mobile	devices	and	screen	orientations.

NEW	CHARTS	AND	VISUAL	ENHANCEMENTS
With	the	addition	of	two	new	chart	types,	visualization	improvements	are	inched
forward	in	Reporting	Services.	The	new	Sunburst	and	Treemap	charts	shown	in	Figure
2.9	apply	multi-level	field	groups	visualized	in	both	color	and	visual	boundaries.

Figure	2.9	Two	new	chart	types.

Although	the	core	chart	and	gauge	components	are	largely	unchanged,	the	default
styling	properties	have	been	modernized	in	the	new	product	version.	New	and	updated
report	visuals	are	likely	to	be	an	area	of	focus	for	future	Reporting	Services
enhancements,	given	the	success	of	self-service	BI	tools	like	Power	BI.	The	design
interface	is	identical	to	existing	chart	types,	and	the	only	real	difference	is	that	groups
of	rows	are	visualized	in	these	unique	formats.	The	Sunburst	chart	is	also	capable	of
consuming	unbalanced	hierarchies	with	slices	generated	for	different	levels	only
where	data	points	exist.

STANDARDIZED,	MODERN	BROWSER	RENDERING
At	first,	you	may	not	notice	significant	changes	from	previous	versions,	but	the	HTML
renderer	has	been	completely	overhauled	and	updated.	Now,	reports	are	rendered	to
HTML	5	standards,	whereby	they	should	consistently	maintain	the	same	appearance
and	behavior	in	all	modern	browsers	that	support	the	HTML	5	standard	such	as
Microsoft	Edge,	IE	11,	and	newer	versions	of	Google	Chrome,	Safari,	and	Firefox.	This
change	is	a	welcome	improvement,	which	should	clear	up	many	problems	with
inconsistent	and	quirky	report	layouts	while	using	different	web	browsers	and	devices.
By	the	same	token,	the	change	means	there	is	no	specific	backward-compatibility	for
outdated	browsers;	consequently,	reports	that	may	have	worked	(or	partially	worked)
in	an	old	version	of	Internet	Explorer	may	no	longer	work	until	the	user	upgrades.

POWER	BI	DASHBOARD	PINNING
For	organizations	that	have	invested	in	the	Power	BI	cloud	service,	the	Power	BI
integration	feature	allows	users	to	pin	graphical	SSRS	report	visuals	to	their	online
dashboards.	In	order	to	use	this	feature,	an	administrator	must	register	the	report
server	with	an	existing	Power	BI	subscription,	and	a	report	user	must	have	access	to
the	Power	BI	subscription.

The	Reporting	Services	Configuration	Manager	(shown	in	Figure	2.10)	includes	a	new
page	to	manage	Power	BI	Integration.	This	is	where	you	register	the	report	server
instance	with	the	Power	BI	subscription.

Figure	2.10	Reporting	Services	Configuration	Manager.

When	a	report	with	“pinnable”	items	(such	as	images,	charts,	and	gauges)	is	viewed	in
web	portal,	the	Power	BI	icon	is	displayed	on	the	toolbar	(as	shown	in	Figure	2.11).

Figure	2.11	Power	BI	pinning	added	to	report	toolbar.

Figure	2.12	shows	that	“pinnable”	items	are	highlighted	in	web	portal.	When	a	visual
is	selected,	you	are	prompted	to	select	a	Power	BI	dashboard	and	the	refresh
frequency.	This	schedules	an	Agent	job	on	the	report	server	to	push	updated	visuals	to
the	dashboard	at	the	selected	frequency.

Figure	2.12	“Pinnable”	items	highlighted	in	web	portal.

The	“Select	frequency	of	updates”	option	(in	Figure	2.13)	utilizes	the	SSRS
subscription	architecture	by	scheduling	a	SQL	Server	Agent	job	on	the	database	server
with	the	report	server	catalog.	The	Agent	job	re-queries	the	report	data,	and	then	a
report	server	component	refreshes	the	Power	BI	dashboard	tile	with	an	updated	report
visual.

Figure	2.13	Power	BI	dashboard	and	update	frequency.

Pinned	report	visuals	appear	on	the	dashboard	alongside	the	Power	BI	report	and
Excel	visuals,	as	shown	in	Figure	2.14.	Clicking	one	of	these	visuals	will	drill-through
to	the	report	back	on	the	on-premises	report	server.	This	gives	users	a	seamless
navigation	experience	between	cloud-hosted	Power	BI	content	and	selected	report
visual	elements	on	your	own	report	server.

Figure	2.14	Pinned	report	visuals	appearing	on	the	dashboard	alongside	the	Power
BI	visuals.

The	integrated	Power	BI	experience	is	a	big	step	forward	in	providing	a	completely
integrated	IT-hosted	and	self-service	reporting,	BI	and	analytics	solution.

SUMMARY
As	the	components	of	Microsoft's	reporting	platform	continue	to	cross-pollinate,
additional	integration	will	be	delivered	through	the	web	portal	for	desktop	users	and
on	device-specific	applications	for	mobile	users.

Report	Builder	continues	to	be	the	SSRS	power	user's	tool	for	creating	reports	the	way
Office	users	create	and	update	documents.	The	Visual	Studio–based	SQL	Server	Data
Tools	(SSDT)	is	engineered	for	the	developer	and	serious	report	designer.	It	now
includes	database	project	and	BI	add-ins	in	a	single	“evergreen”	package	for	multiple
versions	of	Visual	Studio	that	can	be	maintained	and	updated	independently	from	SQL
Server.	The	SSDT	designer	produces	RDL	reports	for	SQL	Server	2016,	and	will
produce	backward-compatible	reports	through	the	project	build	and	deployment
process.

Mobile	reports	and	KPIs	are	a	new	addition	to	the	Reporting	Services	family.	These
are	simple	by	design,	responsive,	interactive,	and	optimized	to	run	on	native	mobile
applications	installed	from	the	device-specific	app	store.	Mobile	reports	are	integrated
with	the	Reporting	Services	portal,	using	shared	datasets	developed	in	SSDT.

Several	enhancements	to	the	SSRS	core	functionality	include	native	web	browser	print
support,	PowerPoint	rendering,	and	new	chart	visuals.	Probably	the	most	significant
(although	the	least	obvious)	improvement	is	that	the	underlying	rendering	of	all
reports	and	the	web	portal	interface	is	fully	compatible	with	all	modern	web	browsers,
applying	HTML5	standards	and	responsive	design.	This	means	that	the	entire	report
experience	can	be	had	on	a	user's	device	and	browser	of	choice.

Chapter	3	addresses	the	requirements	and	steps	to	install	and	configure	SQL	Server
Reporting	Services	and	the	dependent	components.	We	discuss	building	a	basic
development	environment	and	enterprise	server	deployments.	You'll	learn	about	the
report	server	architecture,	which	will	help	you	gain	a	comprehensive	understanding	of
the	features	and	capabilities	of	Reporting	Services.

Chapter	3
Reporting	Services	Installation	and	Architecture

WHAT'S	IN	THIS	CHAPTER?

What's	changed	in	SQL	Server	2016?

Installing	a	report	server

Building	an	enterprise	deployment

Using	tools	to	manage	the	reporting	life	cycle

Exploring	report	server	architecture

Leveraging	reporting	services	extensions

To	use	the	examples	and	work	through	the	exercises	in	this	book,	you	need	a	report
server	and	administrative	rights	to	access	it.	Unless	you	have	a	server	set	up	for	this
purpose,	I	recommend	that	you	install	a	local	instance	of	SQL	Server	on	a	machine
that	you	manage.	Your	learning	machine	can	be	on	your	local	computer,	a	local	virtual
machine,	or	a	virtual	server	hosted	in	a	cloud	service	like	Windows	Azure.	I
recommend	that	you	install	the	Developer	Edition	of	SQL	Server	2016	on	Windows	8
Professional	or	higher,	or	Windows	Server	2012	or	higher.

TIP

If	you	are	just	getting	started	or	you	are	new	to	Reporting	Services,	some	of	the
technical	information	in	this	chapter	may	not	be	relevant	or	necessary	at	this
stage	in	your	experience.	To	get	up-and-running	quickly,	follow	the	steps	in
“Installing	Reporting	Services”	section	of	this	chapter	and	then	follow	the	section
titled	“Installing	the	Reporting	Services	Samples,	Exercises,	and	SQL	Server
Databases.”	To	use	the	chapter	samples	and	exercises,	you	should	install
Reporting	Services	in	native	mode	and	install	Analysis	Services	in
multidimensional	mode.

You	need	the	SQL	Server	database	engine	and	Reporting	Services	for	the	majority	of
the	book	samples	and	exercises.	For	some	of	the	optional	and	specialized	topics	later
in	the	book,	you	need	to	run	Analysis	Service	in	multidimensional	mode	and	a	full
version	of	Visual	Studio	2015	or	newer,	with	Visual	Basic	or	C#	language	support.

TIP

The	Developer	Edition	is	essentially	the	same	is	the	Enterprise	Edition	of	SQL
Server,	priced	and	scaled-down	for	desktop	use.	The	Standard	Edition	is
sufficient	for	most	business	purposes	but	lacks	a	few	enterprise	features	we
discuss	in	later	sections.

You	could	get	by	with	as	little	as	4	GB	of	memory	but	I	recommend	that	you	have	at
least	8	GB.	You	should	install	the	64-bit	version	of	SQL	Server	on	a	64-bit	operating
system.

NOTE

It	is	possible	to	install	SQL	Server	on	older	and	less-capable	equipment	with
some	additional	upgrades.	If	you	are	working	on	a	computer	that	doesn't	meet
these	recommended	specifications,	check	the	product	system	requirements	for
more	details:	https://msdn.microsoft.com/en-
us/library/ms143506(v=sql.130).aspx.	Keep	in	mind	that	the	minimum
documented	requirements	are	sufficient	for	the	software	to	load	and	services	to
run,	before	you	start	working	with	data.

The	topics	of	SQL	Server	setup	and	server	architecture	are	kind	of	a	chicken-and-egg
thing.	On	one	hand,	it's	helpful	to	understand	all	the	product	nuances	sufficiently	to
appreciate	what	all	the	options	mean.	On	the	other	hand,	I	would	like	to	give	you
enough	guidance	to	get	started	without	unnecessary	details.	This	chapter	guides	you
through	a	basic	installation	of	SQL	Server	2016	Reporting	Services,	and	reviews	some
important	considerations	for	an	enterprise	deployment.

Although	the	basic	installation	may	not	cover	some	of	the	choices	critical	in	an
enterprise	deployment,	a	development	instance	provides	an	environment	in	which
features	and	the	installation	process	itself	can	be	explored.	Such	an	environment	is
ideal	for	performing	the	exercises	and	tutorials	in	this	book.

You	explore	how	features	in	Reporting	Services	are	implemented	and	exposed.	This
information	is	foundational	for	both	administrators	and	developers.	Subsequent
chapters	build	off	concepts	explored	here.

The	reporting	life	cycle	gives	you	the	context	within	which	Reporting	Services	is
employed.	You	explore	the	various	applications	and	utilities	associated	with	Reporting
Services.

Following	this,	you	dig	a	little	deeper	into	Reporting	Services	itself	by	examining	the
architecture	of	the	Reporting	Services	Windows	service,	its	components,	and
supporting	databases.	By	the	end	of	the	chapter,	you	will	have	a	solid	understanding	of
how	all	these	pieces	come	together	to	deliver	Reporting	Services'	functionality.

This	chapter	covers	the	following	topics:

Basic	installation

Enterprise	deployment	considerations

Reporting	life	cycle

Reporting	Services	tools

Reporting	Services	Windows	service

Reporting	Services	processors	and	extensions

https://msdn.microsoft.com/en-us/library/ms143506(v=sql.130).aspx

Reporting	Services	application	databases

WHAT'S	CHANGED	IN	SQL	SERVER	2016?
If	you	have	been	using	previous	versions	of	Reporting	Services,	I	will	save	you	some
time	by	summarizing	a	few	minor	changes	to	the	installation	experience.	The	changes
are	brief	so	it	is	easy	to	keep	this	simple.	In	previous	versions	of	SQL	Server,	you
would	normally	include	the	Client	Tools	options	from	the	Feature	Selection	page	on
the	Setup	Wizard.	This	would	install	SQL	Server	Management	Studio	and	the	Visual
Studio	project	designer	add-ins	(called	Business	Intelligence	Development	Studio	or
SQL	Server	Data	Tools,	depending	on	the	product	version)	from	the	SQL	Server
installation	media.

The	SSMS	and	SSDT	client	tools	are	now	managed	as	separate	downloads	so	they	can
be	updated	frequently	and	integrated	with	multiple	versions	of	Visual	Studio.	The	new
web	portal	replaces	the	Report	Manager	web	interface	for	Reporting	Services.
Although	the	portal	has	a	different	visual	presentation,	installation	and	configuration
is	really	no	different.	You'll	just	see	a	different	report	user	interface	after	you	finish
the	installation.	Several	new	components	and	enhancements	have	been	added	to	the
Reporting	Services	feature	set	that	do	not	affect	the	standard	installation	experience
when	compared	to	prior	versions.

THE	BASIC	INSTALLATION
To	understand	the	installation	of	Reporting	Services,	it	is	important	to	have	some
knowledge	of	its	components.	In	SQL	Server	2016,	Reporting	Services	offers	two
modes:

Native	mode

SharePoint	Integrated	mode

At	its	core,	Reporting	Services	is	a	Windows	service	that	relies	on	a	pair	of	databases
hosted	by	an	instance	of	the	SQL	Server	Database	Engine.	Note	that	in	SharePoint
Integrated	mode,	Reporting	Services	in	SQL	Server	2016	runs	as	a	SharePoint	shared
service.	This	chapter	is	focused	primarily	on	Reporting	Services	Native	mode
installations.

Interaction	with	the	Reporting	Services	service	is	provided	through	applications	such
as	web	portal	or	the	SharePoint	Add-in,	and	other	applications	such	as	the	SQL	Server
Data	Tools.	These	applications,	the	SSRS	service,	and	the	report	catalog	databases	are
introduced	in	this	chapter.

With	the	basic	installation	of	Native	mode,	server-side	and	client-side	components	are
installed	on	a	single	system.	The	Reporting	Services	databases	are	also	installed	to	a
local	instance	of	the	SQL	Server	Database	Engine.	With	no	dependencies	on	other
systems,	the	basic	installation	is	often	referred	to	as	a	standalone	installation.

SQL	Server	Developer	Edition	is	a	good	choice	for	evaluation,	development	and	testing
environments.	In	addition	to	providing	access	to	the	full	suite	of	Reporting	Services
features	at	no	licensing	cost,	Developer	edition	supports	a	wider	range	of	operating
systems	than	other	production-ready	versions	of	SQL	Server.	The	operating	systems
supported	include	Windows	Server	2012,	various	editions	of	Windows	8	and,	of
course,	new	versions	of	Windows.

TIP

As	I	mentioned	at	the	beginning	of	the	chapter,	a	practical	development	machine
configuration	should	have	significantly	more	horsepower	than	the	stated
minimum	requirements.	As	a	baseline,	the	virtual	machine	I	have	is	configured
to	run	all	the	book	samples	with	optimal	performance,	has	two	processor	cores
assigned,	and	is	configured	to	use	dynamic	memory,	which	typically	uses	5–8
GB	of	RAM.

The	minimum	system	requirements	include	1	GB	of	memory.	The	basic	installation
also	requires	at	least	6	GB	of	free	storage	space	and	additional	space	for	the	system
updates	and	SQL	Server	samples.	SQL	Server	2016	is	supported	in	virtual	machine
environments	running	on	the	Hyper-V	role.

Installing	Reporting	Services
Before	performing	the	Reporting	Services	installation,	it's	a	good	idea	to	be	certain
your	system	is	up-to-date	with	the	latest	service	packs	and	Windows	updates.	You	also
need	to	be	a	member	of	the	local	Administrators	group	on	the	system	on	which	you
intend	to	perform	the	installation	or	be	prepared	to	run	the	setup	application	using
the	credentials	of	an	account	that	is	a	member	of	the	local	Administrators	group.

TIP

In	the	examples,	I	am	installing	SQL	Server	2016	Developer	Edition,	which	is
what	I	recommend	if	you	are	setting	up	a	development	or	evaluation	machine
with	a	local	instance	of	SQL	Server	and	Reporting	Services.	These	instructions
also	apply	to	Standard	and	Enterprise	Editions,	although	there	may	be	subtle
differences	in	the	setup	experience.	SQL	Server	Developer	Edition	is	available	for
free	through	the	Visual	Studio	Dev	Essentials	program.	To	sign	up	and	download
software,	go	to	https://www.visualstudio.com/en-us/products/visual-studio-
dev-essentials-vs.aspx.

To	start	the	installation,	access	the	installation	media	for	SQL	Server	2016	You	can
run	setup	from	a	DVD,	mount	an	ISO	file	as	a	logical	DVD	drive,	or	use	a	folder	or	file
share.	Figure	3.1	shows	the	SQL	Server	setup	DVD	image	mounted	as	a	logical	drive.	It
is	important	that	the	media	be	accessed	from	the	system	on	which	you	intend	to
install	the	Reporting	Services	software.	Start	the	setup	application	by	launching
SETUP.EXE,	located	at	the	root	of	the	installation	media.

Figure	3.1	SQL	Server	setup	DVD	image	mounted	as	a	logical	drive.

First	the	setup	application	checks	your	system	for	the	Microsoft	.NET	Framework	3.5
SP1	and	Windows	Installer.	If	these	are	not	present,	the	setup	application	initiates
their	installation.	If	either	the	.NET	Framework	or	Windows	Installer	is	installed	by
the	setup	application,	your	system	may	require	a	reboot.	Upon	restart,	you	need	to
relaunch	the	SQL	Server	2016	setup	application.

https://www.visualstudio.com/en-us/products/visual-studio-dev-essentials-vs.aspx

The	setup	application	displays	the	SQL	Server	Installation	Center,	as	shown	in	Figure
3.2.	The	Installation	Center	is	divided	into	several	pages,	each	providing	access	to
documentation	and	tools	supporting	various	aspects	of	the	installation	process.

Figure	3.2	SQL	Server	Installation	Center.

For	the	purposes	of	the	basic	installation,	proceed	to	the	Installation	page	by	clicking
the	appropriate	link	on	the	left	side	of	the	Installation	Center	form.	On	the
Installation	page,	shown	in	Figure	3.3,	select	the	option	“New	SQL	Server	stand-alone
installation	or	add	features	to	an	existing	installation.”	This	launches	the	SQL	Server
Setup	Wizard.

Figure	3.3	Installation	page	of	the	SQL	Server	Installation	Center.

The	first	step	the	SQL	Server	Setup	Wizard	performs	is	to	compare	your	system
against	a	set	of	“setup	support”	rules.	These	rules	determine	whether	the	system
configuration	prerequisites	for	installation	are	met.	When	the	analysis	is	complete,
the	wizard	shows	summary	information.	If	violations	are	present,	you	see	the	list	of
rules,	identifying	which	ones	require	attention.	If	there	are	no	violations,	you	can	click
the	Show	Details	button	to	see	this	list,	which	is	shown	in	Figure	3.4.

Figure	3.4	Setup	Support	Rules	page.

Clicking	the	“View	detailed	report”	link	on	the	Global	Rules	page	opens	a	new	window
with	a	detailed	report	containing	recommendations	for	addressing	any	warnings	or
violations,	as	shown	in	Figure	3.5.	After	reviewing	this	report,	you	can	close	this
window.

Figure	3.5	System	Configuration	Check	Report.

On	the	Global	Rules	page	of	the	SQL	Server	Setup	Wizard,	click	the	OK	button	to	go	to
the	Product	Key	page,	shown	in	Figure	3.6.	You	can	select	one	of	the	free	editions	of
SQL	Server	or	enter	a	product	key	for	one	of	the	other	editions.	Select	the	Evaluation
edition	or	enter	the	product	key	of	the	Developer	edition	to	proceed.

Figure	3.6	Product	Key	page.

Click	the	Next	button	to	proceed	to	the	License	Terms	page,	shown	in	Figure	3.7.

Figure	3.7	License	Terms	page.

NOTE

This	is	the	point	where	I'm	supposed	to	advise	you	to	carefully	read	the	terms	of
the	product	license	before	you	agree	to	them.	Please	read	the	fine	print	if	you	feel
so	inclined.

To	continue	with	the	installation,	check	the	box	labeled	“I	accept	the	license	terms.”
This	agreement	allows	high-level	information	about	hardware	and	SQL	Server
component	usage	to	be	sent	to	Microsoft	to	help	improve	the	product.	You	can	read
the	privacy	statement	by	clicking	the	hyperlink.	Examples	of	feature	usage	are
whether	Reporting	Services	or	other	services	are	installed,	and	the	operating	system	of
the	host	computer.

NOTE

Having	worked	with	the	SQL	Server	product	teams	at	Microsoft	over	the	years,	I
can	tell	you	that	any	usage	and	telemetry	information	is	gathered	and	sent	to
Microsoft	only	with	a	customer's	permission.	This	information	is	used	to	make
product	improvements	and	to	prioritize	feature	development.

The	usage	data	collection	is	very	small	and	not	granular.	It	does	not	count	how	often	a
feature	area	is	used,	just	whether	it	is	used	at	all.

Click	the	Next	button	to	go	to	the	Install	Setup	Files	page,	shown	in	Figure	3.8.	This
page	informs	you	that	files	will	be	installed	for	the	purposes	of	the	setup	process.
When	this	process	is	complete,	the	wizard	proceeds	to	the	next	page.

Figure	3.8	Install	Setup	Files	page.

Click	the	Next	button	to	proceed	to	the	Setup	Role	page,	within	which	you	select	a
SQL	Server	Feature	Installation,	as	shown	in	Figure	3.9.

Figure	3.9	Selecting	a	SQL	Server	Feature	Installation.

Click	the	Next	button	to	proceed	to	the	Feature	Selection	page,	within	which	you
select	the	SQL	Server	products	and	features	to	install,	as	shown	in	Figure	3.10.	For	the
basic	installation,	select	the	Reporting	Services	and	Database	Engine	Services
features.	If	you	want	to	install	other	components,	such	as	Analysis	Services,	you	can
select	these	as	well.

TIP

To	support	all	of	the	chapter	samples	and	exercises,	particularly	for	Chapters	9,
10,	and	11,	choose	the	option	to	install	Analysis	Services	in	Multidimensional
mode.

Figure	3.10	Selecting	products	and	features	to	install.

The	Feature	Selection	page	also	allows	you	to	modify	the	path	to	which	shared
components	will	be	installed.	For	the	basic	installation,	typically	this	is	left	at	the
default	location.	If	you	have	a	compelling	reason	to	change	this	location,	click	the
button	next	to	the	displayed	path,	and	select	an	appropriate	alternative	location.

TIP

The	difference	between	default	and	named	instances	are	explained	in	“The
Enterprise	Deployment”	section	later	in	this	chapter.	For	simplicity,	if	you	are
installing	SQL	Server	and	Reporting	Services	for	the	first	time	on	a
nonproduction	server	for	development	and	learning,	install	a	default	instance.

Click	the	Next	button	to	go	to	the	Instance	Configuration	page,	shown	in	Figure	3.11.
Here	you	identify	the	instance	name	for	the	Database	Engine	and	Reporting	Services
instances	selected	on	the	previous	page.	Other	SQL	Server	instances	that	are	already
installed	on	the	system	are	listed	in	the	bottom	half	of	the	page.	If	a	default	instance	is
not	already	installed,	you	can	choose	to	perform	this	installation	to	a	default	instance;
otherwise,	you	need	to	provide	an	appropriate	instance	name.

Figure	3.11	Instance	Configuration	page.

When	naming	an	instance,	it's	important	to	keep	in	mind	that	the	name	is	not	case-
sensitive	and	must	be	unique	on	the	system.	The	name	must	also	be	no	longer	than	16
characters	and	may	include	letters,	numbers,	underscores	(_),	and	the	dollar	sign	($).
The	first	character	must	be	a	letter,	and	the	instance	name	must	not	be	one	of	the	174

setup	reserved	words	listed	in	Books	Online.	In	addition,	it	is	recommended	that	the
instance	name	not	be	one	of	the	235	ODBC	reserved	words,	also	listed	in	Books
Online.

NOTE

The	Instance	Configuration	page	also	allows	you	to	enter	an	installation	ID	other
than	the	instance	name.	The	instance	ID	is	used	to	identify	installation
directories	and	registry	keys	for	the	SQL	Server	instance.	In	general,	you	should
not	alter	the	instance	ID	without	a	compelling	reason	to	do	so.

Click	the	Next	button	to	proceed	to	the	Disk	Space	Requirements	page.	Here	you	can
review	the	amount	of	space	consumed	by	the	various	components	of	the	installation.

You	will	have	the	option	to	change	service	accounts	and	collation	settings.	On	the
Service	Accounts	tab	in	the	Server	Configuration	page,	shown	in	Figure	3.12,	select	the
service	account	to	be	used	for	each	service.	For	the	local	development	installation,	it	is
generally	recommended	that	you	accept	the	defaults	and	use	the	local	service	or
(generated)	network	service	accounts	for	the	Database	Engine	and	Reporting	Services
Windows	service.	You	can	change	the	service	accounts	later,	after	the	installation.

Figure	3.12	Server	Configuration	page.

You	can	typically	skip	the	Collation	page	because	the	default	selection	is	determined
by	the	locale	configured	with	the	local	operating	system.	As	with	other	options,	it	is

generally	recommended	that	you	not	alter	the	collation	unless	you	have	a	compelling
reason	to	do	so.

Click	the	Next	button	to	proceed	to	the	Database	Engine	Configuration	page.	This	page
allows	you	to	configure	the	instance	of	the	SQL	Server	Database	Engine	you	are
installing	with	Reporting	Services.	It	is	divided	into	four	tabs:	Server	Configuration,
Data	Directories,	FILESTREAM,	and	TempDB.

On	the	Server	Configuration	tab,	shown	in	Figure	3.13,	click	the	Add	Current	User
button	so	that	you	will	be	set	up	as	an	administrator	of	the	Database	Engine	instance.
Leave	all	other	options	on	this	tab	as	they	are,	unless	you	have	a	compelling	reason	to
change	them.

Figure	3.13	Server	Configuration	tab	of	the	Database	Engine	Configuration	page.

On	the	Data	Directories	tab,	you	can	alter	various	paths	used	by	the	Database	Engine
instance.	Again,	unless	you	have	a	compelling	reason	to	make	changes,	leave	the
settings	as	they	are	configured	by	default.	You	won't	be	using	the	FILESTREAM
feature	for	the	book	samples	so	you	can	leave	the	default	setting	unless	you	plan	to
use	the	feature	for	other	reasons.

NOTE

For	simple	development	purposes,	you	can	accept	the	default	TempDB	options.	In
a	true	production	server,	the	configuration	options	on	this	page	are	crucial	for
achieving	good	performance	for	production	workloads.	The	right	settings	will
depend	on	several	factors	including	data	storage,	number	of	processor	cores,	and
memory.	For	example,	among	many	recommended	practices,	configuring	one	file
per	CPU	core	will	improve	concurrency	and	query	times.

Click	the	Next	button	to	go	to	the	Reporting	Services	Configuration	page,	shown	in
Figure	3.14.	On	this	page,	you	can	select	different	Reporting	Services	installation
options.	The	various	options	are	discussed	in	the	second	half	of	this	chapter.	For	most
basic	installations,	you	should	select	the	“Install	and	configure”	option	under
Reporting	Services	Native	Mode.	The	remaining	instructions	assume	that	you	have
selected	this	option.

Figure	3.14	Reporting	Services	Configuration	page.

Click	the	Next	button	to	go	to	the	Feature	Configuration	Rules	page.	These	rules	check
that	everything	is	in	order	before	proceeding	with	the	installation	given	the	options

you	have	selected.	As	before,	the	“View	detailed	report”	link	opens	a	separate	report.

Click	the	Next	button	to	go	to	the	Ready	to	Install	page,	shown	in	Figure	3.15.
Carefully	review	the	options	you	have	selected.	If	you	will	be	repeating	this
installation	on	other	systems,	consider	copying	the	path	of	the	INI	file	listed	at	the
bottom	of	the	page.

Figure	3.15	Ready	to	Install	page.

Click	the	Install	button	to	start	the	software	installation.	The	installation	process	can
take	quite	a	bit	of	time	to	complete.	During	this	time,	an	Installation	Progress	page
appears,	as	shown	in	Figure	3.16.	Upon	completion,	a	summary	of	the	installation
process	is	presented.

Figure	3.16	Installation	Progress	page.

Click	the	Close	button	to	complete	the	wizard	and	return	to	the	Installation	Center.
You	can	now	close	the	Installation	Center.

With	the	installation	completed,	your	final	step	should	be	to	verify	the	installation.
Open	Internet	Explorer,	and	enter	one	of	the	following	URLs:

If	you	installed	a	default	instance	on	the	local	computer,	enter
http://localhost/reports.

If	you	installed	a	named	instance,	enter	http://localhost/reports_instancename,
with	the	appropriate	substitution.	If	you	installed	on	a	different	machine,
substitute	the	server	name	for	localhost.

The	URL	may	take	a	while	to	completely	resolve	upon	this	first	use,	but	it	should	take
you	to	the	web	portal,	shown	in	Figure	3.17.

Figure	3.17	Web	portal.

You	can	also	navigate	directly	to	the	report	server	by	replacing	“Reports”	with
“ReportServer”	in	the	address	as	you	see	in	Figure	3.18.

Figure	3.18	Navigating	directly	to	the	report	server.

Of	course,	there	is	no	content	visible	in	the	web	portal	or	in	the	browser	view	of	the
report	server	because	nothing	has	been	deployed,	but	this	is	where	you	will	see
folders,	reports,	and	other	items	once	the	report	server	is	being	utilized	to	manage
content.

Installing	the	Reporting	Services	Samples,	Exercises,	and	SQL	Server
Databases
With	SQL	Server	and	Reporting	Services	installed,	you	should	install	the	Reporting
Services	samples	and	sample	databases	that	are	used	throughout	this	book.	Two
sample	databases	are	included	in	the	book	samples	available	on	this	book's	web	page
at	www.wrox.com.	The	SQL	Server	database	named	WroxSSRS2016	is	required	for	all	of
the	chapter	sample	and	exercise	projects.	The	Analysis	Services	multidimensional
database	named	“Adventure	Works	Multidimensional”	is	used	only	in	Chapters	9,	10,
and	11.

http://www.wrox.com

NOTE

Both	of	the	provided	sample	databases	are	prepared	specifically	for	the	report
samples	and	chapter	exercises	in	the	book.	The	WroxSSRS2016	database	includes
data	and	database	objects	built	from	the	Adventure	Works	Cycles	data
warehouse	database	from	Microsoft,	that	have	been	simplified	and	adapted	for
reporting	purposes.	Don't	try	to	use	other	sample	databases	in	place	of	these.

Verify	that	the	SQL	Server	Database	Engine,	Reporting	Services,	and	SQL	Server
Analysis	Services	are	running.

The	downloaded	files	from	the	book	sample	site	include	these	three	files:

WroxSSRS2016	Projects.zip

WroxSSRS2016.bak

Adventure	Works	Multidimensional.abf

Setup	is	quite	simple:

1.	 Extract	the	contents	of	the	WroxSSRS2016	Projects.zip	archive	file	to	your	C:	drive
or	a	location	of	your	choice.	When	completed,	you	should	have	a	folder	named
WroxSSRS2016.	The	contents	of	this	folder	contains	all	of	the	sample	and	exercise
projects	used	throughout	the	book.

2.	 Use	SQL	Server	Management	Studio	to	restore	the	WroxSSRS2016	database	to
your	SQL	Server	instance.	Using	the	default	restore	option	in	SSMS	will	restore	the
database	to	the	default	location	with	all	the	capabilities	needed.	Additional
information	about	restoring	a	database	from	SSMS	can	be	found	at:
https://msdn.microsoft.com/en-us/library/ms177429.aspx.

3.	 Restoring	the	Analysis	Services	sample	databases	is	recommended	and	is	required
for	the	samples	and	exercises	for	Chapters	9,	10,	and	11.	Use	SQL	Server
Management	Studio	to	restore	the	Adventure	Works	Multidimensional	database	to
your	SQL	Server	Analysis	Services	instance.	Additional	information	about	restoring
an	Analysis	Services	database	can	be	found	at:	https://msdn.microsoft.com/en-
us/library/ms188098.aspx.

https://msdn.microsoft.com/en-us/library/ms177429.aspx
https://msdn.microsoft.com/en-us/library/ms188098.aspx

THE	ENTERPRISE	DEPLOYMENT
The	basic	installation	sidesteps	many	of	the	considerations	important	to	an	enterprise
deployment	of	Reporting	Services.	As	you	have	seen,	default	selections	are	fine	for	a
basic	or	local	development	setup	but	when	planning	for	how	Reporting	Services	will
be	installed,	configured,	and	distributed	within	your	enterprise	environment,	you
should	carefully	consider	the	topics	covered	in	the	rest	of	this	section:

SQL	Server	editions

Named	instances

Topology

Modes

Installation	options

Command-line	installation

Scripting	and	automating

SQL	Server	Editions
SQL	Server	2016	comes	in	several	editions,	the	following	of	which	include	Reporting
Services:

Enterprise

Standard

Developer

Web

Express

Enterprise,	Standard,	and	Web	editions	are	the	only	editions	supported	in	a
production	environment.	The	Enterprise	edition	provides	access	to	the	full	set	of
features	available	with	Reporting	Services.	The	Standard	and	Web	editions	provide
access	to	a	reduced	feature	set.	They	cost	less	than	the	Enterprise	edition,	and	may	be
more	appropriate	for	smaller	installations.

The	Developer	edition	provides	access	to	the	same	features	available	through	the
Enterprise	edition.	The	Developer	edition	is	free	and	is	intended	for	development,
evaluation,	and	testing	environments	only.

The	Web	edition	supports	a	reduced	feature	set,	even	more	so	than	the	Standard
edition,	and	reduced	capacity	as	may	be	appropriate	for	small-scale	or	web-based
deployments.

Finally,	the	Express	edition	is	a	highly	restricted	edition	of	SQL	Server	with	limited

support	for	Reporting	Services.	This	edition	is	freely	available,	but	its	limitations
make	it	unlikely	to	be	used	for	anything	other	than	highly	specialized	needs.

Default	and	Named	Instances
Instance	planning	is	an	essential	part	of	SQL	Server	deployment.	A	SQL	Server
instance	is	a	virtually	self-contained,	separate	installation	of	SQL	Server
encompassing	any	combination	of	services.	Separate	instances	isolate	database
servers	and	other	services	for	security	and	administration	purposes.	Each	instance	can
be	used	as	a	sandbox	for	testing	and	deployment	build	planning.

The	components	within	an	instance	run	as	separately	managed	services	that	share
some	system	resources.	Each	instance	can	have	any	combination	of	services.	For
example,	one	instance	might	include	the	SQL	Server	relational	engine	and	Analysis
Services	and	another	instance	might	include	the	relational	engine	and	Reporting
Services.

Figure	3.19	shows	the	filesystem	folders	created	by	multiple	instances	of	SQL	Server.
Each	folder	is	prefixed	with	the	abbreviated	service	name	and	postfixed	with	the
instance	name.	Additional	folders	with	SQL	Server	version	numbers	are	created	for
backward	version	compatibility.	In	this	example,	SQL	Server	was	installed	three
different	times.	The	default	instance	is	named	MSSQLSERVER,	which	includes	all	the
relational	engine	and	Reporting	Services.	An	instance	named	SSAS_TABULAR
includes	Analysis	Services.	Another	instance	named	INSTANCE2	includes	the
relational	engine	and	Reporting	Services.	The	two	Reporting	Services	instances	are
indicated	in	Figure	3.19.

Figure	3.19	The	two	Reporting	Services	instances.

More	than	one	instance	of	Reporting	Services	can	be	installed	on	a	single	server.	Each
instance	runs	independently	of	the	others	and	may	be	a	different	version	and/or
edition	of	SQL	Server.	Each	has	its	own	Windows	service,	its	own	code	base,	and	its
own	pair	of	Reporting	Services	databases	with	which	it	interacts.	These	databases	may
be	housed	on	separate	SQL	Server	Database	Engine	instances	or	on	a	shared	instance,
so	long	as	each	database	is	assigned	a	unique	name.

To	distinguish	between	the	Reporting	Services	instances	on	a	server,	each	is	assigned
a	name,	unique	on	that	system.	This	is	called	the	instance	name,	and	an	instance	with
a	name	assigned	to	it	is	called	a	named	instance.	In	addition	to	named	instances,	one
instance	on	a	given	server	may	be	assigned	no	instance	name.	This	is	called	the
default	instance.	When	only	one	instance	is	installed	to	a	server,	it	is	often	a	default
instance.	Figure	3.20	demonstrates	how	instance	names	are	translated	to	a	web

address	for	the	web	portal.	In	this	example	a	web	browser	is	open	to	the	default
instance	web	portal	and	another	browser	window	is	open	to	the	INSTANCE2	web
portal.

Figure	3.20	A	named	instance	and	a	default	instance	open	in	browser	windows.

Multiple	instances	on	a	single	server,	whether	all	named	or	a	combination	of	named
instances	and	a	default	instance,	can	be	practical	for	supporting	the	migration	of	a
Reporting	Services	instance	from	SQL	Server	2008	or	SQL	Server	2008	R2	to	SQL
Server	2016	when	server	hardware	is	limited.	Multiple	instances	can	also	be	a
convenient	way	to	minimize	the	licensing	requirements	associated	with	a	deployment.
That	said,	historically	it	has	been	recommended	that	a	single	Reporting	Services
instance,	whether	named	or	default,	should	be	deployed	to	a	production	server	for	the
optimal	allocation	of	resources	and	overall	stability.

Topology
Topology	refers	to	how	Reporting	Services	components	are	distributed	among	servers
while	presenting	users	with	unified	access	to	the	service's	features.	The	emphasis	is
on	the	Reporting	Services	Windows	service	and	the	Reporting	Services	databases,	as

opposed	to	the	client	tools.	Reporting	Services	provides	support	for	two	generalized
topologies:	standard	and	scale-outs.

In	a	standard	topology,	the	Reporting	Services	Windows	service	is	installed	on	a
system.	It	interacts	with	a	pair	of	Reporting	Services	databases	hosted	locally	or
remotely	and	dedicated	for	use	by	this	one	instance	of	Reporting	Services.	The	basic
installation	performed	at	the	beginning	of	this	chapter	is	an	example	of	a	standard
topology.

With	a	scale-out	topology,	in	Native	mode,	multiple	instances	of	the	Reporting
Services	Windows	service	are	installed	across	various	servers.	In	SharePoint
Integrated	mode,	the	Reporting	Services	service	runs	as	a	shared	service	on	multiple
nodes	of	the	SharePoint	farm.

In	both	types	of	scale-out	topologies,	these	Reporting	Services	instances	share	a	pair
of	Reporting	Services	databases.	By	sharing	these	databases,	each	server	(called	a
node)	hosting	the	Reporting	Services	service	has	access	to	the	same	content	and
security	configuration	as	the	other	nodes	within	the	scale-out	topology.	If	load-
balancing	hardware	or	software	is	available	on	the	network,	some	or	all	of	the	nodes
in	the	topology	can	be	presented	to	end	users	as	a	single	resource,	but	with	greater
and	more	flexible	capacity	than	is	available	through	a	standard	deployment.	Other
nodes	within	the	scale-out	topology	can	be	configured	to	be	dedicated	to	scheduled
processing,	removing	this	burden	from	other	nodes	in	the	environment.

As	you	are	deciding	between	a	standard	and	scale-out	topology,	it	is	important	to	note
that	scale-outs	are	supported	with	only	the	Enterprise	edition	of	the	product.	Setting
up	the	scale-out	requires	additional	configuration	following	the	standard	installation.

Finally,	if	you	are	considering	a	scale-out	topology	in	pursuit	of	higher	availability,
you	might	want	to	consider	implementing	the	Reporting	Services	databases	on	a
failover	cluster.	It's	important	to	keep	in	mind	that	although	the	SQL	Server	Database
Engine	supports	failover	clustering,	and	Reporting	Services	can	interact	with
databases	hosted	on	a	cluster,	the	Reporting	Services	service	itself	does	not	have	any
clustering	capabilities.

Modes
Reporting	Services	runs	in	one	of	two	modes:	Native	or	SharePoint	Integrated.	In
Native	mode,	Reporting	Services	manages	its	content	using	its	own	internal,	or
“native,”	functionality.

Reporting	Services	deployments	using	Enterprise,	Developer	or	Standard	editions	can
run	in	SharePoint	Integrated	mode.	In	this	mode,	content	management	is	handled
through	SharePoint.	Native	content	management	is	performed	in	the	Reporting
Services	web	portal.

SharePoint	Integrated	mode	is	an	option	for	organizations	that	want	to	leverage
SharePoint	as	their	enterprise	content-management	solution	and	alerting	for	reports.

However,	Integrated	mode	has	some	limitations,	such	as	the	lack	of	support	for	linked
reports.

For	organizations	that	want	to	run	Reporting	Services	in	Native	mode	but	still	want	to
display	Reporting	Services	content	through	SharePoint,	the	Reporting	Services	web
parts	provide	an	alternative	to	SharePoint	Integrated	mode.

Installation	Options
During	installation,	you	are	presented	with	three	Reporting	Services	configuration
options.	You	can	install	Reporting	Services	in	Native	mode	using	a	default
configuration,	in	SharePoint	Integrated	mode	also	using	a	default	configuration,	or	in
a	minimally	configured	mode	called	a	files	only	installation.

The	Native	with	default	configuration	option	is	available	only	if	you	are	installing
Reporting	Services	and	the	Database	Engine	as	part	of	the	same	installation	process.
These	installation	options	leave	Reporting	Services	in	an	operational	state	following
the	completion	of	the	setup	process,	although	not	all	Reporting	Services	features
(such	as	the	unattended	execution	account	and	e-mail	delivery)	are	configured	upon
completion.	If	you	are	installing	Reporting	Services	using	SharePoint	Integrated
mode,	there	are	two	administrative	components	to	the	installation	and	configuration
effort.	The	integrated	report	server	component	is	simply	installed	from	the	SQL	Server
Installation	Center.	That	part	is	easy.	After	that,	the	remaining	configuration	is
performed	in	SharePoint	Central	Admin.	The	SharePoint	farm	and	services
configuration	is	beyond	the	scope	of	this	book.

NOTE

I've	elected	not	to	cover	SharePoint	services	configuration	in	this	book	for	a	few
important	reasons.	In	the	previous	edition,	for	SSRS	2012,	we	did	include	the
basic	setup	and	configuration	for	SharePoint	2013	Enterprise	Server.	There	is
much	to	consider	when	building	and	configuring	a	SharePoint	farm	that	we
simply	cannot	do	justice	to	within	the	context	of	a	Reporting	Service	book.	In
particular,	configuring	security	and	data	sources	can	be	quite	complex,	with
several	different	options.	When	this	chapter	was	written,	SharePoint	2016	was	in
early	preview	edition	and	the	Reporting	Services	integration	was	still	in	flux,
with	integration	improvements	planned.

For	enterprise	deployments,	“Reporting	Services	–	Native”	installation	is	the	option
most	frequently	used.	With	the	install-only	option,	the	server	components	are
installed	but	not	configured.	Following	installation,	you	are	required	to	use	the
Reporting	Services	Configuration	tool	to	configure	the	Reporting	Services	databases
and	URLs	for	the	Reporting	Services	web	service	and	Report	Manager	before	the
service	can	be	made	operational.

TIP

If	you	do	not	have	a	specific	requirement	to	support	Reporting	Services	running
in	SharePoint	integrated	mode,	I	recommend	that	you	use	the	Native	mode
option.	It	is	simpler,	easier	to	support,	and	will	typically	perform	better.	Just	to
be	clear,	Reporting	Services	does	work	in	SharePoint	integrated	mode	and	there
are	advantages	if	you	have	an	existing	SharePoint	environment,	but	the
configuration	can	be	quite	complex.

THE	REPORTING	LIFE	CYCLE
The	reporting	life	cycle	is	often	described	as	consisting	of	three	phases.	A	report	is
designed	and	developed	in	the	authoring	phase,	made	accessible	to	end	users	in	the
management	phase,	and	placed	in	the	hands	of	end	users	in	the	delivery	phase.

Authoring
The	authoring	phase	of	the	reporting	life	cycle	starts	with	gathering	requirements
through	formal	and	informal	processes.	These	requirements	then	drive	the	design	of
queries	that	provide	data	for	the	report.	Data	is	integrated	with	charts,	tables,
matrices,	or	other	presentation	elements	to	form	the	basic	report.	Formatting	and
layout	adjustments	are	then	applied	to	produce	a	draft	report	that	is	validated	for
accuracy	and	consistency	with	the	requirements	before	being	published	to	a
centralized	management	system	in	preparation	for	end-user	consumption.

Report	authoring	is	handled	by	two	general	categories	of	workers:

End-user	authors	develop	reports	as	a	secondary	part	of	their	job.	These	folks	typically
belong	to	the	non-IT	part	of	an	organization	and	tend	to	require	less	technical,	more
user-friendly	report	authoring	tools.	These	tools	present	data	in	a	manner	that	is	easy
to	interpret	and	incorporate	into	the	report	design.	They	make	report	layout	and
formatting	a	relatively	simple	or	even	automatic	task.

Reporting	specialists	focus	on	report	development	as	a	primary	part	of	their	job.	These
folks	often	reside	within	the	IT	department.	Reporting	specialists	demand	precise
control	over	query	and	report	design.	Their	authoring	tools	tend	to	be	more	technical,
providing	access	to	the	complete	array	of	features	available	through	the	reporting
system.

Of	course,	not	every	report	author	falls	neatly	into	one	of	these	groups.	The	end-user
author	and	the	reporting	specialist	represent	two	ends	of	a	spectrum,	with	many
authors	leaning	toward	one	end	or	the	other.	A	variety	of	report	development	tools	are
needed	to	address	the	full	range	of	needs	along	this	spectrum.

Management
In	the	management	phase	of	the	reporting	life	cycle,	published	reports	are	organized,
secured,	and	configured	for	end-user	access.	Resources	employed	by	multiple	reports
and	specialized	features,	such	as	subscription	delivery	and	caching,	are	configured.
These	activities	are	collectively	referred	to	as	content	management	and	are	often
handled	to	some	degree	by	both	authors	and	administrators.

The	report	management	system	itself	requires	configuration	and	ongoing
maintenance	to	ensure	its	continued	operation.	System	management	activities	are
often	the	exclusive	domain	of	administrators.

Delivery
After	it	is	deployed	and	configured,	a	report	is	ready	for	end-user	consumption	in	the
delivery	phase	of	the	reporting	life	cycle.	End	users	may	view	reports	on	demand	or
may	request	that	reports	be	delivered	to	them	on	a	predefined	schedule.	These	are
called	the	pull	and	push	methods	of	report	delivery,	respectively.	The	key	to	successful
report	delivery	is	flexibility.

REPORTING	SERVICES	TOOLS
Reporting	Services	supports	the	full	reporting	life	cycle	using	two	different	report
authoring	tools	for	paginated	reports	and	a	modern	desktop	authoring	tool	for	mobile
reports.

Report	Designer	exposes	the	full	range	of	available	report-development	features,
giving	report	specialists	precise	control	over	their	reports.	The	application	is	accessible
through	the	SQL	Server	Data	Tools	(SSDT),	which	is	a	collection	of	specialized
designers	available	through	Visual	Studio.	SSDT	is	installed	as	a	separate	download
and	integrates	with	existing	installations	of	Visual	Studio	2012	and	newer.	The	new
SSDT	is	an	“evergreen”	application,	which	means	that	it	will	be	updated	frequently
and	will	continue	to	work	with	newer	versions	of	Visual	Studio.

Report	Designer	is	divided	into	two	tabs:	Design	and	Preview.	Each	of	these	tabs
provides	access	to	interfaces	supporting	query	development,	report	layout	and
formatting,	and	validation.	Wizards	and	dialogs	accessible	through	Report	Designer
provide	support	for	the	development	of	highly	customized,	sophisticated	reports.	In
the	following	chapters,	you	will	gain	deep	exposure	to	these	features.

Report	Builder
Report	Builder	is	a	report	designer	with	capabilities	similar	to	those	in	the	SSDT
Report	Designer,	but	it	has	more	of	a	Microsoft	Office	look	and	feel.	Rather	than	an
end-to-end	solution	development	platform	like	SSDT,	Report	Builder	is	a	single
document-centric	report	design	tool	created	with	the	self-service	report	user	in	mind.
It	is	available	as	a	standalone	download,	which	is	initiated	for	a	user	upon	first	use
from	the	web	portal	web	interface.

Web	Portal
The	modern	replacement	for	the	previous	Report	Manager	web	interface,	web	portal
is	a	content-management	and	report	presentation	tool	that	provides	access	to	reports
and	other	items	through	an	intuitive,	folder-based	navigational	structure.	It	is
securable,	easy	to	navigate,	and	allows	users	to	customize	their	experience	using
favorites	and	familiar	content	browsing	techniques.

It	is	important	to	note	that	web	portal	is	available	only	with	Reporting	Services
instances	running	in	Native	mode.	For	instances	running	in	SharePoint	Integrated
mode,	content	management	and	report	display	functionality	are	provided	through
SharePoint.

SharePoint	Libraries	and	Web	Parts
For	Reporting	Services	instances	running	in	SharePoint	Integrated	mode,	reports	and
other	Reporting	Services	items	are	presented	as	part	of	standard	SharePoint	libraries

and	are	managed	as	SharePoint	content.	The	Report	Viewer	web	part,	installed	during
the	setup	of	SharePoint	integration,	allows	reports	from	instances	in	this	mode	to	be
presented	through	SharePoint.

Access	to	Reporting	Services	content	through	SharePoint	is	not	the	exclusive	domain
of	instances	running	in	SharePoint	Integrated	mode.	Native-mode	instances	can	also
present	content	using	an	older	version	of	Reporting	Services	SharePoint	2.0	web	parts.
The	Report	Explorer	2.0	and	Report	Viewer	2.0	web	parts	allow	reports	from	Native-
mode	instances	to	be	displayed	within	a	SharePoint	site.

Reporting	Services	Configuration	Manager
The	Reporting	Services	Configuration	Manager	lets	you	access	system-critical	settings.
In	addition,	the	tool	provides	support	for	certain	administrative	tasks,	such	as	creating
the	Reporting	Services	application	database	and	backing	up	and	restoring	encryption
keys.	Chapter	22	covers	these	tasks	and	the	use	of	the	Reporting	Services
Configuration	Manager	to	perform	them.

SQL	Server	Management	Applications
Because	Reporting	Services	is	a	member	of	the	SQL	Server	product	suite,	it	is
supported	through	the	standard	SQL	Server	management	applications.	SQL	Server
Management	Studio	allows	you	to	perform	several	administrative	tasks,	including
managing	shared	schedules	and	roles.	Configuration	of	the	Reporting	Services
Windows	service	is	supported	through	the	SQL	Server	Configuration	Manager,
although	some	of	this	functionality	is	redundant	with	the	Reporting	Services
Configuration	Manager.

Command-Line	Utilities
To	assist	with	the	automation	of	management	tasks,	Reporting	Services	comes	with	a
series	of	command-line	utilities.	Table	3.1	describes	each	utility	and	its	default
location.

Table	3.1	Command-Line	Utilities

UTILITY DESCRIPTION DEFAULT	LOCATION

Rs.exe Executes	VB.NET	scripts,
automating	administrative
tasks.	This	tool	may	be	used
with	Reporting	Services
installations	not	running	in
SharePoint	Integrated	mode.

<drive>:\Program	Files\Microsoft

SQL	Server\110\Tools\Binn\rs.exe

Rsconfig.exe

Modifies	connection
information	for	the	Reporting
Services	database	and	sets	the

<drive>:\Program	Files\Microsoft

SQL

Server\110\Tools\Binn\rsconfig.exe

default	execution	account
used	by	Reporting	Services	to
connect	to	data	sources	when
no	credentials	are	provided.

Rskeymgmt.exe Manages	the	encryption	keys
used	by	Reporting	Services.	It
is	also	used	to	join	a
Reporting	Services
installation	with	another
Reporting	Services
installation	to	form	a	“scale-
out”	deployment.

<drive>:\Program	Files\Microsoft

SQL

Server\110\Tools\Binn\rskeymgmt.exe

NOTE

At	the	time	of	this	writing,	there	is	an	effort	underway	to	create	a	comprehensive
set	of	PowerShell	CmdLets	for	Reporting	Services,	with	an	interim	project	that
currently	exists	in	GitHub.	Since	there	is	a	good	chance	this	location	will	change
by	the	time	you	read	this,	I'll	direct	you	to	a	post	on	my	blog	where	I'm	tracking
the	progress	of	this	effort.	The	post	may	be	found	here:
https://sqlserverbiblog.wordpress.com/2016/07/29/reporting-services-2016-

powershell-cmdlets/.

HTML	Viewer
Reporting	Services	delivers	web	content	to	HTML5-compliant	browsers	to	provide
several	interactive	features,	including	a	toolbar,	document	maps,	fixed	table	headers,
and	table	sorting.	Collectively,	these	script-based	features	are	called	the	HTML
Viewer.

To	ensure	compatibility	with	the	HTML	Viewer,	it	is	recommended	that	you	use	the
latest	version	of	Internet	Explorer,	Edge	Browser,	or	Google	Chrome.	Prior	versions	of
Reporting	Services	had	issues	with	web	browsers	other	than	newer	versions	of
Internet	Explorer	but	most	popular	modern	browsers	are	now	supported.	Web
browsers	can	be	used	to	view	Reporting	Services	reports	rendered	to	HTML,	such	as
Firefox,	Chrome,	and	Safari.	Refer	to	Books	Online	for	details	on	which	features	are
supported	by	which	browsers.

Report	Viewer	Control
The	Report	Viewer	control	lets	you	display	Reporting	Services	reports	within	custom
applications.	The	Report	Viewer	control	is	actually	two	controls—one	for	use	in	web
applications,	and	the	other	for	Windows	Forms	applications.	Each	supports	the	same
functionality.

https://sqlserverbiblog.wordpress.com/2016/07/29/reporting-services-2016-powershell-cmdlets/

NOTE

Don't	confuse	the	Report	Viewer	control	with	the	SharePoint	Report	Viewer	web
part	and	the	Report	Viewer	2.0	web	part	used	to	support	the	display	of	Reporting
Services	content	within	SharePoint.

The	Report	Viewer	control	runs	in	one	of	two	modes.	In	the	default	Remote
Processing	mode,	reports	are	rendered	by	a	Reporting	Services	instance	and	displayed
through	the	control.	This	is	the	preferred	mode,	because	the	full	feature	set	of
Reporting	Services	is	available,	and	the	processing	power	of	the	Reporting	Services
server	can	be	employed.

In	situations	in	which	a	Reporting	Services	server	is	unavailable	or	data	must	be
retrieved	directly	through	the	client	system,	the	Report	Viewer	control	can	be	run	in
Local	Processing	mode.	In	this	mode,	the	application	retrieves	data	and	couples	it	with
the	report	definition	to	produce	a	rendered	report	on	the	host	system	without	the
support	of	a	Reporting	Services	server.	Not	all	Reporting	Services	features	are
available	when	the	control	is	executed	in	Local	Processing	mode.

Integrating	reports	with	custom	applications	through	the	Report	Viewer	control	is
covered	in	detail	in	Chapter	15.

Reporting	Services	Web	Service
To	support	specialized	application	integration	needs,	Reporting	Services	offers	a	web
service	through	which	reports	can	be	both	managed	and	delivered.	As	described	in
Table	3.2,	the	web	service	has	several	endpoints	that	provide	access	to	various
programmatic	classes.

Table	3.2	Web	Service	Endpoints

ENDPOINT DESCRIPTION

ReportExecution2005 Provides	programmatic	access	to	Reporting	Services	report
processing	and	rendering	functionality.	Available	in	both
Native	and	SharePoint	Integrated	modes,	although	different
URLs	are	used.

ReportService2010 Provides	programmatic	access	to	Reporting	Services	report
management	functionality.	Available	in	both	Native	and
SharePoint	Integrated	modes.

ReportService
Authentication

Provides	support	for	user	authentication	when	Reporting
Services	runs	in	SharePoint	Integrated	mode	and	SharePoint
is	configured	for	forms	authentication.

A	special	feature	of	the	Reporting	Services	web	service	is	URL	access,	in	which	a
rendered	report	is	retrieved	through	a	relatively	simple	call	to	a	URL.	Parameters	and
rendering	options	are	supplied	in	the	URL's	query	string	to	affect	the	resulting	report.

Subscriptions
Subscriptions	allow	you	to	put	reports	into	the	hands	of	your	users	based	on	a
predefined	schedule	or	following	an	event,	such	as	the	update	of	data.	Reporting
Services	supports	two	types	of	subscriptions:

Standard	subscriptions	render	a	report	in	a	specific	format	with	predefined	parameter
values	and	deliver	them	to	a	single,	preset	location.	This	type	of	subscription	meets
the	needs	of	many	report	consumers,	giving	them	sufficient	freedom	to	determine
how,	when,	and	where	they	will	view	reports.

Data-driven	subscriptions	support	even	more	flexibility,	and	are	better	suited	for
managing	delivery	of	reports	to	a	large	number	of	users	with	varying	needs.	These
subscriptions	are	established	with	a	reference	to	a	custom	relational	table	holding	a
record	for	each	report	recipient.	Each	record	in	the	table	may	specify	rendering	and
delivery	options	as	well	as	report	parameter	values.	Through	data-driven
subscriptions,	a	single	subscription	can	be	tailored	to	the	specific	needs	of	many
individual	consumers.

By	default,	subscription	delivery	is	limited	to	e-mail	transmittal	or	file	share	drop-off.
Additional	delivery	options	are	supported	through	the	integration	of	custom	delivery
extensions,	as	discussed	in	Chapter	16.

REPORTING	SERVICES	WINDOWS	SERVICE
The	preceding	section	looked	at	the	applications	through	which	authors,
administrators,	and	end	users	interact	with	Reporting	Services.	This	section	covers	the
basic	architecture	of	the	Reporting	Services	service	itself.

In	Native	mode,	the	service	is	a	Windows	service.	For	SharePoint	Integrated	mode,
SQL	Server	2012	introduced	deeper	integration	with	SharePoint	than	previous	product
versions;	the	service	runs	as	a	shared	service	directly	as	part	of	SharePoint.

Interaction	with	the	service	takes	place	through	HTTP	and	WMI	interfaces.	The	HTTP
interfaces	provide	access	to	the	core	report	management	and	delivery	functionality	of
Reporting	Services,	and	the	WMI	interface	provides	direct	access	to	service
management	functionality	in	Native	mode.	SharePoint	integrated	mode	in	SSRS	2016
integrates	its	service	configuration	directly	into	the	SharePoint	configuration	pages.
External	configuration	files	and	application	databases	support	the	service.	Figure	3.21
shows	these	interfaces	and	features.

Figure	3.21	SSRS	services	and	dependencies.

The	following	sections	explore	these	aspects	of	the	Reporting	Services	Windows
service:

HTTP.SYS	and	the	HTTP	Listener

The	security	sublayer

Web	portal	and	the	web	service

Core	processing

Service	management

Configuration	files

WMI	and	the	RPC	interface

HTTP.SYS	and	the	HTTP	Listener
When	an	HTTP	request	is	sent	to	the	Reporting	Services	server	in	Native	mode,	the
request	is	first	received	by	the	server	operating	system	through	the	HTTP.SYS	driver.
HTTP.SYS	is	responsible	for	managing	a	connection	with	the	requestor	and	routing
HTTP	communications	to	the	appropriate	application	on	the	server.

URL	reservations	recorded	in	the	Registry	by	Reporting	Services	provide	the
instructions	HTTP.SYS	requires	to	route	communications	to	Reporting	Services.	The
HTTP	Listener	feature	of	the	Reporting	Services	Windows	service	receives	the
rerouted	requests	from	HTTP.SYS	and	engages	either	the	Web	portal	or	the	web
service	application	it	hosts.

Reporting	Services	in	Native	mode	does	not	use	Internet	Information	Server	(IIS),
Microsoft's	web	server.	This	simplifies	the	installation	and	management	requirements
for	Reporting	Services.

Although	Reporting	Services	does	not	depend	on	or	interact	with	IIS,	you	can	still	run
IIS	on	the	Reporting	Services	server	if	you	have	some	other	need	for	it.	So	long	as
URL	reservations	recorded	by	the	two	do	not	conflict,	both	Reporting	Services	and	IIS
can	even	communicate	over	the	same	TCP	ports.

NOTE

The	one	exception	is	that	IIS	5.1	and	Reporting	Services	cannot	share	TCP	ports
on	32-bit	Windows	XP.	If	you	have	this	configuration,	you	need	to	alter	the	URL
reservations	to	use	different	TCP	port	numbers.	You	can	alter	the	Reporting
Services	reservations	using	the	Reporting	Services	Configuration	Manager,	as
described	in	Chapter	22.

The	Security	Sublayer
As	requests	are	received,	the	HTTP	Listener	hands	them	over	to	the	Reporting
Services	security	sublayer.	The	sublayer	is	responsible	for	determining	the	requestor's
identity	and	then	determining	if	the	user	has	the	required	rights	for	the	request	to	be
fulfilled.	These	steps	are	called	authentication	and	authorization.

Reporting	Services	in	SharePoint	Integrated	mode	plugs	into	the	SharePoint	site
authentication	mechanisms.

The	Reporting	Services	security	sublayer	is	implemented	through	a	component	called
a	security	extension.	The	extension	handles	the	mechanics	of	authentication	and
authorization	and	exposes	a	standard	set	of	interfaces	for	Reporting	Services	to	call.
Various	security	extensions	can	be	used	with	Reporting	Services,	but	Reporting
Services	deployment	can	be	configured	to	use	only	one	at	a	time.

Reporting	Services	in	Native	mode	comes	preconfigured	with	the	Windows-integrated
security	extension.	This	extension	authenticates	users	based	on	their	Windows
credentials	and	supports	four	mechanisms	for	exchanging	credentials,	called
authentication	types:

Kerberos	is	the	preferred	mechanism	for	authentication	if	the	feature	is	supported
within	the	domain.	Kerberos	is	highly	secure.	If	delegation	and	impersonation	are
enabled,	Kerberos	can	be	used	to	allow	Reporting	Services	to	impersonate	the	end
user	when	querying	an	external	data	source.

NT	Lan	Manager	(NTLM)	employs	a	challenge-response	mechanism	to	authenticate
end	users.	This	is	a	secure	but	limited	method	of	authentication	in	that	impersonation
and	delegation	are	not	supported.

The	Negotiate	authentication	type	is	the	default	authentication	type	of	the	Windows
Integrated	Security	extension.	With	this	authentication	type,	Kerberos	is	used	if
available.	Otherwise,	NTLM	is	used.

Basic	authentication	is	the	least	secure	of	the	authentication	types.	With	Basic
authentication,	user	credentials	are	passed	between	the	client	and	Reporting	Services
in	plaintext.	If	you	are	using	Basic	authentication,	you	should	consider	implementing

a	Secure	Sockets	Layer	(SSL)	certificate	to	encrypt	your	HTTP	communications.

Regardless	of	whether	the	default	or	a	custom	security	extension	is	used,	as	soon	as
identity	is	established,	the	user's	rights	to	perform	a	requested	action	must	be	verified.
(Closer	to	the	actual	sequence	of	events,	the	user	is	authenticated,	and	the	request	is
passed	directly	or	indirectly	to	the	web	service,	which	then	calls	back	to	the	security
extension	for	authorization.)	Like	many	other	Microsoft	products,	authorization	in
Reporting	Services	is	based	on	role	assignments.	As	roles	are	created,	the	rights	to
perform	system-	and	item-level	tasks	are	assigned	to	a	role.	Users	are	then	made
members	of	a	role,	providing	the	linkage	required	to	determine	whether	a	user	is
authorized	to	perform	a	requested	task.

Web	Portal	and	the	Web	Service
All	requests	sent	via	HTTP	are	targeted	to	the	web	portal	or	web	service	applications.
The	functionality	of	these	applications	is	outlined	in	the	“Reporting	Services	Tools”
section	earlier	in	this	chapter.

What's	important	in	the	context	of	this	discussion	is	to	understand	that	both	ASP.NET
applications—web	portal	and	the	Reporting	Services	web	service—are	hosted	from
within	the	Reporting	Services	Windows	service	(with	no	dependencies	on	IIS,	as
discussed	a	moment	ago).	Both	operate	in	their	own	application	domains.	This	allows
the	Windows	service	to	manage	these	as	independent	applications	(despite	web
portal's	functional	dependency	on	the	web	service).	The	benefit	is	that	problems
within	an	application	domain	can	be	isolated.	The	Windows	service	can	respond	by
starting	a	new	instance	of	the	application	domain	while	dissolving	the	problem
instance	of	the	application	domain.

Core	Processing
Reporting	Services'	core	processing	features—scheduling,	subscription	management,
delivery,	and	report	processing—are	performed	by	a	collection	of	components	hosted
within	the	Reporting	Services	service.	Although	not	based	on	ASP.NET,	these
components	are	managed	as	a	separate	application	domain	within	the	service.	The
“Reporting	Services	Processors	and	Extensions”	section	later	in	this	chapter	explores
these	components	in	more	detail.

Service	Management
Much	goes	on	within	Reporting	Services.	To	ensure	that	resources	are	available	and
the	service	is	working	properly,	a	collection	of	internal	service	management	features	is
implemented.	Although	not	truly	a	single	entity,	these	can	be	thought	of	collectively
as	a	service	management	sublayer.

One	critical	feature	of	the	sublayer	is	application	domain	management.	As	mentioned,
web	portal,	the	web	service,	and	core	processing	features	are	hosted	within	the
Reporting	Services	Windows	service	as	three	separate	application	domains.

Occasionally,	problems	within	these	arise.	The	service	management	sublayer's
application-domain	management	feature	monitors	for	these	problems	and	recycles
the	affected	application	domains.	This	helps	ensure	the	overall	stability	of	the
Reporting	Services	Windows	service.

Another	critical	feature	of	this	sublayer	is	memory	management.	Report	processing
can	be	memory-intensive.	The	Reporting	Services	service	monitors	memory	pressure
and	responds,	if	needed,	by	temporarily	moving	portions	of	large	requests	out	of
memory	to	disk,	while	small	requests	proceed	unaffected.	Much	of	this	is	achieved
through	dynamic	memory	allocation	and	the	use	of	disk	caching	in	memory-
constrained	situations.	The	Reporting	Services	memory	management	model	is
outlined	in	Chapter	22.

Configuration	Files
Reporting	Services'	internal	and	external	features	are	controlled	by	collections	of
parameters	recorded	in	configuration	files.	Configuration	files	are	XML	documents
that	follow	a	prescribed	structure	containing	information	governing	the	behavior	of
various	components	of	the	Reporting	Services	Windows	service.	Table	3.4	lists	the
most	critical	of	these	configuration	files.

Table	3.4	SSRS	configuration	files

CONFIGURATION	FILE DESCRIPTION DEFAULT	LOCATION

ReportingServicesService.exe.config Contains
settings	affecting
tracing	and
logging	by	the
Reporting
Services
Windows
service.

<drive>:\Program

Files\Microsoft	SQL

Server\MSRS13.

<instancename>\Reporting

Services\ReportServer\Bin

RSReportServer.config Contains
settings	affecting
numerous
aspects	of
Reporting
Services.	This	is
the	primary
configuration
file	for
Reporting
Services
functionality.

<drive>:\Program

Files\Microsoft	SQL

Server\MSRS13.

<instancename>\Reporting

Services\ReportServer

RSSrvPolicy.config Contains <drive>:\Program

settings
regulating	code
access	security
policies	for	the
Reporting
Services
extensions.

Files\Microsoft	SQL

Server\MSRS13.

<instancename>\Reporting

Services\ReportServer

RSMgrPolicy.config Contains
settings
regulating	code
access	security
policies	for	web
portal.

<drive>:\Program

Files\Microsoft	SQL

Server\MSRS13.

<instancename>\Reporting

Services\ReportManager

WMI	and	the	RPC	Interface
Microsoft's	Windows	Management	Instrumentation	(WMI)	technology	lets	you
consistently	manage	devices	and	applications	running	on	Windows	platforms.	The
Reporting	Services	Windows	service	exposes	itself	to	WMI	by	registering	two	classes
with	the	local	WMI	Windows	service.	These	classes	expose	properties	and	methods
that	the	WMI	service	makes	available	to	administrative	applications.

The	first	of	the	two	classes	registered	by	Reporting	Services,
MSReportServer_Instance,	provides	basic	information	about	the	Reporting	Services
installation,	including	edition,	version,	and	mode.

The	second	class,	MSReportServer_ConfigurationSetting,	provides	access	to	many	of
the	settings	in	the	RSReportServer.config	configuration	file	and	exposes	a	host	of
methods	supporting	critical	administrative	tasks.	Administrative	interfaces	such	as
the	Reporting	Services	Configuration	tool	leverage	this	provider	for	their
functionality.

NOTE

Developers	can	also	take	advantage	of	these	and	other	WMI	interfaces.	The	chief
difficulty	is	making	sense	of	the	namespace	organization	within	WMI.	The	WMI
Code	Creator	utility,	available	from	the	Microsoft	website,	is	an	excellent	tool	for
exploring	the	WMI	namespaces	and	the	properties	and	methods	exposed	through
each.

A	remote	procedure	call	(RPC)	interface	provided	by	the	Reporting	Services	service
acts	as	a	bridge	between	the	WMI	and	Reporting	Services	Windows	service.	Through
this	bridge,	calls	against	the	registered	classes	received	by	the	WMI	service	are	relayed
to	Reporting	Services.

REPORTING	SERVICES	PROCESSORS	AND
EXTENSIONS
In	the	“Reporting	Services	Tools”	section	of	this	chapter,	you	looked	inside	the
Reporting	Services	Windows	service.	The	service's	core	processing	features	were
introduced	as	an	application	domain	whose	functionality	is	provided	through	a
collection	of	components.	You	now	explore	those	components	to	gain	a	deeper
understanding	of	just	how	Reporting	Services	delivers	its	primary	functionality	and
where	that	functionality	can	be	extended.

Before	jumping	into	the	specific	components,	you	should	be	aware	of	the	difference
between	extensions	and	processors.	Processors	are	the	coordinators	and	facilitators	in
Reporting	Services'	component	architecture.	They	call	the	extensions	as	needed	and
provide	mechanisms	for	data	exchange	between	them	(see	Figure	3.22).	Although
configuration	settings	may	alter	their	behavior,	processors	cannot	be	extended
through	custom	code.

Figure	3.22	SSRS	core	processing.

Extensions	are	components	registered	with	Reporting	Services	to	provide	specific
functionality.	They	expose	standardized	interfaces,	which	provide	the	mechanism	by
which	Reporting	Services	engages	them.

With	these	concepts	in	mind,	let's	now	take	a	look	at	the	following:

The	Report	Processor

Data	processing	extensions

Report	items

Rendering	extensions

The	Scheduling	and	Delivery	Processor

Delivery	extensions

The	security	extension	was	discussed	in	the	earlier	section	“The	Security	Sublayer.”

The	Report	Processor
The	Report	Processor	combines	data	and	layout	instructions	to	produce	a	report.
Following	the	arrival	of	a	request	for	a	report,	the	processor	does	the	following:

1.	 Calls	the	security	extension	to	authorize	the	request

2.	 Retrieves	the	report	definition	from	the	Reporting	Services	database

3.	 Communicates	data	retrieval	instructions	in	the	report	definition	to	the	data
processing	extensions

4.	 Combines	data	returned	from	the	data	processing	extensions	with	layout
instructions,	using	report	processing	extensions	if	needed	to	produce	an
intermediate	format	report

5.	 Passes	the	intermediate	format	report	to	the	appropriate	rendering	extension	to
produce	the	final	report

6.	 Returns	the	final	report	to	the	requestor

End	users	can't	view	the	intermediate	format	report,	but	it	can	be	rendered	to	any	of
the	formats	supported	by	Reporting	Services.	To	reduce	the	time	and	resource	expense
of	producing	a	final	report,	the	intermediate	format	report	can	be	stored	(cached)	for
reuse.	This	provides	a	way	to	skip	Steps	2,	3,	and	4,	allowing	a	report	to	be	returned
with	less	time	and	resource	consumption.	Reporting	Services	supports	three	forms	of
caching:

Report	session	caching

Report	execution	caching

Snapshots

Report	Session	Caching
When	an	end	user	connects	to	Reporting	Services,	a	session	is	established.	Requests
from	an	end	user	are	made	within	the	context	of	a	specific	session	until	that	session
expires.

During	a	session,	users	often	request	that	the	same	report	be	rendered	multiple	times,
possibly	in	differing	formats.	Reporting	Services	anticipates	this	by	storing	the
intermediate	format	report	in	its	Session	cache.	The	cached	copy	is	recorded	with
Session	identifiers	so	that	when	an	end	user	repeats	a	request	for	a	report	as	part	of

his	or	her	session,	the	cached	copy	can	be	leveraged.	This	feature	of	Reporting
Services,	known	as	report	session	caching,	is	always	enabled.

If	you	change	report	parameter	selections	and	those	parameter	values	are	used	in
dataset	queries,	an	additional	cache	for	the	changed	datasets	is	created	in	the	report
session.

Report	Execution	Caching
Why	tie	cached	reports	to	a	session?	Why	not	make	them	available	to	all	users
requesting	the	same	report?	The	reason	has	to	do	with	security.

Reports	are	populated	by	data	retrieved	from	external	data	sources.	Connections	to
those	data	sources	are	established	using	credentials.	The	credentials	used	depend	on
the	report's	configuration	or	the	shared	data	source	it	uses.

If	data	is	retrieved	using	the	requestor's	credentials,	the	report	may	contain	data
appropriate	only	to	that	specific	user.	The	intermediate	report	contains	this	data	so
that	if	it	is	cached	and	made	available	to	another	requestor,	that	user	may	be	exposed
to	data	that	he	or	she	otherwise	should	not	see.

For	this	reason,	only	reports	that	do	not	use	the	requestor's	credentials	to	retrieve
data	from	external	data	sources	can	be	configured	for	report	execution	caching.	With
report	execution	caching,	the	intermediate	report	generated	from	a	report	request	is
cached	for	some	period	of	time	and	is	used	to	render	reports	for	other	users	until	the
cached	copy	expires.

Snapshots
With	both	report	session	and	report	execution	caching,	the	end	user	requests	a	report,
and	the	Report	Processor	checks	for	a	cached	copy.	If	none	exists,	the	Report
Processor	must	assemble	the	intermediate	format	report,	store	it	in	a	cache	for
subsequent	requests,	and	then	render	the	requested	final	report.	Later	requests	may
take	advantage	of	the	cached	copy,	but	the	first	request	does	not	have	this	option.	This
can	lead	to	an	inconsistent	end-user	experience.

To	address	this	issue,	snapshots	are	scheduled	to	populate	the	cache	before	an	end-
user	request.	Snapshots	are	recorded	in	the	same	intermediate	format	and	have	the
same	security	requirements	as	report	execution	caching.

Data	Processing	Extensions
As	mentioned,	the	Report	Processor	reads	data	retrieval	instructions	from	the	report
definition,	but	hands	over	the	work	of	establishing	connections	and	retrieving	data
from	external	sources	to	the	data	processing	extensions.	These	extensions	expose	a
data	reader	interface	back	to	the	Report	Processor,	allowing	data	to	flow	through	them
to	the	Report	Processor	and	into	the	intermediate	report.

Multiple	data	source	extensions	can	be	in	use	on	the	Report	Server	and	even

employed	from	within	a	single	report.	Reporting	Services	includes	several	data
extensions,	providing	support	for	the	following	data	sources:

Microsoft	SQL	Server

Microsoft	SQL	Server	Analysis	Services

OLE	DB	data	sources

ODBC	data	sources

Oracle

XML	data	sources

SAP	NetWeaver	BI

Hyperion	Essbase

Teradata

It's	important	to	note	that	the	SAP	NetWeaver	BI,	Hyperion	Essbase,	and	Teradata
extensions	require	the	separate	installation	of	client	components	or	.NET	data
providers.	If	you	need	to	use	these	data	processing	extensions,	refer	to	Books	Online
for	details	on	how	to	make	these	fully	operational.

If	access	to	other	data	sources	is	required,	you	can	implement	a	custom	data
processing	extension	and	register	it	with	Reporting	Services.	Alternatively,	you	may	be
able	to	use	a	standard	.NET	or	OLE	DB	data	provider	to	obtain	the	data	access	you
require.	As	mentioned	a	moment	ago,	data	processing	extensions	expose	a	standard
data	reader	interface.	This	interface	is	based	on	.NET	specifications,	which	are
themselves	not	that	far	removed	from	interfaces	exposed	by	some	OLE	DB	providers.
As	a	result,	many	.NET	and	OLE	DB	data	providers	can	be	registered	and	used	by
Reporting	Services	in	place	of	a	formal	data	processing	extension.	Books	Online
provides	details	on	the	registration	of	data	providers	for	use	with	Reporting	Services.

Report	Items
The	Report	Processor	can	generate	tables,	matrices,	charts,	and	various	other	report
items.	These	standard	report	items	meet	the	needs	of	most	report	authors.	Still,
sometimes	other	report	items	are	required.	In	these	situations,	additional	report	items
can	be	registered	with	Reporting	Services.

Typically	these	report	items,	such	as	barcode	and	chart	controls,	are	purchased	from
third-party	vendors.	Custom	report	items	can	be	developed	as	well.	Report	items,
whether	purchased	or	custom,	consist	of	both	design	and	runtime	components	that
must	be	registered	with	the	Report	Designer	and	Reporting	Services,	respectively.
Both	expose	standard	interfaces	allowing	the	Report	Designer	or	the	Report	Processor
to	interact	with	them	appropriately.

Rendering	Extensions

After	the	intermediate	format	report	has	been	generated	(or	retrieved	from	cache)	by
the	Report	Processor,	it	is	delivered	to	a	rendering	extension	for	translation	to	the
end-user	requested	format.	Reporting	Services	comes	with	a	standard	set	of	rendering
extensions,	as	described	in	Table	3.5.	Each	supports	one	or	more	report	formats.
Custom	rendering	extensions	are	also	supported,	although	Microsoft	does	not
encourage	their	development.	Custom	rendering	extensions	typically	involve	a	large
development	cost.

Table	3.5	Included	SSRS	rendering	extensions

RENDERING
EXTENSION

FORMATS	SUPPORTED

HTML HTML5	(default)
HTML4.0
MHTML

CSV Excel-optimized	CSV	(default)
CSV-compliant	CSV

XML XML

Image TIFF	(default)
BMP
EMF
GIF
JPEG
PNG
WMF

PDF PDF	1.3

Excel Excel	(XLSX)

Word Word	(DOCX)

PowerPoint PowerPoint	(PPTX)

Atom Produces	an	Atom	data	feed	metadata	descriptor	file
(ATOMSVC)

Parameters	affecting	how	each	rendering	extension	generates	the	final	report	are
known	as	device	information	settings.	Default	settings	for	each	rendering	extension
can	be	set	in	the	rsreportserver.config	file.	These	can	be	overridden	as	part	of	a
specific	request	to	deliver	the	report	in	the	precise	format	required.

It	is	important	to	note	that	the	Report	Processor	does	not	simply	hand	over	the
intermediate	format	report	to	a	rendering	extension.	Instead,	the	processor	engages
the	rendering	extension,	which,	in	return,	accesses	the	intermediate	report	through
the	Rendering	Object	Model	(ROM)	exposed	by	the	Report	Processor.

The	ROM	has	retained	the	same	basic	structure	since	the	release	of	Reporting

Services	2008	and	has	many	benefits.	The	most	significant	of	these	is	improved
consistency	between	online	and	print	versions	of	a	report	and	reduced	memory
consumption	during	rendering.

The	HTML-Rendering	Extension
HTML	is	highly	accessible	and	the	principal	format	for	interactive	reports.	For	these
reasons,	HTML	5	is	now	the	default	rendering	format	for	Reporting	Services	reports.
The	HTML	rendering	experience	introduced	in	SQL	Server	2016	is	a	significant
improvement	over	previous	version	HTML	renderings,	which	primarily	targeted
Microsoft	Internet	Explorer.	As	the	HTML	standards	have	superseded	individual
vender	browser	specifications,	HTML	5	will	render	consistently	in	all	modern
browsers	and	with	limited	support	for	older	web	browsers.

The	CSV-Rendering	Extension
The	comma-separated	values	(CSV)-rendering	extension	renders	the	data	portion	of	a
report	to	a	comma-delimited	flat-file	format	accessible	by	spreadsheets	and	other
applications.

The	CSV-rendering	extension	operates	in	two	modes.	In	the	default,	Excel-optimized
mode,	each	data	region	of	the	report	is	rendered	as	a	separate	block	of	comma-
delimited	values.	In	CSV-compliant	mode,	the	extension	produces	a	single,	uniform
block	of	data	accessible	to	a	wider	range	of	applications.

The	XML-Rendering	Extension
XML	is	another	format	commonly	used	to	render	reports.	The	XML-rendering
extension	incorporates	both	data	and	layout	information	in	the	XML	it	generates.	One
of	the	most	powerful	features	of	the	XML-rendering	extension	is	its	ability	to	accept
an	XSLT	document.	XSLT	documents	provide	instructions	for	converting	XML	to
other	text-based	formats.	These	formats	may	include	HTML,	CSV,	XML,	or	a	custom
file	format.	The	Reporting	Services	team	recommends	that	you	attempt	to	leverage	the
XML-rendering	format	with	XSLT	for	specialized	rendering	needs	before	you	attempt
to	implement	a	custom	rendering	extension.

The	Image-Rendering	Extension
Through	the	image-rendering	extension,	reports	are	published	to	one	of	seven	image
formats.	Tagged	Image	File	Format	(TIFF)	is	the	default.	TIFF	is	widely	used	for
storing	document	images.	Many	fax	programs	use	TIFF	as	their	transfer	standard,	and
many	organizations	use	it	for	document	archives.	The	image	renderer	also	supports
image	output	for	BMP,	GIF,	JPG,	PNG,	and	EMF	image	files.

The	PDF-Rendering	Extension
Reporting	Services	comes	with	a	rendering	extension	for	Adobe's	Portable	Document
Format	(PDF).	PDF	is	one	of	the	most	popular	formats	for	document	sharing	over	the

Internet.	It	produces	clean,	easy-to-read	documents	with	exceptional	printing
capabilities.	In	addition,	PDF	documents	are	not	easily	altered.

Although	they	are	not	as	interactive	as	an	HTML	report	with	the	HTML	Viewer,	PDFs
do	support	document	maps.	This	functionality	enables	the	creation	of	a	table	of
contents-like	feature,	which	is	invaluable	with	large	reports.	Windows	10	native	PDF
support	or	Adobe	Reader	8.0	or	higher	is	required	for	viewing	the	PDF	documents
produced	by	Reporting	Services.	The	Adobe	Reader	is	available	for	free	download	from
the	Adobe	website.

When	possible,	the	PDF	rendering	extension	embeds	the	subset	of	each	font	that	is
needed	to	display	the	report	in	the	PDF	file.	Fonts	that	are	used	in	the	report	must	be
installed	on	the	report	server.	When	the	report	server	generates	a	report	in	PDF
format,	it	uses	the	information	stored	in	the	font	referenced	by	the	report	to	create
character	mappings	within	the	PDF	file.	If	the	referenced	font	is	not	installed	on	the
report	server,	the	resulting	PDF	file	might	not	contain	the	correct	mappings	and	might
not	display	correctly	when	viewed.

The	Excel-Rendering	Extension
Rendering	reports	to	Excel	is	another	option	that	Reporting	Services	supports.
Rendering	to	Excel	is	highly	useful	if	the	end	user	needs	to	perform	additional
analysis	on	the	data.

Reporting	Services	in	SQL	Server	2016	by	default	produces	Excel	Office	Open	XML
format	(XLSX).	The	original	Excel	renderer	producing	BIFF8-based	format	for	Excel
97	and	above	is	still	available,	but	it	is	hidden	in	rsReportServer.config	by	default.

Not	all	report	elements	translate	well	to	Excel.	Rectangles,	subreports,	the	report
body,	and	data	regions	are	rendered	as	a	range	of	Excel	cells.	Textboxes,	images,	and
charts	must	be	rendered	within	one	Excel	cell,	which	might	be	merged,	depending	on
the	layout	of	the	rest	of	the	report.

It	is	a	good	idea	to	review	your	reports	rendered	to	this	format	prior	to	publication	to
end	users	if	Excel	rendering	is	a	critical	requirement.	Reporting	Services	Books	Online
provides	details	on	how	each	report	feature	is	handled	when	rendered	to	Excel.

The	Word-Rendering	Extension
This	extension	renders	reports	in	Microsoft	Word	format	with	many	of	the	same
features	and	limitations	as	rendering	in	PDF.	Unlike	PDF,	the	Word	format	allows
reports	to	be	more	easily	edited	by	the	end	user	following	rendering.

Reporting	Services	in	SQL	Server	2016	by	default	produces	Word	Office	Open	XML
format	(DOCX).	The	original	Word	renderer	producing	Word	97	format	is	still
available,	but	it	is	hidden	in	rsReportServer.config	by	default.

The	PowerPoint-Rendering	Extension
The	PowerPoint-rendering	extension	is	introduced	in	SQL	Server	2016.	It	converts

report	page	content	into	sides	in	a	PowerPoint	presentation	deck	using	the
PowerPoint	Office	Open	XML	(PPTX)	format.	All	visual	report	elements	and	data
regions	are	converted	to	image	shapes.	Chart	titles	and	text	are	rendered	as	textboxes.

The	Scheduling	and	Delivery	Processor
The	Scheduling	and	Delivery	Processor's	primary	function	is	to	send	requests	for
subscribed	reports	to	the	Report	Processor,	accept	the	returned	report,	and	engage	the
delivery	extensions	for	subscription	delivery.	The	processor	also	generates	snapshots.

The	processor	works	by	periodically	reviewing	the	contents	of	tables	within	one	of	the
Reporting	Services	application	databases.	These	tables	are	populated	through	on-
demand	events,	through	programmatic	execution	of	the	Reporting	Services	web
service's	FireEvent	method,	or	through	schedules	configured	through	Reporting
Services.	Schedules	themselves	are	jobs	created	by	Reporting	Services	but	executed	by
the	SQL	Server	SQL	Agent	Windows	service.	Reporting	Services	handles	the	details	of
setting	up	and	configuring	these	jobs	when	you	create	a	schedule,	but	the	use	of
schedules	creates	a	dependency	on	this	additional	Windows	service.

Delivery	Extensions
The	Scheduling	and	Delivery	Processor	calls	the	delivery	extensions	to	send	reports	to
subscribers.	Reporting	Services	comes	with	delivery	extensions	for	e-mail	and	file
share	delivery.	If	running	in	SharePoint	Integrated	mode,	Reporting	Services	also
supports	the	SharePoint	delivery	extension	for	delivery	of	content	to	a	SharePoint	site.

As	with	other	extensions	discussed	in	this	chapter,	custom	delivery	extensions	can	be
assembled	and	registered	for	use	by	Reporting	Services.	Books	Online	provides	sample
code	for	a	custom	delivery	extension,	sending	reports	directly	to	a	printer.

REPORTING	SERVICES	APPLICATION	DATABASES
Reporting	Services	includes	two	application	databases	with	the	default	names:
ReportServer	and	ReportServerTempDB.	These	databases	store	report	definitions,
snapshots,	cache,	security	information,	and	much	more.	Although	it	is	strongly
recommended	that	you	not	directly	access	these	databases	and	modify	data,	it	is
important	to	understand	their	basic	structure	and	role	within	the	Reporting	Services
architecture.

NOTE

When	run	in	SharePoint	Integrated	mode,	Reporting	Services	stores	content	and
settings	in	the	SharePoint	content	and	configuration	databases.	These	databases
are	the	domain	of	the	SharePoint	application	and	therefore	are	not	discussed
here.	As	with	the	Reporting	Services	databases,	it	is	recommended	that	you	not
directly	access	those	databases.

ReportServer
The	ReportServer	database	is	the	main	store	for	data	in	Reporting	Services.	It	contains
all	report	definitions,	report	models,	data	sources,	schedules,	security	information,
and	snapshots.	Because	of	this,	it	is	critical	that	the	database	be	backed	up	regularly.

Table	3.6	lists	some	of	the	tables	and	their	related	functions.

Table	3.6	ReportServer	database	tables

FUNCTIONAL
AREA

TABLE	NAME WHAT	IT	CONTAINS

Resources Catalog Report	definitions,	folder	locations,	and	data
source	information

DataSource Individual	data	source	information

Security Users Username	and	security	ID	(SID)	information
for	authorized	users

Policies A	list	of	references	to	different	security
policies

PolicyUserRole An	association	of	users/groups,	roles,	and
policies

Roles A	list	of	defined	roles	and	the	tasks	they	can
perform

Snapshots SnapshotData Information	used	to	run	an	individual
snapshot,	including	query	parameters	and
snapshot	dependencies

ChunkData The	report	snapshots

History A	reference	between	stored	snapshots	and	the
date	they	were	captured

Scheduling Schedule Information	for	different	report	execution	and
subscription	delivery	schedules

ReportSchedule An	association	between	a	given	report,	its
execution	schedule,	and	the	action	to	take

Subscriptions A	list	of	individual	subscriptions,	including
the	owner,	parameters,	and	delivery	extension

Notifications Subscription	notification	information	such	as
date	processed,	last	run	time,	and	delivery
extension

Event Temporary	storage	location	for	event
notifications

ActiveSubscriptions Subscription	success/failure	information

RunningJobs The	currently	executing	scheduled	processes

Administration ConfigurationInfo Reporting	Services	configuration	information,
which	should	be	administered	through
prescribed	interfaces	and	not	by	directly
editing	this	table's	data

Keys A	list	of	public	and	private	keys	for	data
encryption

ExecutionLogStorage A	list	of	reports	that	have	been	executed	and
critical	metadata	about	the	event

ReportServerTempDB
The	ReportServerTempDB	database	stores	temporary	Reporting	Services	information.
This	includes	both	session	and	cache	data.

Reporting	Services	do	not	function	properly	without	the	ReportServerTempDB
database.	Still,	there	is	no	need	to	back	up	the	database,	because	all	data	within	it	is
temporary.	If	the	database	is	lost,	you	can	simply	rebuild	it.

Table	3.7	lists	some	of	the	tables	and	their	related	functions.

Table	3.7	ReportServerTempDB	database	tables

TABLE	NAME DESCRIPTION

ChunkData Stores	report	definition	and	data	for	session	cached	reports	and
cached	instances

ExecutionCache Stores	execution	information,	including	time-out	for	cached
instances

PersistedStream Stores	session-level	rendered	output	for	an	individual	user

SessionData Persists	individual	user	session-level	information,	including	report
paths	and	time-outs	for	given	session	information

SessionLock Temporary	storage	to	handle	locking	of	session	data

SnapshotData Stores	a	temporary	snapshot

SUMMARY
The	purpose	of	this	chapter	was	to	help	you	get	a	basic	installation	of	Reporting
Services	in	Native	mode	up	and	running	so	that	you	can	explore	the	product	as	you
progress	through	this	book	with	the	sample	databases,	project	files,	and	chapter
exercises.

This	chapter	also	toured	the	Reporting	Services	Native	mode	architecture.	Through
this	chapter,	you	explored	the	following:

The	reporting	life	cycle	as	a	three-phase	process.	Reports	are	authored	by	end
users	and	reporting	specialists,	managed	as	part	of	a	centralized	reporting	system,
and	ultimately	delivered	to	end	users	through	various	means.

The	numerous	applications	provided	by	Reporting	Services	in	support	of	the
reporting	life	cycle.	These	include	but	are	not	limited	to	Report	Builder,	SSDT
Report	Designer,	Report	Web	Portal,	the	Reporting	Services	Configuration	tool,
HTML	Viewer,	the	Reporting	Services	web	service,	and	subscriptions.

The	structure	of	the	Windows	service	as	well	as	the	components	(processors,
extensions,	and	databases)	the	service	uses	to	provide	its	functionality.

The	knowledge	you	have	obtained	in	this	chapter	will	provide	a	solid	foundation	for
you	to	get	started	with	a	working	report	server	and	report	design	environment.	You
are	now	prepared	to	begin	authoring	reports	and	to	learn	the	intricacies	of	advanced
report	design.

In	Part	2,	beginning	with	Chapter	4,	we	get	back	to	basics—literally—and	start
designing	basic	reports.	Chapters	4,	5,	and	6	introduce	the	fundamental	building
blocks	of	report	design	so	you	can	understand	the	essentials	and	develop	necessary
skills.	You'll	start	with	basic	layout	and	formatting,	progress	to	data	access	and	query
basics,	and	then	learn	to	perform	grouping	and	totals.

PART	II

Basic	Report	Design
With	the	topic	of	report	design	essentials	having	been	introduced	in	four	previous
editions	of	this	book,	as	well	as	the	topic	being	included	in	four	previous	versions	of
Reporting	Services	over	the	past	12	years,	I've	had	several	opportunities	to	approach
the	“right”	way	to	teach	report	design.	Keeping	things	simple	and	on	point	is	the
method	I	chose	for	this	book.	As	you	work	with	this	product,	the	recognizable	theme
is	that	there	are	different	ways	to	design	reports	and	solve	problems	that	might	get
you	to	the	same	or	a	similar	outcome.	Rather	than	enumerating	every	option,	I'll
recommend	what	I	believe	could	be	considered	the	best	approach	and	avoids	getting
lost	in	the	details	(which,	by	the	way,	is	pretty	easy	to	do	with	this	product).

Occasionally,	you	may	be	given	a	little	history	behind	why	one	option	is	a	better
choice	than	another,	but	there's	no	need	to	waste	your	time	by	explaining	how	to	use
ineffective	techniques	when	there	is	a	better	way.	For	example,	when	creating	a	new
report,	you	are	often	presented	with	the	Report	Wizard.	It's	cute,	and	may	serve	to
hand-hold	a	complete	novice	if	he	or	she	had	no	earthly	idea	of	what	they	were	doing.
Instead,	a	better	approach	might	be	to	skip	the	Report	Wizard,	learn	to	design	your
reports	your	way,	and	take	ownership	of	your	splendid	work.	I	am	pleased	you	chose
this	book;	I	have	put	forth	my	best	to	give	you	as	much	value	as	possible.

Each	chapter	in	this	part	concludes	with	a	hands-on	exercise	that	steps	you	through
building	the	reports,	queries,	and	solutions	discussed	in	the	chapter.	Finished	versions
are	also	provided	for	those	who	have	less	patience	or	who	are	accustomed	to	buying
the	Cliff's	Notes	the	night	before	a	college	final	exam.

Part	4	includes	three	chapters	that	will	lead	you	through	the	building	blocks	of
essential	report	design.	Chapter	4	introduces	report	layout	and	formatting.	In	that
chapter	you	will	learn	the	mechanics	behind	Reporting	Services	and	how	reports	are
constructed	using	datasets,	data	regions,	and	report	items.	Chapter	5	will	teach	you
query	design	basics.	You	will	learn	how	to	use	shared	and	embedded	data	sources	and
how	datasets	process	queries	and	parameters	to	filter	a	set	of	data	for	presentation.
Finally,	Chapter	6	will	introduce	the	essential	concept	of	groups,	which	are	used
throughout	report	design	to	collect	data	rows	for	aggregation,	summaries,	and	totals.
You	will	discover	how	expressions	are	used	to	craft	field	values	and	parameters	for
grouping,	filtering,	and	many	other	property	values	to	customize	a	user's	reporting
experience.

CHAPTER	4:	Report	Layout	and	Formatting

CHAPTER	5:	Data	Access	and	Query	Basics

CHAPTER	6:	Grouping	and	Totals

Chapter	4
Report	Layout	and	Formatting

WHAT'S	IN	THIS	CHAPTER?

Using	report	design	tools

Using	report	data	building	blocks

Preparing	the	report	data

Designing	the	report	layout

Setting	formatting	properties

Validating	report	design	and	grouping	data

In	this	chapter,	you	learn	about	the	essential	building	blocks	for	all	reports,	along	with
the	design	patterns	for	the	most	common	report	types.	I'll	start	by	explaining	the
fundamental	components	of	standard	reports,	followed	by	three	exercises	to	step	you
through	the	process	to	create	them.	You	learn	to	do	the	following:

Create	an	embedded	data	source

Define	a	dataset	query

Design	a	simple	table	report

Add	a	detail	group	and	multi-level	row	groups

Design	a	simple	matrix	report	with	a	column	group

Design	a	report	with	a	list	data	region

Report	design	is	both	a	science	and	an	art.	It	is	a	science	because	there	are	definitely
standard	and	repeatable	methods	for	designing	common	report	types.	Like	other
forms	of	science,	report	design	can	be	a	methodical	and	sometimes	tedious	process	of
repeating	the	same	steps	and	tasks	with	a	very	predictable	outcome	in	each	report	you
create.	Comparatively,	report	design	is	also	an	art	because	good	reports	have	elements
of	composition	and	style.	Experienced	report	designers	learn	to	use	color,	font	and
styling	choices,	graphic	elements,	as	well	as	shading	and	white	space	to	create	balance
and	attractive	presentations.	The	trick	is	finding	the	right	balance	between	the
methodical	science	and	expressive	art	of	report	design.

USING	REPORT	DESIGN	TOOLS
Two	different	tools	are	used	to	design	reports.	These	include	a	standalone	design	tool
called	Report	Builder	that	enables	you	to	design	and	deploy	reports	one-at-a-time,	just
as	you	would	edit	a	document	with	Microsoft	Word	or	Excel.	The	second	tool,	The
Visual	Studio	Report	Designer,	is	part	of	the	SQL	Server	Data	Tools	that	install	with
the	SQL	Server	2016	client	tools.	This	tool	is	optimized	for	developers	and	project
teams	to	create	and	manage	multiple	reports	in	a	coordinated	IT	solution.	Most	of	the
skills	learned	with	one	tool	will	transfer	to	the	other.

Figure	4.1	shows	the	Report	Builder	with	different	areas	of	the	designer.

Figure	4.1	Report	Builder	with	different	areas	of	the	designer.

Following	is	brief	description	of	each	numbered	callout:

1.	 Quick	Access	toolbar

Similar	to	modern	Office	applications,	shortcuts	to	popular	commands	are
available	here.

2.	 Tabs	and	Ribbon	area

All	of	the	Report	Builder	commands	are	accessed	from	the	File,	Home,	Insert,	or
View	ribbons.	Commands	are	arranged	in	groups	with	titles	along	the	bottom	of
the	ribbon,	such	as	“Font,”	“Paragraph,”	“Border,”	“Number,”	and	“Layout.”

3.	 Report	Data	pane

This	provides	access	to	data,	built-in	fields,	and	other	items	used	in	the	report
design.	This	is	where	you	create	and	manage	parameters,	images,	data	sources,
and	datasets.

4.	 Report	design	canvas

This	is	the	area	where	you	design	your	report.	Use	the	Insert	ribbon	to	add	data
regions	and	report	items	to	the	canvas,	and	then	interact	with	these	items	to
complete	the	report	design.

5.	 Row	groups	and	Column	groups

For	a	selected	data	region,	this	is	where	you	add	or	modify	groups	used	to
consolidate	and	aggregate	detail	records.

6.	 Report	server	connection	information

When	Report	Builder	is	launched	from	web	portal,	a	connection	is	maintained	to
the	report	server.	When	connected,	changes	to	the	report	are	saved	to	the	server
rather	than	to	the	local	filesystem.

7.	 Design,	Run,	and	Zoom	controls

The	Design	and	Run	icons	have	the	same	function	as	the	Design/Run	toggle	icon
on	the	Home	ribbon.	Report	Builder	offers	a	zoom	feature,	while	the	SQL	Server
Data	Tools	Report	Designer	does	not	have	this	capability.	There	are	some
additional	window	panes	and	features	not	shown	by	default.	These	options	can	be
enabled	on	the	View	ribbon.	These	are	discussed	in	more	detail	in	later	chapters.

UNDERSTANDING	REPORT	DATA	BUILDING	BLOCKS
Reports	are	made	up	of	some	basic	components,	which	are	shown	in	Figure	4.2.	In
this	introductory	chapter,	I'll	cover	these	concepts	just	enough	so	that	you	can	get
started	and	see	how	the	essential	mechanics	of	a	report	work.	You'll	learn	more	in	the
next	few	chapters.

Figure	4.2	Basic	components	of	reports.

Data	Sources
You	will	learn	more	about	both	data	sources	and	datasets	in	Chapter	5,	“Database
Query	Basics,”	when	the	discussion	spotlights	working	with	databases	and	designing
queries.	Every	report	will	have	at	least	one	data	source	and	one	or	more	datasets.

A	data	source	is	a	simple	object	that	contains	information	needed	to	connect	to	a	data
source	(usually	a	database).	For	a	relational	database	product	like	Microsoft	SQL
Server,	the	data	source	contains	the	address	and	information	needed	to	connect	to	a
database	server	and	a	specific	database.	It	includes	information	about	how	the	report
should	authenticate	when	it	connects	and	runs	queries.

A	data	source	can	either	be	embedded	into	each	report,	or	a	single	data	source	can	be
shared	among	multiple	reports	so	that	the	connection	information	can	be	maintained
in	one	place.	If	the	report	administrator	were	to	update	the	shared	data	source	with
the	address	of	a	new	production	server,	every	report	would	suddenly	query	the	new
server.	Generally	speaking,	using	shared	data	sources	is	considered	a	good	practice,
but	some	notable	exceptions	are	addressed	in	Chapter	5.	For	now,	let's	keep	this
simple.

Datasets

A	dataset	is	the	report	object	that	handles	the	actual	data	and	fields	to	populate	a
report	region.	Datasets	are	more	than	just	a	container	for	report	queries	because	they
also	manage	all	the	field	metadata	and	the	parameters	used	for	filtering	data.	Some
advanced	dataset	properties	also	allow	the	data	to	be	filtered	and	manipulated	before
the	data	gets	to	the	report	data	region.

Data	Regions
The	best	way	to	begin	to	understand	data	regions	and	report	items	is	to	take	a	look	at
the	Insert	ribbon	in	Report	Builder,	as	shown	in	Figure	4.3.

Figure	4.3	Report	Builder	Insert	ribbon.

Three	different	data	region	components	act	as	containers	for	report	items.	The	Table,
Matrix,	and	List	data	regions	provide	different	grouping	and	layout	options.	The
purpose	of	a	data	region	is	to	repeat	a	region	of	data-bound	report	items	based	on
detail	data	rows	or	a	group	of	data	field	values.

Table
In	its	simplest	form,	a	table	is	a	grid	with	a	detail	row	having	one	cell	or	column	per
field	from	the	associated	dataset.	When	the	report	is	rendered,	the	detail	row	is
repeated	once	per	row	returned	by	the	dataset	query.	Again,	that's	the	simple	version.
Optionally,	the	detail	row	can	be	grouped	by	any	field	or	combination	of	fields.	This
causes	the	data	to	be	summarized	for	unique	values	in	the	grouped	field(s).	Further,
multiple	groups	and	associated	header	and/or	footer	rows	can	be	added	to	the	table	to
form	a	hierarchy	of	grouped	values.	Imagine	sales	orders	grouped	by	year	and	then
month	with	headings	and	totals	for	each	group.	Then	for	each	month,	each	order	date
is	displayed	as	a	detail	row.

The	table	report	in	Figure	4.4	shows	orders	grouped	by	Product	Category,	Product
Subcategory,	and	then	by	Product	Name.	All	of	the	subcategories	with	the	Accessories
category	are	summed	into	a	group	total.

Figure	4.4	Simple	multi-level	table	report.

Matrix
A	matrix	is	a	variation	of	a	table	where	data	is	grouped	by	columns	as	well	as	rows.	A
couple	of	key	differences	between	a	table	and	matrix	are	that	matrix	reports	typically
don't	include	detail	cells	(in	the	same	way	that	a	table	would	include	detail	rows)
because	values	at	the	lowest	level	are	a	summary	of	both	row	and	column	groups.
Another	differentiator	is	that,	because	of	the	expanding	column	groups,	matrix	reports
are	often	not	confined	to	a	printed	page.	There	are	exceptions,	but	matrix	reports	are
intended	to	be	flexible	by	design.

Figure	4.5	shows	a	matrix	report	with	repeated	columns	for	each	year,	followed	by	a
column	group	total.	If	one	more	year	of	data	was	present	in	the	results,	the	matrix
would	be	two	more	columns	wide.

Figure	4.5	Matrix	report.

List
Data	regions	can	contain	report	items	and	other	data	regions.	The	list	is	a	flexible
container	for	data-bound	report	items	and	other	data	regions	that	can	be	positioned
anywhere	within	the	rectangular	list	area.	As	a	data	region,	it's	really	just	a	rectangular
container	bound	to	a	dataset	and	grouped	on	a	field	value.

The	example	in	Figure	4.6	shows	a	design	view	of	a	list	grouped	by	the	Year	field,
containing	a	textbox	showing	the	year	alongside	a	simplified	copy	of	the	table	from
the	earlier	example.

Figure	4.6	List	in	design	view.

In	Figure	4.7,	you	see	the	resulting	report.	Note	that	the	year	textbox	and	the	table	are
completely	independent	as	far	as	size	and	position,	but	the	data	in	each	instance	of	the
table	is	filtered	only	for	the	corresponding	year.

Figure	4.7	List	report	preview.

Report	Items
A	report	item	is	the	simplest	object	used	in	report	design.	Some	report	items	(such	as
a	textbox	or	image)	can	be	bound	to	a	dataset	field,	while	others	(such	as	a	line	or
rectangle)	are	used	for	display	or	formatting	purposes.

When	Reporting	Services	was	being	created,	the	early	documentation	referred	to
objects	like	textboxes,	images,	lines,	and	rectangles	as	“controls”	because	they	were
similar	to	the	objects	used	by	application	developers	to	add	visual	elements	to	a	form.
Although	the	concepts	are	very	similar,	reports	and	custom-developed	applications	are
different.	This	category	of	objects	was	given	the	name	“report	items”	so	it	wouldn't	be
confused	with	controls	used	in	other	types	of	Visual	Studio	projects.	Sticking	with
textboxes	for	now,	other	report	items	are	examined	in	later	chapters.

SAMPLES	AND	EXERCISES
Now	it's	your	turn	to	apply	the	concepts	you	just	learned.	This	section	includes
exercises	to	 familiarize	you	with	basic	report	design	using	Report	Builder.	You	need
SQL	Server	2016	installed	with	Reporting	Services	in	native	mode.	The	detailed
instructions	were	provided	in	Chapter	3,	“Installing	and	Configuring	SSRS.”	Be	sure	to
restore	the	WroxSSRS2016	database	provided	with	the	book,	and	download	exercise
files.

To	get	started,	you	must	be	sure	that	you	are	on	the	same	page	as	the	discussion	so
that	you	may	follow	along.

1.	 Start	by	opening	your	web	browser	and	navigating	to	the	web	portal.	If	you
installed	Reporting	Services	with	SQL	Server	2016	using	all	default	settings,	the
path	will	be	HTTP://LocalHost/Reports.

1.	 TIP

The	report	server	name	is	established	when	you	installed	or	configured
Reporting	Services.	If	the	report	server	was	installed	as	part	of	a	default
instance	of	SQL	Server,	the	web	portal	address	will	be
HTTP://servername/Reports;	or	you	can	use	HTTP://LocalHost/Reports	on	the
same	computer.	Other	configuration	settings	can	affect	the	report	server
address,	such	as	installing	a	named	instance	or	using	an	alternate	port
number	or	host	header	in	the	URL	reservation.	For	example,	if	a	named
instance	was	installed,	the	address	would	be
HTTP://servername/Reports$instancename.	You	can	always	find	the	address
on	the	Web	Portal	URL	page	of	the	Reporting	Services	Configuration
Manager.

2.	 Click	the	Browse	icon	in	the	web	portal	menu	bar	to	navigate	to	the	Home	folder.

3.	 Click	the	“+”	icon	and	choose	Folder	from	the	menu.

4.	 Enter	the	new	folder	name,	WroxSSRS2016,	and	click	the	Create	button	as	shown
in	Figure	4.8.

Figure	4.8	Creating	a	new	folder.

5.	 Click	the	new	folder	icon	to	navigate	to	the	WroxSSRS2016	folder,	as	shown	in
Figure	4.9.

Figure	4.9	A	new	empty	folder.

This	switches	back	to	the	earlier	view	of	the	web	portal.

6.	 Click	the	Report	Builder	icon	on	the	toolbar	and	wait	for	the	Report	Builder	to	run.

Report	Builder	opens	to	the	Getting	Started	page	shown	in	Figure	4.10.	The	wizard
dialogs	may	help	you	automate	the	first	few	steps	and	may	be	beneficial	if	you
haven't	created	a	certain	report	style	before.	However,	you	will	quickly	graduate
beyond	the	wizards,	and	I	am	not	going	to	use	them	so	that	you	can	become	more
familiar	with	the	basic	and	essential	building	blocks	used	in	nearly	all	reports.
Just	trust	me	on	this.

Figure	4.10	Getting	Started	page.

6.	 NOTE

You	are	given	the	option	to	download	and	install	the	current	version	of
Report	Builder.	This	is	quick	and	easy	to	install.	Once	the	installation	is
completed,	Report	Builder	will	open	automatically	in	the	future.	Once	the
application	is	installed,	clicking	the	Report	Builder	button	in	the	future
launches	the	application.

7.	 Click	the	X	in	the	upper-right	corner	to	make	the	Getting	Started	page	vaporize.

Report	Builder	is	laid	out	a	lot	like	an	Office	application	with	tabs	and	ribbons	along
the	top,	objects	and	tools	on	the	left,	and	an	interactive	design	surface	in	the	middle.

Preparing	the	Report	Data
The	first	few	steps	in	this	exercise	are	fundamental	and	are	performed	for	all	report
designs.	You	will	create	a	data	source	and	then	a	dataset	before	you	design	the	rest	of
the	report.

1.	 The	first	thing	you	need	is	a	data	source.	In	the	Report	Data	pane	on	the	left,	right-
click	Data	Sources	and	choose	Add	Data	Source,	as	shown	in	Figure	4.11.

Figure	4.11	Selecting	Add	Data	Source	in	the	Report	Data	pane.

The	Data	Source	Properties	dialog	shown	in	Figure	4.12	prompts	you	for	a	data
source	name,	connection	type,	and	information	about	your	server	and	database.
No	spaces	are	allowed,	but	you	can	use	mixed	case	with	some	punctuation
characters	like	underscores	and	hyphens.	Consider	using	the	name	of	the
database	here.	The	specific	connection	information	prompts	may	change
depending	on	the	connection	type	selection.	You	are	also	prompted	to	use	a
shared	or	embedded	connection,	which	is	discussed	in	Chapter	5.	For	simplicity,
you	will	use	an	embedded	connection	in	this	report.

Figure	4.12	Data	Source	Properties	dialog.

2.	 Enter	the	name	WroxSSRS2016.

3.	 Choose	“Use	a	connection	embedded	in	my	report.”

4.	 For	the	connection	type,	choose	or	verify	that	Microsoft	SQL	Server	is	selected.

5.	 Click	the	Build…	button	to	create	the	connection	string.

This	opens	the	Connection	Properties	dialog	shown	in	Figure	4.13,	and	prompts
you	for	information	about	your	SQL	Server.	Because	you're	using	a	local	instance
of	SQL	Server,	you	will	connect	to	the	SQL	Server	service	on	your	development
machine.	In	a	production	environment,	you	would	enter	the	server	name.	If	you
are	connecting	to	a	named	instance	of	SQL	Server,	the	name	would	be	entered	as
SERVERNAME\INSTANCENAME.

Figure	4.13	Connection	Properties	dialog.

Note	that	in	a	large	production	environment	when	you	know	the	server	and
instance	names,	avoid	using	the	Server	name	drop-down	list,	which	causes	the
SQL	Server	Browser	service	to	search	the	entire	network	for	servers,	and	can	be
time-consuming.	When	a	default	instance	of	SQL	Server	is	installed	locally,	for
convenience,	you	can	use	the	aliases	LocalHost	or	(local)	in	place	of	the	server
name.

6.	 Enter	LocalHost	for	the	server	name.

7.	 Leave	the	“Log	on	to	the	server”	option	set	to	Use	Windows	Authentication.

8.	 Under	“Connect	to	a	database,”	drop	down	the	list	and	select	the	WroxSSRS2016
database.

9.	 You	can	test	the	connection	before	saving	changes.	This	is	a	good	time	to	consider
whether	the	person	designing	this	report	has	rights	to	read	data	from	the	database.
If	your	Windows	username	or	a	Windows	group	you	are	a	member	of	was	used	to
create	a	login	with	read	 permission	granted	to	the	necessary	tables,	you	should	be
good	to	go.

Note	that	the	selections	you	made	on	the	Connection	Properties	dialog	resulted	in
building	the	following	connection	string:

Data	Source=LocalHost;	Initial	Catalog=WroxSSRS2016

10.	 Click	OK	to	close	and	save	changes.

11.	 Right-click	the	Datasets	folder	and	choose	Add	Dataset…,	as	shown	in	Figure	4.14.
The	Dataset	Properties	dialog	opens.

Figure	4.14	Selecting	Add	Dataset.

12.	 In	the	Name	box,	enter	SalesSummary.

13.	 Select	the	data	source	you	created.

14.	 Click	the	Query	Designer…	button.	The	Report	Builder	Query	Designer	dialog
shown	in	Figure	4.15	opens.

Figure	4.15	Query	Designer	dialog.

15.	 In	the	Database	view	pane	on	the	left,	expand	the	Views	folder	and	check	the	box
next	to	the	view	named	vSalesSummaryYearProduct.

16.	 Click	the	OK	button	to	accept	the	query.

Figure	4.16	shows	the	resulting	dataset	created	by	the	Query	Designer,	the	data
source	and	T-SQL	query	script.

Figure	4.16	List	of	fields	added	to	Report	Data	pane.

17.	 Click	the	OK	button	to	close	the	Dataset	Properties	dialog.

Designing	the	Report	Layout
A	table	is	one	of	the	most	fundamental	yet	useful	data	regions	you	will	use	in	report
design.	This	exercise	uses	a	simple	table	with	five	columns	for	fields.	Totals,	headers,
and	footers	are	covered	in	the	subsequent	chapters,	but	for	now,	you	will	define	a
detail	group	to	consolidate	the	dataset	rows	for	each	product.

Take	a	look	at	the	dataset	in	the	Report	Data	pane	to	the	left	and	notice	that	a	list	of
fields	was	added,	as	shown	in	Figure	4.17.

Figure	4.17	Selecting	the	Insert	Table	option.

Now	that	the	data	source	and	dataset	are	in	place,	you	can	begin	working	on	the	rest	of
the	report.

1.	 Place	the	cursor	in	the	report	title	and	type	a	name	for	the	report	such	as	Sales
Summary.

2.	 Select	the	Insert	tab	at	the	top	of	the	Report	Builder	window	to	show	the	Insert
ribbon.

3.	 Click	the	down	arrow	below	the	Table	icon	in	the	Data	Regions	group	to	show	the
menu	options.

4.	 Select	Insert	Table	from	the	drop-down	menu,	as	shown	in	Figure	4.17.	The	mouse
pointer	changes	to	indicate	that	you	can	insert	a	table	on	the	report	canvas.

5.	 Move	the	mouse	pointer	to	the	upper-left	area	of	the	blank	report	canvas,	under
the	report	title	textbox,	and	then	click	to	place	the	table,	as	shown	in	Figure	4.18.

Figure	4.18	Placing	the	table.

A	new	table	is	added	to	the	report.

You	have	two	different	ways	to	add	fields	to	a	new	table.	You	can	either	drag-and-
drop	fields	from	the	dataset	in	the	Report	Data	pane,	or	use	the	field	selection	list
in	the	detail	cells	of	the	table.	In	this	exercise,	you	will	use	the	second	method.

With	a	little	experience,	you	will	become	accustomed	to	how	tables	behave	in	the
designer.	Until	then,	it	is	easy	to	fumble	a	bit.	When	a	table	isn't	selected,	clicking
once	on	any	cell	will	show	a	set	of	gray	boxes	above	each	column	and	to	the	left	of
each	row.	These	are	called	column	and	row	selectors	or	selection	handles.	If	a	cell
is	selected,	a	heavy	border	is	displayed	around	that	cell.	Click	in	the	cell	but	not	on
the	text	to	select	a	cell.	If	you	click	once	more,	the	cursor	is	placed	within	the
textbox	contained	in	the	selected	cell.	Click	on	a	different	cell	to	deselect	the
textbox.

6.	 Hover	the	mouse	pointer	over	the	first	detail	cell	(left	of	the	cell	labeled	Data)	to
show	the	field	selection	icon	in	the	right	corner	of	that	cell.

7.	 Click	the	icon	to	drop	down	the	field	list	and	select	the	ProductCategory	field,	as
shown	in	Figure	4.19.

Figure	4.19	Selecting	the	ProductCategory	field.

8.	 Move	one	cell	to	the	right	and	select	the	ProductSubcategory	field.

9.	 Move	to	the	next	cell	and	select	the	ProductName	field.

10.	 Right-click	the	gray	column	selection	handle	over	the	third	column	and	choose
Insert	Column	 	Right,	as	shown	in	Figure	4.20.

Figure	4.20	Inserting	columns.

11.	 Repeat	the	last	step	so	that	there	are	five	columns	in	all.

12.	 Use	the	field	list	to	add	the	OrderQuantity	and	SalesAmount	fields	to	the	last	two
columns.

With	the	table	selected,	hovering	over	the	line	separating	the	column	headers	will
show	a	horizontal	double	arrow	point	indicating	the	option	to	resize	the	columns.

13.	 Resize	each	of	the	columns	so	the	heading	labels	are	visible	on	one	line.

Reviewing	the	Report
Take	a	look	at	your	work	so	far.	You	can	toggle	between	Design	and	Run	views	to
preview	how	the	report	will	look	when	it	runs	with	data.	These	options	are	found	both
on	the	Home	ribbon	and	on	the	right	side	of	the	status	bar	at	the	bottom	of	the	Report
Builder.

1.	 Select	the	Home	ribbon	tab.

2.	 The	leftmost	icon	on	the	Home	ribbon	is	titled	Run,	as	shown	in	Figure	4.21.	Click
this	icon	to	preview	the	report.

Figure	4.21	Previewing	the	report	using	the	Run	icon.

Setting	Formatting	Properties
You	will	notice	that	the	table	looks	very	plain	and	that	the	Sales	Amount	values	aren't
formatted	as	currency,	so	you	should	fix	that.

1.	 Ensure	that	the	Home	ribbon	tab	is	selected.

2.	 Click	anywhere	in	the	table	to	show	the	column	and	row	selectors.

3.	 Click	the	gray	row	selector	to	the	left	of	the	table	heading	row.	It	is	to	the
immediate	left	of	the	top	cell	labeled	Product	Category.	Clicking	this	gray	handle
selects	the	table	heading	row.

4.	 In	the	Border	ribbon	group,	use	the	drop-down	arrow	next	to	the	paint	bucket	icon
to	change	the	background	color	of	the	cells	in	the	header	row.

5.	 Select	Light	Gray	for	the	background	color,	as	shown	in	Figure	4.22.

Figure	4.22	Selecting	the	background	color.

6.	 Ensure	that	the	table	is	still	selected.

7.	 Click	the	gray	column	selector	above	the	Sales	Amount	column.	Doing	this	selects
the	 column	so	that	you	can	set	properties	for	the	cells	in	that	column.

8.	 Click	the	dollar	sign	icon	in	the	Number	group	on	the	Home	ribbon	to	set	the
format	of	this	column	to	currency,	as	shown	in	Figure	4.23.

Figure	4.23	Formatting	the	column	for	currency.

8.	 NOTE

Specific	formatting	features,	such	as	regional	and	fixed	formats,	are	 covered
in	Chapter	8,	“Graphical	and	Advanced	Report	Design.”

9.	 Let's	preview	the	report	again	to	see	the	formatting	changes.	Click	the	Run	icon	on
the	Home	ribbon	once	again	to	preview	the	report,	as	shown	in	Figure	4.24.

Figure	4.24	Previewing	the	report.

10.	 You	need	to	do	something	really	important	now—and	this	is	something	you	should
get	in	the	habit	of	doing	often.	Do	you	see	that	the	title	bar	in	Report	Builder	says
“Untitled”?	That	means	this	report	hasn't	been	saved.	All	the	work	you've	done	up
to	this	point	is	just	sitting	in	memory	and	not	stored	on	your	computer.	If	a
volcano	erupted,	an	asteroid	fell	from	space,	or	your	cat	jumped	on	your	keyboard,
you'd	lose	your	work.	Let's	fix	that.	Up	on	the	Quick	Access	toolbar	you'll	see	the
universal	symbol	for	saving	your	work—the	floppy	disk	(because	everyone	knows
what	a	floppy	disk	is	these	days).	Click	the	floppy	disk	icon	on	the	Quick	Access
toolbar.

11.	 When	prompted,	enter	“Sales	Summary”	for	the	name	for	your	report.

Since	you	opened	Report	Builder	from	the	web	portal,	the	report	is	saved	to	the	report
server	rather	than	the	filesystem.

Congratulations!	You've	created	a	table	report	showing	a	summary	of	product	orders.
At	this	point	you	could	call	the	report	done	and	move	on	but,	as	Columbo	always	said,
there	is	one	more	thing…

Validating	Report	Design	and	Grouping	Data
I	do	a	lot	of	demos	for	consulting	clients	and	at	conferences.	The	thing	about	a	demo
is	that	it's	 usually	prepared	and	practiced	so	you	never	see	the	little	flaws.	I	won't	do
that	to	you.	This	report	has	a	potential	flaw	that	should	be	addressed.	Recall	that	you
used	a	view	named	vSalesSummaryYearProduct	for	the	report	dataset.	This	view
summarizes	all	the	sales	orders	and	returns	one	row	for	every	unique	combination	of
Year,	Product	Category,	Subcategory,	and	Product.

I	purposely	didn't	include	the	Year	field	in	the	report	to	demonstrate	this	common
scenario.	How	much	data	is	displayed	in	the	report?	If	you	look	at	the	page	count	in
the	report	toolbar,	it	doesn't	actually	tell	you.	See	where	it	says	“1	of	2?”…	Reporting
Service	doesn't	actually	know	how	many	pages	there	are	because	it	has	only	rendered
two	pages	so	far.

1.	 On	the	Run	ribbon,	click	the	Last	icon	in	the	Navigation	group.	This	navigates	to
the	last	page	of	the	report.	In	order	to	do	this,	Reporting	Services	must	figure	out
the	pagination.

As	you	can	see	in	Figure	4.25,	there	are	14	pages	(give	or	take…	there	are	a	few
variables).

Figure	4.25	Revealing	the	total	number	of	pages.

2.	 Take	a	close	look	at	the	values	in	the	first	three	columns	and	you'll	see	some	of	the
product	names	repeated.	Why?	Because	each	row	actually	represents	the	product

sales	for	one	year.	Unless	you	want	to	add	the	Year	column	or	filter	data	for	only
one	year,	this	would	be	confusing.

3.	 Switch	back	to	design	view	by	clicking	the	Design	icon	on	the	far	left	of	the	ribbon.

4.	 Click	on	any	cell	in	the	table.

5.	 At	the	bottom	of	the	designer	window,	under	Row	Groups,	you'll	see	one	row
labeled	(Details).	On	the	right	side	of	this	row,	you'll	see	a	drop-down	arrow.

6.	 Click	the	down	arrow	to	show	the	menu.

7.	 Select	Group	Properties…	from	the	drop-down	menu,	as	shown	in	Figure	4.26.

Figure	4.26	Selecting	Group	Properties.

The	Group	Properties	dialog	has	seven	pages	that	you	can	access	using	the	page
list	on	the	left	side.	You'll	learn	more	about	using	groups	and	these	advanced
features	in	Chapter	6,	“Grouping	and	Expressions.”	Your	objective	is	to
consolidate	the	duplicate	product	rows.

8.	 Under	“Group	expressions,”	click	the	Add	button	to	add	a	new	group	expression.

8.	 NOTE

Even	though	you're	only	selecting	a	field	for	grouping,	this	does,	in	fact,
create	an	expression.	In	this	simple	example,	it's	just	a	field	reference.

9.	 Drop	down	the	fields	list	and	select	[ProductName],	as	shown	in	Figure	4.27.

Figure	4.27	Selecting	the	[ProductName]	field.

10.	 Click	the	OK	button	to	accept	this	change.

Earlier	when	you	selected	the	OrderQuantity	and	SalesAmounts	fields	for	the	last
two	columns,	expressions	were	created	that	just	referred	to	field	value.	Now	that	a
row	might	include	multiple	grouped	values,	these	field	references	must	be
replaced	with	expressions	that	aggregate	multiple	values.	All	you	need	to	do	is	re-
select	the	fields	(as	you	did	before),	and	the	SUM	function	will	be	added	to	the	field
expression.

11.	 Hover	the	mouse	pointer	over	the	detail	cell	in	the	Order	Quantity	column	to	show
the	field	list	icon.

12.	 Click	the	field	icon	to	show	the	field	list	and	select	[OrderQuantity],	as	shown	in
Figure	4.28.

Figure	4.28	Selecting	the	[OrderQuantity]	field.

12.	 NOTE

There	is	a	subtle	but	important	behavior	to	look	for	when	selecting	a	field	in
this	way.	Note	that	when	you	selected	the	OrderQuantity	field	in	the	detail
row,	the	cell	displays	[OrderQuantity],	but	when	the	same	field	is	selected	in	a
grouped	cell,	the	cell	displays	[Sum(OrderQuantity)]	to	indicate	that	the
grouped	values	will	be	aggregated.

13.	 Repeat	the	same	steps	to	select	the	[SalesAmount]	field	in	the	Sales	Amount
column.

14.	 Click	the	Save	icon.	(Remember,	this	is	a	good	habit,	so	do	it	often.)

15.	 Click	the	Run	button	to	preview	the	report.

16.	 Use	the	navigation	buttons	to	go	to	the	last	page	again,	as	shown	in	Figure	4.29.

Figure	4.29	Jumping	to	the	last	page	of	the	report.

With	records	grouped	by	product,	you	should	see	the	total	page	numbers	reduced
because	you	no	longer	have	one	row	per	unique	year	and	product.	Each	row	now
shows	the	total	product	sales	for	all	years.

17.	 Close	Report	Builder.

18.	 Return	to	the	web	browser	window	you	used	to	launch	Report	Builder.

19.	 Refresh	the	web	browser.	You	should	see	the	new	report	in	the	web	portal.

20.	 Click	to	open	the	report	in	the	browser.

You've	done	it!	The	new	report	is	deployed	to	the	report	server.	It	includes	sales	orders

for	all	years	grouped	by	product.

SUMMARY
Effective	reporting	is	all	about	simplicity.	If	you	can	put	useful	information	in	front	of
a	user	so	that	it	answers	important	questions,	that	adds	value	and	improves	business.
Even	a	simple	table	report	like	this	one	can	provide	tremendous	value	to	a	business
user.

You	used	Report	Builder	to	author	your	first	report.	Later	you	will	use	the	SQL	Server
Data	Tools	Report	Designer	(an	add-in	for	Visual	Studio)	to	apply	the	same	design
techniques	and	build	on	these	skills.	You	started	with	an	embedded	SQL	Server	data
source	and	used	a	simple	view	to	define	a	dataset	to	feed	data	to	a	table	data	region.
Because	the	dataset	returned	rows	for	every	year	and	product,	you	grouped	the	table
on	the	ProductName	field	to	consolidate	the	detail	rows	and	aggregate	the	numeric
values.

The	skills	you	learned	in	this	chapter	will	help	as	you	progress	to	more	complex
designs.	The	chapters	that	follow	will	expand	these	concepts	and	introduce	some	new
ones	as	you	move	to	the	next	level.

Chapter	5
Data	Access	and	Query	Basics

WHAT'S	IN	THIS	CHAPTER

Database	and	query	essentials

Understanding	relational	database	principles	and	concepts

Data	source	management

Datasets	and	using	query	design	tools

Query	authoring	using	the	Report	Builder	query	designer

Query	authoring	with	SQL	Server	Management	Studio

Using	single	and	multi-select	parameters

Data	source	queries	are	the	foundation	of	reporting	and	writing	effective	queries	and
are	essential	to	design.	If	your	reports	use	the	SQL	Server	relational	engine,	or	SQL
Server	Analysis	Services	for	data	sources,	you	may	prefer	to	use	a	familiar	and	more-
sophisticated	query	design	tool	like	SQL	Server	Management	Studio	(SSMS).	By
contrast,	the	report	designer	includes	useful	but	simplified	query	tools.	Many	other
data	sources	are	supported	with	more	rudimentary	query	design	options,	as	well.	This
chapter	addresses	T-SQL	query	design	for	SQL	Server.

NOTE

If	you	are	new	to	the	T-SQL	language	and	are	designing	reports	for	SQL	Server,
pick	up	a	copy	of	Microsoft	SQL	Server	2012	T-SQL	Fundamentals	(Microsoft
Press:	Redmond,	WA,	2012)	by	Itzik	Ben-Gan.

Reporting	Services	strives	to	reach	two	audiences—namely,	a	broad	spectrum	of	users
who	can	be	grouped	into	two	camps.	The	first	is	the	business	user	needing	to	create
simple	reports	easily,	and	the	second	is	the	experienced	developer	or	database
professional	who	needs	to	create	sophisticated	reports	using	complex	queries	and
intricate	program	logic.	History	has	proven	that	meeting	both	needs	is	not	an	easy
balance.	As	a	result,	there	are	two	report	design	tools	and	myriad	features	addressing
the	needs	of	the	novice,	as	well	as	the	advanced	report	designers.	Report	Builder	is
right-sized	for	business	users,	making	it	an	ideal	choice	for	those	who	will	use
database	objects	that	have	been	prepared	for	them	by	their	corporate	IT	staff.	You	will
continue	to	use	Report	Builder	and	then	you	will	also	use	SQL	Server	Management
Studio	for	T-SQL	query	design	with	the	SQL	Server	relational	database	engine.

DATABASE	ESSENTIALS
You	have	learned	that	using	Report	Builder	to	get	data	from	a	database	view	is	pretty
simple.	The	Query	Designer	in	Report	Builder	is	relatively	simple,	but	it	lacks	some	of
the	sophistication	available	in	the	SQL	Server	Data	Tools	(SSDT)	Report	Designer.	If
you	have	the	luxury	of	encapsulating	query	logic	into	database	objects	like	views	and
stored	procedures,	in	theory,	you	should	not	need	to	embed	complex	queries	in	your
reports.	That	may	be	true	in	a	perfect	world,	where	you	have	permission	to	create
objects,	or	your	database	administrator	is	actively	involved	in	report	projects	and
creating	views	and	stored	procedures	for	you,	but	that's	not	always	practical.

SSDT	Report	Designer	leverages	query	design	tools	that	get	installed	with	the	SQL
Server	client	tools.	These	tools	give	more	advanced	users	a	great	deal	of	functionality
and	capabilities	that	are	usually	appropriate	for	application	developers	and	IT
professionals.	As	an	IT	professional	and	tenured	report	designer,	I	often	prefer	to	use
Report	Builder	in	many	cases.	If	I	need	to	build	complex	queries,	I	step	out	of	Report
Builder	and	use	the	SQL	Server	Management	Studio	(SSMS)	query	design	tools.	For
me,	this	is	the	best	of	both	worlds.	Whether	using	Report	Builder	or	SSDT	to	create
reports,	SSMS	is	a	superior	query	authoring	experience.

Relational	Database	Concepts
Have	you	heard	of	the	five-minute	university?	You	would	have	to	be	as	old	as	I	am	to
remember	this	classic	comedy	routine	from	Don	Novello	(the	entertainer	known	as
Father	Guido	Sarducci)	says	that	after	four	years	of	college,	after	you've	finished
studying	and	passing	all	the	exams,	all	you're	going	to	remember	years	later	can	be
taught	in	five	minutes.	That's	probably	a	stretch	of	the	truth,	but	the	basics	can	be
quite	simple.	So,	what	follows	is	the	five-minute	course	on	T-SQL.

What's	a	Sequel?
This	is	a	true	story.	Back	in	the	early	days	of	database	technology,	as	the	products	and
languages	used	today	were	in	their	infancy,	the	math	geniuses	at	IBM	were	pioneering
relational	database	principles	and	the	rules	of	normal	form.	That	part	of	history,	and
the	design	patterns	that	ensued,	is	sacred	ground	that	few	would	ever	challenge.
Several	development	teams	and	companies	followed,	all	with	their	own	database
products	modeled	after	the	same	founding	ideas	and	language	constructs.

The	Battle	of	the	SQL	Acronym
One	early	incarnation	of	the	relational	database	was	actually	named	“SEQUEL,”	which
stood	for	Select	English	QUEry	Language.	It	was	one	of	many	attempts	to	create	a
memorable	phonetic	contraction.	The	word	“English”	fell	out	of	favor	because	there
were	those	with	other	persuasions	in	the	community,	and	the	driving	concept	was	that
the	language	had	“Structure”	and	not	so	much	the	ability	to	just	“Select”	things.	By

committee	and	community	consensus,	the	official	language	became	known	as	SQL,
which	stood	for	“Structured	Query	Language.”	People	with	slightly	different	product
alignments	or	even	“religious”	persuasions	about	their	toolset	will	often	butcher	the
name.	Pronouncing	SQL	correctly	is	a	little	bit	like	the	traditional	pronunciation	of
some	U.S.	cities	like	Louisville,	Kentucky	(pronounced	“Lew-A-Vul”),	Aloha,	Oregon
(pronounced	“Ah-Low-Uh”)	or	New	Orleans	(let's	not	even	try).	Likewise	(and	just	to
be	clear),	the	language	for	Microsoft's	database	product	is	SQL	pronounced	“See-
Kwel,”	not	“Es-Kew-El,”	and	not	“Em	Es	Es	Kew	El.”

The	Battle	of	the	Brand
There	are	quite	a	few	dialects	of	SQL	used	with	various	database	products.	Some	have
MySQL	(pronounced	“My	See-Kwel”)	and	others	have	PL/SQL	(pronounced	“Pee-El
See-Kwel”)	and	others	just	have	plain-old	SQL.	But	we	have	T-SQL.	Why	T-SQL?	End-
to-end,	the	purpose	of	the	SQL	data-manipulation	language	is	to	execute	database
commands	and	manage	transactional	integrity	by	ensuring	that	all	database
operations	are	consistent,	reliable,	and	durable.	The	term	“Transaction”	reaffirms	SQL
Server's	commitment	to	enforcing	transactional	integrity,	and,	thus,	the	product	name
was	eventually	shortened	to	T-SQL.

DATA	SOURCE	MANAGEMENT
A	data	source	contains	the	connection	information	for	a	dataset.	Data	sources	can	be
created	for	a	specific	report	dataset,	or	can	be	shared	among	different	reports.	Because
most	reports	get	data	from	a	common	data	source,	it	often	makes	sense	to	create	a
shared	data	source.	Using	shared	data	sources	has	a	few	advantages.	Even	if	you	don't
have	several	reports	that	need	to	share	a	central	data	source,	it	takes	no	additional
effort	to	create	a	shared	data	source.	This	may	be	advantageous	in	this	case	because
the	data	source	is	managed	separately	from	each	report	and	can	be	easily	updated	if
necessary.	Then,	as	you	add	new	reports,	the	shared	data	source	will	already	be
established	and	deployed	to	the	report	server.

Embedded	and	Shared	Data	Sources
Data	sources	can	be	embedded	into	each	report	or	deployed	to	the	report	server	as	a
shared	object.	The	latter	option	has	the	advantage	of	giving	you	or	your	report	server
administrator	one	place	to	manage	connection	information	for	several	reports.	Using
shared	connections	is	generally	a	recommended	practice,	especially	in	a	large-scale
environment.	SQL	Server	Data	Tools	is	introduced	in	Chapter	6,	“Grouping	and
Expressions,”	and	that's	the	tool	you	will	use	to	define	shared	data	sources.	A	shared
data	source	can	also	be	created	directly	on	the	server	using	the	web	portal,	but	you	can
only	consume	a	shared	data	source	created	this	way	using	Report	Builder.

Query	Design	Tools
For	SQL	Server	data	sources,	you	have	some	Query	Designer	options	to	choose	from.
The	best	choice	will	depend	on	the	complexity	of	your	needs	and	the	tool	you're
accustomed	to	using.

The	Report	Designer	add-in	for	Visual	Studio	(called	SSDT)	relies	on	shared
components	installed	with	the	SQL	Server	client	tools.	If	you're	a	developer	with	prior
SQL	Server	experience	and	you	know	your	way	around	the	T-SQL	query	language,
you'll	probably	prefer	to	use	SSMS	or	the	query	tool	in	SSDT	Report	Designer.	If	you
are	using	Report	Builder	and	have	not	installed	the	SQL	Server	client	tools,	you	will
not	have	access	to	the	SSMS	query	designer.	If	you	are	planning	to	design	complex
queries,	it	would	be	advisable	to	install	and	learn	to	use	SSMS.

Experienced	report	developers	often	choose	Report	Builder	over	SSDT	for	simple
report	design	work,	but	may	not	be	big	fans	of	the	Report	Builder	Query	Designer.
This	is	primarily	because	they	are	more	accustomed	to	using	SSMS	and	prefer	to
hand-write	T-SQL	queries.	In	the	example	that	follows,	you'll	see	that	the	Query
Designer	actually	generates	pretty	decent	SQL	script,	so,	in	the	end,	it	really	comes
down	to	using	the	method	you	are	most	comfortable	with,	as	long	as	it	meets	your
needs.

Using	the	Report	Builder	Query	Designer
This	section	gets	you	started	with	the	most	basic	query	tool.	You	use	SSMS	to	author	a
similar	query	in	the	exercise	that	follows.	Let's	start	with	the	Report	Builder	designer
to	give	you	experience	using	both	tools.	First,	create	a	data	source.	In	the	same
manner	you	created	a	dataset	in	Chapter	4,	“Report	Layout	and	Formatting,”	choose
the	option	to	create	a	new	embedded	dataset,	select	the	data	source,	and	then	click	the
Query	Designer…	button.

The	Query	Designer	displays	all	of	the	objects	in	the	database.	Adding	columns	from
multiple	tables	to	the	query	output	is	a	matter	of	expanding	each	table	and	checking
the	box	next	to	each	column.	Columns	are	added	to	the	query	in	the	order	you	select
them.	Three	sections	on	the	right	(“Selected	fields,”	Relationships,	and	“Applied
filters”)	can	each	be	expanded	and	collapsed	using	the	chevron	(double	arrow)	icon	on
the	right	side	of	the	section	toolbar.

Unless	you	need	the	query	to	return	every	detail	row,	it	is	always	a	good	idea	to	group
the	results	by	the	non-measure	columns	and	then	aggregate	the	numeric	measure
columns.	For	example,	Figure	5.1	shows	that	the	MonthNumber,	Year,	Country,
OrderQuantity,	and	SalesAmount	columns	have	been	selected.	The	last	two	columns
are	numeric	measures,	which	means	that	if	you	group	results	by	the	first	three
columns,	you	must	aggregate	these	column	values.	This	is	easy	to	do.	First,	note	that
the	MonthNumber	column	has	been	selected	before	the	Year	column	(done	so	for
demonstration	purposes).	Before	grouping,	the	columns	should	be	listed	in	logical
order,	so	you	use	the	up	and	down	arrows	next	to	“Group	and	Aggregate”	to	set	the
column	order	of	the	first	three	columns	to	Year,	MonthNumber,	and	then	Country.

Figure	5.1	Selecting	columns	in	Query	Designer.

In	the	Aggregate	column	of	the	“Selected	fields”	list,	choose	“Group	by”	for	the	first
three	columns	and	choose	“Sum”	for	the	two	numeric	measures.	Because	the	selected
tables	are	related	to	each	other	in	the	database,	using	the	Auto	Detect	feature	should
add	corresponding	joins	using	the	appropriate	key	columns.	Figure	5.2	shows	that	this
feature	is	enabled	by	default.	You	should	always	double-check	to	ensure	sure	that	the
right	tables	and	columns	are	used	to	join	the	tables.

Figure	5.2	Using	the	Auto	Detect	feature.

You	can	add,	remove,	and	modify	joins	between	tables	by	expanding	the	Relationships
section.	Add	filters	and	parameters	using	the	“Applied	filters”	section.	In	Figure	5.3,
the	Year	column	has	been	added.	After	dropping	down	the	Value	list,	2013	was	entered
for	the	filter	value.	By	checking	the	Parameter	check	box,	this	adds	a	report	parameter
using	the	field	name.

Figure	5.3	Adding	a	report	parameter.

The	Query	Designer	generates	a	T-SQL	query	that	can	be	viewed	using	the	“Edit	as
Text”	button,	as	shown	in	Figure	5.4.

Figure	5.4	Generating	a	T-SQL	query.

The	resulting	T-SQL	query	is	quite	well-written.	The	script	is	efficient,	well-formatted,
and	easy	to	read.	In	the	future,	you	may	use	the	graphical	designer	to	generate	this
query,	switch	to	the	text	view,	and	just	hand-write	the	query	script	here,	or	write	the
query	in	SSMS	and	then	copy-and-paste	the	resulting	query	script	into	this	view.	My
preference	is	the	latter	and	that's	the	technique	you	will	use	in	the	exercise	later	in
this	chapter.

DATASETS	AND	FIELDS
A	query	or	command	statement	that	produces	a	set	of	report	data	is	called	a	dataset.
There	is	more	to	a	dataset	than	just	a	query,	though.	It's	actually	a	fairly	sophisticated
object	used	to	centrally	manage	all	of	the	data	and	metadata	associated	with	the	query.
A	dataset	is	essentially	the	glue	that	maps	report	parameters	to	query	parameters,
columns	returned	by	the	query	to	fields	used	in	the	report,	and	optional	filtering
expressions	that	are	applied	after	the	data	is	returned	by	the	query.	In	simple	reports,
all	these	objects	are	just	created	by	the	designer	and	may	be	of	little	concern.	In	more
advanced	reports,	the	dataset	can	provide	complex	capabilities	to	manipulate	and
manage	dynamic	report	data.

For	the	purposes	of	this	chapter's	exercise,	you	write	a	T-SQL	query	using	a	single
query	parameter.	The	query	designer	will	map	the	query	parameter	to	a	report
parameter,	and	the	columns	returned	by	the	query	will	be	mapped	to	dataset	fields	to
populate	a	matrix	data	region.	Later,	when	learning	about	advanced	report	designs,
you	will	use	expressions	to	map	the	parameters	through	the	dataset	and	apply
conditional	filter	logic.

Embedded	and	Shared	Datasets
Like	data	sources,	datasets	can	be	contained	entirely	within	a	report	design,	or	they
can	be	published	to	the	report	server	as	a	shared	object	to	be	used	in	multiple	reports.
This	is	a	powerful	feature	for	creating	efficient	reporting	solutions.	Shared	datasets
are	designed	just	like	an	embedded	dataset,	using	the	SSDT	or	Report	Builder	query
designers,	but	rather	than	residing	within	each	report,	shared	datasets	are	deployed
and	stored	as	named	objects	on	the	report	server.

NOTE

I	wasn’t	a	fan	of	shared	datasets	after	I	started	using	them	when	the	feature	was
introduced	a	few	versions	back.	It	wasn’t	until	I	learned	how	to	embrace	the
caching	behavior	(and	turn	it	off	in	some	cases)	that	I	began	to	have	a	good
experience	with	shared	datasets.	Now	that	this	is	a	requirement	for	Mobile
Reports,	learning	to	use	this	feature	is	a	necessity.

One	advantage	of	using	shared	datasets	is	that	they	cache	result	sets	in	such	a	way
that	when	the	same	query	is	executed	with	the	same	parameter	values	(within	a
configurable	period	of	time),	cached	results	from	a	previous	execution	are	used	to
improve	performance	and	conserve	server	resources.	The	trade-off	is	that	users	may
not	see	data	changes	that	have	occurred	since	the	previous	query	execution.	Now,	this
is	all	configurable	on	the	report	server	but	you	need	to	be	mindful	of	these	settings
and	the	caching	behavior.

In	Chapters	17	through	20	you	will	use	shared	datasets	for	mobile	report	designs.
Since	Mobile	Reports	don't	support	embedded	datasets	like	paginated	reports,	you
must	design	and	deploy	shared	datasets	before	consuming	data	in	the	report.

Exercises
The	following	hands-on	exercises	will	guide	you	through	the	query	authoring	steps	in
SSMS,	creating	a	dataset	in	the	Report	Designer,	and	building	a	simple	report.	You	will
enhance	the	query	and	report	design	using	a	parameter	to	filter	data	and	then	employ
a	multi-value	parameter.

Authoring	a	Query	with	SQL	Server	Management	Studio
This	exercise	introduces	SSMS	as	a	query	authoring	tool,	used	in	conjunction	with	the
Report	Designer,	to	build	T-SQL	queries	and	report	datasets.

1.	 Open	SQL	Server	Management	Studio	from	the	SQL	Server	2016	program	group.
The	“Connect	to	Server”	dialog	opens	and	prompts	you	for	the	server	type	and
connection	information.

2.	 Ensure	that	the	Server	type	is	set	to	Database	Engine	and	enter	the	Server	name,
as	shown	in	Figure	5.5.

Figure	5.5	“Connect	to	Server”	dialog.

This	will	be	the	same	server	connection	information	you	used	in	the	Chapter	4
exercise.	Because	you're	using	a	local	instance	of	SQL	Server,	you	will	connect	to
the	SQL	Server	service	on	your	development	machine.	Enter	the	server	name	if
the	connection	is	not	local,	and	if	you	are	connecting	to	a	named	instance	of	SQL
Server,	the	name	is	entered	as	SERVERNAME\INSTANCENAME.

3.	 Click	the	Connect	button	to	open	the	connection.	On	the	left	side	of	the	screen,
SSMS	displays	the	Object	Explorer,	which	contains	all	of	the	objects	on	the
database	server	organized	in	a	hierarchical	tree	view.	Every	object	(or	node)	in	this
list	can	be	expanded	to	show	all	of	the	related	objects.	There	are	literally	thousands
of	objects	within	this	tree,	most	of	which	are	of	little	concern	to	you.	Those	that
are	important	include	servers,	databases,	tables,	and	columns.	Later,	you'll	also	be
concerned	with	views	and	stored	procedures.

3.	 TIP

If	you	don't	see	the	Object	Explorer	on	the	left	side	of	the	SSMS	window,	it
may	have	been	closed	in	a	previous	session.	You	can	show	the	Object	Explorer
by	pressing	F8	or	by	choosing	Object	Explorer	from	the	View	menu.

4.	 Expand	the	Databases	node.

5.	 Right-click	the	WroxSSRS2016	database,	as	shown	in	Figure	5.6.

Figure	5.6	Right-clicking	the	WroxSSRS2016	database.

6.	 On	the	toolbar,	click	the	New	Query	button.

7.	 Expand	the	WroxSSRS2016	database.

Showing	the	Tables	and	Columns	can	assist	your	query	design	effort	by	giving	you
a	list	of	objects	for	reference.

8.	 Expand	Tables.

9.	 For	each	of	the	following	tables,	expand	the	Columns	folder.

9.	 NOTE

As	you	enter	the	following	query	into	the	query	window,	you	can	drag	and
drop	objects	from	the	Object	Explorer,	or	just	type	into	the	query	window.
Don't	be	concerned	with	extra	brackets	or	object	prefixes	that	are	added	for
proper	object	referencing.

10.	 Enter	this	text	into	the	query	window:

SELECT

					YEAR(s.OrderDate)	AS	OrderYear,

					MONTH(s.OrderDate)	AS	OrderMonth,

					t.Country,

					s.SalesAmount

FROM

					[dbo].[Sales]	AS	s

										INNER	JOIN	[dbo].[SalesTerritory]	AS	t

										ON	s.SalesTerritoryKey	=	t.TerritoryKey

WHERE

					YEAR(s.OrderDate)	=	2013

;

11.	 Click	the	Execute	button	on	the	toolbar	to	see	the	results	displayed	in	the	grid
below.

12.	 Note	the	row	count	in	the	status	bar	in	the	bottom	right.	The	query	returns	more
than	28,000	rows.	This	is	because	this	query	returns	every	transaction	in	2013.
With	the	objective	to	report	summary	information	for	each	year,	month,	and
country,	you	can	group	the	query	and	consolidate	the	results.	Two	changes	are
needed.

13.	 Add	the	GROUP	BY	clause	to	the	end	of	the	query.	This	includes	the	same
expressions	as	those	in	the	SELECT	column	list	without	the	column	aliases	(AS…).
Any	column	that	is	not	in	the	GROUP	BY	column	list	must	be	aggregated.	In	this
query,	that	is	only	the	SalesAmount	column.

14.	 Modify	the	SalesAmount	column	expression	to	use	the	SUM	function	and	add	the
alias	AS	SalesAmountSum.

15.	 Verify	that	your	changes	to	the	query	match	the	following:

SELECT

					YEAR(s.OrderDate)	AS	OrderYear,

					MONTH(s.OrderDate)	AS	OrderMonth,

					t.Country,

					SUM(s.SalesAmount)	AS	SalesAmountSum

FROM

					[dbo].[Sales]	AS	s

										INNER	JOIN	[dbo].[SalesTerritory]	AS	t

										ON	s.SalesTerritoryKey	=	t.TerritoryKey

WHERE

					YEAR(s.OrderDate)	=	2013

GROUP	BY

					YEAR(s.OrderDate),

					MONTH(s.OrderDate),

					t.Country

;

16.	 Execute	the	query	again.	Note	the	row	count	in	the	status	bar.	The	query	returns
only	66	rows	this	time.

17.	 Select	and	copy	the	query	text	to	the	clipboard.

Add	the	Query	to	the	Report	Dataset
Now	that	you've	authored	a	query	in	SSMS,	you	will	add	it	to	a	new	report	designed
using	Report	Builder.

1.	 In	web	portal,	add	a	new	Paginated	report	using	Report	Builder	just	as	you	did	in
the	Chapter	4	exercise	and	create	an	embedded	data	source	to	the	WroxSSRS2016
database.

2.	 Enter	the	text	Sales	Summary	by	Country	in	the	title	textbox	at	the	top	of	the
report	body.

3.	 Create	a	new	embedded	dataset	named	SalesSummaryCountry.

4.	 Select	the	data	source,	as	shown	in	Figure	5.7.

Figure	5.7	Selecting	the	SalesSummaryCountry	dataset.

5.	 Click	the	Query	Designer…	button.

6.	 Click	the	“Edit	as	text”	button	on	the	Query	Designer	dialog.

7.	 Paste	the	query	you	copied	from	SSMS	into	the	Query	Designer	window,	as	shown
in	Figure	5.8.

Figure	5.8	Pasting	the	query	copied	from	SSMS.

8.	 Add	the	Year	parameter	by	changing	the	text	2013	to	@Year.

9.	 Click	the	red	exclamation	icon	on	the	toolbar	to	execute	the	query.	This	will	cause
the	Query	Designer	to	add	a	parameter	to	the	report	and	dataset	definition.	The
Define	Query	Parameters	dialog	opens.

10.	 Enter	the	year	2013	for	the	Parameter	Value,	as	shown	in	Figure	5.9,	and	click	the
OK	button.

Figure	5.9	Entering	the	year	for	the	Parameter	Value.

11.	 Click	OK	in	the	Query	Designer	window	to	accept	the	query	changes	and	close	the
window.	Figure	5.10	sows	the	Parameter	Properties	window	with	the	query	added.

Figure	5.10	Dataset	Properties	with	query.

12.	 On	the	Dataset	Properties	dialog,	select	the	Parameters	page	from	the	list	on	the
left	side	of	the	window.	Note	that	the	Parameter	Value	box	on	the	right	side	doesn't
reference	a	parameter.	This	is	because	the	report	parameter	hasn't	been	created
yet.

13.	 Click	the	OK	button	on	the	Dataset	Properties	window.

14.	 In	the	Report	Data	window	on	the	left,	double-click	the	new	dataset	to	re-open	the
Dataset	Properties	window.

15.	 Select	the	Parameters	page	again.	Note	that	a	report	parameter	has	been	added,	as
shown	in	Figure	5.10.

15.	 NOTE

Although	these	two	objects	have	the	same	name,	there	is	a	difference	between
a	query	parameter	and	a	report	parameter.	Note	that	the	Parameter	Name	is
the	query	parameter	you	had	typed	into	the	query	text,	as	shown	in	Figure
5.11.	The	“Parameter	value”	actually	refers	to	a	corresponding	report
parameter	that	the	designer	just	generated.	This	shows	that	the	report
parameter	sends	its	value	to	the	query	parameter	when	the	query	executes.

Figure	5.11	“Parameter	value”	referring	to	a	report	parameter.

16.	 In	the	Report	Data	pane	on	the	left	side	of	the	Report	Builder,	expand	the
Parameters	node	in	the	tree	to	see	the	Year	parameter.

17.	 Note	the	four	fields	belonging	to	the	dataset,	as	shown	in	Figure	5.12.

Figure	5.12	Four	fields	belonging	to	the	dataset.

Design	the	Report	Body
The	purpose	of	this	exercise	is	to	develop	skills	with	datasets	and	query	design.	With
that	objective	in	mind,	you	will	create	a	simple	report	to	view	the	dataset	results.

1.	 Select	the	Insert	ribbon	tab.

2.	 Click	the	down	arrow	below	the	Matrix	button	on	the	ribbon.	Select	Insert
Matrix…,	as	shown	in	Figure	5.13.

Figure	5.13	Selecting	the	Insert	Matrix	option.

3.	 Drop	the	matrix	into	the	report	body	as	you	did	with	the	table	in	the	exercise	in
Chapter	4,	near	the	top	just	below	the	title	textbox,	as	shown	in	Figure	5.14.

Figure	5.14	Dropping	the	matrix	into	the	report	body.

4.	 The	matrix	displays	three	field	drop	zones	labeled	Columns,	Rows,	and	Data.

5.	 Drag	and	drop	the	OrderYear	field	into	the	Rows	cell.

6.	 Drag	and	drop	the	Country	field	into	the	Columns	cell.

7.	 Drag	and	drop	the	SalesAmountSum	field	into	the	Data	cell.

8.	 Drag	the	OrderMonth	field	to	the	same	cell	as	the	OrderYear,	but	don't	release	the
mouse	button	yet.	Hover	over	this	cell	and	note	the	position	of	the	heavy	“I-beam”
cursor	on	the	edge	of	the	cell.

9.	 Move	the	pointer	to	the	right	so	this	cursor	is	on	the	right	edge	of	the	row	header
cell	where	you	dropped	the	OrderYear	field.

10.	 When	the	cursor	is	in	the	right	position	(on	the	right	edge	of	the	cell),	release	the
mouse	button	to	create	a	second	row	group	after	the	OrderYear.

10.	 NOTE

You	can	use	the	Undo	and	Redo	buttons	in	the	Quick	Access	toolbar	if	you
need	to	rewind	and	repeat	a	step.

11.	 Select	the	Data	cell	that	displays	[SUM(SalesAmountSum)],	as	shown	in	Figure	5.15.
Use	the	Number	group	on	the	Home	ribbon	to	set	the	format	to	currency.

Figure	5.15	Selecting	the	[SUM(SalesAmountSum)]	data	cell.

12.	 Click	the	Run	icon	on	the	Home	ribbon	to	preview	the	report.

13.	 Enter	2013	for	the	Year	parameter	as	shown	in	Figure	5.16,	and	then	click	the	View
Report	icon	on	the	right.

Figure	5.16	Entering	2013	for	the	Year	parameter.

13.	 NOTE

You	can	also	just	press	the	Enter	key	to	run	the	report.	The	report	runs	with
the	provided	parameter	value.

You	should	notice	the	difference	between	the	table	style	report	you	created	in	the
exercise	in	Chapter	4	and	this	matrix	report	where	the	Country	field	values	are
repeated	across	columns,	as	shown	in	Figure	5.17.

Figure	5.17	Country	field	values	repeated	across	columns.

Enhance	the	Parameter
The	point	of	this	exercise	is	to	demonstrate	and	experiment	with	parameters	and
query	options,	and	not	to	dress	up	the	report	so	much.

So	far,	you	have	a	parameter	that	allows	you	to	type	a	single	year	value	into	a	textbox

and	run	the	report	query	with	one	value	for	the	filter.	This	is	effective,	but	it	is	not
very	sexy.	Let's	take	it	up	a	half	notch.

1.	 Switch	to	design	view	and	in	the	Report	Data	pane	on	the	left	of	the	Report	Builder
window,	double-click	or	right-click	to	open	the	Report	Parameter	Properties	dialog.
You'll	add	on	a	sequence	of	features	one	step	at	a	time.

2.	 Change	the	data	type	from	Text	to	Integer,	as	shown	in	Figure	5.18.

Figure	5.18	Report	Parameter	Properties	dialog.

2.	 NOTE

Parameters	are	generally	very	forgiving	about	the	data	type	until	you	need	to
use	them	in	certain	expressions	like	a	multi-value	parameter	list.

3.	 On	the	second	page	of	the	Report	Parameter	Properties	dialog,	select	the	Available
Values	page.

4.	 Change	the	option	to	“Specify	values.”

5.	 Click	the	Add	button	three	times	to	add	three	pairs	of	Label	and	Value	boxes.

6.	 Enter	the	years	2011,	2012,	and	2013,	each	twice	(once	for	the	Label	and	once	for
the	Value),	so	it	looks	like	Figure	5.19.

Figure	5.19	Entering	report	parameters.

7.	 Change	to	the	Default	Value	page.

8.	 On	this	page,	choose	“Specify	values.”

9.	 Click	the	Add	button	and	then	type	the	text	2013	into	the	box	to	provide	this	as	a
default	value	for	the	parameter,	as	shown	in	Figure	5.20.

Figure	5.20	Providing	a	default	value	for	the	parameter.

10.	 Click	OK	to	save	and	close	the	window.

11.	 Click	the	Run	button	to	preview	the	report	with	the	query	results	for	the	default
year	2013,	as	shown	in	Figure	5.21.

Figure	5.21	Report	with	the	new	parameter	value.

12.	 Use	the	Year	parameter	list	to	select	a	different	year,	and	then	press	Enter	to	run
the	report	with	the	new	parameter	value.

Using	Multiple	Parameter	Values
Multi-value	parameters	allow	users	to	select	any	combination	of	items	from	the	value
list.	The	dataset	converts	the	array	of	selected	values	in	the	report	parameter	to	a
comma-separated	list	in	the	query	parameter,	which	can	be	used	to	filter	records	in
the	query.

1.	 Switch	back	to	design	view.

2.	 In	the	Report	Data	pane	on	the	left,	expand	the	Parameters.

3.	 Double-click	the	Year	parameter	and	open	the	Report	Parameter	Properties	dialog,
as	shown	in	Figure	5.22.

Figure	5.22	Report	Parameter	Properties	dialog.

4.	 Check	the	box	labeled	“Allow	multiple	values.”

5.	 Click	OK	to	save	and	close	the	window.

6.	 Right-click	the	SalesSummaryCountry	dataset	and	choose	Dataset	Properties.	This
opens	the	Dataset	Properties	dialog.

Rather	than	opening	the	Query	Designer,	you	can	make	simple	query	changes
right	here	on	the	Query	page.

7.	 In	the	WHERE	clause	of	the	query,	change	the	text	=	@Year	shown	in	Figure	5.23	to
IN(@Year).

Figure	5.23	Changing	the	WHERE	clause	of	the	query.

7.	 NOTE

The	T-SQL	IN	function	accepts	a	comma-separated	list	of	values.	Because	the
YEAR	function,	used	in	the	query	to	convert	the	OrderDate	column	to	a	year
value,	is	a	numeric	value,	the	Year	parameter	must	also	be	numeric.	A
numeric	multi-value	parameter	is	converted	to	a	list	of	comma-separated
values	without	quotes	around	each	value,	which	is	the	appropriate	format	to
use	in	this	query.

8.	 Click	the	OK	button	to	accept	the	change	and	close	the	Dataset	Properties	window.

9.	 Run	the	report	again.

10.	 Drop	down	the	Year	parameter	list	and	you'll	see	that	each	year	is	preceded	by	a
check	box.

11.	 Note	the	behavior	of	the	(Select	All)	box	in	the	first	row	of	the	list.

12.	 Check	the	values	2012	and	2013,	as	shown	in	Figure	5.24.

Figure	5.24	Checking	the	values	2012	and	2013.

13.	 Click	the	Save	icon	to	ensure	that	changes	have	been	save	to	the	report.

14.	 Press	Enter	to	run	the	report.	Notice	that	both	of	the	selected	years	are	displayed
in	the	row	group	headers	in	the	left-most	column	of	the	report.

NOTE

Try	running	the	report	without	having	a	parameter	value	selected.	Since	the	Year
parameter	is	required,	you	can	see	that	the	report	doesn't	run.	This	is	a	good
reminder	to	either	set	a	default	parameter	value	or	at	least	guide	users	to	make
parameter	selections	before	running	a	report.

This	is	a	simple	report	with	a	single	parameter.	You'll	likely	be	creating	reports	with
more	complex	queries	and	multiple	parameters,	but	the	same	patterns	apply,	and
you'll	be	able	to	use	these	skills	in	real	production	reports.

SUMMARY
At	this	point,	you	have	some	experience	with	the	tools	to	create	a	dataset	query	and
apply	basic	filtering	with	single	and	multi-select	parameters.	Using	Report	Builder
with	SQL	Server,	you	have	simple	query	design	options.	The	Query	Designer	provides
graphical	tools	to	assemble	a	T-SQL	query.	When	the	tool	is	done,	the	resulting	query
is	really	just	text,	including	the	commands,	keywords,	and	clauses	needed	to	instruct
the	database	engine.	For	serious	queries,	you	know	how	to	use	SSMS	and	then	paste
the	working	query	into	the	designer,	add	parameters,	and	build	your	report.

In	Chapter	6,	you	use	the	SSDT	Query	Designer,	and	then	learn	how	to	expand	on
these	techniques	to	create	more	complex	and	functional	reports.

Chapter	6
Grouping	and	Totals

WHAT'S	IN	THIS	CHAPTER

Introducing	SQL	Server	Data	Tools	for	Visual	Studio

Sample	reports	projects	and	exercises

Using	the	graphical	Query	Designer

Understanding	query	groups	and	table	joins

Understanding	report	data	flow

Understanding	report	groups

Grasping	expression	basics

Utilizing	group	sorting	and	visibility

This	chapter	introduces	and	explains	one	of	the	most	fundamental	and	essential
concepts	in	SSRS	report	design.	All	of	the	data	regions—tables,	matrices,	lists,	and
visual	controls	like	charts—rely	on	groups.	You	will	get	started	with	the	sample	report
project	in	SSDT	that	contains	several	completed	examples.	You	will	learn	the
differences	between	grouping	and	aggregating	rows	in	queries	and	performing
grouping	on	datasets	within	a	report	region.	We	explain	the	flow	of	data	through	the
report	along	with	the	opportunities	to	filter,	group,	and	aggregate	values	at	multiple
points	along	this	path.	You	will	add	groups	and	related	header	tiles	and	footer	totals	to
groups	in	a	table	and	then	a	matrix.	Then	you'll	see	how	multiple	groups	for
hierarchies	of	grouped	results	make	for	effective	reporting.

Another	important	topic,	essential	to	effective	report	design,	is	the	use	of	expressions
to	define	groups	and	properties.	We	introduce	aggregate	functions	and	aggregate
scope,	which	will	be	expanded	in	Chapter	7.	Finally,	you	will	learn	to	design	a	table
report	with	multi-level	drill-down	navigation	so	users	can	explore	details	within
summary	groups	as	needed.

SQL	SERVER	DATA	TOOLS
So	far,	you	have	been	working	with	Report	Builder,	the	simplest	of	the	two	report
design	tools.	Before	moving	into	the	next	report	design	topic,	you	should	become
familiar	with	the	other	report	designer:	SQL	Server	Data	Tools	(SSDT)	for	Visual
Studio.	This	report	tool	was	created	primarily	with	the	IT	professional	in	mind.	An
earlier	version	of	the	Visual	Studio	report	design	tool	was	once	called	Business
Intelligence	Development	Studio	(BIDS).

Honestly,	most	of	the	report	design	features	in	both	Report	Builder	and	SSDT	are	the
same.	Conversely,	subtle	differences	and	some	capabilities	in	SSDT	don't	exist	in
Report	Builder.	The	tool	you	choose	to	use	to	accomplish	your	day-to-day	report
design	work	will	likely	depend	on	your	organizational	role	and	the	complexity	of	the
report	design	solutions.	Before	making	a	final	decision,	you	should	learn	to	use	both
tools,	and	then	decide	which	one	is	right	for	you	and	your	project.

NOTE

After	several	years	of	experience,	I	have	changed	my	approach	to	teaching	people
to	use	both	design	tools.	Even	so,	it	is	continually	a	quandary	for	instructors	and
authors	to	develop	the	best	instructional	method.	In	classes,	and	in	previous
editions	of	this	book,	I	gave	instructions	using	one	tool,	and	then	call-out	some	of
the	differences	along	the	way.	Because	there	are	so	many	subtle	differences,	this
approach	can	confuse	new	users.	Consequently,	if	you	really	want	to	learn
serious	report	design,	educate	yourself	on	both	tools,	one	at	a	time;	and	then
make	your	choice.

Getting	Started
Before	you	get	started	using	SSDT,	decide	where	you	prefer	to	store	the	project	files.
As	you'll	see	when	you	create	a	new	project,	the	default	project	file	path	is	in	your
Windows	Documents	library.	If	you	are	new	to	Visual	Studio,	I	recommend	you	use	the
default	project	path	for	this	quick	introductory	walkthrough.	I	like	to	keep	mine	in	a
folder	named	Projects	in	my	OneDrive,	or	in	a	folder	named	Projects	right	off	the
root	of	the	main	storage	drive.	Whatever	your	choice,	decide	now,	and	create	a	folder
named	Projects	in	your	preferred	storage	location.

The	following	numbered	steps	are	not	a	complete	exercise,	but	rather	a	few	simple
instructions	to	help	you	create	a	new	project.	The	project	and	report	names	you	use	in
this	little	practice	run	are	not	critical	so	just	use	some	names	that	make	sense	to	you.
You	will	quickly	move	on	and	not	use	this	project	and	report	in	future	exercises.

1.	 The	first	thing	is	to	open	SQL	Server	Data	Tools	2015.	Depending	on	your	version
of	Windows,	either	use	the	SQL	Server	2016	program	group,	or	just	type	the	name
of	the	program	until	you	see	it	in	the	search	results.

1.	 TIP

Because	SQL	Server	Data	Tools	now	installs	as	a	separate	setup	package	from
the	link	provided	in	the	SQL	Server	Installation	Center,	it	may	not	appear
under	the	SQL	Server	2016	program	group.	This	may	change	over	time	with
subsequent	version	upgrades,	or	if	you	had	upgraded	from	a	previous	version
of	SQL	Server.	On	my	Windows	2012	development	server,	which	has	a	fresh
install,	SQL	Server	Data	Tools	2015	shows	up	in	the	Apps	list	under	the	letter
“S.”

2.	 Run	SQL	Server	Data	Tools	2015.

2.	 NOTE

Running	Visual	Studio	2015	is	exactly	the	same	as	running	SQL	Server	Data
Tools	2015.	Keep	in	mind	that	Visual	Studio	2015	was	the	current	version	of
Visual	Studio	at	the	time	of	publication.	Newer	versions	of	Visual	Studio	will
work	with	appropriate	updates	to	the	SSDT	add-in.

3.	 After	the	Visual	Studio	shell	opens,	from	the	File	menu,	choose	New	 	Project….

4.	 The	New	Project	dialog	opens.	From	the	Templates	pane	on	the	left,	expand
Business	Intelligence	and	choose	Reporting	Services,	as	shown	in	Figure	6.1.

Figure	6.1	Choosing	Reporting	Services	from	the	New	Project	dialog.

5.	 Within	the	project	templates	list	in	the	middle	of	the	dialog,	select	Report	Server
Project.

6.	 At	the	bottom	of	the	window,	Enter	the	name	for	the	project	as	My	first	report
project.

6.	 NOTE

This	should	be	a	short	name	including	spaces	and	descriptive	text,	which	will
create	a	folder	and	file	names.	I	usually	use	a	name	that	briefly	describes	the
purpose	of	the	project	and	that	I	will	recognize	later.	The	project	name	I	just
recommended	is	only	to	get	you	started	and	give	you	some	experience	with
new	project	setup.	As	I	mentioned	earlier,	you	will	soon	leave	this	project
behind	and	then	open	an	existing	project	I	have	prepared	for	you.

7.	 Note	the	default	project	folder	path.	If	you	prefer,	use	the	Browse	button	to
navigate	to	a	Projects	folder	you	created	earlier	to	complete	the	path	in	the
Location	box.

The	Solution	name	will	be	the	same	as	the	Project	name	unless	you	change	it.	In
larger,	full-scale	solutions	that	include	multiple	projects,	you	might	name	the
solution	something	like	Sales	Analysis	Solution	with	a	report	project	name
Sales	Analysis	Reports.	This	allows	you	to	add	related	projects.	In	this	example,
an	Integration	Services	project	named	Sales	Analysis	ETL	may	be	added	to	the
solution,	and	then	a	database	project	named	Sales	Analysis	Data	Warehouse	and
an	Analysis	Service	project	name	Sales	Analysis	Data	Model.	The	solution	could
be	placed	under	version	control	using	Team	Foundation	Services	(TFS),	thus
enabling	a	team	of	developers	to	collaborate	and	share	these	project	files.

8.	 If	the	project	won't	be	managed	as	part	of	a	larger	solution,	just	leave	the	names
the	same.	When	you're	finished	making	changes,	click	the	OK	button.

9.	 With	a	report	project	open	and	the	Solution	Explorer	visible	on	the	right-side	of
the	SSDT/Visual	Studio	main	window,	right-click	the	Reports	folder	and	choose
Add	 	Existing	Item….

10.	 From	the	Add	New	dialog,	select	Report	and	then	give	the	report	file	a	name.	This
should	normally	be	a	friendly	name	with	spaces	and	mixed	case.	When	you're
ready,	click	the	Add	button.

When	the	Report	Designer	opens,	notice	there	are	different	window	panes	containing
controls	and	properties	docked	to	both	sides	of	the	main	window.	These	are	labeled	in
Figure	6.2,	and	the	key	that	follows	explains	the	labels.	The	four	tool	windows	used
for	reports	design	include,	on	the	left,	the	Report	Data	and	Toolbox	windows	arranged
as	tabs,	and,	on	the	right,	the	Solution	Explorer	and	Properties	windows	arranged	as
docked	windows,	one	above	the	other	with	a	sliding	separation	bar.	You	will	see
additional	windows	that	you	can	ignore	or	hide	if	you	prefer.

Figure	6.2	Window	panes	in	Report	Designer.

1.	 Report	Formatting	toolbars

Set	properties	for	the	currently	selected	object	or	objects	in	the	Report	Designer
when	in	Design	view.	Standard	properties	include	Font	Name,	Font	Size,	Weight,
Italic,	Underline,	Foreground	color,	Background	color,	Alignment,	List	styles,	and
Indentation.

2.	 Report	Designer	view	selection	tabs

Switch	between	Design	and	Preview.

3.	 Report	Data	window

The	Toolbox	window	is	also	displayed	in	this	area.	Switch	windows	using	the
selection	tabs	at	the	bottom	of	the	window	pane.

4.	 Solution	Explorer	window

Navigate	the	solution,	projects,	and	project	files.	Right-click	to	set	project
properties,	add	new	items,	and	perform	actions.

5.	 Report	Designer	window

This	is	the	main	design	canvas	used	to	design	reports	and	set	properties	for	data
regions	and	report	items.

6.	 Grouping	window

Add,	remove,	and	set	properties	for	row	and	column	groups.

7.	 Properties	window

Displays	and	manages	all	properties	for	the	selected	object	or	group	of	selected
objects.

8.	 Tabbed	documents	selection

In	the	default	view,	windows	in	this	pane	are	selected	using	these	tabs.	The
Report	Data	and	Toolbox	are	used	for	report	design,	and	other	windows	are
available.	Windows	can	be	added	with	the	View	menu.	Use	the	window	pane
toolbar	to	hide,	move,	pin,	and	auto-hide	windows.

9.	 Sliding	window	separator

In	the	default	view,	windows	in	this	pane	are	docked	with	a	movable	separator
bar.	The	Solution	Explorer	and	Properties	windows	are	used	for	report	design	and
solution	management.	Use	the	window	pane	toolbar	to	hide,	move,	pin,	and	auto-
hide	windows.

The	best	way	to	get	started	with	Visual	Studio	is	to	create	a	test	project	and	spend
some	time	familiarizing	yourself	with	the	interface.	You	can	dock,	hide,	and	show
windows	so	that	you	have	what	you	need	at	your	fingertips,	as	well	as	remove	the	ones
you	don't	need.	If	you	are	new	to	Visual	Studio,	don't	go	crazy	moving	things	around
and	closing	windows	until	you	are	familiar	with	these	tools	enough	to	set	things	back.

Each	window	has	a	familiar	pushpin	icon	that	will	either	“pin”	the	window	in	place,	or
allow	it	to	auto-hide	when	the	mouse	moves	away	from	it.	Use	the	auto-hide	feature
and	resize	tool	windows	rather	than	closing	windows	you'll	need	again.	If	you	close	or
hide	a	window	using	the	right-click	menu	or	drop-down	arrow	in	the	window	header,
you	can	get	it	back	using	the	View	menu.	Some	of	these	windows	are	only	available	on
the	View	menu	when	certain	items	are	selected	in	the	design	interface.	For	example,	if
you	were	to	close	the	Report	Data	window,	the	option	to	display	it	again	is	listed	on
the	View	menu	only	when	you	set	focus	to	the	report	in	the	designer.

In	the	next	section	you	will	be	using	a	sample	solution	that	contains	a	set	of	existing
projects	provided	for	you.	If	prompted	to	save	your	changes	to	this	new	project,
answer	“Yes,”	but	you're	not	actually	going	to	use	that	project	any	more.

Getting	Started	with	Sample	Reports	Projects
As	mentioned	in	Chapter	3,	copies	of	all	the	reports	used	throughout	the	book	are
provided	on	this	book's	website	at	www.wrox.com.	These	are	organized	into	two	projects
contained	in	a	Visual	Studio	solution	in	the	folders	you	extract	with	the	book
download	sample	files.

1.	 On	the	File	menu,	select	Open	 	Project	/	Solution….

http://www.wrox.com

2.	 Use	the	Open	File	dialog	to	navigate	to	the	location	where	you	extracted	the	book
sample	files.	Locate	and	open	the	folder	named	Wrox	SSRS	2016	Report	Solution.

3.	 Open	the	file	named	Wrox	SSRS	2016	Report	Solution.sln.	SSDT	opens	with	the
solution	and	related	projects	listed	in	the	Object	Explorer	on	the	right	side	of	the
report	design	interface.	Figure	6.3	shows	SSDT	open	with	a	report	open	in	the
Design	window.

Figure	6.3	A	report	in	the	Design	window.

The	solution	contains	multiple	projects.	Use	the	Solution	Explorer	window	on	the
right	side	of	the	main	window	to	expand	and	collapse	each	project	in	order	to	access
the	files	it	contains.	Reports	and	shared	data	sources	are	also	added	in	Solution
Explorer.

Generally,	you	should	use	shared	data	sources	as	a	best	practice.	The	only	reason
typically	not	to	use	them	is	when	you	want	a	report	to	be	completely	self-contained.
But	otherwise,	having	one	place	to	manage	data	source	connection	information	makes
a	lot	of	sense	when	these	objects	all	get	shipped	off	to	the	report	server	and	are
making	important	things	happen	out	there	in	Business	User	Land.

Shared	datasets	have	advantages	under	very	specific	circumstances	and	are	required
when	designing	mobile	reports.	Therefore,	you	will	use	them	in	chapters	17,	18,	19,
and	20.	As	a	default	choice,	for	most	paginated	reports,	I	generally	recommend	using
embedded	datasets.

The	Wrox	SSRS	2016	Exercises	project	contains	finished	copies	of	all	the	exercises
found	at	the	end	of	each	chapter.	The	Wrox	SSRS	2016	Samples	project	includes	many
topic-specific	examples,	each	prefixed	with	the	chapter	number.	For	the	chapter
samples,	it	is	important	to	realize	that	explicit	instructions	are	not	provided	for	every
single	click	and	menu	selection.	Because	you	have	already	mastered	the	essentials
getting	started	creating	a	new	report,	data	source,	and	dataset,	there	is	no	need	to
repeat	those	steps.	Some	unfinished	reports	are	provided	with	steps	completed	up	to
the	task	or	topic	that	you	can	finish.	You	will	be	instructed	as	to	which	report	to	open.
In	some	of	cases,	you'll	examine	a	completed	report	to	see	how	it	works.

To	follow	along,	open	a	copy	of	the	sample	report,	rather	than	making	changes	to	the
original,	so	you	can	go	back	and	start	over	if	necessary.	The	best	way	to	do	that	is	to
copy	and	paste	the	report	in	the	Solution	Explorer.

TIP

Whenever	you	use	the	copy/paste	method	to	back	up	a	report,	ensure	that	you
save	your	changes	first,	because	this	technique	actually	makes	a	copy	of	the	last
saved	file,	rather	than	the	version	of	the	report	sitting	in	memory	that	may	have
unsaved	changes.

This	step	is	pretty	simple,	but	not	entirely	intuitive	at	first.	My	preferred	method	is	to
select	the	report	in	Solution	Explorer	(not	the	report	file	name	as	if	renaming	the	file,
but	just	click	once	to	select	the	report),	and	then	use	Ctrl+C	(copy)	and	Ctrl+V	(paste).
If	you	right-click	to	Copy,	then	you	must	right-click	the	project	to	Paste.	I	typically
remove	the	Copy	of	file	prefix	and	then	describe	the	backup	state	in	parentheses	at
the	end	of	the	filename.	You	can	see	this	pattern	in	the	sample	project.

TIP

Making	regular	backups	provides	peace	of	mind	by	ensuring	that	you	don't	lose
your	work.	There	are	three	common	backup	methods	for	reports:	using	a	version
control	system	such	as	TFS,	making	routine	copies	of	the	report	files	in	the
project	folder	to	a	different	storage	location,	and	keeping	a	secondary	report
project	in	the	solution.	The	latter	allows	you	to	use	the	earlier-mentioned	copy-
and-paste	backup	method.

If	you	are	disciplined	about	using	integrated	version	control,	then	it	can	provide	a
safety	net	to	prevent	catastrophic	loss.	However,	it	doesn't	help	with	the	typical
cadence	of	report	design.	When	working	on	a	challenging	report,	I	often	create	and
keep	one	or	more	backup	copies	of	the	report	I'm	working	on.	This	provides	a	way	to
experiment	with	different	techniques	without	messing	up	a	working	design.	If
something	goes	wrong,	rather	than	trying	to	untangle	it,	you	can	just	revert	to	an
earlier	copy.	After	testing	to	make	sure	the	design	is	working,	you	can	delete	the
backup	copies.

Graphical	Query	Designer
The	reason	there	are	different	query	tools	is	that	report	developers	have	varied	levels
of	experience	with	T-SQL.	Therefore,	individuals	develop	strong	preferences.	When	I
began	my	career	with	databases,	at	first	I	relied	on	graphical	query	design	tools.	Now	I
find	it	easier	to	hand-write	queries	rather	than	using	the	graphical	Query	Designer.
These	helper	tools	exist	for	good	reason,	and	they	work	well.	If	you	are	not	a	T-SQL
aficionado,	you	should	learn	how	to	use	the	graphical	query	design	tool,	but	it
shouldn't	always	be	your	central	experience.	With	a	little	practice,	many	find	it	easier
to	hand-code	simple	queries,	rather	than	relying	on	the	Query	Designer.

When	using	SQL	Server	as	a	data	source,	the	dataset	in	Query	Designer	is	more
elaborate	than	in	Report	Builder.	This	graphical	Query	Designer	is	actually	borrowed
from	the	SQL	Server	client	tools,	and	is	also	available	in	SQL	Server	Management
Studio	(SSMS).

Open	the	Sample	Report
If	you	don't	already	have	the	Wrox	SSRS	2016	Report	Solution	open	in	SSDT,	open	it
now.

1.	 In	the	Object	Explorer,	expand	the	Wrox	SSRS	2016	Samples	project.

2.	 Expand	the	Reports	folder.

3.	 In	the	Object	Explorer,	click	once	to	select	the	Ch06	-	Sales	Summary	(query
completed)	report.

3.	 TIP

There	is	a	subtle	difference	between	selecting	an	object	and	selecting	the	name
of	the	object.	For	example,	when	you	select	a	report	in	Object	Explorer,	the
entire	line	is	highlighted.	If	you	click	once	and	then	click	again,	the	name	of
the	report	is	selected.	The	same	behavior	applies	to	textboxes	in	the	designer
where	clicking	twice	will	select	the	text	within	the	object,	rather	than	the
object	itself.	If	this	happens,	click	outside	the	object	and	then	click	it	once.

4.	 Press	Ctrl+C	and	then	Ctrl+V	to	make	a	copy	of	the	report.	The	new	report	should
appear	in	the	Object	Explorer	preceded	by	the	text	Copy	of	in	the	filename.

5.	 Double-click	the	new	report	copy	to	open	it	in	the	designer.

6.	 Expand	the	Datasets	node	in	the	Report	Data	window.

7.	 Right-click	the	SalesSummaryMonthProductRegion	dataset	and	select	Query…	to
open	the	graphical	Query	Designer.

8.	 Use	this	finished	query	to	familiarize	yourself	with	the	query	design	interface	as
you	read	the	following	description	about	designing	a	query	with	this	tool.	When
you're	finished,	cancel	out	of	the	Query	Designer	and	don't	save	changes.

9.	 Optionally,	create	a	new	dataset	in	this	report	and	follow	these	steps	to	duplicate
this	query.	Save	your	changes,	and	then	switch	back	to	the	original	query	to	check
the	results.

To	design	a	query	in	SSDT,	create	a	dataset	just	like	you	did	previously	using	Report
Builder.	Click	the	Query	Designer…	button	to	open	the	graphical	Query	Designer.	You
add	tables	to	the	query	by	using	the	right-most	icon	on	the	toolbar.	In	the	example
shown	in	Figure	6.4	is	the	end	result	after	completing	the	following	steps.	Please	note
that	the	following	six	steps	are	for	reference	and	are	explained	in	greater	detailer	in
the	subsequent	steps.

Figure	6.4	Tables	added	to	Query	Designer.

1.	 Add	the	Date,	Sales,	and	Product	tables.

2.	 Verify	that	the	join	lines	were	added	by	the	query	designer.

3.	 Use	the	check	boxes	to	select	the	fields	you	see	in	the	example:	MonthNumber,
MonthName,	ProductCategory,	ProductSubcategory,	ProductName,	OrderQuantity,
and	SalesAmount.

4.	 Click	the	Use	Group	By	button	on	the	toolbar.

5.	 For	the	OrderQuantity	and	SalesAmount	fields,	use	the	drop-down	list	to	change	the
Group	By	column	selection	to	Sum.

6.	 For	the	OrderQuantity	and	SalesAmount	fields,	copy	and	paste	the	field	names	(in
the	“Column”	column)	to	the	Alias	column.

The	designer	has	four	panes	separated	vertically.	The	top	pane	shows	the	tables	that
were	added	to	the	query,	joins,	and	selected	columns.	The	second	pane	lets	you
rename	columns,	group,	aggregate,	filter	the	results,	and	apply	parameters.	The	query
text	pane	shows	the	T-SQL	script	generated	by	the	designer,	and	the	results	pane
shows	the	rows	returned	by	the	executed	query.	Test	and	run	the	query	by	clicking	the
red	exclamation	mark	icon	on	the	toolbar.

Grouping	Query	Results

Figure	6.4	shows	the	Group	By	button	on	the	toolbar	(second	from	the	right).	This
option	adds	every	column	to	the	GROUP	BY	clause	in	the	query,	and	displays	the	text
“Group	By”	in	the	seventh	column	of	the	fields	list	pane.

Any	numeric	columns	that	should	be	aggregated	(rather	than	grouped	in	the	query)
must	have	the	Group	By	option	changed.	Figure	6.5	shows	the	OrderQuantity	and
SalesAmount	columns	changed	from	Group	By	to	Sum.	When	you	do	this,	a	column
alias	is	created	for	each	aggregated	column	using	placeholder	names	like	Expr1.	These
should	be	changed	to	something	that	makes	more	sense.	You	can	actually	use	the
original	column	name	for	the	alias.	To	differentiate	the	alias	from	the	original	column
name,	the	original	names	have	been	appended	with	the	word	Total,	so	the	alias	names
are	OrderQuantityTotal	and	SalesAmountTotal.

Figure	6.5	Column	names	modified.

Despite	the	desire	to	filter	data	by	the	Year,	that	column	doesn't	need	to	be	returned	in
the	query	results.	You	can	see	that	the	Year	column	has	been	included	from	the	Date
table	and	the	Output	checkbox	has	been	unchecked.	To	add	a	parameter,	type	the
parameter	name	you	want	to	use	in	the	Filter	cell	preceded	by	an	equal	sign	(=)	and
an	ampersand	(@).	In	the	graphical	query	designer,	a	column	that	is	used	only	for
filtering	is	excluded	from	the	GROUP	BY	list	by	changing	the	selection	to	“Where.”	In
this	case,	the	designer	references	the	Year	column	in	a	HAVING	clause	to	implement
filtering.

Query	Joins	and	Join	Types
Because	these	tables	have	relationships	defined	in	the	database,	the	tables	are
automatically	joined	on	the	key	columns.	In	the	example,	the	Sales	table	is	joined	to
the	Date	table	using	the	key	column	in	the	Date	table	named	TheDate,	and	the
OrderDate	column	in	the	Sales	table.	Likewise,	Sales	and	Product	tables	are	joined	on
the	respective	ProductKey	columns.

The	designer	applies	inner	joins	by	default,	meaning	that	there	must	be	matching
records	on	both	sides	of	the	join.	The	Date	table	contains	one	record	for	every	day	in
the	years	2005	through	2014,	but	there	are	not	orders	for	every	date,	so	the	inner	join
will	only	return	date	information	for	existing	orders.	An	outer	join	returns	all	records
from	a	specified	table	on	one	side	of	the	join,	and	then	all	the	matching	records	from
the	table	on	the	other	side.

Changing	the	join	type	is	simple.	Right-click	the	diamond	on	the	line	between	the	two
tables	and	select	all	rows	from	the	table	on	the	outer	side.	In	this	case,	you	right-click
the	join	between	Date	and	Sales	tables,	and	then	choose	“Select	All	rows	from	Date.”
The	join	will	be	designated	either	LEFT	OUTER	or	RIGHT	OUTER,	depending	on	the	order
they	were	added	in	the	Query	Designer.

Execute	the	query	by	clicking	the	exclamation	mark	icon	in	the	toolbar.	When
prompted	for	the	Year	parameter,	type	2013,	and	then	click	OK.	Notice	in	the	results
pane,	a	row	for	December,	2013,	for	which	there	are	no	existing	orders.	This	is	the
effect	of	the	outer	join.

Report	Data	Flow
You	will	find	that	most	objects	within	the	Report	Designer	have	many	properties	and
features,	and	many	of	them	are	only	used	when	necessary.	Standard	objects	you	will
use	in	the	reports	all	the	time	have	properties	that	you	probably	won't	use	in	most
reports,	but	they	provide	tremendous	flexibility	and	opportunities	to	address	unique
business	requirements	using	creative	design	techniques.

Some	of	these	properties	are	depicted	in	Figure	6.6.	You	can	see	(moving	left	to	right)
that	after	query	results	are	processed	in	a	dataset	query,	an	optional	filter	can	be
applied	after	the	results	are	produced.	Likewise,	conditional	filters	can	be	applied	as
the	data	enters	any	data	region.	After	that,	the	results	can	be	sorted	before	they	are
presented	to	the	first	group	expression.	Each	data	region	handles	grouping	a	little
differently,	but	the	core	concepts	are	the	same.	Some	data	regions	support	multiple
levels	of	grouping.

Figure	6.6	Using	Report	Designer	properties	and	features.

REPORT	GROUPS
Report	groups	are	one	of	the	most	important	concepts	in	fundamental	report
design.	Whether	your	reports	will	visualize	data	in	a	table,	matrix,	or	any	type	of	chart,
you	will	define	group	expressions	either	implicitly	by	dragging	and	dropping	fields	in
the	designer,	or	explicitly	by	writing	the	expression.	Table	and	list	reports	do	not
require	a	group	to	be	defined,	but	have	limited	utility	without	any	groups.	Beginning
with	a	table,	let's	a	take	a	look	at	how	groups	work.

1.	 In	SSDT,	if	you	have	any	unsaved	work	you	want	to	keep,	save	that	report.

2.	 From	the	Object	Explorer	on	the	right,	open	the	report	named	Ch06	-	Sales
Summary	with	Groups.

3.	 You	can	see	that	the	table	is	bound	to	the	dataset	named
SalesSummaryMonthProductRegion.

4.	 In	the	Row	Groups	list	below	the	designer	window,	use	the	down	arrow	button
next	to	the	ProductCategory	group	to	choose	Group	Properties…	to	open	the
properties	dialog	for	that	group,	as	shown	in	Figure	6.7.

Figure	6.7	The	Group	Properties	dialog.

It's	probably	no	surprise	that	the	“Group	expression”	refers	to	the
ProductCategory	field	(see	Figure	6.8),	but	there	are	several	optional	properties
and	features	associated	with	groups.	For	example,	page	breaks	can	be	managed	for
each	group,	so	a	new	page	is	inserted	before	or	after	the	grouped	field	value
changes.

Figure	6.8	ProductCategory	field	as	a	group	expression.

5.	 Use	the	page	list	on	the	left	to	switch	to	the	Page	Breaks	page	in	the	Group
Properties	dialog	shown	in	Figure	6.9.

Figure	6.9	Managing	page	breaks.

6.	 Check	the	first	box	to	set	a	page	break	between	each	instance	of	a	group.

7.	 Leave	the	other	checkboxes	unchecked.

8.	 Click	the	OK	button	to	accept	the	group	changes	and	close	the	Group	Properties
dialog.

There's	no	need	to	inspect	the	ProductSubcategory	group	because	it's	set	to	group
by	the	ProductSubcategory	field.	But,	what	about	the	(Details)	group?	This	group
isn't	normally	set	to	group	records	for	a	field	by	default,	so	let's	find	out	if
someone	might	have	changed	it.

9.	 Edit	the	group	properties	for	the	(Details)	group	and	open	the	Group	Properties
dialog.

Hey,	look	at	that!	The	(Details)	group	has	been	changed	and	set	up	to	group	by
the	ProductName	field.	Why	would	this	make	a	difference	when	that	field	is	already
being	grouped	within	the	detail	rows	returned	by	the	query?	It	seems	senseless	to
explicitly	group	by	the	lowest-level	value	that	is	being	returned	in	the	query
results.

10.	 Now	check	the	behavior	in	the	Table	Designer.	Hover	the	mouse	pointer	over	and
re-select	the	two	numeric	fields	for	the	detail	cells	in	the	Order	Quantity	and	Sales
Amount	columns.	You	see	that	the	designer	applies	the	SUM	function.	This	is	because
of	the	group	definition	in	that	(Detail)	group.

The	first	two	groups	are	set	up	for	drill-down	navigation	by	hiding	levels	that	are
expanded	with	toggle	items.	With	any	level	collapsed,	it	is	important	that	the	value
displayed	on	this	line	be	an	aggregated	total	representing	all	the	hidden	details.	This
will	only	happen	if	an	aggregate	function	(such	as	SUM)	has	been	applied	in	each
expression	on	the	detail	row.

Adding	Totals	to	a	Table	or	Matrix	Report
The	table,	matrix,	and	list	data	regions	are	all	based	on	a	common	object	called	the
Tablix,	and	many	design	techniques	are	similar	for	each	of	these	data	regions.	Each	of
these	objects	provides	different	layout	options,	but	the	fundamental	concept	of
grouping	is	the	same.

In	a	table,	adding	a	total	to	a	row	group	adds	a	new	row	that	applies	an	aggregate
function	(for	example,	SUM)	to	all	the	members	of	that	group.	The	same	applies	to	a
total	added	to	a	matrix	column	group.	By	adding	a	total	row	or	column,	you're	actually
adding	a	total	that	applies	to	the	parent	of	the	group.	Consider	this	example.	Suppose
columns	are	grouped	by	quarter	and	then	by	year.	If	you	were	to	add	a	total	to	the
Quarter	column	group,	the	total	would	be	for	all	the	quarters	adding	into	the	year.
This	means	that	a	total	applied	to	the	topmost	group	will	always	return	the	grand	total
for	all	records	in	the	data	region.	This	is	evident	in	the	example	shown	in	Figure	6.10
where	the	table	data	region	is	grouped	and	totaled	by	Subcategory.

Figure	6.10	Grouped	table	data	region	with	totals.

Defining	a	total	for	a	group	at	a	lower	level	would	create	a	subtotal	break.	Totals	can
be	placed	before	or	after	group	values.	Adding	totals	before	a	row	group	shows	the
total	above	the	group	in	a	heading	row,	and	adding	the	total	after	shows	the	total
below	the	group	in	a	footer	row.	Subsequently,	for	a	column	group	in	a	matrix	data
region,	inserting	a	total	before	the	group	places	totals	to	the	left	of	the	group.	Adding
totals	after	the	group	inserts	a	total	column	to	the	right	of	the	group.

Groups,	headers,	footers,	and	totals	are	all	related	design	elements	that	can	take	a
simple	report	to	the	next	level	and	provide	significant	value.	Groups	are	an	essential
design	concept,	and	a	number	of	more	advanced	capabilities	have	been	added	as

Reporting	Services	has	evolved	through	newer	versions.	At	the	group	level,	you	can
now	conditionally	control	things	like	page	breaks	and	page	numbers.

As	you	continue	to	review	the	completed	Ch06	-	Sales	Summary	(query	completed)
report,	use	the	following	steps	to	see	how	the	report	was	be	designed.

1.	 Switch	back	to	Design	view.

2.	 Take	a	look	at	the	SalesAmount	column.	The	heading	label	Sales	Total	was
changed	from	the	original	field	name	to	make	it	more	readable.

3.	 The	last	column	was	added	by	right-clicking	the	header	of	the	column	to	its	left
and	choosing	the	option	to	add	a	new,	blank	column.	The	column	label	was
changed	to	Avg	Sales.

4.	 In	the	detail	row,	right-click	the	Avg	Sales	textbox	and	choose	Expression….

5.	 Review	the	expression	that	was	added:	=AVG(Fields!SalesAmount.Value).	Before
you	click	OK	to	complete	the	expression,	select	and	copy	this	text	to	the	clipboard.

6.	 Right-click	the	textbox	in	the	Total	row	of	the	new	column	and	choose
Expression….

7.	 Review	this	expression	that	was	added	by	pasting	the	expression	you	copied	from
the	detail	cell.	Click	the	OK	button.

8.	 Preview	and	test	the	report.

Expression	Basics
Looking	at	the	last	few	examples,	when	you	create	a	field	reference	in	the	designer	by
dragging	and	dropping	or	selecting	from	the	field	list,	you	will	see	a	field	or	expression
placeholder	in	square	brackets,	such	as	[ProductCategory]	or	[SUM(OrderQuantity)].
What	you	see	in	the	designer	is	actually	a	simplified	version	of	the	expression	that	is
stored	in	the	report	definition.	To	view	the	actual	expression,	right-click	the
placeholder	text	and	choose	Expression….	This	opens	the	Expression	Editor,	showing
the	entire	expression.	Expressions	always	begin	with	an	equal	sign	and	contain	a	full
object	reference.	Table	6.1	shows	these	two	examples.

Table	6.1	Expression	Placeholders

PLACEHOLDER EXPRESSION
[ProductCategory] =Fields!ProductCategory.Value

[SUM(OrderQuantity)] =SUM(Fields!OrderQuantity.Value)

In	this	chapter's	exercise,	you	will	see	that	expressions	can	include	multiple	functions
and	objects.	When	used	in	a	data	region	bound	to	a	dataset,	an	expression	simply
references	a	field	or	fields	in	that	dataset,	but	can	also	reference	different	datasets,	as
you	will	see	in	more	advanced	examples	in	the	following	chapters.	Expressions	are	the
real	magic	behind	both	simple	and	complex	report	designs.	This	chapter	introduces
several	features	and	capabilities	that	are	demonstrated	in	greater	detail	in	the	chapters

that	follow.

Introducing	Aggregate	Functions	and	Totals
When	you	drop	a	numeric	field	into	a	group	or	table	footer	cell,	an	expression	is	added
applying	the	SUM()	aggregate	function.	The	designer	assumes	that	you	will	want	to
sum	these	values,	but	this	function	can	be	replaced	with	one	of	several	others.
Reporting	Services	supports	several	aggregate	functions,	similar	to	those	supported	by
the	T-SQL	query	language.	For	now,	let's	just	consider	the	concept	of	basic	aggregation
using	the	SUM	function.

NOTE

You	learn	about	all	the	functions	in	Chapter	7,	“Advanced	Design	Techniques.”

When	an	aggregate	function	expression	is	used	in	a	group	detail,	header,	or	footer
row,	the	scope	of	the	current	data	region	or	group	is	assumed.	For	example,	suppose	a
table	contains	two	nested	groups	based	on	the	Category	and	Subcategory	fields.	If	you
were	to	drag	the	SalesAmount	field	into	the	Subcategory	group	footer,	the
SUM(SalesAmount)	expression	would	return	the	sum	of	all	SalesAmount	values	within
the	scope	of	each	distinct	Subcategory	group	range.

Sorting
You	have	a	few	options	to	sort	data	in	a	report,	and	the	best	choice	will	depend	on	a
few	factors.	Other	features	(like	grouping)	require	data	to	be	sorted	and	may	negate
the	capability	to	sort	data	after	it	is	grouped.	Be	mindful	that	with	a	large	result	set,
sorting	is	a	costly	operation	that	will	add	to	the	overall	report	execution	time.	Options
may	include	the	following:

Sort	Records	in	the	Query—Typically,	if	records	will	be	presented	in	a	particular
order,	the	most	efficient	method	is	to	sort	the	data	in	the	query	before	it	gets	to	the
report.	This	will	aid	in	grouping	as	effectively	as	possible.	If	other	sorting	options
will	be	used	within	the	report,	presorting	in	the	query	may	be	wasted	cycles.

Table	Interactive	Sorting—Normally	used	in	ungrouped	table	reports,	this
feature	can	be	applied	to	any	or	all	columns	of	the	table.	Interactive	sorting	is
applied	to	the	textbox	in	the	table	heading	for	each	column.	Clicking	the	sort	icon
displayed	in	the	column	header	will	re-order	rows	the	records	displayed	in	that
table.	Clicking	again	toggles	between	ascending	or	descending	order.	In	a	table	or
matrix	data	region	with	groups,	interactive	sorting	can	be	applied	to	the	rows
within	a	group.

Group	Sorting—Every	group	has	an	optional	Sorting	expression.	There	are	times
when	you	may	need	to	group	on	one	set	of	field	values	and	sort	on	a	different	set
of	corresponding	values.	This	would	make	sense	only	when	the	grouping	and
sorting	fields	are	distinct	within	the	same	set	of	value	ranges.

An	example	of	group	sorting	can	be	found	in	the	sample	report	Ch06	-	Orders	Matrix
Group	Sort.	The	design	of	this	report	is	quite	simple,	and	Figure	6.11	shows	this	in	the
SSDT	designer.

Figure	6.11	Design	of	sample	report.

This	report	began	with	two	datasets.	The	main	query	returns	the	MonthNumber,
MonthName,	Country,	and	OrderQuantity	columns.	Take	a	look	at	the	Year	parameter
properties	and	you'll	see	that	the	YearList	dataset	query	is	used	to	populate	the
parameter	list.	Edit	the	SalesSummaryByMonthCountry	dataset	and	you'll	see	that	the
Year	parameter	is	used	to	filter	the	results	in	the	query's	WHERE	clause.	The	matrix	is
added	to	the	report	body.	The	MonthName	field	is	dragged	and	dropped	onto	the	Rows
header,	the	Country	field	is	dropped	onto	the	Columns	header,	and	the	OrderQuantity
field	is	dropped	in	the	Values	cell	to	create	the	expression
=SUM(Fields!OrderQuantity.Value).

If	you	were	to	preview	the	report	at	this	point	in	the	design	process,	it	would	look	like
Figure	6.12.	Out	of	the	box,	the	rows	and	column	groups	are	naturally	sorted
alphabetically.

This	is	probably	fine	for	the	country	names,	but	obviously	not	for	the	months,	which
are	in	alphabetic	order,	but	not	sorted	chronologically.	This	is	the	reason	the
MonthNumber	column	has	been	included	in	the	query.	To	fix	the	group	order,	you
switch	to	Design	view	and	edit	the	row	group.

Figure	6.12	Previewing	the	report.

Figure	6.13	shows	the	Sorting	page	of	the	Group	Properties	dialog	for	the	row	group.

Figure	6.13	Sorting	page	of	the	Group	Properties	dialog.

Changing	the	“Sort	by”	expression	allows	you	to	display	one	field	and	sort	by	another,
as	you	can	see	with	the	report	previewed	in	Figure	6.14.

Figure	6.14	Displaying	by	one	field	and	sorting	by	another.

EXERCISE
In	this	scenario,	the	Sales	Manager	needs	a	report	to	view	sales	orders	for	the	year.
Orders	should	be	summarized	by	product	category,	subcategory,	and	each	product.
The	Sales	Manager	would	like	to	be	able	to	compare	product	category	and	subcategory
order	totals,	and	then	view	greater	detail	only	when	needed.

You	will	design	a	table	report	based	on	a	Database	view	and	create	row	groups	in	the
table.	The	product	details	will	be	hidden,	so	users	can	drill-down	to	selected	items
using	a	toggle	item	to	expand	the	group	details.

Design	the	Dataset	Query
Begin	by	designing	the	query	to	get	data	for	the	report,	which	is	managed	in	a	dataset.

1.	 Open	the	Wrox	SSRS	2016	Report	Solution	in	SQL	Server	Data	Tools.

2.	 In	the	Solution	Explorer	window	on	the	right,	expand	the	Wrox	SSRS	2016
Exercises	project,	as	shown	in	Figure	6.15.

Figure	6.15	Selecting	the	vSalesSummaryYearProduct	view.

3.	 Right-click	the	Reports	folder	and	choose	Add	 	New	Item.

4.	 When	the	Add	New	Item	dialog	opens,	select	Report	and	enter	the	filename
Chapter	06	Sales	Summary.

5.	 Click	the	Add	button.

6.	 Use	the	pin	icon	to	ensure	that	the	Report	Data	window	is	pinned	so	it	doesn't
auto-hide	when	the	mouse	is	moved	away.	Auto-hide	is	a	great	way	to	conserve
screen	real	estate,	but	it	is	difficult	to	drag	and	drop	items	when	the	designer
window	is	obscured.

7.	 In	the	Report	Data	window	on	the	left,	right-click	the	Data	Sources	folder	and

choose	Add	New	Data	Source….

8.	 In	the	Data	Source	Properties	dialog,	choose	“Use	shared	data	source	reference”
and	select	the	existing	data	source	named	WroxSSRS2016.

9.	 Copy	and	paste	this	data	source	name	into	the	Name	box	at	the	top	of	the	dialog
and	then	click	the	OK	button.

10.	 Right-click	the	Datasets	folder	and	choose	Add	New	Dataset….

11.	 Enter	SalesSummary	for	the	name.

12.	 Select	“Use	dataset	embedded	in	my	report.”

13.	 Select	the	WroxSSRS2016	data	source.

14.	 Click	the	Query	Designer…	button.

15.	 On	the	toolbar,	click	the	Add	Table	button	on	the	right.

16.	 Choose	the	Views	tab	and	select	the	vSalesSummaryYearProduct	view,	as	shown	in
Figure	6.16.

Figure	6.16	Selecting	the	vSalesSummaryYearProduct	view.

17.	 Click	the	Add	button	to	add	the	view	to	the	query	and	close	the	Add	Table	dialog.

18.	 In	the	field	list	for	the	view	displayed	in	the	top	pane,	select	every	field,	but	don't
select	the	first	item	on	the	list	labeled	*(All	Columns).

19.	 In	the	second	pane,	for	the	Year	column,	enter	the	text	IN(@Year)	for	the	Filter.

20.	 Double-check	to	ensure	that	the	filter	text	is	correct,	as	shown	in	Figure	6.17.

Figure	6.17	Filter	text	added	to	Query	Designer.

21.	 Click	the	OK	button	to	accept	the	query	and	close	the	Query	Designer	window.

22.	 Click	the	OK	button	to	close	the	Dataset	Properties	window.

Design	and	Lay	Out	a	Table	Report
Next,	design	and	lay	out	a	table	report.

1.	 Add	a	textbox	and	a	table	from	the	Toolbox	window	to	the	same	positions	on	the
report	as	the	previous	exercise.

2.	 Enter	the	title	Sales	Summary	by	Year	into	the	textbox.

3.	 Style	the	textbox	so	the	report	looks	similar	to	the	previous	reports	created	in
Report	Builder.	After	selecting	the	textbox,	use	the	toolbar	to	change	the	font	size
to	18	points	and	resize	the	textbox	to	fit	the	text.

4.	 Expand	the	dataset	to	show	the	fields	in	the	Report	Data	window.	Rather	than
adding	the	first	two	fields	to	the	table	directly,	drag	the	ProductCategory	field	into
the	Row	Groups	list	(located	to	the	left,	below	the	designer)	and	drop	it	above	the
item	titled	(Details).	When	you	drop	the	field,	you'll	see	it	added	to	the	first

column	of	the	table.

5.	 Drag	and	drop	the	ProductSubcategory	field	between	the	ProductCategory	and
(Details)	in	the	Row	Groups	list	and	you'll	see	it	added	to	the	second	table
column.

5.	 NOTE

You'll	recall	from	the	exercise	in	Chapter	4,	“Report	Layout	and	Formatting,”
that	you	can	add	a	field	reference	to	a	detail	cell	using	the	field	list	displayed
when	you	hover	over	the	cell.	You	can	also	drag-and-drop	the	field	from	the
dataset	field	list	in	the	Report	Data	window.

6.	 Drag	the	ProductName	field	to	the	detail	row	in	the	third	column	and	then,	just	for
variety,	use	the	other	technique	to	add	two	more	fields.	Hover	over	the	fourth
column	detail	cell	and	select	the	OrderQuantity	field.	Use	the	same	technique	to
add	the	SalesAmount	to	the	fifth	column.

7.	 Switch	between	Design	and	Preview	using	the	tabs	above	the	report	design
window.	In	Preview,	enter	2013	for	the	Year	parameter	and	click	View	Report.	You
can	see	that	the	report	returns	one	row	per	product	because	that	is	the	detail	level
of	the	query,	as	shown	in	Figure	6.18.

Figure	6.18	Report	preview	showing	one	row	per	product.

8.	 Switch	back	to	Design	view.

9.	 Click	any	cell	in	the	table	to	show	the	gray	column	and	row	selection	handles.

10.	 Click	the	column	selection	handle	above	the	Order	Quantity	column,	as	shown	in
Figure	6.19.

Figure	6.19	Selecting	the	Order	Quantity	column.

11.	 In	the	Properties	window	on	the	right,	scroll	to	find	the	Format	property	in	the
Number	group.

12.	 Enter	N0	for	the	Format	property.	This	designates	a	number	with	zero	decimals.

13.	 Select	the	Sales	Amount	column	using	the	same	method.

14.	 Enter	C2	for	the	Format	property.	This	designates	currency	format	with	two
decimals.

15.	 Select	the	heading	row	at	the	top	of	the	table	using	the	row	selection	handle.	This
should	select	all	of	the	column	heading	cells.

16.	 The	background	color	for	the	selected	item	is	set	using	the	fifth	icon	(after	the	two
drop-down	lists)	from	the	left,	as	shown	in	Figure	6.20.	Use	the	Choose	Color
dialog	to	select	a	light	colored	background	such	as	LightGrey.

Figure	6.20	Selecting	the	background	color	icon.

17.	 After	each	change,	switch	to	Preview	to	check	your	work	as	shown	in	Figure	6.21,
and	then	switch	back	to	Design.

Figure	6.21	Previewing	the	report.

Add	Summary	Totals	and	Drill-Down
In	this	section	you	apply	what	you've	learned	about	working	with	groups,	expressions,
and	totals.	A	toggle	item	will	be	specified	in	the	group	to	create	a	drill-down	effect	by
collapsing	detail	rows	into	the	group	header.

You	will	add	totals	by	using	the	same	steps	for	the	ProductSubcategory	and
ProductCategory	groups.

1.	 Back	in	Design	view,	click	the	down-arrow	icon	next	to	the	ProductSubcategory
row	group.

2.	 From	the	menu,	choose	Add	Total	 	After.

3.	 Back	in	Design	view,	click	the	down-arrow	icon	next	to	the	ProductCategory	row
group,	as	shown	in	Figure	6.22.

Figure	6.22	Clicking	the	down-arrow	icon.

4.	 From	the	menu,	choose	Add	Total	 	After.

5.	 Switch	back	to	Preview,	as	shown	in	Figure	6.23.

Figure	6.23	Previewing	the	report.

6.	 Navigate	to	the	last	non-blank	page	and	scroll	to	the	bottom.	Note	the	totals	for
the	last	category	and	the	overall	total,	as	shown	in	Figure	6.24.

Figure	6.24	Totals	for	the	last	category	and	the	overall	total.

In	this	view,	the	correspondence	of	the	totals	to	their	respective	groups	and
overall	total	for	the	report	isn't	particularly	self-explanatory.	A	user	would	need	to
scroll	up	and	down	to	match	the	category	heading	with	the	total	to	match	them
up,	and	this	would	be	even	more	difficult	if	the	groups	span	multiple	pages.	To
make	this	easier,	you	can	add	the	category	value	to	the	group	footer	containing
the	total	value.

7.	 Switch	back	to	Design	view.

8.	 Right-click	the	Total	cell	in	the	ProductSubcategory	column	and	choose
“Expression…”.	This	opens	the	Expression	editor	shown	in	Figure	6.25.	This	is	a
tool	you	will	use	extensively.

Figure	6.25	Expression	editor	window.

9.	 To	build	the	expression,	place	the	cursor	where	you	want	to	insert	a	function	or
object	reference	in	the	large	box	at	the	top	of	the	window.	Use	the	three	boxes
below	to	select	the	category,	item,	and	value	below,	and	then	double-click	to	insert
the	text.

10.	 Start	by	typing	an	equal	sign	(=).

11.	 Select	the	item	labeled	Fields	(SalesSummary).

12.	 In	the	Values	list,	double-click	the	ProductCategory	field	to	insert	the	complete
field	reference.

13.	 Complete	the	expression	by	adding	a	space	followed	by	an	ampersand,	space,	and
then	the	literal	text	"	Total"	(including	the	quotes).

14.	 Check	your	expression	with	Figure	6.25	and	make	any	necessary	changes.

15.	 Click	the	OK	button	to	accept	the	expression	and	close	the	Expression	editor.

16.	 On	the	last	row	of	the	table,	change	the	text	Total	to	Grand	Total,	as	shown	in
Figure	6.26.

Figure	6.26	Changing	text	to	Grand	Total.

17.	 Preview	the	report	and	check	the	group	footer	rows.

18.	 At	the	end	of	each	group	of	subcategories,	the	category	name	is	displayed	to	the
left	of	the	category	totals	for	the	Order	Quantity	and	Sales	Amount	columns,	as
shown	in	Figure	6.27.

Figure	6.27	Category	name	and	category	total.

19.	 Switch	back	to	Design	view.

20.	 Select	the	(Details)	group	in	the	Row	Groups	list.

21.	 Click	the	down	arrow	on	the	right	side	of	the	(Details)	group	row	and	select
Group	Properties.

22.	 In	the	Group	Properties	dialog,	select	the	Visibility	page.

23.	 Under	Change	display	options,	select	the	option	to	Hide	under	“When	the	report	is
initially	run.”

24.	 Check	the	box	labeled	“Display	can	be	toggled	by	this	report	item.”

25.	 Drop	down	the	list	and	select	ProductSubcategory,	as	shown	in	Figure	6.28.

Figure	6.28	Selecting	ProductSubcategory.

26.	 Click	OK	to	close	the	Group	Properties	dialog.

27.	 Click	the	Save	All	button	on	the	toolbar.

28.	 Switch	to	Preview	to	view	the	report.

29.	 You	have	a	problem.	With	the	(Detail)	group	hidden,	the	values	displayed	on	each
row	are	for	each	product	subcategory,	but	the	table	doesn't	have	enough
information	to	aggregate	the	detail	rows.

30.	 Click	the	plus	icon	to	expand	the	Helmets	subcategory	to	see	that	there	are	three
products	that	had	sales	during	this	year,	as	shown	in	Figure	6.29.

Figure	6.29	Revealing	three	products	in	the	Helmets	subcategory.

Aggregate	Detail	Row	Summaries
Notice	that	the	values	that	were	displayed	in	the	collapsed	row	are	the	same	as	those
in	the	first	row.	If	no	aggregate	function	is	used	in	the	field	expression	and	the	group
is	collapsed	like	this,	the	report	uses	the	value	for	the	first	row.	You	can	fix	this.

1.	 Switch	back	to	Design	view.

2.	 Right-click	and	edit	the	detail	cell	for	the	OrderQuantity	field	adding	the	SUM
function.	The	modified	expressions	should	match	the	following:

=SUM(Fields!OrderQuantity.Value)

3.	 Make	the	same	change	for	the	SalesAmount	field	so	it	matches	the	following
example:

=SUM(Fields!SalesAmount.Value)

4.	 Switch	back	to	Preview.

5.	 Check	the	subcategory	totals	and	the	drill-down	details	again.

6.	 Now	the	OrderQuantity	and	SalesAmout	values	for	each	subcategory	are	the	sum	of
each	product.

Create	Parameter	List
The	Year	parameter	requires	input	from	the	report	user.	For	this	to	be	convenient,	you

will	create	a	data-driven	list	of	available	Year	values	for	the	user	to	select	from.

1.	 Add	another	dataset	and	name	it	YearList.

2.	 Select	the	data	source.

3.	 Use	Figure	6.30	as	a	guide	and	add	the	simple	query	script	to	return	a	distinct	list
of	Year	values	from	the	Date	table.

Figure	6.30	Adding	a	query	script	to	return	a	distinct	list.

4.	 Click	OK	to	accept	the	new	dataset	settings.

5.	 Edit	the	Year	parameter	from	the	Report	Data	window.

6.	 On	the	Available	Values	page,	choose	“Get	values	from	a	query”	(see	Figure	6.31).
Drop-down	the	Dataset	list	and	choose	the	new	YearList	dataset.

Figure	6.31	Choosing	“Available	Values”	and	query	options.

7.	 Select	the	Year	field	for	both	the	“Value	field”	and	“Label	field”	properties.

8.	 On	the	Default	Values	page,	choose	“Specific	values”	and	click	the	OK	button.

9.	 Enter	2013	for	the	default	value.

10.	 Click	OK	to	close	the	Report	Parameter	Properties	dialog.

11.	 Right-click	the	report	title	textbox	and	choose	Expression….

12.	 Modify	the	expression	using	Figure	6.32	as	a	guide.

Figure	6.32	Modifying	the	expression.

13.	 After	entering	the	text,	use	the	Category	list	to	select	Parameters.

14.	 On	the	Values	list,	double-click	the	Year	parameter	to	insert	the	following	object
reference	into	the	expression.

="Sales	Summary	for	"	&	

15.	 Click	the	OK	button	to	close	the	Expression	dialog.

16.	 Preview	the	report.

17.	 Figure	6.33	shows	the	entire	report	in	default	view	with	all	product	subcategories
collapsed.

Figure	6.33	Entire	report	in	default	view.

18.	 Note	that	the	Order	Quantity	and	Sales	Amount	for	the	Helmets	subcategory	is	the
sum	of	all	product	orders	for	that	year.

19.	 Expand	Helmets	to	see	the	details.

SUMMARY
Several	important	concepts	introduced	in	this	chapter	will	be	applied	at	a	deeper	level
in	subsequent	lessons.	Groups	are	a	fundamental	and	crucial	component	of	nearly	all
report	designs.	Here	you	learned	about	grouping	basics	and	explored	the	most
essential	features,	like	aggregations,	sorting,	and	visibility.	Using	a	toggle	item	to
control	group	visibility	allows	you	to	create	drill-down	reports.	You	learned	expression
basics	using	parameters,	fields,	and	aggregate	functions

When	making	the	transition	from	Report	Builder	to	SQL	Server	Data	Tools	for	Visual
Studio,	you	can	think	about	designing	holistic	reporting	solutions	rather	than	just
individual	reports.	For	the	remaining	report	design	chapters,	use	the	provided	sample
reports	to	follow	the	examples.	You	can	also	use	the	completed	exercises	for	reference
and	to	check	your	work.

Chapter	7	builds	on	these	fundamentals	by	extending	report	functionality	using	the
techniques	you	have	learned	You	will	manage	report	pagination	headers	and	footers
using	expressions	to	set	extended	properties	in	table	and	matrix	data	regions
multipleregion	reports	masterdetail	reports	and	subreports	You'll	learn	to	use	and
manage	page	headers	and	aggregate	function	scoping

PART	III
Advanced	and	Analytic	Reporting
This	is	the	“graduate	level”	set	of	chapters	that	will	take	you	from	novice	to	advanced
user.	In	Part	II	you	learned	about	basic	design	and	the	core	building	blocks	that	make
up	reports.	Now	you	are	ready	to	apply	these	skills	to	more	advanced	and	functional
report	designs	that	provide	more	business	value	and	capability.	The	next	set	of	report
design	skills	include	grouping	and	expressions.	You	will	learn	to	incorporate	more
advanced	queries	with	parameters,	expressions,	and	programming	logic.

Graphical	reports	are	used	to	visualize	data	to	understand	correlation	and	trends.	You
will	learn	to	use	all	of	the	chart	types	supported	by	Reporting	Services,	which	include
new	chart	types	introduced	in	SQL	Server	2016.	You'll	also	learn	to	use	KPI	indicators,
sparklines,	and	maps	to	create	dashboards	and	report	solutions	with	navigation	and
interactive	features.	You	will	use	SQL	Server	Analysis	Services	and	the	MDX	query
language	with	Reporting	Services	to	browse	and	analyze	business	data	in	aggregate
and	with	high-performing	queries.

CHAPTER	7:	Advanced	Report	Design

CHAPTER	8:	Graphical	Report	Design

CHAPTER	9:	Advanced	Queries	and	Parameters

CHAPTER	10:	Reporting	with	Analysis	Services

CHAPTER	11:	SSAS	Reporting	Advanced	Techniques

CHAPTER	12:	Expressions	and	Actions

Chapter	7
Advanced	Report	Design

WHAT'S	IN	THIS	CHAPTER?

Pagination,	and	page	headers	and	footers

Report	headers	and	footers

Text	formatting	and	textbox	properties

Embedded	formatting	and	HTML	text	styling

Master/detail	reports

Working	with	subreports

Creating	a	document	map

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER
The	samples	and	exercises	for	this	chapter	are	included	in	the	SSDT	solution	that	was
introduced	in	Chapter	3.	If	you	have	not	set	up	the	book	samples	and	exercises,	return
to	Chapter	3	and	complete	those	tasks.

The	real	power	behind	Reporting	Services	is	its	ability	to	creatively	use	data	groups
and	combinations	of	report	items	and	data	regions.	You	can	add	calculations	and
conditional	formatting	by	using	simple	programming	code.	By	programming	code,	I
mean	anything	from	a	single	line	of	code	to	an	entire	library.	Whether	you	are	an
application	developer	or	a	business	report	designer,	this	chapter	contains	important
information	to	help	you	design	reports	to	meet	your	users'	requirements	and	to	raise
the	bar	with	compelling	report	features.

PAGINATION	AND	FLOW	CONTROL
With	respect	to	page	layout,	reports	have	two	sizing	modes:	interactive	and	printable.
When	users	run	a	report	in	their	web	browser	and	use	it	interactively,	they	typically
don't	care	that	much	about	the	page	size.	This	is	particularly	true	with	reports	that
have	wide	content	like	a	matrix	region	that	can	dynamically	grow	horizontally	with	the
data.	When	a	report	is	printed	or	rendered	to	a	printable	format	like	a	PDF	or	Word
file,	we	need	to	be	mindful	about	fitting	the	content	on	pages.

The	report	designer	does	not	make	page	sizing	and	dimensions	particularly	obvious	so
it's	an	easy	thing	to	miss.	Fortunately,	the	science	behind	page	sizing	is	pretty	simple.
Page	dimension	properties	are	grouped	into	two	objects	that	you	can	select	in	the
designer;	these	are	shown	in	Figure	7.1.	With	the	Properties	window	visible,	click
outside	the	report	body	to	show	properties	for	the	report.	Here	you	will	see	the
InteractiveSize	and	PageSize	properties.	Expand	these	to	see	the	individual	Width
and	Height	properties	for	each	group.

Figure	7.1	Report	properties	in	the	designer.

If	you	are	not	using	this	default	paper	size,	you	can	get	more	options	by	right-clicking
the	Report	area	and	choosing	the	option	to	show	the	Report	Properties	dialog	(shown
in	Figure	7.2).	Either	way,	you	will	be	setting	the	same	properties.

Figure	7.2	Report	Properties,	Page	Setup	page.

Aside	from	the	default	US	paper	sizes	shown	here	because	my	machine	is	set	up	with
an	English/US	locale,	you	can	also	choose	from	metric	sizes	or	several	specialized
layouts.	The	margins	are	set	to	1	inch	by	default,	which	means	that	we	lose	two	inches
of	printable	space	in	each	page.	I've	changed	my	margins	to	a	quarter	inch,	which	will
maximize	the	page	space	and	work	with	most	modern	printers.

TIP

Quarter-inch	margins	(about	.64	cm)	work	with	most	modern	printers.	Some
older	laser	printers	can	require	up	to	a	half	inch	of	“gripper	space”	at	the	top	of
the	page.	This	is	the	area	of	the	paper	the	printer	grabs	and	attaches	to	the	drum
during	the	print	cycle.	If	you	are	trying	maximize	the	print	area,	either	test	the
report	on	each	printer	model	or	just	be	more	conservative	with	the	margin
settings.

Click	the	Body	(the	area	within	the	designer	report	boundaries)	to	check	the	Size
properties,	which	are	shown	in	Figure	7.3.	To	fit	within	a	printable	page,	the	body
Width	must	be	less	than	the	report	width	added	to	the	left	and	right	margins.

Figure	7.3	Properties	window,	Size	properties	group.

TIP

To	prevent	blank	pages:

must	be	less	than	Report	Width.	If	not,	the	page	will	spill	onto	a	second	page.	If
there	is	no	printable	content,	just	empty	space,	the	printer	will	feed	blank	paper
between	each	page	of	report	content.	You	can	test	this	by	saving	to	a	PDF	file	to
see	if	alternate	pages	are	blank.

HEADERS	AND	FOOTERS
The	terms	“header”	and	“footer”	can	refer	to	three	different	areas	of	a	report:	the
report	header	and	footer,	the	page	header	and	footer,	and	the	header	and	footer	areas
of	any	data	region(s)	in	the	report.	Table	and	matrix	regions	may	have	headers	and
footers	associated	with	groups	within	the	region.

NOTE

In	this	paragraph,	I	refer	to	the	“effective”	report	header	and	footer.	My	use	of
this	term	is	important	to	understand	because	Reporting	Services	doesn't	actually
designate	a	specific	header	or	footer	area.	The	area	of	the	report	body	above	a
table	or	other	repeating	data	region	is	“effectively”	the	page	header.

The	report	header	and	the	footer	each	occur	only	once:	on	the	first	page,	at	the	top	of
the	entire	report	(header),	and	at	the	end	of	the	report,	on	the	bottom	of	the	last	page
(footer).	In	Reporting	Services,	there	is	no	designated	report	header	and	footer	area.
The	effective	report	header	is	simply	the	blank	space	containing	textboxes	and	other
report	items	placed	above	any	data	regions	in	the	report	body.	Likewise,	the	effective
report	footer	is	the	space	below	any	data	regions.	If	you	were	to	place	a	table	two
centimeters	below	the	top	of	the	report	body,	this	would	give	you	a	report	header	two
centimeters	tall.	It's	as	simple	as	that	and	because	there	is	no	set	limit	to	the	number
of	data	regions	or	other	items	you	can	add	to	a	report	(and	you	can	designate	page
breaks	at	any	location),	all	the	space	above,	below,	and	between	these	items	is
essentially	header	and	footer	space.

Follow	along	by	opening	the	completed	Ch07	-	Headers	and	Footers	report,	which	is	in
the	Wrox	SSRS	2016	Sample	project.

You	have	a	lot	of	flexibility	when	displaying	header	and	footer	content.	In	addition	to
the	standard	report	and	page	headers	and	footers,	data	region	sections	can	be	repeated
on	each	page,	creating	additional	page	header	and	footer	content.	Figure	7.4	shows	a
table	report	with	each	of	the	header	and	footer	areas	labeled.

Figure	7.4	Headers	and	footers	in	the	designer	for	a	typical	table	report.

Figure	7.5	shows	the	first	rendered	page	of	this	report.	Comparing	the	design	view	of
the	report	in	Figure	7.4	with	the	first	page	rendered	in	Figure	7.5,	note	the	name	of	the
report	in	bold	text	followed	by	execution	date	and	summary	of	years	and	months
included	in	the	report,	in	the	(report)	header	area.	The	page	header	is	omitted	from
the	first	page.	Below	the	table,	you	see	the	page	footer	showing	the	report	user's
network	ID	and	the	page	number	summary.

Figure	7.5	Rendered	table	report	with	headers	and	footers.

Figure	7.6	shows	the	second	page,	beginning	with	the	page	header.	Of	particular	note
is	the	summary	of	data	displayed	on	this	page	in	“phone	book”	or	“dictionary”	style
where	the	year	and	month	of	the	first	and	last	items	on	the	page	are	summarized	in
the	header.	Also	note	that	even	though	the	group	for	2012	is	split	between	pages	one
and	two,	the	table	header	is	displayed	at	the	top	of	the	page	and	the	year	is	repeated
for	quarter	3.	In	the	table,	after	all	four	quarters,	a	group	footer	shows	a	total	of	the
year	and	then	a	grand	total	is	displayed	at	the	end	of	the	table	for	all	three	years.

Figure	7.6	Page	header	shown	on	the	second	page.

A	common	purpose	of	the	page	header	is	to	display	an	abbreviated	form	of
information	in	the	report	header.	Naturally,	you	don't	want	to	show	redundant
information	on	the	first	page	so	it	makes	sense	to	hide	the	page	header.	Right-click
the	report	body	to	add	a	page	header	and	then	right-click	the	page	header	to	show	the
Page	Header	Properties	dialog,	used	to	set	a	number	of	related	properties.

Uncheck	the	“Print	on	first	page”	property	under	“Print	options.”

TIP

Remember	that	any	property	displayed	on	a	property	page	dialog	like	this	is	also
available	in	the	Properties	window,	to	the	right	of	the	report	designer	in	SSDT.
The	Properties	window	can	optionally	be	viewed	in	Report	Builder,	enabled	from
the	View	ribbon.

Figure	7.7	Page	Header	Properties	dialog.

Tablix	Headers	and	Detail	Cells
Listen	up:	This	little	golden	nugget	will	help	you	make	more	sense	of	table	and	matrix
reports	that	you	inherit	from	other	developers,	or	when	you	resume	working	on	a
report	you	haven't	touched	for	quite	a	while.	When	reviewing	the	sample	report
created	for	you,	how	do	you	know	which	cells	in	the	table	serve	as	group	headers	or
are	detail	cells	that	aggregate	values?	Figure	7.8	shows	you	the	secret.	This	feature	is
subtle	but	very	useful.

Figure	7.8	Row	group	header	boundary.

When	designing	a	table,	the	fields	that	you	drag	into	the	Row	Groups	list	create
groups	with	row	header	cells.	Fields	that	you	drag	into	the	table	columns	become
ungrouped	detail	cells.	A	double	broken	vertical	line	(circled	in	Figure	7.8)	is	displayed
to	differentiate	between	group	headers	to	the	left	and	detail	cells	to	the	right	of	the
line.	It	is	apparent	in	this	report	that	rows	are	grouped	first	by	Year	and	then	by
Quarter.	The	(Details)	group,	displayed	in	the	Row	Groups	list,	doesn't	have	a	group
header,	so	the	MonthName	cell	is	on	the	right	side	of	the	double-broken	line.	Because
the	dataset	already	groups	sales	details	by	month	and	only	returns	one	month	per	row,
no	month-level	grouping	is	necessary	in	the	table.

In	a	matrix,	column	group	header	cells	are	also	separated	from	the	detail	cells	with	a
horizontal	double-broken	line.

Designing	the	Page	Headers

NOTE

As	I	describe	these	steps,	don't	be	concerned	with	following	along.	You	will	step
through	this	process	in	the	exercise	at	the	end	of	the	chapter.

With	the	Report	Data	window	visible	and	Built-in	Fields	expanded,	I	will	step	you
through	the	process	as	I	create	the	header.	I	can	drag-and-drop	fields	directly	into	the
report	body.	This	is	actually	a	slight	misnomer	because	the	“built-in”	objects	are	not
really	fields	per	se,	but	global	objects.	The	word	“field,”	in	this	sense,	refers	to
something	that	returns	a	value.	Regardless,	it	is	useful	information	you	can	add	to	the
report	header	or	footer	areas.	If	I	were	to	drag	a	built-in	field,	say	[ExecutionTime],
onto	the	report	body,	a	textbox	will	be	added	at	the	drop	location	with	a	reference	to
the	intended	object.	If	the	object	or	field	were	dropped	into	an	existing	textbox,	the
inserted	value	becomes	a	placeholder	for	an	expression.	The	expression	can	coexist
with	other	expression	placeholders,	and	literal	text	in	various	formats,	within	a
textbox.

I	begin	with	the	Execution	Time	field,	which	I	will	drag	to	the	existing	textbox	in	the
top-left	corner	of	the	page	header	region.	The	textbox	already	contains	the	text	Sales
as	of:	in	italicized	format.

Next,	I	drop	the	Execution	Time	field/object	just	to	the	right	of	the	existing	text	to
create	a	composite	message:	Sales	as	of:	[Execution	Time].	Just	peachy.

The	others	are	similar.	In	the	lower	left-hand	corner,	I	drag	the	UserID	field	to	the
textbox	right	after	the	text	report	user.

In	the	textbox	located	in	the	lower-right	corner	of	the	page	footer,	I	add	these	built-in
fields	to	assemble	the	following	phrase:	Page	[&PageNumber]	of	[&TotalPages]	as
shown	in	Figure	7.9.

Figure	7.9	Assembling	the	page	footer.

You	can	see	that	the	page	header	and	footer	decorations	are	nearly	complete.	Our
objective	is	to	show	the	first	and	last	set	of	month/year	values	displayed	on	the	page.
Well,	because	the	page	has	already	been	paginated	by	the	page	rendering	engine,	there
is	no	need	to	do	this	work	if	it's	already	been	done	for	us.

Instead	of	using	“field”	references	to	get	these	values,	we	can	use	the	aggregate
functions	FIRST()	and	LAST()	with	the	report	items	in	the	table	that	already	return	the
values.	I	right-click	in	the	textbox	to	create	a	placeholder	and	then	edit	the	placeholder
to	add	a	value	expression.	I	use	the	callouts	in	Figure	7.10	to	add	these	expressions	in
order;	first	the	Month	and	Year	report	items	are	referenced	in	the	range	“From”	group,
with	the	FIRST	functions.	In	the	second,	range	“To”	group,	the	LAST	aggregate	function
returns	the	last	Year	and	Month	value	for	that	page.

Figure	7.10	Assembling	the	page	header.

TIP

Pay	close	attention	to	the	spaces	added	to	the	literal	text	when	assembling	static
text	and	expressions	in	a	textbox.

The	textbox	below	the	large	report	title	contains	two	placeholders	with	expressions,
shown	in	Figure	7.11.	The	textbox	contains	the	static	text	“Includes:	”	followed	by	an
expression	in	the	first	placeholder	that	concatenates	the	first	month	and	year	in	the
dataset	results.	The	static	text	“	to	”	separates	the	second	placeholder	with	an
expression	that	concatenates	the	last	month	and	year	in	the	dataset.

Figure	7.11	Assembling	the	report	header.

This	example	demonstrates	how	values	can	be	obtained	from	a	dataset	outside	the
boundaries	of	a	data	region	like	a	table,	list,	or	matrix.	Outside	of	a	data	region,	an
aggregate	function	must	be	used	to	reduce	multiple	field	rows	to	a	single	value	and
the	dataset	is	passed	in	the	second	function	argument.

Textbox	Expressions	and	Placeholders
When	combining	values	in	a	textbox,	you	really	have	two	choices.	The	previous
examples	demonstrate	the	use	of	multiple	placeholders	within	a	textbox.	Think	of	a
placeholder	as	if	it	were	a	separate	textbox	embedded	in	the	text	for	the	textbox.	The
advantage	of	using	multiple	text	placeholders	in	a	textbox	is	that	each	can	be	styled
with	separate	properties	for	styling	features	like	the	font,	weight,	and	color.

NOTE

Internally,	placeholder	text	is	stored	as	a	“textrun”	object	within	the	textbox
paragraph	element.	This	is	important	to	understand	for	error	reporting	and
debugging	expressions.

Internally,	textboxes	contain	two	levels	of	objects:	paragraphs	and	textruns,	which	the
visual	designer	calls	a	placeholder.	When	using	multiple	placeholders	in	a	textbox	like
the	previous	example,	this	is	actually	a	paragraph	containing	multiple	textrun
elements.	This	would	be	apparent	if	an	incorrect	expression	were	entered,	resulting	in
an	error.	If	you	see	the	text	#Error	displayed,	use	the	Output	window	to	see	the	error
text,	which	might	look	something	like	this:

[rsRuntimeErrorInExpression]	The	Value	expression	for	the	textrun

'Textbox4.Paragraphs[0].TextRuns[3]'	contains	an	error:	The	expression	

references

an	item	'TotalPages_',	which	does	not	exist	in	the	Globals	collection.	

Letters	in

the	names	of	Globals	collection	items	must	use	the	correct	case.

Preview	complete	--	0	errors,	1	warnings

TIP

When	you	see	an	expression	error	displayed	on	the	report	as	#Error,	use	the
Output	window	in	SSDT	to	view	the	error	or	warning	information.

The	other	approach	for	combining	values	in	a	textbox	is	to	use	a	single	expression	to
concatenate	all	the	values	into	a	single	text	value.	Rather	than	the	compounded
placeholder	text	used	to	display	the	page	numbers,	the	following	expression	would
display	the	same	text	without	the	option	for	mixed	styling	features	within	the	text:

="Page	"	&	Globals!PageNumber	&	"	of	"	&	Globals!TotalPages

The	Thing	About	Repeating	Table	Headers
You'll	notice	that	the	table	column	headers	are	repeated	on	the	second	page,	which	is	a
sensible	design	pattern.	If	you	look	at	the	Tablix	Properties	(Figure	7.12),	you'll	find
settings	to	repeat	column	and	row	headers	on	each	page.	Seems	pretty	simple,	right?

Figure	7.12	Tablix	Properties	dialog.

Somewhere	in	the	product	history,	as	the	table	and	matrix	data	region	evolved	into	the
Tablix	(circa	2008),	this	feature	stopped	working	but	it	is	easy	to	fix.	I	do	not	have	a
good	explanation	for	why	the	following	step	is	necessary;	and	I	think	we	can	all	agree
that	this	might	seem	to	be	overly	complicated,	but	I	can	at	least	show	you	how	to	get
this	working.

With	the	table	selected,	click	the	little	down	arrow	icon	displayed	to	the	right	of	the
Column	Groups	in	the	Grouping	Window	and	switch	on	Advanced	Mode	(see	Figure
7.13).	Advanced	Mode	shows	several	hidden	objects	in	the	Tablix	data	region	that	are
used	internally	to	manage	header,	groups,	and	cell	properties.	As	you	can	see,	the
inner	workings	of	the	Tablix	are	quite	complex.

Figure	7.13	Setting	up	repeating	page	header	in	Advanced	Mode.

WARNING

I	can	tell	you	from	experience	that	the	advanced	properties	of	the	Tablix	can	be	a
Pandora's	Box	if	you	don't	know	exactly	what	you're	doing	in	there.	If	you	plan
to	experiment	with	these	properties,	I	suggest	you	make	a	backup	copy	of	the
Tablix	or	your	report	before	you	proceed.

Making	this	change	is	easy.	Just	select	the	first	“Static”	Tablix	Member	displayed	in
the	Row	Groups	list.

In	the	Properties	window,	change	the	RepeatOnNewPage	property	from	False	to	True.
That's	it!

Use	the	down	arrow	icon	to	switch	Advanced	Mode	off.

Test	the	report	and	you'll	see	that	the	table	header	is	repeated	on	each	page.

COMPOSITE	REPORTS	AND	EMBEDDED	CONTENT
Beyond	common,	basic	report	design,	more	sophisticated	reports	are	created	by	using
more	advanced	and	less	common	design	techniques.	In	general,	these	fit	into	two
different	categories,	which	include	using	advanced	properties	of	different	report	item
components,	and	by	combining	multiple	data	regions	to	create	composite	report
designs.	The	composite	report	design	pattern	is	intriguing	because	there	are	virtually
limitless	options	when	allowing	one	grouped	data	region	to	repeat	instances	of
another	report	item	or	region.

Before	opening	the	door	to	the	mind-blowing	possibilities	of	composite	data	regions,
let's	explore	the	depth	of	some	fundamental	report	item	building	blocks.	OK,	“mind-
blowing”	might	be	a	stretch	but	some	of	the	most	fundamental	report	items	have
considerable	capabilities,	especially	when	used	as	components	of	a	well-constructed
solution.

UNLOCKING	THE	TEXTBOX
The	textbox	is	one	of	the	most	fundamental	and	common	report	items.	Generally,	all
text	and	data	values	are	displayed	using	textboxes.	The	cells	of	a	table	and	matrix
contain	individual	textboxes.	In	addition	to	the	text	displayed,	several	useful
properties	manage	the	placement,	style,	and	presentation	of	data.

The	Font,	Color,	BackGroundColor,	and	BackGroundImage	properties	make	it	possible	to
dress	up	your	report	data	with	tremendous	flexibility.

The	BorderStyle	properties	of	a	textbox	are	similar	to	those	of	other	report	items
(such	as	a	rectangle,	list,	table,	and	matrix).	Once	you	have	mastered	the	textbox
properties,	you	should	be	able	to	use	these	other	items	in	much	the	same	way.	With	a
table,	group	separation	lines	are	created	by	setting	the	border	properties	for	textboxes
in	header	and	footer	rows	(typically	by	selecting	the	entire	row	and	setting	the	textbox
properties	as	a	group).

Three	property	groups	are	used	for	borders.	In	the	Properties	window,	these	groups
are	expanded	using	the	plus	sign	(+)	icon	to	reveal	individual	properties.	The	group
summary	text	can	actually	be	manipulated	without	expanding	the	properties,	but	it's
usually	easier	to	work	with	specific	property	values.	The	BorderColor,	BorderStyle,
and	BorderWidth	properties	each	contain	a	Default	value	that	applies	to	individual
properties	(Left,	Right,	Top,	and	Bottom)	that	have	not	otherwise	been	set.	This
provides	a	means	to	set	general	properties	and	then	override	the	exceptions.	By
default,	a	textbox	has	a	black	BorderColor	and	a	1-point	BorderWidth,	with	the
BoderStyle	set	to	None.	To	add	a	border	to	all	four	sides,	simply	set	the	default
BorderStyle	to	Solid.	Beyond	this,	you	can	use	individual	properties	to	add	more
creative	border	effects.

Padding	and	Indenting
Most	report	items	support	padding	properties,	which	are	used	to	offset	the	placement
of	text	and	other	related	content	within	the	item.	Padding	is	specified	in	points.	A	unit
of	measure	from	the	printing	industry,	a	PostScript	point	is	1/72nd	of	an	inch,	or
approximately	1/28th	of	a	centimeter.

Figure	7.14	shows	the	four	padding	properties,	in	the	Padding	group	of	the	Properties
pane,	applied	to	all	textbox	items.	The	Padding	properties	provide	an	offset	between
textbox	borders	and	the	contained	text.	You	can	use	this	to	indent	text	and	provide	an
appropriate	balance	of	white	space.

Figure	7.14	Textbox	Padding	properties.

Three	similar	properties	provide	more	flexibility	for	text	indentation.	You	can	use	the
HangingIndent,	LeftIndent,	and	RightIndent	properties	to	control	paragraph-style	text
in	rich-formatted	textboxes.	These	properties	also	enable	the	new	Word	rendering
extension	to	apply	hanging,	static	text	indentations.

Embedded	Formatting
This	feature	allows	the	text	in	a	textbox	to	be	structured	and	formatted,	much	like	a
document	or	web	page.	Textboxes	support	two	modes:	a	single-value	expression	or	a
range	of	text	containing	multiple	expression	placeholders.

To	format	a	range	of	text,	simply	highlight	the	text	in	the	textbox	and	use	the	toolbar
or	Properties	window	to	set	properties	for	the	selected	text.	Figure	7.15	shows	a	range
of	highlighted	text	with	the	HangingIndent	and	LeftIndent	properties	set	to	18	points
and	12	points,	respectively.	Note	that	certain	keywords	and	phrases	within	the	text	are
also	set	using	bold	and	italic.	Some	title	text	has	also	been	isolated	with	bold	and
larger	fonts.

Figure	7.15	Text	with	embedded	formatting.

Embedded	HTML	Formatting
Another	option	is	to	embed	simple	HTML	tags	within	text.	This	provides	a	great	deal
of	flexibility	for	using	expressions	or	custom	code	to	return	formatted	text.	The	HTML
tags	listed	in	Table	7.1	are	supported.

Table	7.1	HTML	tags	supported	with	embedded	formatting

TAG DESCRIPTION

<A> Anchor.
For	example:	Click	Here

 Sets	font	attributes	for	a	group	of	text.	Used	with	the	attributes
color,	face,	point	size,	size,	and	weight.
For	example:	<FONT	color="Blue"	face="Arial"
size="6">Hello

<H1>,	<H2>,
<H3>,	<H4>,	…

Headings.

 Used	to	set	text	attributes	for	a	range	of	text	within	a	paragraph.

<DIV> Used	to	set	text	attributes	for	a	block	of	text.

<P> Paragraph	break.

 Line	break.

 List	new	line.

 Bold.

<I> Italic.

<U> Underscore.

<S> Strikeout.

 Ordered	list.

 Unordered	list.

Embedded	tags	can	be	entered	directly	into	a	textbox	or	read	from	a	dataset.	When
using	static	text,	rather	than	text	fed	from	a	dataset,	you	must	set	the	MarkupType
property	for	the	text	placeholder.	To	do	this,	highlight	the	text	containing	the
embedded	HTML	tags,	right-click,	and	choose	Text	Properties.	In	the	Text	Properties
dialog,	on	the	General	page,	set	the	Markup	type	property	to	the	selection	shown	in
Figure	7.16,	“HTML	-	Interpret	HTML	tags	as	styles.”	When	working	with	data-bound
text,	the	difference	is	subtle;	highlight	the	field	placeholder	in	the	textbox,	right-click,
and	choose	Placeholder	Properties….”

Figure	7.16	Placeholder	Properties	dialog.

The	Text	Properties	and	Placeholder	Properties	dialogs	have	identical	selections	for
the	Markup	type,	shown	in	Figure	7.16.

I	have	provided	an	example	in	the	sample	report	named	Ch07	-	Sales	Order	Notes.	The
SalesOrderNote	table	contains	formatted	text	with	HTML	markup	tags	like	this:

<h2>Check	This	Order	Before	Shipping</h2>

Customer	specifically	needs	10	RED	helmets.
She	is	<i>unhappy</i>	

that	an

earlier	order	was	placed	for	RED	helmets	but	helmets	were	

MAROON

colored.
If	product	is	not	bright	red	color,	please:

Cancel	and	do	not	ship	the	order

Call	the	sales	person

Do	not	charge	the	standard	re-stocking	fee

When	this	text	is	interpreted,	the	formatting	tags	are	applied	and	it	will	appear	as	it
does	in	Figure	7.17.

Figure	7.17	Previewed	report	with	data-bound	embedded	formatting.

Would	You	Like	Them	in	a	Box?	Using	a	Rectangle	as	a	Container
I	love	containers.	To	be	honest,	I	am	a	little	obsessive	about	collecting	boxes,	bags,
backpacks,	and	cases.	Putting	things	in	the	right	kind	of	container	provides	a	sense	of
order	and	security.	In	Reporting	Services,	containers	are	used	to	encapsulate,	repeat,
and	manage	collections	of	content.

The	rectangle	report	item	is	far	more	than	a	simple	box	to	display	on	a	report.	It
provides	containment	for	multiple	items	that	can	be	treated	and	managed	as	a	single
unit.	The	rectangle	also	has	several	properties	for	managing	the	flow	and	placement	of
information	on	report	pages.	For	example,	placing	a	group	of	textboxes	and	other
items	in	a	rectangle	ensures	that	they	all	end	up	on	the	same	page.	You	can	set	the
rectangle	to	force	a	page	break	before	or	after	its	contents.	By	default,	borders	of	a
rectangle	are	not	displayed,	so	out	of	the	box	the	rectangle	is	really	more	functional
than	it	is	a	visual	control.	By	setting	a	few	properties,	you	can	use	a	rectangle	to
display	a	background	image,	fill	color,	and	borders.	It	can	also	be	set	to	repeat	with	an
adjacent	Tablix	group,	and	on	each	page	and	the	table,	list,	or	matrix	splits	across
pages.

The	utility	of	a	rectangle	is	clear	when	you	compare	the	behavior	of	a	table	to	a	list
data	region.	Both	data	regions	are	based	on	the	Tablix	object.	Functionally,	a	list	acts
like	a	table	with	a	single	column	and	detail	row	and	no	headers	with	one	significant
difference.	Every	cell	in	a	table	and	matrix	contains	a	textbox.	The	area	of	a	list	data
region	is,	in	fact,	a	rectangle—which	is	the	reason	that	any	report	items	dragged	into
that	area	remain	the	size	and	position	you	place	them.	If	you	were	to	drag	a	rectangle
into	a	table	cell,	it	would	replace	the	cell	textbox	with	the	rectangle.	Then,	constituent

items	dragged	into	the	same	space	would	no	longer	fill	the	cell.

Rectangles	can	simplify	report	design	when	used	conservatively.	Because	the	designer
shows	a	rectangle	with	gray	borders,	similar	to	a	textbox,	returning	to	a	previously
designed	report	may	take	some	poking	around	to	decipher	where	each	of	the	container
objects	reside.

Figure	7.18	shows	an	example	of	a	rectangle	used	to	contain	several	textboxes	to
display	the	report	parameters.	During	design,	I	may	need	to	adjust	the	size	and
placement	of	the	elements,	and	using	the	rectangle	allows	me	to	move	the	entire	block
of	items	as	a	group.

Figure	7.18	Report	header	content	contained	in	a	rectangle.

As	requirements	evolve,	I	can	easily	cut	and	paste	the	rectangle	as	a	single	object	and
place	it	in	the	page	header	(Figure	7.19)	or	put	it	below	the	matrix.

Figure	7.19	Page	header	content	contained	in	a	rectangle.

The	following	example	shows	how	using	a	rectangle	report	item	container	manages
page	flow.	In	Figure	7.20,	a	page	break	is	set	with	BreakLocation=End.	This	forces	a
page	break	after	the	rectangle	is	rendered	so	the	matrix	content	would	be	on	the	next
page	of	the	report.

Figure	7.20	Setting	a	page	break	in	the	rectangle	properties.

The	example	report	uses	long	parameter	lists,	which	take	up	a	lot	of	page	space.	I
recently	had	a	consulting	client	who	asked	that	when	a	report	similar	to	this	one	is
used	in	interactive	mode,	the	report	header	appear	as	usual,	like	the	one	shown	in
Figure	7.21,	but	when	the	report	is	rendered	to	Excel,	the	parameters	be	displayed	only
on	a	separate	worksheet.

Figure	7.21	Long	parameter	text	in	page	header.

Using	a	rectangle	to	control	the	page	name	and	conditional	page	break	was	quite	easy
by	using	an	expression	on	the	Disabled	property.	Figure	7.22	shows	the	expression
that	conditionally	toggles	the	Disabled	property	based	on	the	built-in
RenderFormat.Name	property.	This	effectively	disabled	the	page	break	in	all	cases
where	the	report	is	not	rendered	to	Excel.

Figure	7.22	Setting	the	PageBreak	Disabled	property	with	an	expression.

The	resulting	Excel	workbook	(shown	in	Figure	7.23)	contains	two	worksheets,	each
named	as	a	result	of	the	PageName	properties	for	the	rectangle	used	to	manage	the
parameters	and	the	matrix.	The	Excel	renderer	translates	any	explicit	page	breaks	in
the	reports	as	a	new	worksheet	tab.

Figure	7.23	Report	rendered	to	Excel.

DESIGNING	MASTER/DETAIL	REPORTS
Most	data	can	be	expressed	in	a	hierarchal	fashion.	Whether	stored	in	related	tables	in
a	relational	database,	as	dimensional	hierarchies	in	a	cube	or	tabular	structure,	or	as
separate	spreadsheets	or	files,	structured	data	can	usually	be	organized	into	different
levels,	which	is	often	a	natural	way	to	present	information	for	reporting.	Common
examples	of	master/detail	data	include	invoices	and	line	items,	customers	and	orders,
regions	and	sales,	categories	and	products,	colors	and	sizes,	and	managers	and
workers.	The	best	way	to	organize	this	data	in	a	master/detail	report	depends	largely
on	how	your	users	want	to	see	it	visualized.	For	each	master	record,	details	may	be
presented	in	a	rigid	tabular	or	spreadsheet-like	form	or	in	free-form	layout	with
elements	of	different	sizes	and	shapes	placed	at	various	locations	within	a	repeating
section.	And,	of	course,	details	may	also	be	expressed	visually	using	charts,	icons,	and
gauges.

The	last	consideration	for	master/detail	report	design	is	whether	the	data	source	for
the	master	records	and	detail	records	can	be	combined	into	a	single	data	stream.	If
records	exist	in	different	tables	in	the	same	database,	this	is	a	simple	matter	of	joining
tables	using	a	query.	If	the	records	can't	be	combined	in	a	query	or	view,	the	two	result
sets	should	expose	the	fields	necessary	to	join	them,	and	a	subreport	can	be	used.	This
section	about	composite	reports	explores	techniques	for	combining	data	ranges	to
filter	a	single	dataset	and	then	uses	subreports	to	combine	two	separate	data	sources.

When	constructing	a	hierarchal	report,	you	have	a	few	different	techniques	at	your
disposal,	including	using	a	table,	matrix,	list,	or	subreport.

Repeating	Data	Regions:	Table,	Matrix,	and	List
In	Chapter	6,	you	learned	that	the	purpose	of	a	data	region	is	to	repeat	rows	and
columns	for	each	instance	of	a	group	or	detail	record,	and	you've	already	seen	several
examples	using	a	table	and	matrix.	The	purpose	of	a	data	region	is	to	repeat	report
items.	You	can	actually	add	just	about	anything	in	place	of	the	default	textbox	or
rectangle	container	that	the	designer	creates	in	the	detail	cells	for	you.

Table	as	a	Master/Detail	Container
By	default,	all	the	cells	in	a	table	are	textboxes	unless	you	drag	a	different	type	of	item
into	the	cell.	Any	embedded	content	will	stretch	to	the	dimensions	of	the	cell	and	will
grow	vertically	if	text	wrapping	in	any	columns	causes	that	row	to	grow.	To	prevent
items	from	stretching,	place	a	rectangle	in	the	cell	first	and	then	add	the	new	report
item	to	the	rectangle.

TIP

To	prevent	items	embedded	in	a	table	detail	row	from	stretching	vertically	when
an	adjacent	textbox	wraps,	place	a	rectangle	in	the	cell	first	and	then	add	the	new
report	item	to	the	rectangle.

Regions	and	items	embedded	in	the	detail	row	are	repeated	vertically,	once	for	every
unique	detail	group	value.	Detail	rows	in	a	table	can	be	used	as	a	container	for	all
other	report	items	and	data	regions.	There	is	literally	no	limit	to	the	number	or	level
of	embedded	items	that	can	be	placed	into	a	table,	matrix,	or	list.	All	regions	and
report	items	contained	in	the	table	must	be	bound	to	the	same	dataset.

NOTE

When	using	embedded	data	regions	and	report	items	within	a	table,	matrix,	or
list,	the	contained	data	regions	and	items	are	exclusively	bound	to	the	containing
dataset	via	the	DatasetName	property.	It	is	possible	to	reference	a	different	dataset
by	using	scoped	and	aggregated	field	expressions	(for	example,	FIRST,	SUM,	and	so
on).	You	can	also	use	LOOKUP	and	LOOKUPSET	functions	or	custom	code	to	reference
another	dataset.

The	sample	report	named	Ch07	-	Product	Category	Sales	Profile	by	Year	contains	a
table	data	region	with	drill-down	on	the	first-level	group	(Year).	The	detail	row
contains	an	embedded	column	chart	with	the	sales	quantity	grouped	by	product
category	values,	as	shown	in	Figure	7.24.

Figure	7.24	Multi-level	table	report	with	drill-down	and	repeating	chart.

Matrix	as	a	Container
Like	using	a	table	as	a	master/detail	container,	a	matrix	can	encompass	any	data
region	or	combination	of	report	items,	and	repeat	an	instance	of	these	items	both	on
rows	and	columns.	The	detail	cells	of	a	matrix	are	textboxes	by	default	but	can	be

replaced	with	most	any	type	of	report	item.

A	variation	of	the	theme	presented	in	the	previous	section,	the	sample	report	named
Ch07	-	Product	Category	Sales	Profile	by	Year	and	Country	(shown	in	Figure	7.25)	has
a	matrix	based	on	a	dataset	containing	one	additional	field,	which	is	used	to	group
columns	on	the	country.	The	same	column	chart	used	in	the	previous	example	is
repeated	both	on	rows	(for	each	quarter)	and	on	columns	for	each	country.

Figure	7.25	Matrix	report	with	repeating	chart.

List	Data	Region	as	a	Container
A	list	is	essentially	a	single-row,	single-column	table	with	no	headers.	Instead	of
containing	a	textbox	by	default,	the	detail	“cell”	or	area	of	a	list	contains	a	rectangle.
Any	items	placed	within	the	list	area	will	remain	the	same	size	and	position,	rather
than	stretching	to	fill	the	area	in	the	designer.	This	would	roughly	be	the	same	thing
as	if	you	were	to	replace	a	table	detail	cell	textbox	with	a	rectangle	and	remove	the
header	and	footer	rows.

A	list	is	a	great	tool	for	repeating	a	region	of	formatted	report	items	with	every	group
of	parent	values	in	a	hierarchy.	Because	a	list	is	based	on	a	Tablix	object,	like	a	table
and	matrix,	it	has	the	same	essential	rules	of	behavior.	The	repeated	data	regions	and
report	items	in	the	list	area	are	bound	to	the	same	dataset	as	the	container.

The	following	examples	are	sample	reports	that	contain	one	or	more	report	items
contained	within	the	cells	or	repeated	detail	area	of	a	data	region.	The	sample	report
named	Ch07	-	Product	Cost	and	List	Price	-	Embedded	Chart	is	shown	in	Figure	7.26.
A	list	data	region	contains	several	textboxes	and	a	pie	chart.

Figure	7.26	List	report	with	free-form	layout	and	embedded	chart.

The	report	named	Ch07	-	Product	Cost	and	List	Price	-	Embedded	Table	and	Chart	is
shown	in	Figure	7.27.	The	list	data	region	in	this	report	contains	textboxes,	a	pie	chart,
and	a	table	that	shows	the	order	detail	history	for	each	product.

Figure	7.27	Combination	report	with	list,	embedded	table,	and	chart.

NOTE

An	important	design	consideration	when	using	multiple,	embedded	data	regions
is	that	all	report	items	are	based	on	only	one	dataset.	The	dataset	must	include
fields	to	group	the	containing	region	and	the	details	for	the	data	region	it
contains.

Because	only	one	dataset	can	be	used	for	both	data	regions	(the	list	and	table)	in	this
example,	all	necessary	fields	and	details	are	required.	The	dataset	used	to	drive	the	list
grouped	by	products	must	include	the	order	details	for	the	embedded	table.

Subreport
A	subreport	is	a	container	for	another	report,	visually	embedded	within	the	main
report.	As	a	method	of	object	reuse,	subreports	can	reduce	redundant	effort	and
circumnavigate	some	other	barriers	but	they	do	impose	some	compatibility	issues
with	certain	rendering	formats.	Be	cautious	and	test	your	designs	thoroughly.	As	a
rule,	I	don't	use	subreports	unless	they	are	necessary.

As	a	master/detail	design	pattern,	subreports	allow	a	data	region	to	encompass	detail
records	from	a	different	dataset,	or	even	an	entirely	different	data	source.	I	will
demonstrate	how	to	use	them	in	the	“Designing	Subreports”	section	later	in	this
chapter.

Drill-Through	Navigation
Actions	and	report	navigation	are	covered	in	Chapter	12.	I	include	this	topic	here
because	report	navigation	is	often	an	effective	replacement	for	a	complex,	multi-level
hierarchal	report.	It	can	be	an	effective	complement	to	a	summary	report	that	enables
report	users	to	get	more	information	and	insight	by	navigating	to	details	rather	than
including	them	in	a	single,	comprehensive	report.	Using	navigation	actions	correctly
can	help	you	architect	reporting	solutions	rather	than	big,	cumbersome	and
monolithic	reports.

Consider	that	a	report	with	four	levels	of	drill-down	groups	must	execute	a	large	query
that	returns	all	the	records	at	the	detail	level,	just	so	the	users	have	the	option	to	drill
to	a	particular	branch	of	detail.	Rather	than	expanding	the	drill-down	branch	within
the	same	report,	a	group	item	could	display	a	link	that	allows	the	user	to	navigate	to
another	report.	In	a	well-orchestrated	solution,	the	users'	perception	is	that	they	are
simply	moving	around	within	their	report	dashboard	solution,	instead	of	moving	from
report	to	report.

Groups	and	Dataset	Scope

One	of	the	fundamental	reasons	that	master/detail	reports	work—and	are	relatively
easy	to	construct—is	the	principle	of	dataset	scope.	The	term	scope	refers	to	the
portion	of	data	from	a	dataset	that	is	available	within	a	group.	When	a	data	region,
such	as	a	table,	list,	or	matrix,	is	rendered,	the	data	is	sectioned	into	the	subranges
according	to	a	group	definition.	Any	report	items	or	data	region	items	placed	in	a
grouped	area,	header,	or	footer	are	visible	only	to	the	data	currently	in	scope.	This
means	that	if	a	table,	for	example,	has	a	group	based	on	the	ProductCategory	field	and
another	table	is	placed	in	the	group	header,	a	table	is	rendered	for	each	distinct
ProductCategory	value.	Each	table	instance	“sees”	a	range	of	detail	records	filtered	by
this	group	value.	This	can	be	an	incredibly	powerful	feature,	because	there	is	no	stated
limit	on	how	many	items	can	be	embedded	within	a	group;	nor	is	there	a	limit	on
group	levels	and	nested	embedded	data	regions.	With	that	said,	we	have	found	it
impractical	to	embed	several	data	regions	to	create	overly	complex	reports.

In	this	section,	we	will	apply	this	principle	of	group	embedded	data	regions	for	each
data	region	container.	This	includes	the	list,	table,	and	matrix.

More	Aggregate	Functions	and	Totals
Previously,	you	saw	how	the	SUM	and	AVG	functions	work	in	a	detail	group	and	in	group
total	rows.	Reporting	Services	supports	several	aggregate	functions	and	each	function
accepts	one	or	two	arguments	that	are	passed	in	parentheses.	The	first	argument	is
the	field	reference	or	the	expression	to	aggregate.	The	second,	optional	argument	is
the	name	of	a	dataset,	report	item,	or	group	name	to	indicate	the	scope	of	the
aggregation.	If	not	provided,	the	scope	of	the	current	data	region	or	group	is	assumed.
For	example,	suppose	a	table	contains	two	nested	groups	based	on	the	Category	and
Subcategory	fields,	respectively.	If	you	were	to	drag	the	SalesAmount	field	into	the
Subcategory	group	footer,	the	designer	would	create	an	expression	like	this:
=SUM(Fields!SalesAmount.Value).	Remember	that	a	field	expression	appears	as	a
placeholder	in	the	report	design.	For	example,	the	placeholder	text
[SUM(SalesAmount)]	actually	represents	the	full	expression:
=SUM(Fields!SalesAmount.Value).	Right-click	and	choose	Expression	to	see	the	full
expression.

The	expression	would	return	the	sum	of	all	SalesAmount	field	values	within	the	scope
of	each	distinct	Subcategory	group	range.	Table	7.2	shows	all	of	the	aggregate
functions	supported	by	Reporting	Services	with	a	brief	description	of	each,	for
reference.

Table	7.2	Aggregate	functions	supported	in	report	expressions

FUNCTION DESCRIPTION

AVG() The	average	of	all	non-null	values.

COUNT() The	count	of	values.

COUNTDISTINCT() The	count	of	distinct	values.

COUNTROWS() The	count	of	all	rows.

FIRST() Returns	the	first	value	for	a	range	of	values.

LAST() Returns	the	last	value	for	a	range	of	values.

MAX() Returns	the	greatest	value	for	a	range	of	values.

MIN() Returns	the	least	value	for	a	range	of	values.

STDEV() Returns	the	standard	deviation.

STDEVP() Returns	the	population	standard	deviation.

SUM() Returns	a	sum	of	all	values.

VAR() Returns	the	variance	of	all	values.

VARP() Returns	the	population	variance	of	all	values.

In	addition	to	the	aggregate	functions,	some	special-purpose	functions	behave	in	a
similar	way	as	aggregates	but	have	special	features	for	reports,	as	shown	in	Table	7.3.

Table	7.3	Special-use	dataset	row	functions

FUNCTION DESCRIPTION

LEVEL() Returns	an	integer	value	for	the	group	level	within	a	recursive
hierarchy.	The	group	name	is	required.

ROWNUMBER() Returns	the	row	number	for	a	group	or	range.

RUNNINGVALUE() Returns	an	accumulative	aggregation	up	to	this	row.

To	demonstrate	scoped	aggregates,	I	start	with	a	copy	of	the	sample	report:	Ch06	-
Sales	Summary	with	Groups.	As	a	refresher,	Figure	7.28	shows	the	first	page	of	the
report	with	callouts	containing	the	aggregate	expressions	for	the	last	two	columns.

Figure	7.28	Different	aggregate	functions	used	in	totals.

The	expressions	for	these	two	columns	are	the	same	for	the	detail	row	and	the
ProductCategory	group	footer	row.	With	only	the	field	name	passed	to	an	aggregate
function,	SUM	and	AVG	in	this	case,	the	current	group	level	is	implied.	For	the	details
group,	the	result	would	be	the	same	as:

=Sum(Fields!SalesAmount.Value,	"Details")

For	the	ProductCategory	group,	the	implied	aggregate	value	would	be	the	same	as:

=Sum(Fields!SalesAmount.Value,	"ProductCategory")

With	the	group	name	specified	in	the	second	function	argument,	the	expression	will
always	apply	to	that	group	level.	To	demonstrate,	I've	removed	the	last	column	and
then	added	a	new	column	using	this	expression	in	the	detail	row.	Figure	7.29	shows
the	results.	As	expected,	the	category	total	is	applied	to	every	calculation.

Figure	7.29	Using	a	scoped	aggregation.

Now	that	we	have	access	to	the	aggregate	value	at	any	level	in	the	group	hierarchy,	we
can	calculate	the	percentage	of	contribution	to	the	bottom	line.	Let's	see	it	all	the	way
through	now.	The	final	expression	is	pretty	simple:

=Sum(Fields!SalesAmount.Value)/Sum(Fields!SalesAmount.Value,	

"ProductCategory")

To	assemble	the	solution	in	Figure	7.30,	The	same	expression	is	applied	to	the	detail
and	group	total	footer	cells	in	the	last	column.	I've	also	modified	the	format	property
for	these	cells	appropriately	to	display	a	percentage	value.

Figure	7.30	Putting	the	calculations	together	in	a	meaningful	solution.

DESIGNING	SUBREPORTS
When	I	started	using	Reporting	Services	to	design	reports	with	nested	groups	and	data
regions,	my	first	impulse	was	to	use	subreports	as	much	as	possible.	This	seemed	like
the	best	approach	because	I	could	design	simple,	modular	reports	and	then	put	them
together.	The	programming	world	promotes	the	notion	of	reusable	objects.	However,
the	downside	of	this	approach	is	that	subreports	can	create	some	challenges	for	the
report	rendering	engine,	resulting	in	formatting	issues	and	poorer	performance.	In
SQL	Server	2000	and	2005,	subreports	didn't	render	at	all	in	Excel.	Improvements
have	since	been	made	for	Excel	rendering,	but	there	are	inherent	challenges	for
subreports	to	render	consistently	for	all	report	rendering	formats;	particularly	with
Excel.	When	using	subreports,	carefully	test	the	report	to	be	sure	that	it	will	render	in
the	target	format.

NOTE

Subreports	are	useful	for	implementing	a	variety	of	design	patterns	but	they	are
not	a	cure-all.	If	you	can	design	a	report	by	embedding	data	regions	into	a	list,
table,	or	matrix,	you	are	likely	to	get	better	results	than	if	you	use	a	subreport	to
do	the	same	thing.

A	subreport	is	a	standalone	report	that	is	embedded	into	another	report.	It	can	be
independent,	with	its	own	dataset,	or,	using	parameters,	you	can	link	the	contents	of	a
subreport	to	data	in	the	main	report.

NOTE

Subreports	fall	into	a	small	category	of	SSRS	features	that	have	some	limitations
that	have	changed	and	are	likely	to	continue	to	change	as	the	product	evolves.
This	is	why	it	is	important	to	test	your	design	in	all	the	rendering	formats	and
scenarios	where	it	will	be	used.

There	are	some	limitations	to	the	content	and	formatting	that	can	be	rendered	within
a	subreport.	For	example,	a	multicolumn	report	simply	doesn't	work	in	a	subreport
(depending	on	the	rendering	format	used).	If	you	plan	to	use	multiple	columns	in	a
subreport,	test	your	report	with	the	rendering	formats	you	plan	to	use.

Subreports	generally	have	two	uses.	The	first	is	for	embedding	one	instance	of	a
separate	report	into	the	body	of	another	report	with	an	unassociated	data	source.	The
other	scenario	involves	using	the	subreport	as	a	custom	data	region	to	display
repeated	master	and	detail	records	in	the	body	of	the	main	report.	From	a	design
standpoint,	this	makes	perfect	sense.	Using	a	subreport	allows	you	to	separate	two
related	datasets	and	perhaps	even	data	sources,	linked	as	you	would	join	tables	in	a
SQL	query.	It	allows	you	to	reuse	an	existing	report	so	that	you	don't	have	to	redesign
functionality	you've	already	created.	However,	there	may	be	a	significant	downside.	If
the	master	report	will	consume	more	than	just	a	few	records,	this	means	that	the
subreport	must	execute	its	query	and	render	the	content	many	times.	For	large
volumes	of	data,	this	can	prove	to	be	an	inefficient	solution.	Carefully	reconsider	the
use	of	subreports	with	large	result	sets.	It	may	be	more	efficient	to	construct	one
larger	report	with	a	more	complex	query	and	multiple	levels	of	grouping,	rather	than
assume	the	cost	of	executing	a	query	many	times.

NOTE

I	rarely	use	subreports	in	standard	scenarios	to	produce	master/detail	reports.	If
I	need	to	use	a	subreport,	the	main	report	is	limited	to	just	a	few	records.

A	subreport	can	be	linked	to	the	main	report	using	a	correlated	parameter	and	field
reference	so	that	it	can	be	used	like	a	data	region,	but	this	is	not	essential.	A	subreport
could	be	used	to	show	aggregated	values	unrelated	to	groupings	or	content	in	the	rest
of	the	report.

Creating	a	subreport	is	like	creating	any	other	report.	You	simply	create	a	report	and
then	add	it	to	another	report	as	a	subreport.	If	you	intend	to	use	the	main	report	and
subreport	as	a	Master/Detail	view	of	related	data,	the	subreport	should	expose	a
parameter	that	can	be	linked	to	a	field	in	the	main	report.	In	the	following	walk-
through,	you'll	build	a	simple	report	that	lists	products	and	exposes	a	subcategory
parameter.	The	main	report	will	list	categories	and	subcategories,	and	the	product	list
report	will	then	be	used	as	a	data	region,	like	a	table	or	list	in	previous	examples.

Federating	Data	with	a	Subreport
When	the	data	source	for	a	master	data	region	is	different	from	the	data	source	for
detail	records,	using	a	subreport	can	be	just	the	ticket	for	creating	a	master/detail
report.	The	following	example	combines	report	data	from	two	different	data	sources.

In	the	sample	project,	you	will	find	two	reports	named	Ch07	-	Product	Orders
Subreport	and	Ch07	-	Product	Details	(subreport	container).	The	“container”	report
contains	a	list	whose	data	source	is	the	relational	sample	database:	WroxSSRS2016.
The	other	report	contains	a	table	with	a	data	source	based	on	the	Adventure	Works
Multidimensional	SSAS	database.

This	literally	means	that	we'll	be	using	two	different	languages,	T-SQL	and	MDX,	and
a	parameterized	expression	will	provide	some	translation	between	the	two.	Records	in
the	Product	table,	located	in	the	WroxSSRS2016	database,	can	be	related	using	the
ProductKey	column.	This	column	contains	values	from	the	Product	table	in	the
WroxSSRS2016	database.

The	master	report,	Ch07	-	Product	Details	(subreport	container),	is	shown	in	Figure
7.31.	This	report	contains	a	list	data	region	that	is	bound	to	the	following	query	and
whose	data	source	is	the	WroxSSRS2016	data	warehouse	database.

Figure	7.31	Adding	a	subreport	to	the	main	report.

The	dataset	for	this	report	is	pretty	simple	and	just	returns	a	set	of	products	that	have
cost	and	price	information.	The	ProductKey	column	is	present	so	we	can	pass	it	to	the
subreport	as	a	parameter:

SELECT

						ProductKey,

						ProductName,

						ProductCategory,

						StandardCost,

						ListPrice

FROM

						Product

WHERE					(StandardCost	IS	NOT	NULL)	AND	(ListPrice	IS	NOT	NULL)

ORDER	BY	ProductName

Figure	7.32	shows	the	child	report,	Ch07	-	Product	Orders	Subreport,	in	the	Designer.
This	report	is	simply	a	table	bound	to	an	MDX	query.	The	data	source	for	this	dataset
is	the	Adventure	Works	Multidimensional	SSAS	database.	I	have	added	a	callout	to	the
figure	to	show	the	expression	used	to	convert	the	report	parameter	to	an	MDX
member	reference	passed	into	a	query	parameter	named	ProductUniqueName.

Within	the	dataset	query	expression,	the	ProductUniqueName	parameter	is	used	in	the
WHERE	clause	using	the	STRTOMEMBER	MDX	function.	This	is	a	standard	filtering
convention,	commonly	used	in	MDX	queries.

Figure	7.32	Modify	the	dataset	parameter	using	an	expression.

NOTE

For	more	examples	of	parameter-passing	in	MDX	queries,	refer	to	Chapter	10.

SELECT

						{

						[Measures].[Reseller	Sales	Amount],

						[Measures].[Reseller	Order	Quantity

						}	on	Columns,

						NON	EMPTY

						[Date].[Date].[Date].Members

						DIMENSION	PROPERTIES	MEMBER_CAPTION,	MEMBER_UNIQUE_NAME,	MEMBER_VALUE

						on	Rows

FROM	[Adventure	Works

WHERE

						(

							STRTOMEMBER(@ProductUniqueName),

							[Date].[Calendar].[Calendar	Year].&[2013

)

;

The	details	group	for	the	master	report	list	data	region	is	set	to	the	ProductName	field.
This	satisfies	the	requirement	that,	for	a	data	region	to	contain	a	nested	data	region
object,	it	must	have	a	group	defined.	You	create	the	subreport	by	dragging	and
dropping	the	Ch07	-	Product	Orders	Subreport	report	from	the	Solution	Explorer	into
the	list	area.

Note	that	regardless	of	the	dimensions	of	a	subreport	at	design	time,	when	dropped
into	a	containing	report,	it	always	appears	as	a	square	area	that	usually	takes	up	more
design	space	than	necessary	(which	also	expands	the	dimensions	of	its	container).
After	resizing	the	subreport,	I	also	had	to	resize	the	list	to	appear	as	it	does	in	Figure
7.33.

Figure	7.33	Product	Details	report	with	subreport	in	designer.

Right-click	the	subreport	and	choose	Subreport	Properties	to	set	the	parameter/field
mapping,	as	shown	in	Figure	7.33.	The	Subreport	Properties	dialog,	shown	in	Figure
7.33,	is	used	to	map	a	field	in	the	container	report	to	a	parameter	in	the	subreport.

Navigate	to	the	Parameters	page,	and	then	click	Add	to	define	a	parameter	mapping.
Under	the	Name	column,	select	the	ProductKey	parameter.	Under	the	Value	column,
select	the	ProductKey	field.	Click	OK	to	save	these	changes	and	close	the	Subreport
Properties	dialog.

This	completes	the	report	design.	Using	lists	and	subreports	typically	makes	the
design	process	more	ad	hoc	and	artful	than	when	you	use	more	rigid	tables.	Go	back
and	check	the	size	and	placement	of	items	so	that	they	fit	neatly	within	the	subreport
space.	You	often	have	to	go	through	a	few	iterations	of	preview	and	layout	to	make	the
appropriate	adjustments.

At	this	point,	you	should	be	able	to	preview	the	report	and	see	the	nested
table/subreport,	as	shown	in	Figure	7.34.

Figure	7.34	Product	Details	report	in	preview.

NAVIGATING	REPORTS
Reports	of	yesterday	were	static,	designed	for	print.	At	best,	they	could	be	previewed
on	a	screen.	To	find	important	information,	users	had	to	browse	through	each	page
until	they	found	the	information	they	were	looking	for.	Today,	you	have	several
options	to	provide	dynamic	navigation	to	important	information—in	the	same	report
or	to	content	in	another	report	or	an	external	resource.

Creating	a	Document	Map
The	document	map	is	a	simple	navigation	feature	that	allows	the	user	to	find	a	group
label	or	item	value	in	the	report	by	using	a	tree	displayed	along	the	left	side	of	the
report.	It's	sort	of	like	a	table	of	contents	for	report	items	that	you	can	use	to	quickly
navigate	to	a	specific	area	of	a	large	report.	You	typically	will	want	to	include	only
group-level	fields	in	the	document	map	rather	than	including	the	detail	rows.

NOTE

The	document	map	is	limited	to	the	HTML,	Excel,	and	PDF	rendering	formats.	In
the	Excel	and	HTML	formats,	the	document	map	may	not	survive	when	you	save
report	files	to	an	older	document	format,	such	as	Pocket	Excel	on	an	older
Windows	Mobile	device.

The	sample	report	Ch07	-	Products	by	Category	and	SubCategory	(Doc	Map)
demonstrates	this	feature.	I've	added	the	ProductCategory	and	ProductSubcategory
groupings	to	the	document	map.	In	the	Group	Properties	dialog	for	the	Category	row
group,	on	the	Advanced	page,	I	set	the	Document	map	property	using	the	drop-down
list	to	the	ProductCategory	field.

WARNING

Be	careful	to	specify	the	document	map	label	property	only	for	items	you	want	to
include	in	the	document	map.	For	example,	if	you	specify	this	property	for	a
grouping,	don't	do	the	same	for	a	textbox	containing	the	same	value.	Otherwise,
you	will	see	the	same	value	appear	twice	in	the	document	map.

Figure	7.35	shows	a	report	with	a	document	map.	The	report	name	is	the	top-level
item	in	the	document	map,	followed	by	the	product	category	and	subcategory	names.

Figure	7.35	Multi-group	table	report	with	document	map.

You	can	show	or	hide	the	document	map	using	the	leftmost	icon	in	the	Report
Designer's	Preview	or	the	Report	View	toolbar	in	the	Report	Manager	or	SharePoint
Report	Viewer	web	part	after	the	report	is	deployed	to	the	server.

NOTE

My	experience	has	been	that	the	drill-down	and	document	map	features	usually
don't	work	well	together	because	they	duplicate	some	functionality.	Use	the
document	map	to	navigate	to	a	visible	area	of	the	report.

EXERCISES
To	apply	what	you	have	learned	in	this	chapter,	you	will	work	through	two	exercises.
In	Exercise	1,	you	will	assemble	expressions	and	titles	in	the	report	and	page	headers
and	save	the	resulting	report	as	a	template,	which	you	can	use	to	build	new	reports.

Exercise	1:	Create	a	Report	Template
A	report	template	is	a	standardized	report	that	you	can	use	as	the	starting	point	for
new	reports.	It	can	simply	be	saved	as	a	report	in	your	project	or	a	folder,	to	be	used	as
a	starting	point.	The	report	file	can	be	saved	to	the	project	items	folder	so	Visual
Studio	to	manage	it	as	a	report	template.

Add	a	New	Report	and	Set	Up	the	Report	Body
Well-designed	reports	are	commonly	titled	and	may	be	decorated	with	standard
branding	features,	such	as	a	company	logo	image.

1.	 Open	the	Wrox	SSRS	2016	Exercises	project	in	SQL	Server	Data	Tools.

2.	 Add	a	new	report	to	the	project	using	Add	⇨	New	Item…	from	the	right-click	menu
on	the	Reports	folder	in	the	Solution	Explorer.

3.	 Name	the	report	ProSports	Report.

4.	 Add	a	page	header	and	page	footer,	and	resize	them	to	be	about	.5	inches	(1.25	cm)
tall.

5.	 Resize	the	report	body	to	be	7.5	inches	(about	19	cm)	wide	or	less.

6.	 Right-click	the	report	background	outside	of	the	report	body	to	edit	the	Report
properties.

7.	 Confirm	that	the	Paper	size	is	Portrait	and	either	Letter	or	A4	like	you	see	in
Figure	7.36.

Figure	7.36	Report	Properties	dialog.

8.	 Reduce	all	the	margins	to	.25	inches	(about	.64	cm)	and	click	the	OK	button.

NOTE

For	this	exercise	to	work	with	both	US	and	metric	standards,	I've	made	a	point	to
use	the	width	of	A4	paper,	which	is	slightly	less	than	US	letter	page	size.	Screen
examples	are	shown	with	US	sizes	but	either	paper	size	standard	will	work.

Set	Up	the	Report	Header
You	will	add	the	page	number	range	and	set	the	page	header	to	skip	the	first	page	so
the	header	information	isn't	redundant	with	information	in	the	report	header.

1.	 In	the	Report	Data	window	to	the	left	of	the	designer,	expand	the	Built-in	Items
node.

2.	 Drag	and	drop	the	ReportName	to	the	left	side	of	the	page	header.

3.	 Drag	and	drop	the	PageNumber	built-in	field	to	the	right	side	of	the	page	header.

4.	 Resize	this	new	textbox	to	about	3	inches	(7.5	cm)	wide.

5.	 Place	the	cursor	before	the	[&PageNumber]	text	and	type	the	word	“Page”	followed
by	a	space.

6.	 Place	the	cursor	at	the	end	of	the	text	in	this	textbox	and	type	a	space	followed	by
the	word	“to”	and	another	space.

7.	 Drag	and	drop	the	TotalPages	built-in	field	to	the	end	of	the	text	in	this	textbox.

8.	 Click	to	select	the	[&PageNumber]	placeholder	and	use	the	Report	Formatting
toolbar	to	set	it	to	Bold.

9.	 Click	to	select	the	[&TotalPages]	placeholder	and	use	the	Report	Formatting
toolbar	to	set	it	to	Bold.

10.	 Click	outside	the	new	textbox	and	then	once	to	select	the	textbox	and	not	the	text
within	it.

11.	 Use	the	Report	Formatting	toolbar	to	set	the	text	alignment	to	right	justified.

12.	 Right-click	the	background	of	the	page	header	and	select	Header	Properties….	This
opens	the	dialog	shown	in	Figure	7.37.

Figure	7.37	Page	Header	Properties	dialog.

13.	 Uncheck	the	box	in	the	Print	options	labeled	“Print	on	first	page.”

14.	 Click	the	OK	button	to	accept	the	changes.

Add	Title	and	Logo	to	the	Report	Header
Using	a	rectangle	as	a	container	allows	a	group	of	report	items	to	be	moved	and
positioned	as	a	unit.

1.	 Add	a	rectangle	to	the	top	right-hand	corner	of	the	report	body.	Resize	it	to	fit	just
within	the	width	of	the	report	body	and	about	.85	inches	(2.2	cm)	high.

2.	 Drag	and	drop	the	ReportName	built-in	field	to	the	top-left	corner	inside	the
rectangle	in	the	report	body,	below	the	ReportName	textbox	you	added	to	the	page
header.

3.	 Select	the	ReportName	textbox	in	the	report	body	and	change	the	font	size	to	14pt
and	change	the	font	weight	to	Bold.

4.	 Resize	the	textbox	to	fit	the	height	and	resize	the	width	to	about	5	inches	(12	cm)
wide.	Drag	and	drop	the	ExecutionTime	built-in	field	just	below	the	ReportName
in	the	rectangle	contained	in	the	report	body.

5.	 Use	the	Report	Formatting	toolbar	to	left	align	that	textbox	and	italicize	the	text.

Add	the	Company	Logo	in	the	Report	Header	Rectangle
You	will	use	an	embedded	image	for	the	logo,	and	a	textbox	in	the	page	footer	to

display	company	policy	information.

1.	 Add	an	image	item	to	the	right	side	of	the	rectangle.	The	Image	Properties	dialog
opens.

2.	 Click	the	Import…	button.

3.	 Browse	to	the	Images	folder	under	the	Wrox	SSRS	2016	Report	Solution	folder.

4.	 In	the	Open	file	dialog,	in	the	bottom	right-hand	corner,	drop-down	the	list	of	file
types	and	select	“All	files	(*.*)”	(see	Figure	7.38).

Figure	7.38	Adding	an	embedded	image.

5.	 Select	the	ProSportsLogo.png	file	and	click	Open.

6.	 Click	OK	to	accept	the	image	file	selection	with	the	default	image	properties.

7.	 Resize	the	image	to	be	approximately	square	and	fit	in	the	right	side	of	the
rectangle.

Add	a	confidential	statement	to	the	report	footer	and	save	the	report	template	file.

8.	 Add	a	new	textbox	to	the	left	side	of	the	report	footer	and	stretch	it	to	just	within
the	width	of	the	report.

9.	 Add	a	line	to	the	bottom	of	the	page	header	under	the	two	textboxes.

10.	 Type	the	following	text	into	the	textbox:	information	on	this	report	is
confidential	according	to	corporate	privacy	policy.

11.	 Select	the	textbox	and	use	the	Report	Formatting	toolbar	to	italicize	the	text.

12.	 Add	a	line	to	the	page	footer,	just	above	the	new	textbox.

13.	 Use	Figure	7.39	to	check	the	report	layout	and	make	any	necessary	changes.

Figure	7.39	Completed	template	report.

14.	 Save	and	close	the	report.

15.	 Open	Windows	Explorer	or	File	Explorer.

16.	 Locate	the	template	report	definition	file:	ProSports	Report.RDL.

17.	 Copy	the	RDL	file	to	the	ReportProject	project	items	template	folder.	If	you
installed	Visual	Studio	to	the	default	installation	path,	the	folder	will	be	located	at:

C:\Program	Files	(x86)\Microsoft	Visual	Studio

14.0\Common7\IDE\PrivateAssemblies\ProjectItems\ReportProject

Exercise	2:	Create	a	Report	from	the	Template	with	Dynamic
Expressions
With	the	template	report	saved	to	the	Visual	Studio	report	project	templates	folder,
you	can	use	it	as	a	template	for	new	reports.

Create	a	Matrix	Report
Create	a	new	report	from	the	template.

1.	 In	the	Wrox	SSRS	2016	Exercises	project,	right-click	the	Reports	folder	in	the
Solution	Explorer	and	choose	Add	⇨	New	Item.

2.	 In	the	Add	New	Item	dialog,	the	new	report	template	is	listed.	Select	the	ProSports
Report	item	and	change	the	report	name	to	Profit	by	Country	and
Subcategory	(see	Figure	7.40).

Figure	7.40	Select	an	item	from	the	Add	New	Item	dialog.

3.	 Click	Add	to	create	the	new	report	from	the	template.

4.	 When	the	report	opens	in	the	designer,	add	a	new	data	source	referencing	the
WroxSSRS2016	shared	data	source	in	the	project.

5.	 Add	a	new	embedded	dataset.	Use	the	query	designer	to	create	the	query	shown	in
Figure	7.41.

Figure	7.41	The	Query	Designer.

The	text	for	this	query	should	be	similar	to	the	following	script.	The	specific	text
and	layout	will	be	a	little	different	depending	on	how	you	use	the	graphical	query
builder.	Carriage	returns	and	tabs	are	optional	and	added	for	readability.

SELECT

				Country,

				ProductSubcategory,

				SalesAmount,

				OrderQuantity,

				Profit

FROM	vSalesOrderProfitSubcategoryCountry

WHERE	(Year	=	@Year)

6.	 Edit	the	Year	report	parameter	and	set	the	default	value	to	2013	as	shown	in	Figure
7.42.

Figure	7.42	Report	Parameter	Properties.

7.	 Add	a	matrix	data	region	to	the	report	body	just	under	the	header	textboxes.

8.	 In	the	Report	Data	window,	expand	the	new	dataset.

9.	 Drag	and	drop	the	following	fields	into	the	matrix	target	cells	according	to	the
information	in	Table	7.4.

Table	7.4	Matrix	cell	field	mapping

FIELD TARGET	CELL

Country Columns

ProductSubcategory Rows

SalesAmount Values

OrderQuantity Values

Profit Values

10.	 To	add	the	column	headers,	click	in	the	matrix	to	show	the	gray	column	and	row
selector	handles.

11.	 Right-click	the	selection	handle	to	the	left	of	the	top	row	(containing	the	Product
Subcategory	and	[Country]	headings)	and	select	Insert	⇨	Inside	Group	-	Below.	A
row	is	added	with	the	three	columns	merged	into	a	single	cell.

12.	 Right-click	the	cell	under	the	[Country]	heading	and	select	Split	Cells.	The	cells	are
split	into	three.

13.	 Make	sure	that	the	Properties	window	is	displayed	to	the	right	of	the	report
designer.

14.	 Enter	the	column	header	text	shown	in	Figure	7.43	for	the	Sales	Amt,	Order	Qty,
and	Profit.

Figure	7.43	Add	a	figure	caption	here.

14.	 TIP

Depending	on	the	order	you	perform	these	steps,	the	designer	will	behave	a
little	differently,	and	with	some	experience	this	will	become	intuitive.	For
example,	if	you	were	to	add	the	row	in	Step	11	before	adding	the	fields	in	Step
9,	the	designer	would	add	the	column	header	for	you.	I	encourage	you	to
experiment	with	this	after	you	complete	the	exercise.

15.	 Right-align	the	headings	using	the	Report	Formatting	toolbar.

16.	 Select	the	Sales	Amount	detail	cell	and	set	the	Format	property	to	C2.

17.	 Select	the	Order	Quantity	detail	cell	and	set	the	Format	property	to	N0.

18.	 Select	the	Sales	Profit	detail	cell	and	set	the	Format	property	to	C2.

19.	 Compare	the	report	design	to	Figure	7.43	and	make	any	necessary	adjustments	to
the	design.

Add	Alternating	Row	Shading	and	Threshold	Alert	Colors
Long	table	and	matrix	style	reports	are	easier	to	read	when	rows	have	alternate
background	shading	for	every	other	row.	You	will	add	this	effect	and	change	the	fore
color	for	negative	values	to	red.

1.	 Holding	the	Shift	key,	click	and	drag	across	the	SalesAmount,	OrderQuantity,	and
Profit	detail	cells	to	select	them	as	a	group.

2.	 In	the	Properties	window,	for	the	BackgroundColor	property,	select	Expression….

3.	 In	the	Expression	editor	window,	enter	the	following	VB.NET	code:

=IIF(ROWNUMBER("Country")	MOD	2	=	1,	"Gainsboro",	"White")

4.	 Click	the	OK	button	to	accept	the	expression.

5.	 Check	Figure	7.44	and	make	any	necessary	changes.

Figure	7.44	Matrix	Design	view	and	BackgroundColor	property	expresssion.

6.	 Preview	the	report.	You	should	see	that	every	other	detail	row	in	the	matrix	is
displayed	with	an	alternating	gray	background.

7.	 Return	to	Design	view.

8.	 Select	the	Profit	detail	cell.

9.	 In	the	Properties	window,	choose	the	Color	property	and	select	Expression….

10.	 In	the	Expression	editor	window,	enter	the	following	VB.NET	code:

=IIF(Fields!Profit.Value>=0,	"Black",	"Red")

11.	 Preview	the	report	again.	This	time,	you	should	see	that	all	negative	Profit	values
are	displayed	in	red.

The	final	report	is	shown	in	Figure	7.45.

Figure	7.45	Preview	of	finished	report.

SUMMARY
The	report	header	and	footer	structure	is	typically	something	you	can	standardize
across	all	of	your	operational	reports.	Factoring	this	mundane	work	into	an
organizational	report	template	can	save	report	designers	from	repeating	that	effort	in
future	reports.	Define	report	page	headers	and	footers	in	a	report	template,	where	you
can	reuse	the	design	in	all	your	new	reports.	You	can	add	built-in	fields	and	summary
information	to	page	headers	and	footers	to	display	and	print	useful	information	such
as	the	report	name,	execution	date	and	time,	page	numbers,	and	the	report	user.	These
provide	important	context	information	if	the	report	is	printed	or	archived.

The	essential	design	patterns	for	composite	reports	include	the	use	of	embedded	data
regions	and	subreports.	Report	elements,	including	complex	data	regions,	can	be
nested	in	a	list,	table,	or	matrix	to	create	more	sophisticated	interface	paradigms.
Subreports	can	provide	this	same	functionality	when	a	master/detail	report	must
coordinate	related	information	managed	in	different	data	sources.	Report	navigation
features	take	reporting	beyond	static,	passive	data	browsing.	Document	maps,	as	well
as	drill-down	and	drill-through	techniques,	allow	users	to	interact	with	reports	to
create	a	dynamic	information	analysis	and	discovery	experience.

Chapter	8	will	help	you	apply	many	of	the	techniques	and	design	principles	you	have
learned	in	earlier	chapters	to	graphical	reports.	You	will	use	different	chart	types	to
aggregate	and	analyze	data	visually	and	then	create	composite	charts	with	different
types,	with	multiple	areas	and	series	axes.	You'll	learn	to	use	the	new	chart	types
introduced	in	SQL	Server	2016	and	set	the	stage	to	build	dashboard	report	solutions	in
Chapter	14.

Chapter	8
Graphical	Report	Design

WHAT'S	IN	THIS	CHAPTER?

Understanding	visual	design	principles	and	the	fashion	of	visualization

Understanding	chart	types	and	design	approaches

Getting	to	know	the	anatomy	of	a	chart

Creating	a	multi-series	chart

Using	multiple	chart	areas

Learning	useful	properties	and	settings

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER
The	samples	and	exercises	for	this	chapter	are	included	in	the	SSDT	solution	that	was
introduced	in	Chapter	3.	If	you	have	not	set	up	the	book	samples	and	exercises,	return
to	Chapter	3	and	complete	those	tasks.

By	some	estimates,	60	to	70	percent	of	the	population	are	visual	thinkers.	That	means
even	when	consuming	numbers	and	information	presented	in	text,	most	people
perceive	a	visual	representation	of	the	same	information	in	their	minds.	We	have
grown	accustomed	to	data	 displayed	in	visual	form.	In	fact,	we	expect	important	data
to	be	visualized,	especially	when	the	presentation	communicates	comparisons	and
trends.

When	used	correctly,	a	chart	more	effectively	answers	questions	and	empowers
consumers	to	take	action	on	a	set	of	data	rather	than	a	grid	full	of	numbers.
Conversely,	a	table	filled	with	details	may	provide	necessary	context	and	balance	with
the	completeness	of	a	detail	table.	A	financial	controller	or	accountant	will	not	balance
the	books	to	a	chart,	but	a	chart	may	be	a	great	way	for	the	CEO	to	see	the	improved
profitability	trend	based	on	the	same	details	as	the	balance	sheet.

This	chapter	begins	with	the	guiding	principles	of	visual	report	design	and	discusses
how	charts	are	used	in	analytical	reporting.	Then	we	examine	the	different	chart	types
offered	in	Reporting	Services,	and	criteria	to	choose	the	correct	type	of	chart	for
different	business	purposes	and	data	scenarios.	The	essential	components	of	the	most
useful	and	popular	charts	are	explained	in	simple	terms,	and	then	we'll	take	a	look	at
some	of	the	many	detailed	properties	and	features	used	to	create	more	advanced	chart
reports.	The	two	exercises	for	this	charter	include	a	time-series	chart	using	a	line	chart
and	column	chart.	You	will	create	a	multi-series	chart	with	two	separate	vertical	axis
scales	and	then	move	to	a	multi-area	chart	with	synchronized	horizontal	axis.

VISUAL	DESIGN	PRINCIPLES
Visual	reports	are	often	referred	to	as	analytic	reports	or	dashboard	components.
Indeed,	the	term	“dashboard”	is	used	very	loosely	in	different	products	by	different
vendors	to	describe	anything	from	a	simple	gauge	graphic	to	a	huge	screen	full	of
visual	widgets.	So,	what,	exactly,	is	the	difference	between	a	“visual	report”	and	a
“dashboard”?	I	think	the	reason	that	the	industry	can't	offer	a	precise	definition	of
“dashboard”	that	can	set	a	boundary	between	the	two	terms	is	because	the	term
“dashboard”	is	a	metaphor	for	something	tangible	that	we	all	use,	and	metaphors	are
subject	to	interpretation.

Whatever	the	specific	definition	is,	the	meaning	is	clear.	The	purpose	of	a	dashboard
or	visual	report	is	to	summarize	and	display	information	for	quick	and	convenient
consumption	so	that	users	can	understand	what's	going	on	in	their	business	without
taking	their	eyes	off	the	road.

While	working	on	a	product	engineering	team	at	Hewlett-Packard,	I	gained	a	valuable
perspective	about	successful	design	that	has	stayed	with	me	throughout	my	career.
Everything	that	we	design	has	the	following	three	elements,	which	exist	in	balance,
and	these	elements	should	be	considered	in	everything	you	design:

Form—How	does	it	look	and	how	does	it	make	me	feel?	Is	it	attractive,	eye-
catching,	and	interesting?	People	like	to	use	things	that	are	familiar	and	make
them	comfortable.

Fit—How	does	it	suit	the	need	or	solve	the	issue?	Begin	with	a	well-defined
problem	statement	that	supports	the	design,	thus	creating	a	useful	tool	that	finds
an	answer,	or	completes	an	important	task.

Function—Is	it	easy	to	use,	intuitive,	and	practical?	Does	it	work	in	all
environments	and	scenarios	where	it	is	needed?	In	a	report	or	user	interface,	will
the	report	work	on	a	mobile	device	with	a	touch	interface	away	from	the	office,	or
is	it	limited	to	a	desktop?	Is	it	 interactive	or	static;	for	print	or	display?

Keep	Charts	Simple
Basic	chart	design	can	be	quite	simple	if	the	default	chart	styles	suit	your	needs.	After
placing	the	chart	in	the	report	body,	you	can	drag	fields	from	the	Dataset	window
directly	onto	the	chart	design	surface.	At	the	minimum,	a	chart	should	have	one
aggregated	field	for	the	value	and	one	grouped	field	for	the	category.	The	category	and
series	groups	represent	the	x-axis	and	y-axis	in	bar,	column,	line,	area,	and	point
charts.

Before	things	get	complicated,	let's	make	it	simple.	Don't	go	crazy	with	chart	styling	at
first.	Keep	charts	simple	and	clean,	and	use	visual	properties	to	emphasize	the	data,
rather	than	the	graphics.	Heavy	borders,	backgrounds,	shadows,	and	three-
dimensional	(3-D)	effects	distract	from	the	 message	and	presentation	of	important

information.

NOTE

My	rule	of	thumb	for	visuals	is	that	the	amount	of	“ink”	used	in	a	graphic	should
correspond	to	the	importance	of	the	information.	Generally	speaking,	dark,
heavy	borders	and	large	fonts	should	be	used	to	accentuate	important
information.	Light,	thin	borders,	backgrounds,	and	fonts	should	be	used	for
supporting	composition.	Unnecessary	stylings	should	be	eliminated.

Visual	design	is	art	as	much	as	it	is	science,	and	thus	it	is	difficult	to	articulate	hard
rules	for	visual	design.	Sometimes	it	just	needs	to	look	right.	Avoid	clutter	and	use
white	space	to	provide	balance.	Work	from	examples	of	established	design	patterns.
Experiment	and	find	a	presentation	style	that	works	for	you	and	your	audience,	and
then	work	within	that	theme.	You	can	always	fine-tune	when	the	important	design
work	is	finished,	and	then	improve	the	aesthetic	design	as	you	go.

You	will	find	several	excellent	examples	in	books	from	Nathan	Yao	and	his	website,
FlowingData.com.	Stephen	Few	provides	outstanding	guidance	about	the	principles
and	concepts	of	effective,	simple	visual	design	in	his	books	and	website,
PercetualEdge.com.	There	you	will	find	many	bad	examples	to	avoid,	as	well	as	good
examples	to	pursue.

Properties,	Oh	My!
Reporting	Services	provides	about	60	different	chart	styles,	if	you	count	all	the
variations.	For	each,	you	have	fine	control	of	detailed	properties	used	to	control
border	styles,	fills,	colors,	and	sizes	of	just	about	everything	you	can	imagine.	With	all
this	flexibility	comes	the	potential	for	a	good	deal	of	complexity.	All	told,	the	chart
data	region	and	its	constituent	objects	support	nearly	200	individual	properties.	Some
of	these	properties	apply	to	only	certain	chart	types.	But	no	matter	how	you	look	at	it,
that's	a	lot	of	properties	to	dig	through.

Ever	since	Microsoft	acquired	the	code	base	for	Dundas	Software's	.NET	charting
components	and	added	newer	versions	along	the	way,	they	have	done	a	remarkable
job	of	simplifying	the	design	interface.	You	can	take	chart	design	as	far	as	you	need	to.
The	necessary	effort	to	design	charts	may	range	from	simple	to	tedious.	Having	been
down	this	road	many	times,	I	recommend	that	after	you	familiarize	yourself	with
charting	basics,	you	approach	the	design	with	specific	objectives	in	mind.	Otherwise,
you're	likely	to	get	lost	in	the	interface.

The	Fashion	of	Visualization
Perfect	data	visualization	is	the	holy	grail	of	analytic	reporting.	I've	read	a	lot	of	books
and	attended	many	lectures	about	“right”	and	“wrong”	data	visualization	practices.
Scores	of	 dashboarding,	scorecarding,	and	visualization	products	exist,	all	with	the

http://FlowingData.com
http://PercetualEdge.com

promise	of	filling	a	huge	gap	in	the	industry	left	by	all	the	other	vendors	who,
according	to	competitors,	can't	seem	to	get	data	 visualization	right.

As	I	write	this,	it's	only	been	a	few	days	since	the	news	of	pop	legend	David	Bowie's
passing.	Bowie	was	synonymous	with	fashion	(and,	of	course,	he	performed	a	song
about	it).	Think	of	fashion	trends	over	the	past	few	decades—long	hair,	short	hair,	big
hair;	bell-bottoms,	straight	legs;	neon,	pastels,	plaid,	and	grunge.	Funny	thing	is	that
when	we	look	back	on	the	fashions	of	a	previous	generation,	they	seem	so	incredibly
ridiculous	that	it's	hard	to	believe	that	people	took	any	of	it	seriously.	But	somehow,	a
few	pop	stars	and	celebrities	can	make	extreme	fashion	look	cool	and	trendy.	Charts
are	like	that,	too.

When	I	began	using	Reporting	Services	in	2003,	3-D	charts	were	all	the	rage.	Visual
reports	had	big,	rounded	borders	with	drop	shadows,	beveled	edges,	and	gradient-
filled	backgrounds.	Do	that	now	and	the	reports	will	immediately	be	branded	as	“fluff”
and	“eye	candy.”	Ten	years	later,	“modern”	looking	charts	were	flat	with	light-shaded
bars	on	a	white	background.	What	were	we	thinking	back	then?	Give	us	another	few
years	and	maybe	we'll	all	be	wearing	our	bell-bottoms	and	 designing	3-D	charts.

Visual	Storytelling
The	purpose	of	a	chart	is	to	highlight	important	information	and	let	it	tell	a	story.
Different	report	types	can	effectively	convey	comparisons	or	trends,	but	it's	important
to	use	the	right	chart	for	your	data.	Before	moving	on,	I	want	to	make	an	important
point.	If	you	work	in	a	field	where	specialized	visualizations	are	useful	and
appropriate,	you	may	find	some	of	the	more	abstract	and	special-purpose	charts	of
great	value.	But	for	day-to-day	business	reporting,	it's	common	to	use	just	a	handful	of
traditional	chart	types	to	visualize	business	metrics.	So,	even	though	Polar,	Stock,	and
Funnel	charts	look	cool,	they	may	not	help	you	convey	an	effective	message.	In
business,	99	percent	of	the	industry	uses	about	5	percent	of	the	available	chart	types—
namely,	columns,	bars,	lines,	and	a	few	variations	of	the	same	types.

Perspective	and	Skewing
Hopefully,	I've	already	talked	you	out	of	using	3-D	charts	as	a	practice,	but	I	suppose
there	are	 isolated	cases	where	it	might	make	some	sense.	Consider	a	case	where	you
are	preparing	a	PowerPoint	presentation.	The	data	is	static	with	the	numbers	right	in
front	of	you.	Now,	you	want	to	choose	the	most	effective	and	impactful	visual	for	your
presentation,	and	maybe	a	bold	3-D	chart	makes	the	right	statement.	You	can	tweak	it,
spin	it	around,	and	make	adjustments	so	the	data	points	are	all	visible	and	in	exactly
the	right	place.	This	is	a	much	different	experience	than	designing	a	report	for
changing	data.	As	soon	as	the	values	change,	the	last	row	of	columns	in	a	3-D
perspective	chart	may	no	longer	be	visible.

Here's	a	rhetorical	question.	Figure	8.1	shows	two	renditions	of	the	same	chart	and
the	same	data	in	two	different	styles.	Which	is	easier	to	read?	This	is	purposely	an
extreme	example,	but	it	makes	the	point	that	wasting	screen	space	on	visual	styling

(not	to	mention	ink	or	toner	if	printed)	is	just	unnecessary.

Figure	8.1	Two	renditions	of	the	same	chart.

The	purpose	of	marketing	is	to	persuade	a	consumer	to	perform	an	action,	often	by
using	psychology	and	emotion,	to	amplify	and	de-emphasize	certain	information.	The
carefully	crafted	presentation	of	information	can	alter	a	user's	perception,	and	his	or
her	belief	about	certain	facts.	In	analysis	(which	is	a	tool	of	science),	information	is
presented	in	a	uniform	and	standard	format	so	that	the	consumer	can	make	an	honest
and	unbiased	assessment.

CHART	TYPES
Some	of	the	more	common	chart	types	(such	as	column,	bar,	line,	and	area)	can	be
used	for	different	views	of	the	same	data.	Pie	charts	present	a	more	simplified	view
and	work	well	with	fewer	category	values.	Other	charts	are	more	specialized	and	may
be	appropriate	for	multi-value	data	points,	range	values,	and	variances.	All	the	chart
types	support	dynamic	capabilities,	such	as	actions	and	tooltips.	Using	these	features
in	report	design,	a	chart	user	can	get	more	information	and	details	by	hovering	over	or
clicking	a	range,	point,	or	area	of	the	chart.	Let's	take	a	brief	look	all	the	major	chart
types.

Chart	Type	Summary
Twelve	general	chart	types	are	available,	as	described	in	Table	8.1.

Table	8.1	Chart	Type	Categories

CHART
TYPE

DESCRIPTION BEST	USE

Column A	classic	vertical	bar	chart	with	columns	representing
values	along	the	y-axis.	Like-valued	items	along	the	x-
axis	are	grouped,	and	bars	representing	the	same	x-axis
values	in	each	group	have	the	same	colors	or	patterns.
Series	values	may	also	be	grouped	and	subgrouped.
Columns	can	have	point	labels,	and	the	colored	bars	can
be	labeled	using	a	legend.	Columns	can	be	arranged	side
by	side	(along	the	x-axis)	or	in	front	of	one	another
(along	the	z-axis.)	Columns	may	appear	to	be	extruded
from	their	base	using	a	rectangular	or	 circular
(cylindrical)	shape.

Discrete	group
values	on	the
Category	(x)	axis.
Also	effective
with	linear	time-
series	periods
broken	into
discrete	buckets
(such	as	days,
weeks,	or
months).

Bar Functionally	the	same	as	a	column	chart	turned	90
degrees.	It	has	the	advantage	of	more	accurately
depicting	value	comparisons	for	layouts	in	which	you
have	more	available	horizontal	space.

Used	only	with
discrete	group
values,	not	for
linear	series
groups.

Line Like	a	column	chart	but	with	a	trend	line	drawn	from
one	point	to	the	next	in	the	series.	This	type	of	chart	is
appropriate	for	a	series	of	values	that	tend	to	progress
over	a	relatively	even	plane	that	describes	a	“level,”
“up,”	or	“down”	trend.	It	is	inappropriate	for	series
values	that	tend	to	jump	around.
This	type	of	chart	is	useful	for	comparing	multiple
series	(along	the	z-axis)	without	obscuring	trend	lines

Time-series	and
linear	interval
category	groups
(time,	dates,	and
progressive
numeric	values).

behind	a	series.

Area Like	a	line	chart	but	the	area	encompassed	by	the	line	is
filled.	The	solid	shading	of	the	charted	area	depicts	a
volume	of	data	values.
Opaque	fill	colors	may	be	appropriate	when	the	lines
don't	intersect.	Otherwise,	transparent	fill	colors	may	be
useful	to	discern	overlapping	fill	areas.

Time-series	and
linear	interval
category	groups.

Pie The	classic	pie	chart	can	be	an	good	tool	for	comparing
a	small	number	of	relative	values	but	it	may	not	be	as
accurate	as	a	tree	map,	bar,	or	column	chart.	Unlike
these	other	charts,	the	aggregate	value	isn't	quantified.
For	simple	comparisons,	users	understand	pie	charts
because	they	put	comparative	values	into	a	proportional
context	and	can	drive	quick	decision	support	at	a	glance.
Pie	chart	views	can	be	exploded	to	visually	separate
each	slice.

Use	only	for
discrete	category
groups	and	never
for	linear	series
values.	However,
may	be	used	for
discrete	bucket
values.	Typically,
use	pie	charts
with	no	more
than	6	to	10
slices.

Doughnut A	doughnut	is	a	pie	with	a	hole	in	the	middle.	It's	more
effective	as	a	bold	marketing	visual.	A	3-D	doughnut
rendering	may	expose	smaller	slices	more	clearly	than	a
pie	chart	because	each	slice	has	four	sides	rather	than
three.

Use	with	a	subtle
3-D	effect	for
conveying	a	bold
statement	and
not	for	accurately
measuring
business	metrics.
Typically,	limit
slices	to	6	or	10.

Scatter Plots	several	points	in	a	range	(both	x	and	y)	to	show
trends	and	variations	in	value.	The	result	is	more	like	a
cloudy	band	of	points,	rather	than	a	specific	aggregated
point	or	line.

Used	with	dozens
to	hundreds	of
data	points	when
analyzing	the
general	trend	is
of	greater	value
than	 seeing	a
specific	point.

Bubble A	technique	for	charting	points	on	three	dimensions.
Values	are	plotted	using	different-sized	points	(or
bubbles)	on	a	two-dimensional	(2-D)	grid.	The	size	of
the	bubble	indicates	the	related	value	along	the	z-axis.

Appropriate
when	measuring
two	different
series	values
along	two

different	linear
axes	where	size
represents	one
value	and
position
represents	the
other.

Range
(Gantt)

Range	and	Gantt	charts	are	often	used	to	visualize
project	phases	and	the	progress	of	stages	in	a	process
along	a	linear	series.

Used	when	each
data	item
(project,
commodity,	unit
of	work)	has	a
beginning	and
end	value	on	a
linear	axis.

Stock This	category	of	charts	(sometimes	called	candlestick	or
whisker	graphs)	plots	values	vertically	like	a	column
chart	having	variable	start	and	end	points.	For	each
item	along	the	y-axis	series,	a	vertical	line	indicates	a
start	and	end	value	for	the	range.	A	tick	mark	in	the	line
can	indicate	a	significant	value	in	that	range	or	an
aggregation	of	the	range.	This	type	of	chart	is	useful	for
showing	trading	stocks	with	opening,	closing,	and
purchase	 values;	wholesale,	retail,	and	discount	prices;
and	so	on.

A	specialized
kind	of	visual	for
discrete	data
items	that	have
multiple	events
along	a	linear
axis,	typically
multiple	start
and	end	values.

Shapes Shape	charts	like	the	funnel	and	pyramid	are	effectively
a	single,	stacked	column	chart.	These	typically	are	used
to	model	sales	and	production	against	goals,	and	sales
opportunity	pipelines.
The	Tree	map	and	sunburst	charts	are	2016	product
additions.	The	tree	map	chart	is	considered	by	many
visualization	experts	to	be	a	more	versatile	replacement
for	pie	charts	because	it	provides	a	more	accurate
comparison	of	values	and	can	handle	a	larger	number	of
data	points.

Used	in	specific
business
scenarios	where
data	items
progress	through
ranked	stages.

Polar
(Radar)

Polar	and	radar	charts	plot	points	from	a	central	hub	at
different	angles	and	distances	in	a	radial	fashion.	This
kind	of	visual	does	have	some	useful	applications,	but
traditional	nonlinear	charts	(such	as	a	column	or	bar)
are	often	more	suitable.

A	specialized
visual.	Can	be
used	with
discrete,
nonlinear	but
related
categories.	Best
used	to	express

that	no	category
exists	at	the
beginning	or	end
of	the	range.

Column	and	Stacked	Charts
With	so	many	variations	of	this	chart	type,	the	right	choice	will	depend	on	the
objective.	Is	it	sufficient	to	demonstrate	that	one	data	point	is	less	than	or	greater
than	another,	or	do	these	points	need	to	be	strictly	measurable?	An	artistic	chart
might	help	to	make	an	impact,	but	a	flatter	view	is	usually	more	appropriate	to
maintain	accuracy.

Stacked	charts	effectively	show	the	proportion	of	series	values	within	each	category
group.	The	stacked	column	chart	shown	in	Figure	8.2	demonstrates	that	each	series
value	increases	the	column	height	in	proportion,	but	the	trade-off	with	this	visual	is
that	it's	more	difficult	to	compare	the	individual	series	values	across	each	category.

Figure	8.2	Stacked	column	chart.

To	emphasize	the	proportion	of	like	values	rather	than	the	comparative	accumulation,
the	100	 percent	stacked	view	makes	all	the	bars	in	the	chart	the	same	length,	rather
than	depicting	the	sum	of	all	the	values	in	the	bar.

Area	and	Line	Charts
As	shown	in	Figure	8.3,	an	area	chart	plots	the	values	of	each	point,	and	then	draws	a
line	from	point	to	point	to	show	the	progression	of	values	along	the	series.	This	is	an
effective	method	for	 analyzing	trends,	and	works	well	when	values	tend	to	climb,
decline,	or	remain	level	in	the	series.	This	type	of	chart	is	accurate	when	data	exists
for	all	category	values	on	the	x-axis.	It	typically	doesn't	work	well	to	express	a	series	of

values	that	are	not	in	a	relatively	uniform	plane.

Figure	8.3	Area	chart.

A	line	chart	is	a	variation	of	an	area	chart	using	a	line	or	ribbon	rather	than	a	solid
area.	The	line	chart	works	better	than	the	area	chart	for	comparing	multiple	categories
for	a	series	of	values,	because	one	layer	may	obscure	another	in	the	area	view.	In	the
preceding	example,	the	area	chart	works	because	of	how	the	values	are	sorted.	Larger
values	are	in	the	background,	and	other	points	in	the	foreground	are	smaller,	and	the
trend	increases	back	to	front.

Pie	and	Doughnut	Charts
A	pie	chart	can	be	a	good	tool	for	comparing	proportional	values	when	you	have	a
relatively	small	number	of	categories,	and	each	group	is	in	an	easily	comparable	range.
If	your	goal	is	to	use	screen	space	effectively,	geometry	proves	that	this	not	the	best
visual.	Simply	put,	a	circle-shaped	chart	inside	a	rectangle-shaped	page	wastes	a	lot	of
screen	or	page	space.	Pie	charts	have	received	very	bad	press	for	some	good	reasons
amplified	by	the	strong	opinions	of	a	few	noted	data	visualization	industry	experts.
Right	or	wrong,	some	people	simply	don't	take	this	visual	very	seriously	anymore.
That	said,	it's	still	one	of	the	most	effective	ways	to	convey	a	simple	proportion	of
values	in	an	uncluttered	view	or	public	presentation.	The	bottom	line	is	that	you
should	make	sure	this	is	the	right	visual	for	your	purpose,	and	consider	alternatives	if
in	doubt.

Pie	charts	have	fallen	out	of	vogue	in	recent	years	due	to	their	limited	ability	to
visualize	relatively	similar	values.	Often,	a	pie	chart	is	chosen	when	it	works	with	a
sample	set	of	data	that	has	a	few	categories	with	drastically	different	values,	but	ends
up	being	a	poor	choice	when	the	actual	report	data	is	less	suitable	for	this	type	of
chart.	Consider	using	a	tree	map,	column,	or	bar	chart	when	more	accurate
comparisons	are	needed.

Here's	a	quick	experiment.	Open	the	report	named	C08	-	Pie	and	Column	Chart	in
the	Wrox	SSRS	2016	Samples	project.	Preview	the	report	and	try	to	quickly	determine
the	sales	ranking	of	the	three	Bike	product	categories	in	2013.	Figure	8.4	shows	the
data	visualized	in	a	pie	chart.	That's	a	tough	one,	huh?

Figure	8.4	Pie	chart	for	Bike	product	categories.

You	can	see	that	I've	added	a	report	action	in	a	textbox	that	shows	and	hides	a	column
chart	in	the	same	report.	I'm	not	going	to	give	away	the	answer	so	you'll	have	to	use
the	sample	report	to	find	the	answer	for	yourself,	but	you	may	be	surprised.

Pie	charts	are	also	a	very	poor	choice	in	a	number	of	scenarios	where	column	and	bar
charts	would	provide	a	more	accurate	presentation.

The	purpose	of	a	chart	is	to	tell	a	complete	story	about	the	data,	and	it's	important	to
label	it	clearly	so	that	you	know	what	the	groups	represent.	Group	values	can	be	titled
using	point	labels,	call-out	labels,	or	in	a	legend.

A	doughnut	chart	is	a	pie	chart	with	a	hole.	Yes,	it's	really	that	simple.	Variations	of
the	pie	and	doughnut	charts	allow	you	to	separate	the	slices	and,	of	course,	twist	and
bend	them	using	3-D	effects.	Again,	under	the	right	conditions,	this	might	be	prudent
with	small,	management	result	sets,	but	always	consider	your	options	before	going
down	this	route.

A	significant	limitation	of	this	chart	style	is	evident	when	the	number	of	grouped
values	exceeds	single	digits.	Consider	the	following	example.	Open	the	sample	report
Ch08	-	Pie	and	Bar	Chart	with	Many	Values.	You	will	notice	I	have	added	a	visible
parameter	that	allows	you	to	specify	the	number	of	products	to	display	in	this	sales
summary.	Figure	8.5	shows	that	it	is	difficult	to	 discern	between	25	different	values.
Below	the	pie	chart	is	a	bar	chart	visualizing	the	same	results.	In	this	case,	the	bar
chart	is	a	much	better	choice.	The	text	arrangement	of	the	vertical	axis	is	ideal	when
comparing	many	values.

Figure	8.5	Doughnut	chart	versus	bar	chart.

The	advantage	of	a	bar	chart	over	a	doughnut	chart,	in	this	scenario,	is	that	vertical
page	space	is	virtually	unlimited	in	multiple	page	reports.

But	Wait.	There's	More!
A	couple	of	product	versions	ago,	a	nifty	trick	was	introduced	that	allows	column	and
bar	charts	to	grow	dynamically.	This	feature	is	not	as	simple	as	just	switching	it	on,
though.	Like	most	of	the	cool	capabilities	in	Reporting	Services,	you	have	to	write	a

little	code.	If	you	take	a	look	at	the	DynamicHeight	property	of	the	bar	chart	in	Design
view,	you'll	see	how	this	works.

=(COUNT(Fields!ProductName.Value,	"ProductSalesSummary")	/	5)	&	"	in"

The	expression	counts	the	number	of	rows	returned	from	the	dataset	used	in	a
calculation	and	concatenates	a	string	value	that	resolves	to	the	number	of	inches	for
the	height	of	the	chart.	The	result	will	be	one	plus	the	number	of	rows	divided	by	five.
Adding	one	avoids	a	division-by-zero	error.	The	chart	will	allow	room	for	about	five
rows	per	inch.	I	find	it	necessary	to	adjust	this	math	in	different	reports	to	avoid
adding	extra	white	space.

Like	the	previous	sample,	I	added	a	textbox	with	a	drill-through	action,	but	this	one
controls	the	chart	series	labels	on	the	pie	chart.	Having	data	labels	enabled	does	help
you	see	the	value	that	each	slice	represents,	but,	again,	this	is	only	useful	with	a
limited	number	of	axis	values.	Now	that	you	see	how	this	works,	preview	the	report
once	more.	Now,	select	200	for	the	Top	Products	parameter	list	and	press	Enter.	Click
the	“Show	data	labels”	link	below	the	pie	chart	and,	as	shown	in	Figure	8.6,	it	should
be	obvious	that	the	bar	chart	is	a	better	choice.

Figure	8.6	Top	200	Product	Sales	report.

Bubble	and	Stock	Charts
Bubble	charts	are	essentially	a	point	plotted	in	a	grid	representing	three	dimensions.
The	value	of	the	z-axis	is	expressed	by	the	size	of	the	bubble.	Imagine	that	the	bubble
exists	in	a	3-D	plane	and	appears	larger	if	it	is	closer	to	you.	Actually,	the	bubble	can
be	a	circle,	square,	triangle,	diamond,	or	cross	shape.	This	also	means	that	a
combination	of	shapes	can	be	used	to	represent	different	data	elements	in	the	same
chart	space.	The	example	shown	in	Figure	8.7	is	included	in	the	sample	project	and	is

named	Ch08	-	Bubble	Chart	Product	Subcategory	Profit	Analysis.

Figure	8.7	Bubble	chart.

For	sales	orders	grouped	by	subcategory,	for	a	selected	year	and	country,	the	product
cost	is	plotted	on	the	vertical	axis	and	order	quantity	on	the	horizontal	axis.	Bubble
size	represents	the	simple	profit	calculated	in	the	query.	The	example	shown	in	Figure
8.7	helps	you	discover	a	valuable	insight	by	revealing	that	Mountain	Bike	sales	were
particularly	profitable	in	Canada.

The	bubble	chart	properties	are	most	easily	set	in	the	Series	Properties	dialog	shown
in	Figure	8.8.	With	the	sample	report	open	in	Design	view,	click	the	chart	to	show	the
Chart	Data	window	and	then	use	the	call-out	menu	for	the	series	in	the	Values	field
list.	Here,	the	StandardCost,	SimpleProfit,	and	OrderQuantity	fields	are	assigned	to
the	Bubble,	“Bubble	size,”	and	Category	fields,	respectively.

Figure	8.8	Series	Properties	page	for	bubble	chart.

New	Chart	Types
Two	new	chart	types	introduced	in	SQL	Server	2016	Reporting	Services	are	the	Tree
Map	and	Sunburst	charts.	Sample	reports	are	provided	for	both,	which	you	can	see	in
Figures	8.9	and	8.10.	It	is	notable	the	chart	designer	is	generically	designed	to	manage
settings	for	every	chart	type.	Consequently,	the	Category	and	Series	group
assignments,	used	to	visualize	fields	differently	in	each	chart	type,	can	be	quite
arbitrary	and	some	experimentation	may	be	necessary	to	make	sense	of	it.

Figure	8.9	Tree	Map	chart.

Figure	8.10	Sunburst	chart.

The	Anatomy	of	a	Chart

The	best	way	to	learn	how	to	use	the	charts	in	Reporting	Services	is	to	work	through	a
few	examples	and	exercises.	An	exhaustive	review	of	all	the	properties	and	settings
(some	of	which	are	shown	in	Figure	8.11)	usually	leads	to	getting	lost	and	confused.
Like	learning	to	drive,	start	with	the	basic	process	and	rules,	and	then	just	do	it.	You'll
figure	out	the	details	along	the	way.

Figure	8.11	Chart	properties	and	settings.

Chart	objects	are	organized	into	the	hierarchy	shown	in	Figure	8.12.	Understanding
this	structure	and	the	relationships	between	these	objects	will	save	you	a	lot	of	time
and	effort.

Figure	8.12	Hierarchy	of	chart	objects.

The	Chart	object	is	really	is	just	a	container.	The	Chart	Area	object	does	most	of	the
work,	and	contains	most	of	the	useful	properties.	Take	some	time	to	explore	the	chart
objects	in	the	design	interface.	Because	there	are	so	many	different	objects,	selecting
the	right	object	can	be	tricky	at	first,	but	with	a	little	experience,	you	will	become
comfortable	with	the	interface.

With	a	chart	open	in	the	designer,	show	the	Properties	window	and	then	click
different	areas	of	the	chart	to	select	and	view	the	names	of	various	objects.	Use	the
chart	objects	hierarchy	as	a	reference	as	you	click	different	areas	to	select	objects.
Additionally,	you	can	right-click	an	object	to	reveal	menu	options	that	will	take	you	to
subordinate	objects	and	collections.	For	example,	if	you	were	to	right-click	the	Chart
object,	the	Properties	window	and	the	right-click	menu	will	let	you	find	the	Chart
Area	objects.	Taking	time	to	do	this	now	will	save	you	time	and	effort	when	you	follow
the	exercise	later	in	this	chapter.

Note	that	many	of	these	objects	are	organized	into	collections	to	make	them	fit	neatly
into	the	 standard	Properties	windows	and	design	interface.	As	a	rule,	you	can	select	an
object	and	set	its	properties	in	one	of	two	ways.

If	you	right-click	an	object	in	the	chart	designer,	you	see	a	menu	item	to	edit	the
object's	properties.	That	menu	may	also	include	related	objects	that	you	can	edit.
Choosing	this	menu	option	opens	a	custom	property	page	for	the	object.	Choosing	an
option	in	a	property	page	to	edit	another	object	opens	another	property	page.	These
are	stacked	in	the	order	in	which	they	were	opened.	Some	properties	are	actually
object	collections.	Clicking	an	ellipsis	(…)	button	for	that	collection	opens	a	dialog
with	the	object	collection	and	associated	properties.

In	addition	to	the	custom	properties	pages	for	each	chart-related	object,	you	can	edit
properties	in	the	standard	Properties	window.

Multiple	Series,	Axes,	and	Areas
A	series	is	any	single	numeric	field,	aggregated	and	plotted	along	a	group	of	category
values.	There	is	no	limit	to	the	number	of	series	that	can	be	added	to	the	same	chart.
Each	series	can	be	 visualized	as	a	different	chart	type	as	long	as	they	are	compatible
types.	Compatible	chart	types	are	those	that	can	be	visualized	along	axis	scales	within
the	same	vertical	or	horizontal	space.	For	example;	 column,	line,	and	area	charts	are
compatible,	but	could	not	be	mixed	with	a	bar	or	pie	chart.

Reporting	Services	charts	support	multiple	chart	areas.	This	powerful	feature	enables
you	to	place	multiple	charts,	of	different	types	and	characteristics,	in	the	same	chart
container.	Each	of	these	chart	areas	is	based	on	the	same	dataset,	and	can	be	aligned
and	correlated	with	a	sibling	chart	in	a	variety	of	ways.	The	following	is	a	simple
example.

In	a	chart	report	you	can	separate	two	data	fields	into	different	chart	areas,	arranged
vertically.	When	you	align	the	Category	Axis,	any	changes	in	the	data	are	consistently
reflected	in	both	chart	areas.

To	make	room	for	the	second	chart	area,	increase	the	chart's	height	by	stretching	it
vertically.	 Right-click	the	chart	and	choose	Add	New	Chart	Area,	as	shown	in	Figure
8.13.

Figure	8.13	Adding	a	new	chart	area.

The	new	chart	area	appears	as	only	white	space	below	the	original	chart	until	a	series
axis	is	assigned	to	it.	Right-click	the	OrderQuantity	field	in	the	Chart	Data	Values
pane,	and	choose	Series	Properties,	as	shown	in	Figure	8.14.

Figure	8.14	Series	Properties	option.

In	the	corresponding	Series	Properties	dialog,	on	the	Axes	and	Chart	Area	page,	use
the	“Change	chart	area”	drop-down	list	to	select	the	new	chart	area.	Verify	your
settings	with	Figure	8.15,	and	then	click	OK	to	close	the	Series	Properties	dialog.

Figure	8.15	Selecting	a	chart	area.

As	shown	in	Figure	8.16,	the	finished	report	shows	a	chart	visual	very	similar	to	the
previous	 example.	However,	the	line	chart	and	its	axis	have	been	moved	to	the	second
chart	area.

Figure	8.16	Finished	report	with	line	chart	and	axis	moved.

To	set	properties	for	the	chart	area,	right-click	the	chart	in	the	designer	and	choose
Chart	Area	Properties.	Selecting	the	chart	area	can	be	a	little	tricky.	I	have	found	it
easiest	to	right-click	the	second	chart	area	without	selecting	it	first.	When	you	right-
click,	the	designer	selects	the	chart	area	and	displays	the	appropriate	menu	option.
Figure	8.17	shows	the	Chart	Area	Properties	dialog.	On	the	Alignment	page,	use	the
“Align	with	chart	area”	drop-down	list	to	choose	the	Default	chart	area.	Click	OK	to
accept	this	change,	and	then	preview	the	report.

Figure	8.17	Chart	Area	Properties	dialog.

This	last	change	ensures	that	the	horizontal	axis	scales	always	align.	Although	the	two
chart	areas	appear	to	be	separate	charts	with	distinct	chart	types,	they	both	use	the
same	scale	so	that	data	in	the	two	chart	areas	can	be	used	for	comparison.

EXERCISES
The	following	two	exercises	will	have	you	build	two	reports	containing	multi-series
charts.	Both	exercises	demonstrate	techniques	to	visualize	two	different	series	values
on	two	different	scales.	You	will	start	by	using	a	single	chart	area	with	a	primary	and
secondary	axis.	In	the	second	 exercise,	you	will	separate	the	two	series	into	different
chart	areas.

Exercise	1:	Creating	and	Styling	a	Simple	Chart
This	exercise	uses	a	single	chart	with	a	column	and	line	chart	in	the	same	chart	area.
Two	different	measure	values	are	visualized	using	a	primary	and	secondary	axis,
which	have	different	scales.

1.	 Add	a	new	report	to	the	Wrox	SSRS	2016	Exercises	project	by	using	the	Add	 	New
Item…	right-click	menu.	Name	the	report	Sales	Order	Volume	by	Month.

2.	 Add	a	data	source	in	the	Report	Data	window	and	use	the	shared	data	source
WroxSSRS2016.	Give	the	new	data	source	the	same	name.

3.	 In	the	report	Data	window,	add	an	embedded	dataset	using	the	data	source	you
just	added.	Name	the	dataset	SalesByMonth.

4.	 Use	the	following	query	script:

SELECT

				Year,

				MonthNumber,

				MonthName,

				OrderQuantity,

				SalesAmount

FROM												vSalesSummaryMonth

WHERE	Year	IN	(@Year)

5.	 Click	OK	to	close	the	Dataset	Properties	dialog.

6.	 Edit	the	Year	report	parameter	and	change	the	Data	type	to	Integer.

7.	 Check	“Allow	multiple	values.”

8.	 Edit	the	Year	property	in	the	Report	Data	window.

9.	 Use	the	Available	Values	page	to	add	2011,	2012,	and	2013.

10.	 Use	the	Default	Values	page	to	add	2012	and	2013	as	the	default	values.

11.	 Use	the	Toolbox	window	to	add	a	chart	to	the	report	body.

12.	 In	the	Select	Chart	Type	dialog,	select	the	first	column	chart	type	displayed,	and
then	click	OK	to	close	the	dialog.

13.	 Resize	the	new	chart	so	that	you	have	some	comfortable	working	space.

14.	 Click	the	chart	to	show	the	Chart	Data	window.

15.	 Use	the	Chart	Data	window	to	add	the	SalesAmount	and	OrderQuantity	fields	as
values.

16.	 Add	the	Year	and	MonthNumber	fields	as	category	groups.

17.	 Preview	the	report	to	make	sure	the	chart	is	showing	sales	values	for	each	month
in	2012	and	2013.

Axis	Titles	and	Formatting
Attention	to	detail	makes	a	difference	in	visual	design.	With	the	essential	chart	design
completed,	the	following	steps	are	used	to	fine-tune	properties	used	for	titles	and
layout	details.

1.	 Return	to	Design	view.

2.	 Click	to	select	the	vertical	axis	title	and	change	the	text	to	Sales	Amount
(millions).

3.	 Click	to	select	the	vertical	axis	scale	values.

4.	 Right-click	the	selected	vertical	axis	scale	and	select	Vertical	Axis	Properties….

5.	 In	the	Vertical	Axis	Properties	dialog,	select	the	Number	page.

6.	 Change	the	Category	to	Currency,	as	shown	in	Figure	8.18.

Figure	8.18	Changing	the	Category	to	Currency.

7.	 Set	the	Decimal	places	to	0.

8.	 Check	“Use	1000	separator.”

9.	 Check	“Show	values	in”	and	select	Millions	from	the	drop-down	list.

10.	 On	the	Major	Tick	Marks	page,	check	“Hide	major	tick	marks.”

11.	 On	the	Line	page,	change	the	“Line	color”	to	Light	Gray.

12.	 Click	OK	to	close	the	Vertical	Axis	Properties	dialog.

13.	 Preview	and	check	the	report.

14.	 In	Design	view,	right-click	the	Horizontal	Axis	and	select	Horizontal	Axis
Properties….

15.	 In	the	Horizontal	Axis	Properties	dialog,	on	the	Axis	Options	page,	change	the
Interval	to	1	(shown	in	Figure	8.19).	This	will	show	a	value	on	every	category	value
regardless	of	the	 available	room	for	labels.

Figure	8.19	Changing	the	Interval	to	1.

16.	 On	the	Labels	page,	choose	the	“Disable	auto-fit	radio	button.”

17.	 Set	the	“Label	rotation	angle”	to	90	degrees.

18.	 On	the	Major	Tick	Marks	page,	check	“Hide	major	tick	marks.”

19.	 On	the	Line	page,	set	the	“Line	color”	to	Light	Gray.

20.	 Click	OK	to	close	the	Horizontal	Axis	Properties	dialog.

21.	 Preview	and	check	the	report.

Change	Axis	Labels
The	horizontal	axis	is	grouped	by	Year	and	then	MonthNumber.	Even	though	the	chart
values	are	grouped	and	sorted	by	the	MonthNumber,	you	want	to	display	the	name	of	the
month	and,	to	save	space,	you	will	abbreviate	the	month	name	to	three	characters.

1.	 In	Design	view,	click	the	chart	to	show	the	Chart	Data	window.

2.	 In	the	Category	Groups	list,	right-click	or	use	the	small	down	arrow	icon	for	the
MonthNumber	field	and	select	Category	Group	Properties….

3.	 Find	the	Label	property	and	click	the	Expression	button	(fx)	to	the	right.

4.	 Use	the	Expression	Builder	to	replace	the	default	field	expression	with	the
following:

=Fields!MonthName.Value.Substring(0,	3)

4.	 TIP

If	you	are	familiar	with	Visual	Basic	for	Applications	(VBA),	which	is	used	in
Office	macros,	the	Visual	Basic	.NET	SubString	method	is	similar	to	the	LEFT,
RIGHT,	and	MID	functions.	Either	VBA	or	.NET	style	VB	code	can	be	used	in
Reporting	Services	expressions.

4.	 WARNING

The	code	completion	feature	of	the	Expression	Builder	can	work	against	you	if
an	object	method	or	property	isn't	contained	in	the	object	reference	library,	as
is	the	case	with	the	SubString	method.	Always	double-check	the	final	code
before	accepting	any	changes.

5.	 Double-check	that	the	code	is	correct	and	then	click	OK	to	close	the	Expression
window.

6.	 Click	OK	to	close	the	Category	Group	Properties	dialog	window.

7.	 Select	the	horizontal	axis	title,	which	displays	the	text	“Axis	Title,”	and	press
Delete.	It	is	fairly	obvious	that	the	chart	values	are	grouped	by	Year	and	Month.

Final	Formatting
1.	 In	the	Chart	Data	window,	select	the	SalesAmount	chart	series	under	the	Values
heading.

2.	 In	the	Properties	window,	to	the	right	of	the	designer,	locate	the	ToolTip	property.

2.	 TIP

The	properties	listed	in	the	Properties	window	can	be	grouped	by	category	or
listed	alphabetically.	When	you	know	the	name	of	the	property,	sometimes	it's
easier	to	list	the	properties	in	alphabetical	order	using	the	sorting	toolbar
button	for	the	docked	window.

3.	 Use	the	drop-down	list	to	select	<Expression…>	to	open	the	Expression	Builder
window.

4.	 Assemble	the	following	expression,	either	by	hand	or	using	the	Expression	Builder
tools:

=Fields!MonthName.Value	&	",	"	&	Fields!Year.Value	&	"	Sales	Amount:	"	&

					FORMAT(SUM(Fields!SalesAmount.Value),	"C2")

5.	 Click	OK	to	close	the	Expression	window.

6.	 Change	the	Chart	Title	text	to	Sales	Order	Volume	by	Month.

7.	 Select	and	drag	the	legend,	containing	the	Sales	Amount	field,	to	the	top	and	center
of	the	chart.

8.	 Save	your	work.

9.	 Preview	the	report.

10.	 Hover	the	mouse	pointer	over	a	column	to	view	the	tooltip,	as	shown	in	Figure
8.20.

Figure	8.20	Viewing	the	tooltip.

Exercise	2:	Creating	a	Multi-series	Chart
Charts	can	be	used	to	visualize	multiple	values	with	different	axes	and	scales.	In	the
following	exercise,	you	will	design	a	chart	report	with	two	different	series	axes	that
align	to	a	common	category	axis.	One	series	will	show	sales	currency	values	on	one
scale,	and	the	other	series	will	show	order	quantity	values	on	a	different	scale	within
the	same	chart	area.	You	will	also	use	different	chart	types	to	visually	separate	the	two
series.

1.	 Make	a	copy	of	the	Sales	Order	Volume	by	Month	chart	report	you	completed	in
the	 previous	exercise	and	name	it	Sales	Order	Volume	and	Quantity	by	Month.

1.	 TIP

You	should	remember	that	the	easiest	way	to	make	a	duplicate	copy	of	a
report	in	the	SSDT	for	Visual	Studio	designer	is	to	select	the	report	in	Solution
Explorer	and	then	use	Ctrl+C	and	Ctrl+V.	The	duplicated	report	filename	will
be	prefixed	with	“Copy	Of….”

2.	 Name	the	report	Sales	and	Order	Quantity	by	Month.

3.	 Preview	the	report	(see	Figure	8.21).

Figure	8.21	Previewing	the	report.

A	new	chart	series	is	added	using	a	field	expression	with	the	Sum	function.	By	default,
the	new	series	is	added	to	the	primary	axis,	which	means	that	SalesAmount	and
OrderQuantity	are	being	measured	on	the	same	scale.	Because	the	OrderQuantity
values	are	significantly	smaller	than	the	SalesAmount	currency	values,	those	columns
are	barely	visible.	The	left	axis	values	are	an	irrelevant	scale	for	the	OrderQuantity.
This	should	be	rectified.

1.	 In	Design	view,	click	any	gold	OrderQuantity	series.

2.	 Right-click	the	OrderQuantity	series	again,	choose	Change	Chart	Type…,	and
change	the	chart	type	to	a	line	chart.	In	the	Select	Chart	Type	dialog,	select	the	first
chart	option	under	the	Line	category.

3.	 Right-click	and	choose	Series	Properties….

4.	 In	the	Series	Properties	dialog,	Axis	and	Chart	Area	page,	change	the	“Vertical	axis”
to	Secondary,	as	shown	in	Figure	8.22.

Figure	8.22	Changing	the	“Vertical	axis”	to	Secondary.

5.	 On	the	Border	page,	change	the	Line	width	to	3pt.

6.	 Click	OK	to	close	the	dialog	and	save	the	properties.

7.	 Change	the	Axis	Title	for	the	secondary	axis,	on	the	right,	to	Order	Quantity.

8.	 Right-click	the	secondary	axis	scale	and	select	Secondary	Vertical	Axis	Properties….

9.	 Style	the	axis	by	setting	the	series	border	width,	series	axis	number	formats,	and
axis	titles	so	that	it	is	similar	to	the	primary	axis.	Instead	of	formatting	as
Currency,	the	number	format	should	be	a	whole,	non-currency	number	without
decimals.

10.	 When	completed,	click	OK	to	close	the	Secondary	Vertical	Axis	Properties	dialog.

11.	 Preview	the	report,	as	shown	in	Figure	8.23.

Figure	8.23	Previewing	the	revised	report.

These	two	exercises	cover	the	essentials.	A	number	of	minor	adjustments	could
improve	the	presentation.	I	find	that	chart	and	visual	design	is	always	a	balance	of
time	and	priorities.	If	this	chart	will	be	used	by	a	large	audience	to	make	important
decisions,	you	may	want	to	do	a	little	more	visual	tweaking,	but	in	the	end,	it	is
important	to	decide	when	it's	“good	enough”	to	move	on	to	the	next	design	task.

Useful	Properties	and	Settings
Hundreds	of	chart	design	variations	exist.	After	many	years	of	chart	report	design,	I
have	some	favorite	features	and	settings.	The	following	sections	describe	a	few	I've
collected.	For	a	comprehensive	guide	to	chart	styles	and	updated	advanced	report	tips,
refer	to	Microsoft	SQL	Server	Reporting	Services	Recipes:	for	Designing	Expert
Reports	(Indianapolis:	Wrox,	2010)	and	the	authors'	respective	blog	sites.

Controlling	the	Number	of	Items	Displayed	on	an	Axis

TIP

The	easiest	way	to	select	the	Axis	properties	is	to	right-click	the	axis	scale	for	the
chart	with	the	report	in	design	view.	The	right-click	menu	will	display	the	option
to	edit	properties	for	the	selected	object	(like	“Vertical	Axis	Properties…”	or
“Horizontal	Axis	Properties…”).	The	displayed	menu	will	verify	that	you've
selected	the	correct	object.	For	example,	the	axis	title,	axis	scale,	and	chart	area
are	in	the	same	proximity	so	it	is	easy	to	choose	one	next	to	the	other.	If	you
select	the	wrong	object,	just	right-click	and	try	again.

Open	Vertical	Axis	Properties	or	Horizontal	Axis	Properties.

Interval	property	−	1	means	to	display	every	value,	regardless	of	whether	the	text	fits
when	 rendering	the	axis	labels.

Managing	Axis	Text	Placement	and	Rotation
Open	Vertical	Axis	Properties	or	Horizontal	Axis	Properties	 	Labels	group/page.

Disable	auto-fit	and	set	the	rotation	angle.	Try	45,	or	experiment	with	other	values.

Managing	the	Format	of	Axis	Values
Open	Vertical	Axis	Properties	or	Horizontal	Axis	Properties	 	Number	group/page.

Choose	a	format	option	or	use	a	custom	format	string	such	as	#,##0	or	$#,##0.00.

Changing	the	Color	and	Width	of	a	Series	Line
In	a	line	chart,	click	a	series	line	or	series	value	in	the	Chart	Data	window.	Change	the
Color	and	BorderWidth	properties.

Setting	a	Tooltip	for	a	Chart	Value
In	the	chart	designer,	click	a	series	value	or	the	item	in	the	Chart	Data	window	Values
pane.

Set	the	ToolTip	property	using	an	expression.

Using	the	Expression	Builder,	reference	fields	and	concatenate	a	string	value	with
formatted	text	and	carriage	return	characters,	as	shown	in	the	following	example:

=Fields!FirstName.Value	&	"	"	Fields!LastName.Value	&	vbCrLf	&	"Income:	"

&	Format(Fields!Income.Value,	"$#,##0")

Controlling	the	Width	and	Gap	Between	Columns	or	Bars
In	the	chart	designer,	click	a	series	value	or	the	item	in	the	Chart	Data	window	Values

pane.	In	the	properties	for	the	chart	series,	select	CustomAttributes	 	PointWidth.

A	value	of	1	fills	the	gap	between	columns	or	bars.	Less	leaves	a	space,	and	more
causes	overlap.

Controlling	the	Exact	Position	of	Each	Chart	Area	(for	a	Chart	with	Multiple	Chart
Areas)
Chart	area	size	and	position	are	managed	automatically	by	default.	To	override	this
behavior,	edit	the	chart	area	properties.	Set	the	CustomPosition	 	Enabled	property	to
True,	and	then	set	the	Height,	Width,	Left,	and	Top	properties.	To	control	the
placement	of	the	chart	area	plotted	content,	repeat	these	steps	for	the
CustomInnerPlotPosition	properties	group.

Dynamically	Increasing	a	Chart's	Size
Edit	the	Chart	properties.

Set	the	DynamicWidth	property	to	expand	the	size	of	a	column,	area,	or	line	chart.	Use
an	expression	to	increase	the	width	based	on	the	number	of	records	or	distinct	group
values,	as	shown	in	the	following	example:

=(1	+	COUNT(Fields!Country.Value,	"Chart1"))	&	"	in"

SUMMARY
With	new	product	versions,	the	charting	capabilities	in	Reporting	Services	have
improved	over	the	years.	New	chart	types	provide	different	options	to	visualize
business	data	for	information	workers.	Advanced	charts	provide	the	additional
capability	to	deliver	actionable	information,	including	compelling	new	features	such
as	multi-series	charts	and	chart	areas.

The	chart	design	skills	you've	learned	in	this	chapter	can	be	extended	to	specialized
chart	types	and	more	advanced	styles	of	chart	reports	based	on	the	same	properties
and	capabilities.	Most	of	the	additional	properties	you'll	find	in	the	designer	are	used
to	manage	the	aesthetic	qualities	of	charts,	which	you	can	use	to	customize	the	style
and	fine-tune	your	chart	reports.

In	the	next	chapter	we	transition	from	the	essentials	to	advanced	design	concepts.
Chapter	9	introduces	techniques	used	to	implement	complex	query	logic,	grouping,
and	filtering	using	single	and	multi-value	selection	parameters.

Chapter	9
Advanced	Queries	and	Parameters

WHAT'S	IN	THIS	CHAPTER?

Understanding	T-SQL	queries	and	parameters

Understanding	MDX	queries,	parameters,	and	expressions

Understanding	DAX	queries,	parameters,	and	expressions

Managing	report	parameters

Using	parameter	expressions

Chapter	5,	“Database	Query	Basics,”	introduced	you	to	query	and	report	parameters.
This	chapter	introduces	you	to	a	few	simple	techniques	to	parameterize	queries.	The
discussion	in	this	chapter	steps	through	the	design	of	each	sample	report,	and	then
delves	deeper	into	less-common	and	more	advanced	design	patterns.

The	parameter	architecture	in	Reporting	Services	has	remained	the	same	since	the
product's	inception.	But	recent	enhancements	in	SQL	Server	2016	give	you	control	of
the	parameter	placement	in	the	parameter	bar	displayed	at	the	top	of	the	browser.	In
this	chapter,	you	see	how	to	define	specialized	parameter	items	you	can	use	to	return
all	(or	a	range	of)	dataset	records	with	a	single	parameter	selection.	Many	of	the	same
techniques	can	be	used	with	MDX	queries	for	SQL	Server	Analysis	Services	(SSAS).
However,	you	will	need	an	understanding	of	the	unique	needs	and	capabilities	of	the
MDX	language	and	query	objects.

NOTE

Unlike	in	previous	chapters,	this	chapter	does	not	walk	you	through	every	step	of
the	included	exercises,	but	provides	the	necessary	instructions	to	apply	the	skills
you	have	acquired	in	the	previous	chapters.

T-SQL	QUERIES	AND	PARAMETERS
As	the	native	query	language	of	Microsoft	SQL	Server,	Transact-SQL	(T-SQL)	provides
a	great	deal	of	flexibility	and	many	creative	ways	to	dynamically	filter	datasets	with
parameters.	Out	of	the	box,	you	get	several	sample	reports	and	instructions	to
demonstrate	different	parameter	techniques	(such	as	using	parameter	lists,	simple
and	multi-select	parameters,	inter-dependent	cascading	parameters,	and	so	on).

Parameter	Lists	and	Multi-select
The	Ch09	-	Parameter	In	List	report	has	two	datasets:	one	to	populate	a	parameter
list,	and	one	for	the	main	report	query.

The	ProductList	dataset	uses	the	following	query:

SELECT

					ProductKey,	ProductName

FROM	Product

ORDER	BY

					ProductName

;

Another	dataset,	named	ReportDate,	uses	the	following	query:

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					p.ProductCategory,

					p.ProductSubcategory,

					p.ProductName,

					p.ProductKey,

					p.StandardCost,

					p.ListPrice,

					s.OrderQuantity,

					s.SalesAmount

FROM

					vSales2013	s

					inner	join	dbo.Product	p	on	s.ProductKey	=	p.ProductKey

WHERE

					p.ProductKey	IN	(@ProductKeys)

;

When	this	query	is	executed	in	the	designer,	the	ProductKeys	parameter	is	added	to
the	report,	and	a	corresponding	dataset	parameter	is	created.	These	two	objects	have
the	same	name,	so	they	can	be	easily	confused,	but	it	is	important	to	understand	the
difference.	Starting	with	the	dataset,	let's	work	from	the	inside	out.	Figure	9.1	shows
the	Parameters	page	of	the	Dataset	Properties	dialog	where	the	report	parameter,
ProductKeys,	is	mapped	to	the	dataset	parameter	having	the	same	name.

Figure	9.1	Parameters	page	of	Dataset	Properties	dialog.

Inspect	the	report	parameter	in	the	Report	Data	window	and	note	the	following
properties	(as	shown	in	Figure	9.2):

Figure	9.2	Report	Parameter	Properties	page	of	the	Report	Data	window.

The	“Data	type”	should	be	set	to	Integer	instead	of	the	default	Text—
Setting	“Data	type”	to	match	the	filtered	field	can	be	more	efficient.	Certain	data
types	(such	as	Date	and	Boolean)	change	the	input	control	displayed	in	the
parameter	bar.	Date-type	parameters	use	a	calendar	picker	control,	and	Boolean-
type	parameters	display	a	pair	of	radio	buttons	to	facilitate	selecting	either	True	or
False	values.	All	other	types	use	a	plain	input	box,	unless	values	are	provided	in
the	Available	Values	page.	In	that	case,	a	drop-down	list	is	displayed.

“Allow	multiple	values”	is	checked—The	drop-down	list	(which	contains
parameter	values	for	selection)	shows	a	check	box	before	each	item.	This	causes	a
comma-separated	list	of	the	selected	values	to	be	sent	to	the	query	parameter	and
converted	to	a	single	text	string.	A	multi-select	report	parameter	is	an	array	of
key/value	pairs	named	Value	and	Label.

On	the	Available	Values	page	shown	in	Figure	9.3,	you	can	use	the	ProductList
dataset	to	provide	the	product	values	based	on	the	query.	The	“Value	field”	property	is
set	to	use	the	ProductKey	and	the	“Label	field”	property	will	use	the	ProductName.	This

means	that	report	users	will	see	the	names,	but	key	values	will	be	used	internally.

Figure	9.3	Specifying	the	“Value	field”	and	“Label	field”	properties.

You	can	select	any	combination	of	parameter	values.

How	do	you	show	users	what	parameter	values	they	selected	in	the	report	header?
When	a	report	is	printed	as	shown	in	Figure	9.4,	it	may	be	important	to	capture	the
parameter	selection	so	that	the	readers	understand	the	context	of	the	report.

Figure	9.4	Clarifying	the	context	in	the	printed	report.

Before	looking	at	the	finished	expression,	here	is	an	experiment	for	educational
purposes.	Add	a	new	textbox	to	the	report	header	area	above	the	table.	Right-click	and
choose	Expression…	to	open	the	Expression	builder	dialog.	Use	the	parameter	list	and
double-click	the	ProductKeys	parameter,	which	creates	the	following	expression:

=Parameters!ProductKeys.Value(0)

There	are	two	problems	with	this	expression.	It	will	display	the	numeric	product	key
(rather	than	the	product	name)	in	the	textbox,	and	it	will	only	display	the	first	selected
item.	To	correct	this,	you	use	the	“Label	field”	property	instead	of	the	“Value	field”
property.	A	multi-value	parameter	is	stored	as	an	array,	so	you	can't	just	display	it	as	a
single	value.	The	VB.NET	JOIN	function	will	iterate	through	each	array	element,	and
represent	the	key/value	pairs	for	each	selected	item.	Here's	the	working	expression	to
display	a	comma-separated	list	of	every	selected	parameter	value:

=JOIN(Parameters!ProductKeys.Label,	",	")

Figure	9.5	shows	the	finished	report	with	the	parameter	list	in	the	heading.

Figure	9.5	Finished	report	with	the	parameter	list	in	the	heading.

Cascading	Parameters
In	the	previous	example,	the	parameter	list	is	a	little	long	and	inconvenient.	With	so
many	values	to	choose	from,	multiple	parameters	can	be	used	to	break	a	list	down
into	a	manageable	hierarchy.	A	parameter	can	depend	on	another	parameter	so	that
the	list	of	available	values	is	filtered	based	on	another	parameter	selection.	For
example,	if	you	offer	users	a	list	of	product	categories	and	another	list	of	product
subcategories,	the	subcategory	list	would	show	only	subcategories	for	a	selected
category.	Figure	9.6	shows	an	example.	A	selection	from	the	Categories	parameter
filters	the	product	subcategories,	and	that	selection	filters	the	products	list.

Figure	9.6	Filtering	product	subcategories.

The	sample	report	Ch09	-	Cascading	Parameters	shows	how	to	build	this.	You	start
with	three	separate	datasets	that	are	used	to	populate	the	parameter	lists.	Dataset
names	are	listed	before	query.	Note	the	logical	dependencies	between	each	query	in
order.

CategoryList:

SELECT	DISTINCT	ProductCategory

FROM	Product

;

SubcategoryList:

SELECT	DISTINCT	ProductSubcategory

FROM	Product

WHERE	ProductCategory	IN	(@Categories)

;

ProductList:

SELECT	ProductKey,	ProductName

FROM	Product

WHERE	ProductSubcategory	IN	(@ProductSubcategories)

;

The	main	report	dataset	(named	ReportData	in	the	sample	report)	uses	only	the
ProductKeys	parameter	as	a	predicate	to	filter	sales	records.

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					p.ProductCategory,

					p.ProductSubcategory,

					p.ProductName,

					p.ProductKey,

					p.StandardCost,

					p.ListPrice,

					s.OrderQuantity,

					s.SalesAmount

FROM

					vSales2013	s

					inner	join	dbo.Product	p	on	s.ProductKey	=	p.ProductKey

WHERE

					p.ProductKey	IN	(@ProductKeys)

;

Recall	from	the	previous	example	that	the	ProductKeys	parameter	used	two	different
fields	for	the	product	key	value	and	label.	Conversely,	for	the	Category	and	Product
subcategory	parameters,	it	is	unnecessary	to	have	different	fields.	Figure	9.7	shows
the	Available	Values	settings	for	the	Categories	parameter	where	the	ProductCategory
field	is	used	for	both	the	“Value	field”	and	“Label	field”	properties.	Using	the	name
rather	than	a	key	value	to	filter	from	a	parameter	typically	works,	as	long	as	the	values
are	unique	and	it	is	a	relatively	short	list.

Figure	9.7	Available	Values	settings.

The	ProductSubcategory	parameter	settings	are	similar	to	the	Category,	with	the
ProductCategory	field	used	for	the	“Field	value”	and	“Label	value”	properties.	The
ProductKeys	parameter	is	essentially	the	same	as	it	was	in	the	previous	report
example,	with	the	ProductKey	used	for	the	“Value	field”	and	the	ProductName	for	the
“Label	field.”	Cascading	parameters	must	be	arranged	in	order	of	dependency,	which,
in	this	case,	is	Category,	Product	Subcategory,	and	Product.	Use	the	up	and	down
arrows	in	the	Report	Data	toolbar	header	to	change	the	order	if	necessary.

Arranging	Parameters	in	the	Parameter	Bar
SQL	Server	2016	introduces	a	new	report	design	feature	that	provides	control	over	the
placement	of	report	parameters	in	the	parameter	bar	displayed	above	a	rendered
report.	Note	that	the	parameter	bar	is	displayed	for	reports	in	a	report	server
configured	for	native	mode.

NOTE

In	SharePoint	integrated	mode,	parameters	continue	to	be	arranged	vertically	in
a	panel	on	the	right	side	of	the	browser	window.

The	parameter	bar	is	customizable.	As	shown	in	Figure	9.8,	use	the	right-click	menu
to	add	and	remove	columns	and	rows	to	and	from	the	grid,	and	then	drag	and	drop	the
parameters	into	any	cell.	Right-click	and	remove	unneeded	rows	and	columns.

Figure	9.8	Using	the	right-click	menu	to	add	and	remove	columns	and	rows.

Managing	Long	Parameter	Lists
Multi-select	parameters	typically	work	well	when	the	user	will	select	a	manageable
number	of	parameter	items.	There	is	no	stated	limit	either	to	the	number	of	items
that	can	be	included	in	a	parameter	list,	or	to	the	number	of	items	that	can	be
selected.	The	only	control	that	you	really	have	is	to	limit	the	items	you	display	in	the
list.	Both	the	number	of	values	on	this	list	and	the	number	of	selected	items	can	affect
report	performance.

The	sample	database	returns	397	products,	which	are	included	in	the	parameter	list
shown	in	Figure	9.9.	Any	more	than	this	and	you	would	see	a	noticeably	longer	report
rendering	time.	Even	more	impactful	is	the	effect	of	selecting	many	values	and
passing	them	into	the	query	for	filtering.

Figure	9.9	Products	in	parameter	list.

Multi-select	parameters	always	display	a	“(Select	All)”	item	at	the	top	of	the	list.
Choosing	this	item	checks	the	boxes	for	every	item	in	the	list,	and	unchecking	it
deselects	all	of	the	listed	items.

WARNING

Long	parameter	lists	can	affect	report	performance.	Multi-select	parameters
include	an	item	at	the	top	of	the	list	labeled	“(Select	All).”	Choosing	this	item
selects	every	item	on	the	parameter	list	and	passes	all	of	those	values	into	the
report	query.	You	cannot	disable	this	feature,	nor	limit	the	number	of	items
selected.	You	should	limit	parameter	lists	to	a	few	hundred	items.

Consider	what	happens	if	the	“(Select	All)”	option	were	used	in	this	sample	report.
The	following	query	is	executed	after	the	parameter	values	are	parsed,	which	explicitly
includes	every	available	ProductKey:

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					p.ProductCategory,

					p.ProductSubcategory,

					p.ProductName,

					p.ProductKey,

					s.OrderQuantity,

					s.SalesAmount

FROM

					vSales2013	s

					inner	join	dbo.Product	p	on	s.ProductKey	=	p.ProductKey

WHERE

					p.ProductKey	IN	(486,223,224,225,484,447,559,473,472,471,

					485,555,552,470,469,468,466,467,464,465,462,463,451,452,

					483,603,558,393,396,304,305,306,296,297,298,299,301,302,

					303,300,307,308,309,288,289,290,291,293,294,295,292,412,

					401,402,544,421,517,537,439,440,441,442,443,444,210,437,

					438,241,242,243,244,245,246,247,248,249,250,251,252,211,

					238,239,240,415,407,408,547,424,520,540,497,498,499,500,

					494,495,496,492,554,523,487,601,556,391,394,550,531,532,

					533,534,551,524,525,526,527,410,397,398,542,419,515,535,

					279,280,281,282,283,284,285,286,287,253,254,255,256,257,

					258,259,260,261,262,263,264,265,266,267,268,269,270,271,

					272,273,413,403,404,545,422,518,538,510,502,503,504,505,

					506,507,508,509,493,553,521,232,233,234,229,230,231,226,

					227,228,235,236,237,461,460,459,454,453,445,455,448,602,

					557,392,395,409,426,427,428,549,511,512,513,411,399,400,

					543,420,516,536,274,275,276,277,278,417,418,429,430,431,

					432,433,434,435,436,414,405,406,546,423,519,539,522,219,

					218,478,449,528,348,349,350,351,344,345,346,347,358,359,

					360,361,362,363,352,353,354,355,356,357,364,365,366,367,

					587,588,589,590,596,597,598,599,600,591,592,593,594,595,

					480,482,481,514,501,479,529,311,312,313,314,310,373,374,

					375,376,377,378,379,380,368,369,370,371,372,580,581,582,

					583,317,318,319,315,316,381,382,383,384,385,386,387,388,

					389,390,338,339,340,341,342,343,332,333,334,335,336,337,

					326,327,328,329,330,331,320,321,322,323,324,325,604,605,

					606,584,490,489,488,491,215,216,217,220,221,222,212,213,

					214,450,416,548,425,541,530,573,574,575,576,561,562,563,

					564,577,578,579,560,585,586,565,566,567,568,569,570,571,

					572,446,477,476,475,474,458,457,456)

;

This	query	was	tested	with	and	without	the	FROM	clause,	which	revealed	a	return	of	the
same	set	of	results.	Surprisingly,	the	difference	in	performance	is	negligible,	and	the
verbose	query	takes	only	milliseconds	longer.	Perhaps	if	you	use	twice	the	number	of
product	keys,	a	larger	data	volume,	or	you	are	running	on	a	production	server	with
other	competing	operations,	you	might	see	a	greater	impact.	The	point	is	that,	under
certain	conditions,	queries	like	this	play	a	role	in	causing	performance	issues.	So	you
should	take	steps	to	manage	them.	Using	cascading	parameters	can	help,	because	the
user	wouldn't	be	able	to	select	every	product	at	once.	The	following	technique	may
also	be	helpful.

All	Value	Selection
Rather	than	allowing	users	to	select	all	of	the	parameter	items	if	they	don't	want	to
exclude	any	data,	adding	a	custom	item	to	the	list	can	help	you	manage	the	query	logic
with	more	efficiency.	In	the	next	scenario	demonstrated	in	the	sample	report	Ch09	-
All	Parameter	Selection	1,	the	goal	is	to	provide	users	with	the	option	either	to
select	a	single	country	or	to	return	results	for	all	countries.	Figure	9.10	shows	the
parameter	list	showing	an	item	labeled	“(All	Countries).”

Figure	9.10	Using	“(All	Countries)”	to	provide	users	with	an	option.

The	query	for	my	CountryList	dataset	looks	like	the	following.	Note	that	this	is
actually	two	SELECT	statements.

SELECT

					'(All	Countries)'	AS	Country

UNION

SELECT	DISTINCT

					Country

FROM	SalesTerritory

;

In	T-SQL,	two	queries	that	return	the	same	set	of	columns	can	be	appended	using	the
UNION	statement.	This	adds	the	“(All	Countries)”	row	to	the	top	of	the	list	ahead	of	the
country	names	from	the	SalesTerritory	table.

The	magic	happens	here	in	the	following	main	report	query	where	a	logical	decision	is
performed	in	the	WHERE	clause:

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					p.ProductCategory,

					p.ProductSubcategory,

					p.ProductName,

					p.ProductKey,

					p.StandardCost,

					p.ListPrice,

					s.OrderQuantity,

					s.SalesAmount

FROM

					vSales2013	s

					inner	join	dbo.Product	p	on	s.ProductKey	=	p.ProductKey

					inner	join	dbo.SalesTerritory	t	on	s.SalesTerritoryKey	=	t.TerritoryKey

WHERE

					t.Country	=	@Country	OR	@Country	=	'(All	Countries)'

;

Using	an	OR	operator,	one	of	two	conditions	must	be	met	for	a	given	row	to	be	output
in	this	query.	Starting	on	the	left	side	of	the	OR,	the	Country	column	value	must	match
the	selected	@Country	parameter	value.	If	this	branch	is	used,	only	orders	for	the
selected	country	would	be	output.	But	what	about	the	expression	on	the	right	side	of
the	OR	operator?	That	statement	says,	if	the	selected	@Country	parameter	value	is	“(All
Countries),”	let	every	row	through.	The	OR	operator	trumps	the	other	statement	and
just	returns	everything.

Here's	one	more	example,	which	is	very	similar	to	the	first,	but	uses	a	numeric	key
rather	than	text.	In	this	scenario,	the	parameter	displays	the	sales	country	and	region
values	concatenated	together	for	the	“Label	field”	(Figure	9.11)	and	returns	the
TerritoryKey	for	the	“Value	field.”

Figure	9.11	Using	a	numeric	key	rather	than	text.

The	design	of	the	Ch09	-	All	Parameter	Selection	2	sample	report	uses	a	slightly
different	approach.

As	shown	here,	like	the	previous	example,	the	TerritoryList	dataset	has	an	extra	row
generated	using	-1	for	the	TerritoryKey	and	the	text	(All	Territories).	This	row	is
appended	to	all	of	the	table	values	in	the	query	using	the	UNION	operator.

SELECT

					-1	AS	TerritoryKey,

					'(All	Territories)'	AS	TerritoryName

UNION

SELECT

					TerritoryKey,

					CASE	WHEN	Country	=	Region	THEN	Region	ELSE	Region	+	'	'	+	Country

										END	AS	TerritoryName

FROM	SalesTerritory

;

TIP

When	adding	special-purpose	items	to	a	parameter	list	query,	using	a	negative
number	for	the	key	can	ensure	that	it	doesn't	duplicate	the	key	value	for	an
actual	record.

Here	is	the	main	report	query,	which	uses	an	expression	on	the	WHERE	clause	to	test
the	TerritoryKey	query	parameter.	If	the	value	is	-1,	this	indicates	that	the	user
selected	the	“(All	Territories)”	item.	In	this	case,	the	OR	operator	effectively	disregards
the	first	filter	clause	and	returns	all	rows.

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					p.ProductCategory,

					p.ProductSubcategory,

					p.ProductName,

					p.ProductKey,

					p.StandardCost,

					p.ListPrice,

					s.OrderQuantity,

					s.SalesAmount

FROM

					vSales2013	s

					inner	join	dbo.Product	p	on	s.ProductKey	=	p.ProductKey

					inner	join	dbo.SalesTerritory	t	on	s.SalesTerritoryKey	=	t.TerritoryKey

WHERE

					s.SalesTerritoryKey	=	@TerritoryKey	OR	@TerritoryKey	=	-1

;

Handling	Conditional	Logic
Once	you	have	mastered	these	essential	parameter	techniques,	you	can	combine	them
to	address	real	business	reporting	challenges.	The	example	report	Ch09	-	And	Or
Parameter	Logic	contains	three	parameters	named	MonthNumber,	DateFrom,	and
DateTo.	If	an	actual	month	value	is	selected	for	the	MonthNumber,	all	records	for	that
month	should	be	returned,	and	the	date	range	for	the	other	two	parameters	should	be
ignored.	Similar	to	previous	examples,	a	special	item	is	added	to	the	MonthNumber
parameter	list,	prompting	the	report	user	to	use	the	date	range	parameters	DateFrom
and	DateTo.	The	query	for	the	MonthList	dataset	looks	like	this:

SELECT					-	1	AS	MonthNumber,	'(Select	Date	Range)'	AS	MonthName

UNION

SELECT	DISTINCT	MonthNumber,	MonthName

FROM	Date

ORDER	BY	MonthNumber

;

The	WHERE	clause	in	the	main	report	query	contains	two	branches	of	logic	with	an	OR
operator.

TIP

When	implementing	conditional	logic	in	a	query	with	multiple	logical	operators,
keep	in	mind	that	the	predicate	(WHERE	clause)	is	evaluated	for	each	candidate
row.	That	row	will	be	returned	if	the	predicate	expression	evaluates	to	True.

The	first	condition	uses	parentheses	to	control	the	order	of	operations.	As	you	can	see,
if	the	MonthNumber	parameter	value	is	-1	(indicating	that	the	user	selected	the	option
to	select	a	date	range),	rows	are	returned	that	meet	the	date	range	criteria.	If	any	other
MonthNumber	is	selected,	the	second	branch	of	the	expression	(after	OR)	is
implemented,	and	the	first	branch	is	ignored	because	it	logically	resolves	to	False.

SELECT

					s.OrderDate,

					s.SalesOrderNumber,

					SUM(s.SalesAmount)	AS	SalesAmount,

					SUM(s.OrderQuantity)	AS	OrderQuantity

FROM

					vSales2013	s	inner	join	Date	d	on	s.OrderDate	=	d.TheDate

WHERE

					(@MonthNumber	=	-1	AND	s.OrderDate	BETWEEN	@DateFrom	AND	@DateTo)

					OR

					d.MonthNumber	=	@MonthNumber

GROUP	BY

					s.OrderDate,

					s.SalesOrderNumber

;					

The	MonthNumber	parameter	data	type	is	set	to	Integer,	to	match	the	type	of	the
MonthNumber	column.	Using	the	MonthList	dataset	for	the	Available	Values	property
causes	the	parameter	to	be	presented	as	a	drop-down	list.	For	the	DateFrom	and	DateTo
parameters,	setting	these	to	a	Date	data	type	prompts	the	report	user	with	date	picker
controls.	Users	can	either	type	or	select	dates.

All	three	parameters	are	arranged	in	the	designer	parameter	bar	grid,	as	you	can	see	in
Figure	9.12.

Figure	9.12	Designer	parameter	bar	grid	arrangement.

When	the	report	is	previewed,	you	can	see	in	Figure	9.13	that	when	the	month	of	July
is	selected,	only	July	records	are	returned,	regardless	of	the	data	range.

Figure	9.13	Preview	with	month	of	July	displayed.

MDX	QUERIES	AND	PARAMETERS
Chapter	10,	“Reporting	with	Analysis	Services,”	provides	an	end-to-end	examination	of
report	design	using	SSAS	as	a	data	source.	If	you're	new	to	SSAS,	that	chapter	will	help
you	build	a	foundation	for	working	with	Analysis	Services	and	Reporting	Services
together,	and	how	parameters	are	used	to	pass	member	key	values.

Once	you	have	done	a	lot	of	report	design	work	for	SSAS	cubes	and	tabular	models,
you	will	grow	accustomed	to	the	quirks	and	unique	patterns	of	the	query	design	when
working	with	MDX	queries	(which	are	discussed	in	more	detail	in	Chapter	10).	Using
the	graphical	query	builder	to	create	SSAS	queries	will	do	a	lot	of	the	following	work
for	you,	but	it	also	has	severe	limitations	and	doesn't	produce	ideal	and	manageable
code	in	many	situations.	For	the	discussion	in	this	chapter,	you	should	review	the
provided	sample	reports	to	view	the	following	solutions.	To	build	them	yourself,	jump
ahead	to	Chapter	10	to	get	the	lowdown	on	manually	writing	MDX	queries.

Let's	start	with	a	baseline	query.	You	should	use	SQL	Server	Management	Studio
(SSMS)	to	write	and	test	MDX	queries.

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Internet	Sales	Amount

					}	ON	Columns,

					(

										[Product].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										[Date].[Calendar	Year].&[2013

)

;

The	results	of	this	query	are	visualized	in	a	matrix	report,	as	shown	in	Figure	9.14.
Two	variations	of	the	Ch09	SSAS	Parameters	report	are	included	in	the	sample	reports
project.

Figure	9.14	Matrix	report	showing	results	of	MDX	query.

Beginning	with	a	simple,	single-select	parameter,	the	year	used	in	the	WHERE	clause	can
be	dynamically	replaced	in	one	of	two	different	ways.	The	most	conventional	method
for	parameterizing	this	query	is	to	build	a	simple	parameter	list	dataset	like	this	one:

WITH

MEMBER	Measures.YearUniqueName			AS	[Date].[Calendar	

Year].CurrentMember.UniqueName

MEMBER	Measures.YearLabel								AS	[Date].[Calendar	Year].CurrentMember.Name

SELECT

					{	Measures.YearUniqueName,	Measures.YearLabel	}	On	Columns,

					[Date].[Calendar	Year].Members	On	Rows

FROM	[Adventure	Works

;

In	the	properties	for	the	Year	parameter,	the	YearList	dataset	provides	the	available
values.	YearUniqueName	is	mapped	to	the	“Value	field”	property	and	YearLabel	is
mapped	to	the	“Label	field,”	as	shown	in	Figure	9.15.

Figure	9.15	Mapping	to	the	“Value	field”	and	“Label	field”.

Rather	than	using	integer	values	as	parameter	keys	as	is	done	in	a	typical	SQL	query,
Analysis	Services	uses	a	full	qualified	unique	name	reference	for	each	key	value,
similar	to	those	shown	in	the	YearUniqueName	column	in	Figure	9.16.	Note	that	this
query	returns	the	All	member	(in	this	case	named	“All	Periods”)	in	addition	to	a	row
for	each	year.

Figure	9.16	Using	a	full-qualified	unique	name	reference	for	each	key	value.

In	the	SSMS,	values	can	be	copied	from	a	cell	or	range	of	cells	in	the	results	pane.	As
shown	in	Figure	9.17,	the	unique	name	value	for	the	All	Periods	member	has	been
selected	and	copied	to	the	clipboard	to	set	the	parameter	default	value.

Figure	9.17	Copying	values.

The	Default	value	is	set	by	pasting	the	unique	name	copied	from	earlier	results.

[Date].[Calendar	Year].[All	Periods]

When	you	return	to	this	page,	you	will	see	something	interesting.	In	the	report
definition,	this	property	is	stored	in	a	format	that	requires	certain	characters	to	be

“escaped”	with	backslashes	that	are	automatically	inserted	before	each	square	bracket
(as	shown	in	the	following	example).	Don't	be	concerned	about	this	because	it's	just	a
convention	that	the	report	designer	takes	care	of	for	you.

\[Date\].\[Calendar	Year\].\[All	Periods\]

Parameter	values	are	always	passed	into	the	query	as	text	values.	These	values	must
be	converted	using	one	of	the	following	MDX	functions,	depending	on	the	object	type,
so	Analysis	Services	sees	it	as	the	right	type	of	object:

STRTOMEMBER

STRTOSET

STRTOTUPLE

STRTOVALUE

The	first	two	functions	are	most	commonly	used	and	will	handle	most	parameter
needs.	The	STRTOMEMBER	function	resolves	a	text	member	reference	to	a	single	member
object,	and	the	STRTOSET	function	resolves	any	valid	text	expression	to	a	set	of
members.

Single-Valued	Parameter
In	the	query	used	in	the	following	example,	the	year	is	a	member,	so	the	parameter	is
passed	to	the	STRTOMEMBER	function	like	this:

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Internet	Sales	Amount

					}	ON	Columns,

					(

										[Product].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										STRTOMEMBER(@Year)

)

;

Multi-Valued	Parameter
Modifying	this	solution	for	multi-valued	parameter	selection	requires	only	two	simple
changes.	First	is	to	check	the	“Allow	multiple	values”	option	to	convert	to	a	multi-
valued	parameter.	The	second	change	is	to	use	the	STRTOSET	function	like	this:

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Internet	Sales	Amount

					}	ON	Columns,

					(

										[Product].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										STRTOSET(@Year)

)

;

Now,	users	can	select	any	combination	items	from	the	parameter	list,	causing	a
comma-separated	set	of	unique	name	references	to	be	passed	into	the	query.	The
STRTOSET	function	parses	the	list	and	converts	it	into	a	set	object,	which	is	used	to	slice
the	cube	and	effectively	filter	the	results.

Date	Value	Ranges
There	are	cases	where	it	might	make	more	sense	to	handle	the	parameter	value	using
the	native	data	type	or	otherwise	collect	a	simple	value	rather	than	the	MDX-style
unique	member	name.	A	date	type	parameter	is	a	good	example	because	it	is	more
natural	to	prompt	the	user	for	a	date	with	the	date	picker	calendar	control.	Because
MDX	parameters	are	handled	as	text	and	member	references,	an	expression	is	used	to
translate	the	report	parameter	into	the	correctly	formatted	report	parameter.

Again,	you	start	with	a	finished	query	in	SSMS.	Note	the	range	notation	used	to	create
a	set	of	date	members	in	the	WHERE	clause.

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Reseller	Order	Count

					}	ON	Columns,

					(

										[Product].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										{	[Date].[Date].&[20130101]	:	[Date].[Date].&[20130131]	}

)

;

There	are	actually	a	couple	of	different	techniques	that	can	be	used	to	employ	this
solution.	Two	are	demonstrated	here.	Neither	is	better	than	the	other,	but	learning
how	this	works	will	give	you	a	better	understanding	of	the	mechanics	of	the	query
engine	and	how	parameters	work.

Range	of	Members
Two	report	parameters	are	added,	named	DateFrom	and	DateTo,	exactly	the	same	as
were	used	in	previous	examples.	Both	parameters	are	date	types	and	given	a	valid

default	value.

In	the	properties	for	the	dataset,	on	the	Parameters	page,	define	two	query	parameters
with	different	names	than	the	two	existing	report	parameters.	The	names	can	actually
be	anything	you	want,	and	the	choices	shown	in	Figure	9.18	merely	demonstrate	that
the	report	and	query	parameter	names	don't	have	to	be	the	same.

Figure	9.18	Naming	two	query	parameters.

The	trick	here	is	that	the	expressions	build	each	of	the	two	member	reference	values.
Because	the	original	expression	is	copied	from	the	original	object	reference,	the	rest	is
easy	to	figure	out.	To	create	the	sample	report,	follow	these	steps:

1.	 Begin	the	expression	with	an	equal	sign	as	usual.

2.	 Add	a	double	quote.	All	MDX	parameters	are	passed	as	text,	so	you	must
concatenate	a	literal	member	reference.

3.	 Paste	the	entire	member	reference	from	the	clipboard	and	add	a	double	quote	to
the	end.	This	expression	would	work	as	it	is	now	so	that	you	know,	for

troubleshooting	purposes,	you	are	at	a	known	state.

4.	 Delete	everything	between	the	last	pair	of	open	and	closed	square	brackets.	This	is
where	you	will	add	the	parameter	date.	Thus	far,	the	expression	should	look	like
this:

="[Date].[Date].&[]"

5.	 Close	and	open	the	brackets	you	just	orphaned	by	removing	their	content
(including	the	double	quotes),	and	then	add	a	couple	of	ampersands	and	two
spaces	to	make	room	for	more	content.	The	result	should	be	as	follows:

="[Date].[Date].&["	&		&	"]"

6.	 Place	the	cursor	between	the	ampersands,	with	one	space	on	either	side,	and	use
the	Expression	editor	to	add	the	parameter	contained	within	the	FORMAT	function.
Because	the	data	must	be	formatted	in	a	non-standard	string,	you	need	to	use	the
FORMAT	function	to	customize	the	output	with	a	format	string	to	match	the	Date
member	key.

7.	 Use	the	following	two	examples	to	verify	that	the	two	query	parameter	expressions
are	correct	for	the	DateFrom	and	DateTo	parameters,	respectively.

DateToMember	parameter:

="[Date].[Date].&["	&	FORMAT(Parameters!DateFrom.Value,	"yyyyMMdd")	&	

"]"

DateToMember	parameter:

="[Date].[Date].&["	&	FORMAT(Parameters!DateTo.Value,	"yyyyMMdd")	&	"]"

8.	 Within	the	query,	each	of	the	two	parameters	is	substituted	for	the	member
references	in	the	range	and	wrapped	by	a	STRTOMEMBER	function.	The	resulting
query	now	looks	like	this:

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Reseller	Order	Count

					}	ON	Columns,

					(

										[Product].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										{	STRTOMEMBER(@DateFromMember)	:	STRTOMEMBER(@DateToMember)	

}

)

;

Range	Expression	as	a	Set
The	other	technique	builds	the	entire	range	expression	and	then	passes	it	to	the
STRTOSET	function	as	a	single	query	parameter.	Because	report	parameters	and	query
parameters	are	separate	objects,	this	gives	you	the	freedom	to	manage	this	using
another	approach.

TIP

Before	deleting	the	two	existing	parameters,	copying	one	of	the	expressions	to	the
clipboard	will	save	time.	While	prototyping	and	working	out	all	the	expression
code	for	a	report,	you	should	consider	using	Notepad	so	that	you	can	keep	and
reuse	expressions	until	you	sort	out	the	ideal	solution.

1.	 Return	to	the	Parameters	page	in	the	Dataset	Properties	(Figure	9.19)	and	remove
both	query	parameters.

Figure	9.19	Dataset	Properties	page.

2.	 Copying	one	of	the	two	expressions	to	the	clipboard	first	will	save	some	work.

3.	 Create	a	new	query	parameter	named	DateRange	and	use	the	following	expression
for	the	Parameter	Value:

="[Date].[Date].&["	&	FORMAT(Parameters!DateFrom.Value,	"yyyyMMdd")

&	"]	:	[Date].[Date].&["	&	FORMAT(Parameters!DateTo.Value,	"yyyyMMdd")	&	

"]"

4.	 The	revised	dataset	query	uses	the	STRTOSET	function	with	the	new	parameter.

SELECT

					{

										[Reseller	Sales	Amount],

										[Measures].[Reseller	Order	Count

					}	ON	Columns,

					(

										[Product].[Category].[Category].Members,

										[Sales	Territory].[Sales	Territory	Country].[Sales	Territory

															Country].Members

)	ON	Rows

FROM	[Adventure	Works

WHERE

					(

										{	STRTOSET(@DateRange)	}

)

;

The	resulting	text	of	the	entire	query	is	exactly	the	same	as	the	original,	non-
parameterized	query,	but	the	key	point	is	that	this	MDX	expression	produces	a	set
object,	which	is	handled	by	the	STRTOSET	function:

[Date].[Date].&[20130101]	:	[Date].[Date].&[20130131]

SUMMARY
The	purpose	of	this	chapter	has	been	to	give	you	a	set	of	survival	skills	and	a
collection	of	useful	techniques	to	add	to	your	bag	of	standard	design	techniques.
Working	with	parameters,	as	well	as	knowing	how	to	use	them	in	creative	ways,	will
be	critical	as	you	prepare	to	design	an	entire	reporting	solution.

This	material	builds	on	the	design	techniques	for	creating	queries	acquired	in	Chapter
5.	Looking	forward,	you	will	expand	on	these	skills	and	start	thinking	about	reports	as
more	than	a	single	delivery	vehicle	for	some	business	information—in	particular,	as
part	of	a	well-orchestrated	solution.

In	Chapter	10,	you	will	get	a	well-rounded	introduction	to	all	the	features	used	to
build	an	Analysis	Services	report	from	the	ground	up,	utilizing	some	of	the	parameter-
passing	techniques	used	in	these	past	few	sections.	You	will	see	how	parameters	are
used	in	expressions	to	manage	visibility,	grouping,	sorting,	and	so	much	more.
Parameters	are	an	important	element	of	actions	and	report	navigation.

Chapter	10
Reporting	with	Analysis	Services

WHAT'S	IN	THIS	CHAPTER?

Using	Analysis	Services	for	reporting

Working	with	Multidimensional	Expressions	(MDX)

Building	queries	with	the	MDX	Query	Designer

Building	queries	manually

Adding	nonadditional	measures

Understanding	when	to	use	the	Aggregate	function

Using	MDX	and	drill-through	reports

SQL	Server	Analysis	Services	(SSAS)	is	an	industry-leading	semantic	modeling,
calculation,	and	analytic	reporting	platform.	Today,	SSAS	comes	in	two	different
implementations	on	the	same	server	platform.	The	multidimensional	version	employs
optimized	storage,	data	caching,	and	pre-aggregated	calculations	to	achieve	high
performance	and	a	rich	set	of	analytical	features	that	have	matured	over	nearly	20
years.	To	achieve	superior	performance,	SSAS	tabular	models	utilize	a	modern,
streamlined	technology	that	uses	in-memory	column	compression	and	calculations
technology.	To	a	query	or	data	browsing	tool,	tabular	models	appear	and	behave	just
like	multidimensional	cubes.

NOTE

Arguably,	there	are	multiple	implementations	of	the	tabular	in-memory
technology	employed	in	SSAS,	which	also	include	Power	Pivot	and	Power	BI.
These	expanding	choices	underscore	the	versatility	of	the	Microsoft	BI	platform
and	this	impressive	technology.

Today,	both	SSAS	tabular	and	multidimensional	models	can	be	queried	using	either	of
the	two	languages	developed	specifically	for	each	of	these	technologies,	namely	Data
Analysis	Expressions	(DAX)	for	tabular,	and	Multidimensional	Expressions	(MDX)
for	multidimensional.	Until	query	design	tools	are	created	to	better	support	the	DAX
query	language	with	parameter	passing,	MDX	will	remain	the	query	language	of
choice	for	both	flavors	of	SSAS.	For	the	purposes	of	this	discussion,	either	form	of
SSAS	will	be	referred	to	as	a	semantic	data	model,	or	cube.	Without	getting	into	the
subtleties,	from	a	query	and	reporting	perspective,	they	are	essentially	the	same.	So,
from	here	on,	tabular	and	multidimensional	models	will	be	collectively	referred	to	as	a
cube	or	online	analytical	processing	(OLAP)	database.

Cube	data	is	easy	to	navigate	and	it	is	easy	to	produce	complex,	business-relevant
results	for	business	leaders	and	information	workers.	This	chapter	introduces	some	of
the	basic	concepts	of	OLAP	and	multidimensional	storage	systems.	You	will	use	the
Report	Designer	to	create	MDX	language	queries,	both	with	and	without	the	MDX
Graphical	Query	Builder.	You	will	learn	how	to	build	compelling	reports	using
parameters,	PivotTables,	and	KPI	indicators	in	a	table	or	matrix	report.

Finally,	you	will	learn	to	use	cube	actions	and	apply	best	practices	and	safety	checks	to
your	report	solutions	that	use	Analysis	Services	as	a	data	source.

In	Chapter	11,	“SSAS	Reporting	Advanced	Techniques,”	you	will	build	on	this
knowledge	to	create	advanced	reports	that	can	change	their	content	(rows,	columns,
and	measures)	by	simply	changing	report	parameter	values.

ANALYSIS	SERVICES	FOR	REPORTING
Relational	databases	are	no	longer	the	only	viable	choice	for	managing	data	for
analysis	and	reporting.	True,	the	vast	majority	of	general-use	databases	use
conventional	relational	database	management	system	(RDBMS)	platforms	like	SQL
Server.	Specialized	data	management	systems	are	faster,	easier,	and	more	cost-
effective	than	one	product	designed	to	do	it	all.	In	this	new	age	of	business	analytics
and	data	science,	self-service	analysis	tools	like	Power	Pivot	and	Power	BI	have	proven
to	be	powerful	and	easier	to	implement.	These	tools	are	based	on	the	same	technology
as	Analysis	Services,	offering	the	same	advantages	of	ultra-high-performance	and
ease-of-use	in	an	enterprise-scale	service.	After	the	necessary	effort	has	been
expended	to	build	and	populate	a	data	warehouse,	taking	the	next	step	to	create	a
multidimensional	or	tabular	SSAS	data	model	on	this	data	is	relatively	easy.

Making	the	leap	from	the	operational	data	store	to	a	relational	data	warehouse	may	be
sufficient	in	a	small	business	with	unsophisticated	reporting	needs.	However,	for	a
medium-scale	business	environment,	including	Analysis	Services	in	the	solution	has
many	advantages.	Generally,	moving	to	an	SSAS	solution	enables	capabilities	in	four
categories:

Data	in	an	SSAS	model	is	“browseable”	without	your	having	to	write	sophisticated
queries.	Information	is	organized	into	dimensional	hierarchies	so	that	report
designers	can	simply	drag	and	drop	to	design	report	datasets.

Information	workers	can	design	their	own	reports	without	understanding	the
underlying	data	structure.	With	no	query-writing	skills,	users	simply	select	from
predefined	measures	and	hierarchies	to	create	queries	and	design	reports.

Using	calculated	members,	sophisticated	calculations	are	built	into	the	cube.	Users
and	report	designers	can	select	from	calculated	members	as	easily	as	they	can	use
standard	measures	and	other	cube	members.

Queries	typically	run	very	fast,	even	when	the	data	model	is	derived	from	large	sets
of	data.	The	improved	performance	is	primarily	because	of	data	being	either	pre-
aggregated	or	loaded	entirely	into	memory.

The	bottom	line	is	that	building	an	SSAS	model	with	Analysis	Services	is	generally
easy	to	do	if	you	have	a	properly	designed	relational	data	warehouse.	Navigation	is
much	easier	than	with	a	relational	database.	Cubes	enable	self-service	reporting	and
effective	data	exploration.	Most	importantly,	cubes	can	be	faster	when	compared	to
other	data	sources	and	reporting	solutions.

If	you	work	for	a	small	company	or	in	an	environment	with	manageable	volumes	of
data,	you	will	likely	find	significant	advantages.	Because	Analysis	Services	is	already
covered	under	your	SQL	Server	product	license,	there	is	little	or	no	cost	to	building
cubes	and	realizing	these	benefits.

If	you	work	for	a	large	company	and	work	with	larger	volumes	of	complex	business
data,	you	probably	do	not	need	much	persuasion	to	recognize	the	advantages	of	using
cubes	to	help	solve	these	challenges.	Comparatively,	making	the	move	to	SSAS	models
will	help	you	take	reporting	to	the	next	level	while	solving	performance	and	query
design	issues.

NOTE

A	quick	note	on	dimensional	modeling:	Keep	it	simple.	The	design	tools	make	it
easy	to	add	lots	of	attributes	to	an	Analysis	Server	cube.	As	a	developer	or	super-
user,	you	might	think	you	are	helping	your	clients	by	adding	all	these	attributes.
Don't	do	it.	Think	carefully	about	what	attributes	you	want	to	add,	and	minimize
the	number	of	dimensions.	(Ideally,	you	should	use	seven	to	ten.)	Keep	the
overall	cube	simple	and,	therefore,	easy	to	use.

USING	REPORTING	SERVICES	WITH	ANALYSIS
SERVICES	DATA
Reporting	Services	works	natively	with	several	Analysis	Services	capabilities:

Native	support	for	nonadditive	measures	and	calculations—Rather	than
building	sophisticated	expressions	and	calculation	logic	into	reports,	Reporting
Services	lets	you	take	advantage	of	features	already	built	into	the	Analysis	Services
data	model.

Analysis	Services	and	the	MDX	query	language	support	custom
formatting	defined	for	measures	in	the	cube—Reports	may	be	designed	to
use	this	formatting	without	duplicating	this	effort	in	the	report	design.

Drill-through	reports	can	work	for	MDX	datasets—Drill-through	reports
can	be	used	with	some	basic	knowledge	of	MDX	member	reference,	formatting,
and	special	field	properties	present	in	Reporting	Services	for	MDX	reports,

Data	may	be	protected	through	user	role-based	security—If	user
credentials	are	provided	to	data	sources	using	Windows	Authentication,	this	works
without	special	report	provisions.

Summary	reports	that	would	normally	aggregate	a	lot	of	data	run	much
faster	with	cubes—Take	advantage	of	this	capability	by	designing	summary
reports	and	dashboards	with	drill-through	actions	to	lower-level,	detailed	reports.

Most	reports	that	use	Analysis	Services	as	a	data	source	are	fairly	easy	to	design	for
two	reasons:

The	mission	of	Analysis	Services	is	to	make	data	easy	to	use.	A	properly	designed
cube	simplifies	your	business	data	by	organizing	it	into	predefined,	hierarchical
structures	with	business	facts	pre-aggregated	and	ready	to	use	by	dragging	and
dropping	into	the	MDX	Query	Designer.

The	Report	Designer	is	friendly,	with	an	MDX-based	dataset.	It	automatically
generates	parameter	lists,	cascading	parameters,	and	filtering	logic.	In	many	ways,
designing	a	report	for	SSAS	is	easier	than	for	a	relational	database	because	of	the
simplification	applied	in	the	cube,	and	because	of	these	enhancements	to	the
Report	Designer.

Most	SSAS	reports	are	usually	simple	in	design,	just	because	of	the	nature	of	the	cube.
With	predefined	drill-down	paths,	and	multiple	multilevel	hierarchies,	it	should	be
natural	to	visualize	this	information	in	a	matrix	or	multi-axis	chart.	Business	leaders
now	expect	to	see	data	presented	in	standard	formats,	using	key	performance
indicators	(KPIs)	to	present	business	metrics	in	dashboards	and	business	scorecards
with	gauges	and	iconic	graphical	indicators.	In	the	following	exercises,	you	will	see
how	using	an	SSAS	data	source	with	dimensional	hierarchies,	measures,	KPIs,

calculated	members,	and	related	cube	elements	make	business	report	design	simple
and	manageable.

WORKING	WITH	MULTIDIMENSIONAL	EXPRESSION
LANGUAGE
The	MDX	query	language	is	part	of	the	OLEDB	for	OLAP	specification	from	Microsoft.
The	MDX	query	language	is	used	in	several	products	from	different	vendors,	such	as
IBM	Cognos,	Hyperion	EssBase,	Business	Objects,	and,	of	course,	Microsoft	SQL
Server	Analysis	Services.	Like	SQL,	the	language	varies	from	product	to	product,	but
the	concepts	and	core	features	are	the	same—or	at	least	very	similar	in	some
categories.

MDX:	Simple	or	Complex?
Most	IT	professionals	who	want	to	learn	MDX	already	know	a	little	or	a	lot	of	SQL.
They	have	worked	through	the	process	of	reporting	on	transactional	databases,
migrating	to	a	data	warehouse,	and	building	queries	on	a	relational/dimensional
model.	Now,	they	realize	the	benefits	of	a	truly	dimensional	storage	engine	to	solve
complex	business	problems.

This	presents	an	interesting	challenge	for	most	of	these	people.	You	see,	MDX	is	a
simple	query	language	that	sits	squarely	on	the	multidimensional	foundations	of
OLAP	technologies—all	of	which	exists	for	the	sole	purpose	of	simplifying	business
data.	But	if	Analysis	Services	and	MDX	are	so	simple,	why	does	the	industry	perceive
them	to	be	so	difficult	to	learn?	There's	a	simple	answer.

MDX	is	very	different	from	SQL,	but	on	the	surface	it	looks	a	lot	like	SQL.	This	means
that	anyone	making	the	transition	must	struggle	through	a	mental	paradigm	shift—
from	two-dimensional	(2-D),	row-set–based	thinking	to	multidimensional,	axis-based,
cell-set	thinking.	Making	this	mental	transition	is	not	so	difficult	with	a	bit	of	effort,
but	it's	easy	to	slip	back	into	a	SQL	mindset	if	you	don't	stay	in	practice.	MDX	is	not
really	more	difficult	than	SQL;	it	is	more	like	the	difference	between	a	procedural
language	and	an	object-oriented	language.	Here's	the	interesting	twist.	When	you're
finished	working	with	all	these	cool,	multidimensional	concepts,	you	take	the	output
and	pound	it	back	into	a	2-D	result	so	that	you	can	display	it	on	a	screen	or	print	it	on
a	sheet	of	paper.

MDX	is	one	of	those	topics	that	can't	be	introduced	without	sufficient	background	and
an	exhaustive	set	of	exercises.	So,	you	will	not	learn	everything	you	need	to	know
about	MDX	in	this	chapter.	The	purpose	here	is	to	give	you	some	exposure	to	the
kinds	of	things	you	can	do	using	this	powerful	query	language.	For	most	report	work,
you	shouldn't	need	to	know	more	than	some	basic	commands	and	functions.	As	you
shop	for	books	and	training,	note	that	the	language	and	query	techniques	haven't
really	changed	much	since	SQL	Server	2008.	There	have	been	some	good	books
written	since	then,	but	the	language	hasn't	really	changed.

Building	Queries	with	the	MDX	Query	Designer

When	you	choose	the	SQL	Server	Analysis	Services	data	processing	provider	as	you
define	a	report	data	source,	the	MDX	Query	Designer	is	automatically	invoked	for	any
new	datasets.	Your	first	objective	will	be	to	work	with	dataset	results	from	a	query
generated	by	the	MDX	Query	Designer.	After	exploring	this	feature,	you	will	write
MDX	queries	without	the	aid	of	the	builder.

A	common	approach	is	to	hand-write	the	MDX	queries	for	reports	in	SQL	Server
Management	Studio,	and	then	copy-and-paste	them	into	the	text	query	editor.	This	is
primarily	because	of	individual	style	and	query	design	patterns	for	MDX,	much	like	T-
SQL	experts	insist	on	hand-coding	their	queries	instead	of	using	the	query	builder.
But	this	doesn't	mean	you	must	do	the	same.

The	graphical	MDX	Query	Designer	generates	relatively	well-formed,	efficient	MDX
script.	If	you	design	all	the	necessary	calculated	members	into	the	model,	you
shouldn't	have	to	make	changes	to	the	report	queries.	If	you	do	need	to	write
advanced	MDX	queries,	you	probably	don't	need	to	use	the	graphical	designer	anyway.
Compared	to	T-SQL,	MDX	queries	are	usually	simpler	and	less	verbose,	because
business	rules	are	resolved	in	the	model	rather	than	in	the	query.	Regardless,	the
MDX	Query	Designer	works	the	way	it	does	and	has	some	quirks	when	things	get
advanced.	You	should	work	with	it	and	take	advantage	of	its	capabilities,	which	when
doing	so,	serves	your	needs.	If	the	complexity	of	your	SSAS-based	reports	gets	to	that
point,	you	will	know	when	you	outgrow	the	Query	Designer.

Creating	a	Data	Source
Let's	start	by	creating	a	shared	data	source	for	the	Adventure	Works	Multidimensional
database.

NOTE

This	is	one	of	a	few	tasks	that	requires	the	Visual	Studio	SSDT	designer,	rather
than	Report	Builder.	If	your	business	users	will	be	using	Report	Builder	to	design
their	own	reports,	it	is	necessary	for	a	developer	to	create	and	deploy	shared	data
sources	using	SSDT	or	the	web-based	Report	Portal.	Shared	data	sources	cannot
be	designed	and	deployed	from	Report	Builder.

1.	 In	SSDT,	open	the	Wrox	SSRS	2016	Exercises	project.

2.	 In	the	Solution	Explorer	for	a	report	project,	right-click	Shared	Data	Sources,	and
select	Add	New	Data	Source,	as	shown	in	Figure	10.1.

Figure	10.1	Adding	a	new	data	source.

3.	 The	Shared	Data	Source	Properties	dialog	opens,	as	shown	in	Figure	10.2.	Select
the	Microsoft	SQL	Server	Analysis	Services	data	provider	from	the	Type	drop-down
list.

Figure	10.2	Shared	Data	Source	Properties	dialog.

4.	 Click	the	Edit	button	to	the	right	of	the	“Connection	string”	box	to	open	the
Connection	Properties	dialog	shown	in	Figure	10.3.

Figure	10.3	Connection	Properties	dialog.

5.	 Type	LocalHost	or	the	name	of	your	Analysis	Services	server	in	the	“Server	name”
box.	From	the	drop-down	list	in	the	“Connect	to	a	database”	section,	select	the
Adventure	Works	Multidimensional	Analysis	Services	database.	Test	the
connection	and	then	click	OK	to	accept	these	connection	settings.

5.	 TIP

Chapter	3,	“Reporting	Services	Installation	and	Architecture,”	covers	the	setup
and	configuration	of	SSDT,	the	sample	databases	(including	Adventure
Works	Multidimensional)	and	Analysis	Services.

6.	 Back	in	the	Shared	Data	Source	Properties	dialog,	change	the	Name	to
AdventureWorksSSAS,	as	shown	in	Figure	10.4.	Doing	so	differentiates	between	a
relational	data	source	and	this	Analysis	Services	data	source	for	databases	that
have	the	same	name	or	a	similar	one.	You	can	see	that	a	connection	string	is
generated	and	placed	in	the	“Connection	string”	box.

Figure	10.4	Changing	the	name	of	the	data	source.

7.	 Click	OK	to	save	the	new	shared	data	source.	Then,	right-click	the	new	shared	data
source	and	select	Deploy.

You	will	choose	this	shared	data	source	for	all	the	examples	used	in	this	chapter.
Because	the	data	source	uses	the	Analysis	Services	data	provider,	the	Report	Designer
generates	MDX	queries	rather	than	the	T-SQL	queries	you've	seen	in	previous
examples	using	the	SQL	Server	data	provider.

Building	the	Dataset	Query
You've	been	using	the	Visual	Studio	SSDT	Report	Designer	for	the	previous	chapter
exercises.	One	of	the	objectives	of	using	Analysis	Services	is	to	enable	capable
business	users	to	be	self-sufficient.	Enabling	self-service	report	design	was	the
original	goal	behind	Report	Builder.	Frankly,	it	hasn't	been	embraced	everywhere	and
by	everyone,	but	there	is	a	pretty	good	story	there.	In	the	previous	edition	of	this	book,
the	author	actually	had	the	reader	switch	gears	and	use	Report	Builder	at	this	point.	In
training	classes,	we	normally	decide	ahead	of	time	which	tool	to	use,	and	then	provide
the	appropriate	instructions.

Most	report	design	tasks	are	identical	when	comparing	SSDT	and	Report	Builder.
However,	the	differences	are	subtle,	which	makes	it	difficult	to	provide	side-by-side
instructions	for	both	tools.	The	steps	described	in	the	examples	for	this	chapter	apply
to	SQL	Server	Data	Tools	for	Visual	Studio.	Where	there	are	differences,	they	are
pointed	out	in	the	margin	notes.

You	will	design	a	report	using	one	of	the	KPIs	defined	in	the	Adventure	Works	cube.	A
KPI	is	a	standardized	set	of	related	members	used	to	report	the	state	of	a	business
metric.	In	this	case,	you	want	to	report	the	current	value,	goal,	and	status	of	Channel
Revenue	by	product	category	for	a	selected	calendar	year.	This	section	does	not	step
you	through	every	click	and	keystroke,	because	you	already	know	how	to	design
reports.	This	section	covers	the	MDX-specific	features,	and	then	shows	you	how	to
use	the	report	design	skills	you	acquired	in	previous	exercises.

1.	 Add	a	new	report	named	Channel	Revenue	by	Territory.

2.	 Add	an	embedded	data	source,	and	give	it	the	same	name	as	the	shared	data	source
for	the	AdventureWorksSSAS	shared	data	source.

2.	 NOTE

When	using	Report	Builder,	you	will	browse	to	the	server,	select	the	shared
data	source,	and	then	click	Create.	Note	that	if	the	data	source	is	not
available,	you	must	click	the	“Browse	other	data	sources”	option,	navigate	to
http://localhost/ReportServer/Data	Sources,	and	then	open	it.

3.	 Add	a	new	dataset	named	ChannelRevenueByTerritory	and	choose	the
AdventureWorksSSAS.

4.	 Click	the	Query	Designer…	button.

You	see	that	the	MDX	Query	Designer	shown	in	Figure	10.5	is	used	to	construct
the	query	using	simple	drag	and	drop.	This	figure	has	been	labeled	to	point	out
the	important	components	of	this	screen.	At	first,	you	will	use	the	Cube	metadata
pane	to	select	cube	members,	and	then	drag	them	into	the	cube	member	drop	area
(or	Data	pane).	This	discussion	will	refer	to	other	components	in	this	figure	as
you	continue	to	work	with	this	tool.

Figure	10.5	MDX	Query	Designer.

4.	 NOTE

The	author	prefers	to	work	from	the	inside	out,	dragging	in	measures	and
then	the	dimension	members.	This	seems	like	the	most	logical	approach.

5.	 Using	the	Cube	metadata	pane,	expand	the	KPIs	node	and	the	Channel	Revenue
KPI.	Drag	the	Value,	Goal,	and	Status	members	into	the	Data	pane.	Note	that	a
large	I-beam	bar	indicates	the	drop	position	of	the	current	member.	Use	this	to
position	these	members	in	the	proper	order.

The	metadata	pane	enables	you	to	explore	and	select	from	any	member	of	the
cube	structure.	Figure	10.6	shows	various	members	of	the	Adventure	Works
sample	cube.	In	short,	measures,	calculated	members,	and	KPIs	represent
numeric	values	for	reporting.	All	other	members	are	used	to	group,	filter,	and
provide	navigational	paths	to	these	values.	The	nodes	have	been	expanded	in	the
metadata	pane	to	demonstrate	examples	of	each	of	these	elements.

Figure	10.6	Analysis	Services	metadata	objects.

Another	useful	technique	is	to	select	a	specific	option	from	the	Measure	Group
selector.	This	restricts	information	to	just	the	measures	and	dimensions	that
relate	to	that	measure	group.	For	example,	you	can	select	Reseller	Sales	to	see

only	measures	and	members	of	that	group.

All	attributes	are	organized	into	subject-specific	dimensions.	Dimensions	have
two	types	of	hierarchies—attribute	and	user.	An	attribute	hierarchy	is	simply	a
flat	collection	of	dimension	members	derived	from	a	specific	data	attribute.	A
user	hierarchy	has	multiple	levels	of	attributes	organized	into	a	logical	drill-
down	structure.	For	the	most	part,	you	want	to	use	user	hierarchies	for	all	drill-
down	and	structured	reporting.	As	a	matter	of	convention,	hierarchies	consist	of
levels	and	members.	Members	are	just	the	individual	attribute	values	for	a	level
(such	as	Years,	Quarters,	or	Months).	Note	that	attribute	hierarchy	levels	typically
have	the	same	name	as	the	hierarchy	(such	as	[Date].[CalendarYear].
[CalendarYear]),	but	user	hierarchies	do	not.	The	user	attribute	name	typically	is
more	explicit	(such	as	[Date].[Calendar].[CalendarYear]).	Unless	specifically
hidden	in	the	design,	the	members	of	every	user	hierarchy	level	correspond	to	the
members	of	an	attribute	hierarchy.

6.	 After	dragging	the	KPI	members	to	the	Data	pane,	expand	the	Sales	Territory
dimension.

7.	 Drag	the	Sales	Territory	hierarchy	(pyramid	shaped	icon)	to	the	left-most	position
in	the	drop	area	within	the	Data	pane.

8.	 Compare	the	Query	Designer	to	Figure	10.7	and	make	corrections	if	necessary.

Figure	10.7	Query	Designer	filled	in.

The	Query	Designer	parses	the	hierarchy	levels	and	generates	columns	for	each.	The
query	runs	and	shows	the	results	grouped	by	the	attribute	members,	in	order	of
column	placement.

Using	Parameterized	Queries
The	query	created	with	the	previous	steps	is	complete	and	usable,	but	returns	results
for	all	the	data.	To	filter	data	from	a	cube,	you	“slice”	the	cube	to	limit	the	query's
scope	to	certain	members	of	a	hierarchy.	You	do	so	by	using	the	Filtering	pane	of	the
MDX	Query	Designer.	Follow	these	steps	to	add	a	parameterized	filter	to	the	query
you	just	created:

1.	 Expand	the	Date	dimension	and	the	Calendar	folder.

2.	 Drag	the	Calendar	Year	attribute	in	the	Date	dimension	to	the	Filter	pane.

3.	 Drop	down	the	Filter	Expression	list	and	check	the	box	to	select	CY	2012,	as
shown	in	Figure	10.8.	Note	that	the	values	in	the	Data	pane	change	when	a
different	year	is	selected.

Figure	10.8	Defining	the	Filter	Expression.

Use	the	Filter	Expression	drop-down	window	to	set	the	default	filter	member.
Note	that	every	hierarchy	has	an	All	member,	which	is	used	to	include	all
members	of	the	hierarchy.

4.	 On	the	Filter	Expression	drop-down	list,	uncheck	everything	and	then	check	All
Periods	to	set	the	filter	to	include	all	members.	This	essentially	negates	the	filter
unless	you	make	a	different	selection.

5.	 Depending	on	your	screen	size,	the	right-most	column	may	not	be	in	view.	If	it
isn't,	scroll	and	adjust	the	columns	to	view	the	Parameter	column.	Check	this	box
to	generate	a	related	report	parameter	for	this	filter.

6.	 Click	OK	to	close	the	Query	Designer.

Slicing	the	Cube

The	concept	of	a	filter	is	actually	contrary	to	how	MDX	works.	The	term	filter	is
commonly	used	because	most	people	understand	this	notion	based	on	their
experiences	with	relational	database	technologies.	However,	what	actually	has	been
defined	here	is	more	accurately	known	as	a	slicer.	To	limit	the	results	of	an	SSAS
dataset,	you	won't	tell	the	query	engine	to	scan	individual	rows,	looking	for	values	that
match	certain	criteria.	You	are	actually	telling	it	to	“slice	off”	a	portion	of	the	cube,
which	is	already	organized	into	predefined	ranges	of	grouped	and	sorted	attributes.

An	important	distinction	between	these	two	conventions	is	that	slicing	doesn't	toss
out	the	rest	of	the	cube	that	doesn't	meet	the	WHERE	clause	criteria	(as	a	true	filter
would).	It	sets	the	context	(or	CurrentMember	property)	for	the	specified	hierarchy.
Members	of	the	hierarchy	outside	this	scope	are	still	accessible	to	functions	and
operators	that	may	be	used	in	the	query.	The	default	slicer	(shown	in	Figure	10.9)	is
set	to	use	the	All	member,	which	returns	data	for	all	calendar	year	members.	Of
course,	users	can	change	this	parameter	selection	when	they	run	the	report.

Figure	10.9	Default	slicer.

The	Value	and	Goal	KPIs	typically	are	used	to	return	a	measure	or	calculated	value.
The	Status	and	Trend	members	are	used	to	simplify	the	state	of	the	KPI	performance
based	on	some	scripted	logic,	and	to	drive	a	graphical	dashboard	indicator	of	some
kind.	In	the	case	of	Channel	Revenue,	the	Status	KPI	member	returns	an	integer	with
one	of	three	values	to	indicate	the	state	of	channel	revenue.	The	value	−1	indicates
poor	performance,	0	is	marginal,	and	1	indicates	acceptable	or	exceptional
performance.

Reviewing	the	Finished	Sample	Report
After	you	create	a	dataset,	designing	a	report	that	uses	Analysis	Services	(for	the	most
part)	is	not	different	from	designing	other	reports.	Figure	10.10	shows	a	table	report
designed	for	this	dataset.

Figure	10.10	Table	report.

This	is	the	Ch10	-	Channel	Revenue	by	Territory	report	in	the	sample	project.	This
involved	simply	defining	groups	on	the	sales	territory	region	hierarchy	levels	and
using	the	fields	derived	from	the	Value	and	Goal	KPI	members	in	the	table's	detail
row.

Visualizing	a	KPI
For	the	KPI	indicator,	the	Channel_Revenue_Status	column	was	added	to	the	table
first.	When	you	drag-and-drop	the	Indicator	item	from	the	Toolbox	into	the	existing
Status	column	detail	cell,	the	designer	will	set	the	Value	expression	using	the	original
textbox.	Different	indicators	have	three,	four,	or	five	states.	The	default	logic	for	this
three-state	indicator	is	that	it	will	show	the	red	icon	if	the	current	value	is	0	percent	to
33	percent	of	the	maximum	possible	value,	yellow	if	33	percent	to	66	percent,	or	green
if	66	percent	to	100	percent.	This	might	be	correct	logic	in	some	cases,	but	the	correct
states	have	already	been	coded	in	the	cube	design.	To	edit	the	indicator	properties,
click	it	in	Design	view	and	then	use	the	Gauge	Data	window	to	view	the	Indicator
Properties	dialog	for	Indicator1	(shown	in	Figure	10.11).

Figure	10.11	Indicator	Properties	dialog.

NOTE

To	set	properties	for	an	indicator	report	item,	click	the	indicator	to	show	the
Gauge	Data	window.	Click	the	down	arrow	next	to	the	name	of	the	indicator,	and
choose	“Indicator	properties…”	from	the	menu.

You	learn	more	about	gauges	and	indicators	in	greater	detail	during	the	discussion
about	dashboard	reports	in	Chapter	19,	“Mobile	Report	Design	Patterns.”	In	this	brief
overview,	you	learn	how	this	indicator	gets	discrete	integer	values	from	the	KPI
definition	in	the	SSAS	cube	or	model—-1	represents	Red,	0	is	Yellow,	and	1	is	Green.
For	this	to	work,	the	States	Measurement	Unit	must	be	set	to	Numeric	rather	than
Percentage.	The	icon	indicator	states	must	also	be	mapped	to	the	appropriate	state
values.

With	a	KPI	indicator	in	the	last	column,	adding	a	group	total	row	after	the	Country
group	adds	the	appropriate	SUM	expressions	to	the	Channel	Revenue	Value	and	Goal
columns,	but	not	for	the	Status.	The	Status	value	can't	be	aggregated.	It	is	really	up	to
the	business	to	decide	how	any	measure	value	should	roll-up	at	a	higher	level	(or
whether	it	should	at	all).	In	this	case,	let's	say	that	the	KPI	status	only	applies	at	the
Region	level.	One	option	is	to	take	an	average	of	the	leaf-level	state	values	and	then
apply	a	numeric	range	to	derive	a	state	from	the	total.	This	can	lead	to	statistical
anomalies,	and	it	is	best	to	calculate	the	correct	value	for	each	hierarchy	level	within
SSAS.

NOTE

Aggregating	KPI	states	can	be	a	tricky	business.	Don't	assume	what	the	business
rules	are	without	consulting	the	business	stakeholder.	Likewise,	some	measures
are	nonadditive	and	simply	can't	be	totaled.

You	should	explore	some	of	the	standard	features	that	were	added	as	a	result	of	using
the	MDX	Query	Designer.	The	Parameter	drop-down	is	completely	configured	and
populated	with	a	hidden	dataset	to	provide	Calendar	Year	values.	Items	on	the	list
below	the	All	member	are	indented.	Had	you	used	a	multi-level	user	hierarchy,	all	the
levels	would	be	indented	appropriately	to	indicate	their	position	within	the	hierarchy.
All	parameter	lists	are	automatically	generated	as	multi-value	selection	lists.

TIP

The	graphical	MDX	Query	Designer	generates	a	hidden	dataset	for	each
parameter	created.	To	view	them,	right-click	the	Datasets	node	in	the	Report
Data	window	and	select	Show	Hidden	Datasets.

Most	reports	created	with	an	Analysis	Services	data	source	are	this	simple.	Because
the	calculation	and	KPI	business	logic	are	designed	into	the	cube,	no	extra	work	is
necessary	when	reports	are	designed.	With	the	Report	Builder	Designer,	information
workers	can	design	reports	with	little	or	no	knowledge	of	cube	design	or	MDX	query
scripting.	Using	practically	any	MDX-based	dataset,	reports	can	be	designed	with	a
table,	matrix,	chart,	or	combinations	of	the	data	ranges	and	other	report	items	to
visualize	business	information	in	the	most	appropriate	format.

Modifying	an	MDX	Query
You	are	now	crossing	a	bridge.	On	the	other	side	is	an	environment	that	is	a	little
more	complex	and	delicate	than	the	one	you	just	left.	Reporting	Services	enables	you
to	do	a	lot	of	interesting	things	with	MDX	and	SSAS	data	sources,	but	the	Query
Designer	was	not	engineered	for	advanced	MDX.	The	author	does	a	lot	of	report
design	using	MDX	and	often	steps	into	client	projects	where	others	have	tried	to
implement	complex	MDX	queries	and	have	failed.

Over	the	years,	working	on	these	projects,	the	author	and	his	colleagues	and	have
discovered	what	has	and	has	not	worked,	and	have	developed	techniques	for	achieving
the	desired	results.	One	of	their	most	important	lessons	has	been	to	work	within	the
product's	capabilities	and	not	to	force	it	to	work	otherwise.	The	author	has	had
numerous	conversations	with	members	of	the	Reporting	Services	product	team	on
this	topic,	and	the	advice	often	received	is,	“We	didn't	intend	for	you	to	write	an	MDX
query	that	way,	and	we	don't	support	that	particular	technique.	You	can	achieve	the
same	result	by	doing	it	this	way.”	Following	are	some	of	these	techniques.

The	author	has	not	had	much	luck	adding	his	own	parameter	logic	to	handwritten
MDX	queries.	It	can	be	done,	but	the	Query	Designer	is	particular	about	script
changes,	and	intervenes	at	the	most	inconvenient	times.	You	should	do	one	of	the
following:

Use	the	MDX	Query	Designer	to	design	the	original	query	with	the	built-in
parameter	logic	and	supporting	datasets,	and	then	modify	the	query	logic,	leaving
the	parameter	logic	alone.

Hand-write	MDX	queries	in	SSMS	with	hard-coded	slicer	and	filter	logic.	Paste	and
execute	the	query	to	define	the	dataset	fields,	and	then	add	parameters	in	the
Dataset	expression	window,	not	the	query	window.

The	second	recommendation	is	the	author's	standard	method.	The	caveat	is,	if	you
make	query	changes,	you	cannot	execute	the	modified	query	including	parameters	and
get	the	designer	to	add	new	fields	to	the	dataset.	After	you	understand	the	mechanics
of	the	query	editor,	you	can	write	more	complex	queries	and	handle	the	parameter
logic	on	your	own.

NOTE

Advanced	MDX	is	a	skill	that	most	casual	report	designers	need	not	learn.	You
will	find	several	good	examples	of	advanced,	hand-coded	MDX	queries	with
embedded	parameters	in	Chapter	11.

Building	a	Query	Using	the	MDX	Designer
Let's	start	with	a	copy	of	the	dataset	you	just	completed.	The	objective	is	to	define
three	calculated	members	based	on	the	same	KPI	members	you	used.	These	calculated
members	do	not	exist	in	the	cube.	Let's	assume	you	don't	have	permission	to	modify
the	cube	structure	to	add	them	to	the	cube	design.	In	addition	to	the	Value,	Goal,	and
Status	members	for	the	Channel	Revenue	KPI,	you	need	to	see	what	these	values	were
for	the	prior	year.

1.	 Make	a	copy	of	Channel	Sales	by	Territory	report	so	that	you	have	it	for
reference.

2.	 In	the	new	copy	of	the	report	in	SSDT,	open	the	dataset	query
ChannelRevenueByTerritory.

3.	 Switch	to	the	query	editor	to	text	query	view	using	the	Design	Mode	icon	(right-
most	icon	on	the	Query	Designer	toolbar).	In	text	view,	the	query	should	appear	as
shown	in	Figure	10.12.

Figure	10.12	Switching	to	the	text	query	view.

4.	 Select	and	then	copy	the	MDX	script	to	the	clipboard.

5.	 Open	SQL	Server	Management	Studio	(SSMS),	connect	to	Analysis	Services,	and
then	click	the	New	Query	button	on	the	toolbar	to	open	a	new	MDX	query.

6.	 Paste	the	query	from	the	Report	Designer	in	the	Query	window.

7.	 Use	the	example	in	Figure	10.13	to	add	line	returns	and	tabs	to	format	the	query
for	readability.

Figure	10.13	Query	as	it	appears	in	Query	window.

7.	 NOTE

Apparently,	the	Reporting	Services	MDX	Query	Designer	was	created	before
carriage	returns	were	invented.	A	handy	tool	to	reformat	MDX	query	script	is
MDX	Studio,	which	you	can	download	from	www.sqlbi.com/tools/mdx-
studio.	This	is	a	third-party	tool	and	future	support	isn't	guaranteed.

All	the	MDX	experts	have	their	own	styling	preferences.	Just	like	T-SQL,	MDX	is
forgiving	about	carriage	returns,	tabs,	and	spaces,	so	knock	yourself	out	restyling
your	queries	to	make	them	readable	and	easier	to	follow.	As	you	read	books	and
search	for	examples,	you	are	likely	to	see	a	lot	of	variation.	The	author	finds	it
easier	to	read	a	query	where	each	clause	(SELECT,	FROM,	WHERE)	is	demoted	to	the
left	margin,	and	subsequent	operations	are	indented	with	container	punctuation
(like	parentheses	and	set	braces)	on	separate	lines	and	matching	tab	stops	so	that
it	reads	to	like	programming	code.

8.	 The	nested	parameter	references	will	not	work	in	SSMS,	so	simplify	this	query	to
run	without	them.	The	easiest	way	to	do	this	is	to	divide	the	first	part	of	the	script,
up	to	the	ON	ROWS	expression,	from	the	rest	with	a	few	carriage	returns.	(This
example	uses	only	the	first	part	for	testing.)	To	complete	the	test	query,	you	just
need	to	add	a	FROM	clause	followed	by	the	cube	name.	Again,	your	screen	should
look	like	Figure	10.13.

9.	 Highlight	only	the	first	query,	and	click	the	Execute	button	on	the	toolbar.

10.	 To	add	the	calculated	members	to	the	query,	type	the	following	into	the	Query
window	before	the	existing	script:

WITH

		MEMBER	Measures.[Last	Year	Value]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIValue("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Goal]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIGoal("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Status]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIStatus("Channel	Revenue")

)

http://www.sqlbi.com/tools/mdx-studio

10.	 TIP

Keep	in	mind	that	when	copying	and	pasting	query	script	from	a	document	or
online	post,	quote	and	double-quote	characters	often	get	changed	by	the
software.	If	you	run	into	errors,	try	re-typing	quotation	and	punctuation
characters.

To	understand	the	logic	for	each	of	these	calculated	members,	let's	examine	the
first	one.	A	new	member	named	Last	Year	Value	is	added	to	the	Measures
collection,	applying	this	expression:

			MEMBER	Measures.[Last	Year	Value]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIValue("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

This	member	returns	the	Channel	Revenue	KPI	Value	for	the	previous	Calendar
Year,	based	on	the	current	member	of	the	Calendar	Year	hierarchy.	If	your	user
selects	2013	for	the	DateCalendarYear	parameter,	the	WHERE	clause	uses	the
parameter	to	set	this	as	the	current	member.	The	PREVMEMBER	function	causes	the
expression	to	return	the	Channel	Revenue	KPI	Value	for	Calendar	Year	2012.
Because	the	final	report	query	will	be	parameterized,	this	functionality	is
completely	dynamic.

11.	 You	want	to	add	these	three	new	members	to	the	query's	COLUMNS	axis,	which	will
be	interpreted	as	three	new	fields	in	the	report.	Remove	the	NON	EMPTY	directive
after	the	SELECT	clause.	This	ensures	that	all	columns	will	be	returned,	even	if	no
data	is	present.	To	add	the	new	calculated	members	to	the	query,	apply	the
following	changes:

WITH

		MEMBER	Measures.[Last	Year	Value]	AS

				(

					[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIValue("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Goal]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIGoal("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Status]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIStatus("Channel	Revenue")

)

SELECT

		{

				KPIValue("Channel	Revenue")

			,KPIGoal("Channel	Revenue")

			,KPIStatus("Channel	Revenue")

			,[Last	Year	Value

			,[Last	Year	Goal

			,[Last	Year	Status

		}	ON	COLUMNS

	,

				{

						[Sales	Territory].[Sales	Territory].[Region].ALLMEMBERS

				}

		DIMENSION	PROPERTIES

				MEMBER_CAPTION

			,MEMBER_UNIQUE_NAME

			ON	ROWS

--	Added	FROM	clause	for	testing:

FROM	[Adventure	Works]

12.	 Run	the	query	to	verify	that	it	works.	You	should	now	see	six	columns	in	the
results.	The	reason	that	the	new	members	don't	return	a	value	is	that	the	current
member	of	the	Calendar	Year	has	not	been	set.	To	do	this,	add	a	WHERE	clause	to
slice	the	cube	on	Calendar	Year	2013:

WITH

		MEMBER	Measures.[Last	Year	Value]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIValue("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Goal]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIGoal("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Status]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIStatus("Channel	Revenue")

)

SELECT

		{

				KPIValue("Channel	Revenue")

			,KPIGoal("Channel	Revenue")

			,KPIStatus("Channel	Revenue")

			,[Last	Year	Value

			,[Last	Year	Goal

			,[Last	Year	Status

		}	ON	COLUMNS

	,

				{

						[Sales	Territory].[Sales	Territory].[Region].ALLMEMBERS

				}

		DIMENSION	PROPERTIES

				MEMBER_CAPTION

			,MEMBER_UNIQUE_NAME

			ON	ROWS

--	Added	FROM	clause	for	testing:

FROM	[Adventure	Works

--	Added	WHERE	clause	for	testing:

WHERE

		[Date].[Calendar	Year].&[2013];

13.	 Apply	this	change,	check	your	query	with	the	following	script,	and	then	run	the
query.	You	should	now	see	the	2013	values	for	the	new	calculated	members.	You
can	check	this	by	making	note	of	the	values,	using	2013	in	the	WHERE	clause	rather
than	2014,	and	then	running	it	again.

14.	 To	prepare	the	query	for	the	report,	you	must	add	all	the	parameter	logic	from	the
original	query.	Comment	out	the	FROM	and	WHERE	lines	from	the	new	query,	and
then	merge	the	two	sections	of	script	you	previously	separated.	Your	final	query
should	look	like	this:

WITH

		MEMBER	Measures.[Last	Year	Value]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIValue("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Goal]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIGoal("Channel	Revenue")

)

			,FORMAT_STRING	=	"$#,##0.00"

		MEMBER	Measures.[Last	Year	Status]	AS

				(

						[Date].[Calendar	Year].CurrentMember.PrevMember

					,KPIStatus("Channel	Revenue")

)

SELECT

		{

				KPIValue("Channel	Revenue")

			,KPIGoal("Channel	Revenue")

			,KPIStatus("Channel	Revenue")

			,[Last	Year	Value

			,[Last	Year	Goal

			,[Last	Year	Status

		}	ON	COLUMNS

	,

				{[Sales	Territory].[Sales	Territory].[Region].ALLMEMBERS}

		DIMENSION	PROPERTIES

				MEMBER_CAPTION

			,MEMBER_UNIQUE_NAME

			ON	ROWS

--	Added	FROM	clause	for	testing:

--	FROM	[Adventure	Works

--	Added	WHERE	clause	for	testing:

--	WHERE

--		[Date].[Calendar	Year].&[2013

FROM

(

		SELECT

				StrToSet

				(@DateCalendarYear

					,CONSTRAINED

)	ON	COLUMNS

		FROM	[Adventure	Works

)

WHERE

		IIF

		(

				StrToSet(@DateCalendarYear,CONSTRAINED).Count	=	1

			,StrToSet

				(@DateCalendarYear

					,CONSTRAINED

)

			,[Date].[Calendar	Year].CurrentMember

)

CELL	PROPERTIES

		VALUE

	,BACK_COLOR

	,FORE_COLOR

	,FORMATTED_VALUE

	,FORMAT_STRING

	,FONT_NAME

	,FONT_SIZE

	,FONT_FLAGS;

15.	 Now	you're	ready	to	update	the	query	in	the	report.	Copy	the	query	from	the
Management	Studio	Query	window,	and	paste	it	over	all	the	script	in	the	Report
Designer	Query	window.	If	you	lose	the	formatting,	paste	the	query	into	Microsoft
Word	or	WordPad,	and	then	recopy	to	the	clipboard.

16.	 Click	the	Query	Parameters	toolbar	button,	and	change	the	parameter	value	for
DateCalendarYear	to	CY	2013.	Click	OK	to	return.

17.	 Click	the	Execute	button	to	test	the	query	and	refresh	the	field	collection,	as	shown
in	Figure	10.14.

Figure	10.14	Testing	the	query.

18.	 Click	OK	to	accept	changes	and	save	the	dataset.

Report	design	based	on	this	new	dataset	is	pretty	straightforward.	The	three	new
calculated	members	are	added	to	the	dataset	fields	collection.	They	can	be	used	to	add
columns	to	the	table	using	the	same	drag-and-drop	technique	you	have	used	before.

Figure	10.15	shows	the	Select	Indicator	Type	dialog,	which	is	displayed	when	the
indicator	report	item	is	dragged	from	the	Toolbox	to	the	Last	Year	Status	column
detail	cell.	The	three-state	indicator	with	different	icon	shapes	has	been	selected	here.
When	using	default	red,	yellow,	and	green	colors,	this	is	a	good	choice	because	the
different	shapes	are	distinguishable	on	monochrome	printed	reports	and	by	colorblind
users.	The	appropriate	use	of	color	is	discussed	in	Chapter	19.

Figure	10.15	Three	new	calculated	members	in	the	dataset	fields	collection.

Figure	10.16	shows	the	completed	report	with	the	additional	measure	columns	and
status	indicator	for	the	Last	Year	KPI.

Figure	10.16	Completed	report.

The	gauges	can	also	be	copied	and	pasted	from	the	original	Status	column.	On	the
new	gauge,	click	the	pointer,	and	then	use	the	smart	tag	to	update	the	field	binding	to

use	the	Last_Year_Status	field.

ADDING	NONADDITIVE	MEASURES
Some	things	just	don't	add	up!	Often,	the	values	you	need	to	see	on	reports	are
calculated	using	more	complex	logic	than	simple	sums.	Measure	values	can	be	based
on	statistical	functions,	rolling	or	weighted	averages,	or	industry-specific	standard
calculations.	Special	logic	is	often	required	to	calculate	common	metrics	such	as
inventory	counts,	profit,	and	ratios.	Regardless,	these	aren't	calculations	you	should
have	to	repeat	in	every	report.

One	of	the	advantages	of	using	SSAS	is	that	all	the	necessary	business	logic	for
reporting	and	analysis	can	be	designed	into	the	cube.	This	means	that	as	soon	as	the
business	rules	are	sorted	out	in	the	cube	design,	you	simply	use	the	measures,
calculated	members,	and	KPIs	with	full	confidence	that	the	results	will	be	accurate
and	reliable.

Let's	use	a	simple	example	of	an	average	sales	amount	calculation.	You	can	use	your
imagination	to	extend	this	scenario	to	other	business	cases	that	would	apply	to	your
situation.	The	Adventure	Works	cube	contains	a	measure	named	Reseller	Average
Sales	Amount.	The	logic	behind	this	calculation	relies	on	the	knowledge	of	individual
transaction	sales	amounts	that	are	actually	not	present	in	the	cube.	In	fact,	unless	you
were	to	go	back	to	the	original	data	source	for	these	sales	records,	you	couldn't
calculate	this	value	yourself.

Fortunately,	Analysis	Services	performs	some	magic	when	it	processes	the	cube	and
aggregates	this	measure	value.	It	figures	out	which	values	must	be	stored	in	the	cube,
and	which	values	can	be	derived	at	query	time.	In	the	case	of	an	average	measure,	it
must	store	the	average	at	every	level	of	a	dimensional	hierarchy,	because	it	is	not
possible	to	derive	an	average	from	a	range	of	average	values	at	a	lower	level.	Although
it	is	interesting	to	know	how	Analysis	Services	performs	these	aggregations	and	stores
selected	values,	you	can	sleep	soundly	at	night	knowing	that	you	do	not	have	to	worry
about	it.

Enter	Reporting	Services.	When	you	drag	and	drop	a	field	onto	a	report	item	or	data
region	at	a	group	level	above	a	detail	row,	the	Report	Designer	always	applies	the	SUM
function	to	a	numeric	value	by	default.	It	assumes	that	you	want	to	roll	up	individual
values	into	a	summed	total.	This	is	a	helpful	assumption	most	of	the	time,	but	not
when	your	measure	fields	don't	sum,	or	if	you	want	to	do	something	else	with	them.
What	if	the	measure	were	a	standard	deviation	or	a	weighted,	rolling	average?	How
would	you	roll	this	up	into	a	group	footer?

It	doesn't	matter.	This	is	Analysis	Services'	job,	and	you	should	not	have	to	worry
about	it.	Here's	a	simple	example	to	illustrate	the	simple	solution.

Figure	10.17	shows	a	basic	matrix	report,	named	AS	Avg	Sales	in	the	Chapter	10
samples.	The	detail	and	total	value	cells	were	designed	by	dragging	the
Sales_Amount_Quota	and	Reseller_Average_Sales_Amount	fields	to	the	detail	area	of

the	matrix.	The	column	widths	have	been	expanded	so	that	you	can	see	the
expressions.	As	you	can	see,	the	Designer	applied	the	SUM	function	to	all	four	of	these
cells.

Figure	10.17	Basic	matrix	report.

Figure	10.18	shows	the	report	in	preview.	See	if	you	can	spot	the	calculation	error.
Take	a	close	look	at	the	Total	column	for	the	Reseller	Avg	Sales	field.

Figure	10.18	Report	in	preview.

When	to	Use	the	Aggregate	Function
The	solution	to	this	problem	is	to	let	Reporting	Services	know	that	it	should	not	try	to
aggregate	any	values.	The	measure	value	at	each	level	represents	the	appropriate
rollup	of	subordinate	levels.	This	is	done	by	replacing	occurrences	of	SUM	with	the
AGGREGATE	function.

Figure	10.19	shows	the	report	with	these	changes.	All	the	SUM	function	references	have
been	replaced	with	AGGREGATE	by	editing	each	expression.

Figure	10.19	Report	with	changes.

Preview	the	report	again	to	see	the	results.	Note	that	all	the	Sales_Amount_Quota	total
values	remain	the	same,	because	this	is	an	additive	measure	and	these	values	were
already	using	the	SUM	function	in	the	cube.	The	summed	value	from	the	cube	(which
you	see	here)	and	the	summed	values	in	the	report	are	the	same.

However,	the	Reseller_Average_Sales_Amount	totals	are	different.	This	is	because	the
calculation	returned	from	the	cube	in	the	corrected	report	is	the	calculated	average,
rather	than	the	sum	of	averages	you	saw	in	the	previous	example—even	if	the
calculation	logic	needed	to	be	updated	in	the	SSAS	model	or	cube.

Just	for	the	sake	of	argument,	let's	say	that	the	total	needed	to	be	the	median	instead
of	average.	By	using	the	AGGREGATE	function,	the	report	would	just	display	the	correct
values	with	no	design	changes	necessary.	Figure	10.20	shows	both	the	original
miscalculated	report	and	the	new	fixed	report	juxtaposed	so	you	can	see	the
difference.

Figure	10.20	Miscalculated	report	and	fixed	report.

MDX	PROPERTIES	AND	CUBE	FORMATTING
As	you	have	looked	at	the	MDX	queries	generated	by	the	MDX	Query	Designer,	you
may	have	noticed	several	property	references	in	the	MDX	script	under	the	headings
CELL	PROPERTIES,	DIMENSION	PROPERTIES,	and	CUBE	PROPERTIES.	This	is
evidence	of	one	of	the	most	significant	differences	between	Analysis	Services	and	a
relational	database	product	such	as	SQL	Server	2016.	When	you	run	a	T-SQL	query	for
a	SQL	Server	database,	the	result	set	contains	very	little	information	aside	from	the
column	names	and	values.	The	data	provider	and	client	components	use	a	bit	of
metadata,	such	as	data	types,	numeric	scales,	and	string	lengths.	The	formatting	of	the
query	results	is	entirely	in	the	hands	of	whichever	client	application	is	consuming	the
data.

MDX-based	queries	provide	a	mechanism	for	returning	a	variety	of	useful	information
about	different	objects	returned	from	a	query.	Within	the	cube	design,	every	measure
can	be	formatted,	and	every	calculated	member	can	have	font,	color,	and	other	styling
characteristics	associated	with	it.	Dynamic	expressions	defined	in	the	cube	are	used	to
modify	these	properties	based	on	threshold	values	or	any	other	logic.	This	way,	profit-
related	measures	are	displayed	in	green,	and	losses	are	in	red	and	bold	text.	These
properties	are	returned	through	the	query	results	as	metadata	tags	associated	with
each	cell	and	dimension	member.	The	query	script	can	explicitly	request	that	certain
properties	be	returned.

Reporting	Services	uses	these	query	object	properties	by	generating	corresponding
properties	for	each	field	object	it	derives	from	an	MDX	query.	These	field	properties
are	accessible	in	the	Report	Designer	Expression	dialog.	When	you	select	a	field,	the
Value	property	is	referenced	by	default.	To	see	all	the	available	field	properties,	just
back	up	the	cursor	to	the	period	following	the	field	name.	Figure	10.21	shows	an
example	setting	the	Color	property	of	the	textbox	used	to	display	the
Sales_Amount_Quota.

Figure	10.21	Modifying	field	properties.

This	is	a	powerful	concept.	A	consulting	client	once	insisted	on	having	specific	colors
for	specific	currencies.	By	using	dynamic	logic	to	conditionally	set	calculated	measure
colors	in	the	cube,	the	Reporting	Services	report	simply	consumes	this	information.

DRILL-THROUGH	REPORTS
Drill-through	actions	are	one	of	the	most	useful	features	of	Reporting	Services.	As	you
know,	a	drill-through	report	uses	a	report	action	to	navigate	to	a	second	report
when	the	user	clicks	a	report	item	(often	a	textbox)	that	contains	a	reference	value	of
some	kind.	The	typical	scenario	for	drill-through	reports	is	where	a	high-level
summary	report	lists	dimension	members	in	a	data	region	in	a	table	or	matrix.	Using
the	example	of	a	table	report	showing	sales	summary	information	for	products,	if
users	were	to	click	a	product	name,	they	might	expect	to	see	sales	details	for	that
product.	If	a	report	based	on	relational	tables	were	used	for	drill-through,	you	would
expect	a	key	value	(such	as	the	ProductID)	to	be	passed	from	the	source	report	to	a
parameter	in	the	target	report,	and	used	to	filter	records.

MDX-based	reports	can	play	this	role	as	well	as	any	other	data	source.	The	difference
is	in	how	keys	and	unique	identifiers	are	defined	in	a	cube.	Every	dimensional
attribute	does	have	a	key	value,	but	it	might	not	necessarily	correspond	to	a	primary
key	value	in	a	relational	data	source.	Because	attributes	are	organized	into	hierarchies,
the	unique	value	used	to	describe	an	attribute	preserves	the	entire	hierarchy	lineage
through	a	property	called	UniqueName.	This	is	the	value	passed	to	any	parameters
generated	by	the	MDX	Query	Designer.	It	is	considered	a	best	practice	to	use	the	same
technique	for	drill-through	reports.	The	value	of	a	dimension	member	is	derived	from
the	MDX	Name	property	for	a	member	by	default.	For	a	product,	this	would	just	be	the
product	name	as	it	appears	on	the	report.	The	UniqueName	property	value	is	derived
from	the	ProductKey	field	in	the	DimProduct	table	and	would	look	something	like	this:

[Product].[Product].&[470]

The	example	provided	in	the	Chapter	10	samples	consists	of	a	source	and	target	report
that	you	can	use	as	an	example	of	this	functionality.	The	Top	10	Product	Internet
Sales	by	Year	report	contains	a	table	with	an	action	configured	for	the	Product
textbox.	The	Product	Sales	by	Year	report	has	a	parameter	called	Product	that	filters
an	MDX	query	bound	to	a	chart.	The	source	report	contains	an	action	defined	on	the
Product	textbox,	which	passes	a	value	using	the	following	expression	to	the	target
report:

=Fields!Product.UniqueName

The	target	report,	Product	Sales	by	Year	(MDX	drill-through	target),	contains	a
query	parameter	named	ProductProduct	that	was	generated	by	the	MDX	Query
Designer	when	this	report	was	designed.

Figure	10.22	shows	the	Action	expression	settings	for	the	source	report	product
textbox.	Note	the	expression	used	in	the	Values	column	of	the	parameter	mapping.
Also	note	that,	back	on	the	design	surface,	the	product	textbox	font	color	is	blue.	This
is	a	visual	clue	to	users	that	they	can	click	on	a	product	because	it	appears	just	like	a
link	on	a	web	page.

Figure	10.22	Action	expression	settings.

Parameter	Safety	Precautions
If	a	drill-through	report,	URL,	or	cube	report	action	is	exposed	to	the	Internet	or	an
uncontrolled	network	environment,	precautions	should	be	taken	to	prevent	script
injection	attacks.	Two	common	safety	precautions	are	used	when	parameters	are
passed	to	an	MDX	query.

The	first	is	implemented	by	default	in	the	script	generated	by	the	MDX	Query
Designer.	Parameters	are	passed	to	the	function	STRTOSET	or	STRTOMEMBER	with	the
CONSTRAINED	optional	argument	flag.	This	flag	instructs	the	MDX	query	processing
engine	to	disallow	any	dynamic	script	or	function	calls	in	the	parameter	text.

The	other	provision	that	you	can	implement	yourself	is	the	URLEscapeFragment
function.	Passing	any	MDX	object	reference	to	this	function	MIME-encodes	any
characters	that	could	be	used	to	embed	script.	The	query	processor	decodes	any	valid
characters	on	the	receiving	end	after	validating	the	unaltered	text.	This	sample	code
returns	a	properly	escaped	form	of	a	dimension	member	reference:

UrlEscapeFragment(SetTostr({[Dim].[MyHierarchy].CurrentMember}))

BEST	PRACTICES	AND	PROVISIONS
The	following	are	some	important	considerations	for	designing	reports	for	Analysis
Services.	Keep	these	factors	in	mind	as	you	create	reports.

Leverage	the	cube—Design	business	rules	and	calculations	into	the	cube.	Report
and	query	design	with	a	comprehensive	cube	is	a	simple	matter	of	dragging	and
dropping	members	into	the	Query	Designer.

Allow	empty	rows—By	default,	the	MDX	Query	Designer	eliminates	rows	that
have	all	empty	cells.	This	may	impede	certain	reports,	such	as	charts	and	matrices.
To	include	all	rows,	regardless	of	empty	cells,	remove	the	NON	EMPTY	directive	on
the	rows	axis.

Let	the	cube	manage	aggregation—Replace	the	SUM	or	FIRST	aggregate
functions	added	by	the	Report	Designer	with	the	AGGREGATE	function.	This	instructs
Reporting	Services	to	let	the	Analysis	Services	query	engine	take	care	of	the
aggregate	values.

Sorting	months—When	you	use	the	Report	Wizard	to	create	a	table	or	matrix
report,	groups	are	sorted	on	the	same	field	as	the	group.	Fields	such	as	Months	are
sorted	in	alphabetical	order.	Because	the	members	are	already	sorted	correctly	in
the	cube	dimension,	this	is	resolved	by	removing	the	Sort	expression	for	the
group.

Cascading	parameters—Auto-built	MDX	queries	create	multiple	datasets	with
interdependent	parameters.	Removing	an	unneeded	parameter	can	be	challenging.
Check	each	hidden	dataset	query	for	references	to	the	parameter,	and	remove
those	references	or	delete	the	dataset	and	rebuild	it	without	the	parameter.

Use	the	Query	Designer	to	create	parameters—Allow	the	MDX	Query
Designer	to	create	parameter	and	filter	logic,	and	then	modify	the	query	after
making	a	backup	copy.

SUMMARY
SQL	Server	Analysis	Services	(SSAS)	is	a	powerful	tool	for	storing	and	managing
critical	business	information	to	support	business	decisions	and	analytics.	If	SSAS	is
used	correctly,	compelling	and	useful	reports	can	be	created	easily	using	Reporting
Services.	Business	users	shouldn't	need	to	understand	the	MDX	language	to	design
day-to-day	reports	with	Report	Builder.	But	with	some	basic	MDX	knowledge,
business	intelligence	(BI)	solution	developers	can	create	advanced	visualizations	and
powerful	business	dashboards	that	would	be	slow	and	difficult	to	design	with	a
relational	data	source.

The	advantages	afforded	by	SSAS	and	the	MDX	query	engine	are	numerous.	Queries
are	lightning-fast,	data	is	simplified	and	accessible,	and	business-specific	calculations
are	managed	in	a	central	location.	Using	Reporting	Services	to	design	reports	for
Analysis	Services	data	can	create	a	fast,	secure,	and	reliable	BI	solution	with	uniform
results	across	the	business	enterprise.

Chapter	11	will	take	you	deep	into	a	real	reporting	solution	utilizing	Analysis	Services
and	MDX.	You	will	learn	to	use	advanced	techniques	like	expressions	and	report
navigation	to	see	how	multiple	reports	are	used	to	architect	a	complete	cube	browser
solution.

Chapter	11
SSAS	Reporting	Advanced	Techniques

WHAT'S	IN	THIS	CHAPTER?

Dynamically	changing	report	content	and	navigating	hierarchies	by	changing
report	parameters

Restricting	the	number	of	rows	with	a	parameter

Displaying	and	allowing	users	to	explore	cube	metadata

Creating	your	own	cube	browser	in	Reporting	Services

In	2005,	I	presented	a	session	on	report	design	at	the	PASS	Global	Summit.	After	the
session,	a	very	distinctive	character	came	up	and	introduced	himself.	He	was	a	tall
gentleman	with	an	Aussie	accent,	wearing	a	leather	outback	hat	and	a	permanent
smile.	Grant	Paisley	and	I	have	been	good	friends	ever	since.	We	found	we	had	much
in	common,	including	a	passion	for	taking	technologies	like	Reporting	Services	to	the
edge.	If	there	was	ever	an	out-of-the-box	thinker,	it	is	Grant.	He	has	done	things	with
SSRS	that	are	simply	unimaginable.	His	cube	browser	solution,	which	he	has	been
evolving	and	improving	for	years,	blew	my	mind.	It	is	a	remarkable	example	of	the
flexibility	afforded	by	Reporting	Services	paired	with	Analysis	Services	and	some
ingenuity.

Grant	contributed	the	content	of	this	chapter	in	the	last	edition	of	our	book	with	a
collection	of	reports	sewn	together	using	actions,	expressions,	and	parameters.	It	all
works	in	SSRS	2016	exactly	as	it	did	in	2012	with	only	minor	adaptations	to	the
sample	project,	which	is	called	Wrox	SSRS	2016	Dynamic	Cube	Browser.	Having	used
these	and	similar	patterns	in	a	number	of	my	projects,	I	encourage	you	to	review	the
techniques	and	glean	relevant	parts	that	may	be	useful	in	your	own	solutions.

NOTE

With	little	or	no	modification,	you	should	be	able	to	change	the	data	source	and
use	this	solution	to	browse	any	multidimensional	or	tabular	model.	You	will
need	to	change	the	default	parameter	values	for	the	Cube	Browser	report	and
any	reports	that	are	initially	loaded.	Given	the	complexity	and	advanced	nature
of	this	approach,	I	can't	offer	any	guarantee	or	technical	support	for	this
solution.	After	reviewing	the	solution,	review	my	summary	notes	at	the	end	of
the	chapter.

BUILDING	A	DYNAMIC	CUBE	BROWSER	WITH	SSRS
Years	ago,	when	I	attended	Tech	Ed	(Microsoft's	annual	conference	for	developers	and
IT	professionals)	in	Boston,	I	noticed	that	the	Blue	Man	Group	was	in	town.	I	just	had
to	see	them;	they	are	compelling	on	stage.	This	reminds	me	that	when	you	see	blue
text	in	a	browser	(or	report),	you	are	compelled	to	click	it.	This	chapter	discusses	how
you	can	use	this	“blue	clicking	compulsion”	to	create	dynamic	and	flexible	reports	that
can	be	navigated	simply	by	clicking	blue	content.

This	chapter	describes	a	series	of	reports	that	demonstrate	the	techniques	behind
building	an	OLAP	client	in	SSRS.	Along	the	way	you	will	learn	about	the	following:

Using	self-calling	drill-through	reports	to	navigate	content

Using	other	reports	to	collect	parameters

Formatting	reports	to	make	them	easy	to	navigate

Using	cube	metadata	to	drive	report	content	(this	will	work	on	any	cube)

CUBE	DYNAMIC	ROWS
I	have	often	observed	when	I'm	creating	reports	for	clients	that	the	reports	they	want
are	very	similar.	The	columns	stay	fairly	static,	with	values	such	as	Amount,	Amount
Last	Year,	Growth,	Growth	Percentage,	and	Gross	Profit.	The	only	difference	is	the
data	shown	on	rows.	So	two	reports	could	have	identical	columns,	but	one	has
Products	on	rows	and	another	has	Regions.

One	of	the	neat	things	about	Analysis	Services	is	that	it	lets	you	move	up	and	down
through	hierarchies,	selecting	what	you	are	interested	in.	In	the	Product	dimension,
for	instance,	you	can	select	Product	Category:	Bikes	or	Product	Sub-Category:
Mountain	Bikes.	You	can	even	select	a	single	Product	Model.

This	report	uses	a	parameter	that	lets	you	change	what	hierarchy	is	displayed	on	rows
and	lets	you	drill	up	or	down	within	that	hierarchy.	It	also	uses	a	parameter	for	the
measure	to	display.	The	final	report	will	behave	as	shown	in	Figure	11.1.	Simply
clicking	a	hierarchy	member	allows	you	to	drill	down	to	more	and	more	detail,	or
similarly	drill	back	up.

Figure	11.1	Behavior	of	final	report.

The	Cube	Browser	report	(an	extension	of	this	concept)	calls	a	modified	version	of	the
Cube	Metadata	report.	It	allows	users	to	dynamically	change	what	measure	and
hierarchy	to	display	on	rows	without	needing	to	type	a	value	into	the	parameter.

Cube	Dynamic	Rows	Anatomy
This	report	utilizes	custom	MDX,	mainly	calculated	measures,	to	present	consistent
column	names	to	Reporting	Services.	Therefore,	it	facilitates	dynamically	changing
rows	and	the	measure	by	simply	changing	the	parameters.

From	SQL	Server	Data	Tools	(SSDT),	open	the	report	called	Cube	Dynamic	Rows.
Figure	11.2	shows	the	Report	Data	pane	for	the	Cube	Dynamic	Rows	report.

Figure	11.2	Cube	Dynamic	Rows	Report	Data.

Parameters
First,	let's	look	at	the	parameters.

The	string	report	parameter	called	pMeasure	has	this	default	value:

[Measures].[Gross	Profit]

and	these	available	expression	values	(label	/	value):

Gross	Profit	/	=	"[Measures].[Gross	Profit]"

Sales	Amount	/	=	"[Measures].[Sales	Amount]"

Amount	/	=	"[Measures].[Amount]"

So	this	parameter	drives	the	measure	value	displayed	in	the	report.

The	string	report	parameter	called	pRowMbr	has	this	default	value:

[Product].[Product	Categories].[Subcategory].&[1]

This	is	the	“focus”	member	of	the	report.	In	this	case	it	is	Product	dimension,	Product
Categories	hierarchy,	and	Subcategory	level	Mountain	Bikes.

Dataset
Open	the	Query	Designer	for	DataSet1,	as	shown	in	Figure	11.3.

Figure	11.3	DataSet1	in	Query	Designer.

Here	is	the	MDX	query:

--	Cube	Dynamic	Rows	and	Measure

--

--	Grant	Paisley

--	Angry	Koala

--	http://angrykoala.com.au

--	Nov	2011

--

--	Note:	certain	attributes	commented	out	as	not	needed

--	but	may	be	of	use	in	other	reports

WITH

--	The	measure	of	interest

MEMBER	[Measures].[Measure_Value]	AS	StrToValue(@pMeasure)

--	the	friendly	name	of	the	measure

MEMBER	[Measures].[Measure_Label]	AS	StrToValue(@pMeasure	+	".Member_Name")

MEMBER	[Measures].[Row_Key

			AS	StrToValue(@pRowMbr	+	".Hierarchy.Currentmember.Uniquename")

MEMBER	[Measures].[Row_Label

			AS	StrToValue(@pRowMbr	+	".Hierarchy.CurrentMember.Member_Caption")

MEMBER	[Measures].[Row_Level

			AS	StrToValue(@pRowMbr	+	".Hierarchy.CurrentMember.Level.Ordinal")

--MEMBER	[Measures].[Row_Level_Name

--			AS	StrToValue(@pRowMbr	+	".Hierarchy.Level.Name")

MEMBER	[Measures].[Row_Hierarchy_Name

			AS	StrToValue(@pRowMbr	+	".Hierarchy.Name")

--MEMBER	[Measures].[Row_Hierarchy_UniqueName

--		AS	StrToValue(@pRowMbr	+	".Hierarchy.UniqueName")

MEMBER	[Measures].[Row_Dimension_Name

			AS	StrToValue(@pRowMbr	+	".Dimension.Name")

--MEMBER	[Measures].[Row_Dimension_UniqueName

--			AS	StrToValue(@pRowMbr	+	".Dimension_Unique_Name")

SELECT	NON	EMPTY	{

	--	display	the	measure	and	rowmbr	attributes	on	columns

	[Measures].[Row_Key],

	[Measures].[Row_Label],

	[Measures].[Row_Level],

	--[Measures].[Row_Level_Name],

	[Measures].[Row_Hierarchy_Name],

	--[Measures].[Row_Hierarchy_UniqueName],

	--[Measures].[Row_Dimension_Name],

	--[Measures].[Row_Dimension_UniqueName],

	[Measures].[Measure_Label]	,

	[Measures].[Measure_Value

}	ON	COLUMNS,

NON	EMPTY

					--	if	want	to	display	row	member	parent,	self	and	children

					--	un-comment	following	code

					--STRTOSET("{"	+	@pRowMbr	+	".parent,	"

					--													+	@pRowMbr	+	",	"

					--													+	@pRowMbr	+	".children}")

					--	show	the	current	hierarchy	member	with	its	ascendants

					--	together	with	its	children	on	rows

					STRTOSET(

								"{Ascendants("	+	@pRowMbr	+	"),	"

								+	@pRowMbr	+	".children}"

)

ON	ROWS

FROM	[Adventure	Works]	--	must	hard	code	the	cube	:(

--	the	cube	name,	together	with	the	parameter	default	values	are	the	only

--	things	required	to	point	this	report	at	a	different	cube

In	effect	you	create	a	calculated	measure	for	each	row	member	property	of	interest
and	display	them	on	columns:

[Measures].[Row_Key],

	[Measures].[Row_Label],

	[Measures].[Row_Level],

	--[Measures].[Row_Level_Name],

	[Measures].[Row_Hierarchy_Name],

	--[Measures].[Row_Hierarchy_UniqueName],

	--[Measures].[Row_Dimension_Name],

	--[Measures].[Row_Dimension_UniqueName],

In	addition	to	the	current	measure	label	and	value:

	[Measures].[Measure_Label]	,

	[Measures].[Measure_Value]

On	rows	you	simply	display	the	“ascendants”	of	the	current	member	and	its	children:

STRTOSET(

			"{Ascendants("	+	@pRowMbr	+	"),	"

			+	@pRowMbr	+	".children}"

)

If	you	select	the	Query	Parameters	icon	from	the	toolbar	you	see	the	following,	as
shown	in	Figure	11.4:

Figure	11.4	Query	Parameters	dialog.

pMeasure	with	a	default	value	of	[Measures].[Gross	Profit]

pRowMbr	with	a	default	value	of	[Product].[Product	Categories].[Subcategory].&
[1]

NOTE

You'll	need	to	enter	the	parameter	information	shown	in	Figure	11.4.	Make	sure
this	is	complete	before	you	continue.

Execute	the	query	to	see	the	results,	as	shown	in	Figure	11.5.

Figure	11.5	Results	of	query.

Matrix	Content
So	now	that	you	have	some	data,	let's	look	at	how	you	format	the	tablix,	including	a
neat	trick	to	better	display	numbers.

A	single	table	with	the	detail	row	shows	Row_Label	and	Measure_Value	data	fields.

The	first	column	header	displays	the	name	of	the	current	hierarchy	as	it	is	set	to
[Row_Hierarchy_Name].

The	second	column	header	shows	the	name	of	the	current	measure	as	it	is	set	to
[Measure_Label].

If	you	right-click	the	Details	group	in	the	Row	Groups	pane	and	select	Group
Properties,	you	see	it	has	an	expression	to	group	on	[Row_Key],	as	shown	in	Figure
11.6.

Figure	11.6	Expression	group	on	[Row	Key].

Go	to	the	Sorting	tab.	As	shown	in	Figure	11.7,	rows	are	sorted	by	the	Row_Level	and
then	Measure_Value	data	fields.	This	ensures	that	members	are	displayed	in	hierarchy
level	order	(ascending)	and	then	by	value	(descending).

Figure	11.7	Seeing	how	rows	are	sorted.

Formatting	the	Row	Label
Right-click	the	Row_Label	textbox,	select	Text	Box	Properties,	select	Alignment
options,	and	click	the	fx	button	in	the	Padding	Options	area,	as	shown	in	Figure	11.8.
You	see	an	expression	for	the	cell's	left	alignment.	This	indents	the	text	four
characters	for	each	level	in	the	hierarchy:

	=str((Fields!Row_Level.Value	*	4)	+	2)	+	"pt"

Figure	11.8	Changing	the	text	alignment	and	padding	properties.

Highlighting	the	Current	Row
You	can	highlight	the	row	currently	selected	to	indicate	to	the	user	that	he	or	she	can
select	a	row	by	setting	its	color	to	blue.	(Remember,	users	can't	help	clicking
something	that	is	blue.)

For	both	the	Row_Label	and	Measure_Value	cells,	in	the	detail	row,	set	the	property
BackgroundColor	to	this	expression:

=iif(Fields!Row_Key.Value=Parameters!pRowMbr.Value,

		"LemonChiffon",

		Nothing

)

This	is	shown	in	Figure	11.9.

Figure	11.9	Setting	the	BackgroundColor	property.

You	also	need	to	set	the	font	color	to	this	expression:

=iif(Fields!Row_Key.Value=Parameters!pRowMbr.Value,

"DimGray",

"Blue")

Notice	that	the	cell	property	BorderColor	=	LightGray	and	BorderStyle	default	has
been	changed	from	Solid	to	None	and	that	BorderStyle	is	set	to	Solid,	as	shown	in
Figure	11.10.

Figure	11.10	Current	cell	properties.

This	approach	to	formatting	gives	the	report	a	clean	look.	You	don't	really	need
vertical	lines,	because	the	data/values	in	the	columns	already	line	up.

Dynamic	Number	Formatting
Our	last	party	trick	is	creating	dynamic	formatting	for	the	measure	value.	Select	the
properties	for	the	Measure_Value	textbox.	You	will	see	it	is	formatted	by	the	following
expression:

=iif(last(abs(Fields!Measure_Value.Value))	>	10000000,	"#,,	m;(#,,	m)",

	iif(last(abs(Fields!Measure_Value.Value))	>	1000000,		"#,,.0	m;(#,,.0	m)",

	iif(last(abs(Fields!Measure_Value.Value))	>	10000,				"#,	k;(#,	k)",

	iif(last(abs(Fields!Measure_Value.Value))	>	1000,					"#,.0	k;(#,.0	k)",

				"#,#;(#,#)"

))))

This	is	a	pretty	neat	trick.	Now	you	can	succinctly	display	values	that	range	from	1	to
into	the	millions	without	needing	extra-wide	cells	or	having	so	many	digits	that	it's
hard	to	read.

Let's	preview	this.	You	now	have	rows	driven	by	the	pRowMbr	parameter,	and	for	each
row,	the	value	for	the	measure	specified	in	pMeasure.

You	can	test	changing	the	report	content	by	changing	the	value	of	the	pMeasures
parameter	combo	box	from	Gross	Profit	to	Sales	Amount,	as	shown	in	Figure	11.11.

Figure	11.11	Testing	the	changing	of	the	report.

Self-Calling	Drill-Through	Action
To	change	the	focus	to	another	row,	you	need	to	create	a	self-calling	drill-through
action.	Specifically,	you	create	an	action	that	calls	the	same	report,	passing	through
the	member	unique	name	of	the	row	that	is	clicked.

Modify	the	properties	for	the	Row_Label	textbox.	In	the	Action	tab,	shown	in	Figure
11.12,	the	“Go	to	report”	radio	button	is	enabled,	and	“Specify	a	report”	is	set	to	the
built-in	global	value	[&ReportName].	The	two	parameters	(name	/	value)	are	as
follows:

pRowMbr	/	[Row_Key]

pMeasure	/	[@pMeasure]

Figure	11.12	Changing	action.

Select	the	Preview	tab,	as	shown	in	Figure	11.13,	and	experiment	with	drilling	up	and
down	the	product	hierarchy.

Figure	11.13	Viewing	the	changed	report.

Cube	Dynamic	Rows	Summary
This	report	demonstrates	the	fundamental	content	presentation	and	navigation
technique	employed	by	Angry	Koala	Analytics	reports.	It	allows	any	dimension
hierarchy	to	be	displayed	on	rows	and	allows	you	to	navigate	up	and	down	through
that	hierarchy.

In	the	Cube	Browser	report	you	will	add	columns,	a	filter,	and	a	date.	Then	you	will
hook	it	up	to	a	modified	version	of	the	Cube	Metadata	report,	thus	allowing	the	user
to	change	what	is	displayed	in	the	report.

So	effectively	you	have	the	start	of	a	mini	OLAP	browser	built	in	SSRS.	By	creating
linked	reports	with	different	parameters,	you	can	provide	an	infinite	number	of
reports	for	your	users,	from	a	Profit	and	Loss	report	to	a	Salesperson	Profitability
report.

CUBE	DYNAMIC	ROWS	EXPANDED
This	report	demonstrates	how	you	can	create	an	even	better,	user-friendly	way	to
navigate	dimension	hierarchy	data.

With	a	quick	change	to	the	MDX	query	and	by	adding	a	column	group,	you	can	change
the	Cube	Dynamic	Rows	report	to	display	each	hierarchy	level	in	a	new	column.
Figure	11.14	is	a	preview.

Figure	11.14	Viewing	each	hierarchy	level	in	a	new	column.

MDX	Query	Modifications
You	add	one	more	measure,	MbrIsAncestor,	which	is	referenced	to	highlight	all
ancestor	members	(see	the	“Visualization	Tweaks”	section	later	in	this	chapter):

MEMBER	[Measures].[MbrIsAncestor]	AS

							StrToValue(

										"IsAncestor("	+@pRowMbr	+	".hierarchy.currentmember,	"

																									+@pRowMbr	+	")"

								+	"	or	("	+	@pRowMbr	+	".hierarchy.currentmember	is	"	+@pRowMbr	+	"	

)"

)

You	change	the	core	part	of	the	query	to	show	the	current	member	(pRowMbr)
ancestors.	For	each	ancestor	member,	you	also	return	its	siblings:

--	for	each	ascendant	member

--	generate	its	siblings

	STRTOSET(

			"{"	+

			GENERATE(

						Ascendants(StrToMember(@pRowMbr))

						,StrToValue(@pRowMbr	+	".Hierarchy.CurrentMember.Uniquename")

						,".siblings,	"

)

			+	".siblings,"

--	and	add	the	children

			+	@pRowMbr	+	".children"

			+	"}"

)

Design	Surface	Modifications
You	now	need	to	make	modifications	to	the	design	surface	to	show	multiple	columns
and	indicate	the	navigation	path.

Tablix
In	essence,	you	create	a	new	1	×	1	table/tablix	with	a	single	column	group	based	on
Row_Level,	as	shown	in	Figure	11.15.	This	creates	one	column	of	data	per	row	level	in
the	hierarchy.

Figure	11.15	Creating	a	new	table/tablix.

The	existing	tablix	(with	row	group	on	Row_Key)	is	pasted	into	this	cell.	In	other	words,

we	have	a	table	within	a	table.	This	gives	the	desired	behavior	of	one	column	per
hierarchy	level	and	all	the	members	listed	within	that	level	in	rows,	ordered	by	the
current	measure	value.

Visualization	Tweaks
First	you	remove	the	expression	for	indenting	the	RowLabel	textbox	(each	level	is	now
in	a	new	 column,	not	in	the	same	column):

=2pt

Insert	a	title	textbox	above	the	two	tables	to	display	the	current	measure	name:

=First(Fields!Measure_Label.Value)

Display	the	name	of	the	current	row	hierarchy	level	in	the	header:

=Fields!Row_Level_Name.Value

Highlight	not	just	the	current	member	in	the	dimension	hierarchy,	but	all	ancestors	in
the	hierarchy.	This	shows	the	path	selected	at	each	level	in	the	hierarchy.	Set	the
BackgroundColor	property:

=iif(Fields!MbrIsAncestor.Value,

		"LemonChiffon",

		Nothing

)

Summary
You	can	use	this	style	of	report	to	select	members	of	interest	within	a	hierarchy.	This
has	the	added	benefit	that,	for	the	current	measure,	only	members	with	data	are
displayed.

CUBE	RESTRICTING	ROWS
This	report	is	another	step	toward	the	SSRS	Cube	Browser	report	that	you	began	in
the	Cube	Dynamic	Rows	report.

One	of	the	challenges	in	creating	dynamic	reports	is	that	the	user	can	accidentally
request	a	huge	amount	of	data.	In	this	report	you	take	a	quick	look	at	how	to	add
functionality	to	restrict	the	number	of	rows	returned	in	a	report.

Effectively	you	simply	use	the	TOPCOUNT	function	in	MDX	to	restrict	the	number	of
rows	the	query	returns	with	a	parameter.	However,	instead	of	requiring	the	user	to
select	the	parameter	with	a	 fiddly	option	box	in	the	parameters,	you	can	create	a	table
in	the	report	so	that	the	user	just	clicks	the	number	of	rows	he	or	she	wants.	Figure
11.16	shows	the	completed	report.

Figure	11.16	Completed	report.

Designing	the	Report

This	report	utilizes	custom	MDX	and	the	TOPCOUNT	function	to	restrict	the	number	of
rows	returned	in	a	query.	This	technique	can	be	utilized	on	any	query	against	MDX.
For	this	example	you	start	with	the	report	you	created	earlier	in	the	Cube	Dynamic
Rows	report.

Essentially	you	need	to	make	three	modifications:

Add	a	parameter	for	the	number	of	rows	to	display.

Modify	the	MDX	query	to	restrict	the	number	of	rows	(uses	the	TOPCOUNT
function).

Modify	self-calling	drill-through	actions.

Figure	11.16	shows	the	final	report.

pRowCount	Parameter
First	you	need	a	new	dataset	to	produce	a	list	of	values	for	the	pRowCount	parameter.

As	shown	in	Figure	11.17,	the	following	SQL	query	was	used	to	create	a	new	dataset
called	CellCount	that	is	based	on	the	shared	data	source	dsAnySQLDB:

Figure	11.17	Creating	a	new	dataset.

Select	5	as	CellCount	union	all

select	6	union	all

select	7	union	all

select	10	union	all

select	20	union	all

select	50	union	all

select	100

On	the	properties	of	the	pRowCount	parameter,	both	the	Value	and	Label	fields	are	set
to	CellCount,	as	shown	in	Figure	11.18.

Figure	11.18	Setting	the	“Value	field”	and	“Label	field”	values.

Restricting	the	Number	of	Rows	in	the	MDX	Query
Right-click	DataSet1	and	open	the	Query	Editor.	Notice	that	the	MDX	query	is
wrapped	with	the	TOPCOUNT	function:

			--	returns	the	top	n	number	of	rows	based	on	current	measure

			TOPCOUNT(

					--	show	the	current	hierarchy	member	with	its	ascendants

					--	together	with	its	children	on	rows

					STRTOSET(

								"{Ascendants("	+	@pRowMbr	+	"),	"

								+	@pRowMbr	+	".children}"

)

					,StrToValue(@pRowCount)

					,[Measures].[Measure_Value

)

ON	ROWS

Select	the	Parameter	icon	from	the	toolbar,	and	see	that	the	pRowCount	parameter	is
set	to	a	default	of	6,	as	shown	in	Figure	11.19.

Figure	11.19	Default	value	of	pRowCount	parameter.

If	you	execute	the	query	observer,	the	results	should	look	like	Figure	11.20.

Figure	11.20	Results	of	execution.

If	you	preview	the	report,	you'll	see	that	you	can	now	change	the	number	of	rows
displayed,	as	shown	in	Figure	11.21.

Figure	11.21	Previewing	the	report.

Adding	pRowCount	to	Self-Calling	Drill-Through	Report	Action
Now	that	you	can	control	how	many	rows	are	returned,	you	need	to	add	the	pRowCount
parameter	to	the	row	hierarchy	self-calling	drill-through	action.

Open	the	Row_Label	textbox	properties.	Notice	that	the	pRowCount	parameter	has	been
added	to	the	existing	action,	with	a	value	set	to	[@pRowCount],	as	shown	in	Figure
11.22.

Figure	11.22	Adding	pRowCount.

A	Better	Way	to	Interact	with	a	Report	Parameter
This	report	also	has	a	table	displaying	the	available	pRowCount	values.	The	current
selected	number	of	rows	is	highlighted	in	gray.	The	self-calling	drill-through	action	on
the	CellCount	textbox,	as	shown	in	Figure	11.23,	now	includes	the	pRowCount
parameter	and	is	set	to	the	column	value	the	user	clicked	([CellCount]).

Figure	11.23	Interacting	with	a	report	parameter.

Summary
Another	step	toward	the	simple	SSRS	OLAP	browser	is	complete.	Already	the	user	can
change	rows	and	measures	(at	least	manually)	and	drill	up	and	down	a	cube	hierarchy.
You	have	added	the	ability	for	the	user	to	control	the	number	of	rows	returned.

The	next	step	is	to	build	a	way	to	directly	interrogate	the	cube	structure.	You	do	so	in
the	Cube	Metadata	report.

CUBE	METADATA
Wouldn't	it	be	nice	to	have	all	your	cube	documentation	up-to-date	and	available	to
your	users?	Wouldn't	it	be	even	better	if	you	could	create	generic	reports	and,	just	by
creating	a	linked	report	in	Report	Manager	and	changing	a	few	parameters,	generate	a
completely	new	report?

So	how	do	you	do	this?	Creating	the	report	in	this	chapter	requires	that	we	combine	a
few	techniques,	but	first	we	need	to	access	Analysis	Services	metadata.

Designing	the	Report
This	solution	involves	tricking	Reporting	Services	into	talking	nicely	to	Analysis
Services	and	taking	advantage	of	the	dynamic	management	views	(DMVs)	in	SQL
Server	2012.	You	use	the	following	DMVs:

MDSCHEMA_CUBES

MDSCHEMA_MEASUREGROUPS

MDSCHEMA_MEASURES

MDSCHEMA_MEASUREGROUP_DIMENSIONS

MDSCHEMA_HIERARCHIES

MDSCHEMA_LEVELS

You	might	want	to	explore	others	(that	won't	be	needed	in	this	report):

DBSCHEMA_CATALOGS

DBSCHEMA_DIMENSIONS

To	get	the	full	list	of	DMVs,	run	this	command:

SELECT	*	FROM	$SYSTEM.DBSCHEMA_TABLES

Figure	11.24	shows	how	the	finished	report	will	look.

Figure	11.24	Finished	report.

The	following	are	the	steps	to	list	the	cubes/perspectives	and,	after	selecting	a
cube/perspective,	 displaying	the	list	of	related	measure	groups.

Follow	these	steps	to	add	the	cubes	metadata	DMV	dataset	information:

1.	 Add	a	dataset,	enter	the	following	DMV	script	as	an	expression,	and	click	Refresh
Fields:

SELECT	*	FROM	$System.MDSCHEMA_CUBES	WHERE	CUBE_SOURCE	=1

2.	 Name	the	dataset	Cubes.	Your	dataset	properties	should	look	those	shown	in
Figure	11.25.

Figure	11.25	Dataset	properties.

3.	 Insert	a	table	on	the	design	surface	and	drag	the	CUBE_NAME	column	onto	it,	to	list
the	cubes/perspectives.	When	you	preview	this,	you	see	the	cube	metadata,	as
shown	in	Figure	11.26.

Figure	11.26	Cube	metadata.

MeasureGroups
Follow	these	steps	to	insert	another	table	to	display	MeasureGroups,	filtered	by	the
selected	CUBE_NAME	(or	perspective)	in	our	first	table	utilizing	a	self-calling	drill-
through	action:

1.	 Create	a	report	parameter	called	pCube,	and	set	the	default	value	as	Channel	Sales.

2.	 Create	a	new	dataset	called	MeasureGroups,	and	set	the	query	to	the	following:

SELECT	*	FROM	$System.MDSCHEMA_MEASUREGROUPS

3.	 Add	a	parameter	with	this	default	value:

[CUBE_NAME]	=	[@pCube]

4.	 Add	the	filter	[CUBE_NAME]	=	[@pCube].	The	Dataset	Properties	dialog	shown	in
Figure	11.27	shows	the	filter	condition.

Figure	11.27	Dataset	Properties	dialog	showing	filter	condition.

Finally,	you	need	to	“highlight”	the	currently	selected	cube	and	MeasureGroup
and	add	the	self-calling	drill-through	action.

5.	 For	the	CUBE_NAME	textbox	in	the	properties	window,	set	the	BackgroundColor
expression	to	the	following:

=iif(Fields!CUBE_NAME.Value=Parameters!pCube.Value,"LemonChiffon","White")

6.	 Open	the	CUBE_NAME	Text	Box	Properties	dialog.	In	the	Action	tab,	set	the	“Enable
action	as	a	hyperlink”	radio	button	to	“Go	to	report.”	Set	“Specify	a	report”	to
[&ReportName].	Add	the	following	report	parameter	name	and	value,	as	shown	in
Figure	11.28:

Figure	11.28	Text	Box	Properties	dialog.

PARAMETER VALUE
pCube [CUBE_NAME]

7.	 Insert	a	table	on	the	design	surface	and	drag	on	the	MEASUREGROUP_NAME	column,	to
list	the	MeasureGroups	associated	with	the	selected	cube	(or	Measure	Group)	and
add	the	filter	[CUBE_NAME]	=	[@pCube],	as	before.

Preview	the	report.	You	can	see	that	clicking	a	cube	(or	perspective)	to	select	it
displays	the	associated	MeasureGroups,	as	shown	in	Figure	11.29.

Figure	11.29	Clicking	a	cube	to	display	an	associated	MeasureGroup.

Adding	Other	Cube	Metadata
Similarly,	you	can	add	metadata	for	measures,	dimensions,	hierarchies,	and	levels:

1.	 Add	the	following	report	parameters,	and	set	their	default	values	as	shown:

PARAMETER VALUE
pMeasure [Measures].[Reseller	Gross	Profit]

pMeasureGroup Reseller	Sales

pDimension ="[Product]"

This	must	be	an	expression	because	of	the	special	meaning	of	[]
in	SSRS.	[Product]	is	a	shortcut	for	the	value	of	a	DataSet
column,	such	as	Product.Value,	where	you	want	the	dimension
unique	name,	[Product].

pHierarchy [Product].[Product	Categories]

2.	 Enter	the	following	code	to	add	these	datasets.

In	each	case,	enter	the	sample	query	and	then	click	Refresh	Fields	(to	populate
columns	from	the	query).	Then	replace	the	query	with	the	expression.	When	the
dataset	is	saved,	you	still	receive	a	message	that	the	field	could	not	be	updated,
but	if	you	click	OK,	the	fields	are	in	fact	there.

Measures

="SELECT	*	FROM	$System.MDSCHEMA_MEASURES"

+	"	WHERE	CUBE_NAME	=	'"	&	Parameters!pCube.Value	&	"'"

+	"	AND	(MEASUREGROUP_NAME	=	'"	&	Parameters!pMeasureGroup.Value	&	"'"

+	"	OR	MEASURE_DISPLAY_FOLDER	=	'"	&	Parameters!pMeasureGroup.Value	&	"'	

)"

Example:

SELECT	*	FROM	$System.MDSCHEMA_MEASURES

WHERE	CUBE_NAME	=	'Channel	Sales'

AND	(MEASUREGROUP_NAME	=	'Reseller	Sales'

OR	MEASURE_DISPLAY_FOLDER	=	'Reseller	Sales')

MeasureGroupDimensions

="SELECT	*	FROM	$System.MDSCHEMA_MEASUREGROUP_DIMENSIONS	"

+	"	WHERE	CUBE_NAME	=	'"	&	Parameters!pCube.Value	&	"'"

+	"	AND	MEASUREGROUP_NAME	=	'"	&	Parameters!pMeasureGroup.Value	&	"'"

SELECT	*	FROM	$System.MDSCHEMA_MEASUREGROUP_DIMENSIONS

WHERE	CUBE_NAME	=	'Channel	Sales'

AND	MEASUREGROUP_NAME	=	'Reseller	Sales'

Hierarchies

="SELECT	*	FROM	$System.MDSCHEMA_HIERARCHIES"

+	"	WHERE	CUBE_NAME	=	'"	&	Parameters!pCube.Value	&	"'"

+	"	AND	[DIMENSION_UNIQUE_NAME]	=	'"	&	Parameters!pDimension.Value	&	"'"

Example:

SELECT	*	FROM	$System.MDSCHEMA_HIERARCHIES

WHERE	CUBE_NAME	=	'Channel	Sales'

AND	[DIMENSION_UNIQUE_NAME]	=	'[Product]'

Levels

="SELECT	*	FROM	$System.MDSCHEMA_LEVELS	"

+	"	WHERE	CUBE_NAME	=	'"	&	Parameters!pCube.Value	&	"'"

+	"	AND	[DIMENSION_UNIQUE_NAME]	=	'"	&	Parameters!pDimension.Value	&	"'"

+	"	AND	[HIERARCHY_UNIQUE_NAME]	=	'"	&	Parameters!pHierarchy.Value	&	"'"

Example:

SELECT	*	FROM	$System.MDSCHEMA_LEVELS

WHERE	CUBE_NAME	=	'Channel	Sales'

AND	[DIMENSION_UNIQUE_NAME]	=	'[Product]'

AND	[HIERARCHY_UNIQUE_NAME]	=	'[Product].[Product	Categories]'

You	should	see	the	report	data	shown	in	Figure	11.30.

Figure	11.30	Complete	report	data.

3.	 Insert	a	table	on	the	design	surface	based	on	each	dataset,	add	an	expression	to
highlight	the	field	when	it's	selected,	and	create	a	self-calling	drill-through	action.

4.	 For	the	Text	Box	Properties	of	CUBE_NAME,	in	the	Action	page,	set	the	“Enable	action
as	a	hyperlink”	radio	button	to	“Go	to	report,”	set	“Specify	a	report”	to
[&ReportName],	and	add	the	following	Report	Parameter	names	and	values:

PARAMETER VALUE
pCube =	[@pCube]

pMeasureGroup =	[MEASUREGROUP_NAME]

pMeasure =	[@pMeasure]

5.	 Now	that	you	have	added	the	extra	parameters,	go	back	to	the	CUBE_NAME	Text	Box
properties	and	add	the	following	parameters	to	the	Action	page:

PARAMETER VALUE
pMeasureGroup =	[@pMeasureGroup]

pMeasure =	[@pMeasure]

6.	 Set	the	Measure	textbox	to	Gray	if	the	metadata	is	not	visible	and	you	can	display
additional	information	with	a	tooltip.	Alternatively,	you	can	add	columns	to	show
other	metadata.

7.	 In	the	Text	Box	properties	of	MEASURE_NAME,	add	a	self-calling	drill-through	action
(set	“Specify	a	report”	to	[&ReportName])	with	the	following	parameter	names	and
values:

PARAMETER VALUE

pCube =	[@pCube]

pMeasureGroup =	[@pMeasureGroup]

pMeasure =	[MEASURE_UNIQUE_NAME]

The	design	surface	should	resemble	Figure	11.31	and	preview	like	Figure	11.32.

Figure	11.31	Design	surface.

Figure	11.32	Preview.

Dimensions

List	the	dimensions	for	the	selected	MeasureGroup,	and	highlight	the	current
dimension.

8.	 Add	a	self-calling	drill-through	action	with	the	following	values:

PARAMETER VALUE
pCube =	[@pCube]

pMeasureGroup =	[@pMeasureGroup]

pMeasure =	[MEASURE_UNIQUE_NAME]

Hierarchies

9.	 Add	a	self-calling	(report	is	[&ReportName])	drill-through	action	with	the	following
parameter	names	and	values:

PARAMETER VALUE
pCube =	[@pCube]

pDimension =	[@pDimension]

Levels

10.	 To	provide	complete	information,	show	the	level	name	and	number	for	the
selected	hierarchy.

Figures	11.33	and	11.34	show	the	design	surface	and	preview	for	Dimensions,
Hierarchies,	and	Levels.

Figure	11.33	Design	surface.

Figure	11.34	Preview.

Final	Thoughts
You	now	have	a	way	to	discover	information	about	the	structure	of	your	cubes	so	that,
if	you	also	populate	the	description	fields	within	Analysis	Server,	you	can	provide
users	with	up-to-date	documentation,	such	as	a	measure's	meaning.	You	can	also
enable	users	to	search	for	a	measure	by	name,	or	you	can	add	a	help	button	on	a
standard	report	to	display	details	of	a	dimension	or	measure.

The	Cube	Browser	and	the	Angry	Koala	Cube	Browser	reports	in	this	book	use	this
report.	With	some	modifications,	this	will	enable	users	to	dynamically	change	the
rows,	columns,	and	filters	in	their	Cube	Browser	reports.

CUBE	BROWSER
You	can	build	a	simple,	functional	OLAP	browser	in	Reporting	Services	by	using	some
of	the	advanced	reporting	techniques	described	earlier	in	the	chapter:

1.	 Extend	the	Cube	Dynamic	Rows	report	to	include	dynamic	columns.

2.	 Add	a	date	filter.

3.	 Add	a	dynamic	filter.

4.	 Allow	users	to	change	the	measure.

5.	 Link	the	new	report	with	a	modified	version	of	the	Cube	Metadata	report	to	allow
users	to	do	the	following:

Select	the	measure	to	display

Change	the	content	of	rows	and	columns

Change	the	filter

With	these	features,	developers	or	power	users	can	create	a	report	with	any
combination	of	Rows,	Columns,	Filter,	Date,	and	Measure	by	creating	a	linked	report
and	setting	the	parameters	appropriately.	Also,	as	soon	as	a	report	is	running,	users
can	slice	and	dice	their	data.	If	they	are	using	the	native	reporting	services	manager,
they	can	also	create	their	own	version	of	a	report	by	simply	 saving	the	current	report
as	a	favorite	in	Internet	Explorer.

This	cube	browser	report	is	also	fast.	In	a	traditional	report,	when	you	add	parameters
in	the	MDX	query	window,	behind	the	scenes	an	MDX	query	is	generated	for	each
parameter.	This	means	that	when	a	report	is	run,	10	to	20	MDX	queries	can	run
before	the	report	is	rendered.	The	Cube	Browser	report	has	only	the	MDX	query	to
bring	back	data	for	the	grid	(plus	a	basic	SQL	union	statement	to	generate	a	list	of
numbers	for	the	row	count	and	column	count).	You	go	to	other	supporting	reports	to
collect	parameters.	Consequently,	when	you	drill	up	and	drill	down,	the	response	time
is	fantastic.

Figure	11.35	shows	a	Sales	report,	and	Figure	11.36	shows	a	Profit	and	Loss	report.
Both	are	examples	of	the	same	Cube	Browser	report,	just	with	different	parameters.

Figure	11.35	Sales	report.

Figure	11.36	Profit	and	loss	report.

Anatomy	of	the	Reports
Rather	than	going	through	a	step-by-step	approach	to	building	the	reports	in	this
suite,	let's	run	through	the	architecture	and	then	the	necessary	techniques	utilized
within	each	report.

The	reports	are:

Cube	Browser

Cube	Browser	Metadata

Cube	Browser	Member

First,	let's	look	at	the	roles	of	these	reports.

Cube	Browser
This	Cube	Browser	is	the	main	report	and	the	only	one	directly	visible	to	your	users.
You	can	have	multiple	linked	reports	based	on	this	physical	report	showing	different
data	on	rows,	columns,	and	filters	by	simply	creating	a	linked	report	and	changing	the
parameters.

The	following	list	explains	what	users	can	do	in	this	report	and	in	any	linked	reports
and	how	to	do	it.	The	key	action	for	each	item	is	listed,	as	are	any	supporting
parameter	settings.

Change	the	measure	to	display—Click	Measure	Name	in	the	title	to	drill
through	to	the	Cube	Browser	Metadata	report.

driver	=	Measure

Change	what	hierarchy	to	display	on	rows—Click	Hierarchy	Name	in	the	title
to	drill	through	to	Cube	Browser	Metadata.

driver	=	Rows

Change	what	hierarchy	to	display	on	columns—Click	the	Column	Hierarchy
Name	to	drill	through	to	Cube	Browser	Metadata.

driver	=	Columns

Change	what	hierarchy	to	use	for	a	filter—Click	the	Filter	Hierarchy	Name	to
drill	through	to	Cube	Browser	Metadata.

driver	=	Filter

Change	the	Filter	value	(member)—Click	the	Filter	Member	Name	to	drill
through	to	Cube	Browser	Member.

driver	=	Filter

Change	the	date	period	(it	can	be	year,	quarter,	month,	or	day)—Click	the

Date	Member	in	the	title	to	drill	through	to	Cube	Browser	Member.

driver	=	Date

Drill	up	and	down	the	hierarchy	displayed	on	rows	or	columns—Click	a
row	member	to	drill-to-self	with	new	selection.

Change	the	number	of	rows	or	columns	to	display—Click	the	row	number
to	drill-to-self	with	a	new	selection.

Swap	rows	with	filter—Click	the	Swap	Filter	textbox	to	drill-to-self	with	the	Row
and	Filter	parameters	swapped.

Swap	rows	and	columns—Click	the	Swap	Column	textbox	to	drill-to-self	with
the	Row	and	Column	parameters	swapped.

Figure	11.37	shows	the	key	navigation	paths	from	the	Cube	Browser	to	the	Cube
Browser	Metadata	and	the	Cube	Browser	Member.

Figure	11.37	Key	navigation	paths.

Cube	Browser	Metadata

The	Cube	Browser	Metadata	report	is	called	from	the	Cube	Browser	report	and	returns
a	measure	or	hierarchy.	Its	design	is	based	on	the	Cube	Metadata	report	and	is	called
when	the	user	wants	to	do	the	following:

Change	the	measure

Select	what	hierarchy	to	display	on	rows	or	columns

Select	what	hierarchy	to	filter	by

It	therefore	has	two	distinct	behaviors.	The	following	list	explains	what	users	can	do	if
the	driver	parameter	value	is	Measure,	and	how	to	do	it:

Select	a	cube/perspective—Click	the	MeasureLabel	to	initiate	drill-to-self
action	to	display	measures	available	in	the	selected	cube.

Select	a	measure	from	the	cube/perspective—Click	a	measure	to	fire	as	a
drill-back	action	to	the	Cube	Browser	report	passing	the	selected	Measure.

The	following	list	explains	what	users	can	do	if	the	driver	parameter	is	Row,	Column,	or
Filter,	and	how	to	do	it.	The	key	action	for	each	item	is	listed,	as	are	any	supporting
parameter	settings:

Select	a	dimension—Drill-to-self	to	display	hierarchies.

Choose	a	hierarchy	for	a	selected	dimension—Drill	back	to	Cube	Browser
with	the	selected	hierarchy.

driver	=	Rows,	Columns,	or	Filter

Note	that	you	do	not	hard-code	the	report	you	drill	back	to.	One	of	the	parameters	is
the	calling	report.	It	allows	this	report	to	be	called	from	different	linked	reports.

Cube	Browser	Member
The	Cube	Browser	Member	report	is	called	from	the	Cube	Browser	report	and	returns
a	hierarchy	member.	It	is	called	when	the	user	wants	to	do	the	following:

Select	a	period	of	time	to	filter	the	report	by	(a	specific	year,	quarter,	month,
or	day).

Select	a	member	to	filter	the	report	by.

Behind	the	Scenes
Now	let's	look	at	the	details	and	the	reports	utilized.

Cube	Browser
The	Cube	Browser	report	is	based	on	the	Cube	Dynamic	Rows	report.	It	uses	the	same
basic	concept	but	extends	the	idea	to	columns.	Date	and	dynamic	filters	are	added.	To
add	the	date	and	dynamic	filters,	you	need	the	following	parameters	(I	have	included	a
sample	default	value):

pCube	=	Sales	Summary	(the	name	of	the	cube	or	perspective)

pMeasureGroup	=	Sales	Summary	(the	name	of	the	MeasureGroup)

pMeasure	=	[Measures].[Gross	Profit]	(the	UniqueName	of	the	measure)

pDateMbr	=	[Date].[Calendar].[Month].&[2004]&[4]	(the	UniqueName	of	the
Date	member)

pRowMbr	=	[Product].[Product	Categories].[Subcategory].&[1]	(the
UniqueName	of	the	member	from	which	ascendants	and	children	are	shown	on
rows)

pRowCount	=	10	(the	number	of	rows	to	show)

pColMbr	=	[Sales	Territory].[Sales	Territory].[All	Sales	Territories]	(the
UniqueName	of	the	member	from	which	ascendants	and	children	are	shown	on
columns)

pColCount	=	5	(the	number	of	columns	to	show)

pFilterMbr	=	[Promotion].[Promotions].[All	Promotions]	(the	UniqueName	of
the	member	acting	as	filter)

If	you	open	the	DataSet1	query	and	select	the	parameters	icon	from	the	Query
Designer	Toolbar,	you'll	see	the	list	of	parameters	together	with	their	default	values,
as	shown	in	Figure	11.38.

Figure	11.38	List	of	parameters	and	default	values.

Here	is	the	required	MDX	query,	including	the	necessary	additions	for	extra
functionality:

--	Cube	Browser

--

--	Grant	Paisley

--	Angry	Koala

--	http://angrykoala.com.au

--	14	Nov	2011

--

--

--	Note:	certain	attributes	commented	out	as	not	needed

--	but	may	be	of	use	in	other	reports

WITH

--	The	measure	of	interest

MEMBER	[Measures].[Measure_Value

		AS	StrToValue(@pMeasure)

--	the	friendly	name	of	the	measure

MEMBER	[Measures].[Measure_Label

		AS	StrToValue(@pMeasure	+	".Member_Name")

--	Row	metadata

MEMBER	[Measures].[Row_Key

		AS	StrToValue(@pRowMbr	+	".Hierarchy.Currentmember.Uniquename")

MEMBER	[Measures].[Row_Label

		AS	StrToValue(@pRowMbr	+	".Hierarchy.CurrentMember.Member_Caption")

MEMBER	[Measures].[Row_Level

		AS	StrToValue(@pRowMbr	+	".Hierarchy.CurrentMember.Level.Ordinal")

MEMBER	[Measures].[Row_Level_Name

		AS	StrToValue(@pRowMbr	+	".Hierarchy.Level.Name")

MEMBER	[Measures].[Row_Hierarchy_Name

		AS	StrToValue(@pRowMbr	+	".Hierarchy.Name")

MEMBER	[Measures].[Row_Hierarchy_UniqueName

		AS	StrToValue(@pRowMbr	+	".Hierarchy.UniqueName")

MEMBER	[Measures].[Row_Dimension_Name

		AS	StrToValue(@pRowMbr	+	".Dimension.Name")

MEMBER	[Measures].[Row_Dimension_UniqueName

		AS	StrToValue(@pRowMbr	+	".Dimension_Unique_Name")

--	Column	metadata

MEMBER	[Measures].[Col_Key

		AS	StrToValue(@pColMbr	+	".Hierarchy.Currentmember.Uniquename")

MEMBER	[Measures].[Col_Label

		AS	StrToValue(@pColMbr	+	".Hierarchy.CurrentMember.Member_Caption")

MEMBER	[Measures].[Col_Level

		AS	StrToValue(@pColMbr	+	".Hierarchy.CurrentMember.Level.Ordinal")

MEMBER	[Measures].[Col_Level_Name

		AS	StrToValue(@pColMbr	+	".Hierarchy.Level.Name")

MEMBER	[Measures].[Col_Hierarchy_Name

		AS	StrToValue(@pColMbr	+	".Hierarchy.Name")

MEMBER	[Measures].[Col_Hierarchy_UniqueName

		AS	StrToValue(@pColMbr	+	".Hierarchy.UniqueName")

MEMBER	[Measures].[Col_Dimension_Name

		AS	StrToValue(@pColMbr	+	".Dimension.Name")

MEMBER	[Measures].[Col_Dimension_UniqueName

		AS	StrToValue(@pColMbr	+	".Dimension_Unique_Name")

--	Filter	metadata

MEMBER	[Measures].[Filter_Key

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.Currentmember.Uniquename")

MEMBER	[Measures].[Filter_Label

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.CurrentMember.Member_Caption")

MEMBER	[Measures].[Filter_Level

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.CurrentMember.Level.Ordinal")

MEMBER	[Measures].[Filter_Level_Name

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.Level.Name")

MEMBER	[Measures].[Filter_Hierarchy_Name

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.Name")

MEMBER	[Measures].[Filter_Hierarchy_UniqueName

		AS	StrToValue(@pFilterMbr	+	".Hierarchy.UniqueName")

MEMBER	[Measures].[Filter_Dimension_Name

		AS	StrToValue(@pFilterMbr	+	".Dimension.Name")

MEMBER	[Measures].[Filter_Dimension_UniqueName

		AS	StrToValue(@pFilterMbr	+	".Dimension_Unique_Name")

--	Date	metadata

MEMBER	[Measures].[Date_Key

		AS	StrToValue(@pDateMbr	+	".Hierarchy.Currentmember.Uniquename")

MEMBER	[Measures].[Date_Label

		AS	StrToValue(@pDateMbr	+	".Hierarchy.CurrentMember.Member_Caption")

MEMBER	[Measures].[Date_Level

		AS	StrToValue(@pDateMbr	+	".Hierarchy.CurrentMember.Level.Ordinal")

MEMBER	[Measures].[Date_Level_Name

		AS	StrToValue(@pDateMbr	+	".Hierarchy.Level.Name")

MEMBER	[Measures].[Date_Hierarchy_Name

		AS	StrToValue(@pDateMbr	+	".Hierarchy.Name")

MEMBER	[Measures].[Date_Hierarchy_UniqueName

		AS	StrToValue(@pDateMbr	+	".Hierarchy.UniqueName")

MEMBER	[Measures].[Date_Dimension_Name

		AS	StrToValue(@pDateMbr	+	".Dimension.Name")

MEMBER	[Measures].[Date_Dimension_UniqueName

		AS	StrToValue(@pDateMbr	+	".Dimension_Unique_Name")

SELECT	NON	EMPTY	{

--	display	the	measure	and	rowmbr	attributes	on	columns

[Measures].[Row_Key],

[Measures].[Row_Label],

[Measures].[Row_Level],

[Measures].[Row_Level_Name],

[Measures].[Row_Hierarchy_Name],

[Measures].[Row_Hierarchy_UniqueName],

[Measures].[Row_Dimension_Name],

[Measures].[Row_Dimension_UniqueName],

[Measures].[Col_Key],

[Measures].[Col_Label],

[Measures].[Col_Level],

[Measures].[Col_Level_Name],

[Measures].[Col_Hierarchy_Name],

[Measures].[Col_Hierarchy_UniqueName],

[Measures].[Col_Dimension_Name],

[Measures].[Col_Dimension_UniqueName],

[Measures].[Filter_Key],

[Measures].[Filter_Label],

[Measures].[Filter_Level],

[Measures].[Filter_Level_Name],

[Measures].[Filter_Hierarchy_Name],

[Measures].[Filter_Hierarchy_UniqueName],

[Measures].[Filter_Dimension_Name],

[Measures].[Filter_Dimension_UniqueName],

[Measures].[Date_Key],

[Measures].[Date_Label],

[Measures].[Date_Level],

[Measures].[Date_Level_Name],

[Measures].[Date_Hierarchy_Name],

[Measures].[Date_Hierarchy_UniqueName],

[Measures].[Date_Dimension_Name],

[Measures].[Date_Dimension_UniqueName],

[Measures].[Measure_Value],

[Measures].[Measure_Label

}	ON	COLUMNS,

--	returns	the	top	n	number	of	rows	based	on	current	measure

TOPCOUNT(

--	show	the	current	hierarchy	member	with	its	ascendants

--	together	with	its	children	on	rows

STRTOSET(

"{Ascendants("	+	@pRowMbr	+	"),	"

+	@pRowMbr	+	".children}"

)

,StrToValue(@pRowCount)

,[Measures].[Measure_Value

)

*	--	cross	product

--	returns	the	top	n	number	of	Columns	based	on	current	measure

TOPCOUNT(

--	show	the	current	hierarchy	member	with	its	ascendants

--	together	with	its	children	on	Columns

STRTOSET(

"{Ascendants("	+	@pColMbr	+	"),	"

+	@pColMbr	+	".children}"

)

,StrToValue(@pColCount)

,[Measures].[Measure_Value

)

ON	ROWS

FROM	[Adventure	Works]	--	must	hard	code	the	cube	:(

--	the	cube	name,	together	with	the	default	values	are	the	only

--	things	required	to	point	this	report	at	a	different	cube

WHERE	STRTOTUPLE("("	+@pFilterMbr	+","	+	@pDateMbr	+	")")

Much	like	how	you	created	calculated	measures	for	the	metadata	on	rows,	you	now
get	the	same	metadata	for	the	Date,	Filter,	and	Column	members.	For	each	you	collect
the	following:

Key

Label

Level

Level_Name

Hierarchy_Name

Hierarchy_UniqueName

Dimension_Name

Dimension_UniqueName

Notice	that	you	have	done	the	following:

Added	extra	measures	to	display	metadata	for	columns,	date,	and	filter

Created	a	cross	product	between	rows	and	columns

Added	a	tuple	in	the	WHERE	clause	based	on	the	Date	member	and	the	Filter
member

As	shown	in	Figure	11.39,	when	you	run	the	MDX	query,	you	see	all	the	metadata
together	with	the	Measure	value	you	want	to	display:	Measure_Value.

Figure	11.39	Metadata	and	measure	value.

Report	Body
The	main	tablix,	shown	in	Figure	11.40,	is	a	matrix	with:

Figure	11.40	Main	tablix.

Columns	grouped	by	Col_Key	and	displaying	Col_Label

Rows	grouped	by	Row_Key	and	displaying	Row_Label

The	Measure_Value	in	the	details	cell

In	the	columns,	similar	to	the	rows,	the	group	is	by	Col_Key	and	sorted	by	the
Col_Level	(the	level	in	the	hierarchy)	and	within	the	level,	descending	by
Measure_Value.	You	could	enhance	the	report	by	adding	a	parameter	to	control
whether	sorting	is	ascending	or	descending,	as	shown	in	Figure	11.41.

Figure	11.41	Adding	an	ascending	or	descending	control.

The	Measure_Value	textbox	is	tweaked	to	highlight	the	current	member
(LemonChiffon)	for	rows	and	columns.

The	BackgroundColor	is	set	as	follows:

	=iif(Fields!Row_Key.Value=Parameters!pRowMbr.Value,	"LemonChiffon",

	iif(Fields!Col_Key.Value=Parameters!pColMbr.Value,	"LemonChiffon",

		Nothing

))

Similarly,	the	font	is	set	to	Black	if	this	cell	corresponds	to	the	current	member;
otherwise,	it	is	set	to	DimGray:

=iif(Fields!Row_Key.Value=Parameters!pRowMbr.Value,	"Black",

	iif(Fields!Col_Key.Value=Parameters!pColMbr.Value,	"Black",

		"DimGray"

))

On	the	labels	for	rows	and	columns,	the	same	background	color	is	set	(LemonChiffon),
but	the	text	color	is	DimGray	if	they	correspond	to	the	current	member.	Otherwise,	it	is
Blue,	indicating	that	you	can	click	it	to	drill	up	and	down	the	hierarchy:

=iif(Fields!Row_Key.Value=Parameters!pRowMbr.Value,

"DimGray",

"Blue")

Restricting	Rows	and	Columns
The	parameter	pColCount	restricts	the	number	of	columns	displayed	in	this	report.

You	use	the	TOPCOUNT	function	in	MDX	to	restrict	the	number	of	column	members
returned	in	the	query	driven	by	the	parameter	pColCount.	However,	instead	of	having
to	select	the	parameter	with	a	fiddly	option	box	in	the	parameters,	the	user	just	clicks
the	number	of	columns	he	or	she	wants.	The	TablixColCount	table	displays	these
selectable	values	from	the	CellCount	dataset.	The	clickable	values	are	colored	Blue
except	for	the	numeric	matching	the	current	parameter	value,	and	it	is	DimGray.

Clicking	invokes	a	self-calling	drill-through	action	with	all	parameters	set	as	their
existing	values	except	for	pColCount,	and	that	is	set	[CellCount],	which	is	the	value	of
the	cell	that	is	clicked.	Figure	11.42	shows	the	parameter	values	for	this	action.

Figure	11.42	Parameter	values.

Restricting	rows	works	in	the	same	way,	but	with	parameter	pRowCount.

Swap	Actions
In	the	top-left	cell	of	the	main	tablix	is	the	TablixSwap.	It	contains	two	blue	cells	that
allow	the	user	to	swap	the	rows	with	columns	or	swap	the	rows	with	the	filter.	Again,
all	that	happens	is	a	self-calling	drill-through	action	takes	place.	For	instance,	for	the
rows	and	columns	swap	we	set	up	a	tooltip:

="Swap	rows	("

+	Fields!Row_Hierarchy_Name.Value

+	")	with	columns	("

+	Fields!Col_Hierarchy_Name.Value

+	")"

We	also	set	up	a	self-calling	drill-through	action.	Notice	the	swapping	of	row	and
column	 parameters	shown	in	Figure	11.43.

Figure	11.43	Swapping	of	row	and	column	parameters.

Titles
The	titles	in	the	report	work	both	as	titles	and	as	places	where	users	can	change	what
they	see	in	the	report.

Changing	the	Measure	(TextboxMeasureName)
The	first	textbox	in	the	Titles	table	includes	the	Measure	to	display	in	the	report.
When	the	user	clicks	it,	he	or	she	is	taken	to	the	Cube	Browser	Metadata	report	to
select	a	different	measure	from	the	same	cube,	or	even	a	measure	from	a	different
cube.	All	parameters	are	passed	to	the	Cube	Browser	Metadata	report,	plus	the
following:

pCallingReport	=	is	set	by	the	report	calling	this	report.	This	allows	drill-through
textbox	action	to	return	to	the	calling	report.

pDriver	=	Measure	indicates	that	the	user	wants	to	select	a	cube	and	measure.
Other	 possible	values	are	Rows,	Columns,	Date,	and	Filter.

Figure	11.44	shows	the	action,	and	Figure	11.45	shows	how	to	select	a	measure.

Figure	11.44	Action.

Figure	11.45	Selecting	a	measure.

Changing	the	Hierarchy	on	Rows	(TextboxRowHierarchyName)
Similarly,	if	you	want	to	change	what	is	on	rows,	click	the	TextboxRowHierarchyName.
This	action	calls	the	same	Cube	Browser	Metadata	report,	but	this	time	with	pDriver
=	Rows.	Now	the	Cube	Browser	Metadata	report	displays	the	Dimensions	and
Hierarchies	for	the	Measure	Group	corresponding	to	the	current	measure.	Figure
11.46	shows	TextboxRowHierarchy	on	the	design	surface	and	the	Action	tab	of	the
textbox	properties	window	with	the	parameter	values	required	to	call	the	Cube
Browser	Metadata	report.	Figure	11.47	shows	a	preview	of	the	result.

Figure	11.46	Design	surface	and	Action	tab.

Figure	11.47	Preview	of	result.

Changing	the	Hierarchy	on	Columns	(TextboxColHierarchyName)
Changing	columns	works	the	same	way	as	TextBoxRowHierarchyName,	except	that	the
pDriver	parameter	is	set	to	Columns	so	that	the	Cube	Browser	Metadata	report	knows
to	display,	and	later	return,	the	pColMbr	parameter.

Changing	the	Hierarchy	for	the	Filter	(TextboxFilterHierarchyName)
Changing	the	filter	also	works	the	same	way	as	TextBoxRowHierarchyName,	except	that
the	pDriver	parameter	is	set	to	Filter	so	that	the	Cube	Browser	Metadata	report
knows	to	display,	and	later	return,	the	pFilterMbr	parameter.

Changing	the	Date	Member	(TextboxDateLabel)
The	user	can	change	the	period	of	time	the	report	covers	by	clicking	the
TextboxDateLabel.	This	drills	through	to	the	Cube	Browser	Member	report,	where	the
user	can	select	another	Date	member	in	the	hierarchy.	This	can	be	a	year,	quarter,
month,	or	even	a	single	day.	Figure	11.48	shows	the	action	parameters.	This	time
pDriver	is	set	to	Date.	Figure	11.49	shows	what	the	user	sees.

Figure	11.48	Action	parameters.

Figure	11.49	Selecting	the	Date	parameter.

NOTE

The	date	ranges	in	the	newer	sample	database	are	newer	than	those	 displayed
here.	Set	the	pDateMbr	parameter	default	to	a	date	member	in	2013	or	2014	to
work	with	the	provided	SSAS	database.

Footer	Information
To	round	out	the	report,	we	have	added	some	interesting	information	to	the	footer:

Who	ran	it

How	long	it	took	to	execute

Page	numbers	in	1	of	n	format

The	name	of	the	report

In	production	we	always	number	our	reports	using	the	following	format:

pnnn	-	meaningful	name

For	example,	p012	-	Channel	Sales.

So	in	the	footer	we	would	display	the	report's	full	number	and	name,	but	in	the	title
we	would	strip	the	number	and	just	leave	the	report	name.

Figure	11.50	shows	a	formatted	footer.

Figure	11.50	Formatted	footer.

The	following	is	the	code	for	the	first	textbox,	which	displays	who	ran	the	report	and
how	long	it	took	to	run:

="run	by	"	&	User!UserID	+	"	in	"	+

IIf(

	System.DateTime.Now.Subtract(Globals!ExecutionTime).TotalSeconds<1,

				"<	1	second",

(

IIf(System.DateTime.Now.Subtract(Globals!ExecutionTime).Hours	>0,

				System.DateTime.Now.Subtract(Globals!ExecutionTime).Hours

				&	"	hour(s),	",	"")	+

IIf(System.DateTime.Now.Subtract(Globals!ExecutionTime).Minutes	>0,

				System.DateTime.Now.Subtract(Globals!ExecutionTime).Minutes

				&	"	minute(s),	",	"")	+

IIf(System.DateTime.Now.Subtract(Globals!ExecutionTime).Seconds	>0,

				System.DateTime.Now.Subtract(Globals!ExecutionTime).Seconds

				&	"	second(s)",	""))

)

The	next	textbox	shows	when	the	report	was	run:

=	FormatDateTime(Globals!ExecutionTime,3)

&	"	"

&	FormatDateTime(Globals!ExecutionTime,1)

Then,	at	the	right	of	the	footer	comes	the	report's	name:

=Globals!ReportName

The	final	textbox	holds	the	page	number	and	total	number	of	pages:

=	"Page	"

&	Globals!PageNumber

&	"	of	"

&	Globals!TotalPages

Now	you	have	a	simple	OLAP	browser.	You	can	create	user	reports	by	creating	linked
reports	with	different	parameters.	Interestingly,	your	users	can	also	configure	the
report	to	one	they	like	and	then	just	save	it	as	a	favorite	in	Internet	Explorer.

NOTE

Paul	here	again	with	my	own	“final	thoughts.”	Thanks	again	to	Grant	Paisley	for
this	contribution	to	the	previous	edition	of	the	book.	I	made	some	very	minor
revisions	to	make	sure	everything	worked	with	an	updated	copy	of	the	data
source.

I	chose	to	include	this	chapter	because	I	think	the	cube	browser	solution	is	pure
genius	and	a	great	example	of	a	well-crafted	complex	solution	that	would	simply
not	be	feasible	for	us	to	build	from	the	ground-up	as	an	exercise.	It	is	easy	to	get
lost	in	the	details	so	I	offer	this	advance:	Start	by	running	the	Cube	Browser
report	and	then	see	how	the	actions	utilize	the	other	reports	to	collect
parameters.	After	that,	run	the	Angry	Koala	Cube	Browser	report	and	do	the
same.	I	hope	you	find	this	as	educational	and	valuable	as	I	have.

You	can	use	this	solution	with	different	data	sources	but	you	should	make	sure
each	parameter	has	a	valid	default	value.	Without	the	book	sample	SSAS
database,	make	sure	the	date	parameters	(such	as	pDateMbr)	are	in	the	correct
ranges	with	defaults	set	to	2013	or	2014.

Final	Thoughts
This	is	a	great	starting	point	for	creating	your	own	variation	on	an	OLAP	Cube
Browser.	For	instance,	the	Angry	Koala	Cube	Surfer	report,	shown	in	Figure	11.51,
uses	the	same	basic	concept	as	the	Cube	Browser.	But	instead	of	showing	a	single
measure	in	each	data	cell,	it	shows	the	following:

Figure	11.51	Angry	Koala	Cube	Surfer	report.

The	measure	for	the	current	period	(in	bold)

The	measure	for	the	same	period	in	a	comparison	period	(driven	by	a	lag	number—
for	 example,	12	means	12	months,	and	therefore	means	the	same	month	last	year)

An	Australian	sparkline	(it	has	a	line	down	under)

Figure	11.51	shows	the	Cube	Surfer	comparing	the	last	three	periods	to	the	previous
periods—six,	five,	and	four	(lag	=	3).

Figure	11.52	shows	the	same	report	with	a	lag	of	12	for	a	year-on-year	comparison.

Figure	11.52	Report	with	a	lag	of	12.

SUMMARY
In	this	chapter	you	have	harnessed	the	power	of	Analysis	Services	to	create
compelling	reports	with	dynamic	content.	You	have	learned	how	to	use	self-calling
drill-through	reports	to	navigate	cube	hierarchies	and	create	helper	reports	to	collect
parameters	based	on	Analysis	Services	metadata	 utilizing	DMVs.	As	a	result,	you	will
now	be	well	placed	to	meet,	and	in	many	cases	exceed,	the	expectations	of	your
business	users.

Chapter	12	is	about	building	solutions	and	not	just	reports.	You	will	apply	techniques
such	as	conditional	expressions,	parameters,	and	calculated	fields	to	extend	report
functionality.	We	will	explore	using	embedded	.NET	code	within	a	report	to	process
complex	business	logic	and	code	programmatic	logic	to	control	report	output	and
behavior.

Chapter	12
Expressions	and	Actions

WHAT'S	IN	THIS	CHAPTER?

Revisiting	expressions

Understanding	calculated	fields

Using	conditional	expressions

Getting	to	know	IIF	and	SWITCH	functions

Using	custom	code

Reporting	recursive	relationships

Using	actions	to	navigate	reports

The	real	power	behind	Reporting	Services	is	its	ability	to	creatively	use	data	groups,
and	combinations	of	report	items.	Calculations	and	conditional	formatting	can	be
added	by	using	simple	expressions	and	more	advanced	programming	code.	Whether
you	are	an	application	developer	or	a	report	designer,	this	chapter	contains	important
information	to	help	you	design	reports	to	meet	your	users'	requirements	and	to	raise
the	bar	with	compelling	report	features.

Coupled	with	expressions	and	parameters,	report	actions	are	used	to	take	reporting
solutions	to	the	next	level	and	build	comprehensive	dashboards	and	report	navigation
experiences.

BASIC	EXPRESSIONS	RECAP
In	previous	chapters,	we	used	expressions	for	a	variety	of	things	but	have	just
scratched	the	surface.	You	can	do	a	lot	with	a	little	code	and	some	creative	design.
Recall	that	we	used	expressions	to	create	standardized	report	and	page	header	content.
You	should	remember	that	any	textbox	bound	to	a	dataset	field	or	built-in	field
actually	contains	an	expression.

Also	recall	that	you	can	build	simple	composite	values	in	a	textbox	by	dragging	items
from	the	Report	Data	pane	into	a	textbox.	For	example,	if	you	want	to	display	the	page
number	and	total	number	of	report	pages	in	the	report	footer,	insert	a	textbox	into	the
report	footer	and	drag	the	PageNumber	built-in	field	from	the	Report	Data	pane	into	the
textbox.	Then,	place	the	cursor	at	the	end	of	this	text,	press	the	spacebar,	type	the
word	of,	press	the	spacebar,	and	then	drag	the	TotalPages	built-in	field	to	the	end	of
the	text.	This	produces	an	expression	that	appears	like	this	in	the	Report	Designer:

[&PageNumber]	of	[&TotalPages]

If	you	have	worked	with	versions	of	Reporting	Services	prior	to	2012,	you	will	notice
an	improvement	in	the	user	experience.	After	the	cursor	leaves	the	textbox,	the	Report
Designer	no	longer	displays	the	following	non-descriptive	label	in	gray:

<<Expr>>

What	value	is	really	stored	in	this	textbox?	If	the	expression	is	created	by	using	the
designer	(instead	of	the	Expression	Builder),	you	no	longer	can	right-click	and	choose
Expression	to	find	out.	Instead,	these	types	of	expressions	are	built	as	“text	runs”
inside	a	paragraph	defined	for	the	textbox.	To	see	what	is	really	going	on	under	the
covers,	you	would	need	to	open	the	RDL	file	using	a	text	editor	such	as	Notepad.	You
will	find	an	XML	snippet	as	follows:

	<Paragraphs>

				<Paragraph>

								<TextRuns>

												<TextRun>

																<Value>=Globals!TotalPages</Value>

																<Style/>

												</TextRun>

												<TextRun>

																<Value>	of	</Value>

																<Style/>

												</TextRun>

												<TextRun>

																<Value>=Globals!PageNumber</Value>

																<Style/>

												</TextRun>

								</TextRuns>

								<Style/>

				</Paragraph>

</Paragraphs>

However,	if	you	prefer	to	build	your	expressions	in	a	more	“programmatic”	way,	you
can	always	use	the	Expression	Builder	dialog	and	type	in	the	following:

=Globals!PageNumber	&	"	of	"	&	Globals!TotalPages

Don't	worry;	the	next	section	explains	the	detailed	steps	to	accomplish	this	task.	This
type	of	expression,	built	by	hand-coding	in	the	Expression	Builder,	is	stored	slightly
differently	in	the	RDL	file:

<Paragraphs>

				<Paragraph>

								<TextRuns>

												<TextRun>

																<Value>

																				=Globals!PageNumber	&	"	of	"	&	Globals!TotalPages

																</Value>

																<Style/>

												</TextRun>

								</TextRuns>

								<Style/>

				</Paragraph>

</Paragraphs>

Notice	that	the	RDL	generated	is	slightly	less	verbose	and	contains	only	one	TextRun
element,	which	holds	the	expression	you	typed	in	the	Expression	Builder.	If	you've
worked	with	previous	 versions	of	Reporting	Services,	this	will	look	familiar.	It	is	the
same	Visual	Basic	expression	code	that	Reporting	Services	has	used	all	along.

Reporting	Services	was	originally	designed	to	be	an	application	developer–centric	tool,
used	by	programmers	in	Microsoft	Visual	Studio.	As	time	went	on	and	the	product
matured,	the	powers	that	be	at	Microsoft	took	a	good	hard	look	at	Reporting	Services
and	realized	that	the	industry	was	asking	for	a	more	information	worker–centric
reporting	tool.	Several	incremental	steps	have	helped	Reporting	Services	become	this
dual-identity	product	that	appeals	to	both	programmers	and	business	users.	The
downside	is	that,	in	places,	the	product	can	be	a	bit	schizophrenic.	In	addition	to	the
designer's	drag-and-drop	expressions	and	the	Expression	Editor's	expression	syntax
differences,	the	built-in	fields	in	the	Report	Data	pane	are	referred	to	as	members	of
the	Globals	collection	within	true	report	expressions.	The	term	built-in	fields	is	just	a
friendly	term,	not	a	syntax	convention.

USING	THE	EXPRESSION	BUILDER
You	have	already	used	a	few	expressions	in	the	basic	report	design	work	done	so	far.
Any	field	reference	is	an	expression.	In	the	Group	Properties	dialog,	you	used	a	field
expression.	In	the	previous	example,	we	used	an	expression	to	show	the	page	number
and	total	pages	so	that	it	reads	“X	of	Y”	when	the	report	is	rendered.	Expressions	are
used	to	create	a	dynamic	value	based	on	a	variety	of	built-in	fields,	dataset	fields,	and
programming	functions.	Expressions	can	be	used	to	set	most	property	values	based	on
a	variety	of	conditions,	parameters,	field	values,	and	calculations.	Let's	take	a	quick
look	at	common	methods	to	build	simple	expressions.	We'll	explain	the	previous
example,	only	this	time	in	the	Expression	Builder.

TIP

You	will	find	finished	examples	of	these	expressions	in	the	Product	Details	report,
in	the	Wrox	SSRS	2016	Samples	project.	To	follow	along,	just	create	a	new
textbox	alongside	the	finished	one.

To	display	the	page	number	and	page	count,	right-click	the	textbox	and	select
Expression,	and	then	use	the	Expression	window	to	create	the	expression.	You	can	use
two	methods	to	add	expressions	to	the	expression	text	area.	One	method	is	to	select
items	from	the	category	tree	and	member	list	and	double-click	an	item	to	add	to	the
expression.	The	other	method	is	to	simply	type	text	into	the	expression	text	area.	This
uses	the	IntelliSense	Auto	List	Members	feature	to	provide	drop-down	lists	for	known
items	and	properties.	Here's	the	first	method:

1.	 Begin	by	typing	="Page"	&	in	the	Expression	box,	and	then	click	the	Built-in	Fields
item	in	object	tree	view.	All	related	members	are	listed	in	the	adjacent	list	box.

2.	 Double-click	the	PageNumber	item	in	the	list.

3.	 Place	the	cursor	at	the	end	of	the	text,	and	type	the	text	&	"	of	"	&.	Then	select
and	insert	the	TotalPages	field.

The	finished	expression	should	read	as	follows:

="Page	"	&	Globals!PageNumber	&	"	of	"	&	Globals!TotalPages

The	Expression	window	(also	called	the	Expression	Builder)	should	appear,	as	shown
in	Figure	12.1.

Figure	12.1	Expression	window.

In	previous	chapters,	you	learned	how	parameter	values	are	passed	into	a	query	to
limit	or	alter	the	result	set.	Parameters	can	also	be	used	within	the	report	to	modify
display	characteristics	by	dynamically	changing	item	properties.	For	example,	we	can
create	grouping	expressions	for	data	regions	based	on	values	in	parameter	variables.	A
report's	parameters	collection	is	publicly	accessible	from	the	Expression	window	and
can	be	included	as	part	of	expressions.

CALCULATED	FIELDS
Custom	fields	can	be	added	to	any	report	and	can	include	expressions,	calculations,
and	text	manipulation.	This	might	be	similar	in	functionality	to	alias	columns	in	a
query	or	view,	but	the	calculation	or	expression	is	performed	on	the	report	server	after
data	has	been	retrieved	from	the	database.	Calculated	field	expressions	can	also	use
Reporting	Services	global	variables,	custom	code,	and	functions	that	may	be
unavailable	in	a	SQL	expression.

Let's	start	with	a	basic	report	that	displays	product	details.	Again,	to	see	the	completed
steps,	take	a	look	at	the	Product	Details	report	in	the	Wrox	SSRS	2016	Samples
project.	You	will	replace	a	simple	expression	previously	used	in	a	textbox	with	a
calculated	field.	Figure	12.2	shows	a	textbox	used	to	calculate	the	profit	margin	for
each	product	by	subtracting	the	StandardCost	field	from	the	ListPrice.	The
Expression	dialog	is	shown	for	this	textbox.

Figure	12.2	Textbox	used	to	calculate	profit	margin.

Rather	than	performing	the	calculation	on	the	textbox,	let's	add	a	calculated	field	to
the	dataset	definition	so	that	this	calculation	can	be	reused	by	other	objects	in	the
report.

Use	the	Report	Data	pane	in	the	Report	Designer	to	select	the	dataset	you	want	to	use.
Right-click	the	dataset	and	choose	Add	Calculated	Field,	as	shown	in	Figure	12.3.

Figure	12.3	Selecting	the	dataset	you	want	to	use.

The	Dataset	Properties	dialog	opens,	as	shown	in	Figure	12.4.	On	the	Fields	page,	click
the	Add	button	to	add	a	new	item	to	the	Fields	collection.	Type	the	new	field	name,
and	then	click	the	expression	button	(fx)	next	to	the	Field	Source	box	on	this	new	row.

Figure	12.4	Dataset	properties	dialog.

When	the	Expression	dialog	opens,	simply	type	or	build	the	same	expression	as
before.	Verify	the	results	with	Figure	12.4,	and	then	click	OK	on	both	of	these	dialogs
to	save	the	newly	calculated	field	to	the	dataset.

Using	the	calculated	field	is	no	different	from	using	any	other	field	derived	from	the
dataset	query.	Just	drag	and	drop	the	new	field	from	the	Report	Data	pane	to	the
textbox	on	the	report.	Note	the	Profit	field	reference	in	the	textbox,	as	shown	in
Figure	12.5.

Figure	12.5	Field	reference	in	a	textbox.

You	can	use	the	expression	button	to	invoke	the	Expression	Builder	to	use	any
functionality	available	within	the	design	environment	in	addition	to	the	database
fields	exposed	by	the	dataset	query.	These	calculations	will	be	performed	on	the
Report	Server	rather	than	on	the	database	server.

CONDITIONAL	EXPRESSIONS
You	have	seen	some	simple	examples	of	using	expressions	to	set	item	values	and
properties.	Let's	look	at	one	more	example	of	a	conditional	expression,	and	then	we'll
discuss	using	program	code	to	handle	more	complex	situations.	We'll	create	a	simple
Product	Inventory	report	that	uses	conditional	formatting.	The	table	in	this	report
returns	a	list	of	products	with	current	inventory	values.	The	Product	table	in	the
WroxSSRS2016	database	contains	a	ReorderPoint	value	that	informs	stock	managers
when	they	need	to	reorder	products.	If	the	inventory	count	falls	below	this	value,	you
can	set	the	inventory	quantity	to	appear	in	red	next	to	the	name.	Using	a	conditional
expression	in	this	manner	is	similar	to	using	conditional	formatting	in	Excel.

The	following	example	uses	a	dataset	with	this	SQL	query:

SELECT

					l.LastInventoryDate,

					l.ProductNumber,

					l.ProductName,

					i.[ReorderPoint],

					i.[Quantity],

					i.[ListPrice

FROM

							ProductInventory	i

							INNER	JOIN

							(

												SELECT

															MAX(i.InventoryDate)	AS	LastInventoryDate,

															p.ProductNumber,

															p.ProductName

												FROM

																Product	p

																INNER	JOIN	ProductInventory	i	on	p.ProductNumber	=	

i.ProductNumber

												GROUP	BY

																	p.ProductNumber,

																	p.ProductName

)	l	on	i.ProductNumber	=	l.	ProductNumber

;

The	table	bound	to	this	dataset	has	four	columns:	Name,	ReorderPoint,	Quantity,	and
ListPrice.	On	the	Quantity	textbox	in	the	table's	detail	row,	the	Color	property	is	set
to	an	expression	containing	conditional	logic	instead	of	being	set	to	a	value.	You	can
use	the	Expression	Builder	or	just	type	this	expression	into	the	Properties	window
under	the	Color	property:

=IIF(Fields!Quantity.Value	<	Fields!ReorderPoint.Value,	"Red",	"Black")

I	have	done	the	same	kind	of	thing	with	the	Font	>	FontWeight	property	for	the
textbox	so	that	if	the	inventory	quantity	for	a	product	is	below	the	reorder	point	value,
the	quantity	is	displayed	in	both	red	and	bold	text:

=IIF(Fields!Quantity.Value	<	Fields!ReorderPoint.Value	OR	

Fields!ListPrice.Value	>

	100,	"Heavy",	"Normal")

THE	IIF()	FUNCTION
Even	if	you	are	not	a	programmer,	learning	a	few	simple	Visual	Basic	commands	and
functions	will	prove	valuable	and	will	likely	meet	most	of	your	needs.	The	most
common	and	useful	function	you're	likely	to	use	in	simple	expressions	is	IIF	(the
name	stands	for	“Immediate	IF”).	As	you	saw	in	the	previous	example,	the	IIF()
function	takes	three	arguments.	The	first	is	a	Boolean	expression	that	returns	either
True	or	False.	If	the	expression	is	True,	the	value	passed	into	the	second	argument	is
returned.	Otherwise	(if	the	first	expression	is	False),	the	third	argument	value	is
returned.	Take	another	look	at	the	expression	used	in	the	previous	example:

=IIF(Fields!Quantity.Value	<	Fields!ReorderPoint.Value,	"Red",	"Black")

If	the	expression	Fields!Quantity.Value	<	Fields!ReorderPoint.Value	yields	a	True
result	(where	Quantity	is	less	than	ReorderPoint),	the	value	"Red"	is	returned.
Otherwise,	the	value	returned	is	"Black".

In	cases	where	an	expression	may	return	more	than	two	states,	IIF()	functions	can	be
nested	to	form	multiple	branches	of	logic.	In	this	example,	three	different	conditions
are	tested:

=IIF(Fields!Quantity.Value	<	Fields!ReorderPoint.Value,	"Red",

				IIF(Fields!ListPrice.Value	>	100,	"Blue",	"Black")

)

Preview	the	report	to	check	the	results;	they	should	look	like	Figure	12.6.

Figure	12.6	Report	results.

NOTE

Because	the	print	edition	of	this	book	is	printed	in	black	and	white,	I've	added
callouts	on	the	right	side	of	this	screen	image	to	indicate	some	of	the	colored	text
in	the	Quantity	column.	The	non-bold	text	in	this	column	is	black.

Let's	analyze	the	logic.	If	Quantity	is	not	less	than	ReorderPoint,	the	third	IIF()
function	argument	is	invoked.	This	contains	a	second	IIF()	function,	which	tests	the
ListPrice	field	value.	If	the	value	is	greater	than	100,	the	value	"Blue"	is	returned;
otherwise,	the	return	value	is	"Black".	According	to	the	definition	of	this	function,	the
second	argument	is	the	TruePart	value,	and	the	third	argument	is	the	FalsePart	value.
This	means	that	the	value	in	the	second	position	is	returned	if	the	expression
evaluates	to	True,	and	the	value	in	the	third	position	is	returned	if	it	is	False.

NOTE

Because	IIF()	is	a	function,	it	evaluates	all	its	parameters/arguments.	In	other
words,	even	if	the	condition	expression	evaluates	to	true,	the	code	in	the	false
part	also	executes.	But	the	function	doesn't	return	it,	and	vice	versa.	This	is
significant,	because	you	might	have	code	that	throws	NullReference	exceptions
on	either	true	or	false	parts	when	the	condition	does	not	favor	that	outcome.	The
best	way	to	circumvent	this	behavior	is	to	write	a	custom	code	function
embedded	in	the	report	that	contains	a	true	Visual	Basic	(VB)	If/Then/Else
statement	and	returns	the	expected	outcome.	Then	you	can	call	this	embedded
code	function	from	the	Expression	Builder.	This	topic	is	covered	in	the	following
section.

Beyond	the	simplest	nested	functions,	expressions	can	be	difficult	to	write	and
maintain.	In	addition	to	decision	structures,	you	can	use	common	functions	to	format
the	output,	parse	strings,	and	convert	data	types.	Count	the	opening	and	closing
parentheses	to	make	sure	that	they	match.	This	is	yet	another	example	of	where
writing	this	code	in	a	Visual	Basic	class	library	or	forms	project	is	helpful	because	of
the	built-in	code-completion	and	integrated	debugging	tools.	Consider	using	these
other	functions	in	place	of	nested	IIF()	functions.

The	SWITCH()	function	accepts	an	unlimited	number	of	expression	and	value	pairs.
The	last	argument	accepts	a	value	that	is	returned	if	none	of	the	expressions	resolves
to	True.	You	can	use	this	in	place	of	the	previous	nested	IIF()	example:

=SWITCH(

				Fields!Quantity.Value	<	Fields!ReorderPoint.Value,	"Red",

				Fields!ListPrice.Value	>	100,	"Blue",

				TRUE,	"Black"

)

I	have	included	two	versions	of	this	report	in	the	sample	project,	one	using	nested	IIF
functions	and	one	using	a	SWITCH	expression.	Unlike	the	IIF()	function,	the	SWITCH()
function	has	no	FalsePart	value.	Each	expression	and	return	value	is	passed	as	a	pair.
The	first	expression	in	the	list	that	evaluates	to	True	causes	the	function	to	stop
processing	and	return	a	value.	The	last	expression	will	always	be	true	because	it's,
well,	true—literally.	Because	this	expression	always	evaluates	to	True,	it	becomes	the
catchall	expression	that	returns	"Black"	if	no	other	expressions	are	True.

Visual	Basic	supports	many	of	the	old-style	VBScript	and	VB	6.0	functions,	as	well	as
newer	overload	method	calls.	In	short,	this	means	that	there	may	be	more	than	one
way	to	perform	the	same	action.	Table	12.1	describes	a	few	other	Visual	Basic
functions	that	may	prove	useful	in	basic	report	expressions.

Table	12.1	Visual	Basic	Functions	for	Report	Expressions

FUNCTION DESCRIPTION EXAMPLE

FORMAT() Returns	a	string	value	formatted
using	a	regular	expression
format	code	or	pattern.	Similar
to	the	Format	property	but	can
be	concatenated	with	other
string	values.

=FORMAT(Fields!TheDate	.Value,

"mm/d/yy")

MID()

LEFT()

RIGHT()

Returns	a	specified	number	of
characters	from	a	specified
position	(if	using	MID())	and	for
a	specific	length.	You	can	also
use	the	.SUBSTRING()	method.

=MID(Fields!TheString	.Value,	3,

5)

=LEFT(Fields!TheString	.Value,	5)

=	Fields!TheString.Value

.SUBSTRING(2,	5)

INSTR() Returns	an	integer	for	the	first
character	position	of	one	string
within	another	string.	Often
used	with	MID()	or	SUBSTRING()
to	parse	strings.

=INSTR(Fields!TheString.Value,

",")

CSTR() Converts	any	value	to	a	string
type.	Consider	using	the	newer
ToString()	method.

=CSTR(Fields!TheNumber.Value)

=Fields!TheNumber.Value.ToString()

CDATE()

CINT()

CDEC()

…

A	type-conversion	function
similar	to	CSTR().	Converts	any
compatible	value	to	an	explicit
data	type.	Consider	using	the
newer	CTYPE()	function	to
convert	to	an	explicit	type.

=CDATE(Fields!TheString.Value)

=CTYPE(Fields!TheString.Value,

Date)

ISNOTHING() Tests	an	expression	for	a	null
value.	May	be	nested	within	an
IIF()	to	convert	nulls	to	another
value.

=ISNOTHING(Fields!TheDate	.Value)

=IIF(ISNOTHING(Fields!TheDate

.Value),	"n/a",

Fields!TheDate.Value)

CHOOSE() Returns	one	of	a	list	of	values
based	on	a	provided	integer
index	value	(1,	2,	3,	and	so	on).

=CHOOSE(Parameters!FontSize

.Value,	"8pt",	"10pt",	"12pt",

"14pt")

Hundreds	of	Visual	Basic	functions	can	be	used	in	some	form,	so	this	list	is	just	a
starting	point.	For	additional	assistance,	view	the	Online	Help	index	in	Visual	Studio,
under	Functions	[Visual	Basic].	This	information	is	also	available	in	the	public	MSDN
library	at	http://msdn.microsoft.com.

http://msdn.microsoft.com

USING	CUSTOM	CODE
When	you	need	to	process	more-complex	expressions,	it	may	be	difficult	to	build	all
the	logic	into	one	expression.	In	such	cases,	you	can	write	your	own	function	to
handle	different	conditions	and	call	it	from	a	property	expression.

You	can	take	two	approaches	to	managing	custom	code.	One	is	to	write	a	block	of	code
to	define	functions	that	are	embedded	in	the	report	definition.	This	technique	is
simple,	but	the	code	will	be	available	to	only	that	report.	The	second	technique	is	to
write	a	custom	class	library	compiled	to	an	external	.NET	assembly	and	reference	this
from	any	report	on	your	Report	Server.	This	approach	has	the	advantage	of	sharing	a
central	repository	of	code,	which	makes	updates	to	the	code	easier	to	manage.	It	also
gives	you	the	freedom	to	use	any	.NET	language	(C#,	VB).	The	downside	of	this
approach	is	that	the	configuration	and	initial	deployment	are	a	bit	tedious.

Using	Custom	Code	in	a	Report
A	report	can	contain	embedded	Visual	Basic	.NET	code	that	defines	a	function	you	can
call	from	property	expressions.	The	Code	Editor	window	is	simple;	it	doesn't	include
any	IntelliSense,	editing,	or	formatting	capabilities.	For	this	reason,	you	might	want	to
write	the	code	in	a	separate,	temporary	Visual	Studio	project	of	type	“VB	class	library,”
to	test	and	debug	before	you	place	it	into	the	report.	When	you	are	ready	to	add	code,
open	the	Report	Properties	dialog.	You	can	do	this	from	the	Report	menu.	The	other
method	is	to	use	the	Report	Designer	right-click	menu.	Right-click	the	Report
Designer	outside	of	the	report	body	and	select	Properties.	On	the	Properties	window,
switch	to	the	Code	tab,	and	write	or	paste	your	code	in	the	Custom	Code	box.

The	following	example	starts	with	a	new	report.	Here	is	the	code,	along	with	the
expressions	you	will	need	to	create	a	simple	example	report	on	your	own.	The
following	Visual	Basic	function	accepts	a	phone	number	or	Social	Security	number
(SSN)	in	a	variety	of	formats	and	outputs	a	standard	U.S.	phone	number	and	properly
formatted	SSN.	The	Value	argument	accepts	the	value,	and	the	Format	argument
accepts	the	value	Phone	or	SSN.	You	use	it	only	with	phone	numbers,	so	you	can	omit
the	SSN	branch	if	you	like.

'***

'				Returns	properly	formatted	Phone	Number	or	SSN

'				based	on	format	arg	&	length	of	text	arg

'				2/20/2016	-	Paul	Turley

'***

Public	Function	CustomFormat(ByVal	text	as	String,	ByVal	format	as	String)	as	

String

						Dim	sCleanedInput	as	String	=	Replace(text,	"-",	"")

						'**	Remove	all	spaces	and	punctuation	**

						sCleanedInput	=	Replace(sCleanedInput,	"	",	"")

																sCleanedInput	=	Replace(sCleanedInput,	"(",	"")

																sCleanedInput	=	Replace(sCleanedInput,	")",	"")

						Select	Case	format

						Case	"Phone"

													'**	Remove	US	international	prefix	**

													If	sCleanedInput.Length	=	13

																And	sCleanedInput.SubString(0,	3)	=	"111"	Then

																				sCleanedInput	=	sCleanedInput.SubString(3,	10)

													End	If

													Select	Case	sCleanedInput.Length

													Case	7	'**	No	area	code	**

																				Return	sCleanedInput.SubString(0,	3)	&	"-"	_

																											&	sCleanedInput.SubString(3,	4)

													Case	10		'**	Area	code	**

																				Return	"("	&	sCleanedInput.SubString(0,	3)	&	")	"	_

																												sCleanedInput.SubString(3,	3)	_

																												&	"-"	&	sCleanedInput.SubString(6,	4)

													Case	Else		'**	Non-std	phone	number	or	non-US	intl.	prefix	**

																				Return	text

													End	Select

						Case	"SSN"

													If	sCleanedInput.Length	=	9	Then

																					Return	sCleanedInput.SubString(0,	3)	&	"-"	_

																												&	sCleanedInput.SubString(3,	2)	&	"-"	_

																												&	sCleanedInput.SubString(5,	4)

													Else

																				Return	text

													End	If

						Case	Else

													Return	text

						End	Select

End	Function

The	dataset	in	this	report	gets	its	data	from	the	Vendor	and	related	tables	in	the
WroxSSRS2016	database	and	returns	three	columns:	FirstName,	LastName,	and	Phone.
The	SQL	expression	used	to	retrieve	this	information	is	as	follows:

SELECT

						FirstName	+	'	'	+	LastName	AS	FullName,

						Phone

FROM	SalesPerson

ORDER	BY	Phone

The	three	columns	shown	in	Figure	12.7	are	used	in	a	table	bound	to	the	dataset.	The
Value	property	of	the	Phone	column	uses	an	expression	that	calls	the	custom	function
preceded	by	a	reference	to	the	Code	object:

=Code.CustomFormat(Fields!PhoneNumber.Value,	"Phone")

Figure	12.7	Finished	report.

Links	and	Drill-Through	Reports
Links	and	drill-through	reports	are	powerful	features	that	enable	a	textbox	or	image	to
be	used	as	a	link	to	another	report	by	passing	parameter	values	to	the	target	report.
The	target	report	can	consist	of	a	specific	record	or	multiple	records,	depending	on	the
parameters	passed	to	the	target	report.	The	following	example	uses	the	Products	by
Category	and	SubCategory	(drillthrough	source)	report	in	the	sample	project.	The
Product	Name	textbox	is	used	to	link	to	a	report	that	will	display	the	details	of	a	single
product	record.	The	Product	Details	report,	shown	in	Figure	12.8,	is	simple.	It	contains
only	textboxes	and	an	image	bound	to	fields	of	a	dataset	based	on	the	Products	table.
This	report	accepts	a	ProductID	parameter	to	filter	the	records	and	narrow	down	to	the
record	requested.

Figure	12.8	Product	Details	report.

Any	textbox	or	image	item	can	be	used	for	intra-report	or	inter-report	navigation,	for
navigation	to	external	resources	such	as	web	pages	and	documents,	and	to	send	e-
mail.	You	enable	all	these	features	using	navigation	properties	you	can	specify	in	the
Text	Box	Properties	or	Image	Properties	dialog.	First,	open	the	Text	Box	Properties
dialog	by	right-clicking	the	textbox	and	selecting	Properties.	In	the	Text	Box	Properties
dialog,	use	the	Actions	page	to	set	the	drill-through	destination	and	any	parameters
you	would	like	to	pass.

Figure	12.9	shows	the	Text	Box	Properties	dialog	Action	page	for	the	Ch12	-	Products
by	Category	and	SubCategory	(Drillthrough	source)	report	in	the	sample	project.

Figure	12.9	Action	page	in	the	Text	Box	Properties	dialog.

Note	the	navigation	target	selections	under	the	“Enable	as	an	action”	option	list.
When	you	choose	“Go	to	report,”	the	report	selection	drop-down	is	enabled,	listing	all
reports	in	the	project.	A	report	selected	from	this	list	must	be	deployed	to	the	same
folder	on	the	Report	Server	as	the	source	report.	A	drill-through	report	typically	is
used	to	open	the	report	to	a	filtered	record	or	result	set	based	on	the	value	in	this
textbox.	(Remember	that	the	user	clicked	this	textbox	to	open	the	target	report.)	The
typical	pattern	is	to	show	a	user-friendly	caption	in	the	textbox	(the	product	name	in
this	case)	and	then	pass	a	key	value	to	the	report	parameter	to	uniquely	identify
records	to	filter	in	the	target	report.	In	this	case,	the	ProductID	value	is	passed.

To	enable	this	behavior,	add	a	parameter	reference	that	will	be	used	in	the	target
report	to	filter	the	dataset	records.	All	parameters	in	the	target	report	are	listed	in	the
Name	column.	In	the	Value	column,	select	a	field	in	the	source	report	to	map	to	the
parameter.	A	new	feature	is	apparent	in	the	rightmost	column.	An	expression	can	be
used	to	specify	a	condition	in	which	the	parameter	is	not	passed	to	the	target	report.
Expressions	are	short	pieces	of	VB.NET	code,	and	can	be	used	to	call	custom	code
functions	and	even	code	libraries	referenced	as	.NET	assemblies.

By	default,	drill-through	reports	are	displayed	in	the	same	browser	window	as	the
source	report.	There	are	a	few	techniques	for	opening	the	report	in	a	secondary
window,	but	none	are	out-of-the-box	features.	My	favorite	technique	is	to	use	the	“Go
to	URL”	navigation	option	and	open	the	target	report	using	a	URL	request.	Although

this	is	a	little	more	involved,	it	provides	a	great	deal	of	flexibility.

To	navigate	to	a	report	in	a	separate	web	browser	window,	call	a	JavaScript	function	to
create	a	pop-up	window	using	any	browser	window	modifications	you	like.	The
function	call	script,	report	folder	path,	report	name,	and	filtering	parameters	are
concatenated	using	an	expression.	Here	are	two	examples.	The	first	is	simple	and
opens	the	report	in	a	browser	window	in	default	view:

="JavaScript:void	window.open('http://localhost/reportserver?/Sales	Reports/

Product	Sales	Report');"

The	second,	somewhat	more	elaborate	example	adds	report	parameters,	hides	the
report	viewer	toolbar,	and	customizes	the	browser	window	size	and	features:

="JavaScript:void	window.open('http://localhost/reportserver?/Sales	Reports/

Product	Sales	Report&rc:Toolbar=False&ProductID="	&	Fields!ProductID.Value	&

"',	'_blank',	

'toolbar=0,scrollbars=0,status=0,location=0,menubar=0,resizable=0,

directories=0,width=600,height=500,left=550,top=550');"

The	report	name	can	be	parameterized	and	modified	using	custom	expressions.	These
short	examples	give	you	an	idea	of	the	kinds	of	customizations	possible	with	custom
code	and	expressions.

Navigating	to	a	URL
You	can	use	the	“Go	to	URL”	option	to	navigate	to	practically	any	report	or	document
content	on	your	Report	Server;	files,	folders,	and	applications	in	your	intranet
environment;	or	the	World	Wide	Web.	With	some	creativity,	this	can	be	used	as	a
powerful,	interactive	navigation	feature.	It	can	also	be	set	to	an	expression	that	uses
links	stored	in	a	database,	custom	code,	or	any	other	value.	It's	more	accurate	to	say
that	any	URI	(Uniform	Resource	Identifier)	can	be	used,	because	a	web	request	is	not
limited	to	a	web	page	or	document.	With	some	creative	programming,	queries,	and
expressions,	you	can	design	your	reports	to	navigate	to	a	web	page,	document,	e-mail
address,	web	service	request,	or	custom	web	application,	directed	by	data	or	custom
expressions.

WARNING

Reporting	Services	does	not	make	any	attempt	to	validate	a	URL	passed	in	an
expression.	If	a	malformed	URL	is	used,	the	Report	Server	returns	an	error.
There	is	no	easy	way	to	trap	this	error	or	prevent	it	from	occurring.	The	most
effective	way	to	handle	this	issue	is	to	validate	the	URL	string	before	passing	it	to
the	“Go	to	URL”	property.

Navigating	to	a	Bookmark
A	bookmark	is	a	textbox	or	image	in	a	report	that	can	be	used	as	a	navigational	link.
If	you	want	to	allow	the	user	to	click	an	item	and	navigate	to	another	item,	assign	a
bookmark	value	to	each	target	item.	To	enable	navigation	to	a	bookmark,	set	the	“Go
to	bookmark”	property	to	the	target	bookmark.

Using	bookmarks	to	navigate	within	a	report	is	easy.	Each	report	item	has	a	BookMark
property	that	can	be	assigned	a	unique	value.	After	adding	bookmarks	to	any	target
items,	use	the	“Go	to	bookmark”	selection	list	to	select	the	target	bookmark	in	the
properties	for	the	source	item.	This	allows	the	user	to	navigate	to	items	within	the
same	report.

REPORTING	ON	RECURSIVE	RELATIONSHIPS
Representing	recursive	hierarchies	has	always	been	a	pain	for	reporting	and	often	is	a
challenge	to	effectively	model	in	relational	database	systems.	Examples	of	this	type	of
relationship	(usually	facilitated	through	a	self-join)	can	be	found	in	the	DimEmployee
table	of	the	WroxSSRS2016	sample	database.	Most	reporting	tools	were	designed	to
work	with	data	organized	in	traditional	multi-table	relationships.	Fortunately,	our
friends	at	Microsoft	built	recursive	support	into	the	reporting	engine	to	deal	with	this
common	challenge.	A	classic	example	of	a	recursive	relationship	(where	child	records
are	related	to	a	parent	record	contained	in	the	same	table)	is	the	employee/manager
relationship.	The	Employee	table	contains	a	primary	key,	EmployeeID,	that	uniquely
identifies	each	employee	record.	ManagerID	is	a	foreign	key	that	depends	on	the
EmployeeID	attribute	of	the	same	table.	It	contains	the	EmployeeID	value	for	the
employee's	manager.	The	only	record	that	wouldn't	have	a	ManagerID	would	be	the
president	of	the	company	or	any	such	employee	who	doesn't	have	a	boss.

Representing	the	hierarchy	through	a	query	would	be	difficult.	However,	defining	the
dataset	for	such	a	report	is	simple.	You	just	expose	the	primary	key,	foreign	key,
employee	name,	and	any	other	values	you	want	to	include	on	the	report.

To	see	how	this	works,	follow	these	steps:

1.	 Create	a	new	report,	and	define	a	dataset	using	the	WroxSSRS2016	shared	data
source.	The	dataset	query	is	simple	and	includes	both	the	primary	key	and	a
recursive	foreign	key.	The	ParentEmployeeKey	for	each	employee	contains	the
EmployeeKey	value	for	that	employee's	supervisor	or	manager:

SELECT

				EmployeeKey,

				ParentEmployeeKey,

				LastName,

				Title

FROM	SalesPerson

;

2.	 Add	a	table	data	region	to	the	report	body,	and	drag	the	LastName	and	Title	fields
to	the	detail	row.	For	demonstration	purposes,	we've	also	dragged	the	EmployeeKey
and	ParentEmployeeKey	fields.

3.	 Insert	a	column	named	Org	Level	in	the	table.	(We'll	get	to	this	in	a	moment.)

4.	 Edit	the	(Details)	group	properties	using	the	drop-down	button	for	this	item	in
the	Row	Groups	pane,	as	shown	in	Figure	12.10.

Figure	12.10	Row	Groups	pane.

This	action	opens	the	Group	Properties	dialog,	shown	in	Figure	12.11.	To	define	a
recursive	group,	you	must	set	two	properties.	First,	the	group	must	be	based	on
the	unique	identifier	for	the	child	records.	This	is	typically	a	key	value	and	must
be	related	to	the	unique	identifier	for	parent	records—usually	a	parent	key
column	in	the	table.	Second,	the	Recursive	parent	property	is	set	to	relate	the
parent	key	to	the	table's	primary	key.

Figure	12.11	Group	Properties	dialog.

5.	 Use	the	General	page	to	set	the	group	expression	to	the	EmployeeKey	field.

6.	 Move	to	the	Advanced	page	on	this	dialog,	and	set	the	Recursive	parent	property	to
the	ParentEmployeeKey	field,	as	shown	in	Figure	12.12.

Figure	12.12	Setting	the	“Recursive	parent”	property.

7.	 Go	ahead	and	preview	the	report.	Although	the	records	are	actually	arranged
according	to	each	employee's	pecking	order	in	the	company,	it's	not	very	obvious
that	this	recursive	hierarchy	report	is	really	working.	You	need	to	make	a	change
so	that	the	report	lets	you	visualize	the	employee	hierarchy	(who	reports	to
whom).

8.	 Switch	back	to	Design	view.	Right-click	the	detail	cell	in	the	new	Org	Level	column
and	select	Expression.	Type	=LEVEL("Details")	in	the	Expression	dialog.	This
expression	calls	the	LEVEL	function,	passing	in	the	name	of	the	Details	group.	This
function	returns	an	integer	value	for	a	row's	position	within	the	recursive
hierarchy	defined	for	this	group.

9.	 Click	OK	on	the	Expression	dialog,	and	then	preview	the	report	again.	This	time,
you	see	numbers	in	the	Org	Level	column.	The	CEO	(the	only	employee	record
without	a	ParentEmployeeKey	value)	shows	up	at	level	0.	This	is	Ken	Sanchez.	The
employees	who	report	to	Mr.	Sanchez	are	listed	directly	below	and	are	at	level	1
within	the	hierarchy.

You're	not	done.	The	report	still	isn't	very	visually	appealing,	so	let's	indent	each
employee's	name	according	to	his	or	her	level.	The	easiest	way	to	do	this	is	to	use
a	little	math	to	set	the	Left	Padding	property	for	the	LastName	textbox.	You'll	start
with	the	same	expression	as	before.	Padding	is	set	using	PostScript	points.	A	point
is	about	1/72nd	of	an	inch,	and	there	are	about	2.83	millimeters	to	a	point.
Because	this	is	such	a	small	unit	of	measure,	we'll	indent	our	employee	names	by
20	points	per	level.

10.	 Right-click	the	LastName	textbox	and	choose	Textbox	Properties.

11.	 In	the	Text	Box	Properties	dialog,	move	to	the	Alignment	page.	Under	the	Padding
options	section,	click	the	Expression	button	(labeled	fx)	next	to	the	Left	property
box.

12.	 In	the	Expression	dialog,	type	the	following	text:

=((LEVEL("Details")	*	20)	+	2).ToString	&	"pt'

13.	 Verify	that	your	design	environment	looks	like	Figure	12.13.

Figure	12.13	Correct	design	environment.

14.	 Click	OK	in	the	Expression	Editor	window,	and	then	click	OK	to	close	the	Text	Box
Properties	dialog.

15.	 Preview	the	report.	In	Figure	12.14,	you	see	each	employee	name	indented
according	to	his	or	her	position	in	the	organization.	You	can	verify	these	results	by
noting	the	level	value	in	the	Org	Level	column	and	the	correspondence	between
the	EmployeeKey	and	ParentEmployeeKey	column	values.	The	point	of	this	example
is	to	see	the	hierarchical	relationship	between	various	employee	records.

Figure	12.14	Finished	report.

ACTIONS	AND	REPORT	NAVIGATION
When	we	interact,	navigate,	and	explore,	data	comes	alive.	Reports	can	either	be	flat,
static	lists	of	data,	or	they	can	let	users	understand	the	context	of	the	information	on	a
report	by	exploring	details	using	actions	that	enable	navigation.	In	Chapter	6	you
learned	how	to	create	drill-down	reports,	allowing	you	to	explore	details	by	hiding	and
showing	groups.	A	drill-through	report,	by	contrast	(and	in	simple	terms),	is	one
report	that	navigates	to	another	report	using	an	action,	passing	parameter	values	to
the	target	report.	There	is	tremendous	power	and	flexibility	in	this	pattern,	which
allows	users	to	view	details	in	the	context	of	a	selected	item.

In	slightly	less	simple	terms,	there	are	really	two	different	applications	of	report
actions	that	include	the	ability	to	drill-through	back	to	the	same	report	and
dynamically	change	the	presentation.	This	is	by	far	my	favorite	report	design	pattern.
With	a	little	creativity,	report	actions	can	be	used	to	gather	multiple	parameter	values
and	then	do	some	pretty	amazing	things	with	visual	dashboard-style	presentation.
You've	already	seen	an	extreme	example	of	this	pattern	in	the	cube	browser	Grant
presented	in	Chapter	11.

You've	graduated	beyond	basic	report	design	so	the	examples	I	have	provided	are
realistic.	The	following	example	demonstrates	these	techniques	in	a	realistic	scenario.
This	solution,	shown	in	Figure	12.15,	is	composed	of	just	two	reports,	which	you	will
find	in	the	examples	for	Chapter	12.	Note	that	several	report	parameters	are	used	to
filter	all	the	datasets	used	in	these	reports.

Figure	12.15	Two	example	reports.

The	Sales	Summary	report	has	two	drill-through	actions.

TIP

Any	text	used	in	an	action	should	appear	to	the	user	as	a	link;	however,
Reporting	Services	doesn't	automatically	change	text	color	as	the	web	browser
does	for	links	on	a	web	page.	If	a	textbox	contains	a	navigation	action,	you
should	explicitly	make	the	text	color	blue	for	users	to	recognize	it	as	a	link.

The	column	chart	and	the	table	shown	in	Figure	12.16	are	based	on	two	separate
datasets.	The	table	has	a	drill-through	action	on	the	month	name	that	passes	that
month	selection	back	to	the	same	report,	passing	the	selected	month	as	a	parameter
used	to	filter	the	data	in	the	chart.	Figure	12.16	shows	the	table	with	a	drill-through
action	on	the	first	column.

Figure	12.16	Table	with	a	drill-through	action	on	the	first	column.

The	SalesSummaryMonth	dataset	is	the	source	for	this	table,	and	the	query	script
follows.	Aside	from	the	actions,	the	design	of	this	report	is	no	different	from	an
analytic	report	you	would	build	for	production	use,	using	the	skills	you've	learned	so
far,	with	grouped	T-SQL	queries	and	multi-select	parameters.

I	will	point	out	that	the	MonthNumber	column	in	this	query	is	used	for	two	purposes:	to
sort	the	Details	row	group	of	the	table	and	to	pass	into	the	drill-through	action	as	a
parameter.	The	four	query	parameters	referenced	in	the	WHERE	clause	are	no	different
than	parameters	used	in	most	any	standard	reporting	and	I've	included	these	to	make
this	scenario	realistic:

--	Navigation	Report	(Month):

--	SalesSummaryMonth

SELECT

				d.MonthNumber,

						d.MonthName,

						SUM(SalesAmount)					AS	SalesAmount,

						SUM(OrderQuantity)			AS	OrderQuantity,

						SUM(p.StandardCost)		AS	StandardCost,

						SUM(Freight)									AS	Freight,

						SUM(TaxAmt)										AS	TaxAmt,

						SUM(SimpleProfit)				AS	SimpleProfit

FROM

						[dbo].[vProductOrderSalesProfit]	s

						INNER	JOIN	[dbo].[SalesTerritory]	t	ON	s.SalesTerritoryKey	=	t.

[TerritoryKey

						INNER	JOIN	[dbo].[Product]	p	ON	s.[ProductKey]	=	p.[ProductKey

						INNER	JOIN	Date	d	ON	s.OrderDate	=	d.TheDate

WHERE

						t.TerritoryKey	IN(@RegionKeys)

						AND

						p.ProductCategoryKey	IN(@CategoryKeys)

						AND

						(OrderDate	BETWEEN	@DateFrom	AND	@DateTo)

GROUP	BY

				d.MonthNumber,

				d.MonthName

;

The	following	script	is	the	query	for	the	SalesSummarySubcategory	dataset,	which
provides	records	for	the	column	chart	above	the	table.	Of	interest	is	the
@SelectedMonth	parameter.	This	is	the	parameter	used	to	pass	the	selected	month
from	the	table	drill-through	action	to	this	query	and	to	filter	the	dataset	for	the
column	chart.	By	default,	the	value	is	–1,	which	returns	data	for	all	months.	I	designed
it	this	way	to	easily	select	one	value	that	would	result	in	effectively	clearing	the	filter
and	returning	all	months:

--	Navigation	Report	(category):

--	SalesSummarySubcategory

SELECT

						p.[ProductCategory],

						p.[ProductSubcategoryKey],

						p.[ProductSubcategory],

						SUM(SalesAmount)					AS	SalesAmount,

						SUM(OrderQuantity)			AS	OrderQuantity

FROM

						[dbo].[vProductOrderSalesProfit]	s

						INNER	JOIN	[dbo].[SalesTerritory]	t	ON	s.SalesTerritoryKey	=	t.

[TerritoryKey

						INNER	JOIN	[dbo].[Product]	p	ON	s.[ProductKey]	=	p.[ProductKey

WHERE

						t.TerritoryKey	IN(@RegionKeys)

						AND

						p.ProductCategoryKey	IN(@CategoryKeys)

						AND

						OrderDate	BETWEEN	@DateFrom	AND	@DateTo

						AND

						(MONTH(s.OrderDate)	=	@SelectedMonth	OR	@SelectedMonth	=	-1)

GROUP	BY

						p.[ProductCategory],

						p.[ProductSubcategoryKey],

						p.[ProductSubcategory

;

Figure	12.17	shows	the	ReportData	window	for	this	report	in	Design	view.	All	of	the
report	parameters	were	auto-generated	from	the	queries.	Applying	the	patterns	you
used	in	Chapters	6	and	7,	parameters	were	modified	with	appropriate	data	types,

default	values,	and	simple	datasets	to	provide	list	selections	as	you	normally	would	in
a	parameterized	report.	Please	take	a	close	look	at	the	sample	reports	to	get	an
understanding	of	how	these	parameters	are	set	up	to	work.

Figure	12.17	Report	Data	window.

Now	for	the	Month	drill-through	action.	In	Design	view,	select	the	detail	cell	in	the
table	containing	the	MonthName	field	(yeah,	the	one	with	the	blue	text.	That's	the	one.)
Right-click,	and	then	choose	Textbox	Properties…

The	Text	Box	Properties	dialog,	shown	in	Figure	12.18,	contains	an	Action	page,	and
this	is	where	you	will	find	the	action	with	the	target	report	(which	happens	to	be	the
same	report	we're	working	in)	and	a	boatload	of	report	parameters.	Each	of	these
parameters	except	one	simply	passes	the	current	value	or	values	of	that	parameter

back	to	itself.	This	is	a	simple	state-management	system	that	allows	the	report	to	keep
track	of	all	parameter	values	between	report	executions.	Frankly,	this	is	a	bit	of	a	pain
to	maintain	because	every	action	must	pass	every	parameter	but	it	works	quite	well.
Users	can	modify	parameter	values	either	by	using	the	standard	parameter	toolbar	or
one	of	the	custom	actions	we	had	created.

Figure	12.18	Text	Box	Properties	dialog.

What	happens	if	we	stop	at	this	point	and	see	what	we've	done?	Switch	to	Preview.
With	all	the	parameters	in	default	view,	you'll	be	looking	at	summary	values	for	a	lot
of	unfiltered	data.	You	can	narrow	this	down	some	by	deselecting	some	of	the
Territory	Region	items	and	clicking	View	Report.	You	can	also	try	selecting	only	one	or
two	product	categories.	After	you	find	a	parameter	selection	that	tickles	your	fancy,
click	one	of	the	blue	month	names	in	the	table.	This	will	requery	the	column	chart
with	data	for	only	that	month—while	applying	all	the	other	parameter	filters	you
selected	because	these	selections	are	preserved	in	the	drill-through	action	parameter
list.

Now	that	you	have	a	set	of	filtered	data	in	the	context	of	those	things	you're	most
interested	in,	let's	look	up	all	the	low-level	details	that	would	comprise	this	data	and
for	a	selected	product	subcategory.	You	do	this	by	simply	clicking	a	column	of	interest
on	the	column	chart	(See	Figure	12.19).

Figure	12.19	Clicking	a	column	of	interest	on	the	column	chart.

This	action	navigates	to	the	detail	report,	passing	the	selected	subcategory	along	with
all	the	other	selected	parameters.	The	net	effect	is	that	the	detail	report	includes	the
context	of	the	summary	report.

Back	in	Design	view,	Figure	12.20	shows	the	report	action	properties	for	the
SalesAmount	column	chart	series.

Figure	12.20	Report	action	properties.

Take	note	of	the	Value	column.	The	placeholder	for	each	parameter	expression	is
preceded	with	an	“@”	character.	If	you	view	the	actual	expression	for	the	@DateFrom
for	example,	it	looks	like	this:

=Parameters!DateFrom.Value

When	you	use	the	Expression	Builder	and	add	a	multi-value	parameter,	the
expression	will	reference	only	the	first	item	by	default.	For	example,	if	I	were	to	add
the	RegionKeys	parameter,	the	initial	expression	will	look	like	this:

=Parameters!RegionKeys.Value(0)

Modifying	this	expression	so	the	parameter	passes	all	selected	values	is	a	simple
matter	of	removing	the	parentheses	and	ordinal	value	from	the	end.	The	resulting
expression	should	look	just	like	the	single-values	parameter	expression,	like	this:

=Parameters!RegionKeys.Value

On	the	receiving	end	of	this	action	is	the	detail	report.	Figure	12.21	shows	the	report	in
Design	view.	This	report	contains	the	same	parameters	as	the	summary	report.

Figure	12.21	Report	in	Design	view.

NOTE

When	I	create	these	dashboard-style	report	navigation	solutions,	I	often	create
the	first	report,	making	sure	all	the	parameters	are	in	place	before	using	it	as	a
template	for	the	other	reports.

As	you	can	see,	the	query	script	for	this	report	simply	applies	filters	based	on	the
parameters	and	returns	a	detailed	result	set:

--	Navigation	Report	detail:

--	SalesDetails

SELECT

						[OrderDate],

						[SalesOrderNumber],

						p.ProductName,

						SalesAmount,

						OrderQuantity,

						p.StandardCost,

						Freight,

						TaxAmt,

						SimpleProfit

FROM

						[dbo].[vProductOrderSalesProfit]	s

						INNER	JOIN	[dbo].[SalesTerritory]	t	ON	s.SalesTerritoryKey	=	t.

[TerritoryKey

						INNER	JOIN	[dbo].[Product]	p	ON	s.[ProductKey]	=	p.[ProductKey

						INNER	JOIN	Date	d	ON	s.OrderDate	=	d.TheDate

WHERE

						t.TerritoryKey	IN(@RegionKeys)

						AND

						p.ProductSubcategoryKey	=	@SelectedSubcategoryKey

						AND

						OrderDate	BETWEEN	@DateFrom	AND	@DateTo

						AND

						(MONTH(s.OrderDate)	=	@SelectedMonth	OR	@SelectedMonth	=	-1)

;

We	have	one	more	action.	In	the	top-right	corner	of	the	detail	report,	a	textbox	labeled
“return	to	summary”	uses	an	action	to	navigate	to	the	summary	report.	Figure	12.22
shows	how	the	SelectedMonth	parameter	is	reset	back	to	the	default	state	by	passing
the	literal	value	–1.

Figure	12.22	Parameter	reset	back	to	the	default	state.

The	final	solution	is	a	simple	but	effective	orchestration	of	two	reports	that	work
seamlessly	together.	These	reports	provide	business	users	with	high-level	summary
information	and	low-level	sales	order	details.	Most	users	won't	even	know	they	are
using	two	reports.	With	some	planning,	you	can	build	complete	multi-report
navigation	solutions	across	the	spectrum,	from	dashboard	and	scorecard	summaries,
down	to	transactional	details.

SUMMARY
The	techniques	you	learned	in	this	chapter	can	provide	the	foundation	for	powerful
and	dynamic	reporting	solutions.	Using	report	navigation	actions,	users	can	start	with
a	summary	report	and	then	drill	through	to	details	within	the	context	of	the	parameter
values	they	select	for	filtering.	This	pattern	can	be	applied	to	reports	in	different	styles
and	business	scenarios;	whether	graphical	dashboards	or	financial	ledgers.

Expressions	and	programming	code	are	the	heart	of	advanced	reports.	You	can	use
simple	expressions	to	dynamically	change	content,	using	styles	and	color	to	draw
attention	to	important	information.	You	can	write	custom	functions	using	.NET	code
to	encapsulate	more	complex	logic.	Reporting	Services	supports	several	specialized
features	to	address	specific	business	requirements	and	report	layouts,	such	as
document	maps	and	recursive	hierarchies.

Chapter	13	is	all	about	managing	report	projects	for	teams	and	advanced	report	users.
You	will	learn	how	to	manage	solutions	in	SQL	Server	Data	Tools	for	Visual	Studio,
and	how	to	deploy	and	manage	shared	data	sources	and	datasets.	I'll	share	lessons
learned	from	several	reporting	projects	over	the	years;	defining	specifications	and
requirements,	and	working	with	users	and	business	stakeholders	to	deliver	successful
reporting	solutions.	We	will	also	discuss	how	to	effectively	use	Report	Builder	for	self-
service	and	user-driven	reporting.

PART	IV
Solution	Patterns
The	two	chapters	in	this	part	of	the	book	have	us	stepping	away	from	the	intricacies	of
individual	report	features.	and	provide	a	solution	perspective.	You've	learned	to	create
nearly	every	style	of	report	by	using	different	data	regions	and	visual	report	items.	In
this	part	you	learn	to	apply	these	skills	to	create	solutions	and	assemble	different
report	building	blocks	to	create	super	reports,	scorecards,	and	dashboards.	By
following	solution	development	disciplines	and	design	best	practices,	you	and
members	of	a	collaborative	development	team	can	build	holistic	report	solutions.

CHAPTER	13:	Report	Projects	and	Consolidation

CHAPTER	14:	Report	Solutions,	Patterns,	and	Recipes

Chapter	13
Report	Projects	and	Consolidation

WHAT'S	IN	THIS	CHAPTER?

Understanding	SSDT	solution	patterns

Getting	to	know	report	specifications	and	requirements

Using	report	templates

Understanding	development	phases

Using	version	control

Planning	for	self-service	reporting

Exploring	Report	Builder	solutions

Migrating	self-service	reports

How	to	best	structure	the	work	in	a	manner	that	is	both	consistent	and	logical	is	the
first	decision	facing	a	report	solution	developer.	In	like	manner,	this	becomes
particularly	important	when	working	as	part	of	a	project	team;	each	team	member	is
responsible	for	delivering	a	piece	of	the	overall	solution.

The	chapter	looks	at	ways	to	organize	your	report	development,	and	support	the	full
deployment	life	cycle	from	requirements	to	production	implementation.

The	Reporting	Services	product	has	expanded	to	include	different	categories	of
reports,	which	provides	greater	opportunity	to	support	different	types	of	reporting
scenarios.	This	also	adds	to	the	potential	confusion	of	choices	and	solution
approaches	for	those	architecting	and	managing	solutions	and	supporting	report
users.	In	brief,	the	Reporting	Services	umbrella	encompasses	the	following	reporting
scenarios:

Paginated	Reports—Conventional	SQL	Server	Reporting	Services	(SSRS)	reports
are	designed	and	delivered	by	the	IT	organization	to	the	business	user	community.
These	reports	are	typically	designed	using	patterns	similar	to	software
development	projects,	starting	with	business	and	functional	requirements.	A
report	specification	is	created,	so	the	report	designer/developer	has	technical
requirements.	Reports	go	through	quality	assurance	(QA)	testing,	and	are	then
delivered	to	production	through	a	build-and-deployment	process.	These	reports	are
typically	designed	and	managed	within	projects	and	solutions	in	SQL	Server	Data
Tools	(SSDT)	for	Visual	Studio.

Self-service	Reports—These	reports	are	created	by	business	users	with	data
sources	managed	by	the	organization.	Users	can	design	these	reports	using	self-
service	report	authoring	tools	like	Report	Builder.	Reports	are	saved	directly	to	a
designated	folder	on	the	report	server	without	a	rigid	development,	QA,	and
deployment	process.

Mobile	Reports—Mobile	reports	can	be	designed,	tested,	and	delivered	in	a
similar	manner	to	paginated	reports,	as	part	of	a	formal	solution.	The	toolset	is
different	simply	because	Microsoft	acquired	this	technology	from	a	different
development	company.	As	the	reporting	platform	continues	to	evolve,	the	way
these	reports	are	designed	may	change	in	the	future.	As	of	this	writing,	mobile
reports	are	designed	in	a	separate	tool.

SSDT	SOLUTIONS	AND	PROJECTS
What	is	a	solution?	In	its	most	basic	form,	a	solution	can	be	thought	of	as	simply	a
collection	of	related	projects.	When	you	create	a	new	project	using	the	File	menu	in
the	Visual	Studio	environment,	a	solution	is	created	automatically	in	the	location	you
specify	in	the	New	Project	dialog,	as	shown	in	Figure	13.1.	When	creating	a	project	for
the	first	time,	you	can	create	a	directory	on	your	computer	or	network	hard	drive	to
contain	your	solutions	and	projects.	Also,	you	can	save	your	solution	to	your	source
control	system	as	it	is	created.	You	learn	more	about	that	later	in	this	chapter.

Figure	13.1	New	Project	dialog.

With	SSDT,	you	can	create	SQL	Server	Integration	Services,	Analysis	Services,
Reporting	Services,	or	database	projects.	Before	you	start	developing	a	Reporting
Services	solution,	however,	you	are	faced	with	some	important	questions:

Should	the	Reporting	Services	project	be	created	in	its	own	solution,	or	be	added	to
an	existing	solution	containing	other	project	types?	Adding	it	to	an	existing	project
has	the	advantage	of	providing	a	seamless	development	environment.	Under	this
scenario,	the	impact	of	changes	to	one	area	of	development	can	be	more	readily
applied	to	another.	The	disadvantage	of	placing	multiple	projects	into	a	solution	is

that	it	can	make	the	solution	unwieldy	and	slower	to	open.	Also,	it	can	affect
version	control	if	several	people	make	changes	to	the	solution	(see	the	“Version
Control”	section	later	in	this	chapter).

How	do	you	intend	to	separate	reports	that	have	been	deployed	to	production	from
reports	you	currently	are	working	on,	or	that	have	been	deployed	to	your	test
environment?

Projects	and	solutions	can	help	manage	and	organize	files	for	a	variety	of	reasons.	The
optimal	choice	for	your	situation	will	depend	on	the	size	and	scope	of	your	work,
whether	you	are	working	within	a	team,	and	the	degree	of	project	management
formality	employed	within	your	organization.

Project	Structure	and	Development	Phases
As	with	any	software	development	project,	each	component	or	report	should	progress
through	a	series	of	design	and	development	phases.	These	may	include	prototyping	or
proof-of-concept,	design,	testing,	and	deployment.	You	have	a	couple	different	ways	to
keep	reports	organized—multiple	environments,	or	multiple	logical	folders	and/or
projects	for	each	phase.

Multiple	Reporting	Environments
The	multiple-environment	approach	involves	maintaining	multiple	reporting
environments	that	reflect	the	phases	of	design	and	development.	The	most	common
scenario	is	to	have	a	development	report	server,	a	test/QA	server,	and,	finally,	the
production	environment.	This	is	more	involved,	requiring	a	well-defined	report
promotion	and	deployment	path.	It	also	requires	that	multiple	server	environments	be
set	up.

The	idea	is	to	keep	the	report	development	in	the	development	sandbox	environment.
As	report	development	is	complete,	the	report	can	be	deployed	to	the	next	stage—
testing.	In	the	testing/quality	assurance	(QA)	environment,	analysts	can	verify	the
report's	integrity	and	validate	report	data	and	layout.	After	the	report	has	gone
through	testing	and	validation,	it	can	be	marked	ready	for	production,	and	go	through
any	formalized	promotion	processes	(such	as	change	control).	Visual	Studio/SSDT	can
be	used	with	an	integrated	version	control	solution	(such	as	Team	Foundation	Server,
or	a	number	of	third-party	versioning	applications)	to	manage	the	development
ownership,	archival,	and	check-in/check-out	process	of	report	project	files.

Although	SSDT	is	typically	the	tool	of	choice	for	IT	developers	in	these	formalized
project	settings,	Report	Builder,	utilizing	the	features	of	SharePoint,	can	be	used	in	a
similar	manner.	If	you	have	well-established	processes	in	place	for	managing	project
asset	check-in/check-out	and	versioning	through	SharePoint,	Report	Builder	is	a
viable	alternative.	With	Reporting	Services	configured	in	SharePoint	integrated	mode,
designate	different	document	libraries	to	manage	collections	of	reports.	You	can	then
use	the	versioning	and	workflow	features	of	SharePoint	to	manage	report	definition

files.

WARNING

Implementing	SharePoint	is	not	only	a	significant	investment	in	terms	of	cost
and	effort,	it	also	requires	an	investment	in	adjusting	business	culture	to	work
within	an	organization.	If	you	have	already	adopted	SharePoint	and	are
accustomed	to	using	libraries	and	workflows	to	manage	documents,	using	SSRS
in	integrated	mode	may	be	a	good	fit.	However,	adding	SharePoint	for	the	sake
of	managing	report	projects	or	business	intelligence	(BI)	content	alone	can	be	a
cumbersome	task.

If	you	are	not	using	SSRS	in	SharePoint	integrated	mode	and	need	to	manage	multiple
reports	through	a	proper	development,	QA,	and	production	life	cycle,	use	SSDT	for
report	design.	Using	the	Visual	Studio	Configuration	Manager,	you	can	define	a
configuration	for	each	deployment	target:	one	for	the	development	report	server	and
data	sources,	another	for	QA,	and	still	another	for	production.	Select	the	development
configuration,	and	then	use	the	project	properties	to	set	your	report	server
deployment.

Multiple	Logical	Folders	and	Projects
When	following	the	multiple-folder	approach,	you	might	find	it	helpful	to	create
separate	projects	and	folders,	and	then	graduate	reports	from	one	project	to	another
as	they	are	verified	and	pass	testing	criteria.	For	each	of	the	Visual	Studio	projects
within	a	master	solution,	create	duplicate	shared	data	sources.	You	can	drag	and	drop
reports	from	one	project	into	another.	Note	that	when	you	do	this,	the	report
definition	is	not	physically	deleted	from	the	original	report	folder,	so	you	may	need	to
clean	up	the	report	definition	file	using	Windows	Explorer.

For	each	report	project,	set	the	TargetFolder	property	of	a	deployment	folder	to	a
name	that	corresponds	to	the	project	name	(such	as	Prototype	Phase,	Design	Phase,
Test	Phase,	and	Completed	Reports).

Finally,	remember	one	last	thing	about	what	will	happen	on	practically	every	report
project.	In	the	beginning,	your	sponsor	will	tell	you	what	reports	and	features	they
want,	and	you'll	work	with	them	to	capture	all	the	requirements	in	detail.	Things
generally	will	go	pretty	smoothly	until	they	begin	testing	and	you	come	up	on	a
deadline.	In	the	eleventh	hour,	users	will	start	asking	for	things,	and	your	sponsor	will
request	changes.

You'll	learn	of	some	minor	misunderstandings	you	may	have	had	about	the	early
requirements,	and	this	will	prompt	even	more	changes.	Some	last-minute	changes	are
inevitable	in	any	project,	but	when	a	change	is	requested,	it	must	be	in	writing.
Whether	changes	are	requested	in	handwritten	form,	in	a	document,	or	in	an	e-mail
message,	save	these	requests.	You	should	be	able	to	trace	every	new	request	back	to

an	earlier	requirement,	or	understand	that	it	is	a	new	requirement.	If	users	request
changes,	have	the	project	sponsor	approve	them.	In	the	end,	managing	these	changes
will	go	a	long	way	toward	ensuring	the	success	of	your	report	project.

Report-Naming	Conventions
One	of	the	important	decisions	faced	by	a	reporting	solution	developer	is	how	to	name
the	reports	being	produced.	Many	developers	find	it	useful	to	include	a	number	in	the
report	name	as	a	shorthand	way	to	refer	to	a	report.	For	example,	this	would	enable
report	users	to	ask	questions	about	“Report	four”	rather	than	the	“Consolidated
income	and	reconciled	expenses”	report.

You	also	need	to	consider	whether	you	will	include	the	name	of	the	report	in	the
report	heading	so	that	any	confusion	between	a	report's	name	and	its	title	can	be
cleared	up.	Using	=Replace(Globals!ReportName,	".rdl",	"")	as	the	expression	for
the	report	title	ensures	that	the	title	and	report	name	are	the	same.

Shared	Datasets	and	Data	Sources
Another	significant	challenge	facing	a	report	developer	is	whether	to	create	and	deploy
a	shared	dataset	or	to	use	a	dataset	embedded	in	each	report.	Shared	datasets	are
managed	in	the	Solution	Explorer	shown	in	Figure	13.2.	As	with	many	things	in	a
development	project,	this	question	has	no	right	or	wrong	answer.

Figure	13.2	Shared	datasets	in	SSDT.

Shared	datasets	have	a	number	of	advantages:

They	allow	the	report	writer	to	focus	on	addressing	the	report	requirements	rather
than	spending	time	working	out	the	best	way	to	retrieve	data	from	the	data	store.
Data	retrieval	queries	can	be	written	by	staff	with	a	closer	appreciation	of	the	most
efficient	ways	to	access	the	data.

You	can	deploy	enhancements	to	the	query	used	to	retrieve	the	required	data	to
multiple	reports	without	needing	to	change	their	definition.

Shared	datasets	have	some	disadvantages	as	well:

They	can	result	in	more	data	being	retrieved	than	is	strictly	necessary	to	run	a
given	report.

Changes	to	the	query	used	to	retrieve	the	required	data	may	result	in	a	given	report
no	longer	operating,	or	in	returning	data	that	was	not	part	of	the	report	definition.

If	you	are	considering	extensive	use	of	shared	datasets,	you	need	to	follow	a	couple	of
best	practices:

Make	sure	that	you	have	a	system	for	rolling	back	changes	to	a	report	and/or
shared	dataset.	It	might	also	be	necessary	to	employ	a	deployment	methodology
whereby	multiple	versions	of	the	same	dataset	can	be	deployed	to	eliminate	the
unintended	consequence	of	changes	on	reports	that	will	not	be	upgraded.

Make	sure	you	have	a	strong	test	regime	to	ensure	that	all	reports	are	tested	when
a	change	to	a	shared	dataset	is	deployed.

Key	Success	Factors
Reporting	projects	have	a	much	better	chance	of	being	successful	when	the	business
requirements	are	well	defined	and	clearly	communicated.	In	particular:

Report	specifications	should	be	documented	using	a	standard	format	for	all
reports.

Report	specifications	are	a	“living,	breathing”	document	that	will	evolve	as	the
report	goes	through	its	life	cycle.

Report	layout	should	be	mocked	up	and	included	in	the	specifications	to	capture
the	stakeholder's	vision.

Report	designers	must	understand	the	source	data.	In	cases	in	which	the	designer
is	unfamiliar	with	the	database	design	and	business	data,	specific	queries	or	stored
procedures	should	be	defined	and	prepared	before	report	design.

Whenever	possible,	the	details	of	database	objects	and	their	relationships	should
be	abstracted	into	a	stored	objects	or	semantic	view.

The	database	schema	should	be	frozen	before	work	begins.

Accurate	samples	or	real	data	should	be	available	to	support	the	design	and	testing
of	all	reports.

Report	designers	should	update	report	specifications	to	reflect	any	layout,	data,
and	business	rule	changes	that	might	have	occurred	during	development,	and	to
include	further	relevant	details	to	assist	in	future	maintenance.

These	may	seem	like	lofty	goals.	The	fact	is	that	often	you	may	be	unable	to	control	all
these	factors.	Experience	will	help	you	figure	out	where	to	draw	the	line	between
situations	in	which	you	should	work	in	less-than-ideal	conditions	and	situations	in
which	you	should	insist	that	these	conditions	be	met	before	you	begin	work.	In	any
case,	be	sure	to	clearly	communicate	your	concerns	and	the	associated	risks.

Solution	Scope
You	should	understand	the	scope	of	the	solution	before	report	work	begins.	If	you	lack
a	clear	understanding	of	all	the	solution's	related	components,	the	project	can	easily
spin	out	of	control,	with	more	work	being	started	than	finished.

Here	are	some	common	examples	of	solution	scope	challenges:

Report	performance	problems	that	can	prompt	database	schema	changes	or	the
construction	of	denormalized	fact	tables	containing	duplicate	data.

Realizing	that	changing	transactional	data	doesn't	support	reporting	scenarios,	you
redesign	the	database	while	in	production.

Database	and	report	features	are	added	as	you	go,	not	according	to	a	predefined
plan,	causing	each	report	to	take	on	different	behavior	and	features.

Report	designers	and	users	brainstorm	new	features	during	the	report
development	and	subsequently	define	new	requirements.

When	a	data	warehouse,	data	mart,	or	semantic	model	is	unavailable	and	outside	the
scope	of	the	report	project,	you	may	consider	using	an	operational	data	store
(ODS).	An	ODS	reflects	transactional	data	closer	to	real	time,	as	opposed	to	the
historical	volumes	in	a	data	warehouse.	It	has	gone	through	some	data	cleansing	and
integrity	checking	to	create	more	accurate	reports.

If	these	kinds	of	issues	aren't	mitigated	and	managed,	even	simple	projects	may	be
doomed	before	they	start.	Ideally,	a	report	designer	should	be	on	the	receiving	side	of
business	requirements	and	should	help	clarify	the	details,	rather	than	making	up	new
requirements	as	the	project	moves	along.	In	most	cases,	the	report	designer	should
rely	on	the	business	analyst/information	worker	to	be	the	subject-matter	expert	on
the	data	in	context,	allowing	for	a	separation	of	concerns	and	better-defined	tasks.

Report	Specifications
Figure	13.3	shows	a	requirements	document	template	I	use	for	a	lot	of	report	projects.
Depending	on	a	few	factors,	variations	can	range	from	simple	(like	this	one)	to	more
detailed	and	complex.	The	thing	is	that	there	is	no	perfect	report	requirements
document.	Any	attempt	to	create	an	all-purpose	and	all-encompassing	template	to
cover	every	possible	reporting	scenario	will	likely	be	over-engineered	and	complicated.

A	template	should	cover	the	basics:	data	sources,	data	structure,	groupings,	aggregate
measures,	and	totals.	The	business	and	functional	requirements	describe	the
behavior,	or	the	report	and	use	cases,	but	not	the	implementation;	that	is	covered	in
the	technical	requirements.

Figure	13.3	Requirements	document	template.

The	perfect,	universal	report	requirements	template	doesn't	exist,	because	business
environments,	data	sources,	and	reporting	scenarios	differ	wherever	you	go.	Working
for	a	large	consulting	firm,	at	the	request	of	our	project	methodology	development
team,	I	wrote	a	report	specification	template.	It	was	simple	and	flexible,	but	the
content	writers	turned	it	into	something	rigid	and	unusable.	That	is	how	such	things
often	evolve	when	we	try	to	make	them	comprehensive	and	prescriptive.

I	am	often	asked	what	is	the	best	mock-up	diagramming	or	prototyping	tool	for
Reporting	Services.	In	the	end,	a	report	requirements	template	should	serve	as	a
checklist	used	to	define	each	report.	It	should	include	a	diagram	of	the	report
indicating	the	layout	and	function	of	each	section	or	data	region,	and	it	should	cover
these	areas:

Data	sources	(server,	authentication	method,	principles)

Database	objects	and	fields	(tables,	joins,	views,	stored	procedures,	cubes,
dimensions,	attributes,	measures,	KPIs)

Data	regions	(table,	matrix,	list)

Groups	and	group	levels

Fields	and	aggregate	functions	(SUM,	AVERAGE,	COUNT,	DISTINCT	COUNT)

Visualizations	(chart,	gauge,	map,	scorecard,	sparkline,	indicator,	bar)

Interactions	and	actions	(drill-down,	drill-through,	dynamically	hidden/displayed,
and	filtered	regions)

Security	levels	and	permissions	to	access	the	report	and	the	underlying	data
sources

Work	with	your	users	and	project	sponsor	to	design	a	report	specification	template
that	addresses	your	unique	business	needs.	Some	reports	may	query	data	from
multiple	tables,	and	users	may	not	be	familiar	enough	with	the	data	structures	to
specify	column	names	and	keys	for	joins.	In	this	case,	you	may	need	to	involve	a
database	expert	to	help	with	these	requirements.	Other	reports	may	get	their	data
from	existing	views	or	stored	procedures,	making	this	part	of	the	process	much	easier.

How	Formal	and	Detailed	Is	a	Specification?
A	specification	document	is	a	contract	between	you,	the	report	designer,	and	your
stakeholder.	It's	a	document	that	communicates	a	business	need,	as	well	as	the
functional	(and	perhaps	the	technical)	requirements.	It	also	provides	a	foundation	for
testing	and	validating	the	delivery	of	the	final	product.	The	level	of	detail	and
formality	of	the	specification	depends	on	the	business	culture	and	the	relationship
with	your	stakeholder.

TIP

I	have	designed	reports	with	little	or	no	requirement	documentation	when	I	have
the	luxury	of	working	shoulder-to-shoulder	with	the	stakeholder.	This	works
when	stakeholders	are	accessible	and	committed	to	testing	and	providing
feedback.	When	that's	not	the	case,	and	in	more	formal	settings,	a	report
specification	document	is	an	absolute	necessity.

Gathering	requirements	is	an	iterative	process.	Keep	the	first	iteration	focused	on
business	objectives	and	user	experience.	Business	users	tend	to	describe	systems	or
products	they've	worked	with.	If	the	report	design	specifics	are	locked	down	too	much
in	the	specification,	this	may	not	leave	you	with	enough	freedom	to	address	business
objectives	in	the	most	effective	way.	For	example,	a	user	familiar	with	Excel	is	going
to	want	reports	that	behave	exactly	like	Excel.	Mobile	app	users	might	prefer	a	user
experience	similar	to	their	iPad.	Reporting	Services	can	mimic	some	of	these
behaviors	and	many	of	the	same	features,	but	it	may	not	be	as	users	imagine.

Sometimes	the	most	effective	way	to	envision	the	right	design	is	to	step	away	from
technology	and	go	to	the	whiteboard	or	sketchpad.	I've	even	seen	some	good	report
mockups	on	cocktail	napkins.	This	first	effort	to	capture	ideas	and	concepts	should
lead	to	a	specification	with	technical	details	and	verifiable	test	cases.

Figure	13.4	is	a	sketch	of	a	dashboard	report	solution	created	on	my	tablet	using
OneNote,	which	was	used	to	design	a	report	solution.	These	images	are	rough	by
design,	but	the	purpose	is	to	communicate	the	visual	concepts	and	navigation	paths.
This	effectively	demonstrates	ideas	so	that	you	can	quickly	get	feedback	and	make
changes.

Figure	13.4	Sketch	of	a	dashboard	report	solution.

Report	mockups	provide	a	visual	reference.	Remember	that	a	mockup	or	prototype
should	never	evolve	into	a	production	report.	If	you	have	designed	a	“quick	and
simple”	report	with	the	intention	that	it	not	be	used	in	production,	ensure	that	it	is	a
“throw	away”	design	and	make	a	point	to	start	over	after	the	requirements	are	clear.
You	can	do	this	by	naming	the	file	and	adding	a	textbox	as	an	annotation	to	the	report
body.	This	isn't	to	say	that	every	report	must	be	mocked-up	or	prototyped	before
starting	design.	Just	ensure	that	you	begin	the	design	with	the	goal	either	to	throw	it
away	or	to	see	it	through	to	production.

NOTE

I	get	this	question	on	occasion:	What's	the	best	tool	to	mock	up	report	designs
quickly	so	you	can	get	user	feedback?	Are	you	ready	for	the	answer?	It's
Reporting	Services.	Yep,	I	can	create	a	simple	demo	report	quicker	and	more
effectively	in	the	report	designer	than	using	Visio	or	any	other	“mockup”	tool.

Report	Template
As	soon	as	you	have	developed	a	template	that	satisfies	your	business	requirements,
you	can	deploy	it	to	the	local	development	environment	by	copying	the	.rdl	file	to	the
following	location:

C:\Program	Files	(x86)\Microsoft	Visual	Studio	14.0\Common7\IDE

\PrivateAssemblies\ProjectItems\ReportProject

NOTE

Consider	setting	the	attributes	of	your	template	files	to	read-only	to	prevent
accidental	overwriting.

NOTE

Note	that	the	directory	name	quoted	here	contains	a	version	number	that	is
relevant	to	the	current	version	of	Reporting	Services.	This	is	subject	to	change	in
future	releases,	so	it's	important	to	find	out	the	folder	name	for	the	release	you
are	using.

You	might	find	that	if	the	project	sponsor	and	users	are	unfamiliar	with	the	data
structures,	you	are	left	to	make	assumptions	about	how	the	tables	should	be	joined
and	queried.	In	these	cases,	the	report	specification	becomes	more	of	a	checklist	and	a
forum	to	validate	assumptions	and	to	answer	questions.	This	also	lengthens	the
report's	development	cycle,	because	you	have	the	onus	of	learning	the	details	of	the
data	model.	Remember	that	the	key	to	success	is	effective	communication.	On	larger
projects	or	when	reporting	on	more	complex	databases,	you	may	need	to	separate	the
report's	business	requirements	from	the	technical	specification,	perhaps	by	using	two
separate	documents	to	gather	these	requirements.	In	any	case,	the	key	is	to	involve
users	and	business	stakeholders	in	obtaining	buy-off	and	validating	the	results.

VERSION	CONTROL
One	of	the	key	issues	that	must	be	addressed	when	you	are	working	as	part	of	a	team
is	how	to	ensure	that	you	do	not	overwrite	another	developer's	changes,	and	that	the
changes	you	make	are	not	overwritten	by	someone	else.

The	purpose	of	this	section	is	to	outline	the	major	characteristics	of	version	control	in
a	report	development	project,	and	to	show	how	these	can	be	implemented	and	used	in
an	SSDT	environment.

Microsoft	Team	Foundation	Server	is	a	complete	solution-management	framework	for
development	teams	to	use	to	plan	and	manage	the	daily	build	and	delivery	of	software
solutions.	Team	Foundation	Server	includes	the	integrated	version	control	and	build
management.	Team	Foundation	Server	must	be	licensed,	installed,	and	configured	on
a	server.	There	are	also	several	third-party	version	control	systems	that	integrate	with
Visual	Studio	or	simply	manage	source	file	version	control	within	the	filesystem.
Popular	free	services	like	GitHub	and	Subversion	are	simple	to	set	up.	The	core
concepts	of	most	all	version	control	solutions	are	the	same,	but	require	some	practice
and	ramp-up	to	use	them	effectively.

For	most	development	projects,	the	use	of	version	control	is	a	given	because	it	is	the
only	method	of	ensuring	that	multiple	developers	can	work	on	the	same	project
without	overwriting	each	other's	work.	It	is	worth	pointing	out	that	a	number	of
administrative	and	process	costs	are	associated	with	maintaining	a	version-control
system,	so	it	is	worth	considering	what	you	are	getting	for	this	cost.

Here	are	some	of	the	benefits	of	version-control	systems:

They	ensure	that	a	backup	is	made	of	each	object	as	and	when	it	is	checked	in	to
the	server.	This	means	that	any	data	loss	caused	by	a	corruption	of	the	developer's
code	is	limited	to	the	version	on	which	the	developer	is	actively	working.	If	you
ensure	that	the	check-in	policy	states	that	all	code	must	be	checked	in	no	later
than	the	end	of	the	current	business	day,	this	significantly	reduces	the	cost	of
rework	after	any	failures.

They	allow	a	change	to	be	associated	with	a	documented	task	or	bug	and	therefore
encourage	developers	to	ensure	that	these	are	documented	before	work
commences.

If	used	in	conjunction	with	a	build	process,	they	ensure	that	only	tested	versions	of
code	are	deployed	to	production.

They	provide	a	history	of	changes	to	code	that	helps	when	trying	to	distinguish
stable	reports	from	volatile	ones,	and	obtain	some	metrics	on	the	cost	of
development.

Setting	Up	Version	Control

Version-control	systems	normally	operate	by	introducing	a	new	menu	structure	into
the	Visual	Studio/SSDT	environment	that	is	used	to	establish	a	connection	between
your	project	and	the	version-control	server.	For	example,	Team	Foundation	Server	has
a	“Connect	to	Team	Foundation	Server”	option	on	the	Tools	menu.	If	you	know	the
URL	for	your	project's	server,	you	can	use	this	menu	to	establish	a	connection	to	your
project's	code	repository	on	the	server.

Whenever	you	open	the	project,	a	connection	to	the	version-control	server	is
established,	so	it	may	be	necessary	to	re-enter	your	username	and/or	password
whenever	you	open	the	project.	If	the	server	is	unavailable	when	you	open	the	project,
normally	you	have	a	choice	to	“Go	offline”	or	“Disable	source	control	for	this	session.”
In	this	case,	any	changes	you	make	are	synchronized	with	the	server	the	next	time	you
go	online.

NOTE

Note	that	the	Visual	Studio/SSDT	environment	normally	remembers	that	the
project	was	opened	offline	and	continues	to	work	disconnected	from	the	server
until	you	select	File	⇨	Source	Control	⇨	Go	online.

Getting	the	Latest	Version
One	of	the	first	things	you	should	do	when	working	in	a	version-controlled
environment	is	ensure	that	you	have	the	latest	version	of	the	report	in	your	local
workspace	before	you	make	any	changes.	Many	version-control	systems	allow	more
than	one	developer	to	work	on	the	same	thing	at	the	same	time.	You	find	out	that
someone	has	changed	your	report	only	when	you	try	to	check	it	back	in.	When	this
happens,	normally	you	have	at	least	three	alternatives.	You	can	save	your	local
version,	use	the	server	version,	or	merge	the	two.	When	this	happens,	it	is	good
corporate	citizenship	not	to	elect	to	overwrite	the	server	version	until	you	are
absolutely	certain	that	the	person	who	changed	the	report	agrees	to	lose	the	changes
he	or	she	has	made.

Viewing	a	Report's	History
You	can	obtain	a	history	of	changes	to	a	report	by	right-clicking	it	and	selecting	“View
change	history.”	This	displays	a	window	showing	the	following	information	for	each
change:

The	date	of	the	change.

Who	made	the	change.

Any	comments	the	developer	made	when	the	report	was	checked	in.

A	list	of	work	items	(bug	reports,	tasks)	associated	with	the	change.	You	see	this	by
double-clicking	the	change.

Restoring	a	Previous	Version	of	a	Report
You	can	restore	a	previous	version	of	a	report	by	right-clicking	it	and	selecting	Get
Specific	Version.	The	default	version	is	always	the	latest	version,	but	you	can	search
for	the	required	version	using	a	date,	change	number,	or	label.	Note	that	doing	so
copies	the	nominated	version	to	your	local	workspace	only.	So,	if	you	want	the	version
you	selected	to	be	the	latest	version,	you	need	to	check	it	back	in	again.

Setting	Check-out	and	Check-in	Policies
Most	version-control	systems	allow	the	user	to	specify	the	policy	to	employ	when

checking	in	and/or	checking	out	reports	or	code.	For	example,	you	might	want	to	set	a
policy	that	states	that	no	two	developers	can	work	on	the	same	project	at	the	same
time,	or	that	a	report	must	be	reviewed	by	another	developer	before	it	is	checked	in.

For	example,	to	prevent	two	developers	from	checking	out	the	same	report	in	a	Team
Foundation	Server	environment,	select	Team	 	Team	Project	Settings	 	Source
Control	and	uncheck	the	“Enable	Multiple	check	out”	check	box.

Applying	Labels
You	apply	a	label	to	a	version	of	a	report	when	you	want	to	be	able	to	find	it	again
using	the	label	you	supply.	You	add	a	label	to	a	report	by	right-clicking	the	project	and
selecting	Apply	Label.	You	then	select	the	report	and	version	combination	to	which
the	label	is	to	applied,	supply	a	label	value	and	an	optional	comment,	and	click	OK.
You	can	add	more	than	one	report	to	a	label	by	clicking	Add.

SYNCHRONIZING	CONTENT
When	you	have	completed	the	development	of	your	report,	the	next	challenge	will	be
to	deploy	your	report	to	a	server	environment	to	allow	it	to	be	seen	and/or	reviewed
by	your	co-workers	or	business	users.	This	section	deals	with	how	to	build	and	deploy
either	an	individual	report	or	a	suite	of	reports	to	a	server	environment.

Deploying	an	Individual	Report
Deploying	a	single	report	is	straightforward;	you	just	right-click	the	report	and	select
Deploy.	Note	that	the	report	goes	through	a	build	process	that	checks	that	the	report	is
valid	before	it	is	deployed.	If	there	are	no	build	or	deployment	errors	(see	the	section
“Checking	for	Build	Errors,”	later	in	this	chapter),	a	message	in	the	output	window
tells	you	that	the	report	has	deployed	successfully.

Deploying	a	Suite	of	Reports
To	save	time,	instead	of	deploying	each	report	in	your	project	individually,	you	might
choose	to	deploy	all	of	them	at	the	same	time.	You	can	do	this	in	one	of	two	ways:

Right-click	the	project	name	and	choose	Deploy.

Click	the	first	report	you	want	to	deploy,	hold	down	the	Shift	key,	click	the	last
report	you	want	to	deploy,	right-click,	and	choose	Deploy.

Each	report	you	select	will	go	through	the	same	build	and	deploy	process,	but	this
time,	a	message	in	the	output	window	tells	you	how	many	of	the	reports	were	built
and	deployed	successfully.

Checking	for	Build	Errors
Most	common	errors	in	reports	are	displayed	in	the	report	preview	pane	when	you
preview	the	report.	However,	you	might	also	be	notified	of	an	error	or	warning	on
your	report	on	the	Error	tab	of	the	SSDT	environment.	If	the	Error	tab	does	not
appear,	you	can	display	it	by	selecting	View	 	Error	List.

Excluding	a	Report	from	a	Deployment
As	noted,	you	can	remove	an	individual	report	from	an	individual	deployment	by	just
not	clicking	it	before	you	select	the	Deploy	option.	You	can	unclick	a	report	by	holding
down	the	Ctrl	key	and	clicking	the	report	you	want	to	exclude	after	the	reports	you
want	to	include	have	been	highlighted.

But	what	if	you	want	a	report	to	be	excluded	on	a	more	permanent	basis?	You	could
just	delete	the	report,	but	this	would	remove	any	record	of	it,	which	would	also
remove	its	history.

Another	alternative	is	to	right-click	the	report	and	select	Exclude	From	Project.	This

removes	the	report	from	the	project	without	deleting	it	from	either	your	local
workspace	or	the	version-control	server.	If,	in	the	future,	you	want	to	re-include	the
report,	you	can	add	it	back	to	the	project	by	right-clicking	it,	selecting	Add	 	Existing
item,	and	navigating	to	the	report	definition	file	(.rdl)	in	your	local	workspace.

MANAGING	SERVER	CONTENT
This	section	deals	with	how	you	manage	your	report	content	(reports,	datasets,	and
data	sources)	on	a	report	server	that	has	been	installed	in	either	a	native	mode	or
SharePoint	configuration.	In	a	development	environment,	you	will	probably	not	need
to	know	a	great	deal	about	managing	reports	on	the	server,	because	you	will	be
modifying	content	directly	using	the	Visual	Studio/SSDT.	However,	you	might	not
have	the	required	access	to	perform	a	direct	deployment	in	either	the	test	or
production	environment,	so	you	may	need	to	know	how	these	can	be	managed	on	the
server.	You	might	also	want	to	check	that	the	way	your	report	has	been	configured	in
your	Visual	Studio/SSDT	environment	matches	the	way	it	has	been	deployed	to	the
server.

Checking	the	Deployment	Location
The	first	thing	you	need	to	know	before	you	manage	content	on	your	Reporting
Services	server	is	the	server's	location.	You	can	discover	this	by	selecting	Project	
Properties	in	the	Visual	Studio/SSDT	environment.	You	see	the	window	shown	in
Figure	13.5.

Figure	13.5	Property	Pages	for	sample	server.

Here	are	the	things	you	need	to	review	on	this	screen:

The	configuration	determines	the	rest	of	the	settings.	In	Figure	13.5,	the	Debug
configuration	is	being	used.	As	a	report	developer,	you	can	set	up	a	configuration
for	each	of	the	environments	(development,	test,	and	production,	for	example).

You	can	change	these	settings	automatically	by	selecting	the	required
configuration	from	this	drop-down	menu.

If	the	OverwriteDatasets	or	OverwriteDataSources	setting	is	set	to	True,	a
dataset/data	source	is	overwritten	on	the	server	when	a	report	is	displayed	that
uses	the	setting.	If	it	is	set	to	False,	you	are	warned	in	the	output	window	that	the
dataset/data	source	is	not	being	changed.

You	see	the	TargetDatasetFolder,	TargetDataSourceFolder,	TargetReportFolder,
and	TargetReportPartFolder	object	types.	Creating	a	folder	for	each	of	these	types
is	a	good	way	to	organize	them	on	the	server	for	ease	of	access	and	to	allow	them
to	be	properly	secured.	Figure	13.5	shows	the	defaults	for	these	settings.	Note	that
the	report	folder	defaults	to	the	name	of	your	project.

Managing	Content	in	Native	Mode
When	your	report	server	was	set	up,	it	was	decided	whether	your	reports	would	be
deployed	to	a	SharePoint	environment.	Reporting	Services	ships	with	a	“native”	mode
deployment	option	for	customers	who	do	not	have	(or	do	not	want)	a	SharePoint	site.
This	section	deals	with	the	content	management	options	in	default	(native)	mode	for
Reporting	Services.

Managing	Shared	Data	Sources
In	native	mode,	shared	data	sources	are	stored	in	a	folder	you	can	view	from	the
Reports	URL.	This	is	normally	http://ServerName/Reports,	but	it	is	best	to	check
where	it	is	deployed	in	your	environment	by	examining	the	settings	by	selecting
Project	 	Projectname	Properties	from	SSDT.	The	folder	name	is	located	in	the
TargetDataSourceFolder	row	of	this	screen.

You	can	manage	the	following	from	the	server:

Whether	the	report	can	be	viewed	by	visitors	to	the	report	site	when	in	tiled	mode.
This	is	the	default	view	used	by	Reporting	Services	in	native	mode.	The	alternative
view	is	Details	view,	which	displays	reports	as	a	list.

Enabling/disabling	the	data	source.

The	type	of	the	data	source,	such	as	whether	the	data	is	stored	in	an	XML	file	or	a
SQL	Server	database.

The	folder	in	which	the	data	source	is	stored.

The	description	that	appears	next	to	the	data	source.

The	credentials	used	to	run	the	report.

The	connection	string	used	to	connect	to	the	data	source.

The	data-driven	subscriptions	applied	to	this	data	source.

The	list	of	reports,	datasets,	and	data	models	that	depend	on	the	data	source.	If

required,	any	of	these	can	be	deleted	from	the	Dependent	Items	tab.

The	list	of	users	who	can	view	or	overwrite	this	data	source	on	the	server.

Note	that	any	changes	you	make	on	the	server	will	be	overridden	by	the	settings	in
your	project	each	time	a	report	is	deployed	if	the	OverwriteDataSources	project
property	is	set	to	True.

To	manage	a	data	source,	select	it	from	the	Reports	URL	and	click	the	down	arrow
that	appears	to	the	right	of	the	data	source	name	when	you	hover	the	mouse	cursor
over	the	data	source.	Just	ensure	that	you	click	the	Apply	button	after	you	make	your
changes.	If	you	have	trouble	applying	the	changes,	you	might	have	to	run	your
browser	using	local	administrator	privileges	by	right-clicking	the	icon	and	selecting
“Run	as	administrator.”

Another	interesting	thing	you	can	manage	on	the	server	is	the	creation	of	a	data	model
from	your	data	source.	This	will	be	generated	in	the	folder	you	nominate.	You	can
download	and	open	it	from	the	SSDT	environment	by	selecting	Open	 	Existing
Project	and	selecting	the	downloaded	project.

Managing	Shared	Datasets
In	native	mode,	shared	datasets	are	stored	in	a	folder	that	can	be	viewed	from	the
Reports	URL.	You	can	check	this	location	in	the	same	way	as	for	data	sources,	but	in
the	TargetDataSetFolder	row	of	the	properties	screen.

The	things	you	can	manage	on	the	server	for	a	dataset	include	the	things	you	can
manage	for	a	data	source,	except	that	you	can't	disable	a	dataset.

You	can	additionally	set	the	timeout	in	seconds	for	a	dataset	to	respond	to	a	request
from	a	report,	and	set	up	and	manage	dataset	caching.	This	is	a	way	of	enhancing	a
report's	performance	by	using	a	cached	copy	of	the	dataset	rather	than	looking	up	the
data	from	the	data	source.	This	cache	can	be	refreshed	after	a	specified	interval	or	on	a
schedule.	If	you	elect	to	have	the	cache	refreshed	on	a	schedule,	a	SQL	Agent	job	will
be	created	for	you	when	you	click	Apply	on	the	Caching	options.

Note	that	any	changes	you	make	on	the	server	will	be	overridden	by	the	settings	in
your	project	each	time	a	report	is	deployed	if	the	OverwriteDataSets	project	property
is	set	to	True.

Managing	Reports
In	native	mode,	reports	are	also	stored	either	in	a	folder	or	on	the	home	screen	of	the
Reports	URL.	The	things	you	can	manage	on	the	server	include	most	of	the	things	you
can	manage	on	a	dataset.	You	also	can	manage	some	additional	items:

Create	a	linked	report	with	a	predefined	set	of	parameters.

Create	a	scheduled	and/or	data-driven	subscription	to	the	report.	This	can	be	used
to	automatically	distribute	copies	of	the	report	to	a	predefined	set	of	recipients	via
the	filesystem	or	e-mail.

Create	a	snapshot	of	the	report	either	manually	or	at	given	intervals.

Managing	Content	in	SharePoint
All	the	things	you	can	manage	in	native	mode	can	also	be	managed	from	your
SharePoint	site.	You	access	the	SharePoint	report	management	menu,	in	the	same
way	as	you	access	the	native	mode	menu.	Just	select	the	blue	down	arrow	(instead	of
the	yellow	one)	to	see	menu	options	for	the	familiar	report	operations.

Here	are	some	additional	options:

Edit	in	Report	Builder.	Report	Builder	is	a	user-friendly	tool	for	developing	reports
that	look	more	like	an	Office	product	than	a	developer	product.	You	get	only	a
subset	of	the	facilities	that	are	available	to	you	from	the	Visual	Studio/SSDT
environment,	but,	in	many	cases,	this	is	all	you	need.	If	you	do	not	have	a	copy	of
Report	Builder	installed	on	your	local	computer,	one	is	automatically	downloaded
from	your	server.

Manage	Parameters	is	useful	in	cases	where	your	report	uses	default	values	for
parameters	and	you	need	to	check	what	those	default	values	are.	You	should	not
assume	that	the	values	in	your	development	environment	match	those	in
SharePoint,	even	immediately	after	a	report	is	deployed.	It	is	always	best	to	check.

Send	To	can	be	used	to	download	a	copy	of	the	report,	copy	it	to	a	new	location,	or
e-mail	it	to	someone	as	a	link.

WARNING

If	you	are	making	changes	directly	on	your	reporting	server,	be	sure	that	these
changes	are	reflected	in	your	local	reporting	development	workspace.	Failure	to
do	so	may	result	in	any	changes	being	overwritten	the	next	time	the	project	or
report	is	deployed.

REPORT	BUILDER	AND	SELF-SERVICE	REPORTING
STRATEGIES
Since	Reporting	Services	2008,	Report	Builder	has	become	the	primary	method	for
report	designers	to	create	standard	RDL-based	reports.	As	you	know,	two	report
design	tools	are	targeted	to	serve	different	report	design	audiences,	but	they	share	a
lot	of	the	same	functionality	and	capabilities.	In	short,	SSDT	is	primarily	for	IT
professionals	and	developer	teams	to	collaborate	and	design	report	solutions.	Report
Builder	enables	business-focused	report	designers	to	create	individual	reports	using
published	resources	on	the	server.	However,	both	tools	support	basic	and	advanced
report	design	capabilities.	One	doesn't	replace	the	other,	and	one	isn't	necessarily
better	than	the	other.	It	depends	on	the	needs	and	the	person	performing	the	task.

Figure	13.6	shows	the	major	feature	differences	and	similarities	between	the	Report
Builder	and	SSDT	design	tools.

Figure	13.6	Feature	differences	and	similarities	between	the	Report	Builder	and
SSDT	design	tools.

As	you	can	see,	these	design	tools	share	core	capabilities,	making	them	suited	to
mainstream	report	design.	Many	professional	designers	don't	have	a	strong
preference.	Some	who	do	simply	prefer	to	use	the	tool	to	which	they	are	accustomed.
Figure	13.7	shows	the	tasks	and	roles	that	are	best	suited	for	each	design	tool.

Figure	13.7	Tasks	and	roles	that	are	best	suited	for	each	design	tool.

For	purely	ad	hoc	and	self-service	user	report	design,	Report	Builder	is	more
appropriate	because	of	its	simplicity	and	straightforward	interface.	Experience	has
proven	that	nontechnical	users	get	lost	in	the	complexity	of	the	Visual	Studio	shell	as
a	business	user	tool.	The	concepts	of	managing	solutions	and	projects	in	SSDT	are
cumbersome	and	seem	unnecessary	for	users	who	just	want	to	create	a	report.	Report
Builder	is	streamlined	to	eliminate	some	of	the	“report	development”	tasks.	For
example,	to	use	a	shared	data	source,	you	don't	need	to	define	a	separate	embedded,
named	data	source	to	reference	the	external,	named	data	source.	I	have	had	students
struggle	with	this	concept	for	the	duration	of	a	week-long	class.	By	contrast,	the
Report	Builder	design	experience	is	simple	and	sleek.

At	the	opposite	end	of	the	spectrum,	for	team	development,	the	Visual	Studio-based
SSDT	provides	integrated	version	control	and	report	project	management	capabilities.
IT	professionals	use	SSDT	to	design	and	deploy	shared	objects	used	by	business	users
in	self-service	reporting	scenarios.	These	include	shared	data	sources,	shared	datasets,
and	report	parts.

REPORT	BUILDER	AND	SEMANTIC	MODEL	HISTORY
If	you've	used	earlier	versions	of	Reporting	Services,	or	if	you've	grown	up	with	the
product	as	I	have,	you	probably	know	that	a	little	history	has	brought	us	to	this	point
in	the	product's	evolution.	The	2005	version	of	Reporting	Services	included	a	self-
service	reporting	and	data	browsing	tool	called	Report	Builder.	This	should	not	be
confused	with	the	report	design	tool	we	have	today	that	has	the	same	name—first
called	Report	Builder	2.0,	then	Report	Builder	3.0,	and	now	today	the	new	tool	is
simply	called	Report	Builder.

NOTE

Report	Builder	1.0	consumed	data	through	a	semantic	object	layer	known	as	the
Report	Model,	which	is	no	longer	supported.	This	offered	some	useful
capabilities,	but	also	had	some	limitations	and	was	not	enterprise	class	by	most
standards.	It	was	a	first	step	toward	a	better	solution,	and	many	businesses
found	some	value	for	limited	ad	hoc	reporting.	This	modern	release	of	the	SQL
Server	product	platform	is	a	welcome	replacement	for	Report	Models	and	Report
Builder	1.0.

PLANNING	A	SELF-SERVICE	REPORTING
ENVIRONMENT
As	the	IT	and	business	leader	in	an	organization,	you	cannot	simply	turn	the	user
community	loose	with	a	set	of	design	tools	to	use	as	they	please.	You	may	have	seen
what	happens	when	businesses	run	without	data	governance.	Heck,	I	have	stepped
into	organizations	with	thousands	of	Access	databases,	Excel	workbooks,	and	reports
strewn	throughout	the	network	filesystem,	with	no	understanding	of	ownership	or
where	reliable	data	resided.	This	is	clearly	not	the	right	answer.

You	Need	a	Plan
A	manageable	self-service	reporting	solution	begins	with	a	concise	plan,	well-defined
processes,	and	a	clear	understanding	of	who	owns	what	and	where	reports	will	reside.
Part	of	that	plan	should	encompass	tracking	the	ownership	and	ongoing	status	of	each
report.	At	regular	intervals	(say,	once	a	month	or	once	a	quarter),	the	status	of	new	or
evolving	reports	should	be	revisited.	Some	user	reports	may	be	considered	for
migration	to	IT-supported	business	reports.	Some	may	be	considered	for
consolidation,	to	have	their	features	added	to	an	existing	report.	Other	reports	may	be
dismissed	as	one-off,	unsupported,	or	legacy	reports	to	be	deleted	or	archived.

If	you	perform	these	reviews	on	a	regular,	scheduled	cycle,	nothing	falls	through	the
cracks.	The	IT	group	has	a	clear	understanding	of	the	reports	they	support,	as	well	as
those	that	are	the	responsibility	of	business	units,	leaders,	and	individual	users.

Design	Approaches	and	Usage	Scenarios
Before	you	over-engineer	the	solution,	you	must	understand	what	business	users	will
do	with	these	reports	they	create.	If	I	have	learned	anything	from	years	of	consulting
with	many	different	companies,	it	is	that	it	is	important	to	have	a	process	in	place	to
manage	IT	assets,	including	reports	and	BI	dashboards.	Too	much	process	can	be	a
hindrance	to	getting	business	done	and	performing	other	important	tasks.	That
balance	will	be	different	for	each	organization,	but	some	general	principles	apply	to
all.	Seek	to	understand	what	users	need	to	accomplish	with	their	self-service	reporting
solution.

From	a	user	reporting	perspective,	these	scenarios	may	include	the	following:

A	report	created	for	personal	use—This	report	may	be	used	by	the	person	who
created	it	at	some	point	in	the	future,	or	that	person	may	be	done	with	it	after	the
first	use.	Because	it	is	a	user-owned	report,	others	in	the	organization	will	not	use
it	to	make	critical	business	decisions	based	on	the	information	it	presents.

A	report	or	set	of	reports	to	be	used	by	a	business	unit	or	small	group—
These	ad	hoc	reports	are	used	to	help	a	small	group	of	business	users	perform	a
task,	but	they	understand	that	they	own	these	reports	and	are	responsible	for	the

information	they	provide.

A	report	created	by	a	business	user	to	be	migrated	to	production—After
the	design	is	reviewed	by	an	IT	professional,	this	report	may	be	validated	and
migrated	to	a	production	report,	or	redesigned	and	then	used	and	supported	by	the
whole	organization.	These	reports	are	often	viewed	as	prototypes	or	proofs	of
concept	to	be	rebuilt	from	scratch	to	company	IT	standards.

Production	reports	designed	and	created	by	IT	for	company	use—This	is
the	traditional	approach	to	IT	solutions.	Users	or	business	unit	leaders	submit	a
request,	a	business	analyst	gathers	and	documents	requirements,	and	then	IT
developers	create	the	solution	that	is	vigorously	tested	before	being	deployed	to
production.	Some	critical	reports	may	fall	into	this	category,	but	this	doesn't
provide	the	freedom	and	flexibility	required	by	most	organizations.

Allowing	business	users	to	own	some	of	the	day-to-day	report	creation	can	free	IT
developer	resources	to	build	more	complex	and	critical	reporting	solutions.	Because
many	experienced	business	users	may	know	their	data	better	than	IT	pros,	who	better
to	do	the	initial	design	and	prototyping	than	those	who	will	use	the	reports?	Complex
and	mission-critical	solutions	should	be	developed	using	IT	project	standards	and
development	methodology.	Using	the	prototyping	approach,	certain	trained	and
educated	users	design	proof-of-concept	reports	that	can	be	reviewed	and	analyzed	to
help	establish	the	business	and	technical	requirements.	IT	developers	then	redesign
the	reports	from	the	prototypes	and	agreed-upon	requirements.

Define	Ownership
A	classic	problem	in	most	any	business	environment	is	that	information	tends	to
move	from	place	to	place	and	person	to	person.	Without	a	set	of	governance	rules,
people	gather	the	information	they	need	to	perform	their	jobs	and	store	it	in	whatever
form	works	best	for	them.	Over	time,	people	may	share	their	Excel	workbooks	and
other	documents	with	others,	and	some	of	these	may	become	de	facto	standard
sources	for	others.	The	problem	is	that	the	latest	version	may	be	in	someone's	local
folder	or	inbox.	In	many	cases,	multiple	copies	are	changed	and	updated	with	new
information.	Local	reports	work	much	the	same	way.	If	each	doesn't	have	an	owner
and	a	home,	people	will	continue	to	build	on	their	own	copies.

The	most	significant	fault	in	unmanaged	business	reporting	environments	is	that	the
administrators	don't	know	who	created	certain	reports,	or	who	is	responsible	for	the
reports	they	have.	Over	the	years,	the	number	of	reports	grows,	with	no	traceability	to
the	person	who	requested	that	a	report	be	created,	who	designed	it,	or	who	last
updated	it.	In	part,	this	problem	is	aided	by	Reporting	Services'	report	catalog	logging,
but	having	the	network	ID	of	the	person	who	originally	deployed	a	report	may	not	be	a
comprehensive	solution.	That	person	may	no	longer	own	the	report	and	may	not	even
work	for	the	company	anymore.

When	called	in	to	consolidate	a	set	of	reports,	some	IT	project	sponsors	commonly

say,	“We	don't	know	who	these	reports	belong	to	or	how	they	are	used.	What	do	we
do?”	My	response	has	been,	“Make	a	backup	and	then	delete	them	from	the	servers.
I'm	sure	you'll	hear	from	the	owners	eventually.”	That's	probably	not	the	best
solution,	but	I	can	assure	you	it	works.

Report	ownership	really	has	two	components.	The	first	is	the	person	who	created,	or	is
responsible	for	maintaining,	a	report.	The	second	is	the	business	entity	that	uses	a
report—and	that	may	be	responsible	for	the	ongoing	business	and	data	requirements.

For	the	first	component,	ownership	may	simply	fall	into	the	hands	of	the	business
entity	that	created	or	assumes	responsibility	for	the	report.	Here	are	a	few	possible
scenarios:

A	single	user	created	a	report,	and	he	or	she	assumes	full	responsibility	for	the
information	it	presents.

A	business	unit	or	department	owns	the	report.	The	users	within	that	business
entity	will	use	the	report	for	their	own	needs,	and	it	won't	be	shared	outside	that
group.

The	business	enterprise	owns	the	report.	The	design	was	conducted	in	accordance
with	IT	and	business	standards.	The	data	access	method,	query,	and	data	have	been
validated	and	approved	by	IT	and	the	business.

Ideally,	all	reports	should	be	well-designed	and	reliable,	but	if	you	allow	business
users	to	create	their	own	reports,	they	should	be	suspect	until	formally	validated	or
redesigned	by	IT.	Until	that	happens,	they	should	be	deployed	to	an	isolated	location
and	branded	so	that	any	user	understands	who	the	owner	is	and	the	conditions	of	its
use.	If	the	CEO	is	handed	a	copy	of	Martha's	personal	report,	she	should	know	to
validate	any	information	it	contains	before	making	a	critical	business	decision.	If	she
is	looking	at	an	IT-sanctioned	report,	she	should	know,	with	confidence,	that	the
information	is	accurate	and	reliable.

Every	report	should	have	a	clear	owner	and	sponsor.	If	IT	owns	the	report	server,	they
should	have	a	clear	and	tangible	record	for	each	report,	including	the	following:

Who	requested	that	the	report	be	created	and	defined	the	business	requirements?

Who	designed	and	developed	the	report?

Who	tested	and	validated	the	design?

Have	the	queries	and	data	access	methods	been	validated	to	be	accurate	and
efficient?

Does	the	report	meet	corporate	security	requirements?

Who	should	be	able	to	run	and	get	data	through	the	report?

What	data	should	or	should	not	be	accessible	through	this	report	to	specific	users
or	members	of	Active	Directory	groups?

Data	Governance
Laying	down	rules	often	does	no	good	unless	people	have	reasonable	alternatives	to
find	what	they	need	and	to	perform	their	jobs.	Therefore,	the	first	step	toward
governing	the	source	and	storage	media	for	important	information	should	be	to
provide	a	convenient	and	reasonable	way	to	get	to	it.	Enterprise	data	should	be	stored
in	enterprise	databases.	Department-level	documents	and	reports	should	be	stored	in
a	designated	location	accessible	to	that	group.	Only	after	a	foundation	for
collaboration	exists	can	you	mandate	the	rules	for	common	use.

When	users	design	their	own	reports,	they	should	connect	to	the	same	data	sources
using	the	same	methods	as	others,	and	then	consume	the	data	using	a	standard
approach.	Business	data	entities	(such	as	a	product	catalog,	customer	contact	list,	or
employee	directory)	should	be	queried	from	a	central	location.	Or	copies	should	be
derived	from	a	central	store	and	then	updated	at	regular	intervals.	Only	when	report
data	is	obtained	from	an	authorized	source	are	reports	reliable	and	consistent.	This
can	be	achieved	by	surfacing	the	appropriate	data	through	an	enterprise	data
warehouse,	online	analytical	processing	(OLAP)	cubes,	and	semantic	data	models.

Data	Source	Access	and	Security
All	users	who	will	do	their	own	reporting	must	be	able	to	connect	to	enterprise	data
sources.	But	this	doesn't	mean	that	all	users	must	have	access	to	sensitive
information.	By	employing	user-level	access	and	managing	Active	Directory	group
membership,	users	are	granted	access	to	only	the	data	they	should	be	permitted	to
read.

Certain	reporting	capabilities	(such	as	subscriptions	and	alerting)	require	report	data
to	be	accessed	when	the	user	is	not	online	to	be	authenticated.	In	these	cases,	a	shared
data	source	should	be	created	with	stored	credentials	and	minimal	access	to	data
records	for	a	group	of	users.	When	reports	and	queries	are	executed	at	scheduled
intervals,	these	results	are	sent	to	the	user	via	e-mail,	a	file	share,	or	are	made
available	in	cached	result	sets.

The	use	of	shared	data	sources	with	stored	credentials	is	common	in	Reporting
Services	solutions	and	can	be	adequately	secure.	Care	should	be	taken	to	return	only
necessary	data	for	the	report.	Access	to	the	reports	should	be	secured	in	addition	to
securing	access	to	the	database.	In	some	cases,	it	may	be	necessary	to	manage	two	sets
of	shared	data	sources.	One	provides	fine-grained	access	to	certain	data	for	interactive
users,	and	the	other	supports	these	unattended	reporting	situations.

Create	and	deploy	these	shared	data	sources	to	a	central	location	on	your	report	server
or	SharePoint	site.	By	default,	a	folder	named	Data	Sources	is	created	on	the	report
server.	In	a	SharePoint	integrated	site,	add	or	use	a	document	library	set	aside	for
shared	data	sources.	Because	you	may	use	the	SharePoint	site	to	host	other	BI	reports
and	content	such	as	Excel	Services	reports,	PerformancePoint,	and	Power	View
reports,	you	can	designate	one	data	source	library	for	all	the	different	data	source

content	types.	If	the	site	is	created	using	the	Business	Intelligence	Center	site
template,	a	library	called	Data	Connections	is	created	and	can	be	used	for	this
purpose.

User	Education
As	soon	as	the	report	infrastructure	is	prepared	and	a	plan	is	in	place	for	your
organization's	self-service	reporting	strategy,	train	your	users	on	the	essentials.	Start
with	a	pilot	user	group	to	help	iron	out	the	rough	spots,	and	then	show	them	how	to
launch	Report	Builder,	search	the	gallery,	and	add	report	parts.	Then	show	them	how
to	use	shared	datasets	and	select	and	use	a	shared	data	source	(in	that	order).

With	some	preparation	and	planning,	many	business	users	can	design	reports	without
possessing	query	language	or	advanced	report	design	skills.	Depending	on	the
sophistication	of	the	need,	users	might	have	to	acquire	only	basic	skills.	Using	reports
parts,	they	simply	drag	and	drop	pluggable	parts	onto	the	report	body	and	then	run	the
report.	Using	shared	datasets,	they	need	not	write	queries;	they	just	add	data	regions
and	bind	and	group	fields.

Optimizing	the	Report	Builder	User	Experience
If	you	leave	users	to	figure	out	how	to	design	reports	on	their	own,	they	will	probably
fail.	Out	of	the	box,	Reporting	Services	doesn't	lend	itself	to	self-exploration,	because
it	contains	many	features	and	capabilities	that	will	confuse	users	if	they	try	it	on	their
own.	But	with	a	little	guidance,	this	can	be	a	good	experience	for	the	users.	Guided,
users	can	learn	the	basics	and	then	learn	more	advanced	features	when	they're	ready.

Conducting	User	Training
Start	small,	keep	it	simple,	and	help	your	users	understand	the	basic,	essential	tasks	to
design	simple	reports.	Don't	teach	these	users	to	write	queries	and	use	expressions.
For	advanced	users,	you	can	schedule	a	second-level	training	session	after	they	have
mastered	the	basics.	In	your	first	training	session,	teach	your	users	to	do	the
following:

Navigate	to	the	Report	Manager	or	SharePoint	site.

Launch	Report	Builder.

Choose	the	report	type	to	create.

Choose	the	data	source.

Assemble	a	dashboard	from	the	report	part	gallery	or	design	the	report	using
wizards	and	drag-and-drop	tools.

Browse	data	in	the	report.

Save	the	report	to	a	folder	or	library.

Folder	and	Library	Management

One	of	the	easiest	ways	to	segregate	user	reports	from	enterprise	reports	is	to
designate	a	location	for	each.	Users	and	IT	report	designers	are	granted	permissions	to
deploy	to	appropriate	libraries	or	folders.	In	a	large-scale	environment,	these	may	be
separate	servers.	In	a	smaller	solution,	they	could	be	separate	folders	or	document
libraries	on	the	same	server	or	site.

Report	Branding
After	a	report	has	been	printed	or	exported	to	a	file,	it	should	also	be	identifiable.
Using	a	template,	brand	these	reports	so	that	they	will	be	recognizable	as	user-created
or	enterprise-standard	reports.	This	could	be	as	simple	as	a	brief	textbox	in	the	report
header	or	a	designated	image	or	logo.

Formal	reports	can	have	a	“mark	of	approval”	logo	that	lets	people	know	at	a	glance
that	they	are	looking	at	a	tested	and	trusted	report.	One	of	my	customers	took	this
advice	and	created	three	report	templates	to	meet	their	business	needs.	Each	template
had	an	image	in	the	report	header	to	mark	the	report	with	the	corporate	report
conformance	level.	Here's	a	summary	of	their	approach:

Level	1—Sourced	from	corporate	BI	data,	but	created	by	anyone	without	IT
controls.

Level	2—Sourced	from	BI	data	and	query/report	logic	reviewed	by	a	BI	team
member.

Level	3—Sourced	from	BI	data,	query/report	logic	reviewed	by	a	BI	team	member,
and	validated/approved	by	the	business	data	stewards	for	the	data	on	the	report.

Data	Source	and	Query	Options
Reporting	Services	has	the	flexibility	to	connect	to	a	variety	of	data	sources	and	to	use
different	database	objects.	Too	many	choices	are	confusing,	though.	Standardize	on	a
data	access	method	and	then	teach	users	to	work	with	a	set	of	database	objects.	Most
IT	shops	have	established	standards	for	connecting	users	to	their	databases	and
making	data	available	through	various	objects.	It's	important	that	you	establish	and
enforce	these	standards	before	turning	your	users	loose	on	corporate	data.	In	brief,
your	options	are	to	encapsulate	data	using	these	objects:

Relational	database	views

Relational	database	stored	procedures

OLAP	database	cubes	and	perspectives

Semantic	data	model

If	your	users	will	be	reporting	directly	on	a	relational	database	(preferably	a	data
warehouse	and	not	operational	transactional	schemas),	you	can	provide	access
through	views,	stored	procedures,	or	a	semantic	model.

If	you	provide	access	through	a	view,	this	simplifies	data	access	by	providing	a	layer	of

abstraction	from	multiple	table	relationships	and	join	operations.	Views	don't	provide
parameterization.	Users	must	still	write	a	SELECT	statement	and	a	WHERE	clause	to
query	this	data.

A	stored	procedure	used	to	select	and	return	data	from	multiple	tables	can	have
parameters	built	into	its	design.	To	use	a	stored	procedure	for	a	report,	users	need
only	select	it	from	a	list	of	procedures	for	the	database	specified	in	the	report	data
source.	No	SELECT	clause	is	necessary,	and	parameters	in	the	stored	procedure	are
automatically	used	to	derive	report	parameters	by	the	report	designer.	There	are	some
minor	limitations,	such	as	how	multi-value	parameters	must	be	handled.	But	for	a
relational	data	source,	stored	procedures	can	simplify	the	user	report	design
experience	and	provide	a	simple	and	efficient	way	to	query	data	at	the	source.

Using	Shared	Data	Sources
Report	Builder	requires	shared	data	sources	for	deployment.	Create	a	data	source	for
each	database	or	semantic	model,	and	deploy	it	to	the	shared	data	sources	folder	or
library	on	the	server.	For	all	interactive	reports	that	will	be	run	while	the	user	is
logged	into	his	or	her	desktop	computer,	you	can	use	Windows	Integrated	security	and
pass	through	the	user's	security	credentials.	The	databases	and	database	servers	must
be	configured	to	allow	access	to	a	role,	Windows,	or	Active	Directory	group	to	which
all	the	report	users	have	membership.

A	network	administrator	can	create	a	group	for	the	report	users	and	add	each	user	to
the	group.	For	SQL	Server,	create	a	login	for	the	group,	and	then	map	the	SQL	Server
login	to	the	db_datareader	role	for	the	database	that	a	report	queries	data	from.	For
Analysis	Services,	create	a	role	for	the	OLAP	database,	and	add	the	group	to	the	role
with	Read	permission	granted	for	the	cube,	dimensions,	and	members.

Using	Analysis	Services	to	Simplify	Data	Access
For	analytical	reporting,	pairing	Report	Builder	with	SQL	Server	Analysis	Services
(SSAS)	can	simplify	user	report	design	even	further.	When	the	simplified	in-memory
tabular	technology	was	added	to	SSAS	in	SQL	Server	2012,	it	was	referred	to	as	the	BI
Semantic	Model	(BISM).	Now,	in	SQL	Server	2016,	it	is	just	called	“SSAS,”	which
encompasses	an	SSAS	OLAP	(cube)	database	(now	called	a	multidimensional
database)	and	SSAS	Tabular,	an	enterprise	implementation	of	the	same	data	storage
and	aggregation	technology	used	in	Power	Pivot	and	Power	BI.	Both
OLAP/multidimensional	databases	and	tabular	models	are	managed	using	the
Analysis	Services	storage	engine,	and	the	security	model	is	the	same	for	both.

To	provide	user	access,	a	role	is	defined	in	the	database	with	a	set	of	permissions,	and
then	one	or	more	Windows	users	or	groups	are	added	to	the	role.	To	grant	access	to	an
Analysis	Services	database,	define	a	role	with	Read	permissions,	and	then	add	the
appropriate	Windows	or	Active	Directory	group	to	the	role.

Designing	and	Deploying	Report	Parts

Report	parts	are	fragments	of	a	report,	complete	with	a	data	source,	dataset,	and
parameters,	that	can	be	reused	in	another	report.	A	report	part	may	be	a	single	data
region,	such	as	a	table	or	chart,	or	it	may	be	a	combination	of	report	items	and	data
regions,	such	as	a	complete	dashboard.	Report	parts	are	published	to	a	folder	or
library	on	the	report	server	from	any	report	using	SSDT.	This	is	considered	to	be	an	IT
activity,	and	should	be	part	of	the	preparation	effort	to	support	user	report	design.

NOTE

Report	Parts	is	a	feature	that	works	as	it	was	designed,	but	has	not	had
tremendous	uptake	in	the	industry	since	it	was	introduced	in	SQL	Server	2008
R2.	In	the	right	scenarios,	this	feature	enables	reusing	portions	of	existing
reports.	You	should	carefully	evaluate	whether	report	parts	are	right	for	your
users.	This	is	not	a	feature	that	I	typically	use	in	my	solutions.

Using	Report	Parts
In	Report	Builder,	users	choose	to	insert	a	report	part	and	then	search	the	gallery.	If
these	report	parts	are	used	without	modification,	a	user	can	simply	add	them	to	a
report	and	then	run	the	report	without	having	any	report	design	skills	beyond	the
basics.

WARNING

Report	Parts	can	only	be	used	in	reports	that	are	authored	in	Report	Builder.
This	is	one	of	the	few	capabilities	of	Report	Builder	that	doesn't	exist	in	the	SSDT
report	designer.

When	a	developer	updates	and	republishes	existing	report	parts,	users	are	given	the
option	to	update	their	reports.	In	this	case,	a	report	opened	in	Report	Builder	displays
a	Report	Part	update	notification.	If	the	user	chooses	to	allow	an	update	to	take	place,
the	affected	report	parts	are	replaced	with	the	new	components	on	the	server.

In	a	SharePoint	integrated	solution,	the	server	address	is	set	to	the	SharePoint	root-
site	address.	Like	all	of	the	target	deployment	folder	properties	(data	sources,	datasets,
and	reports),	the	report	part	folder	is	set	to	the	full	path	to	the	library	used	for	report
parts,	as	you	see	in	Figure	13.8.

Figure	13.8	Report	part	folder.

Figure	13.9	shows	the	Options	dialog	in	Report	Builder.	In	a	SharePoint	integrated
solution,	the	server	address	is	set	to	the	SharePoint	root-site	address,	and	the	report
part	folder	is	set	to	a	relative	path	to	the	library	used	for	report	parts.	Pay	close
attention	to	this,	because	the	address	formats	are	different	between	the	two	tools.

Figure	13.9	Options	dialog.

Report	parts	can	be	published	from	either	SSDT	or	Report	Builder.	Publish	report
parts	to	a	designated	library,	and	give	each	report	part	an	appropriate	searchable
name.

In	SSDT,	the	report	part	names	are	specified	in	the	Publish	Report	Parts	dialog,	which
is	accessible	from	the	report.	The	selected	report	parts	are	then	published	to	the	server
when	the	report	is	deployed.	In	Report	Builder,	choose	Publish	Report	Parts	from	the
Report	Builder	button	menu,	as	shown	in	Figure	13.10.

Figure	13.10	The	Publish	Report	Parts	option.

In	either	SSDT	or	Report	Builder,	the	Publish	Report	Parts	dialog	is	used	to	select	the
report-design	objects	you	want	to	deploy,	and	to	rename	these	objects	as	report	parts.
When	a	data	region	is	added	to	a	report,	you	commonly	shouldn't	worry	about	giving	it
a	friendly	name.	But	if	you	choose	to	publish	a	table	or	chart	as	a	report	part,	you
must	give	it	a	more	recognizable	name	than	Table3	or	Chart1.	Remember	that	when
naming	report	parts,	eventually	several	report	parts	may	be	deployed.	The	user	will
need	to	know	not	only	what	type	of	report	item	a	part	represents,	but	also	exactly	what
it	does.	Names	should	be	descriptive,	making	it	easy	to	discern	how	they	consume	or
visually	present	a	set	of	data.	A	good	name	might	be	something	like	Sales	Amount	by
Sales	Territory	Country	Chart.

All	the	dependent	objects	that	the	report	part	needs	to	function	are	included	on	this
list.	If	you	uncheck	any	of	these	objects,	they	are	still	added	to	the	report,	but	they	are
not	made	available	to	add	individually.	You	typically	don't	need	to	select	the	datasets,
data	sources,	and	parameters	when	deploying	report	parts.

Using	Shared	Datasets
Shared	datasets	allow	for	more	advanced	and	granular	report	design	without	the	need
for	users	to	write	queries	and	consume	data	directly	from	data	sources.	A	shared
dataset	is	designed	by	an	IT	developer	and	is	deployed	to	the	report	server	in	the	same
way	that	shared	data	sources	and	report	parts	are	deployed	and	used.	When	designing
a	new	report,	a	report	user	can	choose	a	shared	dataset	from	the	server	catalog,	and
then	design	standard	report	data	regions	as	they	would	with	a	dataset	of	their	own
design.

This	requires	greater	aptitude	than	using	report	parts,	but	it	also	mitigates	common
mistakes	made	in	query	design,	and	simplifies	data	access	for	common	users.	Users
can	have	more	flexibility	to	use	advanced	report	design	techniques	without	having	to
deal	with	the	complexities	of	using	SQL	and	MDX.	Shared	datasets	can	have
associated	parameters,	filters,	and	calculated	field	definitions	that	users	simply	utilize
rather	than	design	themselves.	Each	deployed	dataset	can	be	configured	with	caching
options	to	speed	up	report	execution	and	minimize	redundant	database	queries.

Shared	datasets	should	be	tested	thoroughly	before	they	are	deployed	and	generally
should	not	be	modified	after	they	have	been	used.

USER	REPORT	MIGRATION	STRATEGIES
For	reports	that	will	serve	as	prototypes	or	the	starting	point	for	IT-supported
business	reports,	you	should	consider	a	formal	process.	This	can	be	part	of	the
scheduled	user	report	review	cycle,	or	it	can	be	performed	for	specific	reports	to	let
users	assist	with	the	design	process	and	proof	of	concept.	The	process	consists	of	the
following	phases:

Review

Consolidate

Design

Test

Maintain

Review
A	user-designed	report	helps	IT	analysts	and	developers	understand	how	they	want	to
consume	data.	If	the	report	is	proposed	to	IT	acceptance,	it	should	be	reviewed	for
security,	effective	query	design,	and	proper	use	of	report	design	techniques.	If	the
report	meets	these	standards,	it	may	be	tested	and	then	promoted	to	the	production
IT-supported	report	server	or	library	for	general	use	by	the	business.	It	should	be
branded	so	that	business	users	can	identify	it	as	a	reliable	source	of	business	data.

Consolidate
When	new	reports	are	introduced,	in	many	cases	they	may	have	functionality	that
duplicates	other	reports.	It's	common	for	new	reports	to	simply	be	a	variation	of	an
existing	design	that	may	be	sorted,	grouped,	or	filtered	a	little	differently.	Using
common	report	design	techniques,	you	can	modify	existing	reports	to	use	parameters
and	expressions	to	dynamically	sort,	group,	and	filter	data.	In	many	organizations,
existing	user-designed	reports	can	be	consolidated	to	drastically	reduce	the	number	of
reports	that	IT	must	support.	For	example,	I've	seen	cases	where	800	reports	were
reduced	to	about	100	by	retiring	unused	reports	and	consolidating	redundant	reports
with	those	having	more	interactive	features.

Don't	wait	until	you	have	hundreds	of	out-of-control	reports.	Make	this	a	regular
effort	in	your	periodic	review.

Design
When	reports	are	created	as	prototypes,	treat	them	as	examples	and	not	as	the	starting
point	for	a	production	report.	There	is	great	value	in	throwing	away	exemplary
designs.	Only	keep	a	report	that	was	designed	from	the	beginning	according	to
corporate	IT	project	standards.	Otherwise,	you'll	be	ahead	of	the	game	by	learning

from	it	as	a	proof	of	concept,	tossing	it	out,	and	starting	over.

Test
Every	report	should	go	through	the	same	testing	and	quality	assurance	process	as
custom	software.	Generally,	report	development	cycles	are	shorter,	and	testing	need
not	be	a	long	and	expensive	ordeal.	However,	critical	business	reports	should	be	tested
by	an	objective	team,	separate	from	developers	and	report	designers.	Each	report
should	be	tested	by	a	technical	professional	for	security	conformance,	query,	and
presentation.

Maintain
As	new	requirements	are	introduced,	the	entire	process	can	be	repeated	to	decide	if
features	should	be	added	to	existing	reports,	or	if	new	reports	should	be	added	to	the
solution.	Database	servers	may	be	added	or	moved,	and	shared	data	sources	should	be
updated	to	reflect	these	changes.	As	new	features	are	contemplated	or	reports	are
considered	for	consolidation,	you	should	think	about	the	trade-offs	involved	with
report	execution,	query	efficiency,	and	reduced	functionality.	Meeting	multiple
requirements	using	a	single	report	must	be	weighed	against	the	increased	cost	of
maintaining	multiple	reports.	The	overall	goal	is	to	strike	a	balance	between	having
reports	that	are	simple	to	maintain	and	reducing	the	overall	number	of	reports	by
combining	features	through	more	advanced	design.

SUMMARY
Successful	reporting	solutions	are	planned	and	managed.	This	chapter	considered
some	of	the	decisions	you	face	when	organizing	your	report	projects,	enabling	a	team
of	report	designers	to	collaborate,	test,	and	deploy	reports	to	production.	Obtaining
report	requirements	is	an	iterative	process	that	begins	with	conceptual	design	and
may	include	creating	mock-up	sketches.	A	report	design	specification	is	important,
especially	when	the	report	designer	isn't	working	alongside	the	stakeholder.

In	a	team	environment,	version-control	systems	help	team	members	work	together	to
share	design	files	and	prevent	lost	work,	roll	back	changes,	and	manage	their	work.
Separate	report	servers	let	report	designers	and	developers	make	sure	their	solutions
function	as	designed	and	deploy	correctly.	Testers	use	a	QA	server	environment	to	test
reports	and	ensure	correct	results	and	behavior	before	the	final	solution	is	shipped	or
deployed	to	production.

This	chapter	presented	a	set	of	guidelines	for	planning,	designing,	and	maintaining	a
solution	using	Report	Builder,	thus	enabling	your	business	users	to	design	their	own
reports.	It	is	critical	to	define	and	understand	the	ownership	of	reports.	When	users
own	a	report's	requirements	and	design,	they	must	accept	responsibility	for	the	data	it
presents	and	the	business	decisions.	IT	professionals	or	business	leaders	must
manage	user	access	to	important	data	and	tools	that	provide	these	capabilities.	Data
sources	should	be	governed	by	the	business,	and	users	should	be	trained	to	use	only
reliable	data	sources.

Self-service	report	design	is	a	partnership	between	users	and	IT	professionals.	Some
user-designed	reports	may	be	used	simply	to	browse	information	and	for	casual
observations.	Other	reports	may	be	used	to	help	IT	professionals	better	understand
user	reporting	requirements	and	data	use	patterns.	A	user	report	may	serve	as	a	proof
of	concept	that	can	be	used	to	evolve	a	solution,	or	to	redesign	properly	developed
report	solutions	using	efficient	design	patterns	and	industry	best	practices.

Chapter	14	will	show	you	how	to	build	a	composite	dashboard	report	solution	with
interactive	visual	components	and	a	drill-through	map.	It	begins	with	a	discussion	of
working	within	the	strengths	and	limitations	of	the	Reporting	Services	architecture.
I'll	demonstrate	best-practice	techniques	for	creating	highly	visual	scorecards	with
sparklines	and	KPI	indicators.	Then,	you	will	assemble	a	complete	dashboard	report.

Chapter	14
Report	Solutions,	Patterns,	and	Recipes

WHAT'S	IN	THIS	CHAPTER?

Designing	super	reports

Report	recipes

Dashboard	solutions

Designing	a	KPI	scorecard

Designing	an	interactive	sparkline	report

Maps	with	navigation

WROX.COM	CODE	DOWNLOADS	FOR	THIS	CHAPTER
The	wrox.com	code	downloads	for	this	chapter	are	found	on	this	book's	web	page	on
the	Download	Code	tab.	The	code	is	in	the	Chapter	14	download	and	individually
named	according	to	the	names	throughout	the	chapter.

Anyone	who	does	a	lot	of	advanced	report	design	work	can	appreciate	the	fact	that
Reporting	Services	can	be	used	to	build	highly	customized	reports	meeting	the
demands	of	complex	business	requirements.	Features	and	properties	have	been	added
in	each	product	version	improving	these	capabilities.	Some	objects	have	dozens	of
properties,	many	of	which	are	used	only	for	very	specific	needs,	namely,	to	solve
specific	problems.

The	report	recipe	concept	discussed	in	this	chapter	was	born	from	a	series	of
conference	presentations	I	have	given	at	the	PASS	Global	Summit	over	the	past	few
years.	The	topic	of	advanced	report	design	led	to	discussions	about	practical	design
patterns	and	different	ways	that	a	single,	more	capable	report	could	be	created	to
replace	many	simple	reports.	Through	the	use	of	some	well-established	design
techniques,	we	have	learned	to	create	fewer,	more	complex	and	adaptable	reports,
rather	than	one	report	for	each	user	request	or	individual	requirement.

Let's	face	it—a	lot	of	reporting	environments	are	not	meticulously	planned.	In	most
organizations,	different	people	create	reports	to	surface	information	from	various	data
sources.	Over	time,	the	reports	grow	and	evolve.	To	some	degree,	this	situation	is
inevitable,	but	that	is	to	not	say	that	we	must	sit	back	and	watch	it	turn	into	chaos.

In	Chapter	13,	we	discussed	an	approach	to	conduct	regular	user	report	reviews	with
consideration	for	consolidation	and	redesign.	This	concept	isn't	exclusively	for
migrating	user	reports	to	those	under	IT	control.	We	can	take	a	similar	approach	to
dealing	with	reports	developed	in	more	formal	settings	that	may	have	become
redundant	or	obsolete.	The	process	is	much	the	same:	assign	ownership	and	schedule
regular	reviews,	comparing	similar	reports	slated	for	consolidation	or	retirement.

SUPER	REPORTS
When	a	set	of	business	requirements	is	presented	for	development,	they	are
translated	into	a	set	of	report	capabilities	and	features.	When	a	set	of	similar
requirements	is	presented	with	considerable	overlap,	this	may	be	an	opportunity	to
combine	them	into	a	cohesive	set	of	features.	A	super	report	combines	features	to
present	each	set	of	business	users	with	only	the	capabilities	and	information	they
need.

How	can	we	design	one	report	to	present	different	information	for	different	users?	We
offer	each	set	of	users	different	report	behaviors	by	enabling	elements	of	the	report
under	unique	conditions.	This	is	possible	by	using	the	skills	and	techniques	discussed
in	earlier	chapters.	These	features	can	be	combined	to	take	the	user's	reporting
experience	to	a	whole	new	level.

Figure	14.1	shows	the	interdependencies	between	basic	report	design	elements.	The
graphic	depicts	how	different	design	techniques	are	combined	to	create	advanced
report	features.	Note	that	expressions	are	central	to	this	approach	and	frequently	used
alongside	other	techniques.

Figure	14.1	Interdependencies	between	basic	report	design	elements.

Through	examples,	you	learn	to	combine	these	techniques	and	features	to	create	more
capable,	advanced,	and	useful	reports.

Working	with	the	Strengths	and	Limitations	of	the	Reporting
Services	Architecture
Before	I	continue,	I	want	to	be	clear	about	something:	I	love	this	product.	I	have

found	Reporting	Services	to	be	extremely	powerful,	flexible,	and	capable	of	solving
most	business	problems	I	have	encountered	in	about	nine	years	of	using	it.	Given	a
challenge,	I	can	usually	find	a	way	to	tackle	it	with	Reporting	Services.	In	learning
about	the	product	team's	vision	and	long-term	goals	for	Reporting	Services'	features
and	capabilities,	we	have	gained	insight	into	the	mechanics	of	the	product's
components	and	why	they	behave	as	they	do.	Without	fully	understanding	the	design
goals	in	constructing	the	architecture	of	this	product,	it	is	easy	for	a	report	designer	to
ask	questions	such	as	“Why	does	it	work	that	way?”	and	“Why	did	it	do	that?”
Reporting	Services	has	some	limitations	that	may	not	make	sense	to	the	casual	user.	I
have	found	that	most	advanced	capabilities	that	I	want	to	include	in	reports	can	be
implemented,	but	not	necessarily	using	my	chosen	technique.	As	I	have	run	up
against	limitations	and	have	discussed	these	with	the	product	architects	and	product
managers,	the	answers	are	often	in	the	vein	of	“That	feature	wasn't	designed	to	work
that	way.	You	can	accomplish	the	same	thing	by	using	this	other	feature	or
technique.”	My	goal	is	to	share	these	techniques	and	capabilities	with	you.

One	of	the	chief	goals	of	this	product	is	to	render	reports	in	a	variety	of	presentation
formats	using	server-side	components.	In	doing	so,	a	report	rendered	to	a	specific
format	may	not	take	advantage	of	all	the	capabilities	offered	by	that	format,	client
tool,	or	markup	language.	For	example,	reports	rendered	to	HTML	do	not	offer	all	the
advanced	behavior	you	might	implement	in	a	custom-built	web	page	with	cascading
style	sheets	and	JavaScript.	If	you	designed	a	report	in	Microsoft	Excel,	you	might
design	the	workbook	with	formulas	used	to	recalculate	the	spreadsheet	rather	than
using	literal	values	for	summaries	and	totals.	The	general	approach	is	that	Reporting
Services	renders	using	methods	to	address	the	commonality	of	all	these	formats.
There's	always	room	for	more	features	and	advanced	functionality.	Some	of	these	may
be	added	to	the	product	in	later	versions,	because	this	makes	sense	for	mass
consumption.	Because	of	the	modular	architecture	of	Reporting	Services,	certain
features	can	be	added	through	custom	programming	extensions.

WARNING

Developing	custom	extensions	for	Reporting	Services	is	a	fairly	advanced
undertaking	so	adjust	your	expectations	accordingly.	I	see	them	used	on
occasion	by	large	companies	with	specialized	needs	and	with	teams	of
developers,	but	rarely	on	projects	with	typical	time	and	budget	constraints.

Seeking	the	Excel	Export	Holy	Grail
A	common	scenario	I	find	in	the	business	community	is	when	experienced	Excel	users
(usually	financial	analysts)	ask	for	reports	to	be	rendered	to	an	Excel	workbook
containing	formulas,	data	sources,	pivot	tables,	and	other	advanced	Excel	capabilities.
Exactly	mimicking	Excel's	capabilities	is	not	always	possible,	so	don't	misunderstand
me	when	I	say	that	extensively	formatted	reports	can	be	exported	to	Excel	with	a	great
deal	of	precision.	It	stands	to	reason	that	if	Excel	users	want	to	use	the	advanced
capabilities	of	Excel,	in	many	cases	they	may	have	a	better	experience	using	Excel	as
their	reporting	tool	rather	than	Reporting	Services.	I	do	not	make	that	statement
lightly	and	appreciate	that	using	Excel	instead	of	Reporting	Services	introduces	a
different	set	of	support	and	maintenance	challenges,	but	I	have	seen	many	report
designers	and	developers	bend	over	 backward,	expending	countless	hours,	trying	to
get	Reporting	Services	to	output	exactly	what	Excel	users	want.

The	issue	of	exporting	reports	to	Excel	with	all	the	desired	features	is	a	complicated
equation.	It	seems	that	nearly	every	time	I	encounter	someone	who	wants	a	particular
capability	enabled	in	the	workbooks	they	export	from	Reporting	Services,	the	question
is	phrased	as	“When	are	they	going	to	fix	the	problem	with	SSRS	not	supporting…
(some	feature)?”	The	fact	is	that	every	Excel	user	perceives	different	capabilities	as
more	important	than	others	and	in	the	end,	they	really	just	want	to	use	Excel.	This	is
the	primary	reason	that	Excel	has	been	enhanced	significantly,	in	recent	versions,	as	a
reporting	and	analytic	tool.

NOTE

I	could	easily	go	on	for	several	pages	with	stories	about	projects	involving
reports	rendered	to	Excel	workbooks.	Reporting	Services	does	a	good	job	of
formatting	a	report	as	a	workbook	with	static	data.	However,	consider	starting
with	Excel	if	users	truly	need	to	leverage	Excel's	advanced	features	such	as
formulas,	data	connections,	filters,	slicers,	charts,	and	pivot	tables.

It	is	not	easy	to	define	the	limits	of	most	products.	For	some	reason,	the	specifications
and	documentation	for	most	products	do	not	contain	a	list	of	things	they	cannot	do—
at	least	not	in	bold	type.	I	have	had	very	little	success	going	to	a	large	software	vendor
and	saying,	“Tell	me	what	your	product	can't	do.”	Wouldn't	it	be	nice	if,	when	you
shop	for	a	car	or	house,	the	salespeople	list	the	comparative	shortcomings	of	their
product?	It	would	make	the	selection	process	so	much	easier.	For	this	discussion,	that
is	where	I	would	like	to	start.	Table	14.1	details	some	of	the	more	recognizable
limitations	of	the	Reporting	Services	architecture.	This	is	by	no	means	a	complete	list,
nor	is	it	a	list	of	bugs	and	issues.	It	is	simply	a	guideline	of	design	constraints	to	be
aware	of	when	taking	reports	to	the	next	level.	Given	these	points,	I	describe	some
common	alternatives	to	implement	desired	functionality.

Table	14.1	Common	limitations	and	design	alternatives

AREA LIMITATION ALTERNATIVES

Data
presentation

In	the	report
body	or	a
group	section,
all	fields	must
be	aggregated,
even	if	the
dataset	returns
only	one	row.

Use	an	aggregate	function	even	if	your	query	returns	one
row	or	if	all	rows	for	the	field	return	the	same	value.
Typically,	you	should	use	the	FIRST()	function	for
character	and	date	data	and	the	SUM()	function	for	numeric
data.

Formatting Conditional
formatting
expressions
can	be
complicated
and	difficult	to
maintain,
especially
when	nesting
Boolean	logic
and	when	the

Write	a	Visual	Basic	function	in	the	Report	Properties	Code
window,	and	call	the	function	as	an	expression	for	each
report	item.	For	example:
=Code.MyFunction(Fields!MyField.Value)

In	certain	cases,	you	might	also	be	able	to	leverage	the
newly	introduced	Report	and	Group	variables	to	hold
certain	values.

same
expression	is
repeated	for
multiple	report
items	and
fields.

Aggregate
functions	don't
return	0	for
summaries	on
NULL	values.
Our	users	want
to	see	0s.

Use	a	Visual	Basic	function	to	return	a	0	in	place	of	a
NULL	value.	For	example:
=IIF(IsNothing(SUM(Fields!MyField.Value)),	0,

SUM(Fields!MyField.Value))

Or,	pass	values	to	a	Visual	Basic	function	to	convert	NULL,
empty	string,	or	no	value	to	a	0	or	another	value.	For
example:
=Code.NullToZero(Fields!MyField.Value)

Some	highly
formatted
reports	don't
export	well	to
Excel.

Often,	only	data	regions	that	translate	to	a	grid	layout
export	neatly	to	Excel.	If	you	need	more	visual	report	styles
to	export	to	Excel,	design	two	alternate	data	regions:	one
optimized	for	browsing	and	the	other	for	Excel.	Use	the
built-in	Render	Format	Name	field	in	an	expression	on	the
Hidden	property	to	conditionally	hide	each	data	region,
depending	on	the	render	format.	For	example:
=(Global!RenderFormat.Name="Excel")

or
=NOT(Global!RenderFormat.Name="Excel")

Grouped
column
headers	can't
be	hidden
using
expressions.

Only	data	columns	can	be	hidden;	group	header	columns
cannot.	Rather	than	using	group	header	columns,	add	the
group	header	fields	to	the	data	columns	collection	(by
dragging	the	field	to	the	right	side	of	the	double	dash
group/data	column	separator).	Then	set	the	cell
HideDuplicates	property	to	the	dataset	name.	To
conditionally	hide	a	column,	right-click	the	column	header,
choose	Column	Visibility,	and	set	an	expression	for	the
Hidden	property.	For	example,	if	you	want	to	hide	the
column	for	the	Tax	Amount	field	if	the	dataset	doesn't
return	that	column,	use	this	expression:
=(Fields!TaxAmt.IsMissing)

Rendering HTML
rendering
doesn't
support	some
table	design
formatting.	For
example,
narrow

This	is	a	characteristic	of	HTML	rendering	and	is	generally
not	considered	a	bug.	HTML	rendering	is	constantly	being
adjusted	and	improved	in	product	updates.	Provide	specific
feedback	to	the	SSRS	product	development	team	through
the	Microsoft	Connect	site	(connect.microsoft.com)
If	reports	require	more	exact	tolerances	for	printing	or
layout,	users	should	be	instructed	to	use	printer-friendly
rendering	formats	such	as	PDF	and	TIFF.

http://connect.microsoft.com

columns	used
for	spacing	and
borders	are
padded	with
extra	space.

Using	images
in	place	of
borders	causes
extra	vertical
and	horizontal
padding	and
column
misalignment.

Most	rendering	formats	were	not	designed	to	use	images	in
place	of	borders.	Images	placed	in	table	cells	typically	are
padded.	Report	design	is	a	little	different	from	web	design,
and	some	of	the	techniques	may	not	work.	Reports	should
be	tested	in	all	common	rendering	formats	when	using
image	borders.

Reports	don't
support	events
like	Access
does.	I	want	to
count	pages,
rows,	groups,
and	report
item	values.

Reporting	Services	supports	the	concept	of	on-demand
processing	and	Report	and	Group	variables.	These	variables
are	set	once	and	can	be	retrieved	from	within	their	scope.
With	the	combination	of	these	new	variable	types	and
some	custom	code,	you	can	re-create	those	counts.

Actions Code	variables
aren't	tracked
across	multiple
“postings”	of
an	interactive
report.	I	need
to	keep	track
of	values	that
are	modified
by	code	as	my
user	interacts
with	a	report.

You	can	use	report	parameters	and	set	the	action	of	the
interactive	item	to	“post”	to	the	same	report,	passing	the
changed	value	in	the	parameter	collection.	Although
cumbersome,	the	best	way	to	preserve	the	“state”	of	non-
default	parameter	values	between	report	actions	is	to	set
the	target	value	of	each	parameter	to	an	expression
referencing	that	same	parameter.

Excel
rendering

Exported
reports	do	not
output
formulas	but
static	values
for	each	cell,
including
group	totals.

Several	options	are	available	depending	on	your
requirements	and	the	sophistication	of	your	Excel
audience.	Read	the	recommendations	that	follow	for
alternative	approaches.	The	simple	fact	is	that	exported
reports	output	the	resulting	values	of	expressions	and	not
the	acual	expression	formula.

Excel	columns
and	cells	don't

To	output	an	entire	report	to	a	worksheet,	the	Excel
rendering	extension	must	create	columns	to	contain	every

align	perfectly
and	some	cells
are	merged	in
the	final
worksheet.

report	item	and	data	region.	Items	placed	near	but	not
exactly	in	the	same	horizontal	space	will	produce	multiple
small	columns.
In	the	report	design,	make	sure	that	each	report	item	and
Tablix	column	is	aligned	so	they	fall	into	the	same	column
space.	Use	a	table	as	a	container,	and	avoid	using	sub-
reports	and	uncontained	textboxes.
Rather	than	placing	header	items	in	the	report's	page
header,	use	cells	in	the	table	header	and	set	the	table
header	rows	to	repeat	on	a	new	page.	The	settings	are	a
little	tricky	and	covered	in	this	post:
http://www.sqlchick.com/entries/2011/8/20/repeating-

column-headers-on-every-page-in-ssrs-doesnt-work-

o.html

We'd	like	to
use	all	the
features	of
Excel
PivotTables
and	advanced
formatting
without	the
limitations
imposed	by
Excel
rendering
through	SSRS.

Use	the	Atom	Feed	feature	on	the	report	toolbar.	This
generates	a	live	feed	from	published	SSRS	reports	that	can
be	used	in	an	Excel	workbook	through	Power	Pivot.	This
allows	you	to	treat	a	published	report	as	a	data	source	for
Excel,	using	the	datasets	and	parameters	you've	defined	in
the	report.
I	demonstrate	this	ability	in	this	post:
https://sqlserverbiblog.wordpress.com/2015/05/04/how-

to-get-reports-in-excel-without-exporting-from-

reporting-services/

We'd	like	to
divide	report
content	into
separate
worksheets.

Create	page	breaks	at	the	start	or	end	of	tables	and	other
data	regions.	Use	the	Page	Name	property	of	a	group	or	data
region	to	name	the	resulting	worksheet.

http://www.sqlchick.com/entries/2011/8/20/repeating-column-headers-on-every-page-in-ssrs-doesnt-work-o.html
https://sqlserverbiblog.wordpress.com/2015/05/04/how-to-get-reports-in-excel-without-exporting-from-reporting-services/

REPORT	RECIPES:	BUILDING	ON	BASIC	SKILLS
In	2010,	Robert	Bruckner	from	Microsoft	and	I	collaborated	on	a	book	titled	SQL
Server	Reporting	Services	Recipes	(Wrox).	We	invited	several	professional	associates
to	contribute	and	we	showcased	report	design	patterns	and	techniques	for	solving
many	common	business	problems.	We	demonstrated	how	SSRS	may	be	used	in
creative	ways	to	design	unique	report	solutions.	The	book	highlights	various	design
methods	through	the	application	of	games	and	puzzles	developed	using	Reporting
Services.	Most	of	those	techniques	are	still	valid	in	the	current	product	version.

A	recipe	is	a	design	pattern	based	on	the	design	components	and	basic	skills	acquired
by	creating	simple	reports.	Many	of	the	following	examples	are	based	on	solutions
created	for	clients	and	demonstrate	some	of	the	learning	and	best	practices	acquired
from	many	years	of	field	experience.	To	implement	these	solutions,	you	need	to	apply
the	skills	you	learned	in	the	previous	chapters.

To	illustrate	a	complete,	working	solution,	I	will	step	through	the	process	to	create	a
series	of	reports.	Each	self-contained	report	will	be	published	as	a	report	part	that	you
will	use	to	assemble	a	dashboard.	Each	example	shows	you	how	to	use	a	different
technique	and	design	pattern.	This	exercise	applies	techniques	and	skills	that	have
been	demonstrated	in	earlier	chapters.

NOTE

In	an	effort	to	keep	things	simple,	I	don't	show	you	every	little	step	and,	as	a
result,	certain	styling	details	may	not	match	exactly	what	you	see	unless	you
modify	all	of	the	same	properties	as	the	completed	exercise	sample	provided	in
this	book's	download	files	for	comparison.

Before	you	get	started,	I	just	want	to	set	expectations.	Dashboard	report	design	is	a
very	detailed	and	iterative	process.	If	you	can	get	these	features	working	the	first	time
you	try,	you	should	get	a	prize	(because	I	can't).	In	fact,	this	is	a	process	that	requires
even	the	most	experienced	report	designers	to	spend	considerable	time	in	trial-and-
error	design	and	debugging	iterations.	Good	report	designers	are	patient	and
persistent.

To	describe	every	property	used	in	the	completed	report	for	this	exercise	would	make
these	instructions	very	long	and	tedious,	so	I've	included	only	the	essential	steps.	At
the	end	of	each	section,	 compare	your	work	with	the	completed	copy	of	the	Internet
Sales	KPI	Dashboard	report	and	then	make	adjustments.	Of	course,	you	always	have
the	option	to	simply	review	the	completed	sample	as	you	step	through	the
instructions.

Dashboard	Solution	Data	Sources	and	Datasets
The	completed	dashboard	report	for	this	exercise	is	shown	in	Figure	14.2.	This	report
contains	the	following	sections:

Figure	14.2	Final	dashboard.

Three	gauges	display	the	value	of	two	KPI	values	compared	to	target	values.	The
Orders	gauge	measures	the	total	orders	against	a	parameterized	goal.

The	KPI	scorecard	is	grouped	by	Fiscal	Year	and	Month.	It	displays	the	Gross	Profit
Margin	percent	value	followed	by	two	indicators	that	show	the	KPI	status	and
monthly	trend	using	calculations	performed	in	the	Analysis	Services
multidimensional	cube.

To	the	right	of	the	scorecard	is	a	grouped	table	showing	the	calendar	year	and
product	category.	For	each	category,	a	sparkline	displays	the	monthly	sales	trend.
Each	Category	label	is	a	drill-through	action	that	will	display	the	sparkline	details
in	a	line	chart	located	to	the	right	of	the	table.	When	a	user	clicks	a	category,	the
chart	is	refreshed	with	corresponding	details.

A	map	of	the	United	States	is	located	in	the	top-right	corner	of	the	dashboard.	This
shows	the	location	of	the	top	customers	ranked	by	sales	orders.

When	I	prepared	an	earlier	version	of	this	solution	in	the	previous	edition	of	the	book,
I	made	extensive	use	of	the	newly	introduced	report	parts	feature.	After	using	report
parts	on	several	projects	and	introducing	them	to	some	of	my	clients,	I've	decided	not
to	promote	this	feature.	The	concept	of	report	parts	was	proposed	as	a	self-service

reporting	feature	that	would	enable	Report	Builder	users	to	assemble	reports	from
parts,	or	fragments,	of	a	completed	report	published	to	the	report	server.	It's	not	that
report	parts	don't	work	as	designed;	in	fact,	they	do.	I	have	just	discovered	that	most
Reporting	Services	users	who	have	mastered	Report	Builder	are	perfectly	capable	of
designing	their	own	reports	and	in	many	cases,	the	effort	that	it	saves	doesn't	offset
the	flexibility	of	simply	building	the	report	from	scratch.

KPI	Scorecard
A	scorecard	is	a	standard	in	the	business	community	for	displaying	the	status	of
metrics	and	key	performance	indicators.	A	typical	scorecard	is	a	table	report	with
optional	row	groups	and	drill-down	capability	to	allow	users	to	progressively	discover
more	details.

Our	scorecard	report	will	show	product	gross	margin	summaries	by	fiscal	years	and
the	months	within	each	year	for	selected	product	categories.	Figure	14.3	shows	the
finished	report	with	the	first	fiscal	group	expanded	to	reveal	the	details	for	each
month.	The	calculations	and	business	logic	for	the	Gross	Profit	Margin	KPI	are
encapsulated	in	the	cube.	The	purpose	of	the	report	is	to	simply	surface	these	values.

Figure	14.3	Final	scorecard	report.

We	will	start	with	a	shared	data	source	for	the	Adventure	Works	Multidimensional
database	in	Analysis	Services:

1.	 Open	the	Wrox	SSRS	2016	Exercises	project	in	SSDT.

2.	 Create	a	new	report	named	Internet	Sales	KPI	Dashboard.

3.	 Add	a	data	source	to	the	report	that	uses	the	AdventureWorksSSAS	shared	data
source.

4.	 Create	a	new	dataset	named	FiscalInternetSales	based	on	this	data	source	and	use
the	graphical	query	builder	to	design	the	query	shown	in	Figure	14.4.

Figure	14.4	MDX	Query	Designer.

5.	 Expand	the	Date	dimension,	expand	the	Fiscal	folder,	and	then	drag	the	Fiscal
hierarchy	to	the	data	grid.

6.	 Expand	KPIs	and	drag	the	Product	Gross	Profit	Margin	KPI	to	the	rightmost
column	in	the	grid.	This	action	will	add	the	Value,	Goal,	Status,	and	Trend
columns.

7.	 Drag	the	Internet	Revenue	KPI	to	the	data	grid.

8.	 Expand	Measures,	expand	the	Internet	Sales	measure	group,	and	then	drag	the
Internet	Order	Quantity	measure	to	the	right	side	of	data	grid.

9.	 Add	the	Date.Fiscal	Year	hierarchy	to	the	filter	pane,	above	the	data	grid.

10.	 Drop	down	the	Filter	Expression	list	box,	check	FY	2012,	and	click	OK.

11.	 In	the	Filter	pane,	scroll	to	the	right	and	check	the	box	in	the	Parameters	column.

12.	 From	the	Product	dimension,	drag	the	Category	attribute	hierarchy	to	the	Filter
pane,	set	the	Filter	Expression	to	include	all	four	leaf	level	members	(Accessories,
Bikes,	Clothing,	and	Components),	and	check	the	Parameters	box.

13.	 Close	the	Query	Designer	and	Dataset	Properties	dialog.

14.	 Add	a	new	table	data	region	to	the	report	body	in	preparation	to	complete	the

following	steps.	Figure	14.5	shows	the	table's	groups	in	the	finished	report	so	you
can	see	where	I'm	heading	with	this.

Figure	14.5	Completed	scorecard	table	in	report	designer.

15.	 With	the	table	selected,	drag	the	Fiscal	Year	field	from	the	Report	Data	pane	to
the	Row	Groups	pane	above	the	details	group.

16.	 Use	the	drop-down	arrow	to	edit	the	details	group,	add	a	group	expression,	and
select	the	Month	field.

17.	 Drag	the	Gross	Profit	Margin	Value,	Status,	and	Trend	fields	to	separate	detail
columns.

18.	 Change	the	expressions	for	each	of	these	cells	to	use	the	AVG	function	instead	of
the	SUM	function.	Figure	14.6	shows	the	report	in	design	view	at	this	stage.

Figure	14.6	Score	table	with	AVG	expressions.

19.	 From	the	toolbox,	drag	an	Indicator	to	the	Status	cell	in	the	details	row	of	the
table.	The	Select	Indicator	Type	dialog	opens,	shown	in	Figure	14.7.

Figure	14.7	Add	indicator	to	table.

20.	 Select	an	appropriate	three-state	KPI	indicator.	I	prefer	the	red,	yellow,	and	green
state	indicators	that	use	the	diamond,	triangle,	and	circle	shapes.

21.	 Click	OK	to	close	this	dialog.	These	icons,	shown	in	Figure	14.8,	correspond	to	the
state	field	values	−1,	0,	and	1,	respectively.

Figure	14.8	Select	Indicator	Type	dialog.

22.	 Drag	another	indicator	to	the	Trend	detail	cell,	and	select	a	five-state	trend
directional	arrow	set.	The	arrow	icons	will	correspond	to	the	trend	state	values	−2,

−1,	0,	1,	and	2,	respectively.

23.	 Configure	the	details	group	to	hide	and	toggle	visibility,	using	the	Fiscal	Year
textbox	as	a	toggle	item.

For	a	refresher	on	creating	a	drill-down	table,	refer	to	the	section	“Add	Summary
Totals	and	Drill-Down”	in	Chapter	6.

Gauges
The	three	gauges	are	bound	to	the	same	dataset	as	the	scorecard	table.	Because	the
gauge	properties	are	fairly	self-explanatory	and	we'll	focus	the	exercise	on	more
complex	elements,	I'm	going	to	have	you	copy	and	paste	them	from	the	completed
sample.	Before	you	do	that,	let's	take	a	quick	look	at	the	updated	gauge	selection	in
SQL	Server	2016:

1.	 Drag	and	drop	a	gauge	from	the	toolbox	to	a	blank	area	of	the	report	body.

This	opens	a	window	titled	Select	Gauge	Type,	shown	in	Figure	14.9.	If	you	have
worked	with	earlier	versions	of	SSRS,	you	will	recognize	a	selection	of	newer,
modern-looking	gauges.	These	are	actually	the	same	gauges	we	have	had	since
SQL	Server	2008	R2,	but	with	default	properties	set	to	simplify	and	flatten	the
look	and	feel.

Figure	14.9	Select	Gauge	Type	dialog.

2.	 Select	the	last	linear	gauge	on	the	list.	This	places	a	bullet	graph	gauge	on	the
report	without	the	outdated	styling	of	the	previous	gauges.

3.	 Delete	the	new	gauge.

4.	 Open	the	completed	sample	report	named	Internet	Sales	KPI	Dashboard	(ch14)	in
design	view.

5.	 Select	and	copy	the	title	textbox	and	the	rectangle	containing	the	three	gauges	to
the	clipboard	using	Ctrl+C.

6.	 Make	room	on	your	new	report	for	these	items	in	the	same	location	on	the	report
body.

7.	 Use	Ctrl+V	to	paste	the	copied	report	items	and	then	reposition	them	to	fit	on	your
report.

8.	 Preview	the	report	to	make	sure	it	executes	correctly.	Make	corrections	if
necessary,	using	the	completed	report	for	comparison.

9.	 Return	to	the	design	view.

10.	 Click	the	first	gauge	to	show	the	Gauge	Data	window.

Gauges	contain	two	essential	elements	to	work	correctly:	Scale	and	Pointer.	The
Scale	contains	a	MaximumValue	property,	which	defines	the	range	of	values	for	one
or	more	pointers	and	for	optional	markers.

11.	 Click	the	numeric	scale,	just	outside	the	gray	ring	area.	The	Properties	window
should	display	RadialScale1.

12.	 Scroll	to	the	top	and	note	the	(MaximumValue)	property	expression.	For	this	gauge,
a	parameter	named	InternetOrdersGoal	is	used	to	set	the	maximum	scale	value.

12.	 NOTE

Note	that	the	InterntOrdersGoal	parameter	is	added	only	as	a	report
parameter.	Unlike	the	query	parameters	defined	in	the	query	designer,	this
report	parameter	is	created	from	the	Parameters	node	of	the	Report	Data
pane.

13.	 Click	the	RadialPointer1	item	in	the	Gauge	Data	window.	Note	the	Value
expression:

=Sum(Fields!Internet_Order_Quantity.Value)

14.	 Find	and	view	the	FillColor	expression.	This	uses	a	SWITCH	function	to	change	the
pointer	fill	color	to	indicate	the	state	of	the	order	quantity	relative	to	the	orders
goal	target	value:

=SWITCH(Sum(Fields!Internet_Order_Quantity.Value,	"FiscalInternetSales")

				/Parameters!InternetOrdersGoal.Value	<	.4,	"Red",

				Sum(Fields!Internet_Order_Quantity.Value,	"FiscalInternetSales")

				/Parameters!InternetOrdersGoal.Value	>=	.75,	"Teal",

				True,	"Orange")

Explore	the	same	properties	of	the	other	two	gauges.	In	a	similar	fashion,	they
apply	KPI	value	and	target	elements	to	set	the	pointer	value	and	scale	maximum
properties.

Interactive	Sparkline	and	Chart
This	addition	to	the	report	will	include	a	grouped	table	that	contains	an	embedded
sparkline.	You	will	also	add	a	separate	line	chart	to	the	report.	On	any	row
representing	the	summary	of	product	category	sales	for	a	year,	the	user	can	click	the
sparkline	or	row	label	to	see	a	detailed	view	of	the	same	data	in	the	chart.	Figure	14.10
shows	the	finished	report	in	design	view.

Figure	14.10	Sparkline	table	and	chart	in	the	report	designer.

1.	 Add	another	dataset	to	the	report	that	uses	the	AdventureWorksSSAS	shared	data
source.	Name	the	dataset	FiscalYearSales.

2.	 Use	the	query	designer	to	create	the	query	shown	in	Figure	14.11.

Figure	14.11	MDX	query	designer.

As	a	challenge,	now	that	you	have	had	some	practice	building	MDX	queries,	use
the	graphical	query	builder	and	drag	the	measure	and	dimension	members	to
assemble	this	query.	Switch	the	query	designer	to	text	mode	to	view	the	generated
MDX	script.

For	reference,	the	MDX	query	for	the	generated	query	should	be	similar	to	the
following	script.	(Line	breaks	and	indents	have	been	added	to	aid	readability.)	If
you	prefer,	you	can	switch	the	query	designer	to	text	mode	and	type	this	script:

SELECT

NON	EMPTY	{	[Measures].[Internet	Sales	Amount]	}	ON	COLUMNS,

NON	EMPTY

{

	(

		[Date].[Fiscal	Year].[Fiscal	Year].ALLMEMBERS

	*	[Product].[Category].[Category].ALLMEMBERS

	*	[Date].[Month	of	Year].[Month	of	Year].ALLMEMBERS)

}	DIMENSION	PROPERTIES	MEMBER_CAPTION,	MEMBER_UNIQUE_NAME	ON	ROWS

FROM

	(SELECT

	(STRTOSET(@ProductCategory,	CONSTRAINED))	ON	COLUMNS

		FROM	(SELECT	(STRTOSET(@DateFiscalYear,	CONSTRAINED))

		ON	COLUMNS

		FROM	[Adventure	Works

)

)

CELL

	PROPERTIES	VALUE,	BACK_COLOR,	FORE_COLOR,	FORMATTED_VALUE,

	FORMAT_STRING,	FONT_NAME,	FONT_SIZE,	FONT_FLAGS

3.	 Close	the	Dataset	Properties	dialog	when	completed.

4.	 Add	two	report	parameters	named	ChartFiscalYear	and	ChartCategory.	You	can
leave	all	the	default	properties	and	settings	for	the	parameters.	However,	check	the
“Allow	null	value”	box	on	the	General	page	for	each	parameter,	as	shown	in	Figure
14.12.

Figure	14.12	Parameter	properties.

5.	 Add	a	table	to	the	report	to	the	right	of	the	scorecard	table.

6.	 Click	the	table	to	show	the	grouping	pane	in	the	bottom	of	the	report	designer.

7.	 Drag	and	drop	the	Fiscal	Year	field	from	the	dataset	to	create	a	row	group.

8.	 Drag	and	drop	the	Category	field	from	the	dataset	in	the	Report	Data	pane	to
create	a	row	group	after	the	previous	group

9.	 In	the	Row	Groups	list,	right-click	the	(Details)	group	and	delete	it.

10.	 When	prompted,	choose	the	option	to	only	delete	the	group	and	not	the	associated
rows	and	columns.

11.	 Drag	and	drop	the	sparkline	to	the	blank	table	detail	cell.

12.	 When	prompted,	select	a	smooth	line	type	sparkline	(see	Figure	14.13)	and	click
OK.

Figure	14.13	Select	Sparkline	Type	dialog.

13.	 Click	the	sparkline	to	show	the	Chart	Data	window.

14.	 Add	the	Internet_Sales_Amount	to	define	the	series	value	for	the	sparkline.

15.	 Add	the	Month_of_Year	field	to	define	the	category	group,	as	shown	in	Figure	14.14.

Figure	14.14	Chart	Data	window.

16.	 Edit	the	category	group	expression	so	that	it	uses	the	Key	property	rather	than	the
Value	of	the	Month_of_Year	field.	You	need	to	use	the	Expression	Editor	to	make
this	change.	In	the	expression,	backspace	over	the	Value,	and	type	or	choose	Key
from	the	property	list.	Close	the	Expression	Editor	and	save	the	change.

The	Category	Group	Properties	dialog	should	look	similar	to	Figure	14.15.

Figure	14.15	Category	group	expression.

Next,	you	will	use	a	chart	to	show	the	same	values	as	one	of	the	selected
sparklines	in	detail.

17.	 Add	a	line	chart	next	to	the	table.

18.	 Use	the	same	category	group	and	series	value	as	the	sparkline.

19.	 Format	the	chart	to	your	liking.

20.	 Edit	the	chart	properties	and	add	the	two	filter	expressions	shown	in	Figure	14.16.
The	chart	is	filtered	to	restrict	records	matching	the	ChartFiscalYear	and
ChartCategory	parameters.

Figure	14.16	Chart	Properties	filter	expressions.

21.	 For	each	filter	expression,	use	the	Expression	drop-down	list	to	select	the	field.
Then	use	the	expression	builder	button	to	the	right	of	the	Value	box	to	open	the
expression	editor	and	build	an	expression	using	the	appropriate	parameter.	For
each	Value	expression,	close	the	editor	and	save	the	expression.

Do	the	following	to	create	the	report	action	used	to	pass	these	parameters	and
filter	the	chart:

22.	 Style	the	Category	textbox	using	blue	text	and	underline	to	resemble	a	hyperlink.
This	just	lets	the	user	know	that	it's	a	clickable	link.

23.	 Right-click	the	Category	textbox	to	the	left	of	the	sparkline.

24.	 Choose	Text	Box	Properties…	from	the	menu	to	show	the	Text	Box	Properties
dialog	shown	in	Figure	14.17.

Figure	14.17	Text	Box	Properties	Action	page.

25.	 Use	the	Actions	page	to	set	a	report	action.	Select	the	“Go	to	report”	radio	button.

26.	 Select	(or	type)	the	name	of	the	report	you	are	designing.	This	causes	the	same
report	to	be	executed	when	the	user	clicks	this	report	item.

27.	 Add	two	items	to	the	list	of	parameters	for	the	report	action.

28.	 Select	or	type	the	name	of	each	parameter.	Parameter	names	are	case-sensitive.
For	each	parameter,	select	the	corresponding	field,	as	shown	in	Figure	14.18.

Figure	14.18	Sparkline	table	and	chart	in	preview.

29.	 Test	and	make	sure	that	the	drill-through	action	works	as	expected.	Hover	the
mouse	pointer	over	the	category	name	until	the	pointer	changes	to	a	hyperlink
pointer.	When	you	click	the	series	line,	the	report	should	re-render,	showing	a
chart	with	data	that	matches	the	sparkline.

29.	 TIP

When	using	a	drill-through	action	for	the	same	report,	if	you	can	replace	the
report	name	with	an	expression	for	the	ReportName	built-in	field,
=Globals!ReportName,	the	action	will	continue	to	work	if	the	report	is
renamed.

30.	 Click	the	link	for	the	sparkline	or	text	for	the	year	and	category	you	want	to	see.

30.	 TIP

When	you	hover	the	mouse	pointer	over	the	sparkline	or	the	Category	text,	the
hyperlink	“finger”	pointer	is	displayed.	I	always	tell	my	students	that	the	web
browser	will	give	you	the	finger	if	it's	working.

The	report	should	re-render	and	display	a	filtered	chart.	The	chart	line	should
show	the	same	trend	as	the	sparkline,	with	the	added	axis	details.	If	you	click	a
different	row,	you	should	see	a	different	chart	trend	line	for	each.

31.	 Compare	your	report	with	the	completed	version	of	the	Internet	Sales	KPI
Dashboard	report.	Compare	the	properties	and	behavior	of	the	elements	you've
added	up	to	this	point	and	make	any	necessary	adjustments.

Thumbnail	Map	with	Drill-Through	Navigation
The	map	report	item	can	help	you	visualize	geographic	and	spatial	data.	A	map	may
get	its	data	from	an	external	file	(in	a	standard	format	such	as	TIGER/LINE	or	ESRI),
from	spatial	shapes	or	point	objects	stored	in	a	SQL	Server	database,	from	SQL	Server
functions	used	to	calculate	or	derive	geospatial	objects,	or	from	an	external	source
such	as	the	Bing	Maps	web	service.	A	single	map	may	be	assembled	from	data	and
metadata	obtained	from	any	combination	of	these	sources.

WARNING

The	Map	is	by	far	the	most	complicated	report	item	in	the	Reporting	Services
repertoire.	When	I	design	maps,	I	usually	find	it	necessary	to	cycle	through	the
Properties	windows	multiple	times	in	order	to	get	everything	working.	I
recommend	that	you	keep	a	working	map	report	on	hand	as	a	reference	guide	for
future	map	reports.

In	the	following	example,	you	will	add	a	map	report	item	to	the	dashboard	consisting
of	the	following	elements:

Geographic	boundaries	in	a	polygon	layer

Geographic	polygon	objects	colored	using	grouped	aggregate	values

Locations	stored	as	SQL	Server	geographic	points

A	tile	layer	showing	imagery	from	Bing	Maps

NOTE

You	need	to	have	an	Internet	connection	in	order	to	use	the	Bing	Maps	layer	in
this	report.	If	you	do	not,	it's	OK	but	the	map	will	display	an	error	in	the
background	until	you	are	connected.

1.	 Add	a	data	source	to	the	report	that	uses	the	WroxSSRS2016	shared	data	source.

2.	 Create	a	dataset	to	the	report	named	CustomerAddresses	using	the	following
query:

2.	 TIP

To	save	time,	you	can	copy	this	query	script	from	the	completed	sample	report
in	the	exercises	project.

WITH	CustOrderTotal

AS

(

			SELECT	CustomerID,

			SUM(SubTotal)	AS	OrderTotal

			FROM	OrderDetails

			GROUP	BY	CustomerID

)

SELECT	TOP(@TopCustomers)

			AccountNumber,

			CustomerName,

			Title,

			PersonType,

			AddressLine1,

			City,

			StateProvinceCode,

			PostalCode,

			CountryRegionCode,

			AddressType,

			SpatialLocation,

			o.OrderTotal

FROM

			CustomerLocations	c

			INNER	JOIN	CustOrderTotal	o	ON	c.CustomerID	=	o.CustomerID

WHERE				(@CountryRegionCode	IS	NULL)	OR

													(CountryRegionCode	IN	(@CountryRegionCode))

ORDER	BY	o.OrderTotal	DESC

;

3.	 Execute	the	query.	You'll	be	prompted	for	the	TopCustomers	and
CountryRegionCode	parameters.

4.	 Enter	1000	for	the	TopCustomers	and	US	for	CountryRegionCode.

5.	 Modify	the	two	new	report	parameters.	Set	defaults	using	the	values	in	the
previous	step.

6.	 Add	a	Map	report	item	in	the	upper-right	area	of	the	report	body.	The	New	Map
Layer	dialog	opens,	which	prompts	for	the	initial	properties.	You	will	build	most	of
this	report	using	the	designer	and	Properties	window.

7.	 In	the	first	page	of	the	New	Map	Layer	dialog,	leave	the	default	option	to	use	map
shape	data	from	the	map	gallery.

The	map	gallery	is	a	set	of	report	files	installed	with	the	product	that	include

maps	of	the	United	States	and	other	geographic	regions.	You	can	obtain	additional
map	shape	files	for	different	geographies	from	many	online	resources	and	fee-
based	services.

8.	 Use	the	USA	by	State	Inset	map	gallery	selection,	shown	in	Figure	14.19,	and	click
Next.

Figure	14.19	Choosing	a	map	from	the	Map	Gallery.

9.	 On	the	second	page,	check	“Crop	map	as	shown	above,”	and	reposition	and	zoom
the	map	to	show	the	continental	United	States.

10.	 Check	the	box	to	add	a	Bing	Maps	layer.

11.	 Click	Next.

12.	 This	adds	a	tile	layer	to	the	map	to	stream	live	map	imagery	from	the	Bing	Map
service	when	the	user	or	report	server	has	the	necessary	Internet	connectivity.
(This	depends	on	whether	the	report	is	viewed	in	the	designer	or	deployed	to	the
report	server.)

13.	 Accept	the	default,	Basic	Map,	and	click	Next.

14.	 Check	Single	color	map	for	the	theme,	and	then	click	Finish	to	complete	the
wizard.

15.	 In	the	report	designer,	click	to	select	and	then	delete	each	of	the	three	default
scales	and	legends	on	the	map.

16.	 Click	the	map	outside	of	the	state	shapes.	This	should	select	the	Map	Viewport
object	in	the	Properties	window.

17.	 Click	again	to	show	the	Map	Layers	window	to	the	right	of	the	view	port	designer,
as	shown	in	Figure	14.20.

Figure	14.20	Map	Layers	window.

18.	 Use	the	second	toolbar	drop-down	button	to	add	a	point	layer.

The	map	port	now	has	three	layers:

The	polygon	layer	is	used	to	display	geographic	shapes	that	the	map	wizard
imported	from	the	U.S.	map	gallery	file.	This	content	is	now	embedded	in	the
report	file.

The	tile	layer	visualizes	bitmap	content	from	the	Bing	Map	web	service	when	the
report	is	executed.

The	point	layer	is	used	to	plot	shapes	on	the	map	using	geospatial	coordinates
stored	in	the	database.

In	the	Map	Layers	window,	each	of	these	layers	can	be	shown	or	hidden	to	make	the
design	effort	easier.	To	focus	on	each	layer,	I	hide	the	other	layers	so	that	I	can	easily

see	the	results	of	my	work.	After	all	the	layers	are	designed,	I	make	them	all	visible
before	deploying	the	report.

Geographic	Shape	Colors
Polygon	shapes	typically	are	used	to	visualize	geographic	boundaries,	such	as	the	U.S.
states	in	our	example.	Each	polygon	is	bound	to	data	using	key/value	pairs.	Several
properties	may	be	used	to	visualize	data-bound	values	in	the	form	of	center	point
markers	that	may	be	sized,	colored,	or	labeled	to	express	relative	or	proportional
values.	You	will	use	the	background	color	of	each	state	to	show	the	relative	number	of
customers	in	that	state:

1.	 Choose	the	polygon	layer	in	the	Map	Layers	window.	Make	sure	you	have	the
polygon	layer	selected	by	checking	the	title	in	the	Properties	window.

2.	 In	the	Properties	window,	choose	the	CustomerAddresses	dataset	you	created
earlier	in	the	drop-down	list	for	the	DatasetName	property.

3.	 Select	the	Group	property,	and	then	click	the	ellipsis	button	(…)	to	open	the	Group
Properties	dialog.

4.	 Add	a	group	expression,	and	then	select	the	StateProvinceCode	field.	Close	the
Group	Properties	window	to	accept	the	changes.

5.	 Select	the	BindingFieldPairs	property,	and	click	the	ellipsis	to	open	the
MapBindingFieldPair	Collection	Editor,	shown	in	Figure	14.21.

Figure	14.21	MapBindingFieldPair	Editor	dialog.

6.	 Add	a	binding	field	collection	member.

7.	 For	the	FieldName	property,	select	the	STATEUSPS	polygon	identifier.

8.	 For	the	BindingExpression	property,	select	the	StateProvinceCode	dataset	field.

9.	 Compare	your	selections	to	Figure	14.21,	and	then	close	the	dialog	window	to
accept	the	changes.

Adding	Spatial	Point	Markers
You	can	use	a	lot	of	very	creative	features	with	point	markers	using	the	many
properties	organized	into	various	groups.	However,	the	appropriate	choice	of
properties	may	not	seem	very	intuitive	until	you've	had	a	chance	to	work	with	these
features	for	a	while.	It's	easy	to	get	lost	and	spend	hours	on	trial-and-error	design,
trying	to	find	the	right	property	settings.

NOTE

The	CustomerLocation	table	in	the	sample	database	stores	the	customer	location
as	a	SQL	Server	spatial	point	data	type.	The	map	will	use	this	value	to	plot	a
marker	in	the	point	layer	for	each	customer	location.

If	you	want	the	marker	shape,	size,	or	color	to	be	consistent	for	all	points,	use	the
properties	in	the	PointTemplate	group.	If	you	want	to	vary	the	shape,	size,	or	color
based	on	different	values,	use	the	corresponding	properties	in	each	subgroup	under
the	PointRules	group.	Use	ColorRule	to	apply	color	ranges	and	stock	or	custom	color
palettes,	MarkerRule	to	change	the	shapes	of	markers	(which	can	include	using	custom
graphics	and	icons),	and	SizeRule	to	vary	the	marker	sizes	based	on	data	values.	These
properties	are	disabled	by	default;	you	will	leave	them	that	way	for	this	exercise:

1.	 Return	to	design	view,	and	select	the	map	to	view	the	Map	Data	window	as	you	did
before.

2.	 Select	the	point	layer,	and	view	the	Properties	window.

3.	 Set	the	DataSetName	property,	using	the	drop-down	list,	to	the	name	of	the	dataset
you	created	earlier.

4.	 Expand	the	SpatialData	group,	change	the	(Type)	to	Dataset,	and	select	the
CustomerAddresses	dataset	you	created	earlier	from	the	DataSetName	property	drop-
down	list.

5.	 For	the	SpatialField	property,	choose	the	SpatialLocation	field.	This	field	in	the
database	contains	a	geospatial	point	value	that	the	map	view	port	can	use	to	plot	a
point	on	the	map.

6.	 Select	the	BindingFieldPairs	property	and	click	the	ellipsis	to	open	the
MapBindingFieldPair	Collection	Editor.

7.	 If	a	binding	pair	member	exists	in	the	Members	list,	edit	it.	Otherwise,	click	Add.

8.	 Set	the	FieldName	property	to	AccountNumber.

9.	 For	the	BindingExpression	property,	use	the	drop-down	list	to	select	=
Fields!AccuntNumber.Value.

10.	 Close	the	editor	dialog.

11.	 Expand	the	PointRules	property	group.

12.	 Expand	the	ColorRule	group.

13.	 Set	(Enabled)	to	True.

14.	 Set	(Type)	to	Custom.

15.	 Use	the	(CustomColors)	collection	to	add	a	single	color.	Click	the	ellipsis	to	add
Lime	to	the	MapColor	collection.

16.	 Expand	the	MarkerRule	group,	and	select	the	Markers	collection	property.

17.	 Enable	the	MarkerRule.

18.	 Click	the	ellipsis	to	open	the	Marker	Collection	dialog.

19.	 Remove	all	the	default	marker	shapes,	but	leave	a	single	diamond	marker	in	the
collection.	Then	close	and	accept	the	changes.

20.	 Use	the	PointTemplate	properties	group	to	set	the	marker's	Size	to	8pt.

21.	 Select	the	ToolTip	property,	and	then	use	the	Expression	Builder	to	concatenate	a
list	of	fields	to	be	displayed	in	the	tooltip	for	each	marker,	which	represents	a
customer's	location.	For	example,	I've	added	the	following	expression:

=Fields!CustomerName.Value	&	vbCrLf

&	vbCrLf	&	Fields!AddressLine1.Value

&	vbCrLf	&	Fields!City.Value	&	",	"	&	Fields!StateProvinceCode.Value

Again,	you	can	use	several	properties	to	make	visual	adjustments;	this	can	be
time-consuming.	When	you	have	a	working	baseline	map	report,	you	can	return
to	the	designer	and	experiment	with	these	properties.

22.	 Preview	the	report.	You	should	see	a	working	map	report	with	colored	and	labeled
states,	and	lime	green	diamond	markers	showing	the	location	of	the	top	1,000
customers	by	default.

22.	 NOTE

Mapping	many	data	points	can	be	time-consuming	so	be	as	conservative	as
possible.	On	my	system,	it	takes	about	seven	seconds	to	plot	the	top	1,000
customer	locations	and	over	a	minute	for	all	18,000	customers.

Entering	a	larger	value	for	the	TopCustomers	parameter	will	show	more	customer
locations	on	the	map	but	will	take	longer	to	render.

NOTE

As	I	mentioned,	because	of	the	intricacies	of	the	map	report	item,	it	is	not
uncommon	to	miss	a	step	or	property	setting	on	the	first	pass	through	your
design.	Use	the	finished	sample	report	for	comparison	if	you	run	into	any	issues.

I've	provided	a	larger	version	of	this	map	in	a	standalone	report	named
Customer	US	Map.	In	the	completed	Internet	Sales	KPI	Dashboard	report,
clicking	the	title	of	the	thumbnail	report	invokes	a	report	action	that	navigates	to
the	larger	map	report.

SUMMARY
Congratulations;	you	finished	the	extended	tour	of	advanced	report	design	solution
patterns.	You	may	not	use	every	one	of	these	designs	in	your	professional	reports	to
meet	the	immediate	needs	of	your	business.	However,	I	bet	you	will	find	similar
applications	allowing	you	to	apply	the	same	or	similar	techniques.

We	started	with	a	high-level	discussion	of	report	solution	requirement	gathering;	you
learned	that	report	design	solutions	are	successful	when	you	can	clearly	define	the
scope	and	purpose	of	a	request.	Reports	are	best	designed	from	a	detailed,	written
specification	from	the	business	owner.	We	designed	a	reporting	solution	in	phases
including	planning,	design,	implementation,	testing,	and	validation.	Advanced	reports
should	be	deployed	to	a	test	server	for	inspection	and	testing	before	they	are	migrated
to	production	servers	for	the	entire	business	to	use.

This	chapter	has	given	you	some	valuable	tools	that	you	can	take	with	you	to	help	you
create	the	right	report	solutions	for	your	business	and	users.	Download	and	use	the
samples	to	practice	these	techniques	and	then	go	out	and	solve	some	tough	data
problems	with	high-value	report	designs.

PART	V
Reporting	Services	Custom	Programming
The	chapters	in	this	part	of	the	book	are	for	the	application	and	solution	developer.
These	two	chapters	demonstrate	how	to	integrate	Reporting	Services	into	custom
applications	using	programming	code,	web	services,	and	APIs.	Chapter	16	shows	you
how	Reporting	Services	can	be	enhanced	using	custom	data	access,	security,	delivery,
and	rendering	extensions.

CHAPTER	15:	Integrating	Reports	into	Custom	Applications

CHAPTER	16:	Extending	Reporting	Services

Chapter	15
Integrating	Reports	into	Custom	Applications

WHAT'S	IN	THIS	CHAPTER?

Leveraging	URL	access	and	web	services	to	render	reports

Building	a	custom	Windows	Forms	application	to	enter	parameters	and	render
reports

Integrating	report	viewer	controls	in	Windows	and	Web	Forms	applications

Rendering	reports	from	within	your	web	applications	as	HTML	or	as	other
downloadable	formats	such	as	PDF

Creating	custom	parameter	input	interfaces	for	Reporting	Services

This	chapter	is	relatively	unchanged	from	the	previous	edition	of	the	book.	The
application	integration	capabilities	of	Reporting	Services	have	not	changed
significantly	in	SQL	Server	2016.

Reporting	Services	was	designed	to	be	a	flexible	reporting	technology	that	can	be
easily	integrated	into	a	variety	of	scenarios.	Many	reporting	needs	will	never	expand
beyond	the	out-of-the-box	functionality	provided	by	Reporting	Services.	However,	if
the	requirement	arises,	Reporting	Services	includes	endless	opportunities	for
integration	with	custom-built	applications,	as	well	as	SharePoint.

Within	a	SharePoint	portal,	Reporting	Services	leverages	the	framework	to	deliver
reports	via	Report	Libraries.	However,	many	organizations	maintain	a	custom
corporate	reporting	portal	instead	of	SharePoint.	In	these	situations,	developers	might
need	a	way	to	display	numerous	reports	in	a	web	environment.	Reporting	Services	can
also	be	embedded	into	line-of-business	applications.	Developers	might	want	to	use
Reporting	Services	to	create	invoices	or	purchase	orders	directly	from	their
applications.	Some	organizations	may	decide	that	the	default	Web	Portal	is	not	robust
enough	for	their	needs.	In	this	situation,	a	custom	reporting	management	application
can	be	built	that	replaces	and	expands	on	the	functionality	of	the	out-of-the-box	Web
Portal.

All	these	issues	can	be	solved	with	the	features	available	in	Reporting	Services.	This
chapter	looks	at	the	following	three	methods	of	rendering	reports	from	Reporting
Services:

Using	URLs	to	access	reports	via	HTTP

Using	the	Reporting	Services	web	service	to	programmatically	render	reports

Using	the	ReportViewer	controls	to	embed	reports

URL	access	allows	you	to	quickly	incorporate	Reporting	Services	reports	in	custom
applications	such	as	websites	and	portals,	and	even	Windows	applications.
Programmatic	rendering	lets	you	create	custom	interfaces.	Developers	can	do

anything	from	implementing	their	own	security	architecture	around	Reporting
Services	to	creating	their	own	input	parameter	interface.	The	code	samples	and
exercises	in	this	chapter	are	designed	for	an	intermediate	or	skilled	developer	and	will
not	go	into	the	details	of	how	to	create	and	set	up	projects	within	Visual	Studio.

NOTE

The	programming	examples	included	in	this	chapter	are	sufficient	for	a
developer	with	moderate	.NET	programming	skills	to	follow	along	and	re-create
a	working	solution	with	the	provided	sample	reports	and	databases.	Unlike
exercises	in	earlier	chapters,	I	have	not	included	detailed	step-by-step
instructions	for	every	required	task.	If	you	get	stuck	or	need	help,	please	review
the	completed	sample	projects.

In	this	chapter,	you	learn	about	the	following:

The	syntax	and	structure	for	accessing	Reporting	Services	through	the	URL

The	reporting	items	that	can	be	accessed	through	the	URL

The	parameter	options	that	can	be	passed	to	the	URL	to	control	report	output

Creating	a	Windows	application	that	renders	reports	to	the	filesystem

Creating	a	web	application	that	returns	rendered	reports	to	the	browser

Easily	embedding	reports	in	a	Windows	application	using	controls

URL	ACCESS
Reporting	Services'	primary	means	of	accessing	reports	is	through	HTTP	requests.
These	requests	can	be	made	through	URLs	in	a	web	browser	or	a	custom	application.
By	passing	parameters	in	the	URL,	you	can	specify	the	report	item,	set	the	output
format,	and	perform	various	other	tasks.	In	the	next	few	sections,	you	look	at	the
features	available	through	URL	requests,	URL	syntax,	passing	parameters,	and	setting
the	output	format.

URL	Syntax
The	basic	URL	syntax	is	as	follows:

protocol://server/virtualroot?[/pathinfo]&prefix:param=value

[&prefix:param=value]…n]

The	parameters	in	the	syntax	are	as	follows:

Protocol	specifies	the	URL's	protocol,	such	as	HTTP	or	HTTPS	(if	an	SSL
certificate	is	applied	to	the	report	server).

Server	specifies	the	name	of	the	Report	Server	you	want	to	access.	This	can	also
include	a	fully	qualified	domain	name.	To	access	your	local	machine,	you	can
either	type	the	machine	name	or	use	the	localhost	alias.

Virtualroot	specifies	the	IIS	virtual	directory	you	specified	during	setup.	When
installing	Reporting	Services,	you	must	enter	two	virtual	directories:	one	for	the
Web	Portal	and	one	for	the	Report	Server	(for	URL	and	web	services).	By	default,
the	virtual	directory	you	would	access	is	reportserver.

Pathinfo	specifies	the	full	path	to	the	item	you	want	to	access	within	the	Report
Server	database.	To	access	the	root	of	the	Report	Server,	you	can	simply	place	a
single	forward	slash	(/).

After	you	have	listed	the	path,	you	can	pass	various	parameters.	These	parameters
depend	on	the	type	of	object	you	are	referencing.	Reports	have	a	number	of
parameters	to	specify	properties	such	as	the	rendering	format.	Each	parameter	is
separated	by	an	ampersand	(&)	and	contains	a	name=value	pair	for	the	parameter.

You	can	retrieve	the	list	of	items	under	the	Professional	SQL	Reporting	Services	folder
using	this	URL:

http://localhost/reportserver?/Wrox	SSRS	2016	Samples&rs:Command=ListChildren

NOTE

Note	that	some	of	the	examples	in	this	chapter	take	up	two	lines	simply	because
they	are	too	long	to	fit	on	one	line.

Now	that	you're	familiar	with	the	basic	URL	syntax,	let's	see	how	it	is	implemented	in
each	of	the	Reporting	Services	objects.

Accessing	Reporting	Services	Objects
URL	requests	are	not	limited	to	reports.	You	can	access	various	Reporting	Services
items,	including:

Folders

Data	sources

Resources	(such	as	images)

Reports

The	following	sections	describe	accessing	each	of	these	items.	You	go	through	sample
URLs	and	look	at	items	provided	in	the	sample	databases	and	reports	that	accompany
this	book.

Folders
Accessing	folders	will	be	your	starting	point	for	looking	at	URL	requests.	Here	is	the
simplest	URL	request	you	can	make:

http://localhost/reports

That	URL	is	redirected	to	the	Favorites	page	in	Web	Portal.	With	this	request,	you	can
see	a	listing	of	all	reports,	data	sources,	resources,	and	folders	in	the	root	directory	of
the	Report	Server,	as	shown	in	Figure	15.1.	To	access	another	server,	simply	replace
localhost	with	the	server's	name.

Figure	15.1	Web	Portal	Favorites	page.

To	see	how	folder	URL	requests	work,	simply	enter	the	Report	Server's	URL:

http://localhost/reportserver

A	list	of	directories	hosted	by	the	Report	server	is	displayed.	Clicking	the	Wrox	SSRS
2016	Samples	folder	link	gives	you	the	following	URL,	as	shown	in	Figure	15.2:

Figure	15.2	Report	server	page.

http://localhost/reportserver?/Wrox	SSRS	2016	Samples&rs:Command=ListChildren

This	URL	contains	the	following	items:

Path	to	the	report—/Wrox	SSRS	2016	Samples	(the	browser	escapes	the	URL
accordingly)

Command	to	list	the	directory's	contents—rs:Command=ListChildren

You	take	a	closer	look	at	the	URL	parameters	in	the	section	“Reporting	Services	URL
Parameters.”

Data	Sources
Through	URL	requests,	you	can	also	view	the	contents	of	data	sources.	Let	us	examine
the	Data	Sources	folder	inside	the	Sample	Reports	folder.	You	can	access	the	Data
Sources	folder	by	either	clicking	it	from	the	parent	folder	or	entering	the	following
URL:

http://localhost/reportserver?/Data	Sources&rs:Command=ListChildren

You	see	the	listing	of	items,	as	shown	in	Figure	15.3.

Figure	15.3	Data	Sources	folder.

If	you	have	deployed	the	sample	reports,	you	will	notice	one	of	the	items	listed	is
WroxSSRS2016.	You	can	tell	that	this	item	is	a	data	source	by	the	<ds>	tag	next	to	the
item	name.	If	you	follow	the	WroxSSRS2016	link,	you	can	view	the	contents	of	that
data	source.	Figure	15.4	shows	the	data	source	contents.

Figure	15.4	Data	source	contents.

Here's	the	URL	used	to	view	the	WroxSSRS2016	data	source:

http://localhost/reportserver?/Data	Sources/

WroxSSRS2016&rs:Command=GetDataSourceContents

This	URL	contains	the	following	items:

Path	to	the	data	source—/Data	Sources/	WroxSSRS2016

Command	to	view	the	data	source	content
—rs:Command=GetDataSourceContents

Viewing	the	data	source	enables	you	to	quickly	see	how	your	data	source	is
configured.	Notice	that	this	information	is	returned	in	XML	format,	making	it	easy	to
work	with.	If	you	have	your	own	reporting	application	that	shares	a	single	connection,
you	could	use	this	URL	to	dynamically	load	this	data	source	information.	This
information	could	then	be	used	to	make	other	database	connections	in	your
application.

Resources
Resources	are	items	used	within	your	reports,	such	as	images	or	additional	resources
that	have	been	added	to	a	Report	server	folder,	such	as	Word	and	Excel	documents.
You	can	use	URLs	to	access	resources	stored	on	the	Report	server.	Depending	on	the
type	of	resources	you	reference,	either	you	will	be	prompted	to	open	or	save	a	file,
such	as	a	Word	or	Excel	document,	or	the	resource	will	be	rendered	directly	in	the

browser.	The	GetResourceContents	command	can	be	used	in	the	URL	to	reference	the
resource.	For	example,	if	an	image	is	stored	in	a	directory	called	Images,	the	URL	to
the	directory	and	the	command	GetResourceContents	can	be	used	to	reference	that
resource:

http://localhost/Reportserver?/Images/

MyImage.jpg&rs:Command=GetResourceContents

The	URL	contains	the	following	contents:

Path	to	the	resource—/Images/MyImage.jpg

Command	to	retrieve	the	resource	content
—rs:Command=GetResourceContents

You	can	use	this	information	in	other	applications.	If	you	want	to	reference	the	image
from	a	web	page,	you	could	simply	set	the	src	attribute	of	an	image	tag	()	to
reference	the	earlier	URL.

Resources	can	also	be	incredibly	handy	for	storing	documents.	In	your	reporting
solution,	you	might	want	to	store	readme	files	to	accompany	your	reports.	You	can
store	these	documents	as	resources	on	the	Report	server	and	then	apply	different
properties	to	them,	such	as	security.	Your	application	could	then	point	to	the	resource
URL	to	allow	downloading	of	the	document.	Keep	in	mind,	however,	that	these
resources	are	stored	in	the	Report	server	database	along	with	the	report	definitions.
As	such,	you	should	carefully	plan	for	storage	if	you	intend	to	store	several	large	files,
or	use	an	external	server	to	serve	up	such	resources.

Reports
The	most	important	objects	you	can	access	through	the	URL	are	your	reports.	This
section	covers	the	syntax	for	accessing	reports.	The	next	section	discusses	the	various
parameters	you	can	pass	to	change	things	such	as	report	parameters,	output	formats,
and	other	items.

The	basic	syntax	for	accessing	a	report	is	very	similar	to	accessing	all	your	other
resources.	You	should	first	specify	a	path	to	the	report	and	then	provide	the
commands	for	its	output.	Here's	the	basic	URL	for	accessing	the	Internet	Sales	KPI
Dashboard	report:

http://localhost/ReportServer?/Wrox	SSRS	2016	Samples/

Internet	Sales	KPI	Dashboard&rs:Command=Render

View	the	Internet	Sales	Dashboard	report,	as	shown	in	Figure	15.5.

Figure	15.5	Sales	Dashboard	report.

The	URL	contains	the	following	contents:

Path	to	the	resource—/Wrox	SSRS	2016	Samples/	Internet	Sales	KPI
Dashboard

Command	to	retrieve	the	resource	content—rs:Command=Render

You	will	also	notice	that	the	link	URL	changes	to	a	ReportViewer.aspx	page	via
redirection	(notice	the	browser	address	bar	in	Figure	15.5)	when	requesting	a	report.
The	report	server	takes	the	user	to	a	page	that	has	a	report	viewer	configured	for	the
requested	report.

Using	URLs	is	the	easiest	and	most	convenient	way	to	embed	Reporting	Services
reports	into	custom	applications.	A	custom	application	can	point	to	the	desired	report
either	by	creating	a	simple	hyperlink	or	by	using	an	HTML	rendering	object	such	as
the	WebBrowser	component	to	render	the	report	within	a	Windows	client	application.	A
special	Windows	Forms	control	designed	for	viewing	reports	is	covered	in	the	section
“Programmatic	Rendering.”

The	following	section	looks	at	the	parameters	that	can	be	passed	through	the	URL,
including	setting	report	parameters	and	output	format.

Reporting	Services	URL	Parameters
Now	that	you	have	seen	the	basics	of	obtaining	items	from	your	Report	server	using
URLs,	let's	take	a	look	at	passing	some	parameters.	The	next	few	sections	move
through	how	parameters	are	passed	to	Reporting	Services	and	what	values	are

available	for	these	parameters.	The	majority	of	the	parameter	functionality	focuses	on
report	rendering,	but	some	items	also	apply	to	your	data	source,	resources,	and	folder.

Parameter	Prefixes
The	first	thing	you	need	to	consider	is	the	different	parameter	prefixes	in	Reporting
Services.	Reporting	Services	has	five	main	parameter	prefixes:	rs,	rc,	rv,	dsp,	and	dsu.
The	following	sections	describe	these	prefixes	in	detail.

rs	Prefix
In	the	earlier	examples,	you	saw	the	parameter	rs:Command,	which	contains	the	prefix
rs.	The	rs	prefix	is	used	to	send	commands	to	the	Report	server.	The	following	URL
shows	an	example	of	the	rs	prefix	being	used	to	call	the	Command	parameter	and	pass
the	ListChildren	argument	to	it:

http://localhost/reportserver?/Wrox	SSRS	2016	Samples&rs:Command=ListChildren

rc	Prefix
The	second	main	parameter	prefix	in	Reporting	Services	is	rc.	It	provides	device-
information	settings	based	on	the	report's	output	format.	For	example,	if	you	are
outputting	your	report	as	HTML,	you	can	control	the	HTML	Viewer.	You	can	use	this
prefix	to	pass	parameters	that	do	things	such	as	hide	toolbars	or	control	the	initial
state	of	toggle	items.	The	following	URL	calls	the	Employee	Sales	Summary	report
and	turns	off	the	parameter	inputs:

http://localhost/ReportServer?/Wrox	SSRS	2016	Samples/

Internet	Sales	KPI	Dashboard&rs:Command=Render&rc:Parameters=False

rv	Prefix
The	rv	prefix	was	introduced	with	SQL	Server	2008.	It	is	used	to	pass	parameters	to
reports	that	are	stored	in	a	SharePoint	document	library.	In	such	a	library,	a
SharePoint	Report	Viewer	Web	Part	is	used	to	display	a	report,	so	the	rv	prefix	should
be	used	for	these	reports.

dsu	and	dsp	Prefixes
Parameter	prefixes	can	also	be	used	to	send	database	credentials.	Use	the	dsu	prefix	to
pass	the	data	source	username,	and	use	the	dsp	prefix	to	pass	the	data	source
password.	In	any	Reporting	Services	report,	you	can	incorporate	multiple	data	sources.
So,	you	need	a	way	to	specify	which	data	source	the	credentials	should	be	passed	to.
That's	where	the	prefixes	come	in.	The	full	syntax	to	use	these	prefixes	is	as	follows:

[dsu	|	dsp]:datasourcename=value

For	example,	to	pass	the	username	guest	with	a	password	guestPass	to	your
WroxSSRS2016	data	source,	you	would	use	the	following	URL	parameters:

&dsu:WroxSSRS2016=guest&dsp:WroxSSRS2016=guestPass

Be	aware	that	these	credentials	are	submitted	as	clear	text	over	HTTP.	You	can	encrypt
the	HTTP	Request	(which	contains	the	URL	parameters)	using	a	Secure	Sockets	Layer
(SSL)	certificate	on	your	web	server	and	making	the	URL	request	over	HTTPS.	This
prevents	the	information	from	being	sent	unencrypted,	but	it	does	not	prevent	the	end
user	from	viewing	the	credentials	you	pass.	Make	sure	that	you	consider	these	factors
in	your	reporting	solution	architecture.

Now	that	you	have	seen	the	different	parameter	prefixes	in	Reporting	Services,	we'll
move	on	to	the	available	parameters	that	can	be	used	with	the	rv,	rs,	and	rc	prefixes.

Parameters
First,	let's	examine	the	new	SharePoint	endpoint	parameter	that	can	be	used	with
reports	that	are	hosted	in	a	SharePoint	Integrated	mode	Report	server	configuration.
This	chapter	does	not	go	into	detail	about	SharePoint	integration,	but	let's	look	at	the
parameters	that	can	be	used	with	the	rv	prefix.	Table	15.1	describes	the	four	available
values.

Table	15.1	SharePoint	“rv”	URL	Parameters

PARAMETER DESCRIPTION

Toolbar Modifies	the	toolbar	display	of	the	SharePoint	Report	Viewer	Web
Part.	The	default	value,	Full,	displays	the	entire	toolbar.	The
Navigation	value	displays	only	the	page	navigation	in	the	toolbar.
The	None	value	removes	the	toolbar.

HeaderArea Modifies	the	header	area	of	the	SharePoint	Report	Viewer	Web
Part.	The	default	value,	Full,	displays	the	complete	header.	The
BreadCrumbsOnly	value	displays	only	bread	crumbs	in	the	header.	A
value	of	None	removes	the	header	from	view.

DocMapAreaWidth Displays	the	width	of	the	parameter	area	of	the	SharePoint	Report
Viewer	Web	Part.	The	value	should	be	a	nonnegative	number	and
defined	in	pixels.

AsyncRender Tells	the	SharePoint	Report	Viewer	Web	Part	whether	to	render	the
report	asynchronously.	The	value	must	be	a	Boolean	flag	of	True	or
False,	with	True	meaning	that	the	report	will	render
asynchronously.	If	this	parameter	is	not	specified,	the	default	value
of	True	is	used.

Now	that	you	have	seen	the	different	rv	parameters,	let's	examine	the	rs	parameters.
Table	15.2	describes	the	four	available	values.

Table	15.2	Web	service	“rs”	URL	Parameters

PARAMETER DESCRIBES

Command Sends	instructions	to	the	Report	server	about	the	item	being
retrieved.	Available	values	return	the	report	item	and	set	session
time-out	values.

Format Specifies	the	target	output	format	when	rendering	reports.	Any
rendering	format	available	on	the	Report	server	can	be	passed
using	this	parameter.

ParameterLanguage Passes	a	language	in	the	URL	that	is	different	from	the	language
specified	in	the	browser.	If	this	parameter	is	not	specified,	the
default	is	to	use	the	browser	culture	value.

Snapshot Retrieves	historical	report	snapshots.	Once	a	report	has	been
stored	in	snapshot	history,	it	is	assigned	a	time/date	stamp	to
uniquely	identify	it.	Passing	this	time/date	stamp	returns	the
appropriate	report	snapshot.

Now	that	you	have	seen	the	different	rs	parameters,	let's	take	a	look	at	some	of	their
available	values.

Command	Parameter
The	Command	parameter	is	the	main	parameter	with	which	you	set	the	output	of	a	given
report	item.	It	can	also	be	used	to	reset	a	user's	session	information,	which	guarantees
that	a	report	is	not	rendered	from	the	session	cache.	Table	15.3	describes	the	possible
values	that	can	be	passed	to	the	Command	parameter.

Table	15.3	Command	Parameter	Values

VALUE DESCRIPTION

GetComponent

Definition

Returns	a	published	report	item's	XML	definition.	You	must
have	Read	Contents	permission	on	the	report	item	to	use	this
command	value.

GetDataSource

Contents

Returns	data	source	information	in	an	XML	format.	You	use
this	parameter	on	shared	data	sources.

GetResourceContents Returns	the	binary	of	your	Reporting	Services	resources,	such
as	images,	via	the	URL.

GetSharedDataset

Definition

Returns	shared	dataset	information	in	an	XML	format.	You
must	have	Read	Report	Definition	permission	on	the	shared
dataset	to	use	this	command	value.

ListChildren Used	in	combination	with	a	Reporting	Services	folder.	This	lets
you	view	all	the	items	in	a	given	folder.

Render Allows	you	to	render	the	report	using	the	URL.	Probably	the
most	frequently	used	command.

ResetSessionTimeout Can	be	used	to	refresh	a	user's	session	cache.	Because
Reporting	Services	typically	works	via	HTTP,	it	is	crucial	for	the

server	to	maintain	state	information	about	the	user.	However,
if	you	want	to	ensure	that	a	report	is	executed	each	time	the
user	views	a	report,	this	state	information	needs	to	be
refreshed.	Use	this	parameter	to	reset	the	user's	session	and
remove	any	session	cache	information.

Format	Parameter
The	Format	parameter	is	the	main	parameter	for	controlling	the	report	output.	The
available	values	for	this	parameter	are	determined	by	the	different	rendering
extensions	installed	on	your	Report	server.	Table	15.4	shows	the	output	formats
available	with	the	default	installation	of	Reporting	Services.

Table	15.4	Rendering	Format	Parameters

VALUE OUTPUT

Web	Formats

HTML4.0 HTML	version	4.0.	This	format	is	supported	by	older	browsers,	such	as
Internet	Explorer	4.0	and	above.

HTML5 HTML	version	5.	This	format	is	supported	by	newer	“modern”
browsers,	such	as	Internet	Explorer	10	and	newer,	Windows	Edge,
Google	Chrome,	and	Apple	Safari.

MHTML MHTML	standard	output.	This	output	format	is	used	to	send	HTML
documents	in	e-mail.	Using	this	format	embeds	all	resources,	such	as
images,	into	the	MHTML	document	instead	of	referencing	external
URLs.

Print	Formats

IMAGE Allows	you	to	render	your	reports	to	several	different	graphical	device
interfaces	(GDIs),	such	as	BMP,	PNG,	GIF,	and	TIFF.

PDF Portable	Document	Format	(PDF)	can	be	used	to	view	and	print
documents.

Data	Formats

WORD Word	output.	Users	can	use	this	format	to	output	a	report	into	a
standard	Microsoft	Word	document	format.

EXCEL Excel	output.	Users	can	use	this	format	to	output	a	report	into	a
standard	Microsoft	Excel	document	format,	version	2003	and	prior.

EXCELOPENXML New	Open	XML	Excel	output.	Users	can	use	this	format	to	output	a
report	into	a	standard	Microsoft	Excel	document	format,	version	2007
and	after.

PPTX PowerPoint	output.	Users	can	use	this	format	to	output	a	report	into	a
standard	Microsoft	PowerPoint	document	format.

CSV

Comma-separated	value	(CSV)	format.	CSV	is	a	standard	data	format
that	can	be	read	by	a	wide	variety	of	applications.

XML eXtensible	Markup	Language	(XML)	format.	XML	has	become	a
standard	data	format,	used	by	many	different	applications.

Control	Format

NULL The	NULL	provider	allows	you	to	execute	reports	without	rendering.
This	can	be	useful	when	you	work	with	reports	that	have	cached
instances.	You	can	use	the	NULL	format	to	execute	the	report	for	the
first	time	and	then	store	the	cached	instance.

When	you	set	the	rendering	formats	via	the	URL,	either	the	report	is	rendered	directly
in	the	browser,	or	you	are	prompted	to	save	the	output	file.	Let's	take	a	look	at
rendering	the	Internet	Sales	KPI	Dashboard	report	in	PDF	format.	Enter	the	following
URL	using	the	rs:Format=PDF	parameter:

http://localhost/ReportServer?/Wrox	SSRS	2016	Samples/

Internet	Sales	KPI	Dashboard&rs:Command=Render&rs:Format=PDF

Figure	15.6	shows	the	output.

Figure	15.6	Internet	Sales	KPI	Dashboard.

Note	that	the	browser	prompts	you	to	save/open	the	rendered	report	PDF.	You	can
easily	incorporate	this	into	your	own	custom	applications	or	portals.	You	can	simply
give	your	users	a	link	containing	the	rs:Format	parameter	and	automatically	output
the	correct	format.

Setting	Device	Information
Now	that	you	have	seen	the	various	output	formats	available	in	Reporting	Services,
you	need	to	see	the	different	device	information	settings	for	the	various	formats.	The
Format	parameter	enables	you	to	specify	the	type	of	format	you	want,	but	each	format
has	specific	settings	that	can	be	useful	to	you.	For	example,	if	you	specify	the	IMAGE
format,	you	get	an	output	in	TIFF.	What	if	you	wanted	a	bitmap	or	JPEG	image?	To
output	in	a	different	image	format,	you	just	specify	device	information	when	passing
the	URL.	You	can	output	the	Internet	Sales	KPI	Dashboard	report	in	JPEG	format
using	the	following	URL:

http://localhost/ReportServer?/	Wrox	SSRS	2016	Samples/

Internet	Sales	KPI	Dashboard&rs:Command=Render&

rs:Format=IMAGE&rc:OutputFormat=JPEG

Notice	that	the	file	type	sent	back	to	you	is	a	JPEG	image.	You	can	use	numerous
device	information	settings	for	each	of	the	rendering	extensions.	Each	device
information	setting	is	prefixed	using	rc.	The	following	syntax	can	be	used	to	pass
device	information:

http://server/virtualroot?/pathinfo&rs:Format=format&rc:param=value

[&rc:param=value…n]

Now	that	you	have	seen	the	different	output	formats	and	commands	you	can	pass	to
Reporting	Services,	let's	discuss	passing	information	to	your	individual	reports.

Passing	Report	Information	Through	the	URL
The	previous	sections	illustrated	how	a	URL	can	be	used	to	control	report	rendering.
This	section	describes	how	a	URL	can	be	used	to	control	report	execution.	It	first
explains	how	to	pass	report	parameters.	These	are	the	parameters	that	you	define
while	authoring	your	report.	Then	you	see	how	historical	snapshots	of	reports	can	be
rendered	using	the	URL.

Report	Parameters
Many	of	your	reports	have	parameters	to	control	all	kinds	of	behavior.	You	can	use
parameters	to	alter	your	query,	filter	and	group	datasets	and	tables,	and	even	change
the	appearance	of	your	reports.	In	some	cases	(although	it	isn't	recommended),
parameters	can	be	used	to	insert	data	into	SQL	tables	via	the	executing	query.
Reporting	Services	allows	you	to	pass	this	information	directly	via	a	URL	request.	In
the	previous	section,	you	read	about	the	parameter	prefixes	and	the	available	values
that	can	be	sent	to	Reporting	Services.	With	report	parameters,	you	simply	need	to

remove	the	prefix	and	call	the	parameter	name	directly.

TIP

The	Internet	Sales	KPI	Dashboard	report	has	eight	parameters	so	any
parameters	that	are	not	explicitly	passed	to	the	report	will	have	default	values.

In	this	example,	we	pass	two	parameters	to	the	Internet	Sales	KPI	Dashboard	report.
In	a	custom	solution,	you	could	allow	your	users	to	update	these	parameters	through
a	custom	interface	that	you	define.	When	you	call	the	report,	you	need	to	provide	the
parameter	values	in	the	URL,	as	shown	here:

http://localhost/ReportServer?/Wrox	SSRS	2016	Samples/

Internet	Sales	KPI	Dashboard

		&rs:Command=Render

		&InternetOrdersGoal=60000

		&RevenueGoal=59000000

TIP

Make	sure	that	you	remove	spaces	from	the	example	I	have	provided	on	multiple
lines	for	readability.	The	URL	should	contain	no	returns	or	spaces.

Notice	that	when	the	parameters	in	your	URL	are	passed,	the	HTML	Viewer	updates
to	reflect	the	values,	which	you	can	see	in	Figure	15.7.	The	parameter	name	you	use	in
the	URL	is	defined	in	the	report	definition	as	the	parameter	Value	rather	than	the
Label.

Figure	15.7	Dashboard	report	with	parameters.

Although	you	can	use	URL	access	to	submit	multi-value	parameters	to	your	report,
there	is	a	hard	limit	on	the	size	of	a	permitted	URL	within	browsers,	IIS,	and	even
ASP.NET	during	an	HTTP	GET	request.	As	a	rule	of	thumb,	it	is	best	to	restrict	URLs	to
around	2,000	characters	if	using	GET.	This	restriction	does	not	apply	when	using	HTTP
POST	and	a	form	with	key-value	pairs	for	each	of	the	parameters.

It	is	also	worth	mentioning	that	if	a	parameter	is	configured	to	allow	null	values,	you

can	provide	the	following	syntax	to	pass	null	from	the	URL:

parameterName:isnull=true

Now	that	you	have	seen	how	to	pass	report	parameters	to	the	URL	Access	of
Reporting	Services,	let's	look	at	passing	snapshot	IDs	to	render	historical	execution
snapshots.

Rendering	Snapshot	History
One	of	the	major	features	of	Reporting	Services	is	the	ability	to	create	execution
snapshots	of	reports.	Say	you	have	a	report	in	which	the	data	updates	on	a	monthly
basis.	After	the	data	is	updated,	it	does	not	change	for	another	month.	A	perfect
example	of	this	is	monthly	financial	statements.	If	your	data	changes	only	once	a
month,	there	is	no	reason	to	query	your	database	every	time	you	need	a	report.
Therefore,	you	can	use	execution	snapshots	to	store	this	information	after	the	query
has	been	executed.	Similar	to	a	monthly	report,	what	should	happen	when	your	data
updates	from,	say,	January	to	February?	You	don't	want	to	lose	the	January	snapshot
as	soon	as	the	February	information	is	available.	That	is	where	historical	snapshots
come	into	play.	When	you	create	the	February	snapshot,	you	add	January	to	the
snapshot	history,	and	so	on	for	each	subsequent	month.

Now	that	you	have	execution	snapshots	stored	in	history,	you	need	some	way	to
access	them.	Reporting	Services	gives	you	an	easy	way	to	do	so.	As	you	have	seen,
each	report	has	a	report	path	that	can	be	used	to	render	the	report.	To	render	a
historical	snapshot,	you	simply	need	to	add	a	parameter	for	the	historical	snapshot	ID
along	with	the	rs	prefix.

The	syntax	to	pass	your	snapshot	ID	is	as	follows:

http://server/virtualroot?[/pathinfo]&rs:Snapshot=snapshotid

The	snapshot	ID	of	your	historical	snapshot	is	the	date	and	time	stamp	of	when	the
report	was	added	to	the	history,	formatted	according	to	the	ISO	8601	standard	YYYY-
MM-DDTHH:MM:SS.	For	example:

http://localhost/ReportServer?/Wrox	SSRS	2016	Samples/Internet	Sales	KPI

Dashboard&rs:Snapshot=2016-05-31T23:59:21

TIP

To	find	the	snapshot	history	information	for	a	report,	use	the	Web	Portal	to
manage	the	report.	The	Snapshot	History	page	is	accessible	from	the	menu	bar
on	the	left	side	of	the	window	that	opens	when	managing	a	report.

URL	Rendering	Summary
Through	URL	rendering,	you	have	seen	the	various	commands	that	can	be	passed	to
Reporting	Services	and	that	can	be	used	to	control	the	report	item	display,	the	format
to	use,	and	snapshot	information	using	the	rs	prefix.	After	you	have	created	your
commands	for	the	Report	server,	you	can	pass	parameters	specific	to	the	output
format.	Using	the	rc	prefix	and	the	device	information	parameters,	you	can	specify
things	such	as	encoding	and	which	items	to	display	in	the	HTML	Viewer.	After	you
have	specified	the	report	item,	you	need	to	know	how	to	output	it.	You	can	pass
parameters	to	your	report	by	simply	passing	the	parameter	name	and	value
combination.

The	next	section	covers	the	second	part	of	rendering	Reporting	Service	reports.	You
can	use	URLs	for	simple	web	applications	and	web	portals,	but	sometimes	you	need
finer	control	over	report	access	and	rendering.	To	achieve	this,	you	use	the	Reporting
Service	web	service	to	programmatically	render	your	reports.

PROGRAMMATIC	RENDERING
Reports	can	be	integrated	into	custom	Windows	Forms	and	web	applications	in
several	ways:

Link	to	a	report	in	a	web	browser	window	using	a	URL	rendering	request.

An	HTTP	form	via	GET	or	POST	to	the	Report	server	URL.

Replace	web	page	content	with	a	report	by	using	SOAP	Web	Service	rendering	to
write	binary	content	to	the	web	HttpResponse	object.

Use	SOAP	Web	Service	rendering	to	write	report	content	to	a	file.

Embed	a	report	in	an	area	of	a	web	page	by	setting	the	source	of	an	HTML	frame	or
an	IFrame	tag.

Use	the	Microsoft	ReportViewer	control	in	a	Windows	Forms	or	Web	Forms	.NET
application.

Use	the	Microsoft	ReportViewer	control	in	a	WPF	application	by	wrapping	it	inside
a	WindowsFormsHost.

WARNING

A	general	word	of	caution	when	considering	programmatic	rendering	solutions:
Reporting	Services	includes	very	specific	optimizations	that	occur	when	reports
are	rendered	on	the	report	server	within	the	ReportViewer	web	control.
Circumnavigating	the	native	report	server	rendering	facility	can	negatively
impact	performance,	especially	for	large,	multi-page	reports.	Certain	interactive
report	features	are	not	supported	in	different	rendering	formats.	Consider	these
trade-offs	when	taking	control	of	report	rendering.

Rendering	using	a	URL	is	handy	and	easy	to	implement	in	many	situations,	but	it	does
have	its	limitations.	When	rendering	from	the	URL,	you	have	to	make	sure	that	you
use	the	security	infrastructure	provided	with	Reporting	Services.	For	some
applications,	such	as	public	websites,	you	might	want	to	implement	your	own	security
layer.	In	that	case,	rendering	from	the	URL	does	not	provide	the	functionality	you
need.	This	section	describes	rendering	reports	using	the	Reporting	Services	web
service.

You	connect	to	the	Reporting	Services	web	service,	return	a	list	of	available	reports,
retrieve	their	parameters,	and	render	the	report.	Let's	look	at	three	implementations
of	programmatic	rendering.	The	first	uses	a	Windows	Forms	application	to	render
reports	to	a	file.	This	will	help	you	understand	the	basic	principles	without	a	lot	of
interface	work.	The	second	implementation	demonstrates	rendering	through	an
ASP.NET	page.	You	will	see	some	of	the	items	you	need	to	consider	when	working
through	a	web	application.	Last,	you	will	read	about	how	the	ReportViewer	control	can
embed	reports	in	Windows	and	Web	Forms	applications	for	viewing.

Common	Scenarios
Before	looking	at	the	actual	programming	code	for	rendering	reports,	it	is	important	to
understand	a	couple	of	scenarios	in	which	it	is	reasonable	to	write	your	own	rendering
code.	These	scenarios	commonly	are	experienced	while	working	with	clients	and
consuming	low-to-moderate	query	results.	They	do	not	represent	the	only	scenarios	in
which	you	would	write	your	own	rendering	code,	but	they	do	illustrate	how	and	when
custom	code	can	be	used.	Let's	consider	each	of	these	scenarios.

Custom	Security
One	of	the	biggest	questions	around	Reporting	Services	involves	how	to	use	Reporting
Services	without	its	standard	security	infrastructure.	Reporting	Services	requires	you
to	connect	to	reports	using	a	Windows	identity,	also	known	as	Windows	Integrated
Authentication.	In	many	organizations,	this	is	just	not	possible	(as	is	the	case	with	a
public	Internet	reporting	solution).	They	have	mixed	environments	or	untrusted

domains	that	do	not	allow	for	identification	to	the	Report	server.	Some	clients	also
have	large-scale	authentication	and	authorization	infrastructures	already
implemented.

You	can	still	use	Reporting	Services	in	these	situations.	Using	your	own	security
infrastructure	involves	creating	both	authentication	and	authorization	code	in	your
environment.	After	you	have	determined	that	a	user	can	access	a	report,	a	Windows
identity	that	you	define	can	be	used	to	connect	to	reports.	To	hide	this	security
implementation,	the	Reporting	Services	web	service	can	be	used,	and	the	Report
server	can	be	abstracted	and	behind	a	firewall.	You	can	render	reports	directly	to	a
browser	or	file	without	passing	the	original	user	identity	to	the	Report	server.

When	you	execute	reports	by	passing	a	default	set	of	credentials	via	the	web	service
proxy,	you	are	running	what	is	known	as	a	“trusted	subsystem.”	Your	application's
configuration	maintains	the	credentials	for	the	Windows	Identity	that	can	access
reports	on	the	Report	server.

Server-Side	Parameters
Although	URL	rendering	is	by	far	the	easiest	way	to	incorporate	Reporting	Services	in
your	applications,	it	does	have	some	limitations.	When	you	send	information	via	a
URL,	it	is	easy	for	a	user	to	change	that	URL	or	see	what	you	pass.	If	you	are	shrewd
enough,	you	might	try	to	obscure	the	URL	parameters	by	using	an	HTTP	POST	instead
of	GET.	However,	this	is	easily	circumvented	with	the	use	of	browser	developer	tools
(Firebug,	Internet	Explorer	Developer	Tools)	or	an	HTTP	proxy	such	as	Fiddler.

By	using	the	Reporting	Services	web	service,	you	can	easily	hide	the	details	of	how	you
retrieve	report	information	within	your	code.	Parameters	are	passed	through	code
instead	of	the	URL.	This	gives	you	complete	control	over	how	that	information	is
retrieved	without	exposing	it	to	the	users.	The	next	section	describes	your	first
rendering	application.

Rendering	Through	Windows
This	section	covers	the	mechanics	of	rendering	using	the	Reporting	Services	web
service.	You	build	a	simple	Windows	application	that	returns	a	list	of	reports	from	the
Report	server.	As	soon	as	you	have	the	list	of	reports,	you	use	the	web	service	to
return	a	list	of	report	parameters.	After	entering	any	report	parameters,	you	render
the	report	to	a	file.	These	steps	illustrate	the	main	components	of	rendering	through
program	code.

Building	the	Application	Interface
First	you	need	to	build	your	application	interface.	Let's	start	by	building	a	simple
Windows	form.	For	this	example,	I've	added	labels,	textboxes,	and	buttons	for	basic
functionality.	Figure	15.8	shows	the	form's	design	view.

Figure	15.8	Custom	rendering	application	interface.

This	form	allows	you	to	query	a	given	Report	server	to	return	a	list	of	reports.	After	it
returns	the	reports,	you	can	use	it	to	access	a	list	of	parameters	for	the	reports.
Finally,	you	need	to	render	the	report	to	a	given	folder	location.

Setting	Up	the	Web	Services
Before	you	can	begin	rendering	reports,	you	need	to	set	up	a	reference	to	the
Reporting	Services	and	Report	Execution	web	services.	After	you	create	your	web
references,	you	can	start	to	develop	the	application.	The	next	few	figures	show	you
how	to	create	references	to	the	web	services.	Start	by	adding	the	web	references	to
your	project.

Open	the	Solution	Explorer.	Right-click	the	References	folder	and	select	Add	Service
Reference,	as	shown	in	Figure	15.9.	In	the	bottom-left	corner,	click	the	Advanced
button	to	open	the	Service	Reference	Settings	dialog	box,	which	is	shown	in	Figure
15.10.	Make	sure	the	check	box	“Generate	asynchronous	operations”	is	checked.	We
will	leverage	the	asynchronous	web	service	capabilities	to	provide	a	more	responsive
UI.	Click	the	Add	Web	Reference	button	at	the	bottom	left	to	open	the	Add	Web
Reference	dialog.

Figure	15.9	Add	Service	Reference	dialog.

Figure	15.10	Service	Reference	Settings	dialog.

In	the	Add	Web	Reference	dialog,	shown	in	Figure	15.11,	enter	the	location	of	the	web
service	in	the	URL	box.	This	URL	depends	on	the	Report	server	name	and	the
installed	location	of	the	Report	server	virtual	directory.	By	default,	the	Report	server
virtual	directory	is	located	under	the	root	at	/ReportServer.	For	the	default	virtual
directory	on	a	local	machine,	enter	the	following	URL:

Figure	15.11	Add	Web	Reference	dialog	containing	WSDL.

http://localhost/ReportServer/ReportService2010.asmx

NOTE

The	old	endpoints,	ReportService2005.asmx	(Native	mode)	and	ReportService
2006.asmx	(SharePoint	Integrated	mode),	were	deprecated	in	version	2008	R2
but	are	installed	with	the	product	for	backward-compatibility	purposes.	The
newer	(and	still	the	most	current)	endpoint,	ReportService2010,	was	introduced
to	include	functionalities	from	both	endpoints,	as	well	as	to	offer	additional
management	features.

After	you	enter	the	URL,	press	Enter	to	view	a	description	of	the	web	service.	Enter	a
name	for	the	new	web	reference	and	click	Add	Reference.	This	name	will	be	used	as
the	namespace	for	all	types	defined	by	the	proxy	assembly.	This	example	uses	the
name	RSService.	The	dialog	should	look	like	Figure	15.11	when	filled	in.

Now	add	the	Report	Execution	web	service	by	following	the	same	procedure	but	using
this	URL:

http://localhost/ReportServer/ReportExecution2005.asmx

In	the	example,	we	name	this	web	service	reference	RSService.

Now	that	you	have	referenced	the	web	services,	you	are	ready	to	start	writing	your
code.	The	first	thing	you	can	do	is	add	a	using	(C#)	or	Imports	(VB)	statement	to	your
code.	The	first	part	of	the	using	statement	is	the	application	name	followed	by	the	web
reference	name.	In	the	example,	the	project	is	called	Reporting_Service_Rendering
for	the	C#	project	and	Reporting_Service_Rendering_VB	for	the	Visual	Basic	project.

C#

using	System;

using	System.Collections.Generic;

using	System.IO;

using	System.Linq;

using	System.Windows.Forms;

using	Reporting_Service_Rendering.RSService;

using	Reporting_Service_Rendering.REService;

VB

Imports	Reporting_Service_Rendering_VB.RSService

Imports	Reporting_Service_Rendering_VB.REService

After	you	have	added	the	using	or	Imports	statement,	you	need	to	create	an	instance
of	the	ReportingService2010	and	ReportExecutionService	objects.	These	are	the	main
objects	that	will	be	used	to	retrieve	a	list	of	reports	and	their	associated	parameters
and	then	render	the	report.	At	the	top	of	the	Windows	Forms	class	code	for	the
MainForm,	create	the	declarations	shown	in	the	following	sections.	The	class

declaration	is	included	for	clarity.

C#

public	partial	class	MainForm	:	Form

{

								ReportingService2010	_rs	=	new	ReportingService2010();

								ReportExecutionService	_rsExec	=	new	ReportExecutionService();

								bool	_reportHasParameters	=	false;

								const	string	_REPORT_SERVICE_ENDPOINT	=	"ReportService2010.asmx";

								const	string	_REPORT_EXECUTION_ENDPOINT	=	"ReportExecution2005.asmx";

VB

Public	Class	MainForm

				Private	_rs	As	New	ReportingService2010

				Private	_rsExec	As	New	ReportExecutionService

				Private	_reportHasParameters	As	Boolean	=	False

				Private	Const	_REPORT_SERVICE_ENDPOINT	As	String	=	

"ReportService2010.asmx"

				Private	Const	_REPORT_EXECUTION_ENDPOINT	As	String	=	

"ReportExecution2005.asmx"

Next,	you	need	to	set	the	security	credentials	that	these	objects	will	use.	In	your	code,
pass	the	credentials	of	the	currently	logged-on	user.	If	you	already	have	your	own
custom	authentication	and	authorization	method	in	place,	you	could	pass	a	system
identification	that	you	define	instead	of	the	current	user.

Open	the	Form	Load	event	in	the	Windows	Form.	This	is	a	suitable	place	for	setting
the	credentials.	Inside	this	event,	set	the	ReportingService2010	and
ReportExecutionService	objects'	Credentials	property	to
System.Net.CredentialCache.DefaultCredentials.	This	gives	the	web	services	the
credentials	of	the	currently	logged-on	user	(Windows	Integrated	Authentication).

C#

_rs.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

VB

_rs.Credentials	=	System.Net.CredentialCache.DefaultCredentials

_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials

The	final	piece	you	need	to	add	to	the	Form	Load	event	is	the	code	to	populate	your
drop-down	list.	This	code	adds	all	the	format	names	to	the	list,	along	with	an
appropriate	extension	for	each.	Begin	by	adding	a	new	class	file	to	your	project	to
create	a	small	class	that	helps	you	populate	the	drop-down.	To	add	a	new	class,	click
Project	 	Add	class	(or	use	the	shortcut	Shift+Alt+C):

C#

internal	class	Format

{

				public	Format(string	name,	string	extension)

				{

								Name	=	name;

								Extension	=	extension;

				}

				public	string	Name	{	get;	private	set;	}

				public	string	Extension	{	get;	private	set;	}

				public	static	IList<Format>	GetFormatsList()

				{

								List<Format>	formats	=	new	List<Format>{

								new	Format("EXCEL",	".xlsx"),

								new	Format("WORD",	".docx"),

								new	Format("PPTX",	".pptx"),

								new	Format("HTML4.0",	".html"),

								new	Format("HTML5",	".html"),

								new	Format("XML",	".xml"),

								new	Format("CSV",	".csv"),

								new	Format("PDF",	".pdf"),

								new	Format("IMAGE",	".tif")

								};

								return	formats;

				}

}

VB

Friend	Class	Format

				Public	Sub	New(ByVal	name	As	String,	ByVal	extension	As	String)

								Me.Name	=	name

								Me.Extension	=	extension

				End	Sub

				Public	Property	Name	As	String

				Public	Property	Extension	As	String

				Public	Shared	Function	GetFormatsList()	As	IList(Of	Format)

								Dim	formats	As	New	List(Of	Format)	From	{

												New	Format("EXCEL",	".xlsx"),

												New	Format("WORD",	".docx"),

												New	Format("PPTX",	".pptx"),

												New	Format("HTML4.0",	".html"),

												New	Format("HTML5",	".html"),

												New	Format("XML",	".xml"),

												New	Format("CSV",	".csv"),

												New	Format("PDF",	".pdf"),

												New	Format("IMAGE",	".tif")

								}

								Return	formats

				End	Function

End	Class

With	this	class,	you	can	finish	your	Form	Load	event	code.	Add	the	few	last	lines	of
code	to	populate	your	format	combo	box:

C#

private	void	MainForm_Load(object	sender,	EventArgs	e)

{

				_rs.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

				_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

				reportFormatComboBox.DataSource	=	Format.GetFormatsList();

				reportFormatComboBox.DisplayMember	=	"Name";

				reportFormatComboBox.ValueMember	=	"Name";

}

VB

Private	Sub	MainForm_Load(sender	As	System.Object,	_

e	As	System.EventArgs)	Handles	MyBase.Load

					_rs.Credentials	=	System.Net.CredentialCache.DefaultCredentials

						_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials

						reportFormatComboBox.DataSource	=	Format.GetFormatsList()

						reportFormatComboBox.DisplayMember	=	"Name"

						reportFormatComboBox.ValueMember	=	"Name"

End	Sub

You	have	now	created	an	instance	of	the	ReportingService2010	object,	passed	the
logged-on	user's	credentials	to	it,	and	populated	the	format	drop-down	list.	The	next
section	discusses	connecting	to	the	Report	server	and	retrieving	a	list	of	available
reports.

Retrieving	Report	Information
Now	that	you	have	set	up	the	Reporting	Services	web	service,	you	need	to	retrieve
your	list	of	reports.	To	do	this,	specify	the	Report	server	that	you	want	to	query,	and
then	call	the	ListChildren	method	of	the	ReportingService2010	object.	ListChildren
returns	a	list	of	all	items,	including	data	sources,	resources,	and	reports.	After	you
have	retrieved	the	list,	you	need	to	pull	out	only	report	items.	Finally,	you	add	the
report	items	to	the	drop-down.

As	pointed	out	earlier,	you	ensure	that	your	web-reference	proxy	was	generated	with
asynchronous	operations.	When	you	create	a	web	reference	using	the	Visual	Studio
IDE,	it	generates	both	the	synchronous	and	asynchronous	operations.	Due	to	the
nature	of	this	application—a	Windows	form	UI—it	is	best	practice	to	ensure	that	calls
to	the	Report	Services	are	performed	on	a	different	thread	than	the	UI	thread.	This
prevents	the	UI	thread	from	being	blocked	while	the	web	service	operation	completes,
providing	a	much	better	user	experience.

The	asynchronous	pattern	may	seem	a	bit	complex	or	overwhelming	at	first,	but	in
essence	all	it	does	is	register	an	event	handler	that	invokes	a	delegate	function	(the
“callback”)	when	the	asynchronous	operation	is	completed.	In	other	words,	you	fire	a
call	to	the	operation	and	return	from	the	method.	The	execution	happens	on	a
background	thread	that	waits	for	the	event	notification	when	the	operation	completes
and	invokes	the	callback	function.

In	addition	to	the	asynchronous	operations,	you	can	always	call	the	synchronous
methods	directly	without	having	to	worry	about	delegates	and	events.	This	is	fine	in
scenarios	such	as	server-side	code,	where	there's	no	user	interface	to	be	concerned

with.

Let's	start	by	setting	the	URL	to	your	Report	server.	Open	the	click	event	of	the	Get
Items	button	to	start	your	code.	You'll	keep	your	UI	event	handlers	pretty	lean	and
perform	the	bulk	of	operations	in	separate	methods.	Remember	that	_rs	is	your
private	object	reference	to	the	web	service,	as	defined	at	the	top	of	the	class	definition.
Also,	this	event	handler	will	need	to	call	a	function	that	loads	the	reports	list	box,
which	will	be	implemented	later	on.	So	for	now,	just	use	a	"TODO:"	comment	as	a
placeholder	and	reminder.

C#

private	void	btnGetItems_Click(object	sender,	EventArgs	e)

{

				GetItems();

}

private	void	GetItems()

{

				if	(!String.IsNullOrEmpty(txtServer.Text))

				{

								_rs.Url	=	String.Format("{0}/{1}",	txtServer.Text.TrimEnd('/'),

								_REPORT_SERVICE_ENDPOINT);

								_rs.ListChildrenCompleted	+=	new

								ListChildrenCompletedEventHandler((sender,	e)	=>

								{

												if	(e.Error	==	null	&&	e.Result	!=	null)

																//	TODO:	Load	the	list	box	with	e.Result

												else

																MessageBox.Show(e.Error.ToString());

								});

								_rs.ListChildrenAsync("/",	true,	Guid.NewGuid	());

				}

				else

				{

								MessageBox.Show("Enter	a	server	string	first..	"	+

"Example:	http://localhost/reportserver");

				}

}

VB

Private	Sub	btnGetItems_Click(sender	As	System.Object,	e	As	

System.EventArgs)_

		Handles	btnGetItems.Click

				GetItems()

End	Sub

Private	Sub	GetItems()

				If	(Not	String.IsNullOrEmpty(Me.txtServer.Text))	Then

								_rs.Url	=	String.Format("{0}/{1}",	txtServer.Text.TrimEnd("/"),

								_REPORT_SERVICE_ENDPOINT)

								AddHandler	_rs.ListChildrenCompleted,	Sub(sender	As	Object,	args	As

								RSService.ListChildrenCompletedEventArgs)

										If	(IsNothing(args.Error)	AndAlso	Not	IsNothing(args.Result))	Then

													'TODO:	Load	the	list	box	with	args.Result

										Else

													MessageBox.Show(args.Error.ToString())

										End	If

								End	Sub

								_rs.ListChildrenAsync("/",	True,	Guid.NewGuid	())

				Else

								MessageBox.Show("Enter	a	server	string	first…	Example:

								http://localhost/reportserver")

				End	If

End	Sub

The	preceding	code	uses	the	server	location	specified	in	the	Server	Address	textbox
(txtServer)	concatenated	with	the	reference	to	the	Reporting	Services	web	service
URL	endpoint.

As	soon	as	the	URL	for	the	web	service	is	set,	you	can	get	the	list	of	reports.	Create	an
array	of	CatalogItem	objects,	and	then	call	the	ListChildren	or	ListChildrenAsync
method.	These	methods	take	two	parameters	in	their	synchronous	form:	the	folder
path	on	the	Report	server	and	a	Boolean	value	indicating	whether	to	recurse	through
the	directory.	The	asynchronous	flavor	adds	a	third	parameter	that	allows	you	to
provide	the	unique	state	object.	This	is	required	to	prevent	errors	when	multiple
asynchronous	operations	are	outstanding.	To	ensure	uniqueness,	you	create	an
instance	of	type	System.Guid.	In	the	preceding	code,	you	already	implemented	the
asynchronous	version.	For	completeness,	here	is	how	both	the	synchronous	and
asynchronous	code	look	when	calling	the	ListChildren	web	service	method:

SYNCHRONOUS	C#

CatalogItem[]	items;

items	=	_rs.ListChildren("/",	true);

SYNCHRONOUS	VB

Dim	items()	As	CatalogItem

items	=	_rs.ListChildren("/",	True)

ASYNCHRONOUS	C#

_rs.ListChildrenCompleted	+=

				new	ListChildrenCompletedEventHandler((sender,	e)	=>

				{

								if	(e.Error	==	null	&&	e.Result	!=	null)

												//	TODO:	Load	the	list	box	using	e.Result

								else

												MessageBox.Show(e.Error.ToString());

				});

_rs.ListChildrenAsync("/",	true,	Guid.NewGuid());

ASYNCHRONOUS	VB

AddHandler	_rs.ListChildrenCompleted,	Sub(sender	As	Object,	args	As	_

RSService.ListChildrenCompletedEventArgs)

				If	(IsNothing(args.Error)	AndAlso	Not	IsNothing(args.Result))	Then

								'	TODO:	Load	the	list	box	using	args.Result

				Else

								MessageBox.Show(args.Error.ToString())

				End	If

End	Sub

_rs.ListChildrenAsync("/",	True,	Guid.NewGuid	())

As	soon	as	the	operation	returns	with	an	array	of	Report	Items,	the	last	step	is	to	loop
through	the	resulting	array	and	add	each	item	to	a	drop-down	list	(ComboBox).	Similar
to	how	the	formats	were	loaded,	create	a	class	to	help	data-bind	the	report	items.	Let's
take	a	look	at	the	code	for	this	class:

C#

internal	class	ReportItem

{

							public	ReportItem(string	name,	string	path)

							{

														Name	=	name;

														Path	=	path;

							}

							public	string	Name	{	get;	private	set;	}

							public	string	Path	{	get;	private	set;	}

}

VB

Friend	Class	ReportItem

				Private	_name	As	String

				Private	_path	As	String

				Public	Sub	New(ByVal	name	As	String,	ByVal	path	As	String)

								_name	=	name

								_path	=	path

				End	Sub

				Public	ReadOnly	Property	Name()	As	String

								Get

												Return	_name

								End	Get

				End	Property

				Public	ReadOnly	Property	Path()	As	String

								Get

												Return	_path

								End	Get

				End	Property

End	Class

Using	the	ReportItem	class	just	created,	you	can	add	the	report	catalog	items	to	the
combo	box.	In	the	MainForm	class,	you'll	implement	a	new	method	that	does	just	that.
The	following	code	is	for	the	LoadReportsBox	method,	which	is	invoked	by	the
asynchronous	delegate-callback	method	to	the	ListItemsAsync	operation	(where	you
had	originally	put	a	TODO:	comment	line	to	load	the	list	box):

C#

private	void	LoadReportsBox(CatalogItem[]	items)

{

				reportsComboBox.Items.Clear();

				foreach	(var	item	in	items)

				{

								if	(item.TypeName	==	"Report")

								{

												reportsComboBox.Items.Add(new	ReportItem(item.Name,	item.Path));

								}

				}

				reportsComboBox.DisplayMember	=	"Name";

				reportsComboBox.ValueMember	=	"Path";

				reportsComboBox.DroppedDown	=	true;

}

VB

Private	Sub	LoadReportsBox(ByVal	items	As	RSService.CatalogItem())

				'populate	report	combo	box

				reportsComboBox.Items.Clear()

				For	Each	item	As	RSService.CatalogItem	In	items

								If	(item.TypeName	=	"Report")	Then

												reportsComboBox.Items.Add(New	ReportItem(item.Name,	item.Path))

								End	If

				Next

				reportsComboBox.DisplayMember	=	"Name"

				reportsComboBox.ValueMember	=	"Path"

				reportsComboBox.DroppedDown	=	True

End	Sub

Don't	forget	to	replace	the	TODO	comment	line	inside	GetItems	with	the	invocation	of
LoadReportsBox.	The	Result	property	of	the	callback	argument	object	should	contain
the	CatalogItem	array	expected	by	LoadReportsBox:

C#

rs.ListChildrenCompleted	+=

				new	ListChildrenCompletedEventHandler((sender,	e)	=>

				{

								if	(e.Error	==	null	&&	e.Result	!=	null)

												LoadReportsBox(e.Result);

								else

												MessageBox.Show(e.Error.ToString());

				});

VB

AddHandler	_rs.ListChildrenCompleted,	Sub(sender	As	Object,	args	As

RSService.ListChildrenCompletedEventArgs)

				If	(IsNothing(args.Error)	AndAlso	Not	IsNothing(args.Result))	Then

								LoadReportsBox(args.Result)

				Else

								MessageBox.Show(args.Error.ToString())

				End	If

End	Sub

You	now	can	open	your	form	and	return	a	list	of	report	items.	The	next	section

describes	retrieving	the	parameters	for	a	report.

Retrieving	Report	Parameters
The	next	area	of	programmatic	rendering	consists	of	retrieving	a	list	of	parameters	for
your	report.	This	bit	of	code	can	be	used	in	various	scenarios.	The	parameter	interface
that	is	provided	by	Reporting	Services	works	well	for	simple	parameters.	However,	it
does	not	handle	many	things,	such	as	advanced	validation	based	on	business	rules,	or
even	fancier	input	interfaces	such	as	dials	and	sliders.	Being	able	to	return	a	list	of
parameters	allows	you	to	create	your	own	dynamic	user	interface.

In	the	following	example,	you	create	a	simple	list	of	parameters.	For	each	parameter,
you	dynamically	add	a	label	control	and	either	a	textbox,	check	box,	or	date/time
picker	to	your	form,	based	on	the	parameter	type.	The	following	line	of	code	is	the
first	thing	you	should	do	within	the	GetParameters	method,	which	is	called	from	the
respective	button-click	event	handler.	This	line	of	code	identifies	the	report	that	is
selected	in	your	report	drop-down	list:

C#

ReportItem	reportItem	=	(ReportItem)reportsComboBox.SelectedItem;

VB

Dim	reportItem	As	ReportItem	=	DirectCast(reportsComboBox.SelectedItem,	

ReportItem)

This	creates	a	new	ReportItem	variable	using	the	selected	item	of	your	combo	box.	The
ReportItem	class	created	in	the	preceding	section	contains	a	Name	and	a	Path	property.
You	can	use	this	Path	property	to	retrieve	your	list	of	parameters.

To	return	your	list	of	parameters,	call	the	GetItemParameters	method	of	the
ReportingService2010	object.	This	method	has	two	purposes.	It	returns	a	list	of
parameters	and	can	validate	parameters	against	the	available	values	defined	when
creating	the	report.	Here	are	the	arguments	for	the	GetItemParameters	method:

ItemPath	is	the	path	to	the	report	for	which	you	want	to	retrieve	parameters.

HistoryID	is	the	ID	used	to	identify	any	historical	snapshots	of	your	report.

ForRendering	is	a	Boolean	argument	that	can	be	used	to	retrieve	the	parameters
that	were	set	when	the	report	was	executed.	For	example,	you	might	create	a
snapshot	of	your	report	or	receive	it	in	an	e-mail	subscription.	In	both	cases,	the
report	is	executed	before	the	user	views	it.	By	setting	the	ForRendering	property	to
true,	you	can	retrieve	these	values	and	use	them	in	your	own	custom	interface.

Values	is	an	array	of	ParameterValue	objects	that	can	be	used	to	validate	the	values
assigned	to	a	parameter.	This	can	be	useful	to	guarantee	that	the	parameter	values
you	pass	to	your	report	match	the	parameter	values	the	report	definition	accepts.

Credentials	are	the	database	credentials	to	use	when	validating	your	query-based

parameters	in	case	you	have	to	execute	a	query	to	populate	available	values.

userState	(async	only)	is	an	optional	parameter	that	is	available	only	in	the
asynchronous	version	of	the	operation.	It	provides	a	unique	state	object	to	prevent
errors	when	multiple	asynchronous	operations	are	outstanding.	Typically,	a	new
GUID	is	used	for	this	parameter.

Because	you	are	not	working	with	historical	reports	or	validating	values	in	this
exercise,	a	number	of	the	properties	will	not	be	set.	The	following	code	can	be	used	to
call	the	GetItemParameters	method	synchronously:

C#

ItemParameter[]	parameters;

parameters	=	_rs.GetItemParameters(reportItem.Path,	null,	false,	null,	null);

VB

Dim	parameters()	As	ItemParameter

parameters	=	_rs.GetItemParameters(reportItem.Path,	Nothing,	False,	_

																										Nothing,	Nothing)

Because	you	are	using	the	asynchronous	pattern	in	this	sample	exercise,	here	is	how
to	use	the	asynchronous	version,	calling	the	GetItemParameterAsync	method.	The
following	code	should	be	implemented	inside	of	a	private	method	named
GetParameters.	This	method,	in	turn,	is	invoked	by	the	“Get	Parameters”	button	click
event	handler:

ASYNCHRONOUS	C#

_rs.GetItemParametersCompleted	+=

new	GetItemParametersCompletedEventHandler((sender,	args)	=>

{

				if	(args.Error	==	null	&&	args.Result	!=	null)

								LoadParametersGroupBox(args.Result);

				else

								MessageBox.Show(args.Error.ToString());

});

_rs.GetItemParametersAsync(reportItem.Path,

null,	false,	null,	null,	Guid.NewGuid());

ASYNCHRONOUS	VB

AddHandler	_rs.GetItemParametersCompleted,	_

			Sub(sender	As	Object,	args	As	

RSService.GetItemParametersCompletedEventArgs)

							If	(args.Error	Is	Nothing	AndAlso	Not	args.Result	Is	Nothing)	Then

																LoadParametersGroupBox(args.Result)

								Else

																MessageBox.Show(args.Error.ToString())

								End	If

			End	Sub

_rs.GetItemParametersAsync(reportItem.Path,	Nothing,	False,	Nothing,	_

Nothing,	Guid.NewGuid())

The	last	task	is	to	create	a	user	interface	for	your	parameters.	The	ReportParameter
objects	returned	by	Reporting	Services	contain	information	useful	for	creating	a
custom	interface.	Some	of	the	key	properties	include	the	parameter	data	type,	prompt,
and	valid	values.	All	of	these	can	be	used	to	define	your	own	interface.	Finish	your
code	by	simply	adding	a	label	and	either	a	textbox,	check	box,	or	date/time	picker	to
your	form	for	each	ReportParameter.

Following	is	the	code	for	the	LoadParametersGroupBox	method,	which	is	invoked	inside
the	callback	delegate	upon	successful	execution	of	the	web	operation.	Also,	the	logic	to
build	the	appropriate	control	type	based	on	parameter	type	was	refactored	into	a
separate	method,	as	shown	in	the	method	named	GetParameterControl:

C#

private	void	LoadParametersGroupBox(ItemParameter[]	parameters)

{

				//	Let	everyone	know	this	report	has	parameters.

				_reportHasParameters	=	(parameters.Length	>	0);

				//add	the	parameters	to	the	parameter	list	UI

				int	left	=	10;

				int	top	=	20;

				paramInfoGroupBox.Controls.Clear();

				foreach	(var	parameter	in	parameters)

				{

								Label	label	=	new	Label

								{

												Text	=	parameter.Prompt,

												Left	=	left,

												Top	=	top

								};

								paramInfoGroupBox.Controls.Add(label);

								paramInfoGroupBox.Controls.Add(

												GetParameterControl(parameter,	left,	top));

								top	+=	25;

				}

}

private	Control	GetParameterControl(ItemParameter	parameter,	int	left,	int	

top)

{

				Control	parameterControl;

				switch	(parameter.ParameterTypeName)

				{

								case	"Boolean":

												parameterControl	=	new	CheckBox

												{

																Checked	=	parameter.DefaultValues	!=	null	?

																Boolean.Parse(parameter.DefaultValues[0])	:	false

												};

												break;

								case	"DateTime":

												parameterControl	=	new	DateTimePicker

												{

																Text	=	parameter.DefaultValues	!=	null	?

																parameter.DefaultValues[0]	:	String.Empty

												};

												break;

								default:

												//there	are	other	types,	such	as	float	and	int,

												//and	you	can	also	retrieve	default	values	and

												//populate	as	dropdown,	but

												//it's	beyond	scope	of	this	exercise

												parameterControl	=	new	TextBox

												{

																Text	=	parameter.DefaultValues	!=	null	?

																parameter.DefaultValues[0]	:	string.Empty

												};

												break;

				}

				parameterControl.Name	=	parameter.Name;

				parameterControl.Left	=	left	+	150;

				parameterControl.Top	=	top;

				return	parameterControl;

}

VB

Private	Sub	LoadParametersGroupBox(ByVal	parameters	As	ItemParameter())

				'let	everyone	know	this	report	has	parameters

				_reportHasParameters	=	(parameters.Length	>	0)

				'add	the	parameters	to	the	parameter	list	UI

				Dim	left	As	Integer	=	10

				Dim	top	As	Integer	=	20

				paramInfoGroupBox.Controls.Clear()

				For	Each	parameter	As	ItemParameter	In	parameters

								Dim	label	As	New	Label	With

								{

												.Text	=	parameter.Prompt,

												.Left	=	left,

												.Top	=	top

								}

								paramInfoGroupBox.Controls.Add(label)

								paramInfoGroupBox.Controls.Add(_

												GetParameterControl(parameter,	left,	top))

								top	+=	25

				Next

End	Sub

Private	Function	GetParameterControl(ByVal	parameter	As	ItemParameter,	_

																																					ByVal	left	As	Integer,	_

																																					ByVal	top	As	Integer)	As	Control

				Dim	parameterControl	As	Control

				Select	Case	parameter.ParameterTypeName

								Case	"Boolean"

												parameterControl	=	New	CheckBox	With	{

																.Checked	=	If(parameter.DefaultValues	IsNot	Nothing,	_

																														Boolean.Parse(parameter.DefaultValues(0)),	

False)

												}

								Case	"DateTime"

												parameterControl	=	New	DateTimePicker	With	{

																.Text	=	If(parameter.DefaultValues	IsNot	Nothing,	_

																											parameter.DefaultValues(0),	String.Empty)

												}

								Case	Else

												'there	are	other	types,	like	float	and	int,

												'and	you	can	also	retrieve	default	values	and	populate	as	a	drop-

down

												'but	it's	beyond	the	scope	of	this	exercise

												parameterControl	=	New	TextBox	With	{

																.Text	=	If(parameter.DefaultValues	IsNot	Nothing,	_

																											parameter.DefaultValues(0),	String.Empty)

												}

				End	Select

				parameterControl.Name	=	parameter.Name

				parameterControl.Left	=	left	+	150

				parameterControl.Top	=	top

				Return	parameterControl

End	Function

Now	that	you	have	retrieved	your	list	of	reports	and	built	a	parameter	list,	we'll
discuss	rendering	and	outputting	the	report	to	a	file.

Rendering	a	Report	to	a	File	on	the	Filesystem
This	section	describes	rendering	a	report	to	a	file	on	the	filesystem.	Using	the
ReportExecution2005	web	service,	you	can	retrieve	a	byte	array	that	contains	the	final
report.	This	byte	array	can	be	used	in	a	variety	of	ways.	This	example	writes	the	byte
array	to	a	file	by	using	the	filesystem	object.	Another	example	in	a	later	section	writes
the	byte	array	to	the	HTTP	Response	object.

You	set	up	the	ReportExecution2005	web	service	in	the	previous	sections,	so	now	you
can	use	it	to	render	a	report	to	a	file	on	the	filesystem.	In	btnRender_Click	you	call	a
new	method,	RenderReport,	which	sets	the	URL	by	concatenating	the	server	text	the
user	entered	with	the	ReportExecution2005.asmx	string:

C#

_rsExec.Url	=	String.Format("{0}/{1}",

				txtServer.Text.TrimEnd('/'),	"ReportExecution2005.asmx");

VB

_rsExec.Url	=	String.Format("{0}/{1}",	_

				txtServer.Text.TrimEnd("/"),	"ReportExecution2005.asmx")

Next,	you	need	to	set	a	string	argument	that	will	be	used	for	the	report's	path.

Before	you	get	into	the	rendering	code,	let's	look	at	the	Render	method	that	is
contained	within	the	ReportExecutionService	object	of	the	ReportExecution2005	web
service.	Table	15.5	shows	the	different	parameters.

Table	15.5	Report	Execution	Web	Service	Parameters

PARAMETER DATA Description

TYPE

Format String The	report's	output	format.

DeviceInfo String Information	used	by	a	specified	rendering	format,	such	as
specifying	the	image	type	(GIF,	JPEG)	with	the	IMAGE
format.

Extension

(out)

String The	file	extension	of	the	rendered	report.

MimeType

(out)

String Output	returned	from	Reporting	Services	containing	the
MIME	type	of	the	underlying	report.	Useful	when	rendering
a	report	to	the	web.	The	MIME	type	can	be	passed	to	the
Response	object	to	ensure	that	the	browser	correctly	handles
the	document	returned.

Encoding

(out)

String The	encoding	used	to	render	the	report.

Warnings

(out)

Warning

Array

The	output	of	any	warning	returned	from	Reporting	Services
during	report	processing.

StreamIDs

(out)

String

Array

The	output	of	the	stream	IDs	that	can	be	used	with	the
RenderStream	method.

The	Render	method	returns	an	array	of	bytes	that	represents	the	rendered	report.	The
array	can	then	be	used	just	like	any	other	byte	array,	such	as	writing	it	to	a	file	on	the
filesystem	or	sending	it	over	a	TCP	connection.

The	parameters	of	the	Render	method	are	similar	to	the	values	that	can	be	passed
using	URL	rendering.

Now	that	you	have	seen	the	basics	of	the	Render	method,	let's	examine	the	code	you
need	to	write	for	your	Render	button-click	event.	The	first	thing	you	must	do	in	your
code	is	retrieve	the	selected	report	and	output	format.	Use	the	Format	and	ReportItem
classes	created	earlier	to	retrieve	the	selected	items	in	your	drop-downs:

C#

Format	selectedFormat	=	(Format)reportFormatComboBox.SelectedItem;

ReportItem	reportItem	=	(ReportItem)reportsComboBox.SelectedItem;

VB

Dim	selectedFormat	As	Format	=	_

				DirectCast(reportFormatComboBox.SelectedItem,	Format)

Dim	reportItem	As	ReportItem	=	_

				DirectCast(reportsComboBox.SelectedItem,	ReportItem)

You	need	to	retrieve	the	input	parameters	the	user	specified.	Then	you	must	create	a
new	function	that	loops	through	the	controls	you	created	earlier	to	retrieve	their
values	and	return	an	array	of	ParameterValue	objects:

C#

private	REService.ParameterValue[]	GetReportExecutionParameters()

{

				var	controlList	=	new	List<Control>();

				//get	the	values	from	the	parameter	controls	that	are	not	labels

				controlList.AddRange(paramInfoGroupBox.Controls

								.OfType<Control>()

								.Where(c	=>	c.GetType()	!=	typeof(Label)));

				//add	the	control	information	to	parameter	info	objects

				var	parameterValues	=	new	List<REService.ParameterValue>();

				foreach	(var	control	in	controlList)

				{

								parameterValues.Add(new	REService.ParameterValue

								{

												Name	=	control.Name,

												Value	=	(control	is	CheckBox)	?

												((CheckBox)control).Checked.ToString()	:	control.Text

								});

				}

				return	parameterValues.ToArray();

}

VB

Private	Function	GetReportExecutionParameters()	As	REService.ParameterValue()

				Dim	controlList	=	New	List(Of	Control)()

				'get	the	values	from	the	parameter	controls	that	are	not	labels

				controlList.AddRange(paramInfoGroupBox.Controls.OfType(Of	Control)()	_

																									.Where(Function(c)	c.[GetType]()	<>	GetType(Label)))

				'add	the	control	information	to	parameter	info	objects

				Dim	parameterValues	=	New	List(Of	REService.ParameterValue)()

				For	Each	ctrl	As	Control	In	controlList

								parameterValues.Add(New	REService.ParameterValue()	With	{

									.Name	=	ctrl.Name,

									.Value	=	If((TypeOf	ctrl	Is	CheckBox),	_

																					DirectCast(ctrl,	CheckBox).Checked.ToString(),	

ctrl.Text)

								})

				Next

				Return	parameterValues.ToArray()

End	Function

You	can	now	use	the	GetReportExecutionParameters	function	to	build	an	array	of
input	parameters.	You	can	add	the	following	code	to	your	RenderReport	method	to
retrieve	the	input	parameters:

C#

REService.ParameterValue[]	parameters	=	GetReportExecutionParameters();

VB

Dim	parameters	As	REService.ParameterValue()	=	GetReportExecutionParameters()

Now	that	you	have	your	list	of	input	parameters,	you	are	almost	ready	to	call	the

Render	method.	For	this,	you	need	to	declare	variables	that	will	be	used	for	the	output
parameters	HistoryID,	DeviceInfo,	Encoding,	MimeType,	Extension,	Warnings,	and
StreamIDs.	Not	all	of	these	variables	are	needed,	because	they	are	set	to	null	and	are
not	used.	However,	they	have	been	declared	here	to	show	the	syntax	of	the	Render
method.	The	final	variable	you	need	for	the	Render	method	is	an	array	of	bytes.	This
byte	array	can	then	be	written	to	the	filesystem:

C#

byte[]	result	=	null;

string	historyID	=	null;

string	devInfo	=	null;

string	encoding;

string	mimeType;

string	extension;

REService.Warning[]	warnings	=	null;

string[]	streamIDs	=	null;

//	Load	the	report,	set	the	parameters	and	then	render.

_rsExec.LoadReport(reportItem.Path,	historyID);

_rsExec.SetExecutionParameters(parameters,	"en-us");

result	=	_rsExec.Render(selectedFormat.Name,	devInfo,

				out	extension,

				out	encoding,

				out	mimeType,

				out	warnings,

				out	streamIDs);

VB

Dim	result	As	Byte()	=	Nothing

Dim	historyID	As	String	=	Nothing

Dim	devInfo	As	String	=	Nothing

Dim	encoding	As	String

Dim	mimeType	As	String

Dim	extension	As	String

Dim	warnings	As	REService.Warning()	=	Nothing

Dim	streamIDs	As	String()	=	Nothing

'	Load	the	report,	set	the	parameters	and	then	render.

_rsExec.LoadReport(reportItem.Path,	historyID)

_rsExec.SetExecutionParameters(parameters,	"en-us")

result	=	_rsExec.Render(selectedFormat.Name,	devInfo,	extension,	_

																								encoding,	mimeType,	warnings,	streamIDs)

Finally,	you	need	to	take	the	byte	array	returned	from	the	Render	method	and	write	it
to	the	filesystem.	Use	the	output	path	specified	in	the	output	textbox,	along	with	the
report	name	and	format	file	extension,	to	open	a	file	stream.	Following	is	the	entire
RenderReport	method,	along	with	the	final	piece	of	code	for	writing	the	file	to	the
filesystem:

C#

private	void	RenderReport()

{

				_rsExec.Url	=	String.Format("{0}/{1}",

								txtServer.Text.TrimEnd('/'),

								"ReportExecution2005.asmx");

				Format	selectedFormat	=	(Format)reportFormatComboBox.SelectedItem;

				ReportItem	reportItem	=	(ReportItem)reportsComboBox.SelectedItem;

				REService.ParameterValue[]	parameters	=	GetReportExecutionParameters();

				byte[]	result	=	null;

				string	historyID	=	null;

				string	devInfo	=	null;

				string	encoding;

				string	mimeType;

				string	extension;

				REService.Warning[]	warnings	=	null;

				string[]	streamIDs	=	null;

				//	Make	sure	the	report	either	has	parameters

				//	that	are	set	or	has	no	parameters.

				if	((_reportHasParameters	&&	parameters.Length	!=	0)	||	

!_reportHasParameters)

				{

								_rsExec.LoadReport(reportItem.Path,	historyID);

								_rsExec.SetExecutionParameters(parameters,	"en-us");

								result	=	_rsExec.Render(selectedFormat.Name,

												devInfo,

												out	extension,

												out	encoding,

												out	mimeType,

												out	warnings,

												out	streamIDs);

								//	Make	sure	there	is	an	output	path	then

								//	output	the	file	to	the	file	system.

								if	(txtOutputFolder.Text	!=	"")

								{

												string	fullOutputPath	=	txtOutputFolder.Text	+	"\\"	+

												reportItem.Name	+	selectedFormat.Extension;

												FileStream	stream	=	File.Create(fullOutputPath,	result.Length);

												stream.Write(result,	0,	result.Length);

												stream.Close();

												MessageBox.Show("Report	Rendered	to:	"	+	fullOutputPath);

								}

								else

								{

												MessageBox.Show("Choose	a	folder	first");

								}

				}

				else

				{

								MessageBox.Show("Click	Get	Parameters	button	and	then	set	values.");

				}

}

VB

Private	Sub	RenderReport()

				_rsExec.Url	=	String.Format("{0}/{1}",	txtServer.Text.TrimEnd("/"),

				"ReportExecution2005.asmx")

				Dim	selectedFormat	As	Format	=

				DirectCast(Me.reportFormatComboBox.SelectedItem,	Format)

				Dim	reportItem	As	ReportItem	=

				DirectCast(Me.reportsComboBox.SelectedItem,	ReportItem)

				Dim	parameters	As	REService.ParameterValue()	=	

GetReportExecutionParameters()

				Dim	result	As	Byte()	=	Nothing

				Dim	historyID	As	String	=	Nothing

				Dim	devInfo	As	String	=	Nothing

				Dim	encoding	As	String

				Dim	mimeType	As	String

				Dim	extension	As	String

				Dim	warnings	As	REService.Warning()	=	Nothing

				Dim	streamIDs	As	String()	=	Nothing

				'	Make	sure	the	report	either	has	parameters	that	are	set	or	has	no	

parameters.

				If	((_reportHasParameters	AndAlso	Not	parameters.Length	=	0)	OrElse	Not

				_reportHasParameters)	Then

								_rsExec.LoadReport(reportItem.Path,	historyID)

								_rsExec.SetExecutionParameters(parameters,	"en-us")

								result	=	_rsExec.Render(selectedFormat.Name,	devInfo,	extension,	_

																																encoding,	mimeType,	warnings,	streamIDs)

								'	Make	sure	there	is	an	output	path	then	output	the	file	to	the	file

								system.

								If	(Not	txtOutputFolder.Text	=	"")	Then

												Dim	fullOutputPath	As	String	=	txtOutputFolder.Text	&	"\"	&	_

																																												reportItem.Name	&

																																												selectedFormat.Extension

												Dim	stream	As	System.IO.FileStream	=	_

														System.IO.File.Create(fullOutputPath,	result.Length)

												stream.Write(result,	0,	result.Length)

												stream.Close()

												MessageBox.Show("Report	Rendered	to:	"	&	fullOutputPath)

								Else

												MessageBox.Show("Choose	a	folder	first")

								End	If

				Else

								MessageBox.Show("Click	Get	Parameters	button	and	then	set	values.")

				End	If

End	Sub

Now	that	you	have	completed	the	code	for	rendering	the	application,	let's	try	it.	You
need	to	build	and	run	the	project.	When	the	form	opens,	enter	your	server
information	in	the	Server	Address	textbox,	and	click	the	Get	Items	button,	as	shown	in
Figure	15.12.

Figure	15.12	Reporting	Service	Rendering	application	report	list.

Select	a	report	that	takes	parameters	(the	example	uses	the	Sales	Order	Volume	by
Month	report	from	Chapter	8	exercise	1),	click	the	Get	Parameters	button,	and	then
fill	in	the	parameters,	as	shown	in	Figure	15.13.

Figure	15.13	Reporting	Service	Rendering	application.

Finally,	select	an	output	folder	and	the	rendering	format	EXCEL.	After	specifying
these	items,	you	can	click	the	Render	button	to	render	your	report.	When	the
rendering	is	complete,	you	see	a	message	box	saying	that	the	file	has	been	written	to

the	specified	location,	as	shown	in	Figure	15.14.	You	can	now	open	your	saved	file
using	Microsoft	Excel.

Figure	15.14	Confirmation	message	box.

Rendering	a	Report	to	the	Filesystem	Summary
In	this	section,	you	have	learned	the	basic	steps	of	rendering	a	report	to	the
filesystem:

Using	the	ReportingService2010	object's	ListChildren	method	to	return	a	list	of
reports

Using	the	ReportingService2010	object's	GetItemParameters	method	to	return	a
list	of	report	parameters

Using	the	Render	method	of	the	ReportExecutionService	object	to	output	your
report	in	a	given	format

These	basic	steps	can	be	used	in	numerous	applications	to	render	a	report.	Using
these	methods,	users	can	create	their	own	custom	list	of	reports	and	customer-report
parameter	pages	and	output	the	report	using	the	returned	byte	array.	In	the	next
section,	you	use	some	of	these	steps	to	render	a	report	to	the	web	via	the	Response
object.

Rendering	to	the	Web
In	the	preceding	section,	you	saw	the	mechanics	of	rendering	to	a	filesystem.
However,	most	of	today's	applications	are	written	for	the	web.	Along	with	URL
requests,	you	can	use	Reporting	Services	web	services	to	render	reports
programmatically	to	the	web.

While	doing	this,	most	of	your	steps	will	be	identical	to	rendering	to	the	filesystem;
you	simply	change	the	interface.	Using	the	ListChildren	method,	developers	can
easily	bind	a	list	of	reports	to	an	ASP.NET	GridView	or	create	a	tree	view	of	available
reports.	Likewise,	developers	could	use	the	GetItemParameters	method	to	create	their
own	web-based	parameter	interface.

Because	you	have	seen	both	the	ListChildren	and	GetItemParameters	methods,	in	this
section	you	work	more	with	the	specifics	of	developing	ASP.NET	applications.	You	see
what	kinds	of	changes	you	can	make	to	the	web.config	file	to	pass	credential
information	to	Reporting	Services.	Then	you	look	at	the	mechanics	of	rendering	to	the
ASP.NET	HttpResponse	object.

Using	Integrated	Windows	Authentication
Every	security	model	has	two	main	components:	authentication	and	authorization.	In
Reporting	Services,	you	can	use	Windows	Integrated	Authentication	within	an
ASP.NET	application	to	authenticate	users.	Before	you	start	this	example,	you	need	to
ensure	that	your	application	is	configured	to	use	Integrated	Windows	Authentication.

When	deploying	an	ASP.NET	web	application	to	leverage	Windows	Authentication,
you	need	to	open	IIS	and	change	some	settings	of	the	virtual	directory	for	your
website.	Make	sure	that	Anonymous	Access	has	been	turned	off	and	that	Integrated
Windows	Authentication	has	been	turned	on	in	IIS.	Also,	if	you	are	not	impersonating
users	in	your	web	application,	you	will	want	to	configure	the	application	pool	identity
for	your	website	with	a	service	account	and	password	that	has	access	to	the	Reporting
Services	catalog.

Using	Integrated	Windows	Authentication	in	an	ASP.NET	web	application	is	the
easiest	way	to	take	advantage	of	the	security	features	in	Reporting	Services.	Using	this
method	allows	developers	to	concentrate	on	other	areas	of	an	application	without
having	to	build	their	own	authentication	mechanism.	It	also	lets	you	take	full
advantage	of	the	Reporting	Services	role-based	security	model.

In	addition	to	updating	the	target	IIS	web	server	settings	for	your	website	to	use
Integrated	Windows	Authentication,	you	have	to	make	some	modifications	to	your
ASP.NET	web	application.

While	developing	for	ASP.NET,	you	can	leverage	the	Visual	Studio	Development
Server	to	quickly	debug	your	application.	The	only	caveat	is	that	the	web	application
will	run	under	the	identity	of	the	user	account	that	started	the	Visual	Studio
devenv.exe	process.	In	most	cases,	this	will	be	your	own	user	account,	so	you	must	be
sure	to	grant	yourself	permissions	in	the	Reporting	Services	catalog	accordingly.

For	this	demonstration,	you	need	to	create	a	new	ASP.NET	Web	Application	using
your	.NET	language	of	choice	(for	example,	C#	or	VB).

Modifying	the	web.config	File
In	the	web	application	created	for	this	demonstration,	you	want	to	pass	the	user's
security	credentials	to	the	Reporting	Services	web	service.	To	accomplish	this,	you
have	to	allow	your	ASP.NET	application	to	impersonate	the	currently	logged-on	user.
Setting	up	impersonation	requires	adding	the	following	line	of	code	to	the	web.config
file.	Place	this	line	after	the	authentication	element	in	the	file:

<identity	impersonate="true"/>

If	your	web.config	file	does	not	contain	an	authentication	element,	you	must	first	add
this	element	with	the	appropriate	mode	attribute	for	Windows	authentication,	and
place	the	identity	element	inside	of	it:

<authentication	mode="Windows"/>

<identity	impersonate="true"/>

NOTE

On	newer	systems	using	VB.NET	code,	we	have	found	it	necessary	to	add	the
following	element	to	the	Web.Config	file	within	the	system.webServer	element:

<validation	validateIntegratedModeConfiguration=	"false"/>

Adding	this	element	should	prevent	the	system	from	generating	a	migration
error	message.

Setting	Up	the	Report	Execution	Web	Service
The	example	needs	only	Rendering	functionality,	so	you	will	use	only	the	Report
Execution	web	service.	However,	you	generally	need	to	also	interact	with	the
ReportingService2010.asmx	web	service,	as	discussed	in	the	previous	section.

For	this	example,	I've	added	a	web	reference	to
http://localhost/reportserver/reportexecution2005.asmx	and	named	it	REService.

Rendering	to	the	Response	Object
Now	that	you	have	set	up	Windows	Integrated	Authentication,	modified	the
web.config	file,	you're	ready	to	write	some	code.	In	this	simple	application,	you	will
have	one	page	that	takes	in	a	report	path	and	format	from	the	URL.	You'll	use	this
information	to	call	the	Render	method	of	the	Report	Execution	web	service	object	and
write	that	information	back	to	the	response	stream.

This	example	uses	one	ASP.NET	page	called	Render.aspx.	Place	your	code	sample	in
the	page's	Page_Load	event.	This	would	be	a	logical	approach	when	developing	an
application	around	Reporting	Services.	It	allows	you	to	have	one	point	of	entry	to	the
Report	server.	The	page	could	then	be	referenced	from	other	areas	of	an	application.
For	the	entry	page,	you	will	use	a	simple	Default.aspx	page	that	has	the	path	and
format	as	a	textbox	and	drop-down	box.	The	Default.aspx	page	passes	the	Format	and
Path	parameters	to	the	Render.aspx	page	on	a	button	event.	Although	the	input	for
this	example	is	simple,	a	more	robust	example	could	be	built	using	the	same
technique	that	was	shown	in	the	previous	section.

Let's	add	some	code	to	the	page's	Page_Load	event	to	retrieve	the	report	path	and
format	from	the	HTTP	Request	object:

C#

string	path	=	Request.Params["Path"];

string	format	=	Request.Params["Format"];

VB

Dim	path	As	String	=	Request.Params("Path")

Dim	format	As	String	=	Request.Params("Format")

Now	that	you	have	the	report	path	and	format,	you	can	start	setting	up	the
ReportExecutionService	object.	This	is	an	instance	of	the	Web	Service	reference,
similar	to	what	you	did	in	the	Windows	Forms	application.	You	will	create	an	instance
of	the	ReportExecutionService	object	and	then	set	the	credentials	to	the	credentials	of
the	currently	logged-on	user:

C#

//create	the	ReportExecutionService	object

ReportExecutionService	_rsExec	=	new	ReportExecutionService();

//set	the	credentials	to	be	passed	to	reporting	services

_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

VB

'create	the	ReportingService	object

Dim	_rsExec	As	New	ReportExecutionService

'set	the	credentials	to	be	passed	to	Reporting	Services

_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials

As	soon	as	the	ReportingService	object	has	been	created	and	your	credentials	are	set,
you	can	render	the	report.	You	will	create	variables	to	pass	any	report	parameters
(none	in	this	example)	and	capture	the	report's	encoding,	MIME	type,	parameters
used,	warnings,	and	stream	IDs.	The	key	output	parameter,	through	which	you'll
render	your	report,	is	the	MIME	type.	This	parameter	tells	the	HTTP	Response	object
which	type	of	document	is	being	passed	back.	The	following	code	renders	your	report
to	the	web	application.	Notice	that	it	is	identical	to	the	code	used	in	the	Windows
Forms	application:

C#

ParameterValue[]	parameters	=	new	ParameterValue[0];

byte[]	result	=	null;

string	historyID	=	null;

string	devInfo	=	null;

string	encoding;

string	mimeType;

string	extension;

REService.Warning[]	warnings	=	null;

string[]	streamIDs	=	null;

_rsExec.LoadReport(path,	historyID);

_rsExec.SetExecutionParameters(parameters,	"en-us");

result	=	_rsExec.Render(format,	devInfo,	out	extension,

												out	encoding,	out	mimeType,	out	warnings,	out	streamIDs);

VB

Dim	parameters	As	ParameterValue()

Dim	result()	As	Byte

Dim	historyID	As	String

Dim	devInfo	As	String

Dim	encoding	As	String

Dim	mimeType	As	String

Dim	extension	As	String

Dim	warnings()	As	Warning

Dim	streamIDs()	As	String

_rsExec.LoadReport(path,	historyID)

_rsExec.SetExecutionParameters(parameters,	"en-us")

result	=	_rsExec.Render(format,	devInfo,	extension,	encoding,	_

									mimeType,	warnings,	streamIDs)

The	Render	method	of	the	ReportExecutionService	object	returns	a	byte	array	that	can
be	used	in	several	ways.	For	the	web,	you	write	this	information	directly	back	to	the
HTTP	Response	object.	Before	you	write	back	the	data,	however,	you	need	to	set	some
information	about	the	report—namely,	a	filename.	To	do	this,	you	use	the	name	of	the
report	followed	by	an	extension	that	you	determine	using	the	value	returned	in	the
extension	variable.

Now	construct	the	filename	using	the	following	code.	The	code	uses	the	information
returned	from	the	Render	method:

C#

string	reportName	=	path.Substring(path.LastIndexOf("/")	+	1);

string	fileName	=	reportName	+	"."	+	extension;

VB

Dim	reportName	As	String	=	path.Substring(path.LastIndexOf("/")	+	1)

Dim	fileName	As	String	=	reportName	&	"."	&	extension

Finally,	you	need	to	put	it	all	together	by	writing	the	data	and	file	information	back	to
the	HttpResponse	object.	Do	the	following:

1.	 Clear	any	information	that	is	already	in	the	response	buffer.

2.	 Set	the	content	type	of	the	response	equal	to	the	MIME	type	of	your	rendered
report.

3.	 Attach	your	filename	information	to	the	response	if	your	report	is	in	a	format
other	than	HTML.

4.	 Use	the	BinaryWrite	method	to	write	the	rendered	report	byte	array	directly	to	the
Response	object.

The	following	is	the	completed	code	for	the	Page_Load	event:

C#

protected	void	Page_Load(object	sender,	EventArgs	e)

{

				if	(!Request.Params.HasKeys())

								Response.Redirect("</Default.aspx");

				//get	the	path	and	output	format	from	the	query	string

				string	path	=	Request.Params["Path"];

				string	format	=	Request.Params["Format"];

				var	_rsExec	=	new	ReportExecutionService();

				_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

				//	Prepare	report	parameter.

				//	The	GetParameters	method	could	be	implemented	as	was	shown	in

				//	the	previous	section	on	rendering	to	the	file	system.

				ParameterValue[]	parameters	=	new	ParameterValue[0];

				//	Variables	used	to	render	the	report.

				byte[]	result	=	null;

				string	historyID	=	null;

				string	devInfo	=	null;

				string	encoding;

				string	mimeType;

				string	extension;

				REService.Warning[]	warnings	=	null;

				string[]	streamIDs	=	null;

				//	Load	the	report,	set	the	parameters	and	then	render.

				_rsExec.LoadReport(path,	historyID);

				_rsExec.SetExecutionParameters(parameters,	"en-us");

				result	=	_rsExec.Render(format,	devInfo,	out	extension,	out	encoding,

													out	mimeType,	out	warnings,	out	streamIDs);

				string	reportName	=	path.Substring(path.LastIndexOf("/")	+	1);

				string	fileName	=	reportName	+	"."	+	extension;

				//Write	the	report	back	to	the	Response	object.

				Response.Clear();

				Response.ContentType	=	mimeType;

				//Add	the	file	name	to	the	response	if	it	is	not	a	web	browser	format.

				if	(mimeType	!=	"text/html")

								Response.AddHeader("Content-Disposition",	"attachment;	filename="	+

																											fileName);

				Response.BinaryWrite(result);

}

VB

Protected	Sub	Page_Load(ByVal	sender	As	Object,	ByVal	e	As	System.EventArgs)

	Handles	Me.Load

				Dim	path	As	String	=	Request.Params("Path")

				Dim	format	As	String	=	Request.Params("Format")

				'create	the	ReportingService	object

				Dim	_rsExec	As	New	ReportExecutionService

				'set	the	credentials	to	be	passed	to	Reporting	Services

				_rsExec.Credentials	=	System.Net.CredentialCache.DefaultCredentials

				'prepare	report	parameters

				Dim	parameters(0)	As	ParameterValue

				'variables	used	to	render	the	report

				Dim	result()	As	Byte

				Dim	historyID	As	String

				Dim	devInfo	As	String

				Dim	encoding	As	String

				Dim	mimeType	As	String

				Dim	extension	As	String

				Dim	warnings()	As	Warning

				Dim	streamIDs()	As	String

				_rsExec.LoadReport(path,	historyID)

				_rsExec.SetExecutionParameters(parameters,	"en-us")

				result	=	_rsExec.Render(format,	devInfo,	extension,	encoding,	_

													mimeType,	warnings,	streamIDs)

				Dim	reportName	As	String	=	path.Substring(path.LastIndexOf("/")	+	1)

				Dim	fileName	As	String	=	reportName	&	"."	&	extension

				'write	the	report	back	to	the	Response	object

				Response.Clear()

				Response.ContentType	=	mimeType

				'add	the	file	name	to	the	response	if	it	is	not	a	web	browser	format

				If	mimeType	<>	"text/html"	Then

								Response.AddHeader("Content-Disposition",	"attachment;	"	_

																											&	"filename="	&	fileName)

				End	If

				Response.BinaryWrite(result)

End	Sub

This	example	demonstrates	some	of	the	key	pieces	of	code	you	can	use	to	render
reports	to	the	web.	You	first	need	to	set	the	application's	security	context	by
configuring	Windows	Integrated	Authentication	and	allowing	impersonation	from
your	application	(or	provide	credentials	for	the	application	pool	that	can	access	the
Report	server).	Next,	you	retrieve	a	report	from	Reporting	Services	by	specifying	the
report	path	and	format.	Finally,	you	use	the	rendered	report	data	along	with	its
associated	MIME	type	to	render	the	report	using	the	HTTP	Response	object.

Now	that	the	code	for	your	web	application	is	complete,	let's	take	a	look	at	using	your
Render.aspx	page.	You	can	use	a	simple	query	string	to	render	a	report.	Here's	a
sample	query	string	that	renders	the	Internet	Sales	KPI	Dashboard	report	from	the
sample	reports	in	HTML5	format:

http://localhost/Render.aspx?Path=/Wrox	SSRS	2016	Samples/Internet	Sales	KPI

Dashboard&Format=HTML5

This	URL	does	the	following:

It	calls	the	Render.aspx	page	from	your	C#	project.

It	passes	in	the	required	parameters:	the	path	(/Wrox	SSRS	2016	Samples/Internet
Sales	KPI	Dashboard)	and	the	Format	(HTML5).

Notice	that	when	you	enter	HTML	4.0	as	the	output	format,	the	report	data	is
rendered	directly	in	the	browser.	In	your	code,	the	MIME	type	of	your	HTTP	Response
is	text/html	in	this	scenario.	When	the	browser	receives	the	response,	it	recognizes
the	MIME	type	and	renders	it	directly	to	the	browser.

NOTE

Depending	on	your	security	settings,	the	web	browser	asks	if	you	want	to	save
the	HTML	page	or	open	it.	You	can	click	Open	to	view	the	report	in	the	browser.

Let's	take	a	quick	look	at	rendering	in	a	format	that	does	not	go	directly	to	the
browser.	Use	the	following	URL	to	render	the	same	Employee	List	report,	but	in
EXCELOPENXML	format:

http://localhost/Render.aspx?Path=/Wrox	SSRS	2016	Samples/Internet	Sales	KPI

Dashboard&Format=EXCELOPENXML

NOTE

When	rendering	to	Excel,	it's	a	good	idea	to	use	the	EXCELOPENXML	format,
which	is	the	standard	format	for	Excel	2007	and	newer.	Files	are	saved	with	an
.xlsx	file	extension.	The	EXCEL	format	renders	to	the	older	binary	format	with
an	.xls	file	extension.

When	you	set	the	format	to	a	document	format,	you	are	prompted	to	save	to	the
filesystem.	In	this	case,	the	MIME	type	needs	to	be	set	to	application/vnd.ms-excel.
You	also	need	to	add	header	information	to	the	HttpResponse	object	that	contains	the
filename	Internet	Sales	KPI	Dashboard.xlsx.	The	MIME	type	notifies	Internet
Explorer	or	Edge	browsers	that	you	are	sending	a	file,	and	the	added	header	gives	it
the	appropriate	filename.

In	this	section,	you	have	seen	some	of	the	base	mechanics	of	rendering	a	report	using
an	ASP.NET	application.	To	start,	you	need	to	pass	the	currently	logged-on	user's
credentials	(or	the	credential	of	the	application	pool).	You	do	this	by	setting	the
application's	virtual	directory	to	use	Windows	Integrated	Authentication	and	then
modifying	the	web.config	file	for	the	application	to	use	impersonation.	In	the	code,
you	need	to	call	the	Report	Execution	web	service	to	retrieve	the	report	along	with
content	information	such	as	MIME	type.	As	soon	as	you	have	the	binary	report	data,
you	can	write	that	information	directly	back	to	the	HttpResponse	object.

USING	THE	REPORTVIEWER	CONTROL
The	ReportViewer	control	enables	you	to	integrate	reports	into	custom	applications
with	little	program	code.	It	also	affords	detailed	management	of	many	properties	and
report	behavior	using	program	code.

A	quick	history	of	the	ReportViewer	control	is	in	order.	Since	it	was	released,	many
improvements	were	made	in	the	version	for	Visual	Studio	2010	for	SSRS	2008	but
only	a	few	changes	were	made	up	to	Visual	Studio	2015	and	the	initial	release	of	SQL
Server	2016.	Future	versions	will	be	available	for	download	separately	from	Visual
Studio,	and	it	is	likely	that	a	new	version	will	be	released	after	this	book	is	published.
Because	of	the	necessity	for	the	Microsoft	teams	to	coordinate	product	versions,	the
ReportViewer	has	historically	supported	features	of	Reporting	Services	that	are	one
version	behind	the	current	release.	(This	is	particularly	true	of	local	mode	RDLC
reports.)

The	examples	in	this	section	use	version	11	(called	the	Report	Viewer	2012	Runtime),
which	was	updated	in	2014	and	can	be	downloaded	from
https://www.microsoft.com/en-us/download/details.aspx?id=35747.

https://www.microsoft.com/en-us/download/details.aspx?id=35747

NOTE

RDLC	reports	generated	with	this	version	of	the	ReportViewer	control	support
RDL	version	2008,	which	is	currently	two	versions	behind	2016.

For	starters,	an	out-of-the-box	Reports	Application	project	is	listed	in	the	New	Project
list,	as	shown	in	Figure	15.15.

Figure	15.15	New	Project	dialog.

When	the	Reports	Application	project	template	is	selected,	it	creates	a	new	Windows
Forms	application	project	with	a	form	containing	the	ReportViewer	control	and	a
Report	RDLC	file.	It	also	automatically	starts	the	Report	Wizard,	as	shown	in	Figure
15.16.

Figure	15.16	Data	Source	Configuration	Wizard.

The	Report	Wizard	walks	you	through	creating	a	data	source,	selecting	an	existing
data	source,	saving	the	connection	information	to	the	configuration	file,	choosing	the
database	objects	you	want	to	report	on,	and	then	creating	a	report	based	on	those
objects.

The	Reports	Application	project	is	a	great	starting	point,	but	the	ReportViewer	control
can	also	be	added	to	any	custom	application.	In	Visual	Studio,	the	control	is
automatically	made	available	under	a	grouping	in	the	toolbox	called	Reporting,	as
shown	in	Figure	15.17.

Figure	15.17	ReportViewer	control	properties.

The	ReportViewer	control	is	by	far	the	most	flexible	and,	in	most	cases,	the	easiest
technique	for	adding	a	report	to	your	.NET	application.	Two	separate	but	similar
controls	are	available—.NET	Windows	Forms	and	ASP.NET	Web	Forms	applications.
All	the	user-interface	attributes	you	have	seen	in	the	Web	Portal	and	Designer
Preview	tab	can	be	managed	using	properties	of	the	control	and	can	be	set	at	design
time	in	the	Properties	window,	or	at	run	time	using	program	code.	You	can	even
dynamically	create	an	instance	of	the	control,	set	its	properties	programmatically,	and
render	a	report	without	adding	it	to	a	form	in	the	designer.

The	ReportViewer	controls	are	client-side	controls	that	do	not	need	a	SQL	Server
instance	to	be	used.	Their	only	dependency	is	the	.NET	Framework	3.51	or	newer.

The	source	data	used	by	the	controls	can	come	from	any	data	source,	not	just	SQL
Server.	The	ReportViewer	controls	themselves	don't	know	where	the	data	comes	from.
Your	application	brings	in	the	data	from	whichever	source	you	choose	and	makes	it
available	to	the	ReportViewer	controls	in	the	form	of	an	IEnumerable	collection,	such
as	ADO.NET	DataTables,	IQueryable	objects,	or	custom	collections.	The	ReportViewer
controls	don't	even	know	how	to	connect	to	databases	or	execute	queries.	By	requiring
the	host	application	to	supply	the	data,	you	can	use	the	ReportViewer	controls	with
any	data	source,	including	relational,	nonrelational,	and	nondatabase	data	sources.

Two	different	report	execution	scenarios	are	supported	in	both	types	of	the
ReportViewer	control:

Remote	Mode

Local	Mode

In	Remote	mode,	standard	RDL	reports	are	deployed	and	executed	on	the	Report
server	and	then	are	viewed	in	the	control	as	you	would	expect.	This	is	similar	to	the

approach	used	by	the	Web	Portal's	ReportViewer.aspx	page	when	accessing	reports	as
HTML	via	URL	access.

In	Local	mode,	the	ReportViewer	control	acts	as	a	mini	report-hosting	engine	that
allows	reports	to	execute	in	your	application	without	needing	a	connection	to	the
Report	server.	In	fact,	the	control	hosts	a	complete	version	of	the	SSRS	processing	and
rendering	engine,	which	makes	this	possible.	However,	this	requires	a	different
version	of	the	report	definition	file	that	has	been	retrofitted	for	client-side	execution.
The	file	is	an	RDLC	file,	where	the	C	stands	for	client-side	processing.

NOTE

The	ReportViewer	control	version	11	supports	the	RDL	2008	schema	while	in
local	processing	mode.	However,	when	executing	server	reports	in	Remote	mode,
it	does	not	support	the	SSRS	2005	version	of	the	Report	server.	Also,	for	reports
created	with	the	RDL	2010	or	2016	schema,	the	report	processing	and	rendering
are	done	on	the	server.	Therefore,	you	can	leverage	newer	features,	such	as	maps,
sparklines,	KPI	indicators,	and	report	parts	(introduced	in	2008	R2)	and
parameter	layout	(introduced	in	2016),	from	within	the	report	viewer.

Both	RDL	and	RDLC	formats	have	the	same	base	XML	schema,	but	the	latter	allows
some	of	its	XML	elements	to	contain	empty	values.	RDLC	also	ignores	the	<Query>
element	of	the	RDL	schema.	Actually,	the	<Query>	element	is	included	in	the	XML	file
only	if	the	file	began	its	life	as	an	RDL	format	and	was	later	manually	converted	to	an
RDLC.	When	client-side	processing	files	are	created	using	the	Visual	Studio	wizards,
the	generated	file	will	already	have	omitted	unnecessary	elements.	RDLC	files	may
also	contain	design-time	information	that	the	ReportViewer	control	uses	to	generate
data-binding	code.

You	can	create	an	RDLC	report	by	manually	converting	an	RDL	report	into	RDLC	by
using	the	Report	Creation	Wizard,	by	using	the	Add	New	Item	dialog	in	Visual	Studio,
or	by	generating	the	RDLC	programmatically.

The	last	option	opens	a	world	of	opportunities	for	custom	applications.	You	can	create
a	custom	user	interface	to	allow	users	to	generate	new	reports	on	the	fly	by	interacting
with	your	own	business/domain	data	model	and	then	serialize	your	in-memory	report
to	XML	based	on	the	RDL	schema.	As	soon	as	you	have	the	XML,	you	can	simply
provide	it	to	the	ReportViewer	control,	along	with	the	data,	during	execution.	In	fact,
this	is	similar	to	how	the	Report	Designer	works	inside	Visual	Studio,	except	that	it
adds	the	missing	XML	elements	related	to	data	querying	and	saves	the	serialized	XML
to	a	file	on	disk.

Embedding	a	Server-Side	Report	in	a	Windows	Application
In	the	following	exercise	you	view	a	server-side	report	in	a	Windows	Forms
application	using	the	ReportViewer	control	in	Remote	mode.	The	properties	and
methods	of	the	Web	Forms	version	of	the	control	are	nearly	identical,	making	your
code	transportable	between	Windows	and	web	application	projects.	You	start	by	just
viewing	a	report	in	your	custom	application	and	then	move	on	to	working	with	the
report's	parameters	in	your	code.

As	you	know,	the	report	rendering	interface	can	generate	several	toolbar	options	and
parameter	prompts	when	rendering	a	server	report.	You	can	either	use	these	default
UI	elements	or	replace	them	with	your	own.	When	you	start	working	with	the	report

parameters,	you	hide	the	default	prompts	and	force	the	user	to	enter	the	parameters
through	your	custom	application.	This	gives	you	much	control	over	how	the	user
interacts	with	the	report	and	allows	you	to	introduce	robust	parameter	validation
according	to	your	business	requirements.

To	get	started,	open	up	Visual	Studio,	and	select	File	 	New	 	Project.	Select	the
Windows	Forms	Application	project	template	for	either	C#	or	VB.	This	will	create	a
new	project	with	a	blank	Windows	Form	and	the	required	references.

The	example	uses	the	Sales_by_Region	report	used	throughout	this	section.	First,	you
will	add	a	form	to	your	Visual	Studio	Windows	Application	project.	Drag	and	drop	the
ReportViewer	control	onto	the	form.	Resize	and	anchor	it	to	meet	your	needs.

The	first	thing	to	notice	about	the	ReportViewer	control	is	the	drop-down	Context
menu	used	to	configure	the	control's	most	important	aspects.	The	drop-down	allows
you	to	choose	a	specific	report	or	choose	a	report	from	a	Report	server.	You	can	also
set	the	Report	server	URL	and	the	report	path,	as	well	as	kick	off	the	Report	Wizard	to
design	a	new	report	and	dock	the	report	in	the	current	container.

Set	the	Report	Server	property	to	the	local	report	server,	and	then	set	the	report	path
to	the	Sales_by_Region	report.	You	can	do	this	quickly	by	clicking	the	smart	tag
button	to	the	right	of	the	ReportViewer	control	(the	little	arrow)	to	open	the	common
tasks	dialog,	as	shown	in	Figure	15.18.

Figure	15.18	ReportViewerTasks	smart	tag	panel.

The	ReportPath	property	is	the	report	location	in	the	Report	server	catalog.	In	this
case,	we've	selected	a	report	on	the	local	server	to	display	in	the	ReportViewer	control.
The	location	of	the	Report	server	is	set	using	the	ReportServerUrl	property.	The
ReportPath	and	ReportServerUrl	properties	can	also	be	accessed	under	the
ServerReport	grouping	in	the	Properties	pane	of	the	Visual	Studio	IDE	when	the

control	has	focus	in	the	designer.

Because	you	will	use	the	Report	server	for	processing,	set	the	ProcessingMode	property
to	Remote.	This	will	cause	the	Report	server	to	query	and	retrieve	source	data	that	will
be	used	in	the	report.	In	Remote	mode,	the	ReportViewer	controls	display	reports	that
are	hosted	on	a	SQL	Server	Reporting	Services	server.	The	source	data	for	those
reports	can	come	from	any	appropriate	data	source,	not	just	SQL	Server.	This	behavior
is	normal	report	processing	behavior—specific	not	to	the	viewer	controls,	but	rather	to
the	Reporting	Services	platform.

You	are	now	ready	to	run	the	custom	application	and	view	the	report	in	a	Windows
Form,	as	shown	in	Figure	15.19.

Figure	15.19	Sample	report	with	map	and	table.

You	have	seen	a	simple	example	of	running	a	report	in	a	custom	application;	however,
you	might	also	want	to	add	functionality	to	control	the	parameters	that	the	users	see
and	select.	For	example,	let's	introduce	a	slider	(TrackBar)	that	controls	the	opacity
parameter	for	the	Bing	Maps	layer	of	this	report	to	replace	the	standard	drop-down
values.

Because	the	available	list	of	values	for	the	opacity	parameter	is	a	nonlinear	set	of	six
values	(0,	10,	25,	35,	50,	75),	you	must	create	an	array	that	maps	these	values	to	an

indexer	to	correspond	to	the	slider's	ticks.	Let's	add	this	array	as	a	private	member	to
our	form.	Then	we	can	load	it	with	values	in	the	form	constructor.	The	following	code
is	from	the	code-behind	for	the	Form1	class	(partial	class):

C#

private	int[]	_trackBarValues	=	new	int[6];

public	Form1()

{

				InitializeComponent();

				_trackBarValues[0]	=	0;

				_trackBarValues[1]	=	10;

				_trackBarValues[2]	=	25;

				_trackBarValues[3]	=	35;

				_trackBarValues[4]	=	50;

				_trackBarValues[5]	=	75;

}

VB

Private	_trackBarValues	As	Integer()	=	New	Integer(5)	{}

Public	Sub	New()

				'	This	call	is	required	by	the	designer.

				InitializeComponent()

				_trackBarValues(0)	=	0

				_trackBarValues(1)	=	10

				_trackBarValues(2)	=	25

				_trackBarValues(3)	=	35

				_trackBarValues(4)	=	50

				_trackBarValues(5)	=	75

End	Sub

Next,	we	will	add	our	new	controls	to	the	form,	above	the	ReportViewer	control,	to
collect	parameter	input	from	the	user.	We	will	need	to	add	a	label	and	combo	box
(name	it	ShowMapLayerComboBox)	for	the	parameter	ShowBingMaps	and	specify	the
values	Hidden	and	Visible	as	the	items	for	the	combo	box	by	entering	these	values	in
the	Items	property	of	the	combo	box.

Now,	add	another	label	and	a	TrackBar	control,	located	in	the	All	Windows	Forms
toolbox	group,	to	the	form	to	correspond	to	the	USStatesTransparency	parameter,
which	controls	the	opacity	level	of	the	Bing	Map	layer	when	it	is	visible.	For	the
TrackBar,	be	sure	to	set	the	properties	TickFrequency	to	1,	Minimum	to	0,	and	Maximum	to
5.	This	ensures	that	we	have	a	total	of	only	six	ticks	on	the	slider	to	map	to	the
number	of	available	values	for	this	report	parameter.	In	addition,	we'll	set	the	Enabled
property	to	false	so	that	the	slider	is	enabled	only	when	the	user	chooses	to	set	the
Bing	Maps	layer	parameter	to	visible.

Finally,	we'll	add	a	new	button	to	the	form,	give	it	the	text	“View	Report,”	and	create
an	empty	click-event	handler	method	by	double-clicking	it.	We'll	add	code	in	there
later.

Your	form	design	surface	should	look	like	Figure	15.20.

Figure	15.20	WroxReportViewer	form	running.

Now	we	need	to	edit	the	Form	Load	event	and	remove	the	line	of	code	that
automatically	refreshes	the	ReportViewer	control.	Because	we	first	will	give	the	users
a	chance	to	select	parameters,	we	don't	want	the	report	to	run	when	the	form	opens.
Also,	we'll	add	the	following	line	of	code	to	preselect	the	first	item	in	the	combo	box:

C#

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				this.ShowMapLayerComboBox.SelectedIndex	=	0;

}

VB

Private	Sub	Form1_Load(sender	As	Object,	e	As	EventArgs)	Handles	MyBase.Load

				Me.ShowMapLayerComboBox.SelectedIndex	=	0

End	Sub

With	every	property	of	the	ReportViewer	control	(except	the	parameters	that	we	are
providing	via	our	user	interface)	set	using	the	Properties	window,	the	only	necessary
code	is	to	set	our	two	parameters	and	execute	the	report.

Parameters	are	managed	as	an	array	of	ReportParameter	objects.	Because	we	are
overriding	two	of	the	required	parameters,	we	will	create	an	array	of	two	elements.
Each	element	is	populated	by	passing	the	parameter	name	and	value	to	each
ReportParameter	constructor.

To	use	the	ReportParameter	object,	you	need	to	either	add	the	following
using/Imports	statement	to	your	code,	or	instantiate	the	object	using	the	full
Microsoft.Reporting.WinForms	namespace.	Adding	the	using/Imports	statement
provides	for	much	cleaner	and	easier-to-read	code,	so	add	the	following	statements	to
your	form's	code-behind	file:

C#

using	Microsoft.Reporting.WinForms;

VB

Imports	Microsoft.Reporting.WinForms

The	report	parameters	are	populated	by	passing	the	array	to	the	SetParameters
method	of	the	ServerReport	object.

Finally,	the	ReportViewer's	RefreshReport	method	causes	report	execution	to	begin.

The	last	two	event	handlers	are	for	the	combo	box,	to	enable	or	disable	the	slider
based	on	the	selection,	and	the	button	click	event.	Here	is	the	form's	complete	code
section:

C#

using	System;

using	System.Windows.Forms;

using	Microsoft.Reporting.WinForms;

namespace	WroxReportViewer

{

				public	partial	class	Form1	:	Form

				{

								private	int[]	_trackBarValues	=	new	int[6];

								public	Form1()

								{

												InitializeComponent();

												_trackBarValues[0]	=	0;

												_trackBarValues[1]	=	10;

												_trackBarValues[2]	=	25;

												_trackBarValues[3]	=	35;

												_trackBarValues[4]	=	50;

												_trackBarValues[5]	=	75;

								}

								private	void	Form1_Load(object	sender,	EventArgs	e)

								{

												this.ShowMapLayerComboBox.SelectedIndex	=	0;

								}

								private	void	ShowMapLayerComboBox_SelectedIndexChanged(object	sender,

								EventArgs	e)

								{

												this.trackBar1.Enabled	=

																(sender	as	ComboBox).SelectedItem.ToString()

																				.Equals("visible",	StringComparison.OrdinalIgnoreCase);

								}

								private	void	button1_Click(object	sender,	EventArgs	e)

								{

												ReportParameter[]	parameters	=	new	ReportParameter[2];

												parameters[0]	=	new		ReportParameter("ShowBingMaps",

												this.ShowMapLayerComboBox.SelectedItem.ToString());

												parameters[1]	=	new	ReportParameter("USStatesTransparency",

												_trackBarValues[this.trackBar1.Value].ToString());

												reportViewer1.ServerReport.SetParameters(parameters);

												reportViewer1.ShowParameterPrompts	=	false;

												reportViewer1.ShowPromptAreaButton	=	false;

												reportViewer1.RefreshReport();

								}

				}

}

VB

Imports	System

Imports	Microsoft.Reporting.WinForms

Public	Class	Form1

				Private	_trackBarValues	As	Integer()	=	New	Integer(5)	{}

				Public	Sub	New()

								'	This	call	is	required	by	the	designer.

								InitializeComponent()

								_trackBarValues(0)	=	0

								_trackBarValues(1)	=	10

								_trackBarValues(2)	=	25

								_trackBarValues(3)	=	35

								_trackBarValues(4)	=	50

								_trackBarValues(5)	=	75

				End	Sub

				Private	Sub	Form1_Load(sender	As	Object,	e	As	EventArgs)	Handles	

MyBase.Load

								Me.ShowMapLayerComboBox.SelectedIndex	=	0

				End	Sub

				Private	Sub	ShowMapLayerComboBox_SelectedIndexChanged(sender	As	Object,	e

				As	EventArgs)	Handles	ShowMapLayerComboBox.SelectedIndexChanged

								Me.trackBar1.Enabled	=	DirectCast(sender,

								ComboBox).SelectedItem.ToString().Equals("visible",

								StringComparison.OrdinalIgnoreCase)

				End	Sub

				Private	Sub	button1_Click(sender	As	Object,	e	As	EventArgs)	_

						Handles	button1.Click

								Dim	parameters	As	ReportParameter()	=	New	ReportParameter(1)	{}

								parameters(0)	=	New	ReportParameter("ShowBingMaps",

								Me.ShowMapLayerComboBox.SelectedItem.ToString())

								parameters(1)	=	New	ReportParameter("USStatesTransparency",

								_trackBarValues(Me.trackBar1.Value).ToString())

								ReportViewer1.ServerReport.SetParameters(parameters)

								ReportViewer1.ShowParameterPrompts	=	False

								ReportViewer1.ShowPromptAreaButton	=	False

								ReportViewer1.RefreshReport()

				End	Sub

End	Class

Figure	15.21	shows	the	result.	The	report	is	displayed	in	the	ReportViewer	control
embedded	on	the	form.	The	standard	report	parameter	bar	and	prompts	are	not
displayed	in	the	top	of	the	viewer	because	they	were	suppressed	using	the	related
ReportViewer	properties.

Figure	15.21	Report	in	viewer	application.

The	ReportViewer	controls	provide	an	easy-to-implement	way	to	embed	reports	in
your	custom	web	and	Windows	applications.	They	also	give	you	complete	control	over
the	code	for	the	rest	of	the	application	to	provide	users	with	an	all-around	solution.

SUMMARY
This	chapter	showed	you	three	ways	to	render	reports	from	Reporting	Services.	The
first	part	of	the	chapter	focused	on	rendering	reports	via	URL	requests.	The	second
part	looked	at	rendering	reports	programmatically	through	the	Reporting	Services	web
services.	In	the	last	part,	you	used	the	ReportViewer	control	to	easily	embed	reports	in
a	Windows	Forms	application.

URL	rendering	gives	you	a	quick	way	to	add	Reporting	Services	reports	to	your	own
applications.	You	can	add	Reporting	Services	reports	to	custom	portals	or	create	your
own	custom	report	links	in	other	applications.

Rendering	reports	directly	through	an	ASP.NET	application	can	be	helpful.	It	allows
developers	to	create	their	own	interface	for	items	such	as	parameters	using	well-
known	UI	constructs	in	HTML.	A	key	point	to	remember	is	that	Web	Portal	uses	the
same	Reporting	Services	web	services	used	in	the	examples	in	this	chapter.	Therefore,
anything	you	can	do	from	the	Web	Portal	can	also	be	done	through	your	own	code.
This	adds	an	incredible	amount	of	flexibility	for	developers	of	custom	applications.

This	chapter	has	shown	you	how	to	do	the	following:

Use	simple	URL	query	strings	to	access	reports.

Programmatically	work	with	the	Reporting	Service	and	Report	Execution	Service
APIs.

Embed	reports	into	custom	Windows	and	web	applications.

Work	with	the	ReportViewer	control	in	Visual	Studio.

Because	the	Reporting	Services	APIs	are	implemented	as	web	services,	you	can	call
them	from	various	types	of	applications,	including	.NET	Windows	applications,
ASP.NET	web	applications,	and	.NET	console	applications.	You	can	even	use	these	web
services	from	older	applications	created	with	Visual	Basic	6.0,	VBA	applications	using
Microsoft's	SOAP	library,	or	essentially	any	application	that	can	send	a	properly
formatted	SOAP	request	to	the	Report	server.	This	flexibility	lets	you	create	a	number
of	applications,	including	those	that	use	custom	security	or	pass	parameter
information	stored	in	other	application	databases.

You	learn	to	extend	the	core	functionality	of	Reporting	Services	in	Chapter	16.	You
explore	extensibility	options	and	reasons	for	extending	Reporting	Services	with
custom	extensions	for	accessing	data,	authenticating	users,	rendering,	and	delivering
content.

Chapter	16
Extending	Reporting	Services

WHAT'S	IN	THIS	CHAPTER?

Leveraging	extensibility	options

Reasons	for	extending	SQL	Server	Reporting	Services

Creating	custom	extensions

Installing	custom	extensions

When	I	teach	Reporting	Services	and	work	with	teams	to	build	reporting	solutions,	I
find	that	certain	analogies	help	put	topics	into	perspective.	When	the	average	person
buys	a	car,	only	a	small	fraction	of	that	group	would	consider	swapping	out	the	engine
or	putting	in	a	different	exhaust	system.	Such	endeavors	require	a	lot	of	time	and
patience.	I	am	not	a	serious	grease	monkey	but	I	have	disassembled	and	installed	my
fair	share	of	car	components,	and	learned	quite	a	lot	in	the	process.	Likewise,	learning
how	reporting	extensions	work	internally	will	give	you	a	better	understanding	of	the
core	SSRS	product.	With	respect	to	Reporting	Services,	if	you	are	a	serious	mechanic
and	need	to	retrofit	your	reporting	solution;	this	chapter	is	for	you.

NOTE

Before	you	get	into	this	topic,	I	will	give	you	some	context.	In	even	the	most
serious,	large-scale	reporting	solutions,	developing	custom	extensions	for
Reporting	Services	is	quite	rare	in	practice.	I	will	caution	you	to	approach	this
option	only	if	absolutely	necessary,	after	you	have	achieved	a	firm
understanding	of	the	native	capabilities	in	the	SSRS	platform.

As	you	learned	in	previous	chapters,	Reporting	Services	is	a	robust	and	scalable
product	for	enterprise	report	processing.	In	addition,	Microsoft	has	created	Reporting
Services	using	a	modular	extensible	architecture	that	allows	users	to	customize,
extend,	and	expand	the	product	to	support	their	enterprise	business	intelligence	(BI)
reporting	needs.	This	chapter	introduces	you	to	most	of	the	areas	within	Reporting
Services	that	allow	customization	and	explains	some	of	the	reasons	that	you	might
want	to	extend	the	product.	The	Reporting	Services	extension	libraries	and	application
programming	interfaces	have	not	really	changed	since	version	2008	R2.	Therefore,
this	chapter	is	relatively	unchanged	from	the	previous	edition	of	the	book.	I	have
updated	and	tested	the	examples	to	work	with	SSRS	2016	and	Visual	Studio	2015.

The	basic	requirements	for	implementing	each	type	of	extension	are	discussed,
followed	by	a	detailed	example	of	creating	and	deploying	a	data	processing	extension.

Reporting	Services	currently	supports	extending	its	behavior	in	the	following	areas:

Data	processing	extensions	(DPEs)—Custom	DPEs	enable	you	to	access	any
type	of	data	using	a	consistent	programming	model.	This	option	is	for	you	if	you
cannot	access	your	data	using	one	of	the	currently	supported	providers	(Analysis
Services,	Hyperion	Essbase,	ODBC,	OLE	DB,	Oracle,	Report	Model,	SAP	BI
NetWeaver	Business	Intelligence,	SQL	Server,	Teradata,	SQL	Azure,	Parallel	Data
Warehouse,	SharePoint	List,	and	XML).	Microsoft	has	also	released	a	Feature	Pack
for	SQL	Server	that	provides	customized	extensions,	such	as	SAP	Relational	DB
and	DB2,	in	addition	to	the	ones	built	into	the	product.

Delivery	extensions—Do	you	want	the	report	sent	to	your	cell	phone	in	PDF
format,	or	perhaps	delivered	to	a	file	share	for	your	perusal	at	a	later	date?	The
ability	to	extend	SSRS	with	delivery	extensions	allows	you	to	manage	the	delivery
mode	and	vehicle	for	sending	report	content	for	consumption.

Delivery	extensions	allow	you	to	deliver	reports	to	users	or	groups	of	users
according	to	a	schedule.	E-mail,	network	file	shares,	and	SharePoint	content	are
the	delivery	mechanisms	currently	built	into	the	product.	There	is	also	a	delivery
extension	that	preloads	the	cache	with	pre-rendered	parameterized	reports.	This
extension,	known	as	the	“null	delivery”	extension,	is	not	exposed	to	users,	but
rather	it	is	leveraged	by	administrators	of	data-driven	subscriptions.	Creating	a

delivery	extension	is	really	a	two-part	process.	You	must	create	the	extension
itself,	as	well	as	a	UI	tool	to	manage	the	extension	if	you	want	it	to	be	usable	from
the	SSRS	Report	Manager.	The	difficulty	in	creating	a	delivery	extension	is
primarily	a	function	of	the	delivery	mechanism.

Rendering	extensions—These	control	the	type	of	document/media	that	gets
created	when	a	report	is	processed.	Theoretically,	you	could	have	Reporting
Services	create	any	type	of	media	given	the	ability	to	extend	the	product	in	this
area.	Microsoft	provides	the	following	rendering	extensions	out	of	the	box:

HTML—The	HTML	extension	generates	HTML5.	Support	for	HTML	4.0
continues	but	HTML	3.2	has	been	discontinued	in	this	version	of	Reporting
Services.

Excel—The	newer	Excel	extension	creates	Excel	2007–2016	compatible	files
using	the	Open	XML	Office	format	(XLSX).	The	older	Excel	rendering
extension,	which	generates	XLS	files	compatible	with	Excel	97	and	later,	using
the	Binary	Interchange	File	Format	(BIFF),	is	still	available	but	is	hidden	by
default	via	the	RSReportServer.config	file.	Page	breaks	defined	in	the	report
cause	separate	worksheets	to	be	rendered	in	the	resulting	workbook	file.

Word—The	new	Word	rendering	extension	creates	Word	2007–2016
compatible	files	using	the	Open	XML	Office	format	(DOCX).	The	older	Word
rendering	extension,	which	generates	DOC	files	compatible	with	Word	97	and
later,	is	still	available	but	has	been	hidden	by	default	via	the
RSReportServer.config	file.

PowerPoint—The	new	PPTX	rendering	extension	creates	PowerPoint	2007–
2016	compatible	files	using	the	Open	XML	Office	format	(PPTX).	Page	breaks
are	applied	is	if	the	report	were	printed	and	renders	one	slide	per	page.

Image—The	Image	extension	allows	you	to	export	reports	as	images	in	the
BMP,	EMF,	GIF,	JPEG,	PNG,	TIFF	(default),	and	WMF	formats.

PDF—This	extension	allows	the	generation	of	reports	in	the	Adobe	PDF
format.

CSV—Comma-separated	values	emit	the	data	fields	separated	by	commas	as
plain	text	files.	The	first	row	of	the	CSV	results	contains	the	field	names	for	the
data.

XML—This	extension	renders	the	report	in	XML	format	and	allows	for
optional	transformations	to	manipulate	the	output	of	the	rendered	markup.

Security	extensions—These	allow	you	to	authenticate	and	authorize	users	and
groups	into	a	report	server.	In	its	first	release,	Reporting	Services	supported	only
Integrated	Windows	Security	for	report	access.	This	was	a	pretty	big	problem	for
some	enterprise	players.	Most	companies	have	heterogeneous	networks	with
multiple	operating	systems	and	products.	In	a	perfect	world,	all	our	networks,
applications,	and	resources	would	support	some	form	of	“single	sign-on,”	or	at

least	would	allow	us	to	build	this	ourselves.	If	Microsoft	wanted	SQL	Server	to	be	a
key	part	of	an	Enterprise	Business	Intelligence	platform,	it	had	to	play	nicely	with
others.	Microsoft	fixed	this	problem	in	Service	Pack	1	for	SQL	Server	2000	and
made	it	a	part	of	SQL	Server	2005.	The	release	contained	fully	documented
security	extension	interfaces	and	an	example	using	ASP.NET	forms-based
authentication.	You	can	implement	your	custom	security	model	using	SSRS,	but
only	one	security	extension	can	be	used	per	Reporting	Services	instance.

Report	processing	extensions	(Custom	Report	Items)—This	extension	type
came	with	the	2005	release	of	Reporting	Services.	It	enabled	the	creation	of
custom	report	items	that	were	processed	by	the	report	processing	engine.	This
enables	us	to	extend	the	RDL	standard	to	include	functionality	not	natively
supported	by	the	RDL,	such	as	custom	maps	and	horizontal	lists.	Developers	can
also	extend	current	report	items	to	provide	alternative	versions	that	better	fit	their
needs.

Report	definition	customization	extensions—This	extension	type,	which	was
introduced	with	the	2008	release,	provides	a	hook	into	the	preprocessing	of	the
report	definition.	You	can	plug	in	custom	code	that	can	modify	the	report
definition	stream	before	it	gets	processed.	This	is	handy,	for	example,	if	you	need
to	modify	the	report's	layout	based	on	a	culture,	locale,	or	user	identity	that	is
specified	with	the	report	request.	Note	that	you	are	not	guaranteed	where	or	when
in	the	request	pipeline	the	customization	will	occur,	but	you	are	guaranteed	that	it
will	always	happen	before	the	processing	of	the	report	definition	takes	place.	For
this	extension,	a	new	interface	was	included	and	is	required	to	be	implemented:

IReportDefinitionCustomizationExtension

EXTENSION	THROUGH	INTERFACES
Reporting	Services	uses	common	interfaces	or	“extension	points”	to	allow	expanding
the	product	in	a	standard	way.	Enforcing	the	requirement	that	RS	extension	objects
must	implement	certain	interfaces	allows	Reporting	Services	to	interact	with	different
object	types	without	knowledge	of	their	specific	implementation.	This	is	a	common
object-oriented	programming	technique	used	to	abstract	the	design	from	the
implementation.

NOTE

For	an	in-depth	study	of	this	topic,	look	at	Chapter	3,	“Creational	Patterns,”	of
Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	by	Erich
Gamma,	Richard	Helm,	Ralph	Johnson,	John	M.	Vlissides,	and	Grady	Booch
(Addison-Wesley,	1994).

What	Is	an	Interface?
Most	C/C++	developers	are	intimately	familiar	with	interfaces.	Seasoned	.NET
developers	know	about	interfaces	because	we	use	them	to	interact	with	Framework
Class	Libraries	(FCLs)	and	to	program	to	contracts	for	loosely	coupled	code.	In	fact,
Reporting	Services	itself	is	exposed	to	developers	through	a	web	service	interface.	To
provide	complete	coverage	of	extending	Reporting	Services,	a	definition	and	an
explanation	of	interfaces	are	required.

So	what	is	an	interface?	An	interface	is	a	predefined	code	construct	that	forms	a
contract	between	software	components	and	defines	how	they	communicate.	The
interface	provides	an	abstraction	layer	of	its	entity	to	the	outside.

That	sounds	great,	but	what	does	it	mean?	It	simply	means	that	to	adhere	to	the
contract	defined	by	an	interface,	all	extension	components	must	contain	certain
methods,	properties,	and	so	on.

In	Reporting	Services	specifically,	it	means	that	every	extension	component	must
contain	certain	methods	defined	by	the	IExtension	interface.	Other	interface
implementations	may	be	required	as	well,	depending	on	the	type	of	extension	you	are
trying	to	create.

Interface	Language	Differences
There	are	differences	in	how	VB.NET	and	C#	require	interface	methods	to	be	declared.
C#	supports	“implicit”	interface	definitions.	If	the	method	names	and	signatures
match	those	of	an	interface	that	the	class	implements,	the	class	methods	are
automatically	mapped	to	their	associated	interface	definitions.	We	chose
System.IDisposable	for	this	example	because	many	of	the	classes	you	will	create	are
required	to	implement	it:

C#

public	class	TestClass	:	System.IDisposable

{

		//this	method	is	automatically	mapped	to	IDisposable.Dispose

		public	void	Dispose()

		{

							//write	some	code	to	dispose	of	non-memory	resources

		}

}

VB.NET	requires	explicit	interface	implementation.	To	be	mapped	correctly,	VB.NET
requires	that	you	specify	that	the	method	is	implementing	a	certain	interface.	You	do
this	with	the	Implements	keyword:

VB.NET

Public	Class	TestClass

					Implements	IDisposable

					Public	Sub	Dispose()	Implements	IDisposable.Dispose

											'write	some	code	to	dispose	of	non-memory	resources

					End	Sub

End	Class

Visual	Studio	provides	code	refactoring	features	that	assist	with	interface
implementation—specifically,	a	feature	called	Interface	AutoComplete.	When	you
indicate	that	a	class	should	implement	a	certain	interface,	Visual	Studio	can	generate
wrapper	methods	for	all	the	properties,	methods,	and	so	on	that	are	required	for	that
interface.	This	is	evident	when	viewing	a	class	in	the	Visual	Studio	Object	Explorer,
shown	in	Figure	16.1.	This	saves	a	lot	of	typing	and	is	a	great	productivity
enhancement	when	you're	creating	objects	designed	to	“plug	in	to”	an	existing
framework.

Figure	16.1	Reporting	Services	interfaces	in	Visual	Studio.

Microsoft	is	also	attempting	to	build	“best	practices”	into	Visual	Studio.	Although	the
two	examples	just	shown	are	technically	correct	in	that	they	implement	IDisposable,
they	do	not	implement	the	IDisposable	design	pattern	shown	in	the	.NET	Framework
SDK.	Allowing	Visual	Studio	to	do	the	heavy	lifting	creates	a	more	feature-complete
implementation	that	includes	consideration	for	cascading	object	chains	and	explicit
release	of	memory	and	non-memory	resources.	Visual	Studio	would	create	code
similar	to	the	following	for	IDisposable.	We	did	take	liberties	with	the	comments	to
make	it	easier	to	read:

C#

public	class	TestDispose	:	System.IDisposable

{

				private	bool	disposed	=	false;

				//IDisposable

				private	void	Dispose(bool	disposing)

				{

								if	(!	this.disposed)

								{

												if	(disposing)

												{

																//	TODO:	put	code	to	dispose	of	managed	resources	here

												}

												//	TODO:	put	code	to	free	unmanaged	resources	here

								}

								this.disposed	=	true;

				}

				//IDisposable	Support

				//Don't	change

				public	void	IDisposable.Dispose()

				{

							//	Don't	change.	Put	cleanup	code

							//	in	Dispose(bool)	above.

							Dispose(true);

							GC.SuppressFinalize(this);

				}

		//	Don't	change

		protected	void	Finalize()

		{

								Dispose(false);

								base.Finalize();

			}

}

VB.NET

Public	Class	TestDispose

				Implements	System.IDisposable

				Private	disposed	As	Boolean	=	False

				'IDisposable

				Private	Overloads	Sub	Dispose(ByVal	disposing	As	Boolean)

								If	Not	Me.disposed	Then

												If	disposing	Then

																'	TODO:	put	code	to	dispose	of	managed	resources	here

												End	If

												'	TODO:	put	code	to	free	unmanaged	resources	here

								End	If

								Me.disposed	=	True

				End	Sub

				'IDisposable	Support

				'Don't	change

				Public	Overloads	Sub	Dispose()	Implements	IDisposable.Dispose

						'	Don't	change.	Put	cleanup	code

						'	in	Dispose(ByVal	disposing	As	Boolean)	above.

						Dispose(True)

						GC.SuppressFinalize(Me)

				End	Sub

				'	Don't	change

				Protected	Overrides	Sub	Finalize()

								Dispose(False)

								MyBase.Finalize()

				End	Sub

End	Class

You	will	be	using	this	Interface	AutoComplete	feature	for	the	remainder	of	this
chapter.	Extensions	for	Reporting	Services	must	be	compiled	using	the	.NET
Framework	3.5	or	newer.	The	generated	code	for	IDisposable	is	suitable	for
demonstration	purposes,	so	we	won't	repeat	this	code	for	each	object;	we'll	simply
indicate	that	it	is	required.

A	Detailed	Look	at	Data	Processing	Extensions
Reporting	Services	allows	you	to	access	data	from	traditional	data	sources	such	as
relational	databases	using	the	existing	.NET	data	providers.	The	following	providers
are	supported	as	part	of	the	.NET	Framework	supplied	by	Microsoft:

ODBC

OLE	DB

SqlClient

DPEs	are	components	that	allow	you	to	access	data	for	use	within	Reporting	Services.
If	that	implies	a	“.NET	data	provider”	to	you,	congratulations	are	in	order.	These	two
types	of	data	access	objects	are	very	similar	and	are	based	on	a	common	set	of
interface	definitions.	If	you	have	already	built	a	custom	.NET	data	provider,	you	can
use	that	provider	with	Reporting	Services	with	no	modification.	However,	you	also	can
extend	your	existing	provider	to	offer	additional	functionality.

To	begin,	we	need	to	discuss	the	similarities	and	differences	between	a	standard	.NET
data	provider	and	a	Reporting	Services	DPE.	Let's	start	with	some	architectural
information	about	data	providers	in	general	and	then	dive	into	the	details	of	creating	a
custom	DPE.	The	.NET	Framework	has	a	data	access	object	model	named	ADO.NET,
as	shown	in	Figure	16.2.

Figure	16.2	ADO.NET	object	model.

Ever	since	Service	Pack	1	of	SSRS	on	SQL	Server	2000,	it	has	been	possible	to
customize	and	extend	the	security	model	of	Reporting	Services.	This	required	adding	a
few	things	to	the	object	model.

Here	are	the	basic	steps	for	working	with	a	data	source:

1.	 Connect	to	a	data	source.

2.	 Issue	a	command	to	manipulate	data.

3.	 Retrieve	the	results	of	your	query.

These	actions	map	directly	to	the	objects	just	described,	although	a	DataAdapter
implementation	is	not	needed	because	Reporting	Services	only	reads	the	data.

Table	16.1	lists	the	objects	that	are	normally	created	in	a	DPE	and	describes	their
responsibilities.

Table	16.1	Data	Processing	Extension	Objects

OBJECT DESCRIPTION

Connection Establishes	a	connection	to	a	specific	data	source.

Command Executes	a	command	against	a	data	source.	Exposes	a
Parameterscollection	and	can	execute	within	the	scope	of	a
transaction.

DataReader Provides	access	to	data	using	a	forward-only,	Read	Only	stream.

DataAdapter Retrieves	data	and	resolves	updates	with	the	data	source.	This	object	is
not	required	for	a	DPE	because	SSRS	only	needs	to	read	the	data	to
create	reports.

Each	of	these	objects	contains	implementation-specific	code	needed	to	create	a
connection,	issue	commands,	or	read	and	update	data.	Microsoft	has	enforced	a
consistent	data	access	mechanism	by	basing	these	objects	on	a	set	of	standard
interfaces.	You	can	use	the	Object	Explorer	to	explore	the	interfaces	that	may	be
implemented	when	creating	a	DPE,	although	not	all	of	them	are	required.	You	can
build	a	minimalist	DataExtension	by	implementing	the	required	interfaces	listed	in
Table	16.2	and	add	additional	behavior	by	implementing	the	optional	interfaces	listed
in	Table	16.3.

Table	16.2	Data	Processing	Extensions	Required	Interfaces

REQUIRED
INTERFACE

DESCRIPTION

IDataParameter Methods	to	support	passing	parameters	to	a	Command
object

IDataParameterCollection Collection	of	parameters

IDataReader Methods	used	to	read	a	forward-only,	Read	Only	data
stream

IDbCommand Represents	query	command	methods	to	be	executed
against	a	data	source

IDbConnection Unique	session	with	a	data	source

IExtension Reporting	Services–specific	interface	that	supports
localization	and	is	implemented	by	all	SSRS	extensions

Table	16.3	Data	Processing	Extensions	Optional	Interfaces

OPTIONAL
INTERFACE

DESCRIPTION

IDataReaderExtension Provides	Resultset-specific	aggregation	information

IDbCommandAnalysis Analysis	Services–specific	extension

IDbConnectionExtension Unique	session	with	a	data	source

IDbTransaction Local	transaction	(nondistributed)

IDbTransactionExtension Reporting	Services–specific	interface	that	supports
localization	and	is	implemented	by	all	SSRS	extensions

CREATING	A	CUSTOM	DATA	PROCESSING	EXTENSION
Creating	a	full-blown	data	provider	is	no	trivial	task.	The	goal	of	this	walkthrough	is	to
familiarize	you	with	the	.NET	data	access	mechanism,	as	well	as	help	you	create	and
install	a	custom	Reporting	Services	DPE.	Our	implementation	is	simplified	in	that	it
does	not	support	transactions	or	the	use	of	parameters,	and	many	of	the	methods	are
empty	unless	code	is	explicitly	required.	The	code	snippets	are	given	in	both	C#	and
VB	unless	there	is	a	reason	to	do	otherwise.

The	Scenario
The	first	release	of	Reporting	Services	(with	SQL	Server	2000)	lacked	support	for
consuming	existing	ADO.NET	DataSet	objects.	After	the	release	of	Service	Pack	1,	the
Books	Online	documentation	contained	a	sample	extension	that	used	some	of	the
dataset's	intrinsic	properties	to	allow	you	to	query	a	DataSet	object	and	limit	the
resulting	rows	based	on	certain	criteria.	The	only	problem	was	that	you	couldn't	do
complex	filtering	or	limit	the	columns	that	a	query	returned.

In	SQL	Server	2005,	Reporting	Services	gained	a	new	data	processing	extension—the
XML	data	extension.	This	enabled	reports	to	retrieve	data	from	XML	content,	which
could	be	located	in	a	file,	hosted	on	a	web	or	file	server,	or	even	better,	from	web
services.	This	new	extension	provided	an	XPATH-like	syntax	for	the	command	text,
giving	it	greater	flexibility	for	searching	through	data	within	the	XML	as	well	as
supporting	schemata	and	namespaces.	This	DPE	has	remained	largely	unchanged
through	to	the	current	SQL	Server	2016	release.

Interestingly,	many	companies	have	data	stores	that	never	really	talk	to	each	other
directly,	and	remain	isolated.	These	companies	usually	have	requirements	to	query
those	data	sources	and	create	reports	that	join	all	that	data.	SSRS	does	not	provide	an
explicit	mechanism	to	federate	data	across	multiple	servers,	besides	SQL	Server's
Linked	Server	features.	If	linked	servers	are	just	not	an	option	for	you,	you	are	left	to
come	up	with	a	creative	solution	for	the	situation.

The	XML	data	extension	may	be	useful	in	this	scenario.	You	can	set	up	a	web	service
that	does	the	dirty	work	of	joining	data	from	multiple	tables	in	memory	using
ADO.NET.	Then	all	that	SSRS	needs	to	provide	to	the	web	method	is	a	collection	of
command	texts	to	be	executed,	such	as	SQL	statements	or	stored	procedure	names,
and	the	relationship	details,	such	as	key	columns	and	types	of	joins.	Once	the	web
service	has	executed	the	commands	and	joined	the	data	tables	in	memory,	it	returns
the	XML	dataset	ready	for	SSRS	to	consume.

In	our	example,	we'll	provide	a	similar	but	more	simplistic	extension	that	shows	the
fundamental	pieces	required	to	implement	the	Reporting	Services	Interfaces	and
consume	data	from	an	XML	dataset	file.	The	ADO.NET	DataSet	type	contains	a
method	that	allows	it	to	read	in	the	data	from	XML	and	build	the	internal	data	table
that	Reporting	Services	will	consume.

Creating	and	Setting	Up	the	Project
Let's	start	by	creating	our	project.	Launch	Visual	Studio,	and	create	the	project	by
choosing	File	 	New	Project.	Change	the	name	of	the	project	to
DataSetDataExtension.	Use	the	Class	Library	template	with	the	language	of	your
choice.

NOTE

By	default,	your	project	will	target	a	recent	version	of	the	.NET	Framework.	As	of
the	current	build	of	the	Reporting	Services	components,	.NET	Framework	3.5	is
required	and	my	Visual	Studio	2015	project	works	by	default	with	version	4.5.2.
You	can	change	the	target	.NET	Framework	on	the	Application	page	of	the	project
properties.

After	you	create	your	project,	you	need	to	set	up	your	environment	to	help	you	work.
The	Visual	Basic	IDE	tends	to	hide	some	things	from	you,	so	you	will	make	some
changes	to	help	our	C#	brethren	follow	along.	The	first	thing	you	want	to	do	is	show
all	your	references.	The	default	behavior	of	VB.NET	is	to	hide	them.	Choose	Project	
Show	All	Files.	The	Explorer	tab	should	now	show	all	your	project	references.

Next,	you	need	to	add	the	references	to	the	required	Reporting	Services	DLL	file.	The
Microsoft.ReportingServices.DataProcessing	namespace	is	needed	to	implement
the	DPE	interfaces,	and	the	Microsoft.ReportingServices.Interfaces	namespace	is
needed	to	implement	the	IExtension	interface.	Both	of	these	namespaces	are	defined
in	the	same	assembly	file,	Microsoft.ReportingServices.Interfaces.dll.

The	extensions	and	their	dependencies	are	located	in	a	subdirectory	below	the
installation	directory	of	SQL	Server	itself.	We	will	call	the	SQL	Server	installation	path
<InstallPath>.	You	need	the	following	directory	for	the	SSRS	extensions	DLL:

<InstallPath>\MSRS13.MSSQLSERVER\Reporting	Services\ReportServer\bin

NOTE

On	my	machine,	this	directory	is	C:\Program	Files\Microsoft	SQL
Server\MSRS13.MSSQLSERVER1400\Reporting	Services\ReportServer\bin.

Choose	Project	 	Add	Reference.	Select	the	Browse	tab,	find	the	appropriate	directory,
and	add	the	reference.	Your	Solution	Explorer	window	should	now	look	something
like	that	shown	in	Figure	16.3.

Figure	16.3	Reference	added	to	ReportingServices.Interfaces.

Change	the	name	of	the	project	assembly	to	reflect	your	custom	namespace	for	the
project.	Choose	Project	 	Properties.	At	this	point,	you	can	either	fill	in	the	root
namespace	for	your	components	or	put	it	in	your	code.	The	sample	code	contains	the
namespaces	directly.	This	was	another	way	to	avoid	IDE	problems,	as	shown	in	Figure
16.4.

Figure	16.4	Application	page	and	assembly	information.

Most	of	the	classes	created	for	this	project	have	common	requirements.	Several	of
them	have	empty,	default	constructors,	and	all	of	them	require	the	use	of	some
common	namespaces.	The	code	shown	next	is	a	skeleton	of	how	each	class	should
look	after	you	create	it.	Replace	the	ClassName	with	the	name	of	the	class	you	are
working	on.	This	will	allow	you	to	concentrate	on	only	the	differences	between	the

objects	that	will	be	created	in	your	data	extension	project.

In	this	example,	you	will	work	with	DataSet	objects	that	are	defined	in	the
System.Data	namespace.	To	support	the	SSRS	interface	requirements,	you	should
include	the	Microsoft.ReportingServices.DataProcessing	namespace	at	the	top	of
your	classes.	This	is	the	namespace	where	the	interface	IExtension	is	defined.
Because	the	common	data	interfaces	are	defined	in	both	ADO.NET	and	SSRS
namespaces,	you	should	fully	qualify	one	of	them	to	avoid	name	collisions	and
ambiguous	reference	errors.	For	the	sake	of	saving	keystrokes,	we	will	fully	qualify
System.Data	object	types	instead	of	the	SSRS	one	when	we	use	it.	This	namespace,
however,	is	not	needed	in	the	DataSetParameter	and	DataSetParameterCollection
classes.

C#

using	System;

using	Microsoft.ReportingServices.DataProcessing;

using	System.Data;

namespace	Wrox.ReportingServices.DataSetDataExtension

{

				public	class	DataSetClassName

				{

				}

}

VB.NET

Imports	System

Imports	Microsoft.ReportingServices.DataProcessing

Imports	System.Data

Namespace	Wrox.ReportingServices.DataSetDataExtension

				Public	Class	DataSetClassName

				End	Class

End	Namespace

NOTE

You	can	also	use	namespace	aliases	to	avoid	name	collisions	between	types	in	the
ADO.NET	and	SSRS	namespaces.	The	following	snippet	shows	how	you	can	alias
the	Microsoft.ReportingServices.DataProcessing	namespace	to	a	shorter	name:

C#

using	RSDataProc	=

					Microsoft.ReportingServices.DataProcessing;

VB.NET

Imports	RSDataProc	=

					Microsoft.ReportingServices.DataProcessing;

Creating	the	DataSetConnection	Object
The	DataSetConnection	object	is	responsible	for	connecting	to	the	data	source	and
providing	a	mechanism	for	accessing	both	the	DPE-specific	Transaction	and	Command
objects.	These	responsibilities	are	enforced	through	the	IDbConnection	interface.	The
DataSetConnection	object	is	the	extension	entry	point	and	will	be	the	first	object	in
the	extension	that	will	deal	with	Reporting	Services.	As	such,	it	also	is	required	to
implement	the	IExtension	interface,	as	discussed	earlier.

Because	the	DataSetConnection	object	is	usually	responsible	for	connecting	to	an
unmanaged	resource,	it	is	required	to	implement	IDisposable.	The	aggregate	interface
for	all	these	others	is	IDbConnectionExtension,	which	is	what	you	will	implement.
Figure	16.5	shows	a	diagram	created	with	the	Visual	Studio	class	designer.	Having	the
class	designer	within	Visual	Studio	makes	it	easier	to	implement	and	understand	the
relationships	between	objects	in	a	complex	system.

Figure	16.5	Interfaces	in	Visual	Studio	Class	Designer.

To	add	the	DataSetConnection	class	to	the	project,	choose	Project	 	Add	Class.	Change
the	name	of	the	class	to	DataSetConnection.	Open	the	file	and	indicate	that	the	class
should	implement	the	IDbConnectionExtension	interface,	as	just	discussed.	Visual
Studio	creates	all	the	wrapper	methods	for	you.	Because	you	will	be	doing	file	I/O	and
using	regular	expressions	to	parse	your	ConnectionString	property,	you	need	to	add
those	namespaces	to	this	class:

C#

using	System;

using	System.IO;

using	System.Text.RegularExpressions;

using	Microsoft.ReportingServices.DataProcessing;

VB.NET

Imports	System

Imports	System.IO

Imports	System.Text.RegularExpressions

Imports	Microsoft.ReportingServices.DataProcessing

Variable	Declarations
To	maintain	state	for	your	connection	object,	you	need	to	declare	some	member
variables.	The	m_connectionString	variable	will	hold	the	connection	string	that	will	be
used	to	connect	to	the	data	source.	The	m_localizedName	variable	should	hold	a
localized	name	of	the	current	extension	used	to	list	the	extension	as	a	data	source
option	in	the	user	interface	of	tools	such	as	Visual	Studio	Report	Designer	or	SQL
Management	Studio.	The	m_fileName	variable	will	hold	the	path	to	the	DataSet	object
persisted	(serialized)	as	XML.

C#

	private	string	m_userName;

	private	string	m_password;

	private	bool	m_integrated;

	private	string	m_impersonate;

	private	string	m_connectionString	=	String.Empty;

	private	string	m_localizedName	=	"DataSet	Data	Source";

	private	string	m_fileName;

	internal	System.Data.DataSet	dataSet;

VB.NET

	Private	m_impersonate	As	String

	Private	m_integrated	As	Boolean

	Private	m_password	As	String

	Private	m_userName	As	String

	Private	m_connectionString	As	String	=	String.Empty

	Private	m_localizedName	As	String	=	"DataSet	Data	Source"

	Private	m_fileName	As	String

	Friend	dataSet	As	System.Data.DataSet	=	Nothing

Constructors
The	DataSetConnection	object	has	an	empty	default	constructor.	It	also	has	an
overloaded	constructor	that	allows	the	developer	to	create	the	object	and	initialize	the
connection	string	in	one	line	of	code.

C#

public	DataSetConnection(string	connectionString)

{

						this.m_connectionString	=	connectionString;

}

VB.NET

Public	Sub	New(ByVal	connectionString	As	String)

						Me.m_connectionString	=	connectionString

End	Sub

Implementing	IDbConnectionExtension
IDbConnectionExtension	adds	support	for	extending	the	SSRS	security	model,	which	is
used	to	authenticate	and	authorize	the	connection	to	the	data	source.	The	interface
definition	is	shown	next.	Notice	the	unusual	use	of	WriteOnly	properties:

C#

public	interface	IDbConnectionExtension	:	IDbConnection,	IDisposable,	

IExtension

{

						//	Properties

						string	Impersonate	{	set;	}

						bool	IntegratedSecurity	{get;	set;	}

						string	Password	{	set;	}

						string	UserName	{	set;	}

}

VB.NET

Public	Interface	IDbConnectionExtension

						Implements	IDbConnection,	IDisposable,	IExtension

						'	Properties

						WriteOnly	Property	Impersonate	As	String

						Property	IntegratedSecurity	As	Boolean

						WriteOnly	Property	Password	As	String

						WriteOnly	Property	UserName	As	String

End	Interface

Impersonate	Property
Windows	supports	the	concept	of	impersonation,	in	which	a	process	of	execution	can
“assume”	the	identity	of	a	set	of	assigned	security	credentials.	The	Impersonate
property	lets	you	assign	a	string	representing	the	user	account	whose	security	context
the	process	should	run	under.

C#

public	string	Impersonate

{

					set	{	m_impersonate	=	value;	}

}

VB.NET

Public	WriteOnly	Property	Impersonate()	As	String

			Implements	IDbConnectionExtension.Impersonate

						Set(ByVal	value	As	String)

											m_impersonate	=	value

						End	Set

End	Property

IntegratedSecurity	Property
The	IntegratedSecurity	property	indicates	whether	you	want	the	extension	to	run

using	Windows	security	for	both	authentication	(identifying	the	user)	and
authorization	(denying/granting	a	user	permission	to	perform	certain	actions).

C#

public	bool	IntegratedSecurity

	{

						get{	return	m_integrated;}

						set	{m_integrated	=	value;}

	}

VB.NET

Public	Property	IntegratedSecurity()	As	Boolean

					Implements	IDbConnectionExtension.IntegratedSecurity

							Get

											Return	m_integrated

							End	Get

							Set(ByVal	value	As	Boolean)

											m_integrated	=	value

							End	Set

End	Property

UserName	and	Password	Properties
The	UserName	and	Password	properties	are	used	during	the	Reporting	Services
authentication	process.	The	UserName/Password	pair	is	authenticated	against	either	the
Windows	credential	store	or	some	custom	store	you	provide.	Next,	a	principal	object
that	implements	IPrincipal	is	created	and	assigned	to	the	current	thread	of
execution.	That	object	contains	the	user's	identity	and	role	membership	information
and	is	used	to	authorize	user	access	to	system	resources	(the	data	source).	Good
security	practice	dictates	that	this	information	be	available	for	the	shortest	time
possible—thus	the	use	of	Write	Only	properties.

C#

public	string	Password

{

						set	{	m_password	=	value;	}

}

public	string	UserName

{

						set	{	m_userName	=	value;	}

}

VB.NET

Public	WriteOnly	Property	Password()	As	String

	Implements	IDbConnectionExtension.Password

									Set(ByVal	value	As	String)

														m_password	=	value

									End	Set

End	Property

Public	WriteOnly	Property	UserName()	As	String

	Implements	IDbConnectionExtension.UserName

									Set(ByVal	value	As	String)

														m_userName	=	value

									End	Set

End	Property

Implementing	IDbConnection
The	IDbConnection	interface	is	the	standard	mechanism	that	data	providers	use	to
control	the	use	of	the	DataSetConnection	object.	These	properties	and	methods	help
you	change	the	connection	settings,	open	and	close	the	connection,	and	associate	the
connection	with	a	valid	transaction.	Your	connection	object	does	not	support
transactions	because	of	its	Read	Only	nature	and	because,	in	this	DPE	example,	you
are	working	against	a	filesystem,	which	is	not	a	resource	manager.	Here	is	the
definition	of	the	IDbConnection	interface:

C#

public	interface	IDbConnection	:	IDisposable,	IExtension

{

						IDbTransaction	BeginTransaction();

						IDbCommand	CreateCommand();

						void	Open();

						void	Close();

						string	ConnectionString	{	get;	set;	}

						int	ConnectionTimeout	{	get;	}

}

VB.NET

Public	Interface	IDbConnection

			Inherits	IDisposable,	IExtension

					Function	BeginTransaction()	As	IDbTransaction

					Function	CreateCommand()	As	IDbCommand

					Sub	Open()

					Sub	Close()

					Property	ConnectionString()	As	String

					Property	ConnectionTimeout()	As	Integer

End	Interface

After	adding	the	DataSetConnection	class	to	your	project,	you	will	need	to	implement
the	IExtension	interface	as	shown	here:

C#

public	string	LocalizedName

{

				get

				{

								return	m_localizedName;

				}

}

public	void	SetConfiguration(string	configuration)	{}

VB.NET

Public	ReadOnly	Property	LocalizedName()	As	String	Implements

IDbConnection.LocalizedName

				Get

								Return	m_localizedlName

				End	Get

End	Property

Public	Sub	SetConfiguration(ByVal	configuration	As	String)	Implements

IDbConnection.SetConfiguration

End	Sub

Because	the	IDbConnection	interface	implements	IDisposable,	you	must	provide	an
implementation	for	its	Dispose()	method:

C#

public	void	Dispose()

{

				Dispose(true);

				GC.SuppressFinalize(this);

}

protected	virtual	void	Dispose(bool	disposing)

{

				if	(disposing)

				{

								this.Close();

				}

}

VB.NET

Public	Sub	Dispose()	Implements	IDisposable.Dispose

				Dispose(True)

				GC.SuppressFinalize(Me)

End	Sub

Protected	Overridable	Sub	Dispose(ByVal	disposing	As	Boolean)

				If	disposing	Then

								Me.Close()

				End	If

End	Sub

BeginTransaction	Method
The	BeginTransaction	method	is	primarily	responsible	for	initiating	a	new	transaction
and	returning	a	reference	to	a	valid,	implementation-specific	Transaction	object.	The
filesystem,	which	is	our	data	store,	does	not	support	transactions,	but	the	interface
requires	this	method.	You	need	to	ensure	that	the	developer	who	will	use	your	object
in	code	knows	this.	You	do	so	by	throwing	a	NotSupportedException.

C#

public	IDbTransaction	BeginTransaction()

{

						//	this	example	does	not	support	transactions

						throw	new	NotSupportedException("Transactions	not	supported");

}

VB.NET

Public	Function	BeginTransaction()	As	IDbTransaction	_

			Implements	IDbConnection.BeginTransaction

						'	example	does	not	support	transactions

						Throw	New	NotSupportedException("Transactions	not	supported")

End	Function

CreateCommand	Method
The	CreateCommand	method	is	responsible	for	creating	and	returning	a	reference	to	a
valid	implementation-specific	Command	object.	The	method	uses	an	overloaded
constructor	of	your	custom	Command	object	to	pass	that	object	a	reference	to	the
current	connection.	Also,	notice	that	it	will	create	and	return	a	new	instance	of	the
DataSetCommand	type,	which	you	will	be	creating	later	on.

C#

public	IDbCommand	CreateCommand()

{

						//	Return	a	new	instance	of	the	implementation-specific	command	object

						return	new	DataSetCommand(this);

}

VB.NET

Public	Function	CreateCommand()	As	IDbCommand	_

			Implements	IDbConnection.CreateCommand

						'	Return	a	new	instance	of	the	implementation-specific	command	object

						Return	New	DataSetCommand(Me)

End	Function

Open	Method
In	a	full	data	provider	implementation,	the	Open	method	is	used	to	make	a	data
source–specific	connection.	This	sample	implementation	uses	the	Open	method	to
create	an	instance	of	a	generic	dataset	object	from	ADO.NET	and	fills	it	from	the	XML
file	provided	in	your	ConnectionString	property.

C#

public	void	Open()

{

						this.dataSet	=	new	System.Data.DataSet();

						this.dataSet.ReadXml(this.m_fileName);

}

VB.NET

Public	Sub	Open()	Implements	IDbConnection.Open

						Me.dataSet	=	New	System.Data.DataSet

						Me.dataSet.ReadXml(Me.m_fileName)

End	Sub

Close	Method
The	Close	method	is	used	to	close	your	data	source–specific	connection.	You	will	use
the	Close	method	to	release	the	DataSet	object	you	have	in	memory.

C#

public	void	Close()

{

						this.dataSet	=	null;

}

VB.NET

Public	Sub	Close()	Implements	IDbConnection.Close

						Me.dataSet	=	Nothing

End	Sub

ConnectionString	Property
The	ConnectionString	property	allows	you	to	set	the	connection	string	through	code.
This	property	uses	a	private	variable	to	store	the	current	connection	string,	which
provides	the	information	needed	to	connect	to	the	data	source.	Most	developers	are
familiar	with	this	property	because	of	its	frequent	use	in	both	traditional	ADO	and
ADO.NET.	In	this	DPE	example,	the	ConnectionString	property	is	used	to	indicate	the
XML	dataset	file	that	you	will	parse	for	data.	The	user	of	your	DPE	should	input	the
path	to	the	file	he	or	she	wants	to	parse	into	the	connection	string	textbox	of	the
Report	Designer's	Dataset	dialog	or	the	shared	data	source's	Properties	page.	You	will
store	the	connection	string	value	in	the	private	member	variable	m_connectionString.

C#

public	string	ConnectionString

{

						get	{return	m_connectionString;}

						set	{m_connectionString	=	value;}

}

VB.NET

Public	Property	ConnectionString()	As	String	_

			Implements	IDbConnection.ConnectionString

						Get

												Return	m_connectionString

						End	Get

						Set(ByVal	Value	As	String)

												m_connectionString	=	Value

						End	Set

End	Property

You	want	to	enforce	that	the	value	passed	into	the	ConnectionString	property	meets

your	criteria	for	supplying	the	information	needed	to	connect	to	the	data	source.	You
want	to	enforce	that	the	string	is	in	this	format:

FileName=c:\FileName.xml

The	easiest	way	to	validate	the	string	format	is	to	use	regular	expressions.	You	need	to
modify	the	default	Set	accessor	of	the	ConnectionString	property	to	reflect	this
change.	First,	you	will	execute	the	static/shared	Match	method	of	the	Regex	class.

NOTE

You	are	passing	in	an	expression	that	basically	says	“Parse	the	connection	string
and	make	matches	on	character	arrays	that	are	preceded	by	FileName=	and	are
not	composed	of	beginning-of-line	characters	or	semicolons.”

All	that	is	left	is	to	test	to	see	if	the	filename	is	valid	and,	if	so,	assign	it	to	your	private
filename	variable.	Your	code	should	resemble	the	following:

C#

set

{

						this.m_connectionString	=	value;

						Match	m	=	Regex.Match(value,	"FileName=

([∋;]+)",RegexOptions.IgnoreCase);
						if	(!m.Success)

						{

										string	msg	=	"\"FileName=<filename>\"	must	be	present	in	the	

connection"+

																							"string	and	point	to	a	valid	DataSet	xml	file";

										throw	(new	ArgumentException(msg,	"ConnectionString"));

						}

						string	filename	=	m.Groups[1].Captures[0].ToString();

						if	(!File.Exists(filename))

						{

										string	msg	=	"Incorrect	file	name,	or	file	does	not	exist";

										throw	(new	ArgumentException(msg,	"ConnectionString"));

						}

						this.m_fileName	=	filename;

}

VB.NET

Set(ByVal	Value	As	String)

			Me.m_connectionString	=	Value

			Dim	m	As	Match	=	Regex.Match(Value,	"FileName=([∋;]+)",
															RegexOptions.IgnoreCase)

			If	Not	m.Success	Then

								Dim	msg	As	String	=	"'FileName=<filename>'	must	be	present	string	"	&

																												"and	point	to	a	valid	DataSet	xml	file"

								Throw	(New	ArgumentException(msg,	"ConnectionString"))

			End	If

			If	Not	File.Exists(m.Groups(1).Captures(0).ToString)	Then

								Throw	(New	ArgumentException("Incorrect	FileName",	

"ConnectionString"))

			End	If

			Me.m_fileName	=	m.Groups(1).Captures(0).ToString

End	Set

ConnectionTimeout	Property

The	ConnectionTimeout	property	allows	you	to	set	the	connection's	time-out	property.
This	is	used	to	control	how	long	the	interval	for	connecting	to	the	source	should	be
before	an	error	is	thrown.	Your	sample	class	does	not	actually	use	this	value,	but	it	is
implemented	for	consistency	and	because	of	interface	requirements.	Returning	a
value	of	0	indicates	that	there	is	an	infinite	time-out	period.

C#

public	int	ConnectionTimeout

{

						get

						{

												//	Returns	the	connection	time-out	value.

												//	Zero	indicates	an	indefinite	time-out	period.

												return	0;

						}

}

VB.NET

Public	ReadOnly	Property	ConnectionTimeout()	As	Integer	_

						Implements	IDbConnection.ConnectionTimeout

							Get

												'	Returns	the	connection	time-out	value.

												'	Zero	indicates	an	indefinite	time-out	period.

												Return	0

							End	Get

End	Property

Creating	the	DataSetParameter	Class
The	DataSetParameter	class	is	not	needed	until	the	command	class	is	created,	but
because	of	that	dependency,	you	do	need	to	create	it.	The	parameter	object	is	used	to
send	parameters	to	the	command	object	that	can	be	used	to	execute	commands	against
the	data	source.	Despite	the	fact	that	this	class	is	not	used	to	perform	any	work,	the
interface	requirements	of	the	command	class	force	you	to	create	it.	This	class	also	has
interface	requirements;	it	is	required	to	support	the	IDataParameter	interface	defined
in	the	Reporting	Services	DPE	assembly.

To	add	the	DataSetParameter	class	to	the	project,	choose	Project	 	Add	Class,	and
change	the	name	to	DataSetParameter.

Declarations
The	following	declarations	are	used	internally	to	hold	the	parameter's	value	and	name.
The	name	is	stored	in	a	string	variable	called	m_parameterName.	Because	the	value
variable	might	contain	any	type	of	value,	m_parameterValue	is	declared	as	an	Object
type.

C#

String	m_parameterName	=	string.Empty;

Object	m_parameterValue;

VB.NET

Dim	m_parameterName	As	String

Dim	m_parameterValue	As	Object

Implementing	IDataParameter
The	IDataParameter	interface	enforces	that	your	custom	parameter	class	allows	a
programmer	to	get	and	set	the	name	and	value	of	the	current	parameter.

C#

public	interface	IDataParameter

				{

								string	ParameterName	{	get;	set;	}

								object	Value	{	get;	set;	}

				}

VB.NET

Public	Interface	IDataParameter

				Property	ParameterName()	As	String

				Property	Value()	As	Object

End	Interface

Begin	by	adding	a	using	(C#)	or	Imports	(VB)	statement	to	include	the
Microsoft.ReportingServices.DataProcessing	namespace	in	the	DataSetParameter
class	file.	Modify	the	class	code	to	force	the	DataSetParameter	class	to	implement
IDataParameter	using	the	Interface	AutoComplete	technique	discussed	at	the
beginning	of	the	chapter.	Your	code	should	resemble	the	following.	The	wrappers	for
all	your	interface	methods	should	have	been	created	automatically	and	surrounded	by
region	tags.	Here	is	what	your	parameter	class	definition	should	look	like:

C#

namespace	Wrox.ReportingServices.DataSetDataExtension

{

				public	class	DataSetParameter	:	IDataParameter

			{

						string	m_parameterName	=	string.Empty;

						object	m_parameterValue;

VB.NET

Namespace	Wrox.ReportingServices.DataSetDataExtension

				Public	Class	DataSetParameter

								Implements	IDataParameter

						Private	m_parameterName	As	String	=	String.Empty

						Private	m_parameterValue	As	Object	=	Nothing

ParameterName	Property

The	ParameterName	property	is	used	to	store	the	parameter's	name	in	a	string	variable
called	m_parameterName.	This	field	is	typically	used	to	map	to	parameters	in	stored
procedures	but	is	unused	in	this	implementation.

C#

public	string	ParameterName

{

			get	{	return	m_parameterName;	}

			set	{	m_parameterName	=	value;	}

}

VB.NET

Public	Property	ParameterName()	As	String	Implements	

IDataParameter.ParameterName

						Get

										Return	m_parameterName

						End	Get

						Set(ByVal	Value	As	String)

										m_parameterName	=	value

						End	Set

End	Property

Value	Property
The	Value	property	is	similar	to	the	name	just	created	in	that	it	is	not	actually	used	in
this	example.	The	value	is	stored	in	an	object	variable	called	m_value.	You	will	need	to
include	the	System.Diagnostics	namespace	at	the	top	of	the	class	file,	via	the	using
(C#)	or	Imports	(VB)	keyword,	in	order	to	use	the	Debug.WriteLine()	method.

C#

public	object	Value

{

			get

			{

						Debug.WriteLine(string.Format("Getting	parameter	[{0}]	value:	[{1}]",

						this.m_parameterName,	this.m_parameterValue.ToString()));

						return	(this.m_parameterValue);

			}

			set

			{

						Debug.WriteLine(string.Format("Setting	parameter	[{0}]	value:	[{1}]",

						this.m_parameterName,	this.m_parameterValue.ToString()));

						this.m_parameterValue	=	value;

)}

VB.NET

Public	Property	Value()	As	Object	_

			Implements	IDataParameter.Value

Get

			Debug.WriteLine(String.Format("Getting	parameter	[{0}]	value:	[{1}]",	_

			Me.m_parameterName,	_

			Me.m_parameterValue.ToString))

			Return	(Me.m_parameterValue)

End	Get

Set(ByVal	Value	As	Object)

			Debug.WriteLine(String.Format("Setting	parameter	[{0}]	value:	[{1}]",	_

			Me.m_parameterName,	_

			Me.m_parameterValue.ToString))

			Me.m_parameterValue	=	Value

End	SetEnd	Property

Creating	the	DataSetParameterCollection	Class
The	DataSetParameterCollection	class	is	simply	a	collection	of	parameter	objects.
Although	you	could	have	created	a	custom	collection	class	that	implements	all	the
required	methods,	an	easier	route	exists.	The	IDataParameterCollection	interface	is
basically	a	subset	of	the	IList<T>	interface	that	is	used	to	define	other	generic
collections	in	the	.NET	Framework.	By	using	an	available	object,	you	significantly
reduce	the	required	coding	effort.	In	our	example,	T	is	the	type	IDataParameter,	which
is	implemented	by	our	custom	DataSetParameter	class.

To	add	the	DataSetParameterCollection	class	to	the	project,	choose	Project	 	Add
Class.	Change	the	name	of	the	class	to	DataSetParameterCollection.

There	is	no	need	to	create	custom	constructors	or	member	variables	for	use	in	your
collection	class.	This	is	because	you	can	use	the	internal	variables	and	constructors
that	exist	inside	the	List<T>	base	class	that	this	class	inherits	from.	The	properties
that	you	create	will	be	mapped	directly	to	properties	and	methods	that	exist	in	the
List<T>	class.

Namespaces
The	DataSetParameterCollection	class	uses	the	standard	namespaces	just	discussed.
An	additional	namespace	is	needed	because	of	the	use	of	List<T>.	You	must	add	the
System.Collections.Generic	namespace	and	a	private	variable	for	your	internal
collection.

C#

using	System;

using	Microsoft.ReportingServices.DataProcessing;

using	System.Collections.Generic;

VB.NET

Imports	System

Imports	Microsoft.ReportingServices.DataProcessing

Imports	System.Collections.Generic

Implementing	IDataParameterCollection
We	have	created	the	DataSetParameterCollection	class	by	using	an	object	wrapper
around	an	IList<T>	generic	collection.	Generics	are	a	feature	available	starting	with

.NET	2.0	and	later	versions,	so	our	example	will	not	compile	or	run	within	earlier
versions	of	the	.NET	Framework	run	time.	The	IDataParameterCollection	interface
defines	a	custom	Add	method	and	provides	methods	to	access	the	members	of	this
collection	through	the	IEnumerable	interface.	The	List<T>	base	class	implements	this
interface.	Your	class	will	use	the	internal	List<IDataParameter>	class	properties	and
methods	to	service	its	needs.	You	will	need	to	include	the	System.Collections
namespace	at	the	top	of	the	class	file,	via	the	using	(C#)	or	Imports	(VB)	keyword,	in
order	to	use	the	IEnumerable	interface.

C#

public	interface	IDataParameterCollection	:	IEnumerable

{

				int	Add(IDataParameter	parameter);

}

VB.NET

Public	Interface	IDataParameterCollection

				Inherits	IEnumerable

				Function	Add(ByVal	parameter	As	IDataParameter)	As	Integer

End	Interface

Here's	the	modified	code	in	C#:

namespace	Wrox.ReportingServices.DataSetDataExtension

{

			public	class	DataSetParameterCollection	:	IDataParameterCollection

			{

								List<IDataParameter>	paramList;

								public	DataSetParameterCollection()

								{

												paramList	=	new	List<IDataParameter>();

								}

								public	IEnumerator	GetEnumerator()

								{

												return	paramList.GetEnumerator();

								}

Here's	the	modified	code	in	VB.NET:

Namespace	Wrox.ReportingServices.DataSetDataExtension

				Public	Class	DataSetParameterCollection

					Implements	IDataParameterCollection

					Private	paramList	As	List(Of	IDataParameter)

					Public	Sub	New()

									paramList	=	New	List(Of	IDataParameter)

					End	Sub

					Public	Function	GetEnumerator()	As	IEnumerator	_

									Implements	IEnumerable.GetEnumerator

									Return	(paramList.GetEnumerator)

					End	Function

Because	most	of	the	functionality	of	the	DataSetParameterCollection	class	exists

through	the	paramList	reference,	all	you	need	to	do	is	to	create	the	wrapper	Add
method	required	by	the	IDataParameter	interface.	The	internal	collection	uses	this
method	to	add	parameters	to	an	instance	of	the	collection	object.

C#

public	int	Add(IDataParameter	parameter)

{

				paramList.Add(parameter);

				return	paramList.IndexOf(parameter);

}

VB.NET

Public	Overloads	Function	Add(ByVal	parameter	As	IDataParameter)	As	Integer	_

								Implements	IDataParameterCollection.Add

								paramList.Add(parameter)

								Return	paramList.IndexOf(parameter)

End	Function

Creating	the	DataSetCommand	Class
The	command	object	is	responsible	for	sending	commands	to	the	data	source.	This	is
enforced	by	making	the	object	implement	the	IDbCommand	interface,	which	supplies	a
standard	mechanism	for	passing	in	commands	to	be	executed	against	the	data	source.
It	also	supplies	parameters	that	might	be	needed	in	the	process	of	executing	these
commands.	Finally,	it	defines	a	property	that	allows	the	developer	to	associate	the
command	with	a	Transaction	object.	Your	implementation	is	simplified	in	that	it	does
not	support	transactions	or	parameters.

In	your	implementation,	this	class	is	where	the	majority	of	the	work	is	done.	You	need
to	process	the	command	text	to	know	what	data	the	user	wants.	You	must	validate
that	this	text	conforms	to	your	requirements,	and	then	you	need	to	create	the	internal
data	reference	that	will	supply	the	data	for	the	data	reader	object	to	process.	You	will
use	some	of	the	built-in	behaviors	of	the	System.Data.DataSet	class	to	satisfy	your
needs.

To	add	the	DataSetCommand	class	to	the	project,	choose	Project	 Add	Class.	Change	the
name	of	the	class	to	DataSetCommand.	Use	the	Interface	AutoComplete	feature	to	have
Visual	Studio	create	the	wrappers	for	the	methods	you	will	implement.	Most	of	the
functionality	that	exists	in	this	extension	will	live	in	this	class.	You	will	need	to
include	the	Microsoft.ReportingServices.DataProcessing	namespace	at	the	top	of
the	class	file,	via	the	using	(C#)	or	Imports	(VB)	keyword,	in	order	to	use	the
Debug.WriteLine()	method.

Variable	Declarations
Because	most	of	our	work	is	done	in	this	class,	it	makes	sense	that	most	of	our	code	is
also	in	it.	First,	you	need	to	create	variables	to	hold	your	property	data.	This	class
actually	will	be	a	wrapper	around	some	of	the	built-in	DataSet	functionality,	so	you

will	need	reference	variables	for	the	dataset	objects	as	well	as	other	variables	used	for
text	parsing	and	the	like.	To	avoid	being	repetitive,	we'll	discuss	the	variables	in	more
depth	where	they	are	used.	You	will	need	to	include	the
System.Text.RegularExpressions	namespace	at	the	top	of	the	class	file,	via	the	using
(C#)	or	Imports	(VB)	keyword,	in	order	to	use	the	regular	expression–specific	types.

C#

//member	variables

int	m_commandTimeOut	=	0;

string	m_commandText	=	string.Empty;

DataSetConnection	m_connection;

DataSetParameterCollection	m_parameters;

//dataset	variables

string	tableName	=	string.Empty;

System.Data.DataSet	dataSet	=	null;

internal	System.Data.DataView	dataView	=	null;

//regex	variables

MatchCollection	keywordMatches	=	null;

Match	fieldMatch	=	null;

//regex	used	for	getting	keywords

Regex	keywordSplit	=	new	Regex(@"(Select|From|Where|	Order[\s]	+By)",

				RegexOptions.IgnoreCase	|	RegexOptions.Multiline

				|	RegexOptions.IgnorePatternWhitespace	|	RegexOptions.Compiled);

//	regex	used	for	splitting	out	fields

Regex	fieldSplit	=	new	Regex(@"([∧,\s]+)",
				RegexOptions.IgnoreCase	|	RegexOptions.Multiline

				|	RegexOptions.Compiled	|	RegexOptions.IgnorePatternWhitespace);

//internal	constants

const	int	SELECT_POSITION	=	0;

const	int	FROM_POSITION	=	1;

const	string	TEMPTable_NAME	=	"TempTable";

//these	variables	can	change

int	keyWordCount	=	0;

int	wherePosition	=	2;

int	orderPosition	=	3;

bool	filtering	=	false;

bool	sorting	=	false;

bool	useDefaultTable	=	false;

VB.NET

'property	variables

	Private	m_cmdTimeOut	As	Integer	=	0

	Private	m_commandText	As	String	=	String.Empty

	Private	m_connection	As	DataSetConnection

	Private	m_parameters	As	DataSetParameterCollection	=	Nothing

'dataset	variables

	Private	tableName	As	String	=	String.Empty

	Private	dataSet	As	FCLData.DataSet

	Friend	dataView	As	FCLData.DataView

'regex	variables

	Private	keywordMatches	As	MatchCollection

	Private	fieldMatch	As	Match

	Private	tableMatch	As	Match

	Private	keywordSplit	As	Regex	=	New	Regex("(Select|From|Where|	Order[\s]	

+By)",_

									RegexOptions.IgnoreCase	Or	RegexOptions.Multiline	Or	_

									RegexOptions.IgnorePatternWhitespace	Or	RegexOptions.Compiled)

	Private	fieldSplit	As	Regex	=	New	Regex("([∧	,\s]+)",	
RegexOptions.IgnoreCase	Or	_

									RegexOptions.Multiline	Or	RegexOptions.Compiled	Or	_

									RegexOptions.IgnorePatternWhitespace)

'constants

	Private	tempTableName	As	String	=	"TempTable"

	Private	selectPosition	As	Integer	=	0

	Private	fromPosition	As	Integer	=	1

	Private	wherePosition	As	Integer	=	2

	Private	orderPosition	As	Integer	=	3

'internal	variables

	Private	keyWordCount	As	Integer	=	0

	Private	filtering	As	Boolean	=	False

	Private	sorting	As	Boolean	=	False

	Private	useDefaultTable	As	Boolean	=	False

Constructors
You	want	the	users	of	your	processing	extension	to	be	forced	to	create	the	Command
object	either	through	the	CreateCommand	method	of	the	IDbConnection	interface,	or	by
passing	in	a	valid	DataSetConnection	object	as	a	parameter.	The	purpose	is	to	ensure
that	you	have	access	to	the	underlying	DataSet	object	created	and	parsed	in	the
connection	process.	You	can	do	this	by	deleting	or	not	providing	an	empty	default
constructor.	This	prevents	the	developer	from	creating	the	DataSetCommand	object
without	the	correct	initialization.	In	the	constructor,	you	want	to	get	a	reference	to	the
DataSet	that	you	opened	from	the	filesystem	in	your	connection	object.

C#

internal	DataSetCommand(DataSetConnection	conn)

{

						this.m_connection	=	conn;

						this.dataSet	=	this.m_connection.dataSet;

						this.m_parameters	=	new	DataSetParameterCollection();

}

VB.NET

Friend	Sub	New(ByVal	conn	As	DataSetConnection)

							Me.m_connection	=	conn

							Me.dataSet	=	Me.m_connection.dataSet

							Me.m_parameters	=	New	DataSetParameterCollection

End	Sub

Implementing	IDbCommand
The	required	interface	for	all	Command	objects	is	called	IDbCommand.	It	consists	of
methods	that	allow	the	developer	to	pass	commands	and	parameters	to	the	Command
object.	The	most	interesting	method	in	our	implementation	is	the	CommandText

method,	where	you	will	parse	the	command	string	provided	by	the	user	and	return	the
appropriate	data.

C#

public	interface	IDbCommand	:	IDisposable

{

						void	Cancel();

						IDataReader	ExecuteReader(CommandBehavior	behavior);

						string	CommandText	{	get;	set;	}

						int	CommandTimeout	{	get;	set;	}

						CommandType	CommandType	{	get;	set;	}

						IDataParameter	CreateParameter();

						IDataParameterCollection	Parameters	{	get;	}

						IDbTransaction	Transaction	{	get;	set;	}

}

VB.NET

Public	Interface	IDbCommand

				Inherits	IDisposable

						Sub	Cancel()

						Function	ExecuteReader(ByVal	behavior	As	CommandBehavior)	As	

IDataReader

						Property	CommandText()	As	String

						Property	CommandTimeout()	As	Integer

						Property	CommandType()	As	CommandType

						Function	CreateParameter()	As	IDataParameter

						Property	Parameters()	As	IDataParameterCollection

						Property	Transaction()	As	IDbTransaction

End	Interface

Now	that	you	have	created	the	method	wrappers	and	all	the	variables	you	need	to
work,	you	can	begin	implementing	your	IDbCommand	methods.

Cancel	Method
The	Cancel	method	is	typically	used	to	cancel	a	method	that	has	been	queued.	Most
implementations	of	data	providers	are	multithreaded	and	support	the	issue	of
multiple	commands	against	the	data	store.	You	created	this	method	only	to	support
the	IDbCommand	interface	requirements.	You	should	inform	the	developer	of	your	lack
of	support	by	throwing	a	NotSupportedException.	You	will	need	to	include	the
System.Diagnostics	namespace	at	the	top	of	the	class	file,	via	the	using	(C#)	or
Imports	(VB)	keyword,	in	order	to	use	the	Debug.WriteLine()	method.

C#

public	void	Cancel()

{

			Debug.WriteLine("IDBCommand.Cancel");

			throw	(new	NotSupportedException("IDBCommand.Cancel	currently	not	

supported"));}

VB.NET

Public	Sub	Cancel()	_

						Implements	IDbCommand.Cancel

			Debug.WriteLine("IDBCommand.Cancel")

			Throw	New	NotSupportedException("IDBCommand.Cancel	currently	not	

supported")

End	Sub

ExecuteReader	Method
The	ExecuteReader	method	returns	an	extension-specific	reader	object	to	the	caller	so
that	it	can	loop	through	and	read	the	data.	The	DataSetCommand	object	creates	an
instance	of	your	custom	reader	object	by	executing	this	method.	A	reference	to	your
custom	data	reader	is	then	returned.	Your	implementation	actually	builds	a	temporary
table	with	a	schema	built	based	on	the	query	issued	by	the	user.	You	don't	want	to	fill
this	temporary	table	unless	the	user	actually	requests	the	data,	so	you	are	checking	to
see	if	it	is	a	schema-only	command.

You	are	also	checking	to	see	if	the	users	indicated	that	they	want	all	the	fields
available	from	the	data	source.	If	that	is	the	case,	you	use	a	view	of	the	default
DataTable,	which	already	contains	all	the	data.	Notice	that	you	will	return	a	new
DataSetDataReader,	which	you	will	create	later	in	the	chapter.

C#

public	IDataReader	ExecuteReader	(CommandBehavior	behavior)

{

						if(!(behavior	==	CommandBehavior.SchemaOnly)	&&	!useDefaultTable)

						{

									FillView();

						}

						return	(IDataReader)	new	DataSetDataReader(this);

	}

private	void	FillView()

{

						System.Data.DataRow	tempRow	=	null;

						string[]	tempArray	=	null;

						int	count;

						count	=	this.dataSet.Tables[TEMPTable_NAME].Columns.Count;

						tempArray	=	new	string[count];

						foreach	(System.Data.DataRow	row	in	

this.dataSet.Tables[this.tableName].Rows)

						{

									tempRow	=	this.dataSet.Tables[TEMPTable_NAME].NewRow();

									foreach	(System.Data.DataColumn	col	in	

this.dataSet.Tables[TEMPTable_NAME

										.Columns)

									{

													tempArray[col.Ordinal]	=	row[col.ColumnName].ToString();

									}

									tempRow.ItemArray	=	tempArray;

									this.dataSet.Tables[TEMPTable_NAME].Rows.Add(tempRow);

						}

						//	go	ahead	and	clean	up	the	array	instead	of	waiting	for	the	GC

						tempArray	=	null;

}

VB.NET

Public	Function	ExecuteReader(ByVal	behavior	As	CommandBehavior)	As	

IDataReader	_

		Implements	IDbCommand.ExecuteReader

				If	Not	(behavior	=	CommandBehavior.SchemaOnly)	AndAlso	Not	

useDefaultTable	Then

											FillView()

				End	If

				Return	CType(New	DataSetDataReader(Me),	IDataReader)

End	Function

Private	Sub	FillView()

						Dim	tempRow	As	System.Data.DataRow	=	Nothing

						Dim	tempArray	As	String()	=	Nothing

						Dim	count	As	Integer

						count	=	Me.dataSet.Tables(tempTableName).Columns.Count

						tempArray	=	New	String(count	-	1)	{}

						For	Each	row	As	System.Data.DataRow	In	

Me.dataSet.Tables(Me.tableName).Rows

												tempRow	=	Me.dataSet.Tables(tempTableName).NewRow

												For	Each	col	As	System.Data.DataColumn	In	_

Me.dataSet.Tables(tempTableName).Columns

																		tempArray(col.Ordinal)	=	row(col.ColumnName).ToString

												Next

												tempRow.ItemArray	=	tempArray

												Me.dataSet.Tables(tempTableName).Rows.Add(tempRow)

						Next

End	Sub

CommandText	Property
Reporting	Services	does	not	manually	create	a	separate	Command	object.	It	uses	the
CreateCommand	method	of	the	IDbConnection	interface	to	return	an	implementation-
specific	Command	object.	We	will	use	the	CommandText	property	to	help	us	build	the	data
schema	that	we	will	return,	as	well	as	fill	our	data	source	for	use	of	Reporting
Services.	This	method	has	been	broken	into	methods	reflecting	the	actual	work	being
done	and	to	facilitate	this	discussion.	Notice	the	ValidateCommandText	method.	It	is
the	entry	point	for	your	text-parsing	and	table-building	process	and	you	will	create	it
later	in	the	chapter.	You	will	need	to	include	the	System.Diagnostics	namespace	at
the	top	of	the	class	file,	via	the	using	(C#)	or	Imports	(VB)	keyword,	in	order	to	use
the	Debug.WriteLine()	method.

C#

public	string	CommandText

	{

				get

					{

									Debug.WriteLine("IDBCommand.CommandText:	Get	Value	="	+

									this.m_commandText);

									return	this.m_commandText;

					}

				set

					{

									Debug.WriteLine("IDBCommand.CommandText:	Set	Value	="	+	value);

									ValidateCommandText(value);

									this.m_commandText	=	value;

					}

}

VB.NET

Public	Property	CommandText()	As	String	Implements	IDbCommand.CommandText

					Get

							Debug.WriteLine("IDBCommand.CommandText:	Get	Value	="	&

							Me.m_commandText)

Return	(Me.m_commandText)

					End	Get

					Set(ByVal	value	As	String)

										Debug.WriteLine("IDBCommand.CommandText:	Get	Value	="	&

										Me.m_commandText)

									ValidateCommandText(value)

										Me.m_commandText	=	value

					End	Set

End	Property

The	ValidateCommandText	method	is	used	to	parse	the	command	text	to	ensure	that	it
meets	the	requirements	for	the	extension.	The	first	step	is	to	apply	the	keywordSplit
regular	expression	that	was	defined	in	the	member	variable	section.	The	regular
expression	is	(Select|From|Where|Order[\s]	+By),	which	could	be	translated	into
English	as	follows:	“Match	the	keywords	Select,	From,	Where,	and	Order,	where	each	is
followed	by	the	word	By,	but	allow	spaces	and	nonvisible	characters	between	them.”
After	you	have	parsed	the	statement,	you	can	make	some	basic	assumptions	based	on
the	number	of	matches.	At	a	minimum,	you	require	that	the	user	tell	you	the	Field
names	and	the	table	name	that	he	or	she	wants	to	pull	the	information	from.	This
means	that	you	must	have	a	Select	keyword,	followed	by	a	Field	List,	and	a	From
keyword,	followed	by	a	table	name.	Thus,	the	minimum	keyword	count	is	2.	If	you
have	a	keyword	count	greater	than	2,	you	know	that	the	user	has	given	you	either	a
filtering	criterion	such	as	Where	userID	=	3	or	a	sort	criterion	such	as	Order	by
lastname	ASC.	You	can	find	out	which	by	checking	the	value	in	the	third	position.	If
that	value	is	a	Where	clause,	you	can	assume	that	the	user	wants	filtering.	If	it	is	not,
assume	that	sorting	is	the	order	of	the	day.	If	the	count	is	4,	you	know	that	both
filtering	and	sorting	are	needed.	The	ValidateCommandText	method	will	also	call	other
Validate	methods,	which	are	discussed	and	implemented	in	the	following	paragraphs.

C#

private	void	ValidateCommandText(string	cmdText)

{

						keywordMatches	=	keywordSplit.Matches(cmdText);

						keyWordCount	=	keywordMatches.Count;

						switch	(keyWordCount)

						{

										case	4:

														sorting	=	true;

														filtering	=	true;

														break;

										case	3:

														if	(keywordMatches	[keyWordCount	-	1

																		.ToString()

																		.ToUpper()	==	"WHERE")

																		filtering	=	true;

														else

														{

																		sorting	=	true;

																		orderPosition	=	2;

														}

														break;

										case	2:

														break;

										default:

														string	msg	=	"Command	Text	should	start	with	'select	<fields>	"	

+

																											"from	<tablename>'";

														throw	new	ArgumentException(msg);

						}

						ValidateTableName(cmdText);

						ValidateFieldNames(cmdText);

					if	(filtering)

					{

									ValidateFiltering(cmdText);

					}

					if	(sorting)

					{

									ValidateSorting(cmdText);

					}

}

VB.NET

Private	Sub	ValidateCommandText(ByVal	cmdText	As	String)

						keywordMatches	=	keywordSplit.Matches(cmdText)

						keyWordCount	=	keywordMatches.Count

						Select	Case	keyWordCount

												Case	4

																sorting	=	True

																filtering	=	True

																'	break

												Case	3

																If	keywordMatches	(keyWordCount	-	1).ToString.ToUpper	=	_

																			"WHERE"	Then

																				filtering	=	True

																Else

																				sorting	=	True

																End	If

												Case	Else

																Dim	msg	As	String	=	"Command	Text	should	start	with	'select	"	

&	_

																																				"<fields>	from	<tablename>'"

																Throw	(New	ArgumentException(msg))

						End	Select

						ValidateTableName(cmdText)

						ValidateFieldNames(cmdText)

						If	filtering	Then

												ValidateFiltering(cmdText)

						End	If

						If	sorting	Then

												ValidateSorting(cmdText)

						End	If

End	Sub

The	next	step	in	the	process	is	validating	that	the	table	name	and	Field	names
provided	by	the	user	are	valid.	You	have	created	methods	specifically	for	this	purpose.
Shown	next	is	the	ValidateTableName	method.	In	the	member	declaration	section,
constant	values	were	created,	indicating	the	assumed	positions	of	the	keywords	within
the	command	text.	The	table	name	must	immediately	follow	the	From	keyword.	You
then	use	that	keyword's	position	to	locate	the	table	name.	Next,	you	check	to	see	if
your	internal	DataSet	contains	this	table.	If	so,	the	table	name	is	valid;	otherwise,	it	is
invalid.

C#

private	void	ValidateTableName(string	cmdText)

{

						//Get	tablename

						//get	1st	match	starting	at	end	of	from

						fieldMatch	=	fieldSplit.Match(cmdText,

																							(keywordMatches	[FROM_POSITION].Index)

											+	keywordMatches	[FROM_POSITION].Length	+	1);

						if(fieldMatch.Success)

						{

										if(this.dataSet.Tables.Contains(fieldMatch.Value))

										{

														this.tableName	=	fieldMatch.Value;

										}

										else

										{

														throw	new	ArgumentException("Invalid	Table	Name");

										}

						}

}

VB.NET

Private	Sub	ValidateTableName(ByVal	cmdText	As	String)

						fieldMatch	=	fieldSplit.Match(cmdText,	_

						(keywordMatches	(FROM_POSITION).Index)	+	_

										keywordMatches	(FROM_POSITION).Length	+	1)

						If	fieldMatch.Success	Then

										If	Me.dataSet.Tables.Contains(fieldMatch.Value)	Then

														Me.tableName	=	fieldMatch.Value

										Else

														Throw	New	ArgumentException("Invalid	Table	Name")

										End	If

						End	If

End	Sub

The	next	step	is	to	validate	the	Field	names.	You	also	want	users	to	be	able	to	use	the
*	character	to	indicate	that	they	want	all	the	fields	without	having	to	list	them
individually.	This	is	standard	SQL	syntax.	You	need	to	parse	all	the	text	between	the
Select	statement	and	the	From	statement.	You	do	this	using	the	constant	values
created	earlier	to	signify	character	position	and	a	regular	expression	to	pull	out	exactly
what	you	are	interested	in.

The	fieldSplit	regular	expression	looks	like	([^	,\s]+).	In	English,	this	reads	as
follows:	“Match	all	character	groups	that	do	not	contain	spaces,	commas,	and
nonvisible	white	space	and	that	have	spaces	at	the	end.”	If	the	first	field	is	an	asterisk,
you	know	that	the	user	wants	all	fields.	This	means	that	you	do	not	have	to	build	a
temporary	table	to	reflect	the	schema	and	that	you	can	use	the	table	she	requested	in
the	From	portion	of	the	text.	If	the	first	field	is	not	an	asterisk,	you	must	build	a
temporary	table	reflecting	the	schema	of	the	data	you	will	return.	To	avoid	problems
with	a	user	changing	the	fields,	and	the	temp	table	previously	existing,	you	will	simply
test	for	its	existence	each	time	and	remove	it	if	you	must.

Next,	you	check	to	see	whether	the	Field	names	exist	in	your	main	table	by	testing	to
see	whether	the	column	names	exist.	If	they	do,	the	column	is	valid,	and	you	add	a
column	with	this	name	to	your	new	temp	table.	You	continue	to	do	this	as	long	as	the
Field	names	are	valid.	If	an	invalid	field	is	submitted,	you	throw	an	exception	to	make
the	user	aware	of	her	mistake.

C#

public	void	ValidateFieldNames(string	cmdText)

{

				//get	fieldnames

				//get	first	match	starting	at	the	last	character	of	the	Select

				//	with	a	length	from	that	position	to	the	from

				fieldMatch	=	fieldSplit.Match(cmdText,

				(keywordMatches	[SELECT_POSITION].Index	+

									keywordMatches	[SELECT_POSITION].Length	+	1),

				(keywordMatches	[FROM_POSITION].Index	-

									(keywordMatches	[SELECT_POSITION].Index	+

													keywordMatches	[SELECT_POSITION].Length	+	1)));

				if	(fieldMatch.Value	==	"*")		//	all	fields,	use	default	view

				{

								this.dataView	=	this.dataSet.Tables[this.tableName].DefaultView;

								this.useDefaultTable	=	true;

				}

				else			//custom	fields	:		must	build	table/view

				{

								//don't	use	default	table

								this.useDefaultTable	=	false;

								//remove	table	if	exists	-	add	new

								if	(this.dataSet.Tables.Contains(TEMPTable_NAME))

								{

												this.dataSet.Tables.Remove(TEMPTable_NAME);

								}

								System.Data.DataTable	table	=	new	

System.Data.DataTable(TEMPTable_NAME);

								//loop	through	column	matches

								while	(fieldMatch.Success)

								{

												if	(this.dataSet.Tables[this.tableName

																								.Columns.Contains(fieldMatch.Value))

												{

																System.Data.DataColumn	col	=	

this.dataSet.Tables[this.tableName

																								.Columns[fieldMatch.Value];

																table.Columns.Add(

																								new	System.Data.DataColumn(col.ColumnName,	

col.DataType));

																fieldMatch	=	fieldMatch.NextMatch();

												}

												else

												{

																throw	new	ArgumentException("Invalid	column	name");

												}

								}

								//add	temptable	to	internal	dataset	and	set	view	to	tempView;

								this.dataSet.Tables.Add(table);

								this.dataView	=	new	System.Data.DataView(table);

				}

}

VB.NET

Private	Sub	ValidateFieldNames(ByVal	cmdText	As	String)

				fieldMatch	=	fieldSplit.Match(cmdText,	_

(keywordMatches	(selectPosition).Index	+	_

keywordMatches	(selectPosition).Length	+	1),	_

(keywordMatches	(fromPosition).Index	-		keywordMatches	(selectPosition).Index	

_

	+	keywordMatches	(selectPosition)

.Length	+	1)))

				If	fieldMatch.Value	=	"*"	Then

								Me.dataView	=	Me.dataSet.Tables(Me.tableName).DefaultView

								Me.useDefaultTable	=	True

				Else

									Me.useDefaultTable	=	False

									If	Me.dataSet.Tables.Contains(Me.tempTableName)	Then

														Me.dataSet.Tables.Remove(Me.tempTableName)

									End	If

									Dim	table	As	DataTable	=	New	DataTable(Me.tempTableName)

									While	fieldMatch.Success

														If	Me.dataSet.Tables(Me.tableName).Columns	_

																																																	.Contains(fieldMatch.Value)	

Then

																			Dim	col	As	DataColumn	=	dataSet.Tables(tableName)	_

																																																			.Columns(fieldMatch.Value)

																			table.Columns.Add(New	DataColumn(col.ColumnName,	

col.DataType))

																			fieldMatch	=	fieldMatch.NextMatch

														Else

																			Throw	New	ArgumentException("Invalid	column	name")

														End	If

									End	While

									Me.dataSet.Tables.Add(table)

									Me.dataView	=	New	System.Data.DataView(table)

				End	If

End	Sub

Assuming	that	the	table	name	is	valid	and	that	all	the	requested	fields	are	valid,	you
will	use	the	temp	table	you	have	built	to	satisfy	data	access	requirements.	The	only
thing	left	to	do	is	add	the	new	table	to	the	existing	dataset.

You	have	now	validated	all	the	parts	of	your	query	except	the	filtering	and	sorting
criteria.	In	the	CommandText	method,	you	test	whether	filtering	and	sorting	are	enabled
based	on	your	keyword	count.	If	they	are	enabled,	you	execute	a	method	that	uses	the
internal	behavior	of	the	DataSet	class	to	do	the	work.	In	the	ValidateFiltering()
method,	you	need	to	parse	the	text	based	on	the	keyword	count.	You	need	to	either
grab	all	the	text	after	the	Where	clause	or,	if	an	order	clause	exists,	stop	there.

C#

public	void	ValidateFiltering(string	cmdText)

	{

				if(filtering)

				{

									int	startPos	=0;

									int	length	=0;

									startPos	=	keywordMatches	[wherePosition].Index	+

													keywordMatches	[wherePosition].Length	+	1;

									if(keyWordCount	==	3)		//no	"order	by"	-	Search	from	Where	till		end

									{

													length	=	cmdText.Length-startPos;

									}

									else	//	"order	by"	exists	-		search	from	where		position	to	"order	

by"

									{

													length	=	keywordMatches	[orderPosition].Index	-	startPos;

									}

									this.dataView.RowFilter	=	cmdText.Substring(startPos,length);

				}

	}

VB.NET

Private	Sub	ValidateFiltering(ByVal	cmdText	As	String)

			If	filtering	Then

							Dim	startPos	As	Integer	=	0

							Dim	length	As	Integer	=	0

							startPos	=	(keywordMatches	(wherePosition).Index	+	_

									keywordMatches	(wherePosition).Length	+	1)

							If	keyWordCount	=	3	Then

													length	=	cmdText.Length	-	startPos

							Else

													length	=	keywordMatches	(orderPosition).Index	-	startPos

							End	If

							Me.dataView.RowFilter	=	cmdText.Substring(startPos,	length)

				End	If

End	Sub

After	you	parse	the	text,	you	will	use	the	DataView.RowFilter	property	to	filter	the
results.	Simply	apply	the	string	you	extracted	to	the	RowFilter,	and	the	DataView	class
takes	care	of	the	rest.	The	same	technique	is	applied	to	get	ordering.

C#

public	void	ValidateSorting(string	cmdText)

{

							if(sorting)

							{

											int	startPos	=0;

											int	length	=0;

											//start	from	end	of	'Order	by'	clause

											startPos	=	keywordMatches	[orderPosition].Index	+

														keywordMatches	[orderPosition].Length	+	1;

											length	=		cmdText.Length	-	startPos;

											this.dataView.Sort	=	cmdText.Substring(startPos,length);

							}

}

VB.NET

Private	Sub	ValidateSorting(ByVal	cmdText	As	String)

					If	sorting	Then

									Dim	startPos	As	Integer	=	0

									Dim	length	As	Integer	=	0

									startPos	=	(keywordMatches	(orderPosition).Index	+	_

											keywordMatches	(orderPosition).Length	+	1)

									length	=	cmdText.Length	-	startPos

									Me.dataView.Sort	=	cmdText.Substring(startPos,	length)

					End	If

End	Sub

CommandTimeout	Property
The	CommandTimeout	property	specifies	how	long	the	Command	object	should	wait	for	the
results	of	an	executed	command	before	throwing	an	exception.	You	do	not	actually
use	this	value,	but	it	must	be	implemented	because	of	interface	requirements.	Just
return	a	0	value	to	indicate	that	time-outs	are	not	supported.

C#

public	int	CommandTimeout

								{

												get

												{

																Debug.WriteLine("IDBCommand.CommandTimeout:	Get");

																return	this.m_commandTimeOut;

												}

												set

												{

																Debug.WriteLine("IDBCommand.CommandTimeout:	Set");

																//throw	new	NotImplementedException("Timeouts	not	

supported");

												}

								}

VB.NET

Public	Property	CommandTimeout()	As	Integer	Implements	

IDbCommand.CommandTimeout

												Get

																Debug.WriteLine("IDBCommand.CommandTimeout:	Get")

																Return	Me.m_cmdTimeOut

												End	Get

												Set(ByVal	value	As	Integer)

																Debug.WriteLine("IDBCommand.CommandTimeout:	Set")

												End	Set

								End	Property

CommandType	Property
Most	DPEs	allow	the	developer	to	pass	in	a	command	as	text,	or	they	can	pass	in	a
fully	initialized	Command	object	for	the	Execute	reader	method	to	examine	and	use.	The
DataSetCommand	class	accepts	only	text;	any	other	type	will	cause	your	component	to
throw	a	NotSupported	exception.

C#

public	CommandType	CommandType

{

					//	supports	only	a	text	commandType

					get	{	return	CommandType.Text;	}

					set	{	if	(value	!=	CommandType.Text)	throw	new	NotSupportedException();	

}

}

VB.NET

Public	Property	CommandType()	As	CommandType	_

								Implements	IDbCommand.CommandType

												Get

																Return	CommandType.Text

												End	Get

												Set(ByVal	Value	As	CommandType)

																If	Value	<>	CommandType.Text	Then

																				Throw	New	NotSupportedException

																End	If

												End	Set

								End	Property

CreateParameter	Method
The	CreateParameter	method	returns	an	extension-specific	parameter	to	the	Command
object.	The	method	must	be	supported	because	of	the	interface	requirements,
although	it	is	not	actually	used.	The	DataSetParameter	object	is	a	simple	class	that

implements	another	interface	called	IDataParameter,	which	allows	it	to	be	returned	as
an	object	of	the	interface	type.

C#

public	IDataParameter	CreateParameter()

{

				//return	DataSetParameter

				return	new	DataSetParameter();

}

VB.NET

Public	Function	CreateParameter()	As	IDataParameter	_

								Implements	IDbCommand.CreateParameter

												Return	New	DataSetParameter

End	Function

Parameters	Property
The	Parameters	property	returns	a	collection	that	implements	the
IDataParameterCollection	interface.	Your	custom	collection	class	is
DataSetParameterCollection	and	satisfies	these	requirements.	The	Parameters
property	allows	the	developer	to	index	into	the	Parameters	collection	to	set	or	get	the
parameter	values.

C#

public	IDataParameterCollection	Parameters

{

						get

						{

										return	this.m_parameters;

						}

}

VB.NET

Public	ReadOnly	Property	Parameters()	As	IDataParameterCollection	_

				Implements	IDbCommand.Parameters

												Get

																Return	Me.m_parameters

												End	Get

End	Property

Creating	the	DataSetDataReader	Object
The	data	reader	in	our	implementation	does	nothing	more	than	read	properties	of	our
internal	DataView.	The	data	reader's	behavior	is	enforced	by	the	IDataReader	interface,
which	supplies	methods	to	indicate	the	number,	names,	and	types	of	the	fields	that
will	be	read.	It	also	allows	the	object	to	actually	access	the	data.

To	add	the	DataSetDataReader	class	to	the	project,	choose	Project	 	Add	Class.	Change
the	name	of	the	class	to	DataSetDataReader.	After	adding	the	class,	add	the	custom

namespace,	and	edit	the	class	definition.

Declarations
The	members	of	the	DataSetDataReader	class	hold	all	the	information	that	you	will
use	to	build	the	properties	it	supports.	The	currentRow	variable	is	used	to	store	the
value	of	the	current	row	as	the	data	is	being	read	from	your	data	file.	The	dataView
variable	holds	a	reference	to	the	current	view	of	data	from	the	DataSetCommand	that	is
passed	in	via	the	constructor.	Finally,	the	dataSetCommand	variable	holds	a	reference	to
the	command	that	is	passed	in	via	the	constructor.

C#

System.Data.DataView	dataView;

DataSetCommand	dataSetCommand	=	null;

int	currentRow	=	-1;

VB.NET

Private	dataView	As	System.Data.DataView	=	Nothing

Private	dataSetCommand	As	dataSetCommand	=	Nothing

Private	currentRow	As	Integer	=	-1

Implementing	IDataReader
The	IDataReader	interface	exposed	by	Reporting	Services	enforces	consistency	in
working	with	data.	It	provides	properties	and	methods	that	allow	you	to	examine	the
data	and	its	types	as	well	as	the	Read	method	that	actually	does	the	dirty	work.
Following	is	the	definition	of	this	interface,	which	shows	all	methods	and	properties
that	will	need	implementation:

C#

public	interface	IDataReader	:	IDisposable

{

				Type	GetFieldType(int	fieldIndex);

				string	GetName(int	fieldIndex);

				int	GetOrdinal(string	fieldName);

				object	GetValue(int	fieldIndex);

				bool	Read();

				int	FieldCount	{	get;	}

}

VB.NET

Public	Interface	IDataReader

				Inherits	IDisposable

				Function	GetFieldType(ByVal	fieldIndex	As	Integer)	As	Type

				Function	GetName(ByVal	fieldIndex	As	Integer)	As	String

				Function	GetOrdinal(ByVal	fieldName	As	String)	As	Integer

				Function	GetValue(ByVal	fieldIndex	As	Integer)	As	Object

				Function	Read()	As	Boolean

				Property	FieldCount()	As	Integer

End	Interface

You	need	to	modify	your	class	definition	to	force	the	custom	DataSetDataReader	class
to	support	(implement)	the	interface	requirements.

C#

namespace	Wrox.ReportingServices.DataSetDataExtension

{

				public	class	DataSetDataReader	:	IDataReader

				{

								internal	DataSetDataReader(DataSetCommand	command)

								{

													//set	member	variables	based	upon	command	object

													this.dataSetCommand	=	command;

													this.dataView	=	command.dataView;

								}

								public	void	Dispose()	{}

VB.NET

Namespace	Wrox.ReportingServices.DataSetDataExtension

				Public	Class	DataSetDataReader

								Implements	IDataReader

								Friend	Sub	New(ByVal	command	As	dataSetCommand)

												Me.dataSetCommand	=	command

												Me.dataView	=	command.dataView

								End	Sub

								Public	Sub	Dispose()	Implements	IDisposable.Dispose

								End	Sub

GetFieldType	Method
The	GetFieldType	method	returns	the	type	of	data	at	a	particular	position	within	the
stream	that	is	being	read.	This	data	is	used	to	allow	the	developer	to	store	the	data
being	read	in	the	correct	data	type	upon	retrieval	from	the	data	reader.

C#

public	Type	GetFieldType	(int	fieldIndex)

{

						return	this.dataView.Table.Columns[fieldIndex].DataType;

}

VB.NET

Public	Function	GetFieldType(ByVal	fieldIndex	As	Integer)	As	Type	_

				Implements	IDataReader.GetFieldType

								Return	Me.dataView.Table.Columns(fieldIndex).DataType

End	Function

GetName	Method
The	GetName	method	allows	the	developer	to	retrieve	a	data	field	from	the	DataReader
object	by	passing	in	the	name	of	the	field	to	be	read.

C#

public	string	GetName(int	fieldIndex)

{

						return	this.dataView.Table.Columns[fieldIndex].ColumnName;

}

VB.NET

Public	Function	GetName(ByVal	fieldIndex	As	Integer)	As	String	_

				Implements	IDataReader.GetName

								Return	Me.dataView.Table.Columns(fieldIndex).ColumnName

End	Function

GetOrdinal	Method
The	GetOrdinal	method	allows	the	developer	to	index	the	data	based	on	its	position
within	the	DataReader	stream.

C#

public	int	GetOrdinal(string	fieldName)

{

						return	this.dataView.Table.Columns[fieldName].Ordinal;

}

VB.NET

Public	Function	GetOrdinal(ByVal	fieldName	As	String)	As	Integer	_

				Implements	IDataReader.GetOrdinal

								Return	Me.dataView.Table.Columns(fieldName).Ordinal

End	Function

GetValue	Method
The	GetValue	method	retrieves	the	actual	value	from	the	data	stream.	All	of	these
methods	are	typically	used	together.	The	developer	pulls	the	type	information	from
the	stream,	creates	variables	of	the	correct	type	to	hold	this	data,	and	gets	the	data's
values	using	the	GetValue	function.

C#

public	object	GetValue(int	fieldIndex)

{

						return	this.dataView[this.currentRow][fieldIndex];

}

VB.NET

Public	Function	GetValue(ByVal	fieldIndex	As	Integer)	As	Object	_

				Implements	IDataReader.GetValue

									Return	Me.dataView(Me.currentRow)(fieldIndex)

End	Function

Read	Method
The	Read	method	is	the	workhorse	of	the	DataSetDataReader	class.	The	function	loops

through	the	current	DataView.	If	a	line	is	read	successfully,	this	is	indicated	to	the	user
of	your	extension	by	incrementing	the	row	count	variable	currentRow	and	by	returning
a	Boolean	value.	As	long	as	true	is	returned,	data	is	read	successfully.	false	is
returned	when	the	internal	view	hits	the	end	of	the	result	set.	Notice	that	we	use	a
thread-safe	increment	function	available	in	the	.NET	Framework	to	ensure	that	the
current	row	variable	is	safely	locked	during	the	increment	operation	and	won't	yield	a
race	condition.

C#

public	bool	Read()

{

						System.Threading.Interlocked.Increment(ref	this.currentRow);

						if	(this.currentRow	>=	this.dataView.Count)

						{

												return	false;

						}

						return	true;

}

VB.NET

Public	Function	Read()	As	Boolean	Implements	IDataReader.Read

						System.Threading.Interlocked.Increment(Me.currentRow)

						If	Me.currentRow	>=	Me.dataView.Count	Then

									Return	False

						End	If

						Return	True

End	Function

FieldCount	Property
The	FieldCount	property	returns	the	number	of	fields	or	columns	available	in	each
row	of	data	that	the	Read	method	returns.

C#

public	int	FieldCount

{

						//	Return	the	count	of	the	number	of	columns,

						get	{	return	this.dataView.Table.Columns.Count;	}

}

VB.NET

Public	ReadOnly	Property	FieldCount()	As	Integer	Implements	

IDataReader.FieldCount

						Get

								Return	Me.dataView.Table.Columns.Count

						End	Get

End	Property

Installing	the	DataSetDataProcessing	Extension

After	creating	your	custom	DPE,	you	must	install	it	to	enable	access.	The	installation
process	has	two	steps:

1.	 Install	and	configure	the	extension.

2.	 Configure	extension	security.

This	particular	extension	is	used	by	both	the	Report	Server	and	the	Report	Designer
itself,	which	requires	us	to	install	it	in	two	locations.	It	must	be	installed	on	the	report
server	and	the	workstation	used	to	design	the	reports	(using	SSDT/Visual	Studio).

Server	Installation
Reporting	Services	has	a	standard	location	where	extensions	should	be	installed.	This
location	is	a	subfolder	below	the	installation	directory	of	SQL	Server	itself.	We	refer	to
the	SQL	Server	installation	path	as	InstallPath.	On	my	machine,	this	directory	is
C:\Program	Files\Microsoft	SQL	Server\.

Depending	on	the	different	SQL	Server	products	you	have	installed	on	the	machine,
the	subdirectories	under	InstallPath	may	vary.	The	naming	convention	for	the
Reporting	Services	subdirectory	is	MSRS11.MSSQLSERVER,	where	MSRS13	represents	the
product	and	version	name	(Microsoft	Reporting	Services	version	13).

The	directory	into	which	you	will	install	the	extension	is	the	bin	directory	of	the	report
server:	InstallPath\MSRS13.MSSQLSERVER\Reporting	Services\ReportServer\bin.
Copy	your	custom	DPE	assembly	into	this	directory.	The	extension	is	now	in	the
correct	location,	but	you	need	to	inform	the	report	server	of	its	presence.	You	do	so	by
editing	the	configuration	file	that	Reporting	Services	uses	for	its	settings.	This	file	is
called	RSReportServer.config	and	is	located	in	the	parent	directory.	Open	this	file	and
look	for	the	<Data>	section.	Within	this	section,	you	should	see	entries	similar	to	the
following:

<Data>

					<Permissions>

								<PermissionSet	class="System.Security.NamedPermissionSet"	version="1"

																							Unrestricted="true"	Name="FullTrust"

																							Description="Allows	full	access	to	all	resources"/>

					</Permissions>

					<Extension	Name="SQL"

									

Type="Microsoft.ReportingServices.DataExtensions.SqlConnectionWrapper,

																Microsoft.ReportingServices.DataExtensions"/>

					<Extension	Name="OLEDB"

							

Type="Microsoft.ReportingServices.DataExtensions.OleDbConnectionWrapper,

																Microsoft.ReportingServices.DataExtensions"/>

					<Extension	Name="ORACLE"

									Type="Microsoft.ReportingServices.DataExtensions.OracleClient

										ConnectionWrapper,Microsoft.ReportingServices.DataExtensions"/>

					<Extension	Name="ODBC"

									Type="Microsoft.ReportingServices.DataExtensions.OdbcConnection

																Wrapper,Microsoft.ReportingServices.DataExtensions"/>

					<Extension	Name="DATASET"

									Type="Wrox.ReportingServices.DataSetDataExtension.DataSetConnection,

														Wrox.ReportingServices.DataSetDataExtension"/>

</Data>

Add	the	DataSet	entry	shown	in	the	highlighted	code	snippet.	The	Name	tag	is	the
unique	name	you	want	users	to	see	when	they	select	your	extension.	The	Type
element	contains	the	entry	point	class	for	your	extension	(the	first	object	created	and
the	one	that	is	required	to	implement	the	IExtension	interface),	followed	by	the	fully
qualified	name	of	your	extension.

Save	the	file.	Reporting	Services	will	now	recognize	your	extension,	but	you	must
change	the	Code	Access	Security	(CAS)	policy	to	give	the	extension	the	permissions	it
needs	to	do	its	job.	CAS	is	a	constraint	security	model	used	by	the	.NET	Framework	to
restrict	which	system	resources	and	operations	that	code	can	access	and	perform,
regardless	of	the	caller.

Server	Security	Configuration
The	security	policy	file	is	located	in	the	same	directory	as	the	server	configuration	file.
Simply	locate	the	file	called	rssrvpolicy.config,	which	contains	the	security	policy
information	for	SSRS.	Make	an	entry	that	looks	similar	to	the	following,	replacing
<INSTALLPATH>	with	the	appropriate	installation	path	of	the	SQL	Server	Reporting
Services	instance	on	the	server:

</CodeGroup>

<CodeGroup		class="UnionCodeGroup"

		version="1"

		PermissionSetName="FullTrust"

		Name="WroxSRS"

		Description="Code	group	for	Wrox	DataSet	data	processing	extension">

			<IMembershipCondition	class="UrlMembershipCondition"

					version="1"

Url="<INSTALLPATH>\Reporting	Services\ReportServer\bin\

DataSetDataExtension.dll"	/>

</CodeGroup>

NOTE

On	my	machine,	the	Url	attribute	is:	C:\Program	Files\Microsoft	SQL
Server\MSRS13.MSSQLSERVER1601\Reporting

Services\ReportServer\bin\DataSetDataExtension.dll.

WARNING

Be	mindful	of	the	build	number	of	SQL	Server	Reporting	Services	installed	as	this
will	affect	the	folder	name.	My	example	was	created	using	build	1601	which	will
change	with	future	updates.

This	CodeGroup	policy	specifies	that	we	grant	FullTrust	to	our	assembly	to	execute	its
code.	As	a	best	practice,	though,	you	should	grant	only	the	permission	set	required	by
your	code	to	execute	appropriately,	thus	reducing	the	possible	attack	surface.

WorkStation	Installation
The	next	task	is	installing	the	extension	on	your	development	machine	so	that	you	can
use	it	in	the	Report	Designer	within	SSDT/Visual	Studio.	The	process	for	installing	the
extension	into	the	Report	Designer	is	much	the	same	as	that	for	the	server,	with	the
exception	of	the	filenames	and	locations.	You	can	also	do	this	by	copying	the	file	to	a
specific	directory	of	your	development	machine	and	making	an	entry	in	the
configuration	file	so	that	the	designer	is	aware	of	the	extension.

Copy	your	extension	to	the	C:\Program	Files(x86)\Microsoft	Visual	Studio
14.0\Common7\IDE\PrivateAssemblies	folder.	All	the	files	needed	for	workstation
configuration	are	located	here.	The	designer's	configuration	file	is	called
RSReportDesigner.config.	Insert	the	same	information	that	you	inserted	at	the
server-side	extension	at	the	end	of	the	<Data>	section	in	this	file:

<Data>

						<Extension	Name="ODBC"

										Type="Microsoft.ReportingServices.DataExtensions.OdbcConnection

										Wrapper,	Microsoft.ReportingServices.DataExtensions"/>

						<Extension	Name="DATASET"

										

Type="Wrox.ReportingServices.DataSetDataExtension.DataSetConnection,

										Wrox.ReportingServices.DataSetDataExtension"/>

</Data>

This	file	has	an	additional	requirement.	You	must	also	tell	Visual	Studio	what
designer	to	use	with	your	extension.	We	chose	not	to	implement	a	custom	designer
class	but	to	use	the	Generic	Query	Designer	provided	by	Microsoft	instead.	Your	query
is	based	on	SQL,	so	this	works	well.	Make	an	entry	in	the	<Designer>	section	that
immediately	follows	the	<Data>	section:

<Extension	Name="DATASET"

		Type="Microsoft.ReportingServices.QueryDesigners.GenericQueryDesigner,

												Microsoft.ReportingServices.QueryDesigners"/>

WorkStation	Security	Configuration

The	next	step	is	to	set	up	the	security	policy	so	that	the	extension	will	run	in	the
designer	correctly.	The	required	file	is	called	rspreviewpolicy.config.	After	the	last
existing	</CodeGroup>	tag,	add	an	entry	resembling	the	following	to	this	file,	replacing
<InstallPath>	with	your	actual	Visual	Studio	installation	path:

<CodeGroup	class="UnionCodeGroup"	version="1"

				PermissionSetName="FullTrust"

				Name="WroxSRS"

				Description="Code	group	for	my	DataSet	data	processing	extension">

						<IMembershipCondition	class="UrlMembershipCondition"

										version="1"

				Url="

<InstallPath>\Common7\IDE\PrivateAssemblies\DataSetDataExtension.dll"/>

</CodeGroup>

NOTE

On	my	machine,	the	Url	attribute	is:	C:\Program	Files	(x86)\Microsoft	Visual
Studio	14.0\Common7\IDE\PrivateAssemblies\DataSetDataExtension.dll.

Testing	DataSetDataExtension
To	test	the	DataSetDataExtension	extension,	you	must	create	a	report	that	uses	the
custom	extension.	You	must	also	create	a	DataSet	file	to	contain	your	data	or	use	the
one	provided	in	the	sample	code.	The	code	is	generic	enough	that	you	can	use	it
against	any	serialized	dataset.	The	file	included	in	the	example	was	extracted	from	a
sample	database	but	could,	in	fact,	contain	any	set	of	data.

Add	a	new	project	to	your	existing	solution.	Create	the	project	by	choosing	File	 	Add
Project	 	New	Project.	Choose	the	Report	Server	Project	template.	Change	the
project's	name	to	TestReport,	and	click	OK.	This	launches	the	Report	Designer	with	a
blank	report.	Click	the	link	on	the	Designer	canvas	to	add	a	new	data	source	and
dataset	for	the	report.	The	Data	Source	Properties	page	appears,	as	shown	in	Figure
16.6.	Leave	the	default	data	source	name,	and	click	the	Type	drop-down	box.	Your	new
DataSetDataExtension	should	now	be	available	as	DATASET.	Using	a	FileName	attribute,
enter	the	physical	path	to	your	serialized	dataset	into	the	Connection	String	textbox.
When	you	are	done,	the	result	should	resemble	Figure	16.9.

Figure	16.6	Data	Source	Properties	with	DATASET	type	selected.

Next,	you	need	to	indicate	the	credentials	you	want	to	use.	Click	the	Credentials	menu
on	the	left	side	of	the	Data	Source	Properties	page;	the	Credentials	window	appears,	as
shown	in	Figure	16.7.	Instruct	the	data	source	to	“Use	Windows	Authentication
(integrated	security)”	by	selecting	the	radio	button.

Figure	16.7	Credentials	page.

After	you	have	set	both	the	type	and	connection	strings,	you	are	ready	to	set	up	the
basic	data	query.	The	dataset	we	used	included	a	table	called	DimCustomer	that	we	want
to	query.	Enter	SELECT	*	FROM	DimCustomer	into	the	Query	window	if	you	are	using
the	sample	provided,	or	some	statement	that	works	on	your	specific	data.	The	query
should	resemble	the	text	shown	in	Figure	16.8.

Figure	16.8	Query	command	in	Dataset	Properties.

Finish	setting	up	the	data	source	and	dataset.	Click	OK	to	close	the	Dataset	Properties
dialog	and	add	fields	to	the	new	dataset.	The	rest	of	the	report	design	is	exactly	as	it
would	be	with	any	of	the	stock	data	sources.	Now	you	know	that	your	extension
works.	You	can	experiment	with	the	field-limiting/filtering	and	field-sorting
functionality	by	right-clicking	the	Dataset	name	in	the	Report	Data	window	and
selecting	Edit	Query.	This	brings	up	the	Query	Designer,	shown	in	Figure	16.9,	where
you	can	enter	more	advanced	queries	and	test	the	results.

Figure	16.9	Dataset	results.

By	previewing	the	report	in	the	Report	Designer,	you	have	effectively	demonstrated
the	installation	and	configuration	of	the	workstation	components.	Deploy	the	report
to	your	report	server	and	run	it	to	make	sure	your	server	configuration	is	correct.

NOTE

Another	option	for	testing	the	custom	data	extension	is	to	open	a	new	instance	of
Visual	Studio	and	load	the	extension	project.	Add	a	breakpoint	on	a	line	of	code
that	you	want	to	step	into,	and	then	select	Debug	 	Attach	to	process.

In	the	Attach	to	Process	window,	select	the	process	for	the	Visual	Studio	instance
that	has	the	Report	Designer	open	to	the	test	report	consuming	the	data
extension.

Finally,	click	the	Attach	button.	Visual	Studio	attaches	the	project	code	to	the
Report	Designer.	To	step	into	the	breakpoint,	just	preview	the	report	in	the	Report
Designer.	As	soon	as	Reporting	Services	hits	the	line	of	code	with	the	breakpoint,
you	are	taken	to	the	code	view,	where	you	can	use	all	the	debugging	features	of
the	Visual	Studio	IDE.

SUMMARY
In	this	chapter,	you	learned	about	the	extensibility	of	Reporting	Services	and	the	areas
that	currently	support	customization,	including	the	following	topics:

Which	extensibility	options	are	available

Reasons	for	extending	SQL	Server	Reporting	Services

How	to	create	custom	data	processing	extensions

How	to	install	custom	extensions

Along	with	the	extensibility	options	available	in	SQL	Server	Reporting	Services,	you
also	learned	about	some	of	the	business	opportunities	created.	Microsoft	has	created	a
flexible,	powerful	reporting	solution	that	allows	you	to	modify	its	behavior	by
implementing	the	interfaces	required	by	the	particular	extension	type.	This
functionality	has	created	a	third-party	market	for	tools	and	has	allowed	enterprise
developers	to	create	custom	solutions	for	their	businesses'	unique	needs.

Also	discussed	were	the	data	access	methods	that	the	.NET	Framework	uses—
specifically,	how	to	create	a	custom	data	processing	extension	to	work	with	non-
relational	data.	The	example	given	was	simple	and	cannot	stand	alone	as	an
application;	conversely,	it	can	easily	be	extended	to	provide	additional	functionality
including	support	for	parameters.	The	primary	purpose	of	the	example	was	to
familiarize	you	with	the	requirements	for	creating	and	installing	an	extension.	This
type	of	extension	was	chosen	because	it	is	used	on	the	server	for	report	processing,
and	on	the	developer	machine	for	report	creation.

This	chapter	concludes	Part	5	about	Reporting	Services	custom	programming.	The
next	part	of	the	book	introduces	and	then	explores	the	new	Mobile	Report	capabilities
added	in	SQL	Server	2016.

PART	VI
Mobile	Report	Solutions
In	the	next	four	chapters,	you	become	acquainted	with	the	new	mobile	reporting	and
dashboard	capabilities	introduced	in	SQL	Server	2016.	We	begin	with	an	introduction
to	the	 features	and	capabilities,	as	well	as	a	discussion	about	the	best	use	cases	for
Mobile	Reports.	You	learn	more	advanced	applications	as	you	progress	through	a
series	of	exercises.

Additionally,	you	learn	about	the	use	for	each	visual	control,	which	enables	you	to
apply	the	knowledge	and	design	simple	reports	to	address	specific	business	needs.
Starting	with	the	unique	pattern	of	“design-first	development,”	you	prototype	report
designs	and	capabilities,	and	furthermore,	add	datasets	to	support	the	behavior	of
those	reports.	We	continue	with	a	tour	of	sophisticated	capabilities	used	to	integrate
reports	into	a	complete	business	intelligence	and	enterprise	reporting	solution.	You
learn	how	parameters	and	expressions	are	used	to	pass	selections	and	context	to
another	mobile	report,	paginated	report,	or	website.

In	this	part,	you	learn:

Basic	mobile	report	design	approaches	and	applications

Appropriate	use	of	navigators,	selectors,	gauges,	charts,	maps,	and	data	grids

Advanced	report	design	techniques	with	complex	visual	controls

Filtering	and	interactions

Report	navigation

How	to	use	parameters	for	dashboard	filtering

User	parameters	for	drill-through	navigation

How	to	drill-through	to	other	reporting	tools	with	URL	paths	and	parameters

CHAPTER	17:	Introducing	Reporting	Services	Mobile	Reports

CHAPTER	18:	Implementing	a	Mobile	Report	with	Design-First
Development

CHAPTER	19:	Mobile	Report	Design	Patterns

CHAPTER	20:	Advanced	Mobile	Report	Solutions

Chapter	17
Introducing	Reporting	Services	Mobile	Reports

WHAT'S	IN	THIS	CHAPTER?

Using	Mobile	Report	Publisher

Designing	datasets	for	mobile	reporting

Learn	when	to	use	mobile	reports

Understanding	visual	control	categories

The	purpose	of	this	chapter	is	to	introduce	Mobile	Reports	and	the	best	use	for
different	types	of	visual	controls.	We	begin	by	comparing	the	capabilities	of	mobile
and	paginated	reports,	and	then	explore	the	essential	building	blocks	of	mobile	report
design.	This	chapter	introduces	each	of	the	visual	control	categories	and	explains	the
best	use	of	each	control	in	a	mobile	report	solution.

Having	choices	and	options	provides	freedom	to	use	different	tools	to	create	reporting
and	data	presentation	experiences	for	different	purposes.	Freedom	and	flexibility
bring	the	need	to	make	more	decisions,	and	sometimes	choosing	the	right	tool	is	a
trade-off	between	the	strengths	of	one	tool	and	the	limits	of	another	that	is	used	to
achieve	different	results.	As	I	have	used	SQL	Server	Reporting	Services	and	watched
the	platform	mature	over	the	past	fourteen	years	or	so,	one	thing	became	very	clear:
Reporting	Services	was	primarily	intended	for	and	is	optimized	to	be	used	in	a	web
browser	on	a	desktop	computer.	I	have	used	previous	 versions	of	SSRS	to	create
reports	for	smaller	screens	and	mobile	devices.	It	met	the	basic	need	to	display
information	in	a	simple	layout	with	bold	graphics	and	text	and	with	sufficient
rendering	fidelity	and	navigation,	but	it	was	not	a	truly	modern	mobile	experience.

Responding	to	the	proliferation	of	mobile	devices	used	by	business	professionals	who
consume	data	and	make	decisions,	Microsoft	created	multiple	tools	for	the	mobile
professional.	A	partner	company	in	the	Microsoft	development	community	had
created	a	mobile	business	intelligence	report	and	dashboard	delivery	product	called
Datazen.	Microsoft	acquired	Datazen	from	ComponentArt	in	2015.	Much	like
Reporting	Services,	Datazen	was	built	on	Windows	services,	ASP.NET	web	services,
and	had	a	server	architecture	very	similar	to	SSRS,	with	the	notable	exception	that
reports	were	delivered	client-side	using	installed	mobile	applications	freely	distributed
in	all	the	mobile	device	app	stores.	Going	forward,	the	Datazen	product	will	be	the
Mobile	Reports	feature	of	Reporting	Services,	managed	entirely	with	the	report	server
and	Web	Portal	installed	with	SQL	Server	2016.

THE	MOBILE	REPORT	EXPERIENCE	AND	BUSINESS
CASE
An	important	thing	to	understand	about	Mobile	Reports	is	that	it	is	not	the	same
thing	as	conventional	SSRS	paginated	reports,	and	one	is	not	a	replacement	for	the
other.	Mobile	reports	are	simple	and	bold,	optimized	for	touch	on	mobile	devices.
Secondarily,	a	mobile	report	can	be	used	in	a	web	browser	and	viewed	on	a	desktop
computer.

NOTE

Shortly	after	Datazen	was	acquired	by	Microsoft	in	2015,	I	had	numerous
conversations	with	consulting	clients	who	were	convinced	that	they	could	use	it
as	a	replacement	for	their	reporting	platform.	Before	the	integration	with
Reporting	Services	in	SQL	Server	2016,	Microsoft	made	it	available	free	for	SQL
Server	Enterprise	customers.	Those	who	thought	they	would	replace	SSRS	and
other	operational	reporting	tools	soon	learned	that	Datazen,	and	now	SSRS
Mobile	Reports,	serves	a	specific	purpose	alongside	paginated	reports.

Using	the	Power	BI	Mobile	app	on	my	iPad,	I	can	open	a	mobile	report	that	resides	on
an	SSRS	report	server.	Figure	17.1	shows	a	simple	mobile	report	running	in	my	iPad
using	full	screen	layout.

Figure	17.1	A	running	mobile	report	in	full-screen	mode	on	an	iPad.

The	touch	experience	is	very	responsive.	I	can	touch	and	hold	on	a	data	point	to	see
large	callouts	with	more	information.	The	Time	navigator	allows	me	swipe	and	drag
across	a	range	of	date	values	or	tap	to	drill	down	to	the	next	level.	Tapping	a	country	in
the	selector	on	the	left	immediately	filters	the	chart	and	summary	values.	On	my	iPad
or	other	tablet	device,	I	see	a	simplified	view	of	the	report	when	I	hold	the	device	in
vertical	orientation,	but	if	I	want	to	see	more	details,	I	can	rotate	the	device
horizontally	as	shown	in	Figure	17.1	to	see	the	full	desktop	layout.	We	explore	this
capability	in	the	following	chapters.

The	same	report	can	be	opened	in	the	web	browser	on	a	mobile	device	or	desktop
computer.	Figure	17.2	shows	a	simple	mobile	report	in	the	browser	that	I	opened	from
the	Web	Portal	on	my	server.

Figure	17.2	A	simple	mobile	report	displayed	in	a	web	browser.

As	you	will	see	in	the	following	chapters,	you	can	use	several	visual	controls	to
assemble	more	intricate	and	complex	mobile	report	designs.	However,	the	essence	of
effective	mobile	reporting	is	simplicity	and	ease	of	use.

The	user	experience	is	very	similar	to	that	on	the	tablet	but	with	a	slight	delay,	as	filter
selections	and	data	are	delivered	through	HTML	from	the	web	server.	The	report
behavior	is	nearly	the	same,	but	some	differences	are	noticeable	between	the
immediate	and	tactile	response	in	the	mobile	app	and	a	bit	of	latency	when	rendered
for	the	web.

On	my	mobile	phone,	the	differences	are	not	as	subtle,	where	I	have	a	smaller	screen
and	less	available	space.	On	this	report,	shown	in	Figure	17.3,	the	most	important

information	is	displayed	in	fewer	visual	controls	that	I	navigate	by	tapping	and
swiping	with	my	finger	or	thumb.

Figure	17.3	Report	viewed	in	the	phone	app.

You	can	see	that	the	controls	are	arranged	differently	and	are	simplified	for	the
smaller	screen.	The	experience	of	tapping,	swiping,	and	holding	a	point	on	the	screen
is	slightly	different,	adapted	for	smaller	screen	resolution	and	hand-held	navigation.
Some	controls	behave	a	little	bit	differently	on	each	device	because	users	are
accustomed	to	using	the	native	controls	that	are	inherently	part	of	the	device
operating	system.	For	example,	here	on	my	iPhone,	tapping	the	drop-down	list
displays	the	“slot-machine”	vertical	scrolling	selector	familiar	to	mobile	iOS	users.

Report	Drill-Through	Navigation
As	you	have	already	seen	in	my	previous	paginated	report	designs,	I	am	a	big
proponent	of	report	navigation.	For	report	users	to	access	more	content,	you	can
either	put	more	on	a	report	or	allow	the	user	to	navigate	to	other	reports	to
progressively	reveal	more	detail	or	more	specific	context.	Drill-through	navigation	is	a
strong	theme	in	mobile	report	design.

We	have	less	screen	real	estate	on	mobile	devices	and	we	have	fewer	intricate	features
in	mobile	report	controls,	so	we	can	chain	reports	together	to	provide	a	rich	navigation
experience.	One	mobile	report	can	navigate	to	another	mobile	report	within	the
context	of	the	filters	and	selected	items	on	a	report.	Similar	to	paginated	reports,	each
visual	control	can	have	a	separate	drill-through	navigation	target.	For	example,
tapping	a	bar	on	a	chart	can	send	the	user	to	a	report	filtered	on	the	item	represented
by	the	bar	in	the	chart.	Additionally,	a	mobile	report	can	navigate	to	a	paginated
report,	which	might	be	a	better	choice	for	displaying	details	and	transactional	source
records,	enabling	users	to	see	the	numbers	behind	charts	and	aggregated	totals.

When	to	Use	Mobile	Reports
Before	we	explore	the	capabilities	of	Mobile	Reports	and	talk	about	what	they	are,	let's
talk	about	what	they	are	not.	I	find	that	having	this	discussion	with	consulting	clients
and	students	helps	to	define	boundaries	and	simplify	trade-off	decisions	between
different	tools.

I	am	not	going	to	sugar-coat	this	message.	The	fact	is,	the	Mobile	Reports	toolset	is
not	as	mature	or	feature-rich	as	conventional	paginated	reports	in	some	respects,	but
it	fills	an	important	need	in	the	reporting	portfolio.	When	Datazen	was	a	completely
separate	product,	crafted	by	a	different	company,	it	was	easy	for	me	to	accept	that	it
employed	a	different	design	philosophy	than	anything	from	Microsoft.	Now	that	it	is
part	of	SQL	Server	Reporting	Services,	the	differences	are	more	apparent;	at	the	same
time	the	fact	remains	this	tool	brings	unique	value	and	capability	to	the	Microsoft	BI
and	reporting	platform.	Do	not	get	hung	up	on	the	differences;	learn	to	use	the	two
products	together.	To	some	degree,	you	will	need	to	unlearn	some	techniques	you
have	acquired	for	paginated	reports	in	order	to	embrace	different	design	patterns	in
mobile	reports.	That	is	just	the	way	it	is.

Having	worked	with	the	Datazen	for	a	couple	of	years	prior	to	the	Microsoft
acquisition,	I	have	some	specific	thoughts	about	using	this	tool	successfully.
Specifically,	it	is	important	to	use	Mobile	Reports	in	a	scenario	appropriately	suited
for	the	product.	In	that	context,	you	can	add	capabilities	and	business	value	not
previously	possible.	It	should	be	no	surprise	that	the	Mobile	Reports	feature	is
designed	to	primarily	deliver	mobile	reporting	capabilities	to	business	users	in	layouts
and	screen	resolutions	optimized	for	modern	mobile	devices.	Simply	put,	do	not	cram
a	lot	of	detailed	information	on	mobile	reports.	Keep	them	simple.

To	appreciate	the	value	of	mobile	reports,	you	need	to	use	them	on	a	mobile	device.

Because	you	design	mobile	reports	on	a	desktop	computer,	when	you	preview	and	test
reports,	they	may	seem	to	be	big	and	overly	simplified.	Mobile	reports	are	optimized
for	small	screens	and	for	touch	interaction.

As	a	long-time	SSRS	practitioner,	I	am	accustomed	to	a	reporting	tool	that	handles	a
lot	of	the	data	grouping	and	aggregation	work	for	me.	Additionally,	I	am	accustomed
to	using	expressions	extensively,	and	these	are	simply	not	features	of	this	tool.	Rather
than	wrestling	with	the	design	tool,	use	queries	to	shape	the	data.

Mobile	Reports	Are	Not	Self-Service	BI
Although	the	fundamental	report	design	experience	is	not	that	difficult,	data
preparation	is	necessary.	Most	reports	require	queries	to	be	written	so	data	is	shaped
correctly	for	different	visual	controls.	Query	design	and	preparation	requires	technical
expertise.	Although	the	actual	report	design	effort	is	relatively	simple,	this	task	is
typically	performed	by	a	report	design	professional.	Users	navigate	and	interact	with
reports	but	not	in	an	ad	hoc	fashion,	as	they	would	with	Power	BI	or	Excel.

In	particular,	some	visual	controls	do	not	group	and	aggregate	the	rows	in	a	dataset	so
you	must	create	a	dataset	specifically	suited	for	that	control.	You	still	have	the
flexibility	to	present	data	in	the	right	shape	and	format	but	you	may	need	to	create
multiple	datasets	rather	than	relying	on	groups	and	expressions	like	you	would	in
paginated	report	data	regions,	pivot	tables,	or	Power	BI	visuals.

Mobile	Reports	Are	Not	Paginated	Reports
Mobile	report	visuals	are	prepackaged	with	properties	and	layout	options	that	adapt	to
their	size	and	placement	on	the	page.	Consequently,	they	do	not	have	properties	that
can	be	fine-tuned	and	modified	when	the	report	is	designed	in	the	same	manner	as
paginated	reports.	As	a	long-time	SSRS	report	designer,	I	am	accustomed	to	tweaking
and	adjusting	properties	to	make	a	report	look	the	way	I	want.	This	has	always	been	a
time-consuming	and	tedious	process,	but	it	is	the	way	the	tool	works.	By	contrast,
mobile	report	visuals	have	very	few	styling	properties,	so	they	take	far	less	time	to
design	but	you	do	not	have	fine	control	over	the	styling	and	layout	of	each	control.

Mobile	reports	are	not	intended	for	printing	or	exporting	to	a	file	for	consumption.
Operational	reports	like	transaction	lists,	balance	sheets,	and	contracts	are	best
designed	as	paginated	reports.

Cached	and	On-demand	Results
The	primary	design	philosophy	behind	Mobile	Reports	is	that	a	dataset	produces	a
static	result	set	that	is	cached	and	then	filtered	on	the	client.	Cached	dataset	results
may	be	scheduled	to	refresh	at	regular	intervals	or	can	be	manually	refreshed	on-
demand.	This	results	in	faster	report	execution	and	supports	an	interactive	experience
within	the	limits	of	the	cached	dataset.	As	with	virtually	any	scheduled	query
execution,	queries	do	not	run	in	the	user's	security	context	so	cached	datasets	are	not
always	ideal	for	user-specific	filtering	and	security.

Furthermore,	datasets	can	be	parameterized	to	run	live	queries,	but	some	interactive
features,	such	as	navigators	and	selectors,	are	not	supported.	Oftentimes,	the	best	way
to	combine	interactive	mobile	reports	with	on-demand	capabilities	is	to	build	at	least
two	different	reports	with	navigation	actions	from	one	to	the	other.	The	first	report
uses	a	cached	dataset	with	interactive	selectors	and	navigators	to	query	aggregated
data	and	the	second	report	uses	query	parameters	to	return	live	results.

CONNECTION	AND	DATASET	DESIGN	BASICS
The	Mobile	Report	Publisher,	which	is	the	design	tool	for	mobile	reports,	does	not
include	a	query	design	tool.	Queries	are	designed	using	either	an	SSDT	report	project
or	Report	Builder	to	publish	shared	datasets	to	your	report	server.	This	requires	some
planning	and	iterative	design.	I	will	demonstrate	an	effective	design	pattern	you	can
use	to	build	datasets	to	support	mobile	report	features.

Shared	datasets	have	parameters	used	for	filtering	data,	and	can	be	used	to	run	live
queries	against	data	sources	or	to	cache	data	for	more	responsive	report	performance.
Because	mobile	reports	on	a	mobile	device	run	client-side	using	installed	mobile
report	viewer	applications,	data	can	also	be	securely	cached	on	the	device	to	improve
performance	and	support	offline	reporting.	When	a	user	is	online,	cached	datasets	can
be	refreshed	with	newer	query	results.

INTRODUCING	MOBILE	REPORT	PUBLISHER
One	of	the	first	impressions	you	are	likely	to	have	when	you	use	the	Mobile	Report
Publisher	for	the	first	time	is	that	it	has	a	different	look	and	feel	from	SSDT	or	Report
Builder.	This	is	primarily	because	this	product	was	designed	with	a	“mobile-first”
mindset.	The	original	Datazen	Dashboard	Publisher	was	developed	when	Microsoft
released	Windows	8	and	fully	embraced	the	“Metro”	or	“Modern”	user	experience.	In
the	same	way	that	Windows	10	brought	users	back	to	a	more	familiar	desktop
Windows	behavior,	Mobile	Report	Publisher	has	a	more	conventional	desktop	feel
with	modern	Windows	styling.

NOTE

We	hear	the	term	“modern”	used	freely	to	describe	new	tools	and	user
experiences.	Modern	is	a	very	relative	term	and	what	is	considered	“modern”	by
our	standards	today	will	probably	have	a	very	different	perception	in	a	short
time,	and	might	soon	be	considered	“legacy.”	The	mobile	report	product	will
undoubtedly	change	quickly	to	adapt	to	a	changing	user	community,	newer
devices,	and	the	fashion	of	the	industry.	It	will	also	likely	maintain	the	title	of	a
modern	reporting	tool	through	these	adaptations.	In	short:	be	prepared	for
changes.

Mobile	Report	Publisher	consists	of	four	pages	that	are	accessed	using	the	large	tabs
on	the	top-left	side	of	the	report	design	window	shown	in	Figure	17.4.

Figure	17.4	Pages	on	Mobile	Report	Publisher.

Layout	View
Layout	view	is	where	you	arrange	controls	and	set	visual	properties	for	those	controls.
Drag-and-drop	controls	from	the	toolbox	on	the	left	to	the	design	grid	in	the	body	of

the	report.	The	grid	dimensions	are	defined	using	two	sliders	at	the	top	of	the	designer
and	to	the	right	of	the	report	title.

When	you	initially	add	a	control,	a	table	of	simulated	data	is	automatically	generated
so	you	can	preview	the	control	with	data	values.	This	“design-first”	approach	is	a
radical	shift	in	report	design,	and	can	be	a	marvelous	rapid-design	tool	for	testing
prototypes	and	getting	quick	user	feedback.	You	build	an	entire	mobile	report	using
this	approach	in	Chapter	18.

Data	View
Data	view	is	where	you	wire	up	the	controls	to	datasets	and	set	properties	related	to
data	consumption	and	field-mapping.	Each	control	has	a	unique	set	of	data	properties
that	enable	it	to	group,	aggregate,	and	filter	data.	First,	datasets	are	imported	so	they
become	available	to	the	controls.	After	controls	are	added	to	the	grid	in	the	Layout
page,	you	can	select	each	of	those	controls	on	this	page	so	you	can	set	the	data
properties.

Dashboard	Settings
Use	the	Dashboard	Settings	page	to	set	properties	related	to	the	report	name,
deployment	destination,	dates,	and	regional	formatting.	The	metadata	you	set	on	this
page	is	saved	into	the	deployed	report	or	file	on	the	filesystem	that	affects	the
behavior	of	certain	controls.	The	Currency	property	applies	regional	formatting	to	the
report.	The	Fiscal	year	start,	First	day	of	the	week,	and	Effective	date	properties	all
modify	the	behavior	of	Time	navigators	and	time	charts.	In	the	US	and	without
needing	to	deal	with	fiscal	date	reporting,	I	can	leave	these	properties	with	default
settings,	but	you	should	set	them	according	to	your	needs.

Preview
The	Preview	page	is	intended	for	testing	your	report	in	the	design	environment.	It
approximates	how	the	report	will	appear	after	it	has	been	saved	and	run	from	the
server.

Using	the	icons	on	the	toolbar	in	the	top-left	hand	side	of	the	window,	you	can	save
locally	or	publish	to	server.	Figure	17.5	shows	the	Layout	page	with	the	design
controls	and	features	used	to	design	a	report.

Figure	17.5	Mobile	Report	Publisher	Layout	page.

TIP

Saving	copies	of	a	report	is	fairly	easy	but	be	careful	as	you	save	different
version	if	the	report	locally	and	to	the	server.	I	advise	saving	a	master	copy
locally	as	a	backup.	Continue	to	save	changes	as	you	go	and	then	save	the	same
version	to	the	server.	By	keeping	these	copies	in	sync,	you	will	always	have	a
backup	and	there	will	be	no	confusion	about	having	old	and	new	versions	of	the
report	in	different	places.

Use	the	small	icons	in	the	top-left	toolbar	to	create	a	new	report,	open,	save,	and
connect	to	a	report	server.	You	can	save	reports	to	a	folder	in	the	filesystem	or	to	a
report	server	much	as	you	would	any	document	file.

Using	the	layout	selection	drop-down,	you	can	create	an	alternate	layout	for	tablet	and
phone	devices	after	designing	the	report	in	the	master	layout,	which	is	optimized	for	a
desktop	or	tablet	display	in	landscape	orientation.	If	no	device-specific	layout	exists,
the	mobile	app	will	make	a	best-effort	to	fit	the	master	layout	controls	to	the	device	in
the	order	they	are	arranged.

You	can	resize	the	grid	in	any	layout.	The	default	grid	size	for	each	of	the	layouts	is	as
follows:

Master	is	optimized	for	horizontal	layout,	6	x	12	max	grid

Tablet	is	designed	for	rotation,	8	x	8	max	grid

Phone	is	designed	for	vertical	layout,	6	x	4	grid

The	tablet	layout	is	for	a	tablet	device	rotated	to	portrait	orientation.	Generally,	it's	a
good	idea	to	keep	the	grid	dimensions	relatively	close	to	the	defaults	and	then	make
adjustments	to	fit	the	selected	visual	controls.

The	style	selection	drop-down	includes	thumbnail	images	of	each	of	style	defined	in
the	site	 branding	theme.	Style	colors	and	other	properties	are	dynamically	applied	to
reports	if	the	site	branding	theme	is	updated.

VISUAL	CONTROL	CATEGORIES
On	the	left	side	of	the	page,	controls	are	organized	into	the	following	categories,	which
are	explained	in	the	following	sections:

Navigators

Gauges

Charts

Maps

DataGrids

Navigators
The	Time	navigator	is	essentially	a	dynamic	column,	area,	or	line	chart	grouped	by	a
selected	date	or	time	hierarchy.	It	also	specifies	a	set	of	time	members	that	filter
another	dataset.	You	can	specify	the	valid	date	parts	for	inclusion	in	the	drill-down
tree.	For	example,	I	chose	a	year	that	presents	all	the	month	periods	for	that	year;	the
chart	will	then	visualize	days	at	the	next	level.	In	addition	to	selecting	a	single	value	to
move	down	the	hierarchical	tree	to	the	next	level,	you	can	swipe	across	or	hold	the
Shift	key	to	specify	a	range	and	select	multiple	days	(or	any	other	date	part).	Figure
17.6	shows	controls	in	the	Navigator	category.

Figure	17.6	Navigator	controls.

These	controls	are	used	to	filter	the	data	displayed	in	other	controls:

Time	navigator—Displays	a	range	of	time/date	values.	It	supports	years,
quarters,	months,	days,	hours.	This	control	requires	a	column	of	date	and/or	time
type	values.	Using	the	first	date/time	column	in	the	dataset,	it	auto-generates	each
date/time	level	value	in	the	range	and	doesn't	require	a	date	lookup	or	“dimension”
reference	table	to	fill	in	any	missing	values.	The	Time	navigator	supports	multiple
metric	fields	that	are	visualized	as	a	time-series	chart	using	a	column	chart,
stepped	area,	or	line	chart.	You	see	examples	of	the	Time	navigator	beginning	in
the	next	chapter.

Scorecard	grid—Combines	a	selection	list	with	a	multi-field	value	KPI	scorecard.
This	is	a	versatile	control	that	groups	and	aggregates	column	values	for	a	dataset.
Optionally,	a	 second	table	can	be	joined	with	a	pair	of	key	values	and	used	for

aggregation	and	comparison	purposes.	The	selector	functionality	works	exactly	like
the	Selection	list	control.

Selection	list—Groups	like-valued	rows	in	the	dataset	based	on	a	single	column
and	presents	them	in	a	list	for	selection.	The	selector	supports	single-select,	multi-
select,	and	an	additional	item	at	the	top	of	the	list	titled	All.	When	the	All	item	is
selected,	the	selection	list	is	effectively	not	used	to	filter	data.

Depending	on	the	mobile	device	and	the	available	screen	real	estate,	the	selector	is
displayed	either	as	a	scrollable	list	box	or	as	a	compact	drop-down	list	control.

For	the	following	examples,	I	have	used	the	dataset	shown	in	Figure	17.7	as	the	source
table	for	a	number	of	controls.

Figure	17.7	The	dataset	shown	in	the	Data	page.

Figure	17.8	shows	an	example	of	a	Scorecard	grid	and	a	Selection	list	using	the	same
set	of	data.	Note	that	both	of	these	controls	present	consolidated	Category	values
rather	than	the	repeated	rows	you	see	in	the	source	data.

Figure	17.8	Grid	and	Selection	list	controls.

Gauges
This	group	of	controls	displays	a	single	numeric	field	value	rather	than	multiple
values.	The	gauges	shown	in	Figure	17.9	aggregate	a	numeric	column	into	a	single
value	and	can	consume	a	single	row	or	multiple	rows.

Figure	17.9	Gauge	type	controls.

Number	control—Displays	a	single	value	with	no	target.	This	is	the	only	gauge
control	that	takes	only	one	field.	Like	other	controls,	several	named	formats	can
be	used	to	display	numeric	values.

All	of	the	other	gauge	controls	display	a	main	value	compared	to	a	target	value,
and	these	two	field	values	can	come	from	one	or	two	different	datasets.	These
controls	essentially	do	the	same	thing,	presenting	the	main,	target,	and
comparison	values	using	different	visual	metaphors.	For	each	control,	the
comparison	of	main	value	and	target	can	be	expressed	in	one	of	three	different
ways,	using	the	Delta	label	property:

Percentage	from	target

Percentage	of	target

Value	and	percentage	of	target

Charts
The	items	shown	in	Figure	17.10	include	ten	chart	controls	which	are	used	to	analyze
data	in	different	ways.

Figure	17.10	Chart	controls.

The	Time	chart	and	Comparison	time	chart	are	similar	to	Time	navigator	but	are	not
used	for	selection	and	filtering.	Additionally,	they	support	more	time	units	including
auto	and	decade	levels,	which	are	derived	from	a	date	or	date/time	type	column	in	the
dataset.

These	chart	types	are	used	to	segment	a	numeric	field	by	a	category	field:

The	Category	chart

Comparison	category	chart

Waterfall	chart

Funnel	chart

Tree	map

These	charts	are	flexible	and	can	be	used	to	segment	or	group	a	measure	value	by	a
category	or	to	compare	multiple	field	values:

Totals	chart

Comparison	totals	chart

Pie	chart

Funnel	chart

Figure	17.11	shows	four	sample	charts	that	are	all	based	on	the	same	sample	dataset
used	for	the	other	charts	in	this	section.	From	left	to	right,	the	Category	and	Totals
charts	both	group	the	Category	field	values	and	display	the	aggregated	Sales	Amount
totals.	The	main	difference	between	the	two	controls	is	that	the	Totals	chart	could	also
be	used	to	show	different	measure	field	values	side-by-side	rather	than	grouping	on
the	Category	field.	On	the	bottom	row,	the	Comparison	category	and	Comparison
totals	charts	are	essentially	variations	of	the	first	two	charts	that	show	and	compare
the	main	and	target	values.

Figure	17.11	Same	data	using	different	chart	types.

The	difference	between	a	Category	chart	and	a	Totals	chart	is	the	way	they	segregate
values	into	columns	or	bars.	In	Mobile	Reports,	we	don't	have	the	same
differentiation	between	column	and	bar	charts	as	we	do	in	paginated	reports.	The	two
Category	charts,	which	are	both	shown	as	vertical/column	charts	here,	can	be
presented	either	vertically,	as	a	“column	chart,”	or	horizontally,	as	a	“bar	chart.”	The
Total	charts	can	serve	one	of	two	different	purposes:	either	displaying	one	bar	per
numeric	field	selected	from	the	dataset,	or	as	a	category-type	chart	by	grouping	on	a
non-numeric	value	and	then	aggregating	values	from	a	numeric	field,	similar	to
conventional	charts	in	paginated	reports.	This	behavior	is	controlled	by	the	Data
structure	property.	Choose	“By	columns”	to	display	multiple	fields	(or	dataset
columns)	or	choose	“By	rows”	to	categorize	values	using	the	field	selected	in	the
Series	name	field	property.

The	Tree	map	control	does	not	group	detail	data.	If	you	have	detail	data	to	roll	up	in	a
Tree	map	chart,	you	will	need	to	handle	the	grouping	in	the	dataset.	The	Group	by
property	might	seem	to	be	a	bit	misleading	because	it	simply	collects	all	the	details
into	a	container.	To	demonstrate,	using	our	sample	dataset,	I	have	created	a	Tree	map
and	set	the	Group	by	property	to	use	the	Category	field.	The	report	preview,	shown	in
Figure	17.12,	shows	that	the	rectangles	within	the	Bikes	category	include

combinations	of	Category	and	CountryRegionCode	values.

Figure	17.12	Report	with	Tree	map.

By	combining	the	Tree	map	with	a	Selection	list,	if	a	single	country	code	is	selected,
this	would	filter	the	dataset	and	reduce	the	rectangles	to	one	distinct	value	per
category	group.

Maps
The	map	visualizations	in	Mobile	Reports	are	quite	simple.	A	map	consists	of	multiple
named	shape	definitions.	Internally,	each	shape	is	really	a	series	of	points	used	to
“connect-the-dots”	and	form	boundaries.	Multiple	shapes	fit	together	like	a	jigsaw
puzzle	to	create	the	map.	Maps	are	based	on	the	de	facto	industry	standard	developed
by	the	Environmental	Systems	Research	Institute	(ESRI),	a	well-known	producer	of
Geographical	Informational	Systems	and	mapping	software.

Unlike	the	mapping	capabilities	for	paginated	reports,	mobile	report	maps	do	not
support	multiple	layers,	positional	data	(like	latitude	and	longitude),	and	cannot
consume	SQL	Server	spatial	types.	Map	reports	do	not	require	an	Internet	connection
like	Power	BI	maps	that	use	the	live	Bing	Map	service.

Three	map	controls	are	available:

Gradient	heat	map—Fills	map	shapes	with	graduated	shades	of	a	color	based	on
the	relative	value	of	an	aggregated	measure	field.	This	type	of	map	visual	is	useful
when	you	need	to	visualize	values	related	to	different	regions	for	comparison	and
works	well	when	there	are	several	neighboring	regions,	like	states	or	counties.

Range	stop	map—Employs	KPI-like	numeric	thresholds	to	a	range	of	aggregated
values	for	each	shape.	The	resulting	values	are	visualized	as	solid	red,	yellow,	and

green	shape	fills	to	indicate	whether	the	value	for	a	geographic	region	or	shape
meets	the	predefined	threshold	criteria.

Bubble	map—Displays	a	circular	bubble	over	the	center	of	each	shape.	The	size	of
the	bubble	represents	the	relative	value	for	the	shape	and,	optionally,	the	backfill
color	visualizes	the	main	field	value	compared	to	a	target	field	value.

The	map	visual	controls	are	shown	in	Figure	17.13.

Figure	17.13	Map	controls.

A	small	collection	of	maps	is	provided	with	Mobile	Report	Publisher	and	many	other
maps	are	available.	I	have	collected	several	useful	maps	and	provided	them	with	the
book	download	files.	For	legal	reasons,	Microsoft	does	not	provide	maps	of	many
world	countries.	Because	boundaries	can	change,	any	maps	provided	with	the	book
downloads	(or	from	any	other	source)	should	be	verified	and	updated	if	necessary.

Standard	maps	consist	of	two	paired	files.	The	shape	file	(.shp)	contains	the	boundary
definition	for	all	of	the	shapes	in	the	map,	and	the	dBase	data	file	(.dbf)	contains	the
shape	names	and	keys.

NOTE

Yes,	you	read	that	correctly…	the	universal	map	shape	standard	uses	the	old
dBase	data	file	format	to	store	map	name	key/value	information.	Does	this	give
you	an	idea	about	how	long	this	standard	has	been	around?

To	add	a	new	map,	add	a	map	control	to	the	report	and	use	the	Map	 property	drop-
down	list.	At	the	bottom	of	the	list	(shown	in	Figure	17.14),	click	the	Custom	map…
button	and	then	locate	one	of	the	two	map	definition	files.	Map	shape	files	are
currently	limited	to	500	KB.

Figure	17.14	Map	selection	list.

The	geographic	region	values	in	the	report	dataset	must	match	the	shape	key
identifiers	stored	in	the	map.	This	can	be	a	challenge	if	you	are	not	familiar	with	all
the	shape	key	values	obtained	from	the	map	shape	file.	For	this	reason,	I	have
included	a	reference	table	in	the	database	provided	with	the	book	downloads.	You	can
use	this	reference	table	to	perform	the	mapping	between	your	data	and	the	shape
information	stored	in	both	maps	that	install	with	the	product	and	the	additional	maps
provided	with	the	book	download	files.

TIP

A	reference	table	of	map	shape	names	is	included	in	the	database	provided	with
the	book	download	files.	This	will	help	you	map	shape	names	to	the	geography
regions	in	your	data.	I've	included	shape	names	for	the	installed	maps	and	those
provided	with	the	book	download	files.

Data	Grids
Three	data	controls	are	used	to	display	detailed	information	in	a	grid	layout,	along
with	several	enhancements:

Simple	Data	grid—Useful	when	you	have	multiple	rows	and	columns	to	display
in	columnar	form—straight	and	simple.	Data	is	based	on	one	table	and	displays
selected	fields.	This	is	the	closest	we	get	to	transactional	reporting	in	Mobile
Reports.

Indicator	Data	grid—Based	on	one	table	but	it	displays	selected	fields	as	either
columns	or	indicators/gauges.

Indicators	require	two	fields	for	metric	and	target/comparison.

Chart	Data	grid—Supports	features	of	Indicator	DataGrid	and	is	based	on	two
tables	with	matching	key	fields.	The	second	table	is	used	for	the	category	chart.

In	Figure	17.15,	you	can	see	that	the	indicator	column	contains	red	and	green	filled
cells	in	the	Value	column.	This	is	driven	from	two	columns—a	main	value	and	a	Target
value	in	order	to	calculate	the	relative	status.

Figure	17.15	Data	grid	controls.

The	last	control,	the	Chart	data	grid,	requires	two	tables	that	are	related	using
matching	key	values.	The	first	table	drives	the	columnar	table	layout	and	the	second
produces	aggregated	chart	 columns	grouped	along	a	specified	category.	You	see	a
specific	example	and	learn	how	to	use	this	 control	in	Chapter	20.

SUMMARY
The	next	three	chapters	demonstrate	how	to	use	the	majority	of	these	controls	to
establish	the	design	techniques	required	to	build	working	Mobile	Report	solutions.

You	learned	how	the	mobile	and	paginated	report	toolsets	and	features	have	some
common	 elements,	but	the	design	experience	is	significantly	different	due	to	their
history	and	their	intended	purpose.

Controls	on	a	mobile	report	are	used	to	navigate,	select,	and	filter	data	and	to	interact
with	other	controls.	Drill-though	actions	allow	a	user	to	navigate	to	another	report
and	pass	the	filtering	 context	and	selections	made	in	the	original	report.

We	briefly	described	and	explored	differences	between	every	visual	control	available
to	report	design.	We	examined	the	capabilities,	data	and	design	needs,	and	significant
features	for	each	 control	used	to	create	an	entire	reporting	solution.

Chapter	18
Implementing	a	Mobile	Report	with	Design-First
Development

WHAT'S	IN	THIS	CHAPTER?

Using	design-first	report	development

Creating	and	using	shared	datasets

Using	Time	navigators

Using	Selectors

Using	Number	gauges	and	charts

Applying	mobile	layouts	and	color	styling

Deploying	and	testing	a	completed	mobile	report

The	purpose	of	the	exercise	in	this	chapter	is	to	introduce	mobile	report	design	from
start	to	finish.	Using	a	very	simple	mobile	report	scenario	and	sample	sales	data,	we
step	through	a	simplified	example	exercising	the	design-first	report	development
pattern.

DESIGN-FIRST	MOBILE	REPORT	DEVELOPMENT
EXERCISE
To	compete	all	of	the	steps	for	this	exercise,	you	need	the	following:

SQL	Server	2016

Native	mode	report	server

Samples	and	exercise	projects	used	in	earlier	chapters

Mobile	Report	Publisher

Optionally,	a	mobile	device	(tablet	or	phone)	with	the	Power	BI	mobile	app
installed

Create	a	new	mobile	report	from	the	Web	Portal	by	following	these	steps:

1.	 Navigate	to	your	Reporting	Services	Web	Portal.

If	your	report	server	was	installed	with	default	settings,	the	address	is
http://myreportserver/Reports	(where	myreportserver	is	the	name	of	your
report	server).

2.	 Click	the	Browse	icon	in	the	toolbar	to	show	the	contents	of	the	Home	folder	rather
than	your	Favorites.

3.	 Use	the	“+New”	(or	“+”)	menu	to	add	a	folder	named	Sales	Reports.

4.	 Navigate	to	the	Sales	Reports	folder.

5.	 Use	the	“+New”	menu	to	select	Mobile	Report	(Figure	18.1).

Figure	18.1	Web	Portal	with	compact	menu	items.

5.	 NOTE

When	the	browser	window	for	the	Web	Portal	is	wide	enough	to	show	the
entire	toolbar,	the	menu	items	are	displayed	with	the	icons	along	with	a	short
description	(for	example	“+New”)	but	when	the	window	is	smaller,	the	menu
items	are	compacted	and	only	show	the	icons	like	you	see	in	Figure	18.1.	In
the	figure,	the	“+New”	menu	is	displayed	as	simply	“+”.

The	Mobile	Report	Publisher	opens	or	you	are	prompted	to	download	and	install	it.
If	the	Report	Publisher	has	not	been	previously	installed,	use	the	link	shown	in
Figure	18.2	to	install	the	application.	If	Mobile	Report	Publisher	does	not	open	a
few	seconds	after	installing,	choose	the	Mobile	Report	menu	option	again.

Figure	18.2	Web	Portal	after	selecting	“Mobile	Report.”

The	Mobile	Report	Publisher,	shown	in	Figure	18.3,	includes	toolbar	icons	and	tabs
with	larger	icons,	used	to	navigate	between	pages.

Figure	18.3	Mobile	Report	Publisher—Settings	page.

Common	file	management	options	listed	on	the	toolbar	include:

Create	new	mobile	report

Open	an	existing	mobile	report

Save	mobile	report

Save	mobile	report	as	.	.	.

Connect	and	manage	server	connections

Larger	icons	on	the	tabs	displayed	on	the	left	side	of	the	Mobile	Report	Publisher
design	window	include:

Layout

Data

Settings

Preview

6.	 	Click	the	Settings	icon	to	open	the	Settings	page	for	the	new	mobile	report.

7.	 	For	the	Report	title,	enter	the	text	Sales	Summary	by	Country	and	Category,
as	shown	in	Figure	18.3.

8.	 	Click	the	“Save	mobile	report	as	.	.	.”	icon	on	the	toolbar	to	display	the	options
shown	in	Figure	18.4.

Figure	18.4	“Save	mobile	report	as”	destination	options.

8.	 TIP

Before	the	report	is	saved	the	first	time,	both	“Save	mobile	report”	and	“Save
mobile	report	as	.	.	.”	icons	will	perform	the	same	operation,	prompting	for	the
location	to	save	the	report.	After	that	only	the	“Save	as	.	.	.”	option	will	prompt
for	a	new	location.

9.	 	Click	“Save	to	server”	(Figure	18.5),	navigate	to	the	Sales	Reporting	folder	on
your	report	server,	and	then	save	the	report.

Figure	18.5	Report	server	and	location	properties.

10.	 Switch	to	the	Layout	page	using	the	left-most	tab	in	the	upper	left-hand	side	of	the
designer.

As	you	can	see	in	Figure	18.6,	a	grid	is	displayed	on	the	report	design	surface.	You
can	drag	and	drop	visual	controls	from	the	panel	on	the	left	to	any	cell	in	the	grid.
After	you	drop	a	control,	use	the	handle	displayed	in	the	bottom-right	corner	of
the	control	to	resize	it,	stretching	it	to	the	right	or	down,	to	fill	as	many	cells	as
you	wish.

Figure	18.6	Report	Mobile	Publisher—Layout	page.

You	can	change	the	number	of	grid	rows	and	columns	using	the	sliders	in	the	top
right-hand	side	of	the	designer.	Next	to	the	row	and	column	sliders	are	drop-down
lists	used	to	select	different	mobile	device	layouts	and	color	palettes.	You'll	use
these	a	little	later	on	in	this	exercise.

WARNING

Experienced	SSRS	report	designers	are	inclined	to	change	the	grid	rows	and
columns,	adding	as	many	controls	as	possible.	Before	you	give	in	to	this	urge,
consider	this:	the	purpose	is	to	design	mobile	reports	optimized	for	small	screens
and	touch	interaction.	When	viewing	a	mobile	report	on	a	desktop	computer,	the
report	might	appear	overly	simple	if	it	has	unusually	large	controls.	For	this
reason,	be	sure	to	test	mobile	reports	on	a	phone	or	tablet	device	to	ensure	that
you	are	providing	the	best	mobile	user	experience	and	screen	layout.

Before	you	start	adding	controls	to	the	mobile	report,	let's	review	the	high-level	report
requirements:

NOTE

Normally,	the	high-level	business	and	functional	report	requirements	are
gathered	by	interviewing	business	user	stakeholders.	The	tenets	of	design-first
report	development	allow	you	to	start	designing	with	only	functional
requirements	and	perhaps	a	modest	understanding	of	the	available	data.

Mobile	users	should	be	able	to	select	a	date	period	(years,	months,	or	days)	or	any
range	of	date	periods	to	see	aggregated	sales	metrics.

Users	should	be	able	to	select	the	country,	or	any	combination	of	countries,	to	see
the	aggregated	sales	for	those	countries	within	the	selected	date	period	range.

The	total	sales	amount,	freight	cost,	taxes,	and	unit	order	quantity	should	be
displayed	as	abbreviated	and	correctly	formatted	values.

The	sales	amount	should	also	be	visualized	to	compare	totals	for	each	product
category,	filtered	by	the	selected	date	periods	and	countries.

Add	Visual	Controls
Now	that	you	have	a	basic	understanding	of	these	requirement	guidelines,	you	can
add	navigators,	selectors,	gauges,	and	other	controls	to	the	report:

1.	 From	the	Navigators	group	at	the	top	of	the	controls	panel,	drag	the	Time
navigator	to	the	first	cell	(top-left	corner)	in	the	mobile	report	design	grid.

2.	 Use	the	resize	handle	in	the	bottom-right	corner	of	the	Time	navigator	to	resize	the
control	to	fill	all	the	columns	in	the	first	row	of	the	grid.

3.	 With	the	Time	navigator	selected,	use	the	Visual	properties	panel	displayed	below
the	mobile	report	designer	to	update	properties	with	the	following	tasks,	using
Figure	18.7	as	a	guide:

Figure	18.7	Time	navigator	Time	level	presets.

a.	 Use	the	Time	levels	drop-down	list	to	select	Years,	Months,	and	Days.

b.	 Use	the	Time	range	presets	drop-down	list	to	deselect	all	items	except	All	and
Last	Year.

4.	 Leave	all	other	properties	set	to	default	selections.

5.	 Drag	the	Selection	list	to	the	left-most	cell	below	the	Time	navigator	and	then
resize	it	like	Figure	18.8.

Figure	18.8	Setting	properties	for	the	Time	navigator.

6.	 In	the	Visual	properties	panel,	change	the	title	to	Select	Country.

7.	 From	the	Gauges	control	group,	add	four	Number	gauges	as	shown	in	Figure	18.9.

Figure	18.9	Category	Sales	chart	added.

8.	 Resize	each	gauge	to	be	two	cells	wide.

9.	 Change	the	Title	for	each	of	the	gauges	to:

Sales	Amount

Freight

Tax	Amount

Order	Quantity

10.	 Set	the	Number	format	for	the	first	three	gauges	to	Abbreviated	currency.

11.	 Set	the	Number	format	for	the	Order	Quantity	gauge	to	Abbreviated.

12.	 From	the	Charts	control	group,	drag	the	Category	chart	and	resize	it	to	fill	the
remaining	space	on	the	grid.	Use	Figure	18.9	to	verify	the	chart	properties.

13.	 Change	the	Title	to	Category	Sales.

Preview	the	Mobile	Report
View	the	report	as	it	will	appear	when	deployed	to	the	server,	and	then	test	the	control
interactions.

1.	 Click	the	Preview	icon	on	the	right-most	tab	to	run	the	report	with	simulated	data.

As	you	see,	simulated	data	is	generated	with	values	appropriate	for	each	visual
control.	A	range	of	date	periods	is	generated	with	several	years	of	usable	date
periods	up	to	the	current	date.

Remember	that	this	is	a	simulation	of	a	mobile	touch	screen	interface.	On	a	tablet
device,	the	large	controls	on	this	mobile	report	are	better	suited	for	touch
navigation	and	may	be	presented	a	little	differently	so	they	are	familiar	to	users
accustomed	to	using	different	devices.	If	you	are	using	a	touch	screen	computer,
you	can	use	the	screen	to	navigate.	Otherwise,	use	the	mouse.

2.	 Touch	or	click	a	year	on	the	Time	navigator	to	drill	down	to	the	months	for	the
selected	year.	Note	that	the	number	gauges	and	chart	filter	values	apply	the	data
filtered	for	the	selection.

3.	 Click	and	hold	or	swipe	and	drag	across	a	range	of	months	to	select	sales	for	a
given	range.

4.	 Click	or	touch	an	item	in	the	Select	Country	list	to	filter	the	values	even	further.
See	Figure	18.10.

Figure	18.10	Sales	Summary	by	Country	and	Category	report	with	selected
Country.

What	you	have	experienced	is	that	by	simply	adding	visual	controls	to	the	report,
simulated	data	is	generated	that	can	be	used	to	interact	with	all	the	controls.

4.	 NOTE

Don't	underestimate	the	impact	of	this	simple	but	powerful	feature.	Using
design-first	mobile	report	development,	you	can	easily	demonstrate
functionality,	report	controls,	and	layout	ideas	with	simulated	data.	Use	this
approach	to	demonstrate	design	concepts	and	to	get	user	feedback.

This	report	is	a	very	simple	example	that	demonstrates	the	power	of	design-first
mobile	report	development.

Add	Data	to	the	Report
With	a	working	report	using	automatically	generated	simulated	data,	you	can	now
replace	the	simulated	datasets	with	real	data:

1.	 Switch	to	the	Data	page	and	note	the	two	datasets	named	SimulatedTable	and
Simulated	FilterTable.	The	presence	of	the	two	datasets	suggests	that	the	best
dataset	design	approach	for	this	report	might	be	to	create	two	different	datasets.

1.	 TIP

The	criteria	for	using	a	single	dataset	or	multiple	datasets	are	primarily	based
on	the	requirements	of	each	control,	and	the	interactions	between	controls.
Use	different	datasets	when	one	selector	or	navigator	should	filter	a	dataset.

In	this	example,	a	single	dataset	can	be	used	for	the	Time	navigator	and	all	the
visual	controls	on	the	report,	except	for	the	Country	selector.	We	don't	want	the
Country	selector	to	be	filtered	by	the	Time	navigator	so	it	should	be	driven	by	an
independent	dataset.

1.	 NOTE

Some	controls	require	a	dataset	with	records	grouped	at	the	appropriate	level
of	detail	to	support	the	visual.	Other	controls,	which	we	explore	later,	also
require	two	datasets	correlated	using	matching	key	columns.

We	will	review	the	data	requirements	for	all	of	the	visual	controls	a	bit	later.	The
controls	on	this	mobile	report	can	consume	datasets	having	various	levels	of
detail.	With	an	understanding	of	how	these	controls	work	and	the	data	structure
required	for	them	to	work,	you	can	create	the	necessary	dataset	queries.

2.	 Review	the	two	simulated	datasets	shown	in	Figure	18.11.	The	SimulatedTable	has
a	column	of	date,	time,	or	date/time	type	values.

Figure	18.11	Data	page	with	simulated	datasets.

3.	 Review	the	controls	in	the	mobile	report,	shown	in	Figure	18.12.

Referring	to	the	callout	areas	in	Figure	18.12:

Figure	18.12	Visual	controls	on	the	report.

Callout	area	1:	Time	navigator—A	Time	navigator	is	the	combination	of
both	a	date	or	time	period	selector	and	a	categorized	chart.	It	will	generate
(depending	on	the	Time	levels	property	selection)	a	contiguous	range	of	date	or
time	periods	between	the	earliest	and	latest	date/time	values	existing	in	a
dataset.	Unlike	a	date	dimension	table,	a	contiguous	range	of	dates	is	not
required	in	the	query	result.	The	Time	navigator	will	actually	fill	in	gaps	left	in
the	data	and	create	all	of	the	date	or	time	periods	for	the	range.

Callout	area	2:	Country	Selection	list—A	Selection	list	control	simply
displays	one	item	per	row	and	does	not	group	or	aggregate	values.	A	separate
dataset	is	commonly	used	to	drive	this	control	and	to	avoid	having	items	on	the
list	filtered	by	other	selector	or	navigator	controls	in	the	report.

Callout	area	3:	Number	gauge	controls	and	Category	chart	control—A
gauge	control	simply	aggregates	all	the	row	values	for	a	numeric	column
without	any	kind	of	grouping.	Due	to	its	versatility,	gauges	often	share	datasets
that	can	be	optimized	for	more	demanding	controls.	If	the	dataset	returns	one
row,	it	displays	the	value	of	the	column.	If	the	dataset	has	any	number	of
multiple	rows,	it	rolls	up	the	values	in	the	column	using	a	specified	aggregate
function.

Not	all	mobile	report	chart	controls	play	by	the	same	rules	and	behave	the	same	way.
The	Category	chart	you	used	in	this	report	is	similar	to	charts	in	paginated	reports.	It
consumes	a	dataset	with	multiple	rows,	groups	all	the	records	on	a	specified	field
value,	and	then	aggregates	numeric	columns	of	the	detail	rows	within	the	groupings.

How	many	datasets	do	you	need	for	this	mobile	report?

The	Time	navigator	can	consume	a	detailed	dataset	at	most	any	level	of	detail	as
long	as	it	includes	the	range	of	date/time	column	values.

The	Select	Country	Selection	list	control	should	have	a	dedicated	dataset	to	return
one	row	per	country.

The	number	gauge	and	category	chart	in	area	3	can	share	a	dataset.	Values	of	all
controls	in	this	area	should	be	filtered	by	the	Time	navigator	and	by	the	Country
selector.

If	it	were	important	for	the	Time	navigator	to	remain	independent	from	the
controls	in	area	3,	and	perhaps	not	be	filtered	by	the	Country	selection,	it	would
make	sense	to	isolate	the	 datasets	for	areas	1	and	3.	For	simplicity's	sake,	you	will
use	one	dataset	for	these	two	controls.	The	only	possible	consequence	of	using	a
filtered	table	for	both	controls	would	be	that,	if	no	data	existed	for	a	country	or	if
only	a	limited	range	of	records	existed	for	a	given	country,	the	Time	navigator
would	only	show	corresponding	dates.

Adding	Shared	Datasets	and	Report	Tables
Adding	a	shared	dataset	to	a	mobile	report	is	quite	simple.	Figure	18.13	shows	the
Sales	Summary	by	Country	and	Category	mobile	report	after	completing	the	steps	in
the	next	section,	with	tables	from	two	new	datasets	added	and	the	simulated	tables
removed.	Removing	the	simulated	data	is	not	important	from	the	perspective	that
they	add	very	little	processing	and	storage	overhead	to	the	report.	However,	I	typically
remove	simulated	data	to	ensure	that	all	of	the	controls	have	been	bound	to	the	actual
tables	I	added	after	importing	replacement	datasets.	If	you	attempt	to	remove	a	table
that	has	controls	bound	to	it,	the	designer	displays	a	warning	and	does	not	allow	the
table	to	be	removed.

Figure	18.13	Datasets	added	in	the	Data	page.

NOTE

You	can	create	shared	datasets	using	either	SSDT	for	Visual	Studio	or	Report
Builder.	The	only	reason	I	have	instructed	you	to	use	both	is	to	provide
experience	with	both	tools.

Create	a	Shared	Dataset	with	Report	Builder
You	can	design	shared	datasets	using	two	different	tools.	If	you	are	a	report	project
developer	using	Visual	Studio	and	SSDT,	you	can	use	a	shared	data	source	in	the	SSDT
project,	add	datasets,	and	deploy	them	from	SSDT.	You	can	also	design	and	deploy
shared	datasets	directly	from	Report	Builder.	Either	way,	the	process	is	relatively
similar.	In	the	next	steps	and	those	in	the	following	section,	I	give	you	a	little
experience	using	both	tools.	Let's	start	with	Report	Builder:

1.	 In	Web	Portal,	navigate	to	the	Home	folder	and	then	to	the	Datasets	subfolder.

1.	 NOTE

By	default,	SSDT	creates	a	Datasets	folder	so	if	you	have	previously	deployed
a	report	project,	the	Datasets	folder	will	exist.	If	not,	use	the	Web	Portal	to
create	a	folder	named	Datasets	in	the	Home	folder.	It	really	doesn't	matter	in
what	folder	your	shared	datasets	reside	as	long	as	you	know	where	to	find
them.

2.	 On	the	toolbar,	click	the	“+New”	menu	item	and	then	select	the	option	to	create	a
shared	dataset.	Report	Builder	opens	with	the	New	Report	or	Dataset	dialog,
shown	in	Figure	18.14.

Figure	18.14	Selecting	a	shared	data	source.

3.	 Click	the	WroxSSRS2016	shared	data	source	and	then	click	the	Create	button.

4.	 Enter	this	query	directly	into	the	Query	box	(or	use	the	“Edit	as	Text”	toolbar
option	in	the	query	designer)	and	test	it,	and	then	save	it	to	the	Datasets	folder	on
the	report	server.	Name	the	dataset	Country	Code	List.

SELECT	DISTINCT

						Country,

						CountryRegionCode

FROM			SalesTerritory

WHERE		Country	<>	'NA'

Create	a	Shared	Dataset	with	SSDT
Beginning	in	the	SSDT	project,	Wrox	SSRS	2016	Exercises,	add	a	new	shared	dataset
to	the	project	that	references	the	shared	data	source	named	WroxSSRS2016:

1.	 Name	the	dataset	SalesSummaryByDateCategoryCountry.

2.	 Enter	and	test	the	following	query	in	the	query	designer.	I	prefer	to	use	the	Edit	as
Text	option:

SELECT

							[OrderDate],

							[ProductCategory],

							CountryRegionCode,

							[Country],

							SUM([OrderQuantity])	AS	[OrderQuantity],

							SUM([SalesAmount])	AS	[SalesAmount],

							SUM([TaxAmt])	AS	[TaxAmt],

							SUM([Freight])	AS	[Freight

FROM	[vSalesDetails

GROUP	BY

							[OrderDate],

							[ProductCategory],

							CountryRegionCode,

							[Country

ORDER	BY

							[OrderDate],

							[ProductCategory],

							CountryRegionCode,

							[Country

;

3.	 After	the	query	has	been	written,	tested,	and	named	correctly	in	the	Shared	Dataset
Properties	dialog	shown	in	Figure	18.15,	close	and	save	the	query.

Figure	18.15	Creating	a	shared	dataset.

4.	 Right-click	the	dataset	and	deploy	it	to	the	Datasets	folder	on	the	report	server.

The	destination	should	be	set	as	the	default	deployment	path	in	the	project.

5.	 Use	the	Web	Portal	to	inspect	the	Datasets	folder.	Refresh	the	browser	windows	if
necessary	and	make	sure	that	the	two	new	shared	datasets	are	there,	similar	to
Figure	18.16.

Figure	18.16	Shared	datasets	viewed	in	Web	Portal.

Add	Data	Tables	to	the	Mobile	Report
The	reason	mobile	reports	use	only	shared	datasets	is	that,	unlike	SSRS	paginated
reports,	query	definitions	are	not	stored	in	the	report	definition	files.	The	Mobile
Report	Publisher	refers	to	the	data	structure	object	based	on	query	results	as	a	“table.”
Subsequently,	there	is	no	query	designer	in	the	design	tool.

Add	tables	from	the	shared	datasets	using	these	steps:

1.	 Return	to	the	Mobile	Report	Publisher.

2.	 On	the	Data	page,	click	the	Add	Data	button	on	the	top-right	side	of	the	window.

The	Add	Data	options	are	displayed,	as	you	see	in	Figure	18.17.

Figure	18.17	Add	data	options.

Choose	the	Report	Server	option	on	the	right	side	to	select	a	server.	You	can	see
my	development	server	in	Figure	18.18.

Figure	18.18	Select	the	report	server.

A	connection	to	your	report	server	is	added	the	first	time	you	open	Mobile	Report
Publisher	from	the	Web	Portal.	You	should	see	your	report	server	and	any	other
report	servers	you	may	have	added	in	previous	sessions.

3.	 Select	your	report	server	from	the	list	and	then	browse	to	the	CountryCodeList
dataset	in	the	Datasets	folder.	Selecting	the	dataset	adds	it	to	the	mobile	report.

4.	 Click	the	Add	Data	button	again	and	add	the
SalesSummaryByDateCategoryCountry	dataset	to	the	report.

On	the	Data	page	of	the	Mobile	Report	Publisher,	shown	in	Figure	18.19,	you
should	see	the	two	new	tables	imported	from	the	selected	datasets.

Figure	18.19	New	tables	added	to	report	datasets.

5.	 Verify	that	you	are	setting	the	data	properties	for	the	Time	navigator.

You	should	see	the	control	instance	named	Time	Navigator	1	displayed	to	the	left
of	the	properties	panel	below	the	data	grid.	To	switch	controls,	use	the	Layout
page,	select	the	visual	control,	and	then	switch	to	the	Data	page.

Set	Data	Properties	for	the	Time	Navigator
In	the	steps	in	this	section,	carefully	check	the	figures	to	make	sure	you	have	the
correct	control	selected.	To	select	a	different	control,	return	to	the	Layout	page	using
the	tabs	on	the	left	side	of	the	mobile	report	designer	grid.	In	the	Data	page,	the
control	is	displayed	on	the	left-hand	side	of	the	Data	properties	panel.

The	Time	navigator	control	automatically	detects	date	and	time	values	and	generates
time	periods	for	dates	between	the	earliest	and	latest	date/time	values	in	the
corresponding	data	table.

1.	 Ensure	that	you	have	selected	the	Time	Navigator	1	control.	If	a	different	control	is
selected,	return	to	the	Layout	page	and	select	the	Time	navigator.

2.	 In	the	Data	properties	panel,	shown	in	Figure	18.20,	drop	down	the	“Series	for
background	chart”	list	and	select	the	SalesSummaryByDateCategoryCountry
dataset.

3.	 Use	the	drop-down	list	to	the	right	and	check	the	SalesAmount	field,	as	you	see	in
Figure	18.20.

Figure	18.20	Time	navigator	background	chart	properties.

Set	Data	Properties	for	the	Selection	List
Selection	list	controls	are	used	to	filter	other	datasets	on	a	mobile	report.	One	dataset
is	needed	to	populate	the	selection	list	and	another	dataset	is	filtered	using	the	items
selected	from	the	list.	A	set	of	matching	key	columns	is	used	to	perform	matching	and
filtering	between	the	two	datasets.

1.	 Return	to	the	Layout	page	and	click	the	Select	Country	selection	list	on	the	report
design	grid.

2.	 Select	the	Data	page	and	refer	to	Figure	18.21	to	set	the	Data	properties.

Figure	18.21	Filter	options	in	the	properties	for	the	Select	Country	control.

3.	 From	the	Keys	drop-down	list,	select	the	CountryCodeList	table.

4.	 In	the	field	drop-down	list	to	the	right,	select	the	CountryRegionCode	field.

You	can	ignore	the	two	Options	buttons.	The	data	for	this	control	will	not	be
filtered	by	any	other	selection	nor	are	there	any	numeric	fields	to	be	aggregated.

A	panel	is	located	to	the	right,	titled	The	Tables	Filtered	by	Select	Country.

5.	 In	the	table	filtering	panel,	check	only	the	SalesSummaryByDateCategoryCountry
dataset	and	drop	down	the	adjacent	list.

6.	 Choose	the	CountryRegionCode	field.	This	is	the	key	column	in	the	target	table
that	will	be	filtered	using	key	values	in	the	selection	list	table.

Set	Data	Properties	for	the	Number	Gauges
The	most	basic	of	all	the	visual	controls,	the	number	gauge	simply	aggregates	all
values	in	a	specified	column.	All	the	other	gauge	controls	require	another	column	that
is	used	for	comparison,	as	a	KPI	or	progress	indicator.	Values	should	be	formatted
appropriately,	whether	currency,	percentages,	decimal,	or	whole	values.

1.	 Return	to	the	Layout	page	and	select	the	Sales	Amount	number	gauge	on	the
report	design	grid.

2.	 Select	the	Data	page.

3.	 From	the	Main	Value	drop-down	list,	select	the
SalesSummaryByDateCategoryCountry	table.

4.	 From	the	adjacent	field	drop-down	list,	select	the	SalesAmount	field.

5.	 Click	the	Options	button	to	display	the	Filter	and	Aggregation	options,	shown	in
Figure	18.22.

Figure	18.22	Number	gauge	data	filter	properties	and	aggregating	function
selection.

6.	 Check	both	the	Time	Navigator	1	and	Select	Country	controls.	These	navigator	and
selection	controls	are	used	to	filter	data	for	the	number	gauge.

7.	 Verify	that	the	Sum	aggregation	is	selected.

8.	 Repeat	the	same	steps	for	the	three	remaining	number	gauge	controls.	Choose	the
corresponding	fields	for	the	Freight,	Tax	Amount,	and	Order	Quantity	number

gauge	controls.

Set	Data	Properties	for	the	Category	Chart
The	category	chart	is	similar	to	charts	and	other	data	regions	used	in	paginated
reports.	The	Category	Coordinate	properties	define	a	group	for	aggregation,	similar	to
the	group	expression	in	paginated	reports.

1.	 Return	to	the	Layout	page	and	select	the	Category	Sales	category	chart.

2.	 Select	the	Data	page	and	follow	Figure	18.23	to	complete	the	property	assignments.

Figure	18.23	Category	Sales	chart	Data	properties.

3.	 Drop	down	the	Category	Coordinate	list	and	select	the
SalesSummaryByDateCategoryCountry	table.

4.	 Drop	down	the	corresponding	field	list	and	select	the	ProductCategory	field.

5.	 Use	the	field	list	to	the	right	of	the	Main	Series	and	select	the	SalesAmount	field.

6.	 Use	each	of	the	Options	buttons	to	check	both	the	Time	Navigator	1	and	Select
Country	 controls	for	filtering,	and	verify	that	the	Sum	aggregation	is	used.

Apply	Mobile	Layouts	and	Color	Styling
The	color	palette	options	are	defined	in	the	brand	package	applied	to	the	report	server.
To	style	the	report,	you	select	a	color	palette	and	a	layout	for	mobile	devices.

1.	 Return	to	the	Layout	page.

2.	 Use	the	color	palette	drop-down	in	the	upper-right	corner	to	select	a	themed	style
for	the	mobile	report.	See	Figure	18.24	for	some	examples.

Figure	18.24	Color	palette	selection.

Color	palettes	correspond	to	the	custom	branding	theme	applied	to	the	Web
Portal.

3.	 Use	the	Preview	tab	to	view	the	mobile	report	with	data.

This	time	you	see	the	real	sales	data	from	the	SQL	Server	database.

4.	 Test	the	report	by	interacting	with	the	Time	navigator	and	“Select	Country”
Selection	list.	Click	or	tap	and	hold	on	a	column	in	the	chart	to	see	more
information	about	the	data	point.

5.	 Switch	to	Layout	view	and	then	use	the	drop-down	control	to	the	left	of	the	color
palette	selector	(see	Figure	18.25)	to	show	the	Master,	Tablet,	and	Phone	layouts.

Figure	18.25	Choosing	a	report	layout.

Creating	alternate	mobile	device	layouts	is	very	easy	to	do.	The	control	instances
that	you	had	added	to	the	original	Master	layout	are	displayed	in	the	panel	to	the
left	of	the	mobile	report	design	grid.	The	default	Tablet	layout	for	portrait
orientation	is	five	cells	wide	by	ten	cells	tall.

6.	 Click	the	layout	drop-down	list	and	choose	the	Tablet	layout.

7.	 Drag	and	drop	controls	into	the	grid,	and	resize	and	arrange	them	to	resemble	the
example	in	Figure	18.26.

Figure	18.26	Report	shown	in	phone	layout.

8.	 Preview	the	mobile	report	in	this	layout	to	see	how	it	will	look	and	behave	on	a
tablet	in	 portrait	orientation.

9.	 Switch	back	to	Layout	view.

10.	 Select	the	Phone	layout	and	arrange	the	control	instances	to	resemble	Figure
18.27.

Figure	18.27	Report	optimized	for	the	phone	layout.

11.	 Preview	the	mobile	report	in	this	layout	to	see	how	it	will	look	when	used	on	a
smart	phone.	Figure	18.28	shows	the	preview.

Figure	18.28	Phone	layout	preview.

Test	the	Completed	Mobile	Report	from	the	Server
Although	previewing	a	mobile	report	in	the	Mobile	Report	Publisher	should
approximate	a	user's	experience	with	published	reports,	it	is	always	a	good	idea	to	test
the	actual	report	in	a	production-like	environment:

1.	 Save	the	mobile	report	to	the	report	server	before	closing	the	Mobile	Report
Publisher.

If	you	had	previously	saved	the	report	to	the	server,	clicking	the	floppy	disk	icon
in	the	toolbar	is	sufficient.

2.	 Navigate	to	the	published	mobile	report	in	the	Web	Portal	and	click	to	open	the
report	in	the	browser.

3.	 Use	the	Time	navigator	and	Selection	list	controls	to	explore	and	interact	with	the
report	data.

4.	 If	you	have	a	touch	screen,	use	the	touch	interface	to	navigate	the	report,	which	is

shown	in	Figure	18.29.

Figure	18.29	Sales	Summary	by	Country	and	Category	report	in	Web	Portal.

If	you	have	Wifi	network	access	to	the	report	server	from	a	mobile	device,	such	as
a	tablet	or	smart	phone,	follow	these	steps	to	connect	to	the	mobile	report.

If	your	report	server	is	behind	a	firewall	or	if	Windows	Firewall	is	running	on	the
report	server,	you	may	need	to	follow	the	steps	in	the	following	article	to	open
port	80	and	allow	report	connectivity	to	the	Internet	or	wireless	network:
https://msdn.microsoft.com/en-us/library/bb934283.aspx.

https://msdn.microsoft.com/en-us/library/bb934283.aspx

4.	 TIP

If	you	are	using	a	development	report	server	that	has	inbound	traffic	exposed
to	the	Internet,	you	can	quickly	test	report	connectivity	by	temporarily	turning
off	the	firewall.	Just	remember	to	turn	it	back	on	when	you	are	finished.

5.	 On	your	tablet	or	phone	device,	use	the	mobile	vendor's	app	store	to	find	and
install	the	Power	BI	Mobile	app.	The	mobile	application	can	be	installed,	free	of
charge,	from	the	Apple,	Google,	or	Microsoft	app	store.

6.	 Run	the	app	and	choose	the	option	to	connect	to	a	server.	Figure	18.30	shows	the
Power	BI	Mobile	running	on	my	iPad.	To	add	the	server	connection,	I	expand	the
menu	bar	and	tap	Connect	Server.

Figure	18.30	Power	BI	Mobile	app	on	tablet.

7.	 Add	the	web	address	of	your	report	server.

8.	 This	will	be	the	same	address	you	use	to	access	the	report	Web	Portal	on	your	web
browser	but	without	the	http://	prefix.	The	default	address	is
servername/Reports.	You	can	also	use	the	server's	IP	address	in	place	of	the	server
name.

9.	 Enter	a	username	and	password	to	connect	to	the	server.	Depending	on	your
network	environment,	you	may	need	to	prefix	the	username	with	the	domain
name	and	a	backslash	(like	domain\username).	Figure	18.31	shows	the	server
connection	configuration	on	my	iPad.

Figure	18.31	Connecting	to	server.

10.	 On	your	mobile	device,	use	the	new	server	connection	to	navigate	to	the	report
server,	locate	the	mobile	report,	and	open	it.

11.	 If	you	are	using	a	tablet	device,	rotate	the	screen	to	transition	from	Master	to
Tablet	layout.

12.	 Figure	18.32	shows	the	live	mobile	report	in	portrait	orientation.	Interact	with	the
report	by	using	the	Time	navigator	to	drill	down	and	select	different	time	periods
and	select	combinations	or	ranges	of	countries.	Tap	and	hold	the	chart	columns	to

view	more	details	about	the	selected	data	point.

Figure	18.32	Report	viewed	in	the	mobile	app.

This	is	a	very	simple	mobile	report	that	you	have	developed	from	beginning	to	end,
using	a	design-first	approach.	By	adding	combinations	of	visual	controls	to	the	report,
the	Mobile	Report	Publisher	generated	simulated	data	that	provided	an	example	to
follow	when	creating	queries	and	shared	datasets	to	support	the	actual	user	reporting
experience.	You	will	see	in	examples	in	the	following	chapters	that	this	pattern	is
useful	when	designing	more	sophisticated	reporting	solutions	with	significant
business	value.

SUMMARY
Design-driven	development	helps	solve	one	of	the	most	vexing	problems	in	report
solution	design	by	helping	report	designers	quickly	move	past	the	common	roadblock
of	getting	the	data	structure	right	before	adding	controls	to	the	report.	We	have
covered	the	basics	of	design-driven	mobile	report	development	with	realistic	data	and
some	of	the	most	rudimentary	controls	to	get	the	feel	of	the	design	and	usability
experience.	Use	this	pattern	to	quickly	build	simple	prototypes	and	get	user	feedback.
In	your	prototyping	plan,	you	should	plan	to	use	iterative	cycles,	toss	out	designs	that
do	not	meet	requirements,	and	try	again	until	you	find	a	design	that	works	for	your
users.	When	presenting	and	demonstrating	mobile	report	solutions,	use	actual	mobile
devices,	using	either	screen	sharing	software	or	hands-on	demonstrators,	so	users	can
realize	the	value	of	mobile	reporting	first-hand.

Building	on	the	basics	we	just	covered,	Chapter	19	will	explore	the	design	patterns
applied	to	mobile	reports.	You	will	create	dataset	queries	to	support	KPIs	and	trends
and	then	use	more	sophisticated	visual	controls	to	design	a	report	with	multiple
trends	and	a	map	to	analyze	sales	by	region.

Chapter	19
Mobile	Report	Design	Patterns

WHAT'S	IN	THIS	CHAPTER?

Introducing	KPIs

Setting	KPI	target,	status,	and	trends

Creating	a	time-series	mobile	report

Using	a	Time	navigator,	Number	gauge,	and	Time	chart

Implementing	design-first	report	development

Configuring	server	access

Using	reports	on	mobile	devices

Now	that	you	have	seen	how	to	design	a	simple	mobile	report	using	the	design-first
development	pattern,	we	turn	our	attention	to	a	realistic	business	report	design.	You
start	with	a	KPI,	and	then	create	a	mobile	report	with	a	Time	navigator,	Selection	list,
Number	gauges,	Time	charts,	and	a	gradient	heat	map	using	a	custom	map	shape	file.
Like	the	example	in	Chapter	18,	you	will	apply	mobile	device	layouts	and	then	test	the
report	on	a	phone	device.	In	Chapter	20,	you	create	a	series	of	drill-through	reports
that	provide	a	navigation	path	from	the	KPI,	to	the	new	sales	trend	report,	and	then	all
the	way	down	to	transactional	details.

KEY	PERFORMANCE	INDICATORS
A	key	performance	indicator,	or	KPI,	is	a	measurement	of	an	organization's	success	in
a	certain	area.	KPIs	typically	indicate	the	status	of	performance	across	specific
business	metrics	that	may	be	organized	into	a	visual	scorecard	or	dashboard.

Each	KPI	is	displayed	as	a	tile	in	a	Web	Portal	folder.	Like	paginated	reports	and
mobile	reports,	KPIs	are	displayed	on	each	user's	Favorites	page.	Figure	19.1	contains
call-outs	to	describe	the	elements	of	the	“US	Bike	Sales	-	2013”	KPI.

Figure	19.1	Elements	of	a	KPI.

Think	of	a	KPI	as	a	separate	report	with	very	simple	element	values	that	can	be
obtained	from	either	a	query	or	entered	manually	when	the	KPI	is	created	or
modified.	A	KPI	consists	of	the	following	elements:

Value

Goal

Status

Trend	set

The	Value,	Goal,	and	Status	elements	are	scalar	values,	expressed	as	a	single	data
point.	A	query	written	specifically	to	populate	these	elements	will	typically	only	return
one	row;	however,	the	Value	and	Goal	elements	can	be	aggregated	from	a	multiple
row	result	set	using	common	aggregate	functions	like	SUM	or	Average.	The	Status
element	expects	one	of	three	integer	values,	which	are	interpreted	as:

1	=	good

0	=	neutral

–1	=	bad

The	Status	values	are	used	to	set	the	background	color	of	the	KPI	tile	according	to
presets	in	the	branding	package	applied	to	the	report	server.	In	the	default	branding
package,	1	(good)	is	green,	0	(neutral)	is	amber,	and	–1	(bad)	is	red.	It	is	typically	not	a
good	idea	to	try	to	aggregate	the	status	values	from	a	multiple	row	query	because	the
resulting	value	must	be	an	integer	with	exactly	one	of	these	three	states.

Let's	try	it	out:

1.	 Make	sure	the	shared	dataset	named	“Actual	And	Target	Sales”	and	“Sales	By
Month	For	Year	And	Country”	in	the	Wrox	SSRS	2016	Samples	projects	are
deployed	to	the	Datasets	folder.

1.	 NOTE

The	T-SQL	script	for	this	dataset	is	provided	here	just	for	reference.	The
shared	datasets	are	included	in	the	sample	project	so	you	don't	need	to	type
long	queries	like	this	one.

In	addition	to	the	SalesAmount	and	SalesTarget	columns,	the	query	contains
business	logic	that	reduces	a	comparison	between	those	two	column	values	to	a
three-state	integer	for	the	Status	value:

--	Actual	And	Target	Sales

With	ActualSales	as

(

							select

													p.ProductCategory,

													YEAR(s.OrderDate)	as	OrderYear,

													SUM(s.SalesAmount)	SalesAmount

							from

													[dbo].[Sales]	s

													inner	join	Product	p	on	s.ProductKey	=	p.ProductKey

													inner	join	SalesTerritory	st	on	s.SalesTerritoryKey	=	

st.TerritoryKey

							group	by

													p.ProductCategory,

													st.CountryRegionCode,

													YEAR(s.OrderDate)

)

select

							t.Category,

							SUM(a.SalesAmount)	as	SalesAmount,

							SUM(t.SalesTarget)	as	SalesTarget,

								(SUM(a.SalesAmount)-SUM(t.SalesTarget))/SUM(t.SalesTarget)	as	

ActualOverTarget,

							CASE

													WHEN	(SUM(a.SalesAmount)-

SUM(t.SalesTarget))/SUM(t.SalesTarget)	<	-.25	THEN	-1

													WHEN	(SUM(a.SalesAmount)-

SUM(t.SalesTarget))/SUM(t.SalesTarget)	>	0	THEN	1

													ELSE	0

							END	as	Status

from	[dbo].[SalesTarget]	t

							inner	join	ActualSales	a	on	t.Category	=	a.ProductCategory

							and	t.OrderYear	=	a.OrderYear

where

							t.OrderYear	=	@Year

							and	t.Category	IN(@Category)

							and	t.CountryRegionCode	IN(@CountryCode)

group	by

							t.Category

;

2.	 To	create	a	KPI,	navigate	to	the	Sales	Reporting	folder	in	the	Web	Portal,	click	“+
New”	to	drop	down	the	menu,	and	select	KPI.

Figure	19.2	(shown	after	step	7)	shows	the	KPI	page	with	the	following	steps
completed.	Use	it	to	validate	the	KPI	design.

Figure	19.2	Completed	design	page	for	the	US	Bike	Sales	-	2013	KPI.

3.	 Enter	the	KPI	name	US	Bike	Sales	-	2013.

4.	 Add	a	description	to	be	displayed	when	a	user	chooses	the	KPI	in	the	Web	Portal	or
their	mobile	device.

5.	 For	the	Value	format,	choose	Abbreviated	currency…	.

6.	 Verify	that	USD	is	selected	for	the	Currency.

7.	 For	the	Value,	choose	Dataset	field	and	then	click	the	ellipsis	(three	dots)	next	to
the	dataset	field	box.

8.	 Navigate	to	the	Datasets	folder	and	select	the	Actual	And	Target	Sales	dataset.

9.	 The	Parameters	window	is	shown	in	Figure	19.3.	Enter	the	parameter	values
shown	here	and	then	click	the	Next	button.

In	Figure	19.4,	you	can	see	the	results	of	the	query	with	the	parameter	values	you
entered	in	the	previous	window.	Because	there	is	only	one	row	returned	by	the
query,	the	Aggregation	selection	actually	doesn't	matter	and	any	aggregate
function	will	return	the	right	value.	If	the	query	returned	multiple	rows,	this
selection	would	be	important.

10.	 Select	the	radio	button	for	the	SalesAmount	column	and	click	OK.

11.	 Repeat	the	same	steps	for	the	Goal	and	Status	elements	using	the	same	dataset.
For	the	Goal,	select	the	SalesTarget	column	and	use	the	Status	column	for	the
Status	element.

12.	 The	Trend	set	element	requires	a	separate	query	to	return	multiple	rows	for	the
same	combination	of	year,	country,	and	product	category.

13.	 Click	the	ellipsis	next	to	the	dataset	box	for	this	element,	navigate	to	the	Datasets
folder,	and	select	Sales	By	Month	For	Year	And	Country.

The	query	for	this	dataset	orders	records	correctly	by	the	month,	along	with	the
aggregated	SalesAmount:

--	Sales	By	Month	For	Year	And	Country

select

							MONTH(s.OrderDate)	as	OrderMonth,

							SUM(s.SalesAmount)	SalesAmount

from

							[dbo].[Sales]	s

							inner	join	Product	p	on	s.ProductKey	=	p.ProductKey

							inner	join	SalesTerritory	st	on	s.SalesTerritoryKey	=	

st.TerritoryKey

where

							YEAR(s.OrderDate)	=	@Year

							and	st.CountryRegionCode	IN(@CountryCode)

							and	p.ProductCategory	IN(@Category)

group	by

							MONTH(s.OrderDate)

order	by

							MONTH(s.OrderDate)

;

14.	 As	in	Figure	19.5,	enter	the	same	parameter	values	as	before	and	click	Next.

15.	 Select	the	SalesAmount	radio	button	shown	in	Figure	19.6	and	click	OK.

16.	 Select	the	Stepped	Visualization.

16.	 NOTE

The	Related	content	property	is	used	to	create	a	drill-through	action	for	the
KPI.	This	allows	navigation	to	a	mobile	report,	web	page,	or	any	URL-
addressable	resource.	You	will	set	this	property	after	creating	the	next	reports.

17.	 Double-check	the	properties	you	set	in	the	US	Bike	Sales	-	2013	KPI	design	page	in
Figure	19.2.

18.	 Click	the	Create	button	when	completed.

Figure	19.7	shows	three	sample	KPIs	that	use	the	same	two	datasets,	passing
different	parameter	values.	In	addition	to	the	Category,	you	could	also	pass
different	years	and	countries.

Figure	19.3	Parameters	for	Actual	And	Target	Sales	dataset.

Figure	19.4	Field	selection	for	Actual	And	Target	Sales	dataset.

Figure	19.5	Parameter	values	for	Sales	By	Month	For	Year	And	Country	dataset.

Figure	19.6	Field	selection	for	Sales	By	Month	For	Year	And	Country	dataset.

Figure	19.7	KPIs	in	the	Web	Portal.

THE	THING	ABOUT	KPIs
Key	performance	indicators	are	really	at	the	heart	of	a	true	Business	Intelligence
solution,	and	are	used	to	manage	a	metric-driven	business.	Often	simple	in	concept,
but	challenging	to	truly	implement	in	practice,	KPIs	provide	business	leaders
actionable	key	metrics	to	drive	business	decisions.

Software-based	decisions	are	often	not	as	simple	as	they	seem	and	can	be	prone	to
errors	and	misguided	calculations.	Business	process	and	culture	may	not	naturally
support	the	KPI	paradigm.	Following	are	two	examples	where	this	was	the	case.

The	Washington	State	Department	of	Corrections	implemented	a	data-driven	system
for	all	prisons	and	jails	in	the	state	to	calculate	the	release	dates	for	inmates	in	2002.
Some	prisons	are	full	and	there	is	a	need	to	expedite	the	release	of	eligible	inmates.

The	system	tracks	an	inmate's	original	sentence,	factors	based	on	the	severity	of
crimes,	and	credits	for	good	behavior,	education,	and	community	service.	The	system
calculated	a	key	metric	that	told	Department	of	Corrections	officials	when	a	prisoner
was	up	for	early	release.	Twelve	years	after	the	system	had	been	in	regular	use,	one
victim's	family	questioned	an	inmate's	release	date.	The	ensuing	investigation	found	a
gross	logic	error	in	the	calculation	for	good	behavior	credit	that	varied	wildly	by
different	correctional	facilities;	as	much	as	600	days.	Before	the	error	was	corrected,
3,200	inmates	had	been	released	too	early.

Please	do	not	misunderstand	my	purpose	in	sharing	this	example.	Used	effectively,
business	scorecards,	dashboards,	and	KPIs	are	powerful	and	important.	You	are	likely
to	find	some,	perhaps	most,	KPIs	to	be	uncomplicated.	Understand	the	potential
impact	of	boiling	a	lot	of	data	and	potentially,	complex	business	rules,	down	to	a
simple	indicator	used	to	make	important	decisions.	I	can't	emphasize	how	important
it	is	to	make	sure	those	values	are	accurate	and	reliable.

You	Need	Goals
Here	is	another	example.	One	of	my	consulting	clients,	a	Fortune	500	manufacturing
company,	contracted	us	to	architect	a	large	BI	solution.	Executives	wanted
“dashboards	with	KPIs”	so	we	went	to	work	digging	up	business	requirements	and
wrangling	data	sources	to	map	out	the	solution	architecture.	I	led	the	discussion	in
one	of	the	investigation	meetings	with	an	executive	stakeholder	to	define	the	first
round	of	KPIs.	We	had	a	list	of	key	metrics	used	in	the	order	fulfillment	and
manufacturing	process.	I	said,	“What	are	your	targets	for	these	metrics?”	The
executive	said,	“We	would	like	to	see	them	improve.”	“That's	great,”	I	said.	“What
goals	do	you	have	for	improvement?”	He	said,	“This	one	should	be	better	than	it	was
last	year.”	It	became	apparent	that	their	process	for	measuring	success	was	not	target-
driven.	Leaders	had	been	running	the	business	the	same	way	for	decades.	They	knew
when	the	business	was	or	wasn't	profitable	but	they	were	not	really	measuring	success
as	much	as	they	were	measuring	profitability	against	their	balance	sheet.	For	this

business	unit,	the	KPI	paradigm	was	a	tough	fit.

Meeting	with	the	sales	director,	I	expected	the	answers	to	be	different.	Any	sales
leader	worth	their	salt	sets	goals	and	measures	sales	performance	against	well-defined
targets	and	quotas.	I	asked	the	same	questions	and	was	relieved	when	he	told	me	that
every	account	manager	has	a	set	of	quarterly	sales	goals	for	their	regions	and	product
lines.	When	I	asked	where	these	goals	were	stored,	I	learned	that	each	sales	manager
had	them	in	personal	spreadsheet	files	and	not	in	a	central	database.	We	also	learned
that	the	individual	spreadsheets	had	different	variables	for	calculating	and
maintaining	the	sales	targets.	It	took	a	considerable	effort	and	data	cleansing	process
to	get	these	into	a	unified	database	to	build	organizational	KPIs.

From	these	examples	and	plenty	of	others,	we	learn	that	KPIs	are	simple	in	concept
but	some	can	be	challenging	to	put	into	production.	Having	simple	KPI	design	tools	in
SQL	Server	Reporting	Services	gives	you	the	flexibility	to	architect	the	right	solution
to	fit	your	organization's	business	needs.	Features	as	simple	as	having	the	ability	to
manually	set	KPI	goals	can	be	used	to	get	you	started	and	work	in	iterations	to	build
the	ideal	solution.

Time-Series	Calculations	and	Time	Grain
A	KPI,	by	technical	definition,	is	one	metric	value	compared	with	another	metric,
which	is	used	to	determine	the	status	or	success	of	some	kind	of	business	objective.
Simple	concept,	right?	One	of	the	most	common	challenges	with	time-based
measurements	is	that	metrics	often	relate	to	different	levels	of	time	or	frequencies.
For	example,	if	we	track	widget	sales	daily	but	restock	them	only	twice	during	the
month,	inventory	will	fluctuate	and	the	sales-vs-inventory	calculations	will	vary	wildly
throughout	the	month.

If	the	sales	director	sets	quarterly	sales	volume	goals	for	each	region	and	account
manager,	who	are	assessed	for	daily	or	weekly	progress,	how	do	we	measure	their
daily	activity	against	the	quarterly	targets?	These	KPI	calculations	will	yield	very
different	results	when	calculated	daily,	weekly,	monthly,	and	finally,	at	a	quarterly
level.	Some	metrics	are	only	relevant	at	a	certain	level	within	the	date/time	hierarchy,
while	some	others	may	just	have	different	rules.	In	this	example,	the	simple	answer
might	be	that	sales	transactions	can	be	summed	up	at	any	level	(daily,	weekly,
monthly)	but	can	only	be	compared	to	the	quarterly	target	value	after	all	the	sales
transactions	are	aggregated	to	the	quarter.	One	could	argue	that	after	one	month,	the
accumulated	sales	transactions	should	be	comparable	to	one-third	of	the	quarterly
sales	target.	There	are	plenty	of	reasons	that	this	kind	of	reasoning	may	or	may	not	be
a	valid	means	to	measure	business	success.

In	a	simple	world,	we	record	and	report	on	data	metrics	at	the	same	level	in	the	Date
hierarchy.	Targets	and	Actuals	are	included	and	there	are	few	if	any	exceptions	to	the
simple	mathematical	rules	used	to	sum	up	each	business	metric	across	the	same	time
periods	and	then	compare	them	straight	across.	The	rules	of	success	would	also	be
clear	in	this	utopia,	where,	when	the	aggregate	actual	metric	value	is	the	same	as	or

any	higher	than	the	aggregate	target	value,	the	KPI	reports	indisputable	success	by
displaying	a	green	flag,	thumbs-up,	or	happy	face.	In	the	same	scenario,	if	the	actual
aggregate	value	is,	say,	25%	lower	than	the	aggregated	target	value,	there	is	no	dispute
that	this	condition	is	determined	to	be	bad	news	or	a	failing	grade.	It	is	a	red	flag,
thumbs-down,	and	a	stern-looking	frowny	face.	And	what	about	the	margin	between
“just	good	enough”	and	“25%	less	than	what	we	wanted”?	Is	that	a	middle-of-the-road
B–	grade	where	someone	gets	credit	for	trying	but	not	failing	miserably?	These	are	all
important	questions	that	must	be	decided	by	business	stakeholders	and	then	carefully
written	and	put	into	practice	by	trusted	technical	solution	architects	and	testers	to
make	sure	that	nothing	important	in	all	the	business	logic	falls	between	the	cracks.

TIP

SQL	Server	Analysis	Services,	Power	Pivot,	and	Power	BI	are	specifically
engineered	to	address	the	challenge	of	matching	KPI	actual-to-target	values
across	different	date	and	time	grains.	You	will	find	that	DAX	and	MDX
functions,	and	semantic	modeling	features	that	manage	unique	KPI	business
rules,	are	more	efficient	and	easier	than	relational	queries.	You	see	how	this
works	in	Chapter	20.

Create	actual	value	measures	and	target	value	measures	that	are	comparable	and
relevant	at	the	correct,	compatible	levels	of	date	and	time	hierarchies.	Once	defined,
storing	these	predefined	calculations	as	measures	hides	the	complexity	and	makes
report	design	easier.	Matching	actual-to-target	values	across	different	time	grains	is
what	SQL	Server	Analysis	Services	is	engineered	to	do.	Whether	using	SSAS
multidimensional	or	Tabular,	Power	Pivot	or	Power	BI,	these	semantic	modeling	and
formula	language	tools	are	specifically	suited	to	address	this	challenge	where
relational	databases	and	SQL	are	not.	Get	well-defined	rules	from	the	business	about
the	status	derived	from	comparing	those	metric	values	and	you	will	be	good	to	go	with
a	rockin'	business	KPI	solution.

CREATING	A	TIME-SERIES	MOBILE	REPORT
First,	you	will	create	a	new	report	using	Mobile	Report	Publisher.

1.	 In	Web	Portal,	navigate	to	the	Mobile	Reports	folder	you	created	in	the	previous
exercise.

2.	 In	the	Sales	Reporting	folder,	click	the	item	on	the	menu	bar	titled	“+	New”	and
then	from	the	drop-down	menu,	click	Mobile	Report	as	shown	in	Figure	19.8.

Figure	19.8	New	Mobile	Report	from	Web	Portal.

Mobile	Report	Publisher	opens.	You	may	recall	from	Chapter	18	that	when	you
see	the	box	containing	the	message	“We're	opening	Mobile	Report	Publisher	…”
(Figure	19.9)	just	wait	for	the	application	to	load.	It	is	only	necessary	to	use	the
Get	Mobile	Report	Publisher	button	the	first	time	this	box	opens	and	then	only	if
it	has	not	been	previously	installed.

Figure	19.9	Mobile	Report	Publisher	message.

Lay	Out	the	Report	Using	Design-First	Report	Development
Next,	you	will	create	the	essential	report	using	a	design	with	the	necessary	visual
controls.

1.	 After	the	new	report	opens,	on	the	Layout	page,	drag	and	drop	the	following	visual
controls	onto	the	grid:

A	Time	navigator	from	the	Navigators	group

A	Selection	list	from	the	Navigators	group

Three	Number	gauges	from	the	Gauges	group

Three	Time	charts	from	the	Charts	group

A	gradient	heat	map	from	the	Maps	group

2.	 Position	and	resize	them	so	the	layout	appears	similar	to	Figure	19.10.

Figure	19.10	Report	layout	example	for	control	positioning.

Time	Navigator	Properties
Select	the	Time	navigator	and	set	the	following	non-default	properties,	similar	to
Figure	19.11:

Time	levels:	Year,	Months,	Days

Time	range	presets:	All	(only)

Number	format:	Abbreviated	currency

Visualization	type:	Bar

Figure	19.11	Time	navigator	Visual	properties	in	the	Layout	page.

Selection	List	Properties
Set	the	Selection	list	title	property	by	following	these	steps:

1.	 Choose	the	Selection	list.

2.	 In	the	Visual	properties	panel,	change	the	Title	to	Select	Country.

Number	Gauge	Properties
Set	the	properties	for	the	Number	gauge	controls:

1.	 For	each	of	the	Number	gauge	controls,	change	the	Title	property	to:

Bike	Sales

Clothing	Sales

Accessory	Sales

2.	 For	each	of	the	Number	gauge	controls,	set	the	Number	format	property	to
Abbreviated	currency.

Time	Chart	Properties
Set	the	chart	control	properties:

1.	 For	each	of	the	Time	chart	controls,	change	the	Title	property	to:

Bike	Daily	Sales

Clothing	Daily	Sales

Accessory	Daily	Sales

2.	 For	each	of	the	Time	charts,	set	the	Time	unit	to	Day	and	the	Number	format	to
Abbreviated	currency.

NOTE

You	will	set	the	Layout	properties	for	the	map	after	the	Data	properties	for	the
other	controls.

Add	Data	and	Set	Control	Data	Properties
1.	 Switch	to	the	Data	page	and	then	click	the	Add	Data	button.	The	Add	Data	page	is
displayed,	prompting	for	the	location	of	your	dataset.	Options	include	a	local	Excel
document	and	a	report	server	(Figure	19.12).

Figure	19.12	Add	data	page.

2.	 Click	the	Report	server	tile.

Add	the	following	four	datasets	to	the	report:

Sales	By	Date	Category	Country

Sales	And	Target	By	Country	For	Bikes

Sales	And	Target	By	Country	For	Clothing

Sales	And	Target	By	Country	For	Accessories

3.	 For	each	dataset,	navigate	to	the	Datasets	folder	(see	Figure	19.13)	and	select	the
item	from	the	folder.

When	a	dataset	is	selected,	this	adds	a	table	to	the	report	definition.	Resulting

table	names	have	the	spaces	removed,	may	be	truncated	and	a	numeral	added,	if
necessary,	to	make	the	name	unique.

Figure	19.13	Add	data	from	server	page.

4.	 Repeat	steps	1	through	3	for	the	remaining	datasets.

5.	 Switch	to	the	Settings	page,	shown	in	Figure	19.14,	and	enter	the	Report	title	Daily
Sales	Trend	by	Category	and	Country.

Figure	19.14	Report	settings	page.

6.	 Click	the	Save	icon	on	the	left	side	of	the	toolbar	(it's	the	single	floppy	disk	icon)	to
display	the	location	options	page.	Choose	“Save	to	Server.”

7.	 The	next	page	displays	the	information	shown	in	Figure	19.15,	titled	“Save	mobile
report	as.”

Figure	19.15	Save	mobile	report	as	page.

8.	 Verify	that	the	New	report	name	is	correct.

9.	 Use	the	Browse	button	to	navigate	to	the	Sales	Reporting	folder.

10.	 Click	the	Save	button	to	save	the	mobile	report	to	the	server.

11.	 Return	to	Data	page.

12.	 Select	the	Time	navigator	from	the	Control	instances	panel.

13.	 In	the	Data	properties	panel	at	the	bottom	of	the	designer	window,	drop	down	the
list	for	the	Series	for	background	chart.	Select	the	SalesByDateCategoryCountry
table	(see	Figure	19.16).

Figure	19.16	Time	navigator	Data	properties	panel.

14.	 Drop	down	the	second	list	box	and	check	only	the	SalesAmount	field.

15.	 In	the	Report	elements	panel,	click	the	Select	Country	selection	list.

16.	 For	the	Data	properties,	choose	the	SalesByDateCategoryCountry	table	from	the
Keys	drop-down	list.

The	Keys	property	defines	the	field	used	for	the	key	value	used	to	filter	other
tables	in	the	report.

17.	 Choose	the	CountryRegionCode	from	the	second	drop-down	list,	on	the	Keys	row.

The	Labels	property	defines	the	field	used	to	display	values	in	the	selection	list
control.

18.	 On	the	Labels	row,	drop	down	the	second	list	and	choose	Country.	Check	Figure
19.17	to	verify	your	control	property	selections.

The	panel	on	the	right	side	of	the	properties	panel	is	used	to	match	key	field
values	for	the	selector	to	other	tables	in	the	report.

Figure	19.17	Select	Country	Selection	list	Data	properties.

19.	 Check	the	following	three	tables.	For	each,	select	the	CountryRegionCode	field
from	the	adjacent	drop-down	list.	Verify	your	selections	with	Figure	19.17.

SalesAndTargetByCountryforBikes

SalesAndTargetByCountryforClothing

SalesAndTargetByCountryforAccessories

20.	 Select	the	Bike	Sales	control	from	the	Report	elements	panel.

21.	 Under	Data	properties,	use	the	drop-down	list	to	select	the
SalesAndTargetByCountryforBikes	table	for	the	Main	Value.

22.	 From	the	second	drop-down	list,	select	the	SubTotal	field.

23.	 Click	the	Options	button	to	display	the	Filter	by	and	Aggregation	options	shown	in
Figure	19.18.

Figure	19.18	Bike	Sales	Number	gauge	Data	properties.

24.	 Check	the	boxes	for	the	Time	Navigator	1	navigator	and	the	Select	Country
selection	list.

25.	 Click	Done	to	close	the	Options	window.

26.	 Repeat	the	steps	19	through	24	for	the	Clothing	Sales	and	Accessory	Sales	Number
gauge	controls,	choosing	the	appropriate	tables.

27.	 Select	the	Bike	Daily	Sales	Time	chart	from	the	Report	elements	panel.

28.	 Use	the	drop-down	list	under	Data	properties	to	select	the
SalesAndTargetByCountryforBikes	table	for	the	Main	Series.

29.	 From	the	second	drop-down	list,	select	only	the	SubTotal	field.

30.	 Click	the	Options	button	to	display	the	Filter	by	and	Aggregation	options	shown	in
Figure	19.19.

Figure	19.19	Bike	Daily	Sales	chart	Data	properties.

31.	 Check	the	boxes	for	the	Time	Navigator	1	navigator	and	the	Select	Country
Selection	list.

32.	 Click	Done	to	close	the	Options	window.

33.	 Switch	to	the	Layout	page	to	view	the	Visual	properties	for	the	Bike	Daily	Sales
control,	shown	in	Figure	19.20.

Figure	19.20	Bike	Daily	Sales	chart	Visual	properties.

34.	 Check	each	of	the	properties	and	make	adjustments	to	match	the	Title,	Time	unit,
Number	format,	Data	structure,	and	Series	visualization	properties	shown	in	the
figure.

Map	Properties
Our	dataset	includes	the	name	of	countries	where	customers	have	purchased
products.	You	will	display	sales	by	country	using	a	gradient	heat	map	of	the	world
where	the	color	of	each	country	represents	the	relative	sales	totals	for	the	selected
date	range.

NOTE

Microsoft	doesn't	distribute	maps	for	all	regions	of	the	world	for	legal	reasons.
This	is	because	political	and	geographic	boundaries	can	change	over	time	and
some	boundaries	may	be	disputed.	I	have	provided	additional	maps	in	the	book
sample	files	with	the	understanding	that	the	map	information	may	change	and	is
not	guaranteed	to	be	accurate.

The	world	countries	map	is	not	included	with	Reporting	Services	but	I	have	provided
this	and	several	other	useful	maps	in	the	book	sample	files.

1.	 Select	the	gradient	heat	map.

2.	 In	the	Visual	properties	panel,	drop	down	the	Map	list	shown	in	Figure	19.21.

Figure	19.21	Map	Selection	list.

3.	 Click	the	Custom	Map	button.

4.	 An	Open	dialog,	similar	to	Figure	19.22,	is	displayed.

Figure	19.22	Selecting	shape	and	data	files	for	custom	maps.

5.	 Navigate	to	the	Mobile	Report	Maps	folder	in	the	book	sample	files.

6.	 Locate	the	two	worldcountries	files.

7.	 Hold	down	the	Ctrl	key	and	then	click	the	.dbf	and	.shp	file.

8.	 Click	the	Open	button.

9.	 Select	the	Sales	by	Country	control	in	the	Layout	page	and	then	switch	to	the	Data
page	in	the	designer,	shown	in	Figure	19.23.

Figure	19.23	Sales	by	Country	map	Data	properties.

10.	 In	the	Data	properties	panel,	set	the	SalesByDateCategoryCountry	dataset	from	the
Keys	drop-down	list.

11.	 Choose	the	Country	field	from	the	adjacent	drop-down	list.

12.	 Click	the	Options	button	to	show	the	Filtered	by	property	and	make	sure	Time
Navigator	1	is	checked.

13.	 For	the	field	drop-down	list	to	the	right	of	the	Values:	label,	select	the
SalesAmount	field.

Set	Color	Palette	and	Mobile	Device	Layouts
In	the	following	steps	you	will	style	the	report	using	a	color	palette	and	create	custom
layouts	for	different	mobile	devices.

1.	 Switch	to	Preview	and	check	the	control	interaction.	The	functionally	complete
report	is	shown	in	Figure	19.24.

You	should	be	able	to	select	different	date	ranges	from	the	Time	navigator	and	the
Selection	list	to	see	controls	filtered	by	the	selections.

Figure	19.24	Functionally	complete	mobile	report.

2.	 In	Layout	view,	drop	down	the	Color	palette	selection	window	and	select	a	suitable
color	palette.	Figure	19.25	shows	the	black	color	palette	before	confirming	the
Navy	selection.

Figure	19.25	Report	after	color	palette	selection.

3.	 Return	to	the	Preview	page.

4.	 Use	the	Time	navigator	to	drill	into	a	year,	select	months,	and	drill	into	a	month	to
select	a	range	of	dates.	Verify	that	each	visual	control	is	filtered	by	the	date
selection.

5.	 Select	different	countries	by	using	the	Selection	list.	All	controls	except	for	the
map	should	be	filtered	when	a	country	is	selected.	An	example	of	the	Select
Country	list	selection	is	shown	in	Figure	19.26.

Figures	19.27	and	19.28	show	the	interactive	behavior	of	the	map	and	chart
controls	when	you	click-and-hold,	scroll,	or	tap-and-hold	or	move	over	various
data	points.

Figure	19.26	Using	the	Select	Country	Selection	list.

Figure	19.27	Completed	main	desktop	layout	of	the	mobile	report,	testing	map
interactions.

Figure	19.28	Testing	chart	interactions.

6.	 When	you're	happy	with	the	default	mobile	report	layout,	click	the	Save	icon	on
the	toolbar.

7.	 Using	the	layout	icon,	drop	down	the	Layout	window	and	select	the	Phone	layout.

The	Portrait	phone	layout	is	6	tiles	tall	by	4	tiles	wide,	by	default,	as	shown	in
Figure	19.29.

Controls	that	you	used	in	the	master	layout	design	are	available	in	the	Report
elements	pane	on	the	left.	These	control	instances	already	have	their	properties
set	and	are	ready	to	be	added	to	the	mobile	layout	with	no	modification.	Every
control	will	adapt	to	any	size	or	dimensions.

Figure	19.29	Empty	phone	layout.

8.	 Drag	and	drop	control	instances	onto	the	mobile	phone	layout	report.	All	controls
will	work	but	you	may	need	to	prioritize	the	controls	that	are	most	important	to
include	in	the	smaller	screen	size.	You	can	arrange	controls	similar	to	the	layout	I
used	in	the	Figure	19.30.	In	any	case,	the	navigator	and	selector	controls	will
continue	to	function	as	filter	data	for	the	other	visual	controls	as	you	can	see	in
Figure	19.31.

Figure	19.30	Completed	phone	layout.

Figure	19.31	Testing	the	phone	layout	in	preview.

Server	Access	and	Live	Mobile	Connectivity
Similar	to	the	way	we	connected	my	iPad	to	the	demo	server	over	the	local	WiFi
network	in	Chapter	18,	we	can	do	the	same	with	an	iPhone.	If	there	are	no	network	or
firewall	restrictions,	you	should	be	able	to	connect	from	your	phone.	Make	sure	both
the	computer	running	Reporting	Services	and	your	phone	device	are	on	the	same
wireless	network.	Having	the	IP	address	for	the	report	server	might	be	necessary	for
testing	purposes.

Give	it	a	try	first	and	if	you	can't	connect,	follow	the	steps	in	this	article	to	check	and
configure	your	server	firewall	with	the	necessary	rules	and	port	exceptions	for	devices
to	communicate	with	the	report	server:	https://msdn.microsoft.com/en-
us/library/bb934283.aspx.

https://msdn.microsoft.com/en-us/library/bb934283.aspx

TIP

If	you	are	using	a	development	report	server	that	has	inbound	traffic	exposed	to
the	Internet,	you	can	quickly	test	report	connectivity	by	temporarily	turning	off
the	firewall.	Just	remember	to	turn	it	back	on	when	you	are	finished.

1.	 If	you	haven't	yet,	go	to	your	vendor's	app	store	and	download	the	Power	BI
Mobile	App	for	your	device.

I've	installed	this	on	both	of	my	Windows	tablets,	my	iPad,	my	Windows	phone,
and	my	iPhone.	Figure	19.32	shows	my	iPhone	with	the	Power	BI	Mobile	app.	A
version	of	the	app	is	also	available	on	the	Google	store	for	Android	devices.

If	you	have	a	simple	standalone	server	as	I	do	that	is	not	joined	to	a	corporate
domain,	just	use	the	server's	IP	address	to	connect.	Figure	19.32	shows	a
Command	window	running	on	the	report	server.

Figure	19.32	Command	prompt	with	IPCONFIG	results.

2.	 Open	a	Command	window	on	the	report	server	by	typing	CMD	in	the	search	box
near	the	Windows	Start	button.

3.	 Type	IPCONFIG	and	press	Enter.

4.	 Locate	the	section	for	the	wireless	network	adaptor	and	the	IpV4	Address,	shown
in	Figure	19.32.

5.	 Write	down	this	number.

Because	I'm	using	a	private	network	to	connect	to	my	server,	the	IP	address	for
the	server	is	only	accessible	on	the	same	network.	I	am	connected	the	same	WiFi

network	as	the	server,	which	will	allow	me	to	connect	within	my	test
environment.	You	may	not	have	this	restriction	if	you	are	on	a	wide-area	network
and	your	server	is	assigned	a	public	IP	address.

Figure	19.33	shows	the	Power	BI	mobile	app	installed	on	my	iPhone,	which	is
used	to	access	both	content	hosted	in	the	Power	BI	service	and	mobile	report
content	on	one	or	more	on-premises	report	servers.

Let's	use	the	Power	BI	mobile	app	to	open	this	report	and	explore	the	data.	We
need	to	create	a	connection	to	the	report	server,	connect	and	navigate	folders	on
the	server,	open	and	run	the	report.

Figure	19.33	Power	BI	mobile	app	on	an	iPhone.

6.	 Open	the	Power	BI	Mobile	app	by	tapping	the	app	tile.

A	series	of	four	screens	are	shown	in	Figure	19.34	to	demonstrate	the	screen
navigation	on	my	iPhone.

When	the	app	opens,	tap	the	menu	icon	in	the	top-left	corner	to	display	the	menu

panel.

Figure	19.34	Steps	to	navigate	to	report	server	content	on	phone	app.

7.	 Tap	the	item	labeled	Connect	Server	to	provide	the	server	address	and	user	account
information.

8.	 On	the	Connect	Server	page,	enter	the	Web	Portal	address	for	your	report	server
using	the	IP	address	(you	wrote	this	down	in	step	5)	or	server	name	in	the	form	of
http://serveraddress/Reports.

9.	 Enter	the	username	and	password,	and	then	tap	Connect	in	the	top-right	corner	of
the	screen.

A	user	can	add	any	number	of	server	connections.	By	default,	a	connection	is
identified	by	the	username	but	the	name	and	description	can	be	updated	on	the
Advanced	options	page.

10.	 Tap	the	new	server	connection	(named	“administrator”	in	my	example).

11.	 The	Power	BI	Mobile	app	connects	to	the	report	server	and	displays	a	list	of
folders.

12.	 Tap	the	Sales	Reporting	folder	to	see	the	content.	These	steps	are	shown	in
Figure	19.35.

Now	that	you	have	navigated	to	the	report	on	the	phone,	let's	actually	use	the
report	the	way	it	was	intended	to	be	used	in	the	mobile	app.

Figure	19.35	Steps	to	navigate	mobile	report	in	phone	app.

13.	 Tap	the	thumbnail	for	the	Daily	Sales	Trend	by	Category	and	Country	report.	An
animated	progress	indicator	is	displayed	while	the	report	opens.

14.	 Use	the	Time	navigator	to	filter	sales	by	year.	Tap	the	2013	column	to	apply	the
filter	and	display	the	months	for	the	selected	year.

15.	 Tap	the	Select	Country	Selection	list.	On	an	iOS	device,	a	familiar	scrolling	list	is
displayed.

16.	 Use	your	thumb	to	scroll	through	the	list	and	select	a	country.	Tap	Done	to	apply
the	filter.	Notice	that	the	Number	gauges	and	charts	are	updated.

17.	 Tap	and	hold	your	finger	over	one	of	the	Time	charts	to	display	details	in	a	pop-up
window.	While	holding,	slide	to	the	left	or	right	to	view	details	for	dates	at
different	points	along	the	chart.

Each	version	of	the	Power	BI	mobile	app	renders	visuals	using	platform-specific
controls.	This	means	that	the	user	experience	will	be	slightly	different	across
operating	systems	and	platforms	and	will	be	familiar	to	users	of	that	device,	whether
iOS,	Android,	Windows	apps,	or	a	web	browser.	For	example,	the	Country	Selector	on
a	Windows	Phone	is	rendered	as	drop-down	combo	box,	whereas	the	slot-machine
style	vertical	scroll	list	is	rendered	on	an	iPhone	or	iPad.

SUMMARY
You	have	learned	that	mobile	report	design	is	fundamentally	different	than	designing
paginated	reports.	Most	importantly,	although	the	Mobile	Report	Publisher	is	used	on
a	full-screen	PC,	reports	are	optimized	for	small	mobile	device	screens.	A	single	report
has	three	different	layouts	including	the	master	layout	for	larger	screen	landscape
orientation,	tablet	in	portrait	orientation,	and	phone.

Mobile	reports	are	simple	by	design	and	governed	by	a	unique	set	of	design	rules.
Reports	and	visual	controls	are	designed	to	be	responsive,	adapting	to	the	size	and
dimensions	of	their	environment.	This	behavior	and	design	approach	is	in	contrast
with	paginated	report	components	that	accept	and	require	many	property	settings.
Filters	and	interactive	selectors	are	designed	to	work	with	cached	data,	which	means
that	you	generally	cannot	pass	dataset	parameters	and	use	selectors	and	navigators	in
the	same	report.

Chapter	20	continues	to	explore	the	capabilities	of	mobile	reports	by	introducing	more
advanced	features.	You	will	learn	to	pass	parameters	between	reports	using	report	and
URL	drillthrough	actions.	We	will	use	custom	maps	and	shape	files	and	then	create	a
multi-report	solution	using	navigation	paths	to	explore	details.

Chapter	20
Advanced	Mobile	Report	Solutions

WHAT'S	IN	THIS	CHAPTER?

Introducing	the	Chart	data	grid	visual	control

Correlating	two	datasets	in	a	control

Using	parameters	in	a	shared	dataset

Drill	through	to	a	mobile	report	with	dataset	parameters

Drill	through	to	a	paginated	report	with	dataset	parameters

Adding	custom	maps	and	managing	shapes

This	chapter	develops	two	themes.	First,	you	learn	to	use	some	of	the	most	advanced
mobile	report	features,	which	include	the	Chart	data	grid,	drillthrough	navigation,	and
maps.	Second,	since	you	now	have	the	skills	to	create	mobile	reports	without	detailed
instructions,	you'll	do	some	of	the	easy	work	on	your	own.

DESIGNING	A	CHART	DATA	GRID	MOBILE	REPORT
In	Chapter	17	I	mentioned	that	there	are	cases	for	which	you	will	need	to	design
datasets	specifically	suited	for	certain	controls	and	this	is	one	of	those	cases.	The
Chart	data	grid	control	requires	two	datasets;	one	to	populate	the	rows	of	the	grid	and
another	for	the	chart.	This	is	a	classic	master/detail	relationship	where	a	pair	of	key
values	is	used	to	correlate	the	two	datasets.

Exercise:	Chart	Data	Grid
The	exercises	in	Chapters	18	and	19	have	provided	you	with	all	the	basic	skills	to
create	mobile	reports.	To	move	a	little	faster	through	this	exercise,	I	am	not	providing
all	the	detail	steps	for	skills	you	have	already	learned.	You	can	use	the	completed
datasets	and	report	in	the	Samples	project.

Create	Datasets
You	will	create	four	shared	datasets.	These	include	two	queries	used	for	election	lists
and	two	more	queries	that	are	used	for	the	Chart	data	grid:	one	for	the	grid	and	the
other	for	the	chart.	You	can	create	shared	datasets	in	either	SSDT	or	Report	Builder.
You'll	use	SSDT	in	this	exercise.

1.	 Open	the	Wrox	SSRS	2016	Exercises	project	in	SSDT.

2.	 Create	these	four	shared	datasets	for	each	of	the	queries	in	the	following	script.
Each	query	is	concluded	with	a	semicolon.	Name	queries	using	the	commented
name	preceding	each	block	of	query	script:

YearList

CategoryList

SalesBySubcategory

SalesBySubcategoryAndMonth

3.	 Deploy	all	four	datasets	to	the	Datasets	folder	on	the	report	server:

--	YearList

select	distinct	cast(Year	as	smallint)

From	Date

;

--	CategoryList

select	distinct

							[ProductCategory],

							[ProductCategoryKey

from	[dbo].[Product

order	by	[ProductCategory

;

--	SalesBySubcategory

select

							[Year],

							[ProductCategory],

							[ProductCategoryKey],

							[ProductSubcategory],

							[ProductSubcategoryKey],

							sum([SalesAmount])	as	SalesAmount,

							sum([OrderQuantity])	as	OrderQuantity

from	[dbo].[vSalesDetails

group	by

							[Year],

							[ProductCategory],

							[ProductCategoryKey],

							[ProductSubcategory],

							[ProductSubcategoryKey

order	by

							[Year],

							[ProductCategory],

							[ProductSubcategory

;

--	SalesBySubcategoryAndMonth

select

							[Year],

							[ProductCategory],

							[ProductCategoryKey],

							[ProductSubcategory],

							[ProductSubcategoryKey],

							[MonthNumber],

							[MonthName],

							sum([SalesAmount])	as	SalesAmount

from	[dbo].[vSalesDetails

group	by

							[Year],

							[ProductCategory],

							[ProductCategoryKey],

							[ProductSubcategory],

							[ProductSubcategoryKey],

							[MonthNumber],

							[MonthName

order	by

							[Year],

							[ProductCategory],

							[ProductSubcategory],

							[MonthNumber

;

Create	a	Report	and	Import	Datasets
Create	the	basic	report	structure	with	two	selectors	and	a	Chart	data	grid.

1.	 Create	a	new	report	in	Mobile	Report	Publisher.

2.	 Add	two	Selection	list	controls	to	the	left	side	of	the	report	design	grid:	“Years”	and
“Categories.”

3.	 Add	a	Chart	data	grid	named	“Subcategory	Sales	Monthly	Trend”	to	fill	the
remaining	space	in	the	report	design	grid.

The	control	placement	should	be	similar	to	the	example	shown	in	Figure	20.1.

Figure	20.1	Report	shell	showing	control	placement.

4.	 Add	all	four	datasets	to	the	report	using	the	Add	data	button	to	import	each	from
the	shared	datasets	you	deployed	earlier.	You	can	see	these	in	Figure	20.2

Figure	20.2	Report	datasets.

Set	Properties	for	the	Selection	List	Controls
Use	the	drop-down	lists	to	select	datasets	and	fields	for	the	Keys	and	Labels
properties,	and	then	set	the	filter	options	for	the	other	datasets	in	the	reports	by
following	these	steps.

1.	 Choose	the	Years	selector	in	the	Data	page.

2.	 Choose	the	YearsList	dataset	and	verify	that	the	Keys	and	Labels	field	properties

are	set	to	use	the	Year	field.

3.	 On	the	right	side	of	the	page,	in	the	section	titled	“Filter	these	datasets	when	a
selection	is	made,”	check	the	boxes	for	the	SalesBySubcategory	and
SalesBySubcategoryAndMonth	datasets.

4.	 For	each	of	the	selected	datasets,	choose	the	Year	field.

5.	 Ensure	that	the	settings	are	similar	to	Figure	20.3.

Figure	20.3	Selection	list	“Years”	Data	properties.

5.	 NOTE

For	the	Data	properties,	both	the	“Keys”	and	“Labels”	properties	each	have
two	selection	lists.	The	drop-down	list	on	the	left	is	used	to	select	a	dataset
and	the	drop-down	list	on	the	right	is	used	to	select	a	field	from	the	specified
dataset	containing	the	key	or	label	value.

6.	 Choose	the	CategoryList	selector.

7.	 Select	the	CategoryList	datasets	from	the	Keys	drop-down	list	on	the	left.

8.	 Select	the	ProductCategoryKey	field	for	the	Keys	(list	on	the	right).

9.	 Select	the	ProductCategory	field	for	the	Labels	properties	(list	on	the	right).

9.	 TIP

The	field	selection	drop-down	lists	shown	in	Figure	20.4	are	not	wide	enough
to	differentiate	between	the	ProductCategoryKey	and	ProductCategory	fields.
Drop	down	each	field	list	to	verify	the	selection.

Figure	20.4	Selection	list	“Categories”	Data	properties.

10.	 On	the	right	side	of	the	page,	in	the	section	titled	“Filter	these	datasets	when	a
selection	is	made,”	check	the	box	for	the	SalesBySubcategory	dataset.

11.	 Select	the	ProductCategoryKey	field.

12.	 Ensure	that	the	settings	are	similar	to	Figure	20.4.

13.	 Switch	to	the	Layout	page	and	for	each	of	the	“Years”	and	“Categories”	selection
list	controls,	ensure	that	Allow	multiselect	is	set	to	“On.”

Set	Field	Properties	for	the	Chart	Data	Grid	Control
Set	the	field	properties	using	these	steps:

1.	 Choose	the	Subcategory	Sales	Monthly	Trend	control	in	the	Data	page.

2.	 Select	the	SalesBySubcategory	dataset	from	the	drop-down	list	titled	“Data	for	the
grid	view.”

3.	 Select	the	SalesBySubcategoryAndMonth	dataset	from	the	drop-down	list	titled
“Reference	data	for	the	chart	visualizations.”

4.	 On	the	right	side	of	the	page,	in	the	section	titled	“Data	grid	columns,”	check	the
boxes	for	the	following	fields:

ProductSubcategory

SalesAmount

OrderQuantity

5.	 Optionally,	add	spaces	or	abbreviate	the	field	names	in	each	textbox	corresponding
to	a	selected	field.

Set	Chart	Properties	for	the	Chart	Data	Grid	Control

Set	the	chart	properties	using	these	steps:

1.	 At	the	bottom	of	the	“Data	grid	columns”	section	click	the	“Add	chart	column”
button.

2.	 Use	the	textbox	to	rename	the	new	column	to	Monthly	Sales.

3.	 Click	the	Options	button	next	to	the	new	column.

4.	 Set	properties	in	the	pop-up	dialog	as	you	see	in	Figure	20.5.	The	individual
property	values	are	provided	in	Table	20.1.

Figure	20.5	Data	grid	columns	and	Chart	properties.

Table	20.1	Data	Grid	Chart	Properties

PROPERTY VALUE

Chart	type Area

Chart	data SalesAmount

Source	lookup ProductSubcategoryKey

Destination	lookup ProductSubcategoryKey

5.	 Use	Figure	20.6	to	check	the	properties	and	settings	on	this	page	and	make	any
necessary	adjustments.

Figure	20.6	Completed	Data	properties	for	“Subcategory	Sales	Monthly	Trend”
Chart	data	grid	control.

6.	 Use	the	Option…	button	next	to	the	“Data	for	the	grid	view”	title.

7.	 Check	both	the	Years	and	Categories	boxes	and	then	click	Done.

8.	 Use	the	Option…	button	next	to	the	“Reference	data	for	chart	visualizations”	title.

9.	 Check	the	Years	box	and	then	click	Done.

10.	 Switch	to	Layout	view	(shown	in	Figure	20.7)	and	choose	a	color	palette	for	the
report.

Figure	20.7	Chart	data	grid	control	Layout	properties.

11.	 Use	the	Preview	page	to	test	the	report	(Figure	20.8).

Figure	20.8	Report	preview.

12.	 Select	combinations	of	Years	and	Categories	to	ensure	that	the	data	grid	is	filtered
correctly.	Data	should	change	with	each	selection.

Fit	the	Grid	for	Phone	Layout
The	main	report	layout	is	optimized	for	a	desktop	browser	window	so	it	must	be
simplified	for	a	smaller	phone	screen.	You've	done	this	before	but	this	time,	there	is	a
catch.

1.	 Switch	to	Layout	view.

2.	 Use	the	Layout	drop-down	list	to	choose	the	Phone	layout	and	arrange	controls	so
they	fit	in	the	Phone	layout.

3.	 Preview	the	report	again.

Although	the	screen	size	and	control	placement	adapts	to	the	phone	layout,	the
Chart	data	grid	is	too	wide	and	doesn't	fit	in	the	phone	screen	without	scrolling
the	grid	horizontally.	This	is	a	trade-off	when	designing	a	single	report	to	work	on
multiple	devices.	An	easy	remedy	is	to	arrange	the	grid	columns	left	to	right	in
order	of	priority	so	the	most	important	information	is	visible	before	scrolling	the
grid	to	view	items	to	the	right.

4.	 Switch	to	the	Data	page	and	select	the	Chart	data	grid.

5.	 Using	the	items	listed	in	the	Data	grid	columns	on	the	right	side	of	the	Data
properties,	rearrange	the	columns	according	to	the	example	shown	in	Figure	20.9.

Figure	20.9	Data	properties	for	“Subcategory	Sales	Monthly	trend”	Chart	data
grid.

6.	 Preview	the	report	in	the	Phone	layout	again	and	compare	it	to	Figure	20.10.

Figure	20.10	Phone	preview.

7.	 Use	the	Save	mobile	report	as…	button	(double	floppy	disk	icon)	on	the	top-left
toolbar	to	save	the	report	to	the	Sales	Reporting	folder	on	the	report	server.	Save
two	copies	of	the	report	that	you	will	use	in	the	next	exercises	using	the	following
names:

Sales	Subcat	Trend	(mobile	target)

Sales	Subcat	Trend	(paginated	target)

EXERCISE:	ADDING	A	DRILL-THROUGH	MOBILE
REPORT
We're	going	to	create	another	report	that	will	serve	as	the	drill-through	target	from
the	report	we	just	created.	Rather	than	grouping	and	charting	the	sales	order	data	at	a
high	level,	this	report	will	show	details	roll-up	to	the	order	date.

1.	 Use	SSDT	to	create	another	shared	dataset	named
SalesOrderDetailsForYearAndSubcategory	using	the	following	query	script:

--	SalesOrderDetailsForYearAndSubcategory

select

							[OrderDate],

							[ProductSubcategory],

							sum([SalesAmount])	as	SalesAmount,

							sum([TaxAmt])	as	TaxAmt,

							sum([Freight])	as	Freight,

							sum([OrderQuantity])	as	OrderQuantity

from	[dbo].[vSalesDetails

where

							YEAR([OrderDate])	=	@Year

							and

							[ProductSubcategory]	=	@Subcategory

group	by

							[OrderDate],

							[ProductSubcategory],

order	by

							[OrderDate],

							[ProductSubcategory

;

2.	 Before	saving	the	new	dataset,	you	need	to	assign	default	values	to	the
parameters.

3.	 On	the	Parameters	page	of	the	Shared	Dataset	Properties	dialog,	assign	a
default	value	to	both	parameters	as	you	see	in	Figure	20.11.

Figure	20.11	Shared	dataset	parameter	properties.

4.	 Set	the	data	type	for	both	parameters	to	Integer	and	then	click	OK	to	save
the	dataset.

4.	 NOTE
You	may	notice	that	we	are	using	the	ProductSubcategory	rather	than

the	ProductSubcategoryKey	field	value	for	a	parameter.	The	reason	for

this	is	that	we	can	only	pass	the	visible	field	values	from	a	mobile

report	as	parameters.	Since	the	Subcategory	is	a	column	in	the	Chart

data	grid,	I	chose	to	use	that	column	value	as	a	parameter.

5.	 Deploy	the	dataset.	The	project	properties	are	already	set	to	save	it	to
the	Datasets	folder	on	the	report	server.

6.	 Use	Mobile	Report	Publisher	to	create	a	new	report	named	Sales	Order
Details	by	Subcategory	and	Year.	Alternatively,	you	can	use	the	completed

report	provided	in	the	book	samples.

7.	 Add	the	new	dataset	to	the	report.

8.	 Use	Figure	20.12	as	a	guide	to	add	controls	to	visualize	the	dataset.	The
specific	design	elements	for	this	report	are	not	critical	to	this
exercise.	It	simply	needs	to	accept	the	two	parameters	and	visualize	the

results.]

Figure	20.12	Completed	report	ready	for	deployment.

9.	 Deploy	the	Sales	Order	Details	by	Subcategory	and	Year	report	to	the	Sales
Reports	folder	(or	any	other	folder	you	prefer).

10.	 Open	the	previous	report	you	named	Sales	Subcat	Trend	(mobile	target).

11.	 Choose	the	Chart	data	grid	(named	Subcategory	Sales	Monthly	Trend)	on	the
Layout	page	and	click	Drillthrough	target…	(see	Figure	20.13).

Figure	20.13	Chart	data	grid	Visual	properties.

12.	 Choose	Mobile	report….

13.	 Navigate	to	the	Sales	Reporting	folder	and	select	the	Sales	Order	Details
by	Subcategory	and	Year	report.	The	“Configure	target	report”	page	is

displayed,	as	you	see	in	Figure	20.14.

Figure	20.14	Report	parameters	page.

14.	 Scroll	to	the	bottom	of	the	list	of	Report	parameters	to	view	the
parameters	for	the	SalesOrderDetailsForYearAndSubcategory	dataset.

15.	 For	the	@Year	parameter,	use	the	drop-down	list	to	choose	the	SelectedItem
property	of	the	Years	Selection	list	control.

16.	 For	the	@Subcategory	parameter,	use	the	drop-down	list	to	choose	the
ProductSubcategory	field	for	the	Subcategory	Sales	Monthly	Trend	control.

You	can	see	the	two	selections	in	Figure	20.14	(although	the	entire	control
and	field	name	is	not	visible	for	the	second	selection).

17.	 Use	the	Save	as…	icon	in	the	top-left	toolbar	to	save	a	copy	of	the	report
with	a	name	that	indicates	that	it	uses	a	mobile	report	as	the	drill-

through	target.	I	have	named	my	report	Sales	Subcat	Trend	(mobile	target).

17.	 TIP
The	Web	Portal	only	shows	the	first	20–30	characters	of	a	mobile

report	name	in	the	standard	tiles	view,	which	can	be	challenging	for

reports	with	similar	log	names.	Consider	abbreviating	report	names	for

readability.

18.	 Save	the	report	to	the	same	report	server	folder	and	close	the	Mobile
Report	Publisher.

19.	 You	can	test	the	drill-through	action	in	the	web	browser.	In	Web	Portal,
locate	and	open	the	Sales	by	Subcategory	Monthly	Trend	report.	Select	a

year,	such	as	2013,	and	one	or	more	categories	(I	have	selected	Bikes	and

Components	in	Figure	20.15).	You	can	also	open	this	on	a	mobile	device.

Figure	20.15	Drillthrough	reports.

20.	 Click	or	tap	one	of	the	subcategories.	I	have	clicked	the	row	for
Derailleurs.	This	should	navigate	to	the	target	report	showing	only	sales

order	details	for	the	selected	year	and	subcategory,	which	you	can	see	in

Figure	20.15.

21.	 Test	the	report	navigation	in	the	web	browser	and	on	a	mobile	device	to
make	sure	it	is	working	as	expected.

EXERCISE:	ADDING	A	DRILL-THROUGH	PAGINATED
REPORT
Now	you	will	do	the	same	thing	as	before	by	designing	a	drillthrough	navigation,	but
this	report	will	drillthrough	to	a	paginated	report	using	a	custom	URL.

1.	 In	the	Wrox	SSRS	2016	Exercises	project	in	SSDT,	create	a	new	blank	paginated
report	named	Sales	Order	Detail.

2.	 Create	a	dataset	in	the	report	based	on	the	SalesOrderDetails	shared	dataset	in	the
project.

Like	the	mobile	report	in	the	previous	section,	the	details	of	this	report	design	are
less	important.	What	is	important	is	that	it	accepts	the	Year	and	Subcategory
parameters	and	displays	the	filtered	results	of	the	SalesOrderDetails.

3.	 Design	a	simple	table	report	like	the	example	shown	in	Figure	20.16	or	add	the
completed	Sales	Order	Details	report	from	the	Wrox	SSRS	2016	Ch	20	project.

Figure	20.16	Simple	Order	Details	report.

4.	 Deploy	the	Sales	Order	Details	to	the	Sale	Reporting	folder	on	the	report	server.

Open	and	Update	the	Drillthrough	Source	Report	with	a	Custom	Drillthrough
Action
You	will	start	with	the	mobile	report	you	saved	earlier	and	add	drillthrough
navigation.

1.	 Return	to	Mobile	Report	Publisher.

2.	 Open	the	report	named	Sales	Subcat	Trend	(paginated	target).

3.	 Choose	the	Chart	data	grid	and	click	Drillthrough	target….

4.	 Choose	Custom	URL…	(see	Figure	20.17).

Figure	20.17	Chart	data	grid	drillthrough	property.

The	Set	drillthrough	URL	dialog	opens,	which	is	where	you	will	enter	the	path	to
the	target	report.	The	following	web	address	is	the	path	to	the	target	report	on	my
server.	You	will	need	to	substitute	the	name	of	your	server,	the	folder,	and	report
name	if	there	are	any	differences.	If	you	are	running	a	local,	default	SSRS
instance,	you	can	use	localhost	as	the	server	name.

http://svr2012r21/Reports/report/Sales	Reporting/Sales	Order

Details?rs:Embed=true&Year=2013&Subcategory=Mountain	Bikes

4.	 TIP

Using	a	text	editor	to	manage	the	web	address	avoids	the	need	to	deal	with
character	encoding	that	the	web	browser	will	add	to	the	address	text.	I	prefer
to	use	NotePad++,	which	you	can	download	free	from	https://notepad-plus-
plus.org.

5.	 Open	NotePad	or	your	preferred	text	editor	and	enter	the	path	to	your	deployed
report	on	your	server	using	this	address	as	an	example.	Make	any	necessary
changes	for	your	server,	folder,	or	target	report	name.

6.	 Copy	and	paste	the	address	into	the	address	bar	of	your	web	browser.	Press	Enter
and	verify	that	the	report	is	displayed.	Make	corrections	if	necessary	and	capture
the	correct	address	in	the	text	editor.

7.	 Copy	and	paste	the	valid	address	into	the	box	titled	“Enter	a	URL	to	go	to	when
this	visualization	is	clicked.”

Now	for	the	tricky	part.	You	can	see	the	list	of	selector	and	navigator	controls	in
the	Available	parameters	list	on	the	right	side	of	the	Set	drillthrough	URL	dialog
in	Figure	20.18.	The	internal	control	names	are	used	rather	than	the	friendly
names	you	used	for	the	titles.	The	names	are	generated	and	numbered	in	the
order	the	controls	are	added.	Aside	from	that	evidence,	it	may	take	some	trial-and-
error	to	verify	that	you're	using	the	right	control	references.

https://notepad-plus-plus.org

Figure	20.18	Drillthrough	URL	options.

7.	 WARNING

Since	the	Mobile	Report	Publisher	uses	the	internal	control	names	rather	than
the	friendly	names,	the	control	names	in	your	report	may	be	different	from
mine	in	this	example.

8.	 Highlight	the	Year	parameter	value	(2013)	and	click	the	item	for	the	SelectedItem
property	of	the	Year	selector.	In	my	report	it's	named	SelectionList2.

9.	 Highlight	the	Subcategory	parameter	value	(Mountain	Bikes)	and	click	the	item	for
the	Chart	data	grid	Subcategory	field.	In	my	report	it's	named
DataGrid5.Subcategory.

9.	 TIP

After	you	have	deployed	this	report,	you	should	test	it	in	the	web	browser	to
verify	that	the	correct	parameter	values	were	passed.

10.	 Apply	the	changes.

11.	 Save	the	report.

12.	 Open	the	updated	mobile	report	in	the	web	browser.

13.	 Use	the	selectors	to	choose	a	year	and	category	to	see	the	filtered	set	of	summary
rows	and	the	monthly	sales	trend	for	each	subcategory.

14.	 Click	one	of	the	subcategory	rows	in	the	grid	to	navigate	to	the	detail	paginated
report.

15.	 Check	the	parameters	that	are	passed	to	the	target	report	to	make	sure	they	were
mapped	correctly	in	the	URL.

15.	 TIP

In	addition	to	observing	the	data	as	evidence	of	parameter	values	passed	to	the
report,	you	can	also	check	the	parameter	values	in	the	browser	address	bar.

16.	 If	corrections	are	needed,	change	the	SelectionList	and	ChartDataGrid	references
in	the	drillthrough	URL,	apply	the	changes,	and	resave	the	report.

Figure	20.19	shows	the	target	mobile	report	and	the	paginated	detail	report
depicting	the	drill-through	action.	Once	deployed,	the	drill	through	should	work
on	any	device	that	has	access	to	the	report	server.	When	a	user	taps	a	subcategory
row	in	the	installed	mobile	device	app,	the	action	should	open	a	web	browser	with
the	filtered	paginated	report.

Figure	20.19	Mobile	and	paginated	report	drillthrough.

Getting	Serious	with	Maps
Providing	comprehensive	mapping	capabilities	in	a	reporting	tool	seems	like	a	fairly
simple	thing	but,	in	fact,	it	is	not.	In	my	experience,	basic	map	reporting	can	be	fairly
simple	but	many	of	the	mapping	requirements	I	have	encountered	over	the	years	were
difficult	to	satisfy	with	out-of-the-box	features	and	took	quite	a	lot	of	extra	effort.

I	have	provided	72	map	files	in	the	book	downloads,	which	include	51	maps	that	are
not	supplied	by	Microsoft.	Because	boundaries	can	change	over	time	(so	there	is	no
guarantee	that	map	definitions	are	perfectly	accurate),	please	verify	the	region	names
and	boundaries,	and	use	them	at	your	own	risk.

Purely	by	strange	coincidence,	the	maximum	number	of	controls	on	a	mobile	report	is
72,	the	same	as	the	number	of	map	files.	Not	to	question	fate,	I've	created	a	sample
report	shown	in	Figure	20.20	containing	every	single	map	in	the	collection	as	a
reference.

Figure	20.20	Example	reports	with	all	available	maps.

One	of	the	challenges	with	mapping	solutions	is	that	the	place	names	in	your	data
must	exactly	match	the	shape	name	keys	in	the	map	shape	files.	This	is	particularly
challenging	when	they	are	not	documented.	I	have	gone	to	great	effort	to	extract	the
shape	names	from	all	the	map	files	included	in	the	book	downloads	and	provide	them
for	reference.	You	will	find	the	map	name	and	shape	information	for	72	maps
containing	1626	shapes,	in	the	MapShapes	table	in	the	WroxSSRS2016	database.	Table
20.2	shows	a	summary	of	the	map	names	and	the	number	of	shape	records	included
in	this	table.	You	can	reference	this	table	in	your	queries	and	build	your	own	reference
tables	to	match	up	region	and	place	names	from	your	source	data	to	the	shape	names
in	the	maps.	To	get	the	correct	shape	names,	just	the	return	the	ShapeNames	column
from	a	query	on	the	MapShapes	table	filtered	on	the	MapName.

Table	20.2	MapShapes	Table	Summary

MAPNAME SHAPES

Africa 55

argentina 24

Asia 50

australia 8

Austria 9

bosniaherzegovina 2

Brazil 28

bulgaria 28

canada 13

caymanislands 7

China 31

Croatia 21

Cuba 15

Cyprus 6

czechrepublic 7

denmark 15

Egypt 26

europe 46

Finland 5

France 22

germany 16

greece 14

hongkong 18

hungary 20

iceland 8

India 31

indonesia 27

Iran 30

Iraq 18

Ireland 26

Israel 7

Italy 20

jamaica 14

Japan 47

Kuwait 5

liechtenstein 11

lithuania 10

luxembourg 3

Macau 5

macedonia 8

mexico 32

micronesia 4

monaco 1

montenegro 21

netherlands 12

newzealand 14

northamerica 23

norway 19

pakistan 7

panama 10

portugal 19

romania 41

Russia 88

saudiarabia 13

Serbia 26

singapore 1

slovakia 4

slovenia 12

southamerica 14

southkorea 14

Spain 16

sweden 24

switzerland 27

thailand 72

Turkey 73

ukraine 27

unitedarabemirates 8

unitedkingdom 4

Usa 51

worldcontinents 6

worldcountries 178

worldregions 9

Here	is	a	very	simple	example	using	the	worldcountries	map.	If	you	were	to	query	the
SalesTerritory	table	joined	to	Sales,	you	would	see	that	we	have	sales	for	six	countries.
If	you	query	the	MapShapes	table	where	MapName	is	worldcountries,	you	will	see
that	not	all	the	country	names	match	the	shape	names	in	the	map.	In	this	example,	I
have	created	a	bridge	table	named	SalesTerritoryCountyMapShapes	that	matches
CountryRegionCode	values	from	the	SalesTerritory	table	to	ShapeName	values	from
the	MapShapes	table.	The	script	to	add	a	bridge	table	is	quite	simple,	like	this
example:

insert	into	SalesTerritoryCountyMapShapes	(CountryRegionCode,	ShapeName)

values

		('US',	'United	States'),

		('CA',	'Canada'),

		('FR',	'France'),

		('DE',	'Germany'),

		('AU',	'Austria'),

		('GB',	'United	Kingdom')

;

Now	I	can	write	a	dataset	query	for	the	report	that	joins	the	Sales	and	SalesTerritory
tables	with	the	new	SalesTerritoryCountyMapShapes	bridge	table,	like	this:

--	CountryMapShapeSalesOrders

select

							m.ShapeName,

							sum(s.SalesAmount)	as	SalesAmount

from

							Sales	s

							inner	join	SalesTerritory	t	on	s.SalesTerritoryKey	=	t.TerritoryKey

							inner	join	SalesTerritoryCountyMapShapes	m	on	t.CountryRegionCode	=

									m.CountryRegionCode

group	by

							m.ShapeName

;

Creating	a	simple	report,	you	can	add	the	worldcountries	custom	map	from	the
downloaded	files	and	then	match	the	map	keys	to	the	ShapeName	field,	as	you	can	see
in	Figure	20.21.

Figure	20.21	Example	world	countries	map

Now	you	have	everything	you	need	to	create	mobile	map	reports	for	several	different
stock	maps,	world	continents,	countries,	regions,	and	states.	I	hope	the	additional	map
files	and	the	MapShapes	reference	table	are	useful	resources	for	you.

SUMMARY
This	chapter	took	basic	summary	and	details	to	the	next	level	by	introducing	you	to
the	Chart	data	grid	control,	which	you	used	to	create	an	area	chart	to	show	monthly
sales	summaries	grouped	and	repeated	for	selected	product	subcategories.

You	worked	through	three	exercises.	Starting	with	the	Chart	data	grid,	you	created	a
report	with	Selection	lists	to	filter	the	summary	grid	and	show	trend	information.
Next,	you	added	mobile	report	navigation	so	that	tapping	the	grid	navigated	the	users
to	a	detail	report,	showing	them	sales	details	by	date	for	the	yearly	sales	information
they	selected	by	product	subcategory.	Finally,	you	added	drill-through	navigation	to	a
paginated	detail	report	and	used	a	URL	to	drill	through	and	pass	parameter	values
from	the	selectors,	navigators,	and	selected	data	grid	in	the	mobile	report.

I	showed	you	how	to	use	provided	map	shape	and	data	files	to	implement	custom
maps.	You	used	a	reference	table	of	geographical	shape	names	to	match	up	location
information	in	your	database	and	visualize	it	as	a	map.

The	four	chapters	in	Part	6	introduced	you	to	the	mobile	report	visual	by	category	and
then	in	detail.	You	learned	to	design	reports	using	the	“design-first	development”
pattern	and	built	proof-of-concept	reports	to	demonstrate	functionality	with
simulated	data.	You	created	shared	datasets	and	then	completed	each	report	design	to
meet	specific	business	needs.

We	used	navigators,	selectors,	gauges,	charts,	and	then	graduated	to	more
sophisticated	maps	and	data	grids.	We	applied	filtering	and	interactions	and	then
implemented	report	navigation	with	drill-through	navigation	and	parameters	from	a
mobile	report	to	a	paginated	report	that	works	in	the	web	browser	and	on	a	mobile
device.

The	two	chapters	that	follow,	in	Part	VII,	will	show	you	how	to	manage	content	and
perform	administration	tasks	on	the	report	server.	You	learn	to	implement	security
and	management	utilities,	backup	and	recovery,	monitoring,	and	troubleshooting.

PART	VII
Administering	Reporting	Services
In	the	twenty	preceding	chapters,	our	focus	has	been	design	and	deployment.	That
means	that	a	lot	of	time	and	effort	has	so	far	gone	into	creating	and	delivering	reports
for	the	business	to	use.	Now	what	do	you	need	to	do	to	make	sure	they	always	run,
perform	well,	and	work	when	they	are	expected?	How	do	you	restrict	or	enable	access
to	users	or	members	of	an	Active	Directory	group?	Who	can	create	subscriptions	or
snapshots	and	who	can't?	If	someone	writes	a	horrendously	slow	query	and	then
schedules	the	report	to	run	every	night,	how	do	you	find	it	and	prevent	it	from	stalling
your	server?

The	two	chapters	in	this	part	of	the	book	will	show	you	how	to	manage	report	content
on	your	server	and	perform	administration	tasks	to	keep	your	report	server	healthy
and	running.	You'll	learn	to	identify	and	troubleshoot	problems,	isolate	issues,	and
manage	them	to	a	resolution.	You'll	learn	the	core	administration	skills	to	configure
and	manage	security,	user	access,	and	manage	report	content.	You'll	also	learn	to	set
up	and	monitor	report	and	execution	logs,	monitor	server	resources,	and	tune	your
report	server	for	optimal	report	performance.

CHAPTER	21:	Content	Management

CHAPTER	22:	Server	Administration

Chapter	21
Content	Management

WHAT'S	IN	THIS	CHAPTER?

Using	web	portal

Content	management	activities

Item-level	security

Content	management	automation

In	this	chapter,	we	explore	the	management	of	Reporting	Services	content.	Reporting
Services	content	includes:

Reports

Mobile	reports

KPIs

Shared	data	sources

Shared	datasets

Report	resources

Shared	schedules

In	Native	mode,	Reporting	Services	content	management	is	performed	primarily
through	the	Web	Portal	application.	Additionally,	some	administrative	tasks	may	be
managed	in	SQL	Server	Management	Studio	(SSMS).	Scripts	executed	through	the	RS
utility	provide	an	alternative	means	of	performing	these	tasks.

NOTE

A	set	of	PowerShell	commandlets,	which	essentially	duplicate	some	of	the	RS
utility	features,	were	introduced	for	Reporting	Services;	as	of	this	writing,	they
are	still	in	preview.	Check	for	an	update	by	searching	for	SSRS	PowerShell
Provider	on	CodePlex.com.	With	efforts	to	expand	PowerShell	support	for
Reporting	Services	by	the	community	and	the	product	team,	I	suspect	that	a
comprehensive	set	of	commandlets	will	be	available	in	the	near	future,	if	not	by
the	time	you	read	this	book.

In	SharePoint	Integrated	mode,	content	management	activities	are	performed	in	a
similar	manner	but	through	the	SharePoint	site	or	through	the	ReportServer	web
services	endpoint.	In	this	mode,	Web	Portal	and	the	RS	utility	are	unavailable.

USING	WEB	PORTAL
Web	Portal	is	the	primary	content	management	tool	for	Reporting	Services
installations	running	in	Native	mode.	As	you	know,	the	application	provides	an	easy-
to-use	and	responsive	graphical	interface	to	navigate	the	Reporting	Services	objects	ad
folder	structure.	Through	web	portal,	various	items	can	be	accessed	or	even	altered,
assuming	you	have	the	appropriate	permissions.

For	default	installations,	web	portal	is	accessed	through	the	following	URL:

http://<servername>/reports

If	you've	installed	Reporting	Services	as	a	named	instance,	the	URL	you	will	use	has
this	form:

http://<servername>/reports_<instancename>

If	you	are	unable	to	connect	to	web	portal,	check	with	your	administrator	that	its	URL
reservation	is	not	configured	for	an	alternative	address.	Make	sure	that	the	Reporting
Services	Windows	service	has	started.	A	convenient	way	to	restart	the	service	is	to
open	the	Reporting	Services	Configuration	Manager,	connect	to	the	server,	and	then
from	the	Report	Server	Status	page,	stop	and	restart	the	service.	After	this,	refresh	the
web	browser	to	view	Web	Portal.

NOTE

In	the	preview	and	release	candidates	for	SQL	Server	2016,	the	report	server
service	did	not	properly	start	on	some	machines	on	boot-up.	This	is	easy	to
remedy	by	using	Reporting	Services	Configuration	Manager	to	stop	and	restart
the	service.

When	you	first	open	Web	Portal,	you	see	one	of	two	views	depending	on	whether	you
have	previously	added	objects	to	your	personal	Favorites.	The	Favorites	view	is	shown
in	Figure	21.1.

Figure	21.1	Web	portal	Favorites	view.

TIP

The	familiar	concept	of	Favorites	is	introduced	in	web	portal,	simplifying	report
navigation.	To	avoid	navigating	through	long	lists	of	reports	and	folders,
encourage	your	users	to	“favorite”	reports	and	other	items	they	routinely	use.

Note	that	the	server	redirected	the	browser	to	the	Favorites	page	and	displays	the
word	“favorites”	in	the	web	address.	You	can	explicitly	set	a	link	to	the	Favorites	page
using	this	URL.	If	you	had	not	previously	added	any	objects	to	your	Favorites	or	if	you
click	the	Browse	link	in	the	page	heading,	you	are	presented	with	the	Browse	page,
shown	in	Figure	21.2.

Figure	21.2	Web	portal	Browse	view.

Icons	and	menu	options	in	the	header	area	of	the	page	provide	navigational	assistance
and	access	to	site-level	functionality.	On	the	Home	page	you	see	a	list	of	reports,

folders,	and	data	sources	contained	in	the	current	web	portal	environment.

By	clicking	an	item	on	the	page,	you	can	navigate	to	that	item.	For	example,	if	you
click	a	report,	the	report	loads	for	you	to	view.	If	you	click	a	folder,	you	enter	that
folder.	Clicking	the	Home	link	always	takes	you	back	to	the	Home	page	so	you	can
start	over.

Use	the	gear	icon	to	display	a	drop-down	menu	with	links	to	setting	options.	Available
options	may	depend	on	your	rights	on	the	system.	Table	21.1	lists	default	options
available	to	a	user	with	administrative	access	to	the	report	server.

Table	21.1	Home	Folder	Setting	Options

LINK DESCRIPTION

My	settings Takes	you	to	the	Settings	page	of	the	Home	folder.	Power	BI
subscription	integration	is	managed	from	this	page.

My
subscriptions

Takes	you	to	the	My	Subscriptions	site-level	page.	This	page	displays
all	the	subscriptions	on	the	site	that	you	own.

Site	settings Provides	access	to	the	Site	Settings	pages.	From	these	pages	you	can
modify	general	site-level	settings,	site-level	security,	and	shared
schedules.

To	the	right	of	the	gear	icon	is	a	download	icon,	which	you	can	use	to	download	and
install	applications.	Table	21.2	shows	these	options.

Table	21.2	Application	Downloads

LINK DESCRIPTION

Report
Builder

Installs	the	most	current	version	of	the	Report	Builder	application,	which
is	used	to	design	and	publish	paginated	reports,	shared	datasets,	and	other
shared	objects.

Mobile
Report
Publisher

Installs	the	most	current	version	of	Mobile	Report	publisher,	used	to
design	and	publish	visual	reports	optimized	for	mobile	devices.

Power	BI
Desktop

Installs	the	current	version	of	Power	BI	Desktop.	The	Power	BI	analytic
data	toolset	is	used	to	import	and	transform	data,	create	data	models,
define	calculations,	and	to	create	drag-and-drop	visual	reports.

Power	BI
Mobile

Provides	links	to	download	mobile	applications	for	iOS,	Android,	and
Windows	mobile	devices.	Mobile	apps	may	be	used	to	explore	mobile
reports	and	Power	BI	content.

The	Help	icon	opens	a	separate	browser	window	displaying	the	Web	Portal	Help	and
Support	pages.	Just	below	these	links	is	a	Search	box.	When	you	enter	text	in	the	box
and	click	the	button	to	its	right,	Web	Portal	performs	a	case-insensitive	search	for
items	with	names	and	descriptions	matching	the	text	you	entered.

Every	item	displayed	in	web	portal	has	an	ellipsis	(three	dots)	in	the	upper	right-hand
corner.	Clicking	the	ellipsis	displays	a	pop-up	window	with	options	to	manage	the
object,	view	context-specific	information,	and	other	menu	options.	The	ellipsis
enables	reports	and	KPIs	to	be	added	or	removed	from	your	Favorites.

Click	the	folder,	report,	or	other	item	to	open	or	navigate	to	that	item.	The	behavior	of
clicking	the	object	or	clicking	the	“MANAGE”	option	varies	depending	on	the	object
type.	These	options	are	intuitive	and	easy	to	discover	with	just	a	little	exploration.	For
example,	clicking	a	folder	navigates	to	the	folder	and	displays	the	contents.	Clicking	a
report	runs	the	report.	Clicking	the	ellipsis	and	then	“MANAGE”	for	a	folder	enables
properties	and	security,	whereas	clicking	“MANAGE”	for	a	KPI	displays	the	KPI	design
page.

CONTENT	MANAGEMENT	ACTIVITIES
Now	that	you	are	familiar	with	web	portal	basics,	it	is	time	to	look	at	the	management
of	various	Reporting	Services	items	through	the	application.	The	following	sections
explore	the	management	of	these	items:

Folders

Shared	data	sources

Shared	datasets

Reports

Report	resources

Shared	schedules

Several	features	of	the	web	portal	menu	bar	enable	content	discovery	and
management.	Click	the	filter	icon	on	the	menu	bar	to	control	the	visibility	of	items	in
the	folder	that	are	set	to	be	hidden.	The	web	portal	menu	bar	is	shown	in	Figure	21.3.

Figure	21.3	View	and	Visibility	menu.

All	of	the	content	types	displayed	on	this	list	are	recognized	by	Reporting	Services	and
have	specific	management	features.	This	means	that	items	are	displayed	with	a
unique	icon	and	have	context-specific	features	when	you	choose	“MANAGE”	after
clicking	the	ellipsis.	The	Resources	content	type	is	a	catch-all	for	miscellaneous	file
types.	You	can	store	practically	any	type	of	file	and	access	it	through	web	portal	but
these	items	do	not	have	content-specific	management	features.

NOTE

You	can	manage	Power	BI	Desktop	Reports	and	Excel	Workbook	files	through
web	portal.	Microsoft	has	stated	that	these	items	will	be	supported	with	server-
side	rendering	and	management	capabilities	in	a	later	product	version.	However,
in	the	initial	product	release	(RTM	version),	both	of	these	file	types	will	simply
open	the	file	on	the	user's	desktop	with	Power	BI	Desktop	or	Microsoft	Excel.	If
you	are	running	a	later	update	of	Reporting	Services,	this	behavior	may	be
different	for	you.

Folders
All	Reporting	Services	items	are	stored	within	a	folder	hierarchy.	This	provides	a
simple,	familiar	structure	for	organizing	content.	The	folder	hierarchy	is	a	virtual
structure;	in	other	words,	you	will	not	find	these	folders	in	the	server's	filesystem.
Instead,	the	structure	exists	as	a	set	of	self-	referencing	records	in	the	ReportServer
database.

On	the	Home	page,	items	within	the	folder,	including	any	child	folders,	are	presented
in	a	list	of	folders.	The	items	on	the	Home	page	are	identified	by	name,	an	optional
description,	and	an	icon	denoting	the	item's	type,	such	as	Folder,	Report,	Mobile
Report,	KPI,	Linked	Report,	Shared	Data	Source,	Dataset,	Resource,	Standard
Subscriptions,	or	Data-Driven	Subscriptions.

The	menu	bar	at	the	top	of	the	folder	page	list	presents	buttons	for	creating	new
folders	and	shared	objects	and	for	uploading	items	to	the	folder.	You	explore	creating
new	shared	data	sources	and	uploading	items	later	in	this	chapter.	New	objects	are
added	to	a	folder	using	the	“+New”	icon.	Clicking	the	“+New”	button	and	then
selecting	Folder	takes	you	to	the	New	Folder	page.	On	this	page,	you	enter	a	name	for
your	new	folder.

NOTE

Depending	on	the	available	screen	resolution	or	web	browser	window	size,	some
menu	items	change.	For	example,	the	“+New”	menu	will	change	to	“+”	if	there	is
limited	screen	space.

Under	the	“MANAGE”	option,	you	have	additional	properties.	You	can	delete,	move,
and	set	role-based	security	permissions	on	a	folder.	The	Delete	option	confirms	and
then	drops	the	items	you	have	selected.	The	Move	option	takes	you	to	Move	Items
page,	which	requires	you	to	select	where	in	the	site's	folder	structure	the	items	are	to
be	moved.	If	you	are	deleting	or	moving	a	folder,	the	operation	succeeds	only	if	you
have	the	required	permissions	on	each	item	it	contains.

Now	that	you	know	how	to	create,	alter,	and	remove	folders,	what	kind	of	folder
structure	should	you	build	for	your	site?	Different	schools	of	thought	include
organizing	content	by	organizational	unit,	functional	area,	and	user	role.

NOTE

Where	report	duplication	between	folders	might	make	sense,	use	linked	reports
to	reference	the	same	report	in	multiple	folders	without	actually	duplicating	the
report.

Opinions	vary	about	object	and	folder	naming	conventions,	standard	folder	locations,
and	the	complexity	of	folder	hierarchies.	I	can't	tell	you	exactly	how	to	name	folders
and	other	objects.	Dad	always	said	“keep	it	simple”	so	that's	what	I	do.

You	ultimately	must	decide	how	to	organize	your	report	server	but	I	recommend	that
it	be	driven	by	a	set	of	guidelines	adopted	before	you	jump	in.	Consulting	my	peers
(with	whom	I	have	designed	countless	report	solutions	in	developing	guidelines),	we
recommend	that	you	keep	the	user	experience	at	the	forefront	of	your	thought	process
and	consider	the	maintenance	and	security	implications	of	your	scheme.	You	should
review	the	guidelines	with	administrators,	report	developers,	and	user	stakeholders	to
obtain	support	and	educate	those	who	will	be	working	with	the	guidelines.

Shared	Data	Sources
Shared	data	sources	hold	connection	information	in	a	secure	manner,	allowing	this
information	to	be	centrally	administered	while	being	shared	among	reports	and	report
models	throughout	the	site.

Report	authors	often	create	shared	data	sources	as	part	of	the	report	development
process.	In	SQL	Server	Data	Tools	(SSDT),	you	can	add	these	to	the	Report	Server
project	by	right-clicking	the	Shared	Data	Sources	folder	in	the	Solution	Explorer,
selecting	Add	New	Data	Source,	and	providing	the	required	information	in	the	Shared
Data	Source	dialog.	The	shared	data	source	item	is	deployed	to	the	site	folder
identified	by	the	project's	TargetDataSourceFolder	property.	You	can	access	this
property	by	right-clicking	the	project	in	Solution	Explorer	and	selecting	Properties.

To	create	a	shared	data	source	item	without	the	help	of	a	report-authoring	tool,	open
web	portal	and	navigate	to	the	folder	within	which	the	item	will	be	housed.	Use	the
+New	menu	and	click	the	Data	Source	button.	In	the	resulting	New	Data	Source	page,
shown	in	Figure	21.4,	enter	a	name	and	description	for	the	new	item.	Set	the	options
that	control	whether	the	item	is	displayed	in	its	parent	folder's	Contents	page	list	view
and/or	enabled	for	use	on	the	site.	Then	select	the	registered	data	extension	to	be
used,	and	enter	an	appropriate	connection	string.	Which	data	extension	you	select
determines	the	syntax	of	the	connection	string.

NOTE

It	is	important	to	note	that	web	portal	does	not	automatically	verify	the
connection.	To	test	the	connection,	click	the	Test	Connection	button	on	the
creation	screen.

Figure	21.4	Data	source	properties	page.

Below	the	connection	string,	set	the	security	context	to	be	used	when	establishing	the
connection.	You	have	four	basic	options,	a	couple	of	which	support	one	or	more
variations.

The	“By	prompting	the	user	viewing	the	report	for	credentials”	option	allows	you	to
configure	a	prompt	to	be	presented	to	the	user.	This	option	instructs	Reporting
Services	whether	to	treat	these	as	Windows	user	credentials.

The	“Using	the	following	credentials”	option	allows	you	to	enter	a
username/password	combination	that	will	be	encrypted	and	stored	in	the	primary
Reporting	Services	application	database.	Again,	you	have	the	option	to	have	Reporting
Services	treat	these	as	Windows	or	source-specific	credentials.	The	associated
“Impersonate	the	authenticated	user	after	a	connection	has	been	made	to	the	data
source”	option	allows	database-user	impersonation	to	be	employed	after	the
connection	has	been	established.	This	option	provides	support	for	the	use	of	SETUSER
functionality	within	SQL	Server.

The	“As	the	user	viewing	the	report”	option	allows	the	user	to	be	impersonated	when
making	the	connection	to	the	external	data	source.	For	this	feature	to	work,	the
external	data	source	must	be	local	to	the	Reporting	Services	server,	or	Kerberos	must
be	enabled	on	the	domain.

NOTE

In	addition,	Reporting	Services	must	have	support	for	integrated	security
enabled	for	this	option	to	be	employed.

The	final	option,	“Without	any	credentials,”	instructs	Reporting	Services	to	use	the
Unattended	Execution	Account	when	establishing	the	connection.	This	account	is	not
enabled	by	default	and	is	not	recommended	for	use	against	most	data	sources.
Whether	or	not	the	Unattended	Execution	Account	is	enabled,	the	“Credentials	are	not
required”	option	is	provided.	If	you	attempt	to	leverage	a	data	source	with	this	option
set	and	the	Unattended	Execution	Account	not	enabled,	you	receive	an	error
indicating	an	invalid	data	source	credential	setting.	The	Unattended	Execution
Account	is	configured	using	the	Reporting	Services	Configuration	Manager.

Clicking	OK	creates	the	data	source	item.	Clicking	the	new	shared	data	source	item
takes	you	to	its	Properties	page.

On	the	Properties	page,	you	can	move,	rename,	or	delete	the	data	source.	Moving	or
renaming	a	shared	data	source	does	not	impact	the	Reporting	Services	items	that	refer
to	it.	Deleting	a	shared	data	source	breaks	the	reports	and	subscriptions	that	depend
on	it.	To	view	items	that	refer	to	the	shared	data	source	before	deleting	it,	select	the
shared	data	source's	Dependent	Items	and	Subscriptions	page	navigation	links	on	the
left.	If	the	shared	data	source	is	deleted,	the	listed	items	are	broken	until	they	are
pointed	to	a	new	data	source.

Reports
Paginated	reports	are	authored	and	deployed	using	either	SSDT	or	Report	Builder.	You
can	edit	a	report	in-place	from	the	MANAGE	page	of	a	report	and	then	select	Edit	in
Report	Builder	from	the	menu	bar.	Reports	authored	with	SSDT	are	deployed
according	to	the	project	properties	in	SSDT.	The	TargetReportFolder	property
determines	which	folder	is	used	for	report	deployment.	To	access	this	property,	right-
click	the	project	in	the	Solution	Explorer	window	and	select	Properties.

As	an	alternative	to	using	SSDT	(or	another	report	authoring	tool)	to	deploy	a	report
to	the	site,	you	can	use	web	portal's	file	upload	feature.	To	do	this,	open	the	folder
where	you	want	to	place	the	report,	and	click	the	Upload	File	button	on	the	menu	bar.
Select	the	file	and	then	click	OK	to	upload.	The	file	now	appears	as	an	item	in	the
folder.

Clicking	the	ellipsis	button	on	a	report	icon	and	then	“MANAGE”	displays	a	context
menu	that	allows	you	to	perform	other	actions	on	the	report	that	include:

Moving	the	report

Deleting	the	report

Subscribing	to	the	report

Creating	a	linked	report

Viewing	the	report's	history

Managing	security

Managing	the	report's	properties

Downloading	a	copy	of	the	report

Editing	the	report	in	Report	Builder

Figure	21.5	shows	the	report	management	options	with	the	Properties	page	selected.

Figure	21.5	Report	properties	pages	in	web	portal.

The	Delete	and	Move	buttons	do	just	what	you	would	expect.	Deleting	a	report
removes	any	subscriptions	and	history	for	it.

TIP

Before	deleting	a	report,	remove	any	linked	reports	that	rely	on	the	deployed
report.

After	the	report	server	is	configured	for	email	delivery	in	Reporting	Services
Configuration	Manager,	you	can	subscribe	to	the	report,	which	provides	you	with
updates	via	e-mail	or	to	a	shared	file	location.	Using	this	functionality,	you	can	choose
to	run	the	report	at	a	specific	time	or	select	a	shared	schedule	that	is	already	set	up.

Clicking	the	Subscriptions	page	opens	the	report's	Subscriptions	page.	On	this	page,
existing	subscriptions	associated	with	the	report	are	presented	in	a	sortable	table.

Clicking	the	New	Subscription	button	allows	you	to	set	up	a	new	standard
subscription.	On	the	New	Subscription	page,	you	specify	the	subscription	delivery
mechanism	for	the	report,	which	then	determines	which	additional	information	is
needed.	Table	21.3	lists	the	settings	for	e-mail	and	file	share	subscription	delivery.

Table	21.3	Email	Subscription	Delivery	Options

DELIVERY
METHOD

SETTING DESCRIPTION

E-mail To A	semicolon-delimited	list	of	e-mail	addresses	to	which	the
report	will	be	delivered.	These	addresses	will	be	listed	on
the	To	line	of	the	e-mail	message.

Cc A	semicolon-delimited	list	of	e-mail	addresses	to	which	the
report	will	be	delivered.	These	addresses	will	be	listed	on
the	Cc	line	of	the	e-mail	message.

Bcc A	semicolon-delimited	list	of	e-mail	addresses	to	which	the
report	will	be	delivered.	These	addresses	will	not	be	listed
in	the	e-mail	message.

Reply-To The	e-mail	address	to	which	replies	should	be	directed.

Subject The	subject	line	of	the	e-mail	message.	The	default	subject
line	includes	two	variables	that	will	be	replaced	with
appropriate	values	at	the	time	of	execution.

Include
Report

Indicates	whether	the	report	should	be	rendered	and
included	in	the	e-mail	message.

Render
Format

Specifies	the	format	to	which	the	report	should	be	rendered
if	it	is	to	be	included	in	the	e-mail	message.	If	you	specify
Web	Archive,	the	report	is	embedded	in	the	message	body.
For	any	other	format,	the	report	is	included	as	an

attachment.

Include
Link

Indicates	whether	a	link	to	the	report	on	the	Reporting
Services	site	should	be	included	in	the	e-mail	message.

Priority Indicates	the	flag	to	be	used	for	the	message's	importance.

Comment A	message	to	be	included	in	the	body	of	the	e-mail
message.

Windows
file	share

File	Name The	name	of	the	file	to	deliver.	You	can	supply	an	extension
or	select	the	“Add	a	file	extension	when	a	file	is	created”
option	to	add	an	extension	based	on	the	rendering	format
you	select.

Path The	UNC	path	of	the	folder	to	which	the	file	will	be
delivered.

Render
Format

A	rendering	format	selected	from	a	drop-down	list	of	those
available	on	the	site.

Credentials
Used	to
Access	the
File	Share

The	username/password	combination	used	as	credentials
when	accessing	the	file	share	specified	in	the	Path	setting.

Overwrite
Options

One	of	three	options	indicating	how	to	respond	to	the
existence	of	a	file	with	the	name	identified	in	the	File	Name
setting.	Options	allow	the	file	to	be	overwritten;	the
subscription	to	fail	if	the	file	exists;	or	the	file	to	be	written
to	the	share	but	under	a	name	with	a	sequential,	numeric
value	appended.

The	subscription	processing	options	determine	whether	the	subscription	is	delivered
based	on	a	subscription-specific	or	shared	schedule.	If	the	report	includes	parameters,
values	for	these	are	entered	in	the	Report	Parameter	Values	section	at	the	bottom	of
the	New	Subscription	page.	Clicking	OK	creates	the	new	subscription.

Choosing	the	Data-driven	subscription	option	from	the	report	Subscriptions	page
prompts	you	for	a	number	of	additional	options	which	enable	reports	to	be	delivered
to	a	broad	audience.	The	key	to	a	data-driven	subscription	is	a	query	used	to	provide
user	and	destination-specific	property	values.	You	will	typically	create	your	own	table
in	any	database	of	your	choice	to	populate	with	any	of	the	property	subscription
values	you	elect	to	provide.	Any	properties	that	are	not	set	from	fields	in	the	table	may
be	set	with	static	values.

Give	the	subscription	a	name	and	identify	its	delivery	type.	All	subscribers	to	this
data-driven	subscription	will	use	this	delivery	method.

Specify	the	data	source	through	which	subscription	data	will	be	retrieved.	Use	a
shared	data	source	or	elect	to	create	a	subscription-specific	data	source.	These	data
sources,	as	with	those	supporting	any	other	unattended	features,	must	use	stored

credentials.

Enter	a	query	that	retrieves	the	information	required	by	the	subscription.	The
columns	you	return	from	the	query	depend	on	how	you	intend	to	map	fields	to
various	options,	properties,	and	parameters.

Map	delivery	method	settings	to	fields	returned	by	your	query.	Alternatively,	you	can
map	these	settings	to	constants	or,	in	some	cases,	elect	to	provide	no	value.

If	the	report	contains	parameters,	map	the	parameters	in	the	report	to	fields	in	the
query.	Again,	you	can	also	map	a	parameter	to	a	constant	or	elect	to	provide	no	value
if	appropriate.

Specify	whether	a	subscription-specific	or	shared	schedule	will	be	used	to	control	the
timing	of	subscription	delivery.	You	can	also	elect	to	have	the	subscription	delivered
whenever	data	for	the	snapshot	associated	with	the	report	is	updated.	If	you	choose	to
use	a	subscription-specific	schedule,	you	define	the	schedule.

The	Create	Linked	Report	context	menu	item	takes	you	to	the	New	Linked	Report
page,	as	shown	in	Figure	21.6.	You	can	think	of	a	linked	report	as	a	kind	of	shortcut	to
a	standard	report,	except	that	you	can	configure	the	linked	report's	properties
differently	from	those	of	the	report	it	references.	This	includes	setting	alternative
processing	options,	cache	refresh	options,	snapshot	options,	and	security	options.	In
addition,	if	the	report	has	parameters	or	uses	a	shared	data	source,	you	also	see	pages
to	configure	those.

Figure	21.6	New	Linked	Report	page.

The	View	Report	History	context	menu	item	takes	you	to	a	page	that	shows	you	the
report's	history,	such	as	the	most	recent	snapshots	and	subscriptions.	In	addition,	you
can	use	this	page	to	create	a	new	snapshot	of	the	report.

NOTE

For	a	report	to	support	history,	its	data	sources	must	use	stored	credentials,	and
all	parameters	must	have	been	assigned	default	values.

The	Security	functionality	allows	you	to	manage	the	report's	security,	including
assigning	roles	to	users	or	groups.	By	default,	the	report's	security	is	inherited	from
the	parent	container.	You	can	break	this	inheritance	to	create	item-level	security,	or
you	can	restore	this	inheritance	for	an	item	with	unique	security	settings.

If	a	report,	linked	or	otherwise,	has	parameters,	a	Parameters	Properties	page	is
available	on	the	left	for	that	report's	management	page.	On	this	page,	you	can	set	the
default	value,	nullability,	visibility,	and	prompt	settings	for	each	report	parameter.
These	settings	can	be	different	from	those	specified	during	the	report	authoring
phase.

If	a	report	uses	a	data	source,	the	Data	Sources	Properties	page	is	available	on	the	left.
On	this	page,	you	can	configure	the	report-specific	and	shared	data	sources	that	a
report	uses.	You	can	also	swap	out	report-specific	and	shared	data	sources	in	use	by
the	report.

The	Caching	page	is	used	to	configure	a	report's	use	of	the	Reporting	Services	caching
features.	By	default,	the	“Always	run	this	report	with	the	most	recent	data”	option	is
selected,	which	means	that	neither	report	execution	caching	nor	snapshots	are
employed.	(Session	caching,	discussed	in	Chapter	3	and	configured	at	the	site	level,	is
still	in	effect.)

Selecting	either	“Cache	copies	of	this	report	and	use	them	when	available”	or	“Always
run	this	report	against	pregenerated	snapshots”	enables	report	execution	caching.
Using	either	of	these	options,	a	copy	of	the	report	is	cached	when	the	report	is	run
unless	a	valid	cached	copy	already	exists.	That	cached	copy	is	held	in	the
ReportServerTempDB	database	to	fulfill	subsequent	requests	until	the	cache	expires.
The	second	option,	“Cache	copies	of	this	report	and	use	them	when	available”
instructs	Reporting	Services	to	expire	the	cached	copy	after	a	fixed	number	of
minutes.	The	third	option,	“Always	run	this	report	against	pregenerated	snapshots”
instructs	Reporting	Services	to	expire	the	cached	copy	at	a	fixed	point	in	time.	This
allows	you	to	set	a	report-specific	schedule	or	use	a	shared	schedule.

The	set	of	suboptions	instruct	Reporting	Services	to	create	and	render	the	report	from
a	snapshot.	The	snapshot	is	a	historical	copy	of	a	scheduled	execution	of	the	report.
Snapshots	eliminate	the	potentially	long	run	times	experienced	by	the	first	user	of	a
report	when	a	cached	copy	has	expired.	You	can	specify	a	report-specific	or	shared
schedule	for	the	timing	of	the	snapshot	and	can	elect	to	run	the	snapshot	immediately
following	its	configuration.	The	snapshot	remains	valid	until	the	next	snapshot	is

executed.

NOTE

To	leverage	either	report	execution	caching	or	snapshots,	the	report	must	use
data	sources	with	stored	credentials	in	order	to	authenticate	as	an	unattended
user	(also	discussed	in	Chapter	3.)

Settings	under	each	of	the	two	caching	options	allow	you	to	manage	the	cache
expiration,	refresh	plans,	snapshot	schedule,	and	manual	caching	options.

The	report	timeout	option	under	Site	Settings	provides	a	safety	net	for	run-away
scheduled	caching	and	report	executions.	If	you	override	the	default	limit	of	1800
seconds,	it	is	advisable	to	carefully	monitor	the	report	server	for	time-outs	and	long-
running	reports.

The	Cache	Refresh	Options	page	allows	you	to	create	a	caching	plan	if	one	does	not
exist.	When	creating	a	new	plan,	you	are	required	to	set	default	parameters,	if	any
exist,	and	specify	a	time	or	schedule	for	refreshing	the	cached	report.	Because	report
parameters	require	a	default	value	with	caching,	this	can	limit	your	ability	to	use
snapshots	as	an	execution	option.	However,	in	many	scenarios,	using	dataset	filters
can	allow	you	to	make	wider	use	of	a	report	snapshot.

The	History	snapshots	page	allows	you	to	manage	the	snapshots	for	the	specific
report.	Each	snapshot	stores	the	intermediate	rendering	(data	and	layout)	of	the
report	in	the	database.	Storing	report	history	can	use	considerable	space	within	the
ReportServer	database.	You	can	limit	the	number	of	historical	snapshots	maintained
for	a	report.	The	“Use	the	system	default	setting”	option	instructs	Reporting	Services
to	retain	history	for	this	report	according	to	the	site-level	history	setting.	This	setting
has	a	default	value	of	10	days.	The	other	two	options	override	the	site-level	setting
with	a	report-specific	value,	allowing	you	to	keep	history	indefinitely	or	for	simply	an
alternative	number	of	days.

To	actually	see	historical	snapshots	for	a	report,	navigate	to	the	History	page	by
clicking	the	report's	History	snapshots	page.	Report	snapshots	recorded	to	history	are
presented	here	in	a	detailed,	tabular	view.

Clicking	an	entry's	Created	value	opens	a	new	window	showing	the	report	rendered
using	data	from	this	snapshot.	You	can	remove	a	snapshot	from	the	history	using	this
page.	The	New	history	snapshot	button	is	available	when	snapshots	are	enabled	and
when	the	report	has	a	data	source	with	stored	credentials.	This	button	generates	an
on-demand	report	snapshot	for	inclusion	in	the	report	history.

Report	Resources
Resources	are	files	referenced	by	a	report.	Image	files	are	the	most	commonly	used
reporting	resources,	but	HTML,	XML,	XSLT,	text,	PDF,	and	Microsoft	Office	files	are

often	employed	as	well.	Reporting	Services	does	not	restrict	what	kind	of	resource	a
report	can	leverage,	so	the	possibilities	are	endless.	That	said,	there	are	practical
limitations	to	what	may	be	used	as	a	reporting	resource.

Reporting	Services	is	simply	a	way	to	store	and	return	the	binary	image	of	a	resource
file.	The	consuming	application,	whether	the	Reporting	Services	report	processor	or	a
custom	report	processing	extension,	must	understand	how	to	consume	the	resource
item	for	it	to	be	incorporated	into	the	report.	Otherwise,	your	only	option	is	to	provide
a	link	to	the	resource	and	depend	on	the	report-viewing	tool,	typically	a	web	browser,
to	handle	the	binary	image	for	you.

In	addition,	the	binary	image	of	the	resource	file	is	stored	in	an	Image	data	type	field
in	the	ReportServer	database.	This	imposes	a	2	GB	limitation	on	the	file	size.	If	you
exceed	this	limit,	an	error	is	returned	as	you	attempt	to	upload	it	to	the	site.

To	upload	a	resource	to	Reporting	Services,	open	the	parent	folder's	Contents	page
and	click	the	Upload	File	button.	Locate	the	file	to	upload,	and	click	the	OK	button.
After	it	is	uploaded,	you	should	see	the	item	displayed	within	the	folder.

Clicking	the	item	takes	you	to	the	resource's	View	page.	If	your	web	browser	can
render	a	resource,	such	as	a	JPEG	or	GIF	file,	the	item	is	displayed	within	the	body	of
the	web	portal	page.	If	your	web	browser	cannot	render	a	resource,	such	as	a	TIFF	file,
the	browser	prompts	you	to	save	the	file	to	your	local	system.	The	resource	item's
General	Properties	page	allows	you	to	perform	basic	maintenance	on	the	item.

Shared	Schedules
Shared	schedules	allow	you	to	define	and	administer	schedules	in	a	centralized
manner	for	use	throughout	the	site.

Shared	schedules	are	managed	at	the	site	level,	outside	the	folder	structure.	To	access
these,	click	the	Site	Settings	link	in	the	upper-right	corner	of	the	web	portal	header.
Move	to	the	Schedules	page	to	see	a	tabular	representation	of	Shared	Schedules	on	the
system.

The	table	on	the	Schedules	page	shows	Name,	Schedule	(description),	Creator,	Last
Run,	Next	Run,	and	Status	fields,	all	of	which	can	be	used	to	sort	the	table's	contents.
Selecting	one	or	more	items	in	the	table	enables	the	Delete,	Pause,	and	Resume
buttons	within	the	menu	bar.

Clicking	the	New	Schedule	button	in	the	menu	bar	on	this	page	takes	you	to	the
New/Edit	Schedule	page.	This	page	allows	you	to	enter	a	name	for	the	schedule	and
set	its	frequency	of	execution.	You	can	also	set	a	date	range	during	which	this
schedule	is	executed,	as	shown	in	Figure	21.7.

Figure	21.7	Schedules	page	in	Site	Settings.

Clicking	the	OK	button	submits	the	request	to	create	the	schedule.	Behind	the	scenes,
Reporting	Services	attempts	to	create	a	scheduled	job	through	SQL	Agent.	If	the	SQL
Agent	Windows	service	is	not	started,	you	receive	an	error	message.

Back	on	the	Schedules	page,	clicking	a	schedule	item's	name	or	schedule	value	takes
you	back	to	the	New/Edit	Schedule	page,	where	you	can	edit	the	item's	configuration.
Before	making	changes,	it	is	a	good	idea	to	review	the	schedule's	Reports	page	to
identify	reports	dependent	on	it.

Shared	schedules	can	also	be	created	and	managed	through	SQL	Server	Management
Studio.	Open	SQL	Server	Management	Studio,	connect	to	the	Reporting	Services
instance,	and	locate	the	Shared	Schedules	folder	under	the	instance	icon.	You	can
right-click	the	Shared	Schedules	folder	to	create	or	delete	a	shared	schedule.	You	can
also	right-click	an	individual	schedule	to	delete	it	or	access	its	properties	page.	The
properties	page,	shown	in	Figure	21.8,	provides	access	to	the	same	properties
presented	through	web	portal.

Figure	21.8	Schedule	Properties	in	SSMS.

SITE	AND	CONTENT	SECURITY
All	content	security	in	Reporting	Services	is	role-based,	which	is	actually	quite	simple
in	concept.	Users	or	Windows	groups	(to	which	users	belong)	are	assigned	to	security
roles	for	different	objects,	and	roles	have	permission	sets	to	perform	different	actions.
Default	role	assignments	are	defined	at	the	site	level	for	administrators	and	at	the
Home	folder	level	for	users.	Pretty	simple,	right?	Usually	it	is.

Site	Security
By	default,	members	of	the	built-in	Windows	administrators	group	have	permission	to
manage	the	report	server	content	and	settings	through	web	portal,	which	you	see	in
Figure	21.9.	You	can	give	additional	Windows	groups	or	users	administrative
permission	to	the	server	by	adding	a	new	role	assignment	in	the	Site	Settings	area,	on
the	Security	page.

Figure	21.9	Security	page	in	Site	Settings.

Click	+Add	group	or	user	to	show	the	page	displayed	in	Figure	21.10.	Add	the	Windows
group	or	username	preceded	with	the	domain	name	and	a	backslash.	If	the	report
server	is	not	joined	to	a	domain,	you	can	use	the	machine	name	instead	of	the
domain.	Check	the	System	Administrator	box	to	assign	this	principal	administrative
rights	to	the	report	server	and	then	click	OK.

Figure	21.10	Assigning	roles	to	a	user	or	group.

Item-Level	Security
To	perform	any	action	on	a	Reporting	Services	item,	a	user	must	be	granted
permissions.	Connecting	to	the	report	server	with	SSMS	allows	you	to	view	the
predefined	content	roles	for	the	server,	shown	in	Figure	21.11.	It	is	not	necessary	to
modify	these	roles	or	to	assign	new	roles	but	you	have	the	freedom	to	do	so.	Creating
a	new	role	would	allow	you	to	assign	user	permission	sets	at	a	more	granular	level
than	the	predefined	roles	that	install	with	Reporting	Services.

Figure	21.11	Role	permission	mapping	in	SSMS.

NOTE

I	have	rarely	defined	custom	roles	and	typically	use	these	predefined	roles
without	making	any	changes.

Reporting	Services	supports	a	fixed	set	of	permissions	associated	with	each	type	of
item,	as	shown	in	Table	21.4.

Table	21.4	Fixed	Role	Permissions

ITEM PERMISSIONS

Report Create	Any	Subscription
Create	Link
Create	Report	History
Create	Subscription
Delete	Any	Subscription
Delete	Report	History
Delete	Subscription
Delete	Update	Properties
Execute	Read	Policy
List	Report	History
Read	Any	Subscription
Read	Content
Read	Data	Sources
Read	Properties
Read	Report	Definition
Read	Report	Definitions
Read	Security	Policies
Read	Subscription
Update	Any	Subscription
Update	Data	Sources
Update	Parameters
Update	Policy
Update	Report	Definition
Update	Security	Policies
Update	Subscription

Shared	Data	Source Delete	Update	Content
Read	Properties
Read	Security	Policies
Update	Properties
Update	Security	Policies

Reporting	Resource Delete	Update	Content
Read	Content
Read	Properties
Read	Security	Policies
Update	Properties
Update	Security	Policies

Folder Create	Data	Source
Create	Folder
Create	Model
Create	Report
Create	Resource
Delete	Update	Properties
Execute	and	View
List	Report	History
Read	Properties
Read	Security	Policies
Update	Security	Policies

Explicitly	assigning	the	right	combinations	of	permissions	required	to	perform	an
action	on	the	site	would	be	challenging.	To	simplify	things,	Reporting	Services
organizes	these	permissions	into	a	more	condensed	set	of	item-level	tasks.	These
tasks	more	naturally	align	with	the	kinds	of	activities	users	need	to	perform.	Table
21.5	lists	the	task-to-permission	mappings.	Although	it's	important	to	understand
these	permissions	as	the	underlying	mechanism	behind	item-level	security,	Reporting
Services	does	not	expose	these	permissions	and	does	not	allow	tasks	to	be	created	or
altered.

Table	21.5	Task-Level	Permissions

ITEM TASK PERMISSIONS

Folder Manage	data	sources Create	Data	Source

Manage	folders Create	Folder
Delete	Update	Properties
Read	Properties

Manage	reports Create	Report

Manage	resources Create	Resource

Set	security	for	individual	items Read	Security	Policies
Update	Security	Policies

View	folders Read	Properties
Execute	and	View
List	Report	History

Reports Consume	reports Read	Content
Read	Report	Definitions

Read	Properties

Create	linked	reports Create	Link
Read	Properties

Manage	all	subscriptions Read	Properties
Read	Any	Subscription
Create	Any	Subscription
Delete	Any	Subscription
Update	Any	Subscription

Manage	individual	subscriptions Read	Properties
Create	Subscription
Delete	Subscription
Read	Subscription
Update	Subscription

Manage	individual	subscriptions Read	Properties
Create	Subscription
Delete	Subscription
Read	Subscription
Update	Subscription

Manage	report	history Read	Properties
Create	Report	History
Delete	Report	History
Execute	Read	Policy
Update	Policy
List	Report	History

Manage	reports Read	Properties
Delete	Update	Properties
Update	Parameters
Read	Data	Sources
Update	Data	Sources
Read	Report	Definition
Update	Report	Definition
Execute	Read	Policy
Update	Policy

View	reports Read	Content
Read	Properties

Set	security	for	individual	items Read	Security	Policies
Update	Security	Policies

Data	Sources Manage	data	sources Update	Properties
Delete	Update	Content
Read	Properties

View	data	sources Read	Content

Read	Properties

Set	security	for	individual	items Read	Security	Policies
Update	Security	Policies

Resources Set	security	for	individual	items Read	Security	Policies
Update	Security	Policies

Manage	resources Update	Properties
Delete	Update	Content
Read	Properties

View	resources Read	Content
Read	Properties

Take	a	moment	to	consider	the	users	of	a	particular	section	of	your	Reporting	Services
site,	such	as	a	folder.	Some	users	will	simply	need	to	browse	the	folder's	contents.
Others	may	need	to	both	browse	and	publish	items	to	the	folder.	A	few	may	even	need
the	rights	to	manage	the	folder's	security.	These	users	can	be	described	as	having	one
or	more	roles	within	this	portion	of	the	site.	Each	of	those	roles	requires	a	set	of	rights
for	its	members	to	perform	their	expected	tasks.	This	is	the	basic	model	for	applying
item-level	security	in	Reporting	Services.

In	Reporting	Services,	roles	are	defined	at	the	site	level	and	are	assigned	tasks,	as
described	earlier.	Reporting	Services	comes	with	five	preconfigured	item-level	roles,
as	described	in	Table	21.6.

Table	21.6	User	Item-Level	Roles

ROLE DESCRIPTION TASKS

Browser Run	reports	and	navigate	through	the	folder	structure. View	reports
View
resources
View	folders
View	models
Manage
individual
subscriptions

Content
Manager

Define	a	folder	structure	for	storing	reports	and	other	items,
set	security	at	the	item	level,	and	view	and	manage	the	items
stored	by	the	server.

Consume
reports
Create	linked
reports
Manage	all
subscriptions
Manage	data
sources
Manage
folders

Manage
models
Manage
individual
subscriptions
Manage
report
history
Manage
reports
Manage
resources
Set	security
policies	for
items
View	data
sources
View	reports
View	models
View
resources
View	folders

My
Reports

If	the	“My	Reports”	feature	is	enabled	on	the	server,	enables
consuming	and	managing	items	in	the	user's	virtual	My
Reports	folder.

(same	as
Content
Manager)

Publisher Publish	content	to	a	report	server. Create	linked
reports
Manage	data
sources
Manage
folders
Manage
reports
Manage
models
Manage
resources

Report
Builder

Build	and	edit	reports	in	Report	Builder. Consume
reports
View	reports
View
resources
View	folders

View	models
Manage
individual
subscriptions

To	modify	the	tasks	assigned	to	these	roles,	open	SQL	Server	Management	Studio	and
connect	to	the	Reporting	Services	instance.	In	the	Object	Explorer	pane,	expand	the
Security	folder	and	its	Roles	subfolder.

Right-click	a	role	and	select	Properties	to	open	its	User	Role	Properties	dialog.	Here
you	can	change	the	role's	description	and	tasks	assigned	to	it.	Clicking	OK	saves	your
changes.

To	create	a	new	role,	right-click	the	Roles	subfolder	in	the	SQL	Server	Management
Studio	Object	Explorer	pane	and	select	New	Role.	In	the	resulting	New	User	Role
dialog,	provide	the	name,	description,	and	task	assignments	for	this	role.	Click	OK	to
create	the	role.

To	drop	a	role,	right-click	it,	and	select	Delete.	You	are	asked	to	confirm	this	action
before	the	role	is	dropped.	You	can	drop	both	custom	and	predefined	Reporting
Services	roles.

Because	roles	are	simply	named	sets	of	tasks	(which	themselves	are	nothing	more
than	named	sets	of	permissions),	item-level	security	is	implemented	by	linking	users
with	one	or	more	roles	for	a	given	Reporting	Services	item.

Assigning	Users	to	a	Role
In	web	portal,	you	assign	a	user	or	Windows	group	to	an	object	(typically	a	folder)	by
creating	a	new	role	assignment	for	that	object.	The	easiest	way	to	give	a	user
permission	to	all	content	on	the	report	server	is	to	add	the	role	assignment	to	the	Home
folder.	If	the	user	should	only	have	access	to	a	specific	folder	or	report,	add	the	role
assignment	to	that	object	and	not	to	the	parent	folder.

In	the	Home	folder,	role	assignments	are	managed	using	the	Manage	Folder	item	on
the	menu	bar.	You	can	manage	other	folder	assignments	the	same	way	or	by	using	the
MANAGE	option	from	the	item	icon.

Managing	user	access	to	individual	folders	or	content	items	at	a	more	granular	level	is
performed	beneath	the	Home	folder	but	requires	just	a	little	more	work.	When	you	add
a	role	assignment	for	items	within	the	Home	folder,	you	see	the	message	box	in	Figure
21.12.	By	clicking	OK,	the	role	assignments	for	the	parent	folder	will	no	longer	apply
and	you	must	assign	new	role-based	security	for	the	item	or	folder.

Figure	21.12	Confirm	breaking	security	inheritance.

Clicking	the	New	Role	Assignment	button	takes	you	to	the	New	Role	Assignment
page,	as	shown	in	Figure	21.13.	The	“Group	or	user”	box	accepts	any	valid	Windows
principal.	Assuming	the	report	server	is	joined	to	a	domain,	enter	a	group	or	user	as
domain\name.	On	a	server	not	joined	to	a	domain,	you	can	simply	enter	the	group	or
username	or	enter	the	machine	name	in	place	of	the	domain.	You	can	assign	any
group	or	user	the	permissions	of	any	combination	of	roles	by	checking	one	or	more
boxes	on	this	page.

Figure	21.13	Edit	Security	page.

Here,	you	enter	the	account	name	for	the	user	or	group	to	which	you	want	to	assign
this	access	and	then	select	one	or	more	of	the	roles	as	appropriate.	Clicking	OK
submits	the	assignment	to	Reporting	Services.

Creating	item-user-role	assignments	for	every	item	on	the	site	would	get	old	quickly.
So,	instead,	Reporting	Services	uses	inheritance	for	item-level	security.	When	a	user	is
assigned	to	one	or	more	roles	on	a	folder,	this	assignment	is	inherited	by	that	folder's
child	items.	If	these	child	items	include	folders,	the	inheritance	cascades	down	the
folder	hierarchy.

Inheritance	makes	administering	security	much	easier,	but	you	may	need	to	break
inheritance	to	assign	permissions	on	an	item	appropriately.	To	do	this,	navigate	to	the
item's	Security	page	in	web	portal.	When	inheritance	is	in	place,	you	see	an	Edit	Item
Security	button.	Clicking	this	button	causes	a	warning	to	appear	about	breaking
inheritance.

After	inheritance	is	broken,	you	will	notice	that	the	New	Role	Assignment	button	is
available,	allowing	you	to	create	user-role	assignments	for	this	item.

Also	notice	that	the	user-role	assignments	that	would	have	been	inherited	from	this
folder's	parent	are	preassigned	to	this	item.	Selecting	the	check	box	for	any
unnecessary	assignments	and	clicking	the	Delete	button	on	the	menu	bar	removes
these.

Finally,	if	you	want	to	reset	this	item's	security	to	use	inheritance,	again	click	the	“Use
same	security	as	parent	folder”	button	in	the	menu	bar.	The	item	reverts	to	inherited
security,	and	any	non-	inherited	assignments	are	dropped.

SITE	BRANDING
The	new	site	branding	feature	uses	a	very	simple	approach	to	allow	the	Web	Portal,
mobile	reports,	and	KPIs	to	be	customized	with	a	branded	color	theme.	You	can
customize	the	colors	and	add	a	logo	graphic	to	style	your	report	server	to	match	your
company	brand.	A	brand	package	consists	of	a	zipped	archive	file	containing	three
files,	shown	in	Figure	21.14.

Figure	21.14	Branding	package	file	contents.

I	have	provided	example	brand	package	files	with	the	book	downloads	and	you	will
find	these	in	the	Custom	Brands	folder.	You	can	get	started	with	one	of	these	or
download	the	current	theme	to	a	brand	package	file	using	the	Download	option	on	the
Site	Settings	Branding	page.	To	customize	a	brand	package,	make	a	copy	of	the	file	you
want	to	use	as	the	starting	point	for	your	brand	package.	Unzip	the	files	to	a	folder,
modify	the	colors.json	file	with	your	own	theme	colors,	replace	the	logo.png	file
with	your	company	logo,	and	then	zip	the	updated	files	into	a	new	archive	file.	All	of
the	modified	files	must	have	the	original	filenames.

Applying	a	new	brand	package	is	quite	simple.	Figure	21.15	shows	the	Branding	page
under	Site	Settings.	Click	the	“Upload	brand	package”	button,	browse	to	the	brand
package	.zip	file,	and	upload	the	file.	You	will	immediately	see	the	new	brand	applied
to	your	web	portal,	mobile	reports,	and	KPIs.

NOTE

Site	branding	is	a	feature	Reporting	Services	inherited	from	Microsoft's
acquisition	of	the	Datazen	product	from	ComponentArt.	This	is	the	reason	it
applies	to	KPIs	and	mobile	reports,	which	were	also	part	of	the	Datazen	retrofit.
Branding	does	not	apply	to	paginated	reports	in	the	current	release	of	SSRS	2016.

Figure	21.15	Branding	page.

To	help	you	identify	colors	you	may	want	to	update	in	your	custom	brand	package,	I
have	created	a	report	with	all	the	elements	and	colors	of	the	default	package,	which	is
shown	in	Figure	21.16.	This	report	is	in	the	Wrox	SSRS	2016	Samples	project	called
Default	Branding	Colors.

Figure	21.16	Brand	package	color	example	report.

Use	this	report	as	a	guide	to	modify	the	hex	color	values	in	the	color.json	file.
Although	you	can	download	a	backup	copy	of	the	brand	package,	you	can	use	the
Remove	button	to	revert	the	site	branding	back	to	the	default	brand	package.	If	your
objective	is	to	brand	the	surface	of	the	web	portal,	you	may	need	to	update	only	a	few
of	the	major	color	elements.	However,	updating	every	one	of	the	73	color	properties
and	matching	them	to	all	the	background	fills,	object	borders,	hover-over	colors,	and

other	properties	can	be	time-consuming	work.	For	reference,	Figure	21.17	shows	some
of	the	element	names	that	are	mapped	to	objects	on	the	Site	Settings	page	of	the	web
portal.	In	this	simple	modification	of	the	default	brand	package,	I	have	replaced	the
PrimaryContrast	element	with	yellow	(#ffff00)	and	the	logo.png	file	with	the
Microsoft	logo.

Figure	21.17	Some	example	brand	elements.

CONTENT	MANAGEMENT	AUTOMATION
Content	management	consists	of	many	repetitive	actions.	Performing	these	manually
can	be	time-consuming	and	can	risk	introducing	errors.	Scripts	allow	these	frequently
performed	actions	to	be	automated.	If	implemented	correctly,	scripts	can	produce
significant	time	savings	and	minimize	the	risks	associated	with	changes	to	your
environment.	To	support	automation	through	scripts,	Reporting	Services	comes	with
the	rs.exe	command-line	application,	also	known	as	the	RS	utility.

The	RS	Utility
The	RS	utility,	rs.exe,	allows	scripts	to	be	run	against	local	and	remote	instances	of
Reporting	Services.	The	application	is	typically	located	in	the	drive:\Program	Files
(x86)\Microsoft	SQL	Server\130\Tools\Binn	folder.	It	is	responsible	for	creating	an
environment	within	which	a	Reporting	Services	script	can	be	executed.

As	part	of	this	responsibility,	the	RS	utility	handles	communications	with	an	instance
of	the	Reporting	Services	web	service.	It	also	handles	the	declaration	and	instantiation
of	variables	supplied	through	the	command-line	call.	These	features	allow	flexible
scripts	to	be	developed	with	relative	ease.

The	following	is	a	simple	call	to	the	RS	utility.	Note	the	use	of	the	-i	parameter	to
identify	the	Reporting	Services	script.	The	script	file	is	a	simple	text	file	with	an	RSS
file	extension.	The	content	of	the	text	file	is	Visual	Basic	.NET	code.

NOTE

The	RSS	script	file	that	contains	Visual	Basic	.NET	code	is	written	against	a
proxy	based	on	Web	Service	Description	Language	(WSDL).	The	WSDL	defines
the	Reporting	Services	SOAP	API.	RSS	Scripts	are	covered	in	the	next	section.
However,	if	you	want	to	learn	more	about	writing	scripts	for	rs.exe,	check	out	the
MSDN	guidance	at	http://msdn.microsoft.com/en-
us/library/ms154561(v=SQL.130).aspx	or	search	for	“Reporting	Services	Script
File”	using	your	favorite	search	engine.	Make	sure	you	select	SQL	Server	2016
when	you	find	the	MSDN	article	because	previous	versions	provide	examples	to
endpoints	that	are	deprecated.

Also	note	the	identification	of	the	web	service	URL	with	the	-s	parameter.	In	this
example,	the	script	is	pointed	to	the	web	service	presented	by	the	local,	default
instance	of	Reporting	Services:

rs.exe	-i	"c:\my	scripts\my	script.rss"	-s	http://localhost/reportserver

The	connection	to	the	web	service	is	established	using	the	current	user's	identity.	To
specify	an	alternative	identity,	you	can	specify	a	username/password	combination
with	the	-u	and	-p	parameters.	In	the	next	example,	the	connection	is	made	through
the	fictional	MyDomain\SomeUser	account,	which	has	a	password	of	pass@word:

rs.exe	-i	"c:\my	scripts\my	script.rss"	-s	http://localhost/reportserver

-u	MyDomain\SomeUser	-p	pass@word

In	Native	mode,	the	Reporting	Services	web	service	presents	an	endpoint	with	the
name	ReportService2010.

http://msdn.microsoft.com/en-us/library/ms154561(v=SQL.130).aspx

NOTE

In	past	versions	of	SQL	Server,	the	web	service	endpoints	were	broken	down	into
different	endpoints	depending	on	the	type	of	install.	These	were	called
ReportService2005,	which	was	designed	for	Reporting	Services	in	Native	mode,
and	ReportService2006,	which	was	designed	for	Reporting	Services	in
SharePoint	Integrated	mode.	These	endpoints	were	deprecated	in	SQL	Server
2012	and	have	been	combined	into	a	new	endpoint	called	ReportService2010.	As
of	SQL	Server	2016,	the	previous	endpoints	are	deprecated	but	still	available	for
backward	compatibility.	It	is	important	to	note,	however,	that	when	using	the
rs.exe	utility	without	the	-e	flag	you	are	actually	using	the	ReportService2005
endpoint.	This	seems	contradictory,	but	I	imagine	it	was	designed	this	way	for
backward	compatibility.

NOTE

Access	to	the	ReportService	endpoints	in	previous	releases	of	Reporting	Services
is	available	using	the	-e	flag.	Note	that	the	Reporting	Services	2000	endpoint	is
deprecated	and	no	longer	available.

As	mentioned	at	the	start	of	this	section,	the	RS	utility	declares	and	instantiates
variables	on	behalf	of	the	script.	Variables	are	specified	with	the	-v	parameter
followed	by	one	or	more	variable/value	combinations.	Variable/value	combinations
are	separated	by	an	equals	sign.	Values	containing	spaces	should	be	enclosed	in
double	quotes.	These	quotation	marks	are	not	part	of	the	variable's	value.	Here	is	a
sample	call	to	the	utility	with	three	variables	that	illustrates	these	concepts:

rs.exe	-i	"c:\my	scripts\my	script.rss"	-s	http://localhost/reportserver

-v	VarA=1	VarB=apple	VarC="keeps	the	doctor	away"

Table	21.7	is	a	complete	list	of	parameters	that	the	rs.exe	command-line	utility
supports.

Table	21.7	RS	Utility	Parameter	Switches

PARAMETER DESCRIPTION

-i Identifies	the	script	file	to	execute.

-s Identifies	the	URL	of	the	Reporting	Services	web	service.

-u Supplies	the	username	used	to	log	in	to	the	Reporting	Services	site.

-p Supplies	the	password	associated	with	the	username	used	to	log	in	to
the	Reporting	Services	site.

-e Identifies	which	Reporting	Services	web	service	endpoint	to	employ:
Mgmt2010:	Used	in	SQL	Server	2012	to	customize	report	processing
and	rendering.	This	endpoint	can	be	used	in	either	mode	of
Reporting	Services.
Mgmt2006:	Used	in	previous	versions	of	SQL	Server	to	manage	objects
when	Reporting	Services	is	installed	in	Native	mode.
Mgmt2005:	Used	in	previous	versions	of	SQL	Server	to	manage	objects
when	Reporting	Services	is	installed	in	Integrated	mode.
Exec2005:	Used	in	previous	versions	of	SQL	Server	to	customize
report	processing	and	rendering.	This	endpoint	can	be	used	in	either
mode	of	Reporting	Services.

-l Specifies	the	number	of	seconds	before	the	connection	with
Reporting	Services	times	out.	The	default	is	60	seconds.	A	value	of	0
indicates	an	infinite	connection	time-out.

-b Indicates	that	the	script	should	be	executed	as	a	batch.

-v Provides	variables	and	values	to	pass	to	the	script.

-t Instructs	the	utility	to	include	trace	information	in	error	messages.

Reporting	Services	Scripts
Reporting	Services	scripts	are	implemented	in	VB.NET.	Only	a	few	namespaces	are
supported,	making	the	scripts	fairly	limited	but	still	powerful	enough	to	handle	most
content-management	tasks.	Supported	namespaces	include	System,
System.Diagnostics,	System.IO,	System.Web.Services,	and	System.Xml.

Every	script	must	contain	a	Sub	Main	code	block.	This	serves	as	the	script's	entry
point.	The	Sub	Main	block	does	not	have	to	be	the	first	or	only	code	block	in	the	script.
This	allows	you	to	move	code	to	additional	subroutines	and	functions	you	declare	in
the	script.

Within	the	script,	the	Reporting	Services	web	service	is	engaged	through	the	rs	object.
You	do	not	need	to	declare	this	object.	The	RS	utility	handles	the	details	of	setting	up
a	web	reference	to	a	particular	endpoint	presented	by	a	specific	instance	of	the
Reporting	Services	web	service.	More	details	are	provided	in	the	preceding	section.

The	requirement	for	the	script	developer	is	to	call	the	appropriate	classes	and	methods
exposed	by	this	endpoint	through	the	rs	object.	To	understand	the	classes	and
methods	available	for	each	endpoint,	refer	to	the	documentation	available	through
Books	Online.

Variables	specified	at	the	command	line	are	automatically	declared	and	initialized	for
use	within	the	script.	Variables	in	the	script	are	aligned	with	those	at	the	command
line	using	a	case-insensitive	name	match.	If	a	variable	is	not	declared	in	the	script	or
does	not	match	a	variable	supplied	from	the	command	line,	you	receive	an	undeclared
variable	error.	All	variables	passed	from	the	command	line	are	passed	in	as	strings.

The	following	code	sample	is	a	simple	demonstration	of	these	concepts.	The	script
consists	of	a	single	code	block,	Sub	Main.	The	ReportService2010	endpoint	is	accessed
through	the	rs	object	to	recursively	read	the	site's	contents	starting	from	a	folder
identified	by	the	MyFolder	variable.	The	MyFolder	variable	is	passed	in	from	the
command	line.

Sub	Main

		'Write	the	starting	folder	to	the	screen

		Console.WriteLine("The	starting	folder	is	"	+	MyFolder)

		'Open	the	Output	File

		Dim	OutputFile	As	New	IO.StreamWriter(_

															"c:\my	scripts\contents.txt",	False)

		'Obtain	an	array	of	Catalog	Items

		Dim	Contents	As	CatalogItem()	=	rs.ListChildren(MyFolder,	True)

		'Loop	through	Array	of	CatalogItems

		For	i	As	Int32	=	0	To	Contents.GetUpperBound(0)

				'Write	CatalogItem	Type	&	Path	to	Output	File	w/	Pipe	Delimiter

				OutputFile.Write(Contents(i).Type.ToString)

				OutputFile.Write("|")

				OutputFile.WriteLine(Contents(i).Path)

		Next

		'Close	Output	File

		OutputFile.Close()

End	Sub

This	script	is	saved	to	a	file	named	List	Contents.RSS	located	in	the	C:\my	scripts
folder	and	is	executed	against	the	local	Reporting	Services	instance	through	the
following	command-line	call:

rs.exe	-i	"c:\my	scripts\list	contents.rss"	-s	http://localhost/reportserver

-v	MyFolder="/"

The	"/"	value	represents	the	Home	folder	in	the	Reporting	Services	folder	hierarchy.

This	is	a	simple	script.	It	is	presented	in	this	form	simply	to	demonstrate	the	basics	of
Reporting	Services	script	development.	You	can	find	more	information	about	building
applications	for	Reporting	Services	using	the	web	services	at	the	following	URL	or	by
searching	for	the	text	“Building	Applications	Using	the	Web	Service	and	the	.NET
Framework”:

https://msdn.microsoft.com/en-us/library/ms152787(v=sql.130).aspx

https://msdn.microsoft.com/en-us/library/ms152787(v=sql.130).aspx

NOTE

A	detailed	explanation	of	the	Report	Server	Web	Service	Endpoints	architecture
including	how	the	scripting	components	fit	in	is	available	on	MSDN	at	the
following	location:

https://msdn.microsoft.com/en-us/library/ms152787(v=sql.130).aspx

https://msdn.microsoft.com/en-us/library/ms152787(v=sql.130).aspx

SUMMARY
In	this	chapter,	you	explored	various	aspects	of	web	portal.	You	saw	how	web	portal
works	and	how	it	is	used	to	manage	Reporting	Services	content.	You	learned	that	web
portal	is	available	only	when	Reporting	Services	is	installed	in	Native	mode.	You
looked	at	how	security	works	in	web	portal,	including	item-level	security.	You	also
looked	at	some	of	the	endpoints	that	are	available	when	scripting	and	automating
tasks.

This	chapter	covered	the	following	topics:

Managing	reports	using	web	portal

Viewing	reports,	models,	and	other	content	in	web	portal

Configuring	the	web	portal	environment

Automating	reporting	services	with	the	RS	utility

Configuring	web	portal,	including	caching,	schedules,	and	subscriptions

The	final	chapter	is	all	about	server	administration,	where	we	cover	the	essentials	and
details	related	to	managing	your	report	servers.	Chapter	22	covers	security	and
account	management,	backups	and	disaster	recovery,	managing	the	application
databases,	configuration	information,	monitoring	and	logging.	We	explore	server
resource	management,	troubleshooting	and	performance	tuning,	extension
management	and	email	delivery.

Chapter	22
Server	Administration

WHAT'S	IN	THIS	CHAPTER?

Enforcing	security

Account	management	and	system-level	roles

Implementing	surface	area	management

Planning	for	backup	and	recovery

Managing	application	databases

Managing	encryption	keys

Using	configuration	files

Monitoring	and	logging

Using	performance	counters	and	server	management	reports

Understanding	memory	management

Configuring	URL	reservations

Administering	e-mail	delivery

Managing	rendering	extensions

With	any	mission-critical	service,	it	is	important	to	properly	configure	and	administer
your	report	server.	If	you	have	Reporting	Services	configured	in	Native	mode	and	not
integrated	into	SharePoint,	you	will	use	tools	that	are	specific	to	Reporting	Services.

NOTE

In	previous	editions	of	this	book,	we	provided	some	guidance	and	high-level
configuration	information	for	SharePoint	integration.	Now	that	SSRS
integration	with	SharePoint	is	managed	entirely	within	SharePoint,	this	is	a	topic
that	falls	squarely	within	the	discipline	of	SharePoint	site	planning	and
administration.	For	the	Reporting	Services	administrator,	this	means	that	after
Reporting	Services	is	installed	in	SharePoint	Integrated	mode,	service
management,	content	management,	and	security	is	all	managed	within
SharePoint.

This	chapter	addresses	the	administration	tasks	for	a	report	server	configured	in
Native	mode.	It	does	not	apply	to	SharePoint	Integrated	mode.	The	integrated	report
server	is	managed	completely	within	the	SharePoint	Central	Administrator	and	other
SharePoint	user	interfaces.	The	Reporting	Services	Configuration	Manager	and
configuration	files	are	no	longer	used	in	that	case.	Reporting	Services	no	longer	runs
as	a	Windows	Service	in	Integrated	mode.	That	version	of	the	core	report	server	is
now	managed	as	a	SharePoint	service	application	and	is	managed	entirely	in
SharePoint.	By	 contrast,	although	SSRS	has	been	enhanced	with	newer	features,	little
has	changed	for	the	Native	mode	configuration	since	SSRS	2008.

An	administration	plan	should	address	the	following	general	concerns:

Security

Backup	and	recovery

Monitoring

Configuration

This	chapter	explores	these	topics	as	they	relate	to	Reporting	Services	in	Native	mode.
This	gives	you	the	basic	knowledge	you	need	to	engage	users,	developers,	and	IT
administrators	in	developing	a	plan	tailored	to	your	organization's	specific	needs.

SECURITY
Properly	securing	your	Reporting	Services	environment	requires	you	to	find	the	right
balance	between	risk,	availability,	and	supportability.	Following	good	network,	system,
and	facilities	management	practices	goes	a	long	way	toward	securing	your	installation.
Specific	to	Reporting	Services,	you	should	consider	how	to	best	approach	the
following:

Account	management

System-level	roles

Surface	area	management

Account	Management
Reporting	Services	must	interact	with	various	resources.	To	access	these	resources,
Reporting	Services	must	present	its	requests	as	originating	from	a	specific,	valid	user.
Reporting	Services	stores	credentials,	typically	username	and	password	combinations,
for	the	following	three	accounts,	each	of	which	is	used	to	handle	specific	interactions
with	resources:

The	service	account

The	application	database	account

The	unattended	execution	account

Whenever	possible,	it	is	recommended	that	you	use	Windows	domain	user	accounts
as	the	source	of	the	credentials	for	these	three	application	accounts.	This	allows	you
to	leverage	the	Windows	security	infrastructure	for	credential	management.

In	addition,	it	is	recommended	that	you	employ	accounts	dedicated	for	use	in	these
roles.	Reuse	of	credentials	can	make	long-term	management	of	these	accounts	more
difficult	and	can	lead	to	unintended	resource	access.	This	can	also	lead	to	the
accumulation	of	permissions	associated	with	an	account.	An	account	used	for	one	of
these	roles	should	have	no	more	permissions	than	those	required	for	it	to	successfully
complete	its	operations.

Finally,	you	should	limit	the	number	of	trusted	individuals	who	have	knowledge	of
these	credentials.	As	individuals	move	out	of	roles	requiring	them	to	have	this
knowledge	(or	leave	the	organization),	these	accounts	should	be	updated	to	maintain
a	secure	environment.	If	you	use	Windows	accounts	(as	recommended),	you	can
prevent	their	inappropriate	use	by	prohibiting	interactive	logins	to	Windows	systems.

The	Service	Account
During	installation	you	are	asked	to	specify	the	account	under	which	the	Reporting
Services	Windows	service	operates.	This	is	called	the	service	account.	Through	this

account,	the	Reporting	Services	Windows	service	accesses	various	system	resources.	If
your	installation	runs	in	SharePoint	Integrated	mode,	this	is	the	account	that
Reporting	Services	also	uses	to	access	the	SharePoint	databases.

The	Reporting	Services	service	account	can	be	one	of	three	built-in	accounts	or	a
Windows	user	account	that	you	define,	as	described	in	Table	22.1.

Table	22.1	Service	and	Account	Types

ACCOUNT DETAILS

Local
System

A	built-in	account	that	behaves	as	a	member	of	the	local	Administrators
group.	When	accessing	resources	on	the	network,	it	uses	the	computer's
credentials.	It	is	not	recommended	that	you	use	this	for	the	service
account.

Local
Service

A	built-in	account	that	behaves	as	a	member	of	the	local	Users	group.	It
accesses	resources	on	the	network	with	no	credentials.

Network
Service

A	built-in	account	that	behaves	as	a	member	of	the	local	Users	group.
When	accessing	resources	on	the	network,	it	uses	the	computer's
credentials.	It	is	no	 longer	recommended	that	you	use	this	for	the
service	account.

User
Account

Allows	you	to	enter	the	credentials	of	a	local	or	domain	Windows	user
account.	If	a	local	account	is	used,	access	to	network	resources	is	with
no	credentials.	If	a	domain	account	is	used,	access	to	network	resources
is	through	the	domain	account.	This	is	the	recommended	account	type
for	the	service	account.

The	service	account	requires	permissions	to	specific	resources	on	the	system	on	which
the	Reporting	Services	Windows	service	runs.	Instead	of	granting	these	rights	to	the
service	account	itself,	the	service	account	obtains	them	through	membership	in	a	local
group	created	by	the	SQL	Server	setup	application	during	installation.

There	is	no	need	to	directly	alter	membership	to	this	group	when	making	changes	to
the	service	account.	Instead,	you	are	strongly	encouraged	to	make	any	changes	to	the
service	account	using	the	Service	Account	page	of	the	Reporting	Services
Configuration	Manager,	shown	in	Figure	22.1.	The	tool	handles	the	details	of
managing	membership	to	this	group,	updating	the	Windows	service,	adjusting
encryption	keys,	altering	URL	reservations,	and	granting	access	to	the	Reporting
Services	application	databases	(if	the	service	account	is	used	as	the	application
database	account).	All	these	tasks	must	be	performed	when	a	service	account	is
changed.

Figure	22.1	Configuration	Manager	Service	Account	page.

Finally,	if	you	are	running	in	SharePoint	Integrated	mode	and	you	switch	the	service
account,	make	sure	that	the	account	has	appropriate	access	to	the	SharePoint
databases.	To	do	this,	open	SharePoint	Central	Administration.	In	the	Reporting
Services	section,	click	“Grant	database	access,”	and	enter	the	Reporting	Services
service	account	information	in	the	resulting	dialog.	After	this	change	is	saved,	it	is
recommended	that	you	restart	the	SharePoint	Services	service	to	ensure	that	the
appropriate	credentials	are	being	used.

The	Application	Database	Account
Reporting	Services	depends	on	content	stored	in	its	application	databases.	These
databases	are	hosted	by	a	local	or	remote	instance	of	SQL	Server.	To	connect	to	its
databases,	Reporting	Services	must	maintain	connection	string	data	along	with	valid
credentials	for	establishing	a	connection.	The	credentials	are	called	the	application

database	account.

You	have	three	options	for	the	application	database	account.	You	can	specify	a	SQL
Server	authenticated	username	and	password,	provide	the	credentials	for	a	valid
Windows	user	account,	or	elect	to	have	Reporting	Services	simply	use	its	service
account	when	establishing	the	connection.

The	SQL	Server	Authenticated	User	option	requires	the	SQL	Server	instance	hosting
the	application	databases	to	support	both	Windows	and	SQL	Server	authentication.	By
default,	SQL	Server	is	configured	for	Windows	(Integrated)	authentication	only,
because	SQL	Server	authentication	is	considered	less	secure.	It	is	recommended	that
you	employ	the	SQL	Server	Authenticated	User	option	only	in	special	circumstances,
such	as	when	Windows	user	accounts	cannot	be	authenticated.

The	application	database	account	is	set	during	installation	and	can	be	modified	later
using	the	Reporting	Services	Configuration	Manager,	as	shown	in	Figure	22.2.	If	you
installed	using	a	default	configuration,	the	application	database	account	was
automatically	set	to	use	the	service	account.

Figure	22.2	Report	Server	Database	Configuration	Wizard.

If	you	use	the	service	account	or	Windows	user	option,	a	login	is	created	within	SQL
Server	mapped	to	this	Windows	account.	(If	you	use	the	SQL	Server	Authenticated
User	option,	you	need	to	create	a	login	in	advance.)	The	login	is	then	granted	access	to
the	two	Reporting	Services	application	databases	as	well	as	the	master	and	msdb
system	databases.	Within	each	database,	the	account	is	mapped	to	a	collection	of	roles
that	provides	it	the	rights	it	needs	to	handle	Reporting	Services	database	operations,
including	the	creation	and	management	of	jobs	through	a	SQL	Agent.	Table	22.2	lists
the	database	roles	to	which	the	application	database	account	is	mapped.

Table	22.2	Databases	and	Roles

DATABASE ROLES

Master public
RSExecRole

Msdb public
RSExecRole
SQLAgentOperatorRole
SQLAgentReaderRole
SQLAgentUserRole

ReportServer db_owner
public
RSExecRole

ReportServerTempDB db_owner
public
RSExecRole

It	is	important	to	note	that	if	you	change	the	application	database	account	used	by
Reporting	Services	to	connect	to	its	application	databases,	the	Reporting	Services
Configuration	Manager	does	not	remove	the	previous	application	database	account
from	the	SQL	Server	instance.	Instead,	a	valid

login	is	left	within	the	instance	of	SQL	Server	Database	Engine,	retaining	its
membership	in	the	database	roles	listed	in	Table	22.2.	If	you	change	the	application
database	account,	you	should	follow	up	by	removing	the	prior	login	from	these	roles
or	from	the	SQL	Server	instance.

The	Unattended	Execution	Account
Reports	might	need	to	access	files	on	remote	servers	or	data	sources	that	do	not
require	authentication.	To	access	these	resources,	you	can	specify	that	no	credentials
are	required	as	part	of	the	data-source	definition.	When	you	do	so,	you	are	instructing
Reporting	Services	to	use	the	credentials	it	has	cached	for	the	unattended
execution	account	(also	known	as	the	unattended	report	processing	account
or	simply	the	execution	account)	when	accessing	the	resource.

By	default,	the	unattended	execution	account	is	disabled	and	should	remain	so	unless
a	specific	need	is	recognized	that	cannot	be	addressed	by	other	reasonable	means.	To
enable	the	account	and	configure	its	credentials,	access	the	Execution	Account	page
within	the	Configuration	Manager	and	provide	the	required	credentials,	as	shown	in
Figure	22.3.

Figure	22.3	Configuration	Execution	Account	page.

System-Level	Roles
System-level	roles	give	members	the	rights	to	perform	tasks	across	the	Reporting
Services	site.	Reporting	Services	comes	preconfigured	with	two	system-level	roles:
System	User	and	System	Administrator.	The	System	User	role	allows	users	to	retrieve
information	about	the	site	and	to	execute	reports	in	Report	Builder	that	have	not	yet
been	published	to	the	site.	The	System	Administrator	role	gives	administrators	the
rights	required	to	manage	the	site,	including	the	rights	to	create	additional	roles.	Table
22.3	describes	the	specific	system-level	tasks	assigned	to	these	roles.

Table	22.3	System	Roles	and	Task	Permissions

TASK DESCRIPTION SYSTEM
ADMINISTRATOR

SYSTEM
USER

Execute
report
definitions

Start	execution	from	the	report
definition	without	publishing	it	to	the
Report	Server

Yes Yes

Generate
events

Lets	an	application	generate	events
within	the	Report	Server	namespace

No No

Manage	jobs View	and	cancel	running	jobs Yes No

Manage
Report
Server
properties

View	and	modify	properties	that	apply
to	the	Report	Server	and	to	items
managed	by	the	Report	Server

Yes No

Manage	roles Create,	view,	modify,	and	delete	role
definitions

Yes No

Manage
shared
schedules

Create,	view,	modify,	and	delete
shared	schedules	used	to	run	reports
or	refresh	a	report

Yes No

Manage
Report
Server
security

View	and	modify	system-wide	role
assignments

Yes No

View	Report
Server
properties

View	properties	that	apply	to	the
Report	Server

No Yes

View	shared
schedules

View	a	predefined	schedule	that	has
been	made	available	for	general	use

No Yes

You	can	create	additional	site-level	roles	using	SQL	Server	Management	Studio.	Doing
so	allows	you	to	permit	site-level	tasks	to	be	performed	by	others	without	granting
them	System	Administrator	rights.	The	process	of	creating	these	roles,	assigning
tasks,	and	granting	membership	is	nearly	identical	to	the	creation	of	item-level	roles.
The	only	difference	is	that	system-level	roles	are	created	through	the	System	Roles
folder	instead	of	the	Roles	folder	within	SQL	Server	Management	Studio,	as	shown	in
Figure	22.4.

Figure	22.4	SSMS	Report	Server	Roles.

By	default,	the	BUILTIN\Administrators	group	is	assigned	to	both	the	System
Administrator	system-level	role	and	the	Content	Manager	item-level	role	within	the
Home	folder.	You	are	encouraged	to	alter	this	so	that	a	more	appropriate	user	account
or	group	is	assigned	these	permissions.	If	you	decide	to	leave	the
BUILTIN\Administrators	group	in	these	roles,	carefully	consider	who	is	allowed
administrative	rights	on	your	servers.

Surface	Area	Management
A	feature	that	is	not	enabled	is	one	that	cannot	be	exploited.	This	is	the	general
principle	behind	surface	area	management.

Reporting	Services	comes	with	several	features	disabled.	These	include	the	execution
account,	e-mail	delivery,	and	My	Reports.	Still	other	features	are	enabled	by	default
but	are	not	necessarily	required	within	your	Reporting	Services	environment.	These
include	Report	Builder,	Web	Portal,	the	use	of	Windows	Integrated	security	to	access
report	data	sources,	and	scheduling	and	delivery	functionality.	Carefully	consider
which	Reporting	Services	features	are	truly	required,	and	disable	any	that	are	not
needed.	Books	Online	provides	documentation	on	disabling	each	of	these	features.

BACKUP	AND	RECOVERY
Although	redundant	hardware	solutions	offer	considerable	protection	against	many
types	of	failure,	they	do	not	shield	you	from	every	eventuality.	Regular	backups	of	the
critical	components	of	your	Reporting	Services	environment	are	required	to	better
ensure	its	recoverability.

Of	course,	simply	making	backups	is	not	enough.	Your	backups	must	be	properly
managed	to	ensure	their	availability	following	a	failure	event.	This	typically	involves
secured,	off-site	storage	and	the	development	of	retention	schedules	so	that	you	have
the	option	to	recover	to	various	points	in	time.

In	addition,	those	responsible	for	recovery	should	have	experience	with	the	recovery
techniques.	They	should	also	be	well	versed	in	the	procedures	for	accessing	the
backup	media.	It's	not	much	fun	to	attempt	a	recovery	when	you	do	not	know	how	to
locate	and	use	the	recovery	media.

Finally,	you	should	establish	policies	regarding	how	communications	and	decision
making	will	be	handled	during	a	recovery	event.	You	want	to	ensure	that	all	those
potentially	involved	understand	these	policies.	This	will	help	minimize	confusion
during	what	can	be	an	already	stressful	situation.

This	section	of	the	chapter	reviews	the	backup	and	recovery	of	the	following	critical
components	of	a	Reporting	Services	environment:

Application	databases

Encryption	keys

Configuration	files

Other	items

Application	Databases
Reporting	Services	uses	two	application	databases.	The	primary	database,
ReportServer,	houses	content,	whereas	the	secondary	database,	ReportServerTempDB,
houses	cached	data.	These	default	names	are	offered	by	the	Configuration	Manager,
but	can	be	changed.

NOTE

Although	the	names	of	the	application	databases	can	vary,	the	secondary
application	database	must	always	be	named	the	same	as	the	primary,	with
TempDB	appended.	For	example,	if	the	primary	application	database	is	named
MyRS,	the	secondary	database	associated	with	it	must	be	named	MyRSTempDB.
The	names	of	these	databases	should	not	be	altered	after	they	are	created,	and
the	two	databases	must	always	exist	within	the	same	SQL	Server	instance.

The	primary	application	database,	ReportServer,	should	be	backed	up	on	a	regular
basis	and	following	any	significant	content	changes.	This	database	operates	under	the
Full	recovery	model,	which	allows	both	data	and	log	backups	to	be	performed.	If
properly	managed,	the	combination	of	data	and	log	backups	allows	for	point-in-time
recovery	of	the	ReportServer	database.

The	secondary	application	database,	ReportServerTempDB,	does	not	actually	require	a
backup.	If	you	need	to	recover	it,	you	can	create	a	new	database	appropriately	named
within	the	SQL	Server	instance	housing	the	ReportServer	database.	Within	this	new
database,	execute	the	CatalogTempDB.sql	script	found	within	the	drive:\Program
Files\Microsoft	SQL	Server\MSRS13.instancename\Reporting

Services\ReportServer	folder.	The	script	re-creates	the	database	objects	required	by
Reporting	Services.	Be	sure	to	run	this	from	within	the	ReportServerTempDB
database	you	just	created.

If	you	decide	to	back	up	ReportServerTempDB,	it	is	important	to	note	that	it	operates
under	the	Simple	recovery	model.	This	model	allows	for	data	backups	but	not	log
backups.	Ideally,	both	databases	should	be	backed	up	and	restored	as	a	set	to	maintain
server	consistency.	However,	a	current	backup	of	this	database	is	not	always	critical,
because	it	manages	only	temporary	cached	report	execution	information.

NOTE

Books	Online	includes	a	script	for	the	backup	and	recovery	of	the	ReportServer
and	ReportServerTempDB	databases	to	another	server.	This	script	uses	the
COPY_ONLY	backup	option	and	modifies	the	recovery	model	used	with
ReportServerTempDB.	It	is	important	to	note	that	this	script	is	provided	in	the
context	of	performing	a	database	migration,	not	a	standard	backup-
and-recovery	operation.	Be	sure	to	work	with	your	database	administrators	to
develop	a	backup-and-recovery	plan	that	is	tailored	to	the	needs	of	your
environment	and	that	you	have	tested	prior	to	promoting	an	environment	to
production	status.

If	you	recover	a	backup	of	ReportServerTempDB,	be	sure	to	purge	its	contents
following	recovery.	You	can	use	the	following	statement	to	perform	this	task.	After	the
database	is	purged,	it	is	recommended	that	you	restart	the	Reporting	Services	service.

exec	ReportServerTempDB.sys.sp_MSforeachtable

						@command1='truncate	table	#',

						@replacechar='#'

If	you	need	to	recover	your	application	databases	to	another	SQL	Server	instance,	it	is
important	to	preserve	the	databases'	original	names.	If	Reporting	Services	uses	a	SQL
Server	authenticated	account	to	connect	to	its	application	databases,	you	need	to	re-
create	that	login	in	the	new	SQL	Server	instance.	Following	the	restoration	of	the
databases,	you	need	to	reassociate	the	user	account	in	your	application	databases	with
the	re-created	login.	This	script	demonstrates	one	technique	for	performing	this	task:

exec	ReportServer.dbo.sp_change_users_login

						@Action	=	'	Update_One',

						@UserNamePattern	=	'MyDbAccount',

						@LoginName	=	'MyDbAccount'

exec	ReportServerTempDB.dbo.sp_change_users_login

						@Action	=	'Update_One',

						@UserNamePattern	=	'MyDbAccount',

						@LoginName	=	'MyDbAccount'

NOTE

Without	getting	too	deep	into	the	trappings	of	SQL	Server	user	and	login
management,	it	is	important	to	understand	that	you	cannot	move	a	database.
The	user/login	mappings	are	not	preserved	by	default,	resulting	in	a	scenario
called	“orphaned	users.”	This	is	because	users	are	internally	identified	using
unique	system	IDs	rather	than	user	name.	The	sp_change_users_login	command
described	in	this	section	may	be	used	to	resolve	this	common	issue.

As	soon	as	the	database	user	and	login	are	properly	associated,	launch	the	Reporting
Services	Configuration	Manager	against	your	Reporting	Services	instance,	and	locate
the	Database	page,	as	shown	in	Figure	22.5.

Figure	22.5	Configuration	Manager	Database	page.

From	this	page,	click	the	Change	Database	button.	In	the	resulting	dialog,	enter	the
information	required	to	connect	to	the	primary	application	database	at	its	new
location.	Restarting	Reporting	Services	from	the	Reporting	Service	Configuration
Manager	completes	the	process.

Encryption	Keys
Reporting	Services	protects	the	sensitive	information	it	stores	through	encryption
based	on	a	symmetric	key	generated	during	initialization.	The	symmetric	key,	per
its	definition,	is	used	in	both	encryption	and	decryption	operations.	To	prevent
unauthorized	decryption	of	sensitive	data,	the	symmetric	key	itself	must	be	protected.
This	is	accomplished	by	encrypting	the	symmetric	key	using	an	asymmetric	key	pair
generated	by	the	operating	system.

Although	this	protects	the	symmetric	key,	also	called	the	encryption	key,	it
increases	the	system's	administrative	complexity.	Certain	operations	invalidate	the
asymmetric	key	pair.	Unless	handled	properly,	these	operations	cause	Reporting
Services	to	lose	its	ability	to	decrypt	the	symmetric	key,	leaving	its	sensitive	data
inaccessible.	These	operations	include	the	following:

Resetting	the	service	account's	password

Changing	the	Reporting	Services	Windows	service	account

Changing	the	server's	name

Changing	the	name	of	the	Reporting	Services	instance

If	you	need	to	perform	these	operations,	it	is	critical	that	you	follow	the	steps	outlined
in	this	chapter	and	in	Books	Online.	If	the	precise	steps	required	by	these	operations
are	not	followed,	the	symmetric	key	can	no	longer	be	decrypted.	Your	options	then	are
to	either	recover	the	key	from	a	backup	or	delete	it.	Deleting	the	key,	as	described	in	a
moment,	is	extremely	disruptive	to	your	site.

To	back	up	the	encryption	key,	use	either	the	Encryption	Keys	page	of	the	Reporting
Services	Configuration	Manager,	shown	in	Figure	22.6,	or	the	rskeymgmt	command-
line	utility	with	the	-e	parameter:

rskeymgmt.exe	-e	-i	MSSQLSERVER	-f	c:\backups\rs_2012_11_04.snk	-p	p@ssw0rd

Figure	22.6	Configuration	Manager	Encryption	Keys	page.

With	either	approach,	you	need	to	provide	a	name	for	the	backup	file,	along	with	a
password	to	protect	its	contents.

NOTE

The	-i	parameter	is	used	to	specify	the	name	of	the	Reporting	Services	instance
on	the	local	system.	The	default	instance	is	identified	with	the	MSSQLSERVER
keyword.

It	is	recommended	that	you	back	up	the	encryption	key	when	the	server	is	first
initialized,	when	the	service	account	is	changed,	or	whenever	the	key	is	deleted	or	re-
created.	Although	it	is	password-protected,	the	backup	file	should	be	secured	to
prevent	unauthorized	access	to	sensitive	information.

If	you	suspect	that	the	encryption	key	has	been	compromised,	you	can	re-create	it
using	the	Reporting	Services	Configuration	Manager	or	the	rskeymgmt	command-line
utility	with	the	-s	parameter:

rskeymgmt.exe	-s	-i	MSSQLSERVER

This	operation	can	be	time-consuming,	so	you	might	want	to	restrict	user	access	to
the	Reporting	Services	instance	until	you're	finished.

NOTE

If	your	Reporting	Services	instance	is	part	of	a	scale-out	deployment,	you	need	to
reinitialize	the	other	instances	in	the	environment	with	the	newly	created	key	per
the	instructions	provided	in	Books	Online.

To	recover	the	encryption	key,	use	either	the	Reporting	Services	Configuration
Manager	or	the	rskeymgmt	command-line	utility	with	the	-a	parameter.	Both
approaches	require	you	to	identify	the	backup	file	and	supply	its	password:

rskeymgmt.exe	-a	-i	MSSQLSERVER	-f	c:\backups\rs_2012_11_04.snk	-p	p@ssw0rd

Deleting	the	encryption	key	is	considered	an	operation	of	last	resort.	After	doing	so,
you	need	to	re-create	all	shared	and	report-specific	connection	strings	containing	it
and	reactivate	all	subscriptions.	As	before,	you	can	perform	this	operation	using	the
Reporting	Services	Configuration	Manager	or	the	rskeymgmt	command-line	utility,	this
time	with	the	-d	parameter:

rskeymgmt.exe	-d	-i	MSSQLSERVER

NOTE

If	your	Reporting	Services	instance	is	part	of	a	scale-out	deployment,	you	need	to
delete	the	key	on	each	instance	in	the	environment.	Refer	to	Books	Online	for
instructions	on	completing	this	operation.

Configuration	Files
Several	configuration	files	affect	Reporting	Services.	To	fully	recover	your	installation,
you	need	backups	of	these	files.	Reporting	Services	itself	does	not	provide	a
mechanism	for	this.	However,	you	can	use	any	number	of	file	backup	techniques	to
safeguard	these	files.	Table	22.4	describes	the	configuration	files	you	will	want	to	back
up	and	their	default	locations.

Table	22.4	Configuration	Files

CONFIGURATION	FILE DEFAULT	LOCATION
ReportingServicesService.exe.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.instancename

Services\ReportServer\Bin

RSReportServer.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.instancename

Services\ReportServer

RSSrvPolicy.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.instancename

Services\ReportServer

RSMgrPolicy.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.instancename

Services\ReportManager

Web.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.instancename

Services\ReportServer

Microsoft.ReportingServices.Portal.WebHost.exe.config drive:\Program	Files\Microsoft	SQL

Server\MSRS13.MSSQLSERVER\Reporting	Services\RSWebApp

Machine.config drive:\Windows\Microsoft.NET\Framework\

Other	Items
Your	backup-and-recovery	plan	should	consider	any	custom	scripts	or	components	in
use	by	your	installation.	In	addition,	you	will	want	to	make	sure	that	purchased
components,	installation	media,	service	packs,	and	hotfixes	are	available	during	a
recovery	event.	If	you	have	created	a	database	to	house	execution	log	data	(discussed
later),	you	may	want	to	back	this	up	as	well.

MONITORING
Effective	monitoring	should	allow	you	to	quickly	identify	or	even	anticipate	problems
within	your	environment.	Reporting	Services	provides	various	features	to	support	this
activity.	You	can	use	Reporting	Services	as	a	tool	to	present	this	data	to	administrators
in	an	easier-to-consume	manner.

This	section	explores	the	use	of:

Setup	logs

Windows	application	event	logs

Trace	logs

Execution	log

Performance	counters

Server	management	reports

Setup	Logs
During	installation,	the	setup	application	creates	a	series	of	text-based	log	files	that
record	messages	and	statistics	generated	as	part	of	the	process.	By	default,	these	are
located	in	subfolders	of	the	drive:\Program	Files\Microsoft	SQL	Server\130\Setup
Bootstrap\LOG	folder.	These	subfolders	are	named	using	the	convention
YYYYMMDD_nnnnnn,	where	YYYY,	MM,	and	DD	represent	the	year,	month,	and	day
of	the	installation.	The	nnnn	portion	of	the	name	represents	an	incrementing	four-
digit	number,	the	highest	value	of	which	identifies	the	most	recent	installation
attempt.

The	contents	of	these	folders	are	a	bit	overwhelming	but	worth	exploring	if	you
experience	errors	during	an	installation	attempt.	To	review	the	summary	status	of	the
most	recent	installation	attempt,	simply	direct	your	attention	to	the	Summary.txt	file
within	the	drive:\Program	Files\Microsoft	SQL	Server\130\Setup	Bootstrap\LOG
folder.

Windows	Application	Event	Logs
Reporting	Services	writes	critical	error,	warning,	and	informational	messages	to	the
Windows	application	event	log.	These	messages	are	identified	as	originating
from	the	Report	Server,	Web	Portal,	and	Scheduling	and	Delivery	Processor	event
sources.

The	complete	list	of	Reporting	Services	event	log	messages	is	documented	in	Books
Online.	Administrators	will	want	to	familiarize	themselves	with	this	list	and
periodically	review	the	Windows	Application	event	log	for	these	and	other	critical
messages.	You	can	view	the	Windows	event	logs	using	the	operating	system's	Event

Viewer	applet.

Trace	Logs
The	trace	logs	are	a	great	source	of	information	about	activity	taking	place	within
the	Reporting	Services	Windows	service.	You	can	locate	these	files	in	the
drive:\Program	Files\Microsoft	SQL	Server\MSRS13.instancename\Reporting

Services\LogFiles	folder.	The	logs	are	by	default	named
ReportServerService__MM_DD_YYYY_hh_mm_ss,	where	MM,	DD,	YYYY,	hh,	mm,
and	ss	represent	the	month,	day,	year,	hour,	minute,	and	second,	respectively,	that	the
file	was	created.	You	can	view	each	of	these	files	using	a	simple	text	editor.

By	default,	Reporting	Services	is	configured	to	write	exceptions,	warnings,	restart,	and
status	messages	to	the	trace	log	files.	Log	files	are	retained	for	a	configurable	number
of	days.	A	new	log	file	is	created	at	the	beginning	of	the	day,	when	the	Reporting
Services	Windows	service	is	started,	or	when	the	file	reaches	a	configurable	maximum
size.	The	configuration	settings	affecting	the	trace	logs	are	found	within	the	RStrace
section	of	the	ReportingServicesService.exe.config	file,	typically	located	in	the
drive:\Program	Files\Microsoft	SQL	Server\MSRS13.instancename\Reporting

Services\ReportServer\Bin	folder.	The	RStrace	settings	are	described	in	Table	22.5,
along	with	their	defaults.

Table	22.5	Log	Configuration	Settings

SETTING DEFAULT DESCRIPTION

FileName ReportServerService_ The	first	part	of	the	filename.	A	string
indicating	the	date	and	time	the	file	was
created,	along	with	a	.log	extension,	is
appended	to	produce	the	full	filename.

FileSizeLimitMb 32 The	maximum	size	of	the	trace	file	in
megabytes	(MB).	A	value	less	than	or
equal	to	0	is	treated	as	1.

KeepFilesForDays 14 The	number	of	days	to	retain	a	trace	file.
A	value	less	than	or	equal	to	0	is	treated
as	1.

Prefix tid,time A	generated	value	that	distinguishes	the
log	instance	for	which	a	time	stamp
value	is	applied.	Do	not	modify.

TraceListeners debugwindow,file A	comma-delimited	list	of	one	or	more
trace	log	output	targets.	Valid	values
within	the	list	include	debugwindow,	file,
and	stdout.

TraceFileMode Unique	(default) A	value	indicating	that	each	trace	file
should	contain	data	for	a	single	day.	Do

not	modify	this	setting.

DefaultTraceSwitch 3 The	default	trace	level	for	any
component	identified	in	the	Components
setting	but	for	which	no	trace	switch	is
provided.	Here	are	the	values:
0—Disabled
1—Exceptions	and	restarts
2—Exceptions,	restarts,	and	warnings
3—Exceptions,	restarts,	warnings,	and
status	messages
4—Verbose	mode

Components All:3 A	comma-delimited	list	of	components
and	their	associated	trace	levels
determining	the	information	to	be
included	in	the	trace.
These	components	represent	activities
that	can	produce	trace	messages.	Here
are	the	valid	components:
RunningJobs—Report	and	subscription
execution
SemanticQueryEngine—Report	model
usage
SemanticModelGenerator—Report	model
generation
All—Any	of	the	components,	except
http,	not	otherwise	specified
http—HTTP	requests	received	by
Reporting	Services
The	type	of	message	written	for	each
specified	component	is	controlled	by	a
trace	level.	The	levels	are	as	follows:
0—Disabled
1—Exceptions	and	restarts
2—Exceptions,	restarts,	and	warnings
3—Exceptions,	restarts,	warnings,	and
status	messages
4—Verbose	mode

The	http	component	identified	in	this	table	was	introduced	in	SQL	Server	2008
Reporting	Services.	It	remains	unchanged	in	the	current	product	version.	It	instructs
Reporting	Services	to	record	HTTP	requests	to	a	separate	trace	log	file	in	the
traditional	W3C	extended	log	format.

The	http	component	is	not	covered	by	the	All	component.	Therefore,	the	default
Components	 setting	of	All:3	leaves	HTTP	logging	disabled.	To	enable	HTTP	logging,
append	the	http	 component	to	the	Components	list	with	a	trace	level	of	4.	Any	other
trace	level	for	the	http	component	leaves	it	disabled.

The	HTTP	trace	log	files	are	stored	in	the	same	folder	as	the	traditional	trace	files.
Trace	configuration	settings	such	as	FileSizeLimitMb	and	KeepFilesForDays	serve
double	duty,	affecting	the	management	of	both	the	traditional	and	HTTP	trace	log
files.

Two	HTTP	trace	log–specific	settings,	HttpTraceFileName	and	HttpTraceSwitches,	are
manually	added	to	the	ReportingServicesService.exe.config	file	to	override	the
default	HTTP	trace	log	filename	and	data	format,	respectively.	If	the
HttpTraceSwitches	setting	is	not	specified,	the	fields	identified	as	defaults	in	Table
22.6	are	recorded	to	the	HTTP	trace	logs.

Table	22.6	Trace	Log	Fields

FIELD DESCRIPTION DEFAULT

HttpTraceFileName Optional.	Default:	ReportServerServiceHTTP.	Used	to
customize	the	file	trace	file	name.

Yes

HttpTraceSwitches Optional.	Comma-delimited	list	of	fields	used	in	the
log	file.

No

Date The	date	of	the	event No

Time The	time	of	the	event No

ClientIp The	IP	address	of	the	client	accessing	the	Report
Server

Yes

UserName The	name	of	the	user	who	accessed	the	Report
Server

No

ServerPort The	port	number	used	for	the	connection No

Host The	content	of	the	host	header No

Method The	action	or	SOAP	method	called	from	the	client Yes

UriStem The	resource	accessed Yes

UriQuery The	query	used	to	access	the	resource No

ProtocolStatus The	HTTP	status	code Yes

BytesReceived The	number	of	bytes	received	by	the	server No

TimeTaken The	time	(in	milliseconds)	from	the	instant	that
HTTP.SYS	returns	request	data	until	the	server
finishes	the	last	send,	excluding	network
transmission	time

No

ProtocolVersion

The	protocol	version	used	by	the	client No

UserAgent The	browser	type	used	by	the	client No

CookieReceived The	content	of	the	cookie	received	by	the	server No

CookieSent The	content	of	the	cookie	sent	by	the	server No

Referrer The	previous	site	visited	by	the	client No

The	following	sample	shows	the	RSTrace	section	of	the
ReportingServicesService.exe.config	file	with	both	traditional	and	HTTP	logging
enabled	and	the	HttpTraceFileName	and	HttpTraceSwitches	settings	explicitly
configured.	Note	the	Components	setting	with	the	http	component	specified	with	a
trace	level	of	4:

<RStrace>

				<add	name="FileName"	value="ReportServerService_"/>

				<add	name="FileSizeLimitMb"	value="32"/>

				<add	name="KeepFilesForDays"	value="14"/>

				<add	name="Prefix"	value="tid,	time"/>

				<add	name="TraceListeners"	value="debugwindow,	file"/>

				<add	name="TraceFileMode"	value="unique"/>

				<add	name="HttpTraceFileName"	value="RS_HTTP_"/>

				<add	name="HttpTraceSwitches"	value="Date,Time,ActivityID,

								SourceActivityID,ClientIp,UserName,Method,

								UriStem,UriQuery,ProtocolStatus,BytesSent,

								BytesReceived,TimeTaken"/>

				<add	name="Components"	value="runningjobs:3,all:2,http:4"/>

</RStrace>

NOTE

When	you	modify	the	configuration	file,	it	is	important	to	make	a	backup	in	case
a	problem	arises	with	your	changes.	Also,	be	aware	that	setting	names	are	case-
sensitive,	although	the	values	do	not	appear	to	be.

Execution	Logs
Reporting	Services	stores	quite	a	bit	of	data	about	the	execution	of	reports	in	a
collection	of	tables	in	the	ReportServer	database.	Log	information	is	stored	in	the
ExecutionLogStorage	table	and	can	be	queried	by	using	the	ExecutionLog,
ExecutionLog2,	and	ExecutionLog3	views.

The	volume	of	data	associated	with	the	execution	logs	can	get	quite	large.	Reporting
Services	is	configured	by	default	to	retain	execution	log	data	for	60	days.	You	can	alter
this	setting	through	SQL	Server	Management	Studio	by	connecting	to	the	Reporting
Services	instance,	right-clicking	the	instance	object,	and	selecting	Properties	from	the
context	menu.	In	the	Server	Properties	dialog,	shown	in	Figure	22.7,	navigate	to	the
Logging	page.	Here	you	can	change	the	number	of	days	that	the	data	is	retained	or
disable	execution	logging.

Figure	22.7	Server	Properties	Logging	page.

Performance	Counters
Windows	performance	counters	provide	insight	into	system	utilization	and	stability.
Administrators	have	long	used	these	to	monitor	a	system's	overall	health,	identify
trends	that	may	lead	to	problems,	and	verify	the	effect	of	changes	on	various	system
components.	To	support	this	activity,	Reporting	Services	provides	three	performance
objects:	SQL	Server	2016	Web	Service,	SQL	Server	2016	Windows	Service,	and
ReportServer	Service.	There	are	alternative	versions	of	the	web	service	and	Windows
service	counters	for	SharePoint	Integrated	mode.

The	SQL	Server	2016	Web	Service	object	presents	counters	related	to	report
processing.	The	SQL	Server	2016	Windows	Service	object	presents	counters	related	to
scheduled	operations,	such	as	subscription	execution	and	delivery	and	snapshot
execution.	The	ReportServer	Service	object	presents	counters	related	to	HTTP-	and
memory-related	events.	Although	focused	on	different	subject	areas,	many	of	the
counters	presented	by	these	objects	are	named	and	defined	identically.	Table	22.7	lists
the	counters	and	the	objects	with	which	they	are	associated.

TIP

The	number	of	performance	counters	related	to	Reporting	Services	can	be	a	bit
overwhelming.	In	my	experience,	you	can	typically	find	what	you	are	looking	for
by	observing	a	just	a	few	key	counters	after	briefly	examining	the	behavior	of
several.	Keep	it	simple	and	don't	overdo	it.	With	a	little	observation	you	should
be	able	to	spot	the	counters	that	will	be	most	useful,	depending	on	what	you	are
looking	for	and	the	issue	you	are	trying	to	resolve.

Table	22.7	Reporting	Services	Performance	Counters

COUNTER DESCRIPTION SQL
SERVER
2016
WEB
SERVICE

SQL
SERVER
2016
WINDOWS
SERVICE

REPORT
SERVER
SERVICE

Active
Connections

Number	of	connections	active
against	the	server

No Yes Yes

Active	Sessions Number	of	active	sessions Yes Yes No

Bytes
Received/Sec

Rate	of	bytes	received	per
second

No Yes Yes

Bytes	Received
Total

Number	of	bytes	received No Yes Yes

Bytes	Sent/Sec Rate	of	bytes	sent	per	second No No Yes

Bytes	Sent	Total Number	of	bytes	sent No No Yes

Cache	Hits/Sec Number	of	Report	Server
cache	hits	per	second

Yes Yes No

Cache	Hits/Sec
(semantic
models)

Number	of	times	per	second
that	models	can	be	retrieved
from	the	cache

Yes Yes No

Cache
Misses/Sec

Number	of	times	per	second
that	reports	cannot	be
retrieved	from	the	cache

Yes Yes No

Cache
Misses/Sec
(semantic
models)

Number	of	times	per	second
that	models	cannot	be
retrieved	from	the	cache

Yes Yes No

Errors/Sec Number	of	errors	that	occur No No Yes

during	the	execution	of	HTTP
requests	(error	codes	400s
and	500s)	per	second

Errors	Total Total	number	of	errors	that
occur	during	the	execution	of
HTTP	requests	(error	codes
400s	and	500s)

No No Yes

First	Session
Requests/Sec

Number	of	new	user	sessions
that	are	started	per	second

Yes Yes No

Logon
Attempts/Sec

Rate	of	logon	attempts No No Yes

Logon	Attempts
Total

Number	of	logon	attempts	for
RSWindows	authentication
types

No No Yes

Logon
Successes/Sec

Rate	of	successful	logons No No Yes

Logon	Successes
Total

Number	of	successful	logons
for	RSWindows
authentication	types

No No Yes

Memory	Cache
Hits/Sec

Number	of	times	per	second
that	reports	can	be	retrieved
from	the	in-memory	cache

Yes Yes No

Memory	Cache
Miss/Sec

Number	of	times	per	second
that	reports	cannot	be
retrieved	from	the	in-memory
cache

Yes Yes No

Memory
Pressure	State

A	number	from	1	to	5
indicating	the	server's	current
memory	state:
1—No	pressure
2—Low	pressure
3—Medium	pressure
4—High	pressure
5—Exceeded	pressure

No No Yes

Memory	Shrink
Amount

Number	of	bytes	the	server
asked	to	shrink

No No Yes

Memory	Shrink
Notifications/Sec

Number	of	shrink
notifications	the	server
issued	in	the	last	second

No No Yes

Next	Session Number	of	requests	per Yes Yes No

Requests/Sec second	for	reports	that	are
open	in	an	existing	session

Report	Requests Number	of	active	report
requests

Yes Yes No

Reports
Executed/Sec

Number	of	reports	executed
per	second

Yes Yes No

Requests
Disconnected

Number	of	requests	that	have
been	disconnected	because	of
a	communication	failure

No Yes Yes

Requests
Executing

Number	of	requests	currently
executing

No No Yes

Requests	Not
Authorized

Number	of	requests	failing
with	HTTP	401	error	code

No Yes Yes

Requests
Rejected

Total	number	of	requests	not
executed	because	of
insufficient	server	resources

No Yes Yes

Requests/Sec Number	of	requests	per
second

Yes Yes Yes

Requests	Total The	total	number	of	requests
received	by	the	Report	Server
service	since	service	startup

No No Yes

Tasks	Queued Represents	the	number	of
tasks	that	are	waiting	for	a
thread	to	become	available
for	processing

No Yes Yes

Total	Cache	Hits Total	number	of	Report
Server	cache	hits

Yes Yes No

Total	Cache	Hits
(semantic
models)

Total	number	of	cache	hits
made	in	the	model	cache

Yes Yes No

Total	Cache
Misses

Total	number	of	cache	misses Yes Yes No

Total	Cache
Misses
(semantic
models)

Total	number	of	cache	misses
made	in	the	model	cache

Yes Yes No

Total	Memory
Cache	Hits

Total	number	of	cache	hits
made	in	the	in-memory	cache

Yes Yes No

Total	Memory Total	number	of	cache	misses Yes Yes No

Cache	Misses made	in	the	in-memory	cache

Total	Processing
Failures

Total	number	of	processing
failures

Yes Yes No

Total	Rejected
Threads

Total	number	of	rejected
threads	as	a	result	of	thread
pressure

Yes Yes No

Total	Reports
Executed

Total	number	of	reports
executed

Yes Yes No

Total	Requests Total	number	of	requests
being	processed

Yes Yes No

Together,	these	three	objects	present	72	counters	with	which	you	can	monitor	an
installation.	It	is	not	advised	that	you	monitor	each	one.	Instead,	consider	using	high-
level	statistics	such	as	Active	Sessions,	Requests/Sec,	Reports	Executed/Sec,	and	First
Session	Requests/Sec	for	your	day-to-day	monitoring.	As	specific	needs	arise,	you	will
want	to	incorporate	additional	counters	until	those	needs	are	addressed.

In	addition	to	the	Reporting	Services	performance	counters,	you	might	consider
monitoring	the	Reporting	Services	Windows	service	from	the	operating	system's
perspective.	Windows	provides	a	Process	performance	object	through	which	a	number
of	performance	counters	are	provided.	Table	22.8	describes	a	few	of	the	more
commonly	monitored	counters	under	this	object.

Table	22.8	Reporting	Services	Windows	Service	Counters

COUNTER DESCRIPTION

%	Processor
Time

The	percentage	of	elapsed	time	that	all	process	threads	used	the
processor	to	execute	instructions

Page
Faults/sec

The	rate	at	which	page	faults	by	the	threads	executing	in	this	process
are	occurring

Virtual
Bytes

The	current	size,	in	bytes,	of	the	virtual	address	space	the	process	is
using

Finally,	you	will	want	to	keep	tabs	on	a	few	counters	that	indicate	the	overall	health	of
the	systems	on	which	Reporting	Services	resides.	Commonly	monitored	performance
counters	in	this	category	include	those	listed	in	Table	22.9.

Table	22.9	Recommended	Windows	System	Counters

OBJECT COUNTER DESCRIPTION

Processor %	Processor
Time

The	primary	indicator	of	processor	activity.	Displays	the
average	percentage	of	busy	time	observed	during	the	sample
interval.

System Processor The	number	of	threads	in	the	processor	queue.

Queue
Length

Memory Pages/sec The	rate	at	which	pages	are	read	from	or	written	to	disk	to
resolve	hard	page	faults.	This	counter	is	a	primary	indicator	of
the	kinds	of	faults	that	cause	system-wide	delays.

Logical
Disk

%	Free
Space

The	percentage	of	total	usable	free	space	on	the	selected
logical	disk	drive.

Physical
Disk

Avg.	Disk
Queue
Length

The	average	number	of	both	read	and	write	requests	that	were
queued	for	the	selected	disk	during	the	sample	interval.

Network
Interface

Current
Bandwidth

An	estimate	of	the	current	bandwidth	of	the	network	interface
in	bits	per	second	(BPS).	For	interfaces	that	do	not	vary	in
bandwidth	or	for	those	where	no	accurate	estimation	can	be
made,	this	value	is	the	nominal	bandwidth.

Network
Interface

Bytes
Total/sec

The	rate	at	which	bytes	are	sent	and	received	over	each
network	adapter,	including	framing	characters.	Network
Interface\Bytes	Total/sec	is	a	sum	of	Network	Interface\Bytes
Received/sec	and	Network	Interface\Bytes	Sent/sec.

Server	Management	Reports
As	previously	mentioned,	the	Reporting	Services	samples	come	with	three	reports	for
reviewing	the	extracted	execution	log	data.	Two	other	sample	reports	are	provided
with	the	Reporting	Services	tasks	to	give	administrators	insight	into	database
structures.	Collectively,	these	are	known	as	the	server	management	reports.

The	server	management	reports	are	not	intended	to	address	all	your	administrative
needs.	Instead,	they	illustrate	how	Reporting	Services	can	be	used	as	a	tool	supporting
its	own	administration	and	management.	It	is	not	hard	to	imagine	a	number	of
additional	administrative	reports	providing	deeper	insight	into	the	execution	log	data.
With	a	bit	of	effort,	data	sources	such	as	the	performance	counters,	trace	logs,	and
Windows	Application	event	logs	can	also	be	integrated	and	made	accessible	for
reporting.

The	possibilities	for	server	management	reporting	are	endless.	With	some	up-front
investment	to	consolidate	data	sources,	you	can	leverage	Reporting	Services
functionality	to	reduce	your	environment's	overall	administrative	burden.

CONFIGURATION
Reporting	Services	supports	several	configurable	features	and	options	to	meet	your
organization's	precise	needs.	Books	Online	documents	many	of	these,	and	still	others
can	be	identified	with	a	little	exploration.	The	following	sections	explore	a	few	of	the
more	frequently	configured	Reporting	Services	elements:

Memory	management

URL	reservations

E-mail	delivery

Rendering	extensions

My	Reports

Memory	Management
The	following	four	settings	in	the	RSReportServer.config	configuration	file,	typically
located	in	the	drive:\Program	Files\Microsoft	SQL
Server\MSRS13.instancename\Reporting	Services\ReportServer	folder,	determine
how	Reporting	Services	manages	its	memory:

WorkingSetMinimum

WorkingSetMaximum

MemorySafetyMargin

MemoryThreshold

The	WorkingSetMinimum	and	WorkingSetMaximum	settings	determine	the	range	of
memory	that	Reporting	Services	may	use.	By	default,	these	settings	are	not	recorded
in	the	configuration	file.	Instead,	Reporting	Services	assumes	values	of	60	percent	and
100	percent	of	the	system's	physical	memory,	respectively.

To	override	these	defaults,	you	can	add	the	settings	to	the	configuration	file	under	the
same	parent	as	MemorySafetyMargin	and	MemoryThreshold.	The	values	associated	with
the	WorkingSetMinimum	and	WorkingSetMaximum	settings	represent	absolute	kilobytes	of
memory.	If	you	are	running	multiple	memory-intensive	applications	on	your
Reporting	Services	server,	you	should	consider	implementing	these	settings	to	avoid
memory	contention.

Within	the	range	of	memory	available	to	it,	Reporting	Services	implements	a	state-
based	memory	management	model.	The	MemorySafetyMargin	setting,	defaulted	to	80
percent	of	the	WorkingSetMaximum,	defines	the	boundary	between	the	low	and	medium
memory	pressure	states.	The	MemoryThreshold	setting,	defaulted	to	90	percent	of	the
WorkingSetMaximum,	defines	the	boundary	between	the	medium	and	high	memory
pressure	states.

Within	each	memory	pressure	state,	Reporting	Services	grants	and	takes	back
memory	for	report	requests	differently.	For	systems	experiencing	consistent	loads,
operating	in	the	low	and	medium	states	is	ideal.	The	default	settings	for
MemorySafetyMargin	and	MemoryThreshold	favor	these	states.

For	systems	experiencing	spikes	in	memory	utilization,	such	as	might	occur	if	several
large	reports	are	processed	simultaneously,	the	medium	and	even	high	memory	states
may	allow	for	greater	concurrency,	although	reports	may	be	rendered	a	bit	more
slowly.	If	this	better	matches	your	system's	usage	pattern,	you	might	want	to	lower
the	MemorySafetyMargin	and	MemoryThreshold	settings	to	more	quickly	move	into
these	memory	states.

URL	Reservations
If	you	performed	a	Files	Only	installation	of	Reporting	Services,	you	must	configure
URL	reservations	for	the	Reporting	Services	Web	service	and	Web	Portal.	URL
reservations	tell	the	operating	system's	HTTP.SYS	driver	where	to	direct	requests
intended	for	Reporting	Services.	URL	reservations	minimally	consist	of	a	virtual
directory,	an	IP	address,	and	a	TCP	port.

NOTE

Advanced	configuration	options	enable	you	to	associate	an	SSL	certificate	with
the	URL	reservation.	This	is	addressed	in	Books	Online.

The	virtual	directory	identifies	the	application	to	which	communications	will	be
targeted.	Web	Portal	typically	uses	the	reports	virtual	directory,	whereas	the	Web
service	typically	uses	the	reportserver	virtual	directory.

NOTE

Named	instances	typically	use	the	reports_instancename	and
reportserver_instancename	virtual	directories	for	Web	Portal	and	the	Web
service,	respectively.

The	URL	reservation's	IP	address	identifies	which	IP	addresses	in	use	by	the	server
the	Reporting	Services	application	will	be	associated	with.	The	URL	reservation
typically	is	configured	to	be	associated	with	all	IP	addresses	in	use	on	the	server.	But
you	can	configure	it	to	be	associated	with	a	specific	IP	address,	including	the	loopback
address,	or	to	work	with	any	IP	addresses	not	explicitly	reserved	by	other	applications.
This	latter	option	is	not	recommended	in	most	situations.

Finally,	the	URL	reservation	is	tied	to	a	TCP	port.	Typically,	HTTP	communications
take	place	over	TCP	port	80.	You	may	have	multiple	applications	on	a	given	server
listening	on	the	same	TCP	port,	so	long	as	the	overall	URL	reservation	is	unique	on
the	server.	If	you	specify	a	TCP	port	other	than	80	(or	433	if	you	are	using	HTTPS
communications),	you	need	to	include	the	port	number	in	the	URL	whenever	you
communicate	with	Web	Portal	or	the	Web	service.

NOTE

If	you	are	running	Reporting	Services	on	32-bit	Windows	XP	(SP2),	TCP	ports
cannot	be	shared	between	URL	reservations.	Therefore,	it	is	suggested	that	you
use	TCP	port	8080	on	this	system	for	HTTP	communications	with	Reporting
Services.	For	more	information	on	this	topic,	see	Books	Online.

To	configure	a	URL	reservation	for	the	Reporting	Services	Web	service,	access	the
Web	Service	URL	page	of	the	Reporting	Services	Configuration	Manager,	as	shown	in
Figure	22.8.	On	this	page,	enter	the	virtual	directory,	IP	address,	and	TCP	port	for	the
Web	service's	URL	reservation.	After	the	changes	are	applied,	you	are	presented	with
the	Web	services	URL,	which	you	can	click	to	test.

Figure	22.8	Web	Service	URL	and	the	ReportServer	web	page.

To	configure	a	URL	reservation	for	the	Web	Portal	application,	access	the	Web	Portal
URL	page	of	the	Reporting	Services	Configuration	Manager,	as	shown	in	Figure	22.9.
The	Web	Portal	URL	reservation	leverages	the	IP	address	and	TCP	port	settings	of	the
Web	service's	reservation.	Enter	the	Web	Portal's	virtual	directory,	apply	the	changes,
and	click	the	provided	URL	to	test	the	changes.

NOTE

The	Web	Portal,	which	is	typically	accessed	using	the	“Reports”	virtual	folder	on
the	report	server,	replaces	Report	Manager	in	previous	versions	of	Reporting
Services.

Figure	22.9	Web	Portal	URL	page	and	the	web	portal

This	has	been	a	high-level	discussion	of	URL	reservations.	Advanced	options	are
available	that	require	deeper	knowledge	of	networking	concepts.	If	you're	familiar
with	these	topics,	you	should	have	no	problem	understanding	the	interfaces	and
configuring	Reporting	Services	appropriately.	If	you	need	to	configure	the	Reporting
Services	URL	reservations	differently	from	what	is	discussed	here,	it	is	recommended
that	you	engage	your	network	support	staff	to	explore	your	options.

E-mail	Delivery
The	e-mail	subscription	and	data-driven	features	for	Reporting	Services	rely	on	the	e-
mail	delivery	configuration	for	the	report	server.

NOTE

The	recommended	method	for	e-mail	delivery	from	Reporting	Services	is	to	use
an	existing	Exchange	Server	or	company	e-mail	service	via	SMTP.	Prior	versions
of	Reporting	Services	worked	only	with	an	SMTP	service	without	authentication,
like	the	old	service	that	installed	with	Internet	Information	Services	(IIS).	The	IIS
mail	service	is	no	longer	a	supported	option	in	Windows	Server	and	Reporting
Services	will	now	work	with	standard	mail	servers	that	require	authentication.

You	can	find	detailed	instructions	for	configuring	SSRS	2016	to	send	e-mail	at
https://msdn.microsoft.com/en-us/library/ms189342.aspx.

To	enable	e-mail	delivery,	you	simply	configure	the	e-mail	delivery	extension,	and
provide	server	and	message	delivery	information.	Books	Online	documents	variations
on	its	configuration,	but	most	systems	use	what	is	described	as	the	“minimum
configuration.”

The	minimum	configuration	requires	the	name	or	IP	address	of	a	remote	SMTP
server	(or	gateway)	and	a	valid	e-mail	account	on	the	SMTP	server.	This	information
is	entered	into	the	E-mail	Settings	page	of	the	Reporting	Services	Configuration
Manager.

Communication	with	the	SMTP	server	occurs	through	the	Reporting	Services	service
account.	The	service	account	requires	SendAs	rights	with	the	SMTP	server	to	send	e-
mail	through	the	configured	e-mail	account.

Mail	delivery	errors	are	accessible	in	the	Windows	application	event	log,	as	well	as	in
the	status	message	associated	with	e-mail–based	subscriptions	in	Web	Portal.
However,	problems	with	e-mail	delivery	downstream	from	the	SMTP	server	are	not
reflected	in	Reporting	Services.	For	this	reason,	it	is	recommended	that	you	test	your
e-mail	configuration	by	setting	up	a	test	subscription	to	a	monitored	e-mail	account
and	verify	end-to-end	delivery	of	the	subscription	message.

After	configuration,	users	assigned	the	“Manage	individual	subscriptions”	or	“Manage
all	subscriptions”	tasks	are	given	the	option	to	use	e-mail	delivery	(and	any	other
enabled	delivery	options)	when	setting	up	subscriptions.	Reporting	Services	does	not
provide	a	mechanism	to	secure	the	e-mail	delivery	option	separately	from	other
delivery	mechanisms.

After	it	is	enabled,	you	can	disable	e-mail	delivery	by	simply	removing	the	settings
recorded	in	the	Reporting	Services	Configuration	Manager.	Be	aware	that	although
this	disables	e-mail	delivery,	subscriptions	already	configured	to	use	this	delivery
mechanism	will	continue	to	run	as	is	and	fail	until	they	are	disabled	or	reconfigured	to
use	another	delivery	mechanism.	For	this	reason,	it	is	suggested	that	you	disable	e-
mail	delivery	in	phases.

https://msdn.microsoft.com/en-us/library/ms189342.aspx

In	the	first	phase,	prevent	the	creation	of	new	e-mail–based	subscriptions	by
commenting	out	the	appropriate	Extension	entry	within	the	DeliveryUI	section	of	the
RSReportServer.config	file.	This	removes	e-mail	delivery	as	an	option	in	Web	Portal.
The	following	code	sample	illustrates	this	modification:

<DeliveryUI>

				<!--	Extension	Name="Report	Server	Email"

Type="Microsoft.ReportingServices.EmailDeliveryProvider

								.EmailDeliveryProviderControl,

								ReportingServicesEmailDeliveryProvider">

								<Configuration>

										<RSEmailDPConfiguration>

												<DefaultRenderingExtension>MHTML</DefaultRenderingExtension>

										</RSEmailDPConfiguration>

								</Configuration>

						</Extension	-->

						<Extension	Name="Report	Server	FileShare"

Type="Microsoft.ReportingServices.FileShareDeliveryProvider.FileShareUIControl,

						ReportingServicesFileShareDeliveryProvider">

														<DefaultDeliveryExtension>True</DefaultDeliveryExtension>

						</Extension>

				</DeliveryUI>

It	is	important	to	note	that	although	this	removes	e-mail	delivery	as	an	option	in	Web
Portal,	it	does	not	prevent	applications	from	creating	new	e-mail–based	subscriptions
through	the	Web	services	interface.	If	applications	use	this	interface	to	create
subscriptions,	work	with	the	application	owners	to	disable	this	feature.

The	second	phase	of	disabling	e-mail	delivery	involves	reconfiguring	any	subscriptions
that	use	e-mail	delivery.	Work	with	content	owners	to	determine	appropriate
alternatives	as	part	of	this	work.	When	migration	is	completed,	you	can	then	safely
proceed	with	disabling	e-mail	delivery.

Rendering	Extensions
Reporting	Services	comes	preconfigured	to	render	reports	to	a	number	of	formats.	The
formats	available	are	determined	by	the	rendering	extensions	installed	on	the	server
and	configured	in	the	Render	section	of	the	RSReportServer.config	file.	Here	is	a
sample	entry	for	the	Image	rendering	extension:

<Extension	Name="IMAGE"

Type="Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,

				Microsoft.ReportingServices.ImageRendering"/>

Each	rendering	extension	entry	minimally	consists	of	name	and	type	attributes.	These
identify	the	extension	within	the	configuration	file.	The	value	associated	with	the	Name
attribute	serves	as	a	unique	identifier	for	the	extension	within	the	configuration	file.
The	Type	attribute	associates	the	entry	with	a	particular	rendering	extension.

The	name	of	the	extension	displayed	to	end	users	is	the	rendering	extension's	default

display	name,	unless	an	OverrideNames	setting	is	entered	into	the	configuration	file.
The	OverrideNames	setting	is	recorded	with	the	extension:

<Extension	Name="IMAGE"

Type="Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,

				Microsoft.ReportingServices.ImageRendering">

				<OverrideNames>

								<Name	Language="en-US">TIFF</Name>

				</OverrideNames>

</Extension>

In	this	example,	the	default	name	of	the	Image	rendering	extension,	TIFF	File,	is
overridden	with	the	shortened	name	of	TIFF.

It	is	important	to	note	that	the	Language	attribute	associated	with	the	OverrideNames
setting	should	match	the	language	settings	of	the	Reporting	Services	server.	If	the
wrong	or	no	language	is	specified,	the	OverrideNames	entry	is	ignored,	and	the
rendering	extension's	default	name	is	used.

As	mentioned	previously,	rendering	extensions	can	support	various	formats.	In
addition,	aspects	of	how	each	extension	renders	to	a	particular	format	are
configurable.	To	override	the	default	rendering	settings	of	a	particular	rendering
extension,	you	can	add	DeviceInfo	settings	to	an	extension's	entry	in	the
configuration	file.	In	addition,	more	than	one	entry	for	a	rendering	extension,	typically
with	a	different	set	of	DeviceInfo	settings,	can	be	recorded	in	the	configuration	file	so
long	as	each	extension	entry	is	identified	with	a	unique	name	attribute.

The	following	example	illustrates	this	using	the	Image	rendering	extension.	In	this
example,	the	Image	rendering	extension	is	registered	twice.	In	the	first	entry,	the
Image	rendering	extension	is	configured	for	its	default	settings,	allowing	TIFF	images
to	be	produced.	In	the	second	entry,	the	Image	rendering	extension	is	configured	to
produce	BMP	images.

<Extension	Name="IMAGE"

Type="Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,

				Microsoft.ReportingServices.ImageRendering"/>

<Extension	Name="BMP"

Type="Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,

				Microsoft.ReportingServices.ImageRendering">

				<OverrideNames>

								<Name	Language="en-US">BMP</Name>

				</OverrideNames>

				<Configuration>

								<DeviceInfo>

												<OutputFormat>BMP</OutputFormat>

												<PageHeight>11in</PageHeight>

												<PageWidth>8.5in</PageWidth>

								</DeviceInfo>

				</Configuration>

</Extension>

DeviceInfo	settings	are	rendering-extension–specific.	Books	Online	documents	these

settings	for	each	of	the	default	rendering	extensions.	It	is	important	to	note	that
without	configuring	device	info	settings	in	the	RSReportServer.config	file,	you	can
still	supply	device	info	settings	when	accessing	a	report	through	URL	access	or	Web
services	calls	to	control	report	rendering	for	a	specific	request.	In	addition,	URL	access
is	the	only	mechanism	allowing	device	info	settings	for	the	CSV	rendering	extension
to	be	set,	resulting	in	a	tab-delimited	file.

Finally,	you	should	disable	the	Extension	entry	for	any	rendering	extensions	you	do
not	intend	to	use	by	commenting	it	out	in	the	RSReportServer.config	file.	However,	if
you	simply	want	to	prevent	a	file	format	from	being	used	with	a	particular
subscription	delivery	option,	you	should	add	its	name	to	the	ExcludedRenderFormats
section	under	the	appropriate	delivery	extension	within	the	RSReportServer.config
file.	In	the	following	example,	the	extensions	with	Name	attributes	set	to	HTMLOWC,	NULL,
RGDI,	and	IMAGE	are	excluded	from	use	with	File	Share	delivery:

<Extensions>

				<Delivery>

								<Extension	Name="Report	Server	FileShare"

Type="Microsoft.ReportingServices.FileShareDeliveryProvider.FileShareProvider,

								ReportingServicesFileShareDeliveryProvider">

												<MaxRetries>3</MaxRetries>

												<SecondsBeforeRetry>900</SecondsBeforeRetry>

												<Configuration>

																<FileShareConfiguration>

																				<ExcludedRenderFormats>

																							<RenderingExtension>HTMLOWC</RenderingExtension>

																							<RenderingExtension>NULL</RenderingExtension>

																							<RenderingExtension>RGDI</RenderingExtension>

																							<RenderingExtension>IMAGE</RenderingExtension>

																			</ExcludedRenderFormats>

																</FileShareConfiguration>

												</Configuration>

								</Extension>

			…

			</Delivery>

			…

</Extensions>

Each	extension	is	visible	by	default,	which	means	that	it	will	appear	as	an	option	in
the	user	interface.	Every	applicable	extension	can	be	hidden	from	view	by	adding	the
Visible="false"	attribute.	You	will	see	examples	of	this	setting	in	the	file	for	legacy
rendering	formats	such	as	"WORD"	and	"EXCEL",	which	have	been	replaced	by	newer
rendering	extensions.	Any	hidden	extension	can	still	be	used	through	the	web	services
or	URL	parameters.

My	Reports

NOTE

SQL	Server	2016	Reporting	Services	introduces	the	concept	of	Favorites,	which
has	some	functional	duplication	with	the	My	Reports	feature.	The	My	Reports
feature	is	still	offered	for	backward-compatibility	but	it	might	confuse	users	to
enable	both	without	some	guidance.	Personally,	I'm	not	a	fan	of	the	My	Reports
feature	but	it	may	have	utility	in	very	specific	report	management	scenarios.

The	My	Reports	feature	gives	users	a	personal	folder	in	Reporting	Services	within
which	they	can	manage	and	view	their	own	content.	This	is	a	powerful	feature	for
users,	but	it	can	quickly	get	out	of	hand.	The	critical	concern	is	that	users	are,	by
default,	assigned	elevated	rights	within	their	My	Reports	folder.	These	rights	allow
them	to	store	content	on	the	site	with	no	mechanism	to	restrict	the	type	or	size	of	that
content.

By	default,	the	My	Reports	feature	is	disabled.	If	it	is	enabled,	a	My	Reports	folder	is
presented	to	each	user	in	his	or	her	home	directory.	This	folder	is	actually	a	link	to	a
user-specific	folder	created	by	Reporting	Services	within	the	Users	Folders	folder.
Only	System	Administrators	have	direct	access	to	the	Users	Folders	folder.

Within	his	or	her	My	Reports	folder,	a	user	is	a	member	of	a	preset	role.	By	default,
this	is	the	My	Reports	role,	which	has	the	following	tasks	assigned	to	it:

Create	linked	reports

View	reports

Manage	reports

View	resources

View	folders

Manage	folders

Manage	report	history

Manage	individual	subscriptions

View	data	resources

Manage	data	sources

These	tasks,	discussed	in	the	preceding	chapter,	provide	elevated	rights	within	this
space.	You	might	consider	removing	some	of	these	tasks	from	the	My	Reports	role	or
creating	an	alternative	role	with	lesser	privileges.	Then	you	can	use	that	as	the	default
role	assignment	for	the	My	Reports	feature.

To	enable	the	My	Reports	feature,	open	SQL	Server	Management	Studio,	and	connect

to	the	Reporting	Services	instance.	Right-click	the	instance	object	and	select
Properties	to	launch	the	Server	Properties	dialog.	Within	the	default	General	page	of
this	dialog,	shown	in	Figure	22.10,	use	the	checkbox	next	to	the	“Enable	a	My	Reports
folder	for	each	user”	option	to	toggle	this	feature	on	and	off.	If	this	is	enabled,	you	can
assign	a	role	to	each	user	within	his	or	her	My	Reports	folder	through	the	drop-down
just	below	the	checkbox.

Figure	22.10	Server	Properties	dialog.

If	you	decide	to	enable	this	feature,	closely	monitor	the	consumption	of	space	by
users,	and	work	with	them	to	understand	the	feature's	appropriate	use.	If	you	decide
to	disable	the	feature	after	having	made	it	available,	users	will	no	longer	be	able	to
access	their	My	Reports	folder.	However,	the	content	of	these	folders	remains	within
the	system.	Any	subscriptions	and	snapshots	associated	with	reports	in	these	folders
continue	to	run.	To	properly	clean	up	the	My	Reports	folders,	you	need	to	work	with
your	users	to	migrate	or	drop	their	content.

SUMMARY
In	this	chapter,	you	have	explored	elements	of	Reporting	Services	with	the	goal	of
developing	a	comprehensive	administrative	program.	Although	there	are
recommended	best	practices,	there	is	no	one	right	approach.	It	is	important	to
understand	your	options	and	then	work	with	your	users,	developers,	and
administrators	to	develop	a	program	tailored	to	your	specific	needs.	After	it	is	in	place,
it	is	important	to	follow	through	on	the	actions	specified,	and	to	be	on	the	lookout	for
threats	and	changes	in	needs	that	may	require	adjustments	to	your	routines	and
practices.

Microsoft®	SQL	Server®	2016	Reporting	Services	and	Mobile	Reports

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2017	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-119-25835-3

ISBN:	978-1-119-25838-4	(ebk)

ISBN:	978-1-119-25836-0	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections
107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or
authorization	through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood
Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)
748-6011,	fax	(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or
warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all
warranties,	including	without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created
or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for
every	situation.	This	work	is	sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,
accounting,	or	other	professional	services.	If	professional	assistance	is	required,	the	services	of	a	competent
professional	person	should	be	sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for	damages	arising
herefrom.	The	fact	that	an	organization	or	Web	site	is	referred	to	in	this	work	as	a	citation	and/or	a	potential	source
of	further	information	does	not	mean	that	the	author	or	the	publisher	endorses	the	information	the	organization	or
Web	site	may	provide	or	recommendations	it	may	make.	Further,	readers	should	be	aware	that	Internet	Web	sites
listed	in	this	work	may	have	changed	or	disappeared	between	when	this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within
the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to
media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2016954844

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade	dress
are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and
other	countries,	and	may	not	be	used	without	written	permission.	Microsoft	and	SQL	Server	are	registered
trademarks	of	Microsoft	Corporation.	All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&
Sons,	Inc.,	is	not	associated	with	any	product	or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

This	book	is	dedicated	to	my	wonderful	wife,	Sherri.	You	are	beautiful	in	so	many
ways	and	I	love	you.	Thank	you	for	managing	the	household	and	the	business,	and
helping	me	preserve	a	thread	of	sanity	while	writing	this	book.	You	raised	four	great
kids	who	are	now	adults;	and	one	overgrown	kid	who	refuses	to	grow	up.	Thank	you
for	your	word-smithing	skills,	managing	figure	files,	and	correcting	my	run-on
sentences.

ABOUT	THE	AUTHOR
PAUL	TURLEY	is	Principal	Consultant	for	Intelligent	Business,	a	Mentor	with
SolidQ,	and	a	Microsoft	Data	Platform	MVP.	He	consults,	writes,	speaks,	teaches,	and
blogs	about	business	intelligence	and	reporting	solutions.	He	works	with	many
organizations	to	model	data,	and	visualize	and	deliver	critical	information	to	make
informed	business	decisions	using	the	Microsoft	data	platform	and	business	analytics
tools.	He	is	a	Director	of	the	Oregon	SQL	PASS	chapter	and	user	group,	and	the	author
and	lead	author	of	15	publications.	He	holds	several	certifications	including	MCSE	for
the	Data	Platform	and	BI.	He	posts	and	can	be	contacted	through	his	blog	at
SqlServerBiBlog.com.

http://SqlServerBiBlog.com

ABOUT	THE	TECHNICAL	EDITOR
NIGEL	PETER	SAMMY	is	a	Microsoft	Data	Platform	Most	Valuable	Professional
(MVP)	with	over	15	years	of	technical	experience	including	12	years	of	database	and
SQL	Server	experience.	He	currently	works	at	SoftwareONE	as	a	Senior	Data	Platform
Engineer	where	his	responsibilities	include	consulting,	solution	design	and
implementation,	hands-on	training,	and	pre-sales.	Besides	working	at	SoftwareONE,
he	is	also	a	Lecturer	at	the	School	of	Business	and	Computer	Science	(SBCS)	where	he
teaches	the	Microsoft	Certified	Solutions	Associate	(MCSA):	SQL	Server	certification
as	well	as	other	BSc	courses	for	the	University	of	London	and	University	of
Greenwich.

Nigel	previously	worked	at	Microsoft	as	an	Account	Technology	Strategist	(ATS)
where	he	was	responsible	for	providing	pre-sales	technical/architectural	support	for
over	200	agencies	in	both	the	commercial	and	public	sectors.	As	an	ATS	he	delivered
technical	presentations	and	proofs	of	concept	using	SQL	Server,	Azure,	Power	BI,	and
Office	365.	Nigel	was	also	a	Data	Platform	Architect	(DPA)	at	SolidQ,	a	global	provider
of	advanced	consulting,	mentoring,	and	education	solutions	for	the	Microsoft	Data,
Business	Intelligence,	Collaboration,	and	Development	platforms.	Microsoft	and
SolidQ	have	given	him	at	least	five	years'	working	experience	with	large	international
companies.

He	has	progressed	through	other	roles	in	his	career	including	Application	Developer,
Analyst,	Database	Administrator,	Database	Developer,	Project	Manager,	Architect,
Team	Lead,	and	Manager.	In	2010,	Nigel	co-founded	the	Trinidad	and	Tobago	SQL
Server	User	Group	(TTSSUG),	a	volunteer,	independent,	non-profit	organization
providing	a	community	for	Microsoft	SQL	Server	professionals,	hobbyists,	and
enthusiasts.	Nigel	is	a	co-author	of	Microsoft's	SQL	Server	2012	Upgrade	Technical
Guide	and	a	technical	editor	of	Wrox's	Professional	Microsoft	SQL	Server	2012
Reporting	Services	book.	For	the	last	eight	years	he	has	been	presenting	on	data
platform	topics	for	conferences	locally	and	internationally.	When	he	gets	extra	time,
he	blogs	at	www.nigelpsammy.com.

http://www.nigelpsammy.com

CREDITS
SENIOR	ACQUISITIONS	EDITOR

Kenyon	Brown

PROJECT	EDITOR

Tom	Dinse

TECHNICAL	EDITOR

Nigel	Peter	Sammy

PRODUCTION	EDITOR

Athiyappan	Lalith	Kumar

COPY	EDITOR

Kimberly	A.	Cofer

MANAGER	OF	CONTENT	DEVELOPMENT	&	ASSEMBLY

Mary	Beth	Wakefield

PRODUCTION	MANAGER

Kathleen	Wisor

MARKETING	MANAGER

Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR

Barry	Pruett

BUSINESS	MANAGER

Amy	Knies

EXECUTIVE	EDITOR

Jim	Minatel

PROJECT	COORDINATOR,	COVER

Brent	Savage

PROOFREADER

Nancy	Bell

INDEXER

Nancy	Guenther

COVER	DESIGNER

Wiley

COVER	IMAGE

©	afby71/iStockphoto

ACKNOWLEDGMENTS
My	endless	appreciation	and	gratitude	goes	to	the	co-authors	and	contributors	of	the
four	previous	editions	of	this	book	series	over	the	past	13	years.	As	technical	reviewer,
Nigel	Sammy	worked	tirelessly	to	test	and	research	the	2016	product	as	it	was	readied
for	release,	and	to	make	sure	we	were	current,	complete,	and	accurate.	This	product
continues	to	be	a	moving	target,	and	Nigel	went	far	above	and	beyond	any	reasonable
expectation.

I	appreciate	my	2012	edition	co-authors	who	helped	refresh	and	update	material	for
the	new	product	version.	Thanks	go	to	Grant	Paisley,	Thiago	Silva,	and	Robert
Bruckner	for	your	revisions	and	direction.	Tom	Dinse,	thank	you	for	your	patience	and
persistence	through	this	hardscrabble	effort.	Riccardo	Muti	and	Chris	Finlan	from	the
product	team,	thanks	for	sewing	the	monster	together	and	once	again	giving	him	life.
Seriously,	thanks	for	the	direct	product	team	access	and	on-going	support	for	this	set
of	marvelous	tools.

FOREWORD
Riccardo	Muti

Group	Program	Manager,	SQL	Server	Reporting	Services
Microsoft

On	a	mild	Seattle	day	in	2010,	I	headed	to	the	Microsoft	campus	to	start	my	new	job
working	on	the	SQL	Server	Reporting	Services	product.	Once	there,	I	learned	that	my
computer	would	take	a	few	more	days	to	arrive.	What	was	I	supposed	to	do	for	a	few
days	without	a	computer?	My	manager	handed	me	a	book	and	said,	“Read	this.”	That
book	was	Microsoft	SQL	Server	Reporting	Services	Recipes	for	Designing	Expert
Reports	by	Paul	Turley	and	Robert	Bruckner.	For	those	few	days,	I	could	do	nothing
but	get	to	know	my	teammates	and	pore	over	that	book.	By	the	time	my	laptop
arrived,	I	was	primed	to	put	everything	I'd	studied	into	practice.	It's	no	exaggeration,
then,	to	say	that	I've	been	learning	Reporting	Services	from	Paul's	books	since	my	first
day	on	the	Reporting	Services	team	at	Microsoft.

Long	after	I'd	received	my	laptop,	I	kept	that	book	on	my	desk,	referring	to	it	often	as	I
worked	to	deepen	my	report	design	expertise.	Whether	I	was	trying	to	figure	out	the
best	way	to	design	a	multi-lingual	report	or	to	pass	a	multi-value	parameter	into	a
stored	procedure,	one	of	the	many	recipes	in	that	book	held	the	answer.	Many	people
have	turned	investments	in	learning	Reporting	Services	into	rewarding	careers,	in	no
small	part	with	the	help	of	Paul's	many	books	on	the	topic,	which	expertly	guide
readers	on	a	journey	from	foundational	knowledge	to	the	most	advanced	techniques.
Professional	Microsoft	SQL	Server	2016	Reporting	Services	and	Mobile	Reports
carries	on	that	tradition.	A	must-read	for	novices	and	experts	alike,	it	covers
everything	from	setting	up	a	report	server	to	designing	sophisticated	reports	to
crafting	enterprise	solutions	to	optimizing	for	today's	mobile	devices.

Last	year,	after	a	few	years	working	on	other	parts	of	Microsoft's	Business	Intelligence
offering,	I	had	the	opportunity	to	rejoin	the	Reporting	Services	team	and	revitalize	the
product	that	hadn't	been	updated	in	a	few	years.	A	year	of	a	team's	hard	work	later,
SQL	Server	2016	Reporting	Services,	the	product	of	an	ambitious	overhaul,	offers	a
modern	enterprise	reporting	platform,	including	a	nifty	mobile	dashboard	solution.
What	has	powered	the	widespread	adoption	of	Reporting	Services	goes	beyond	the
product	itself	to	the	community	that	has	flourished	around	it,	thanks	in	large	part	to
leaders	such	as	Paul.	In	reading	this	book,	you're	participating	in	that	community	and
learning	from	a	master.	If	you'd	asked	me	where	to	start	learning	Reporting	Services,	I
would've	handed	you	none	other	than	this	book.	Enjoy!

FOREWORD
Christopher	Finlan

Senior	Program	Manager
SQL	Server	Reporting	Services

“So,	is	Reporting	Services	dead?”

That	question,	and	my	non-answer,	was	usually	the	extent	of	my	conversations	with
my	Microsoft	customers	when	it	came	to	SQL	Server	Reporting	Services.	You	see,
prior	to	joining	the	product	team,	I	was	part	of	the	pre-sales	team	at	Microsoft.	My
entire	job	was	to	get	customers	excited	about	the	latest	tools	and	products	we	had	in
the	Microsoft	Business	Intelligence	Suite.	This	meant	we	were	generally	avoiding	the
topic	of	SQL	Server	Reporting	Services,	which	looked	dated	and	hadn't	seen	much
added	to	it	in	the	last	few	years.	Instead,	I	was	either	talking	about	Power	BI	or	about
a	little-known	Microsoft	partner	called	Datazen,	which	had	these	amazing	mobile
dashboards	that	looked	beautiful	on	every	device	you	consumed	them	on.

Fast	forward	to	today,	and	much	has	changed	in	these	last	12–18	months.	Nowadays,
customers	can't	get	enough	information	about	what's	new	in	SQL	Server	Reporting
Services.	In	fact,	it's	often	the	first	thing	customers	want	to	talk	about	when	it	comes
to	Microsoft	Business	Intelligence.	The	SQL	Server	2016	release	saw	the	product
transformed,	bringing	a	modern	look	and	feel	along	with	all	the	mobile	capabilities
previously	available	in	the	standalone	Datazen	product.	Combine	this	with	the
planned	improvements	already	communicated	on	the	Microsoft	BI	roadmap,	and	it's
an	incredibly	exciting	time	to	be	a	part	of	the	Reporting	Services	product	group.	Just
seeing	our	customer's	excitement	at	what's	been	delivered	and	what's	still	to	come	is
incredibly	gratifying	to	all	of	us.

But	this	same	excitement	also	brings	with	it	an	entirely	new	set	of	challenges—many
of	you	reading	this	book	may	never	have	touched	Reporting	Services	before	for	the
reasons	mentioned	earlier.	Now	that	you've	seen	what	you	have	available	as	part	of
your	SQL	Server	investment,	you're	looking	to	unlock	it	and	don't	know	where	to	start.
Or	perhaps	you've	used	SSRS	in	the	past,	but	want	to	dive	into	creating	mobile	reports
and	KPIs	for	the	first	time.	Regardless	of	why	you	are	here	now,	be	glad	you	are.	There
are	few	people	better	equipped	to	navigate	you	through	what	you	can	accomplish	with
Reporting	Services	than	the	author	of	this	book,	Paul	Turley.

For	over	a	decade,	Paul's	books	on	SQL	Server	Reporting	Services	have	become	“the
SSRS	bible”	for	thousands	of	SQL	Server	report	developers	every	day.	His	writing	style
makes	it	easy	for	anyone	to	understand	the	wide-ranging	topics	he	covers,	from	report
design	to	server	administration.	There's	even	a	copy	of	one	of	his	books	in	our	team
room.	I	know	this	because	I've	picked	it	up	and	used	it	on	more	than	one	occasion.
And	I'm	looking	forward	to	adding	this	version	to	our	collection,	as	you	all	have
already.

Thanks	to	Paul	and	all	of	you	for	being	a	part	of	the	Reporting	Services	community,
and	enjoy	the	book!

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Title Page
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Sample Reports and Projects
	Errata
	P2P.WROX.COM

	Part I: Getting Started
	Chapter 1: Introducing Reporting Services
	Who Uses Reporting Services?
	Dashboards, Reports, and Applications
	Report Tool Choices
	Optimizing Performance
	Summary

	Chapter 2: What's New in SQL Server 2016 Reporting Services?
	Report Builder and Designer Enhancements
	Modern Browser Rendering
	Parameter Layout Control
	Updated RDL Specification
	Mobile Reports
	KPIs
	Native Printing Control
	PowerPoint Rendering
	Integrated and Improved Web Portal
	New Charts and Visual Enhancements
	Standardized, Modern Browser Rendering
	Power BI Dashboard Pinning
	Summary

	Chapter 3: Reporting Services Installation and Architecture
	What's Changed in SQL Server 2016?
	The Basic Installation
	The Enterprise Deployment
	The Reporting Life Cycle
	Reporting Services Tools
	Reporting Services Windows Service
	Reporting Services Processors and Extensions
	Reporting Services Application Databases
	Summary

	Part II: Basic Report Design
	Chapter 4: Report Layout and Formatting
	Using Report Design Tools
	Understanding Report Data Building Blocks
	Samples and Exercises
	Summary

	Chapter 5: Data Access and Query Basics
	Database Essentials
	Data Source Management
	Datasets and Fields
	Summary

	Chapter 6: Grouping and Totals
	SQL Server Data Tools
	Report Groups
	Exercise
	Summary

	Part III: Advanced and Analytic Reporting
	Chapter 7: Advanced Report Design
	Pagination and Flow Control
	Headers and Footers
	Composite Reports and Embedded Content
	Unlocking the Textbox
	Designing Master/Detail Reports
	Designing Subreports
	Navigating Reports
	Exercises
	Summary

	Chapter 8: Graphical Report Design
	Visual Design Principles
	Chart Types
	Exercises
	Summary

	Chapter 9: Advanced Queries and Parameters
	T-SQL Queries and Parameters
	MDX Queries and Parameters
	Summary

	Chapter 10: Reporting With Analysis Services
	Analysis Services for Reporting
	Using Reporting Services with Analysis Services Data
	Working with Multidimensional Expression Language
	Adding Nonadditive Measures
	Mdx Properties and Cube Formatting
	Drill-Through Reports
	Best Practices and Provisions
	Summary

	Chapter 11: SSAS Reporting Advanced Techniques
	Building A Dynamic Cube Browser with SSRS
	Cube Dynamic Rows
	Cube Dynamic Rows Expanded
	Cube Restricting Rows
	Cube Metadata
	Cube Browser
	Summary

	Chapter 12: Expressions and Actions
	Basic Expressions Recap
	Using the Expression Builder
	Calculated Fields
	Conditional Expressions
	The IIF() Function
	Using Custom Code
	Reporting on Recursive Relationships
	Actions and Report Navigation
	Summary

	Part IV: Solution Patterns
	Chapter 13: Report Projects and Consolidation
	SSDT Solutions and Projects
	Version Control
	Synchronizing Content
	Managing Server Content
	Report Builder and Self-Service Reporting Strategies
	Report Builder and Semantic Model History
	Planning A Self-Service Reporting Environment
	User Report Migration Strategies
	Summary

	Chapter 14: Report Solutions, Patterns, and Recipes
	Super Reports
	Report Recipes: Building on Basic Skills
	Summary

	Part V: Reporting Services Custom Programming
	Chapter 15: Integrating Reports into Custom Applications
	URL Access
	Programmatic Rendering
	Using the Reportviewer Control
	Summary

	Chapter 16: Extending Reporting Services
	Extension Through Interfaces
	Creating a Custom Data Processing Extension
	Summary

	Part VI: Mobile Report Solutions
	Chapter 17: Introducing Reporting Services Mobile Reports
	The Mobile Report Experience and Business Case
	Connection and Dataset Design Basics
	Introducing Mobile Report Publisher
	Visual Control Categories
	Summary

	Chapter 18: Implementing a Mobile Report with Design-First Development
	Design-First Mobile Report Development Exercise
	Summary

	Chapter 19: Mobile Report Design Patterns
	Key Performance Indicators
	The Thing About KPIs
	Creating a Time-Series Mobile Report
	Summary

	Chapter 20: Advanced Mobile Report Solutions
	Designing a Chart Data Grid Mobile Report
	Exercise: Adding a Drill-Through Mobile Report
	Exercise: Adding a Drill-Through Paginated Report
	Summary

	Part VII: Administering Reporting Services
	Chapter 21: Content Management
	Using Web Portal
	Content Management Activities
	Site and Content Security
	Site Branding
	Content Management Automation
	Summary

	Chapter 22: Server Administration
	Security
	Backup and Recovery
	Monitoring
	Configuration
	Summary

	End User License Agreement

